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Chapter 13
Variational Data Assimilation
for the Global Ocean

James A. Cummings and Ole Martin Smedstad

Abstract A fully three dimensional, multivariate, variational ocean data assimila-
tion system has been developed that produces simultaneous analyses of temperature,
salinity, geopotential and vector velocity. The analysis is run in real-time and
is being evaluated as the data assimilation component of the Hybrid Coordinate
Ocean Model (HYCOM) forecast system at the U.S. Naval Oceanographic Office.
Global prediction of the ocean weather requires that the ocean model is run at very
high resolution. Currently, global HYCOM is executed at 1/12 degree resolution
(~7 km mid-latitude grid mesh), with plans to move to a 1/25 degree resolution
rid in the near future (~3 km mid-latitude grid mesh). These high resolution global
rids present challenges for the analysis given the huge model state vector and the
ver increasing number of satellite and in situ ocean observations available for the
imilation. In this paper the development and evaluation of the new oceanographic
hree-dimensional variational (3DVAR) data assimilation is described. Special
phasis is placed on documenting the capabilities built into the 3DVAR to make
e system efficient for use in global HYCOM.

3;1 Introduction

ddy-resolving global ocean prediction requires high resolution since the charac-
istic scale of ocean eddies is on the order of a few tens of kilometers. Only
ently have sufficient data and computer power become available to nowcast
d forecast the ocean weather at eddy-resolving scales, including processes that
ontrol the surface mixed layer, the formation of ocean eddies, meandering ocean
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currents and fronts, and generation and propagation of coastally trapped wave
Hurlburt et al.(2008a) gives a good discussion of the requirements for an oce;
model to be eddy-resolving. High resolution global ocean forecast models prese
challcnges for the assimilation component of the forecasting system given the hy
model state vector and the ever increasing number of satellite and in situ oce
observations available for the assimilation. Accordingly, the global analysis has
be both computationally efficient and accurate to account for the oceanographi
features resolved by the high resolution model. At the same time the analysis m
use all of the available observations and create and maintain dynamically adjuste
corrections to the model forecast.

The purpose of this chapter is to provide an overvicw of a new variational oceg
data assimilation system that has been developed as an upgrade to an existip
multivariate optimum interpolation (MVOI) system (Cummings 2005). Compar
to the MVOI the 3DVAR algorithm has several advantages. First, the 3DVA
performs a global solution that does not require data selection. In the MV
observations are organized into overlapping analysis volumes and the solution
depend on how the volumes are defined. This is not the case in the 3DVAR, as
global solve allows all observations to influence all grid points, a requirement
an optimum analysis. Second, through the use of observation operators, 3DV,
can incorporate observed variables that are different from the model prognos
variables. Examples of this in the ocean are integral quantities, such as acous
travel time and altimetcr measures of sea surface height, and direct assimilati
of satellite radiances of sea surface temperature (SST) through radiative trans
modeling. Finally, 3DVAR permits more powerful and realistic formulations
the background error covariances, which control how information is spread fi
the observations to the model grid points and model levels. The error covaria
also ensure that observations of one model variable produce dynamically consis
corrections in the other model variables.

The 3DVAR referred to in this paper is the Navy Coupled Ocean Data As:
ilation (NCODA) system, version 3. NCODA 3DVAR is in operational use at
U.S. Navy oceanographic production centers: Fleet Numerical Meteorology
Oceanography Center (FNMOC) in Montercy, CA, and the Naval Oceanogr
Office (NAVOCEANQ) at the Stennis Space Center, MS. NCODA is tru
unified and flexible oceanographic analysis system. It is designed to meet all
ocean data analysis and assimilation requiremcnts using the same code. In
dimensional mode, NCODA provides SST and sca ice concentration analyse
lower boundary conditions of the Navy global and regional atmospheric for
models. In three-dimensional mode, it is executed in a sequential incrementalu
cycle with the Navy ocean forecast models: the Hybrid Coordinate Ocean M
(HYCOM) on the global scale, and the Navy Coastal Ocean Model (NCO)
the regional scale. Here, NCODA provides updated initial conditions of
temperature, salinity, and currents for the next run of the ocean forecast m
The analysis background fields, or first guess, are generated from a short-
ocean model forecast, and the 3DVAR computes dynamically consistent correc
to the first-guess fields using all of the observations that have become ava
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since the last analysis was made. Further, NCODA 3DVAR is globally relocatable
and has been integrated into the Coupled Ocean Atmosphere Mesoscale Prediction
System (COAMPS® 1, which is used by Navy for rapid environmental assessment.
In this mode of operation, the 3DVAR performs multi-scale analyses on nested,
successively higher resolution grids. Finally, NCODA provides the data assimilation
component for the WAVEWATCH wave model forecasting system at FNMOC
(Wittmann and Cummings 2005). In this mode of operation, NCODA computes
corrections to the model’s two-dimensional wave spectra from assimilation of
satellite altimeter and wave buoy observations of significant wave height.

The examples used in the paper are taken from NCODA 3DVAR analyses cycling
with global HYCOM. Sections 13.2 and 13.3 of the paper describe the assimilation
‘method and techniques used to specify the error covariances. Section 13.4 lists
the occan observing systems assimilated and outlines the data selection and data
pre-processing that is done for the real-time global forecast. Section 13.5 gives an

- overview of the entire NCODA system, including the diagnostic suite. Section 13.6
presents some verification results from global HYCOM. Section 13.7 describes
future capabilities and applications of the NCODA 3DVAR system, while Sect. 13.8
gives a summary.

13.2 Method

The method used in NCODA is an oceanographic implementation of the Navy
Variational Atmospheric Data Assimilation System (NAVDAS), a 3DVAR tech-
nique developed for Navy numerical weather prediction (NWP) systems (Daley
and Barker 2001). The oceanographic 3DVAR analysis variables are temperature,
salinity, geopotential (dynamic height), and u,v vector velocity components. All
ocean variables are analyzed simultaneously in three dimensions. The horizon-
I"correlations are multivariate in geopotential and velocity, thereby permitting
justments to the mass fields to be correlated with adjustments to the flow
ields. The velocity adjustments (or increments) are in geostrophic balance with
the geopotential increments, which, in turn, are in hydrostatic agreement with
e temperature and salinity increments. The multivariate aspects of the 3DVAR
ssimilation are discussed further in Sect. 13.3.3.

- The NCODA 3DVAR problem is formulated as:

Xa=xp+ P HT(HPyHT + R)~'[y — H(xp)) (13.1)
here x, is the analysis vector, Xy, is the background vector, Py is the positive-

efinite background error covariance matrix, H is the forward operator, R is the
bservation error covariance matrix, and y is the observation vector. At the present

0AMPS® s 4 registered trademark of the Naval Rescarch Laboratory
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time, the forward operator in NCODA is spatial interpolation performed in th
dimensions by fitting a surface to a 4 x 4 x 4 grid point target and evaluating
surface at the observation location. Thus, HPyHT is approximated directly by
background error covariance between observation locations, and P HT directly
the error covariance between observation and grid locations. For the purposes
discussion, the quantity [y—H(xp)] is referred to as the innovation vector, [y—H(x,
is the residual vector, and x,-X; is the increment (or correction) vector.

The observation vector contains all of the synoptic temperature, salinity 3
velocity observations that are within the geographic and time domains of
forecast model grid and update cycle. Observations can be assimilated at th
measurement times within the update cycle time window by comparison agaj
time dependent background fields using the first guess at appropriate time (FGA'
method. An advantage of the FGAT method is that it eliminates a component of
mean analysis error that occurs when comparing observations and forecasts not va
at the same time. As will be described in Sect. 13.6, the use of FGAT in real-ti
HYCOM allows for assimilation of late receipt observations. i

Equation (13.1) is the observation space form of the 3DVAR equation. A d
form of the 3DVAR is the analysis space algorithm, which is defined by ¢
model state vector on some regular grid. Courtier (1997) has shown that the tu
formulations are equivalent and give the same solution. However, as discussed
Daley and Barker (2000, 2001), there are advantages to the use of an observati
space approach in Navy ocean model applications. In the observation s
algorithm the matrix to be inverted (HP,HT 4 R)™' is dimensioned by the numb
of observations, while in the analysis space algorithm the matrix to be inverie
dimensioned by the number of grid locations. Given the high dimensionality
global ocean forecast model grids, and the relatively sparse ocean observati
available for the assimilation, an observation space 3DVAR algorithm will h
a clear computational advantage. Further, an observation space system is 1
flexible and can more easily be coupled to many prediction models. As
been discussed, NCODA must work equally well with multiple atmospheric
oceanographic prediction systems in a wide variety of applications, as well
wave model prediction system. Finally, due to the local nature of the observ
space algorithm, the background error covariances are multivariate and can
formulated and generalized in a straightforward manner. As will be shown,
aspect of the 3DVAR is an important feature of NCODA. On the other hand, anal
space systems typically restrict the background error covariances to be sequenc
univariate, one-dimensional digital filters, thereby ignoring the inherent multivari
nature of the background error correlations.

Solution of the observation space 3DVAR problem is done in two steps. First,
equation,

(HPyHT + R)z = [y — H(x)) (13

is solved for the vector z. Next, a post-multiplication step is performed by I
multiplying z using,
Xa=xp= PyHTz
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to obtain the correction ficld in grid point space. A pre-conditioned conjugate gradi-
ent deseent algorithm is used to solve (13.2) using block diagonal pre-conditioners.
The blocks are defined by decomposing the analysis grid into non-overlapping
partitions of a regular quilt laid over the analysis domain in model grid point
(i, ) space. The use of i, j blocks rather than latitude-longitude blocks allows
the analysis to be completely grid independent. The flexibility of this approach is
shown in Fig. 13.1 for the global HYCOM Aulantic basin analysis (sce Scct. 13.6
and Fig. 13.9 for a discussion of the HYCOM basins). A total of 1,935, 2,436,
and 1,147 blocks are defined for the global HYCOM Allantic, Indian, and Pacific
analysis regions, respectively, which use Mereator grid projections. Observations
are sorted into the blocks and the pre-conditioning matrix is formed from a
Choleski decomposition of the correlations between observations in the same
block. The Choleski decomposed block matrices are caleulated onee and stored
before application of the conjugate gradient deseent algorithm. Solution of the pre-
conditioned conjugate gradient for the vector z n (13.2) typically converges in 6-10
iterations. Determination of convergence is based on the norm of the gradient of the
cost function estimated at each iteration step. This gradient is a veetor the size of the
number of observations and the norm is the square root of the sum of the clements,
which are the residuals of the fit of the analysis to the innovations. In practiee,
convergenee is reached when the norm of the gradient is reduced by 2 orders of
magnitude. This is eonsidered to be sufficient because an inercasc in the number
of iterations only fits small-scale features. This may appear to be beneficial, but it
must be noted that the post-multiplication step is a spatially smoothing operation
when the background crror correlations are applied. Thus, the extra iterations in the
olver required to resolve small-scale features in the observations do not have much
fect on the final analyzed inerement field beeausc of the smoothing effect of the
ost-multiplicr.

Observation space 3DVAR algorithms converge quickly because very good pre-
onditioners can be devcloped. In fact, the pre-conditioner used in NCODA is
erfect. For example, NCODA is configured such that when the data count is less
han 2,000 the observation data block is defined as the entire analysis domain.
WVhen this global pre-conditioned data block is presented to the conjugate gradient
olver the algorithm converges in a single iteration. No further work by the solver is
eccssary. This sparse data pathway through the eode is often encountered when
CODA 3DVAR is executed on nested grids in the relocatable coupled model
stem where the innermost grid represents a small geographic area.

As noted by Daley and Barker (2001), partitioning of the observations into
locks has no cffeet on the final solution. The NCODA 3DVAR formulation is
aranteed to include correlations between all observations in all blocks, thereby
Chieving a global solution. After the vector z is obtained it is post-multiplied
y PyHT 10 create the analysis correction fields for cach analysis variable. This
p is performed using blocks in grid space that are defined differently from the
servation blocks used to eompute the solution vector z. To accommodate high
olution ocean model forecast grids and minimize computer memory resource
tquircments for the analysis, the grid space blocks are defined smaller by simply
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Fig. 13.1 Observation data blocks for HYCOM Ailantic basin grid. Blue lines give observati

block edges; observation locations are indicated by black dots. A total of 1,935 data blocks
defined (43 in the X direction, 45 in 1he Y direction)

sub-setting the previously defined observation blocks. Again, it must be emphasize
that partitioning the grid domain into blocks in the post multiplication does not affe¢
the final results. The correction fields are guaranteed to contain the correlatior
between all observations and all grid points, thereby creating a seamless an
continuous analysis.

Parallelization of the 3DVAR algorithm is achieved in three ways. The first
parallelization is done over the obscrvation-defined blocks in the pre-conditioner
the seeond parallelization is done over observation-defined blocks in the conjugaté
gradient solver, and the third parallelization is done over grid point-defined blocks
in the post-multiplication step (mapping from observation space to grid space). Th
number of processors used to exeeute the 3DVAR can be as few as one or as man}
as the maximum number of observation or grid node blocks. A load balancin
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algorithm is used to spread the work related to the block-dependent calculations
out evenly across the processors. In the conjugate gradient descent step, the work
load for an observation block is calculated as the sum of the observation-observation
interactions. In the post-multiplication step, the work estimate is based on the sum
of the observation-grid point intcractions. Observation and grid point blocks are
determined to be close enough to contribute to the solution if the block centers
are within 8 correlation length scales. Thus, for a given block size, the number of
observation-observation and observation-grid point block interactions varies with
the horizontal correlation length scales and will be more numerous where lcngth
scales are long. Further efficiency is achieved by keeping communication among
the processors minimal. To do this matrix elements are calculated, stored, and
used on each processor, they are never passed between processors. Only elements
of the solution and correction vectors scattered across the processors have to be
communicated and reassembled and, in the case of the solution vector, broadcast
for the next iteration. Note that memory utilization for the conjugate gradient solver
in the 3DVAR s reduced as the number of processors is increased. This feature
allows the 3DVAR to scale very well across many processors on large machines,
and run equally well on small platforms with limitcd memory.

3.3 Error Covariances

3

pecification of the background and observation error covariances in the assim-
tion is very important. As previously noted, the background error covariances
ontrol how information is spread from the observations to the model grid points and
odel levels, but they also ensure that observations of one model variable produce
ynamically consistent corrections in the other model variables. The background
Tor covariances in the NCODA 3DVAR are similar to the error covariances defined
r the MVOI, but with some notable exceptions. As in the MVOI, the error
variances in the 3DVAR are separated into a background error variance and a
mrelation. The correlation is further separated into a horizontal (Cy) and a vertical
v) component. Correlations are modeled as either second order auto-regressive
OAR) functions of the form,

Ch = (1 + s») exp(—s»)
C, = (1 + s,)exp(—sy) (13.4)
r Gaussian functions of the form,
Ch = exp(-s})
C, = exp(—s?) (13.5)

here s, and s, are the horizontal and vertical distances between observations or
bservations and grid points, normalized by the arithmetic mean of the horizontal or
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the vertical correlation length scales at the two locations. The horizontal corre]
length scales vary with location and the vertical correlation length scales vary y
depth and location in the analysis. As described in the subsequent sections,
correlation components evolve with time in accordance with information obya;
from the model forecast background valid at the update cycle interval. ]

13.3.1 Horizontal Correlations

The horizontal correlation length scales are set proportional to the first barocl
Rossby radius of deformation using estimates computed from the historical pr
archive by Chelton et al. (1998). Rossby length scales qualitatively characte
scales of ocean variability and vary from 10km at the poles to greater than 200 k;
the tropics. The Rossby length scales increase rapidly near the equator which all
for stretching of the zonal scales in the equatorial wave guide. Flow-dependen
introduced in the analysis by modifying the horizontal correlations with a te
computed from forecast model sea surface height (SSH) gradients. The fI
dependent tensor spreads innovations along rather than across the SSH conto
which are used as a proxy for the circulation field. Flow dependence is a desir.
outcome in the analysis, since error correlations across an ocean front are expe
to be characteristically shorter than error correlations along the front. Note
other gradient fields can be used as a flow-dependcnt tensor in the analysis,
as SST or potential vorticity (Martin et al. 2007). The flow dependent correl
tensor (Cy) is computed using either a SOAR or Gaussian model defined in (I
and (13.5), where the SSH difference between two locations is normalized
scalar that defincs the strength of the flow dependence. Because the flow dépen
correlations are computed directly from the forecast SSH fields they depend str
on the accuracy of the model forecast. This dependence may prove not (
very useful in practice if the forecast model fields are inaccurate. Accordingly.
normalization scalar can be set to a relatively large value in order to reduc
strength of the flow dependence in the analysis and prevent a model with systen
errors from adversely affecting the analysis. Alternatively, the flow dependence
be switched completely off. Figure 13.2 shows a zoom of the analysis increm
off South Africa from a global high resolution SST analysis executed using a
update cycle. The analysis has 12-km resolution at the equator, 9-km mid-latitt
and is a FNMOC contribution to the Group for High Resolution SST (GHRS!
Background SST gradients are used as the flow dependent tensor, with the result
the SST analysis increments are constrained by the meanders and eddies associd
with the Agulhas retroflection current. The increments are both positive and neg
along the front and eddy locations, indicating that application of the flow depen
tensor is a relatively weak constraint and the strength and position of features
change from one update cycle to the next in the analysis.

To account for the discontinuous and non-homogeneous influence of coastl'
in the analysis a second tensor is introduced (C,) that rotates and stretches horiz
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tions along the coast while minimizing or removing correlations into the
9 all ohservations and model grid points are assigned an orthogonal
ice 10 land value based on a 1-km global coastlinc database. Land distances
er than some minimal value (say, 20km) arc set to the minimal value. This
fion results in land distance gradicnts greater than zero along coastlines and
erc. Similar to the flow dependence tensor, the coastline tenor is then
ed using the difference in land distance between two locations normalized
2 scalar that specifies the strength of the coastline dependence. Away from
goast (>20km) this difference is zero resulting in no modification of the
zontal correlaiions. However, in the vicinitly of the coast (<20 km) land distance
ences are non-zcro, resulting in C; < | and a modification of the horizontal
elations. Background crror correlations close to the coast are expected to be
otropic becausc horizontal advection from coastal currems will clongate the
prrections and spread the information along the coast. Figure 13.3 illustrates the
pastline tensor applied to an observation ~5 km from the coast in Monterey Bay. In
fis example, the horizontal correlations are specificd as homogenous with a length
of 30km. The cffect of the coastline tensor is clcarly seen as the correlations
jjust to promincnt coastal features like the Monterey peninsula to the south and
the rotation of the coastline to an cast-west oricntation north of the observation
peation.
. The total horizontal background crror correlation (Cy) is then computed as
the product of the 1wo correlation components and the two correlation tensors
“according to,

%

Cy = GG, CfCy (13.6)
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Fig. 13.3 Example of land
distance correlation tensor for
point 4.8 km from coast in
Monterey Bay, California,
USA. Observation point is
given by white X mark.
Horizomal length scales are
assumed homogenous at
30km. The land distance
tensor spreads the
correlations from the
observation point along the
contours of the Momerey Bay
coastline

13.3.2 Vertical Correlations

Vertical correlation length scales vary with location and depth and evolve fro
analysis cycle to the next in the 3DVAR. They are defined on the basis of ¢ith
(1) background density vertical gradients in pressure space, or (2) backgrou
density differences in isopycnal space. In the vertical density gradient option,
change in density stability eniterion is used to define a well-mixed layer. The chi
in density criterion 18 then scaled by the background vertical density gradient ate
grid location and grid level according to,

hy = p,/(3p/32)

where h, is the vertical correlation length scale, g, is the change in density critery
(~0.15kg m™), and dp/dz is the vertical density gradient. Surface mixed
depths, caleulated at each grid point using the same change in density critefia
(Karra et al. 2000), are spliced onto the three-dimensional vertical length scale
field computed using (13.7). With this modification, surface-only observations
decorrelate at the base of the spatially varying mixed layer. The vertical density
gradient correlations are computed each update cycle from the background deg-
sity fields, thereby allowing the vertical scales to evolve with time and capture:
changes in mixed layer, thermocline depths, and the formation of mode waters.
Overall, the method produces vertical correlation length scales that vary with depth
and location, and are long when the water column stratification is weak and short
when the water column is strongly stratified.
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In the isopyenal option, obscrvation or grid point differences in density are scaled
by ps to form a correlation. This procedure essentially derives the vertical corre-
Jations relative to a density vertical coordinate. Observations are more corrclated
along an isopycnal than across an isopycnal, which introduccs considerable flow
dependence into the correlations. The procedure is cost free and does not rcquire a
transformation of the model background to isopycnal coordinates. All that is needed
is knowledge of the density for any point of interest, which can be obtained from
the obscrvation itself or the model forecast. Use of the isopycnal vertical correlation
option is ideally suited for HYCOM, since each coordinate surface in the model is
assigned a reference isopycnal. Vertical correlation defined along isentropic surfaces
s well known in atmospheric data assimilation (c.g., Riishajgaard 1998). Note
that vertical correlations in the analysis arc calculated cither via a SOAR, (13.4)
or Gaussian, (13.5) function using lengths scales derived from cither the vertical
density gradient or isopycnal formulations.

Figure 13.4 gives cross scctions through the vertical correlation length scale field
and the model density field for the HYCOM Pacific domain (Sect. 13.6). The length
scales were computed using the vertical density gradient option with p, = 0.15. The
cross sections extend from the coast of Japan at 42°N, 140°E along a great circle
" path to the cquator at 0°N, 160°E. Figure 13.4a shows vertical correlation length
scales shorter ncar the surface and longer at depth in agrcement with the density
stratification (Fig. 13.4b). The influence of the Kuroshio front is clearly seen, with
longer length scales at increasingly shallower depths as the permanent thermocline
shoals towards the equator. Relatively longer length scales are also secn in the
17-19°C mode-water layer immcdiately south of the Kuroshio, which has relatively
uniform density at depths of 200-400m.

Il3.3.3 Multivariate Correlations

The horizontal and vertical correlation functions described above are used in the
alysis of temperature, salinity, and geopotential. Temperature and salinity are
alyzed as uncorrelated scalars, while the analysis of geopotential is multivariate
ith vclocity. Geopotential is computed in the analysis from vertical profiles of
cmperature and salinity by integrating the specific volume anomaly (Fofonoff
d Millard 1983) from a level of no motion (2,000m depth) to the surface. The
ultivariatc correlations require specification of a parameter y, which measures the
ivergence permitted in the velocity correlations, and a parameter ¢, which specifies
e strength of the geostrophic coupling of the vclocity/geopotential correlations.
ypically, y is set to a small, constant value (y = 0.05) that produces weakly
ivergent velocity increments and assumes that the divergence is not correlated
‘ith changes in thc mass field. The geostrophic coupling parameter ¢ varies with
0cation from O to 1. It is scaled to zero within 1° of latitude from the equator,
‘here geostrophy is not defined, and in shallow water (<50 m deep), where friction
ather than pressure gradient forces control ocean flow. The multivariate correlations
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Fig. 13.4 Cross sections of vertical correlation length scales and density from Pacific basin rung
global HYCOM. (a) Vertical length scales (m): (b) Density (kg/m”)

also include auto- and cross-correlations of the u, v vector velocity componge
However, at the present time, there are no operational sources of ocean
observations available for the assimilation, although the capability to assimil
velocity data is built into the 3DVAR system. A full derivation of the multivari
horizontal correlations is provided in Daley (1991). The multivaniate correlati
are derived from the first and second derivatives of the SOAR (or Gaussian) model
function and require precise calculation of the angles between any two locations i
order to guarantee a symmetric correlation matrix. '

13.3.4 Background Error Variances

Background error variances are poorly known in the ocean and are likely to be =
strongly dependent on model resolution and other factors, such as atmospheric
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forcing errors and occan model parameterization errors. In the analysis, the
round error variances (e2) vary with location, depth, and analysis variable.
riances arc computed prior to an analysis from a weighted time history of
ces in forecast ficlds valid at the update cycle interval and issued from a
of analyzed states according to,

n

e =) wi(xi = xe—1)? (13.8)
k=1

xx — Xk-1 arc the differences in model forecasts (indices indicating grid

jon and depth are omitted for clarity), k& is the update eycle index, n is

umber of update cycles into the past to use in the summation, and wy is

ight vector computed using a geometric series, wx = (1 — $)*~!, where

(ybically sct to 0.1. The background crror variances computed according to

.8) are normalized such that the weighted averages arc unbiased. In practice,

background error variances tend to evolve to a quasi-steady state over time.

model forecast difference fields include the influence of observations from the

milation, so in well observed areas the background crrors are consistent with

innovations (model-data errors at the update cycle interval). However, in the
¢ of poorly observed or strong flow arcas the background error variances are
¢ likely dominated by model variability arising from atmospheric forcing and
oclinic and barotropic instabilities. Figure 13.5 shows background temperature
r standard deviation computed using Eq. (13.8) for different vertical levels
he global HYCOM analysis domains (sec Sect. 13.6). Figure 13.6 shows the
ckground salinity error standard deviation and Fig. 13.7 the background velocity
or standard deviation at the surface. Relatively high background errors are evident
all depths in boundary current areas: Gulf Stream, Kuroshio, Agulhas, Brazil-
lvinas, East Australia. Surface salinity error levels are also large near some river
tflow areas, in tropical regions, and in the marginal ice zone around Antaretica
ring the Austral summer. Surface velocity error standard deviations tend to
e large in western boundary currents and in the inter-tropical convergence zone
TCZ) due to the variable wind and solar forcing in that arca.

The adaptive scheme implemented here is designed to provide background errors
at: (1) arc appropriate for the time interval at which data are inserted into the
odel; (2) are coherent with the variance of the innovation time series; (3) refleet
he variable skill of the different ocean forceast models that are used with the
analysis system; and (4) adjust quickly to new occan arcas when the analysis is
re-located in a rapid environmental assessment mode of operation. One difficulty
with this approach is that differences in model fields contain a mixture of fore-
cast and analysis error. Forecast errors result from initial condition, model, and
aimospheric forcing deficiencies, while analysis errors result from the fact that the
statistical parameters used in the analysis represent expected values and arc unlikely
to be correct at all places and at all times.
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Fig. 13.8 Temperature (°C) background error siandard deviations valid 20 Janvary 2012 @
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13.3.5 Observation Error Variances

The observation crrors and the background errors are assumed to be uncorrelatet
and errors associated with observations made at different locations and at differeat”
times are also assumed to be uncorrelated. As a result of these assumptions, the S
observation error covariance matrix R is set equal to | + E? along the diagonal
and zero elsewhere. Note that E2 represents observation error variances (¢2) not:
malized by the background error variances interpolated to the observation location
(E2 = el/cl). Observation errors are computed as the sum of a measurement
error and a representation error. Mcasurement errors reflect the accuracy of the 3
instruments and the ambicnt conditions in which the instruments operate. These =
errors are fairly well known for many ocean observing systems, although the
errors can change in time due to calibration drift of the instruments and other
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factors. Representation errors, however, are a function of the resolution of the model
= and the resolution of the observing network. For satellite retrievals with known
measurement footprints, representation errors are set equal to the gradient of the
background field at the observation location when the retrieval footprint exceeds the
model grid resolution. Representation error of profile observations consists of two
additive components. The first component is set proportional to the observed profile
vertical gradients of temperature and salinity as a proxy for uncertainty associated
with internal waves. The second component is estimated from the variability of
multiple observed profile level data averaged into layers defined by the model
vertical grid (see Sect. 13.4.2).

13.4 Ocean Observations

The analysis makes full use of all sources of the operational ocean observations.
Ocean observing systems assimilated by the 3DVAR are listed in Table 13.1, along
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with typical global data counts per day. All ocean observations are subjectiol
quality control (QC) procedures prior to assimilation. The need for quality 66§
is fundamental to a data assimilation system. Accepling erroncous data cang
an incorrect analysis, while rejecting extreme, but valid, data can miss impo
events. The NCODA 3DVAR analysis was co-developed and is tightly couple§l
an ocean data QC system. Cummings (2011) provides an overview of the NCODS
ocean data quality control procedures.

13.4.1 Surface Observations

Table 13.1 indicates that there are many high volume sources of satellite and in sity
SST, SSH, and sea ice observations. It is not uncommon to assimilate ~40 milliog®
satellite SST retrievals, ~2 million sea ice concentration retrievals, and ~500, 000
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Fig. 13.6 Surface salinity (PSU) background error standard deviations valid 20 January 2012 in
B giobal HYCOM analysis domains: Atlantic. Indian, and Pacific

i altimeter SSH observations in a single day. These high-density, surface-only, data
- types must be thinned prior to the analysis to remove redundancies in the data
and minimize horizontal correlations among the observations. The data thinning
i achieved by averaging innovations into bins with spatially varying sizes defined
using the ratio of horizontal correlation length scales and horizontal grid resolution.
Innovations are inversely weighted based on observation error in the data thinning
process, and in the case of SST observations the water mass of origin is maintained
(see Cummings 2005 for a discussion of the Bayesian water mass classification
scheme). The length scale to grid mesh ratio bin sizes automatically adjust to
changes in the spatially varying horizontal correlation length scales, but are never
smaller than the underlying model grid mesh. As a result, fewer data are thinned
as the grid resolution decrecases or as the correlation length scales shorten. This
adaptive feature of the data thinning process can be used to decrease (increase)
the amount of data thinning by artificially shortening (lengthening) the horizontal
correlation length scales given a fixed model grid. Note that simply increasing data
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Fig. 13.7 Surface velocity (cavs) background error standard deviations valid 20 Janvary 201
global HYCOM analysis domains: Atlantic, [ndian, and Pacific

density does not necessarily improve the analysis. More data will require
conjugate gradicnt iterations while, more importantly, it may not noticeably alterl
results given the smoothing operation of the post-multiplication step (sce discuss
in Sect. 13.2). Figure 13.8 shows an examplc of data thinning results for 6
satellite SST observations in the FNMOC GHRSST analysis. Even with jus
of SST data the various satellite missions and in situ sources show a high
of spatial overlap. The data thinning removes this data redundancy and cré
sampling palttern consistent with the horizontal correlation length scales dcﬁnd
the analysis. In this case, length scales are based on Rossby radius of defo
which varies significantly across the grid. As a result, there is increased dai
thinning near the equator where length scales are ~200km. Elsewhere, especia
at high latitude, the data thinning is much less, and satellite retricvals with footp
resolutions of 2 km and 8 km are directly assimilated without any spatial averagi
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Table 13.1 Data types assimilated in NCODA 3DVAR with typical daily data counts. Note that
the profile data counts are for the cntire profilc. Profilcs typically contain hundreds of levels that
are assimilated as unique latitude, longitude, level observations

f)ﬁ type Data source Specifications Number daily obs
Satellite SST NOAA-18 Infrared 2-km day, night 4,800,000
' NOAA-19 retrievals
NOAA-18 Infrared 8-km day, night, 800,000
NOAA-19 rclaxed day retrievals
AMSR-E Microwavc 25-km day, 3,600,000
night retricvals
METOP-A Infrared 2-km day, night 15,000,000
retrievals
METOP-A Infrared 8-km day, night, 450,000
relaxed day rctrievals
GOES E/'W Infrared 12-km day, night 2,000,000
retrievals
MetcoSat-2 Infrarcd 8-km day, night 220,000
retrievals
AATSR Infrared 1-km day, night 12,000,000
retrievals
In Situ SST Ships Engine room intake 6,500
Hull contact sensor 1,000
Bucket temperature 100
CMAN Station 100
Drifting Buoy 34,000
Fixed Buoy 7,000
Satellite altimeter Jason 1, 2 SSHA 150,000
Envisat
SWH 180,000
Sea ice concentration DMSPFI13, F14,  SSM/I 25-km retrievals 900,000
F1§
DMSP F16,F17,  SSMIS 25-km retricvals 1,200,000
F18 .
Drifting buoy Temperature 50
Fixed buoy 1,200
Argo 600
XBT 100
TESAC (CTD) 3,500
Drifting buoy Salinity 50
Fixed buoy 800
Argo 600
TESAC (CTD) 3,000

3.4.2  Profile Observations

eparation of profile observations for the assimilatton consists of several steps.
1st, observed profiles are extended to the bottom using the model forecast. The



Fig. 13.8 Data thinning of global SST data. Satellite and in silu sources SST show i
(blue daytime, green nightiime, red relaxed day satellite retrieval types). The SST data &
(in order from top to bottom): AMSR-E, Drifting and Fixed Buoy, GOES E/W, METO#

METOP LAC, MeteoSai-2, NOAA 18,19 GAC, NOAA 18,19 LAC, Surface Stq( gei
intake, bucket, hull contact sensor). Thinned data for assimilation is show in middle p
SST observation; red—frcezing sea waler under ice covered scas). Schematic of how 6o
lengths vary as a function of latitude shown on right

observed profile is merged to the forecast profile by selecting the depth at
the merge is complete based on the shape of the extracted forecast model |
This target depth is set to be the second zero crossing of the forecast)
curvature. Note that the merge can fail if a suitable target depth is nol fod
if the difference between the observed and model profile at the merge dep
large (>3°C for temperature; >0.1 PSU for salinity). Second, similar to
density surface-only data, profile observations are thinned in the vertical to
redundant data. The profile thinning is done by averaging temperature and
observations at observed levels within vertical layers defined by the midy
of the model vertical grid. Since the ocean circulation models interfaced wil
3DVAR have very different vertical coordinates (NCOM uses a sigma/z vel
grid; HYCOM uses a z/isopycnal/sigma hybrid vertical grid), model verticalle
at the grid point closest to the profile location are used to define layer 1
Third, in cases where profile vertical sampling is inadequate to resolve the
vertical correlation length scales, the profile is expanded in the vertical byli
interpolating data to interleaving levels in order to form a more vertically &
profile. This scheme ensures vertically smooth analysis increments at all mi
levels even when vertical correlations are short due to strong density strafif
This situation routinely occurs in the tropics with the sparse vertical san
in profiles received from the Tropical Atmosphere Ocean (TAO), Triangle
Ocean Buoy Network (TRITON), and Prediction and Research Moored
the Adantic (PIRATA) buoys. It is clear that the vertical sampling of the ¢

mooring arrays needs to be improved. ;
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13.4.3 Altimeter Sea Surface Height

Table 13.1 shows that most ocean observations are remotely sensed and measure
ocean variables only at the surface. The lack of synoptic real-time data at depth
places severe limitations on the ability of the data assimilation system to resolve and
maintain an adequate representation of the ocean mesoscale. Subsurface properties
in the ocean, therefore, must be inferred from surface-only observations. The
most important observing system for this purpose is satellite altimetry, which
measures the time varying change in SSH. Changes in sea level are strongly
correlated with changes in the depth of the thermocline in the ocean, and the ocean
dynamics generating sea level change are for the most part the mesoscale eddies
and meandering ocean fronts. The SSH data are provided as anomalies relative to a
ime-mean field. The time mean removes the unknown geoid, but it also removes the
mean dynamic topography (MDT), which needs to be added back in order to allow
the data to be compared with model fields. The 3DVAR determines the satellite
altimeter SSH sampling locations in two alternative ways: (1) direct assimilation
of the along-track data at the observed locations, or (2) by first performing a 2D
horizontal analysis of SSH and then generate a sampling pattern of synthetic profile
locations within contours of sea level change that exceed a prescribed noise level
hreshold (see Cummings 2005 for details). Once the altimeter sampling locations
e known there are two alternative methods available in the 3DVAR to project
e SSH data to depth in the form of synthetic temperature and salinity profiles.
ne method is the Modular Ocean Data Assimilation System (MODAS) database,
‘hich models the time averaged co-variability of dynamic height vs. temperature at
pth and temperature vs. salinity at a fixed location from an analysis of historical
ofile data (Fox et al. 2002). The MDT used in the MODA S method is derived from
istorical hydrographic data. Note that an upgrade to the MODAS synthetic profile
apability, the Improved Synthetic Ocean Profile (ISOP) system (Helber et al. 2012),
currently being evaluated. The second *“direct” method adjusts the model forecast
sity field to be in agreement with the difference found between the model
recast sea surface height field and the SSH measured by the altimeter (Cooper
d Haines 1996). The MDT used in the direct method is the mean SSH from the
del derived from a hindcast run. Output of the direct method is in the form of
novations of temperature and salinity from the forecast model background field,
‘hich are directly input into the assimilation. An advantage of the direct method is
at it relies on model dynamics for its prior information rather than statistics fixed
the start of the assimilation. However, a disadvantage is that it cannot explicitly
trect for forecast model errors in stratification due to model drift in the absence of
y real data constraints. MODAS does not suffer from these limitations, although
ODAS may have marginal skill due to: (1) sampling limitations of the historical
file data, (2) non-steric signals in the altimeter data, or (3) weak correlations
ween steric height and temperature at depth due to other factors, such as the
uence of salinity on steric height at high latitudes. Needless to say, neither of the
thods available for assimilating altimeter SSH data is ideal. A new method under
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development assimilates altimeter SSH by conversion of the along-track SSH slg
to geostrophic velocity profiles. This method is described briefly in Sect. 13.7,
While having the potential of adding important information in data-sparse are
the number of altimeter-derived synthetic observations computed can greatly exc
and overwhelm the in situ observations in the analysis. Accordingly, the synth '
observations are thinned prior to the analysis in four ways. First, it is assumg,
that directly observed temperature and salinity profiles are a more reliable soyre
of subsurface information wherever such observations exist. Altimeter-deriy
synthetic profiles, therefore, are not generated in the area surrounding an in sj;
profile observation. Second, the observed SSH from the along-track data or
analyzed incremental change in sea level must exceed a threshold value, define
as the noise level of the satellite altimeters, to trigger the generation of a synthej
observation. This value is typically set to 4 cm. Third, projection of the SSH‘sign
onto the model subsurface density field can produce unrealistic results when (
vertical stratification is weak. In the absence of specific knowledge about how
partition SSH anomaly into baroclinic and barotropic structures in these weak
stratified regions, synthetic profiles are rejected for assimilation when either
the following occurs: (1) the top-to-bottom temperature difference of the MOD
synthetic profile is less than 5°C; or (2) the maximum value of the Brunt-Vais;
frequency calculated from the model density profile in the direct method is le
than 1.4. Fourth, there are problems with the SSH data in shallow water d
to contamination of the altimeter signal by tides. Accordingly, SSH data are n
assimilated in water depths less than 400 m,

13.5 NCODA System

NCODA is a comprehensive ocean data assimilation system. In addition to
3DVAR it contains other components that perform functions useful for m
applications. These component capabilities are briefly summarized in this sectiot

13.5.1 Analysis Error Covariance

The analysis error covariance P, is estimated from the equation,
P, =P, — P,HT(HP,HT 4+ R)'HP, (13.

where Py, and R are the background and observation error covariances previous
defined for (13.1). Unlike (13.1), which involves matrix-vector operations, (13
requires the use of matrix-matrix operations and is computationally expensive
perform. The NCODA 3DVAR provides an estimate of the analysis error variane
(the diagonal of the second right-hand term) in the form of a normalized reducti¢
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of the forecast error ranging from | (0 % reduction) to 0 (100 % reduction)
for each analysis variable at all model grid points. The analysis error solution
is a local approximation performed within the grid decomposition blocks that is
improved upon though the use of halo regions to bring in the influence of additional
observations. The analysis error estimation uses the same data inputs as the 3DVAR
other than the innovations. In this way the analysis error calculation can be done
at the same time as the analysis, albeit on a different set of processors, to improve
throughput of the entire data assimilation system. The primary application of the
analysis error covariance program is as a constraint in the Ensemble Transform
technique (Sect. 13.5.3).

13.5.2 Adjoint

Adjoint-based observation sensitivity provides a feasible all at once approach to
estimating observation impact. Observation impact is calculated in a two-step
process that involves the adjoint of the forecast model and the adjoint of the
assimilation system. First, a cost function (J) is defined that is a scalar measure of
some aspect of the forecast error. The forecast model adjoint is used to calculate
¢ gradient of the cost function with respect to the forecast initial conditions
(0J /9x,). The second step is to extend the initial condition sensitivity gradient from
model space to observation space using the adjoint of the assimilation procedure
J/3y = K73J/dx,), where K = PyHT[HP,HT 4+ R] ™ is the Kalman gain matrix
f(13.1) and the adjoint of K is given by KT = [HP,HT + R|"'HP,. The only
ifference between the forward and adjoint of the analysis system is in the post-
ultiplication of going from the solution in observation space to grid space. The
-conditioned, conjugate gradient solver [HP,HT +R] is symmetric or self-adjoint
id operates the same way in the forward and adjoint directions. The NCODA
VAR adjoint was coded directly from the forward 3DVAR by transposition of the
t-multiplier to a pre-multiplier that is invoked first to convert adjoint sensitivities
m grid space to observation space prior to execution of the solver for calculation
bservation sensitivities and data impacts.

5.3 Ensemble Transformation

ensemble transform (ET) ensemble generation technique (Bishop and
1999) transforms an ensemble of forecast perturbations into an ensemble
lysis perturbations. The method ensures that the analysis perturbations are
istent with the analysis error covariance matrix (P,), computed using (13.9). To
ute the required transform matrix an eigenvector decomposition is performed,

(X{P'Xp)/n=CACT (13.10)
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where X is the matrix of ensemble forecast perturbations about the ense
forecast mean, Py is the analysis error covariance matrix, n is the number of p
variables (state vector), and C are the eigenvectors and A the eigenvalues of the
hand side of (13.10). Superscript T indicates matrix transpose. Given the eigenve
decomposition the transformation matrix T is given by T = CA™'2CT; yyi
is used to transform a matrix of forecast perturbations to a matrix of ang]
perturbations according to X, = X'T. If the ensemble size is large enough it
be shown that the covariance of the analysis perturbations equals the prescrj
analysis error covariance Py (McLay et al. 2008). Thus the analysis error covaria
is an effective constraint in the ET, ensuring that the ensemble generation systet
consistent with the data assimilation system.

The NCODA ET is multivariable and computes the transformation matrix f;
temperature, salinity, and velocity simultaneously. As a result the NCODA
perturbations are balanced and flow dependent. In an ET ensemble generati
scheme the control run is the only ensemble member that executes the 3DVAR.,
results in a considerable savings in computational time as compared to a pertur
observation approach where the analysis must be executed by all of the ensem
members. Given a 3DVAR control run analysis and its corresponding analys
error covariance estimate, the system calculates the ET analysis perturbations
adds the perturbations to the control run to form new initial conditions for e
ensemble member. The forecast model is then integrated creating a new set
ensemble forecasts for the next cycle of the ET. The NCODA ET and 3DVAR h
been successfully implemented in a coupled ocean atmosphere mesoscale ensem
prediction system (Holt et al. 2011).

13.5.4 Residual Vector

The residual vector [y — H(x,)] is very useful in assessing the fit of the analy
to specific observations or observing systems. It is usually calculated at the
of the analysis after the post-multiplication step by horizontally and vertica
interpolating the analysis vector (X,) to the observation locations and applicat
of the nonlinear forward operators H to obtain H(x,) in observation space. Ti
result is then subtracted from the observations to form the residual vector. T
problem here is that horizontal and vertical interpolations of the analysis gri
the observation locations and subsequent application of the H operator introdu
error into the residual vector, which may change interpretation of the quality
the fit of the analysis to an observing system. A better approach is to estin
the analysis result, and the residual vector, while still in observation space, tl
is, before application of the post-multiplication (13.3). Daley and Barker (2
show that a good approximation of the true residuals while in observation spa
can be obtained from y, = y — Rz, where y is observation vector, y, the resid
vector, R is the observation error covariance matrix, and z is defined in (13.2). Usi
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A this formulation to calculate residuals gives a better indication of the performance

of the 3DVAR assimilation algorithm and how best to tune the background and
s observation error statistics to improve the analysis. The NCODA 3DVAR system
~ routinely computes residual vectors while still in observation space and saves the
residual and innovation vectors for each update cycle in a diagnostics file. As noted,
a time history of the innovations and the residuals is the basic information needed to
" compute a posteriori refinements to the 3DVAR statistical parameters. Analysis of
" the innovations is the most common, and the most accurate, technique for estimating
~ pbservation and forecast error covariances and the method has been successfully
~ applied in practice (e.g. Hollingsworth -and Lonnberg 1986). Similarly, a spatial
autocorrelation analysis of the residuals is used to determine if the analysis has
' extracted all of the information in the observing system. Any spatial correlation
remaining in the residuals at spatial lags greater than zero represents information
~ that has not been extracted by the analysis and indicates an inefficient analysis
~ (Hollingsworth and Lonnberg 1989).

‘;"13.5.5 Internal Data Checks

Internal data checks are those quality control procedures performed by the analysis
system itself. These data consistency checks are best done within the assimilation
algorithm, since it requires detailed knowledge of the background and observa-
tion error covariances, which are available only when the assimilation is being
performed. The first step is to scale the innovations (y — H(xp)) by the diagonal
of (HP,HT + R)'/2, the symmetric positive-definite covariance matrix of (13.1).
The elements of this scaled innovation vector (d”) should have a standard deviation
squal to 1 if the background and observation error covariances have been specified
orrectly. Assuming this to be the case, set a tolerance limit (T) to detect and reject
any observation that exceeds it. Since Py, and R are never perfectly known, it is best
0 usc a relatively high tolerance limit (T, = 4.0) to identify marginally acceptable
bservations.

" The second part of the internal data check is a consistency check. It compares
e marginally acceptable observations with all of the observations. The procedure
S a logical extension of the tolerance limit check described above. In the data
onsistency test, the innovations are scaled by the full covariance matrix (not just the
diagonal). The elements of this scaled innovation vector (d*) are also dimensionless
iantities normally distributed. However, because the scaling in d* involves the

ull covariance matrix, it includes correlations between all of the observations. By

omparing the vectors d* and d* it can be shown (Daley and Barker 2000) which

larginally acceptable observations are inconsistent with other observations and

an therefore be rejected. The d* metric should increase (decrease) with respect

fd‘ when that observation is inconsistent (consistent) with other observations, as

pecified by the background and observation error statistics.
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13.6 Global HYCOM

As mentioned in the introduction, the NCODA 3DVAR analysis is currently cycling
with global HYCOM in real-time at NAVOCEANOQO. The 3DVAR is expected tg
replace the MVOI as the data assimilation component in the operational HYCOM,
which is referred to as the Global Ocean Forecast System (GOFS) version 3.

As configured within GOFS v3, HYCOM has a horizontal equatorial resolution
of .08° or ~1/12°(~7km mid latitude) resolution. This makes HYCOM eddy
resolving. Eddy-resolving models can more accurately simulate western boundary
currents and the associated mesoscale variability and they better maintain more
accurate and sharper ocean fronts. In particular, an eddy resolving ocean model
allows upper ocean topographic coupling via flow instabilities, while an eddy-
permitting model does not because fine resolution of the flow instabilities is required
to obtain sufficient coupling (Hurlburt et al. 2008b). The coupling occurs when
flow instabilities drive abyssal currents that in turn steer the pathways of upper
ocean currents (Hurlburt et al. 1996 in the Kuroshio; Hogan and Hurlburt 2000
in the Japan/East Sea; and Hurlburt and Hogan 2008 in the Gulf Stream). In ocean
prediction this coupling is important for ocean model dynamical interpolation skill
in data assimilation/nowcasting and in ocean forecasting, which is feasible on time
scales up to about a month (Hurlburt et al. 2008a).

The global HYCOM grid is on a Mercator projection from 78.64°S to 47°
and north of this it employs an Arctic dipole patch where the poles are shifte
over land to avoid a singularity at the North Pole. This gives a mid-latitu
(polar) horizontal resolution of approximately 7 km (3.5 km). This version employ
32 hybrid vertical coordinate surfaces with potential density referenced to 2,000
and it includes the effects of thermobaricity (Chassignet et al. 2003). Vertic
coordinates can be isopycnals (density tracking), often best in the deep stratifi
ocean, levels of equal pressure (nearly fixed depths), best used in the mixed lay
and unstratified ocean, and sigma-levels (terrain-following), often the best choi
in shallow water. HYCOM combines all three approaches by choosing the optin
distribution at every time step. The model makes a dynamically smooth transiti
between coordinate types by using the layered continuity equation. The hybi
coordinate extends the geographic range of applicability of traditional isopyc¢
coordinate circulation models toward shallow coastal seas and unstratified parts
the world ocean. It maintains the significant advantages of an isopycnal model
stratified regions while allowing more vertical resolution near the surface and
shallow coastal areas, hence providing a better representation of the upper oce
physics. HYCOM is configured with options for a variety of mixed layer §
models (Halliwell 2004) and this version uses the K-Profile Parameterization (KP
of Large et al. (1994). A more complete description of HYCOM physics can
found in Bleck (2002). The ocean model uscs 3-hourly Navy Operational Gl
Atmospheric Prediction System (NOGAPS) forcing from FNMOC that includes:
temperature at 2 m, surface specific humidity, net surface short-wave and long-wa
radiation, total (large scale plus convective) precipitation, ground/sea temperatu
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zonal and mcridional wind velocitics at 10m, mean sca level pressure and dew-

point temperature at 2m. The first six ficlds arc input dircctly into the ocean
" modcl or used in calculating components of the heat and buoyancy fluxes while

the last four are used to compute surface wind stress with temperature and humidity
'based stability depcndence. Currently the system uses the 0.5° degree resolution
application grid NOGAPS products (i.e. alrcady interpolatcd by FNMOC to a
constant 0.5° latitude/longitude grid); howcver HYCOM can also (and prefcrably)
usc thc NOGAPS T319 computational grid (i.e. a Gaussian grid—constant in
longitude, nearly constant in latitude) products. Typically atmospheric forcing
forecast ficlds extend out to 120 h (i.e. the length of the HY COM/NCODA forccast).
On thosc instances when atmospheric forecasts are shortcr than 120h, an extcnsion
is created based on climatological products. Thc last available NOGAPS forecast
ficld is then gradually blendcd toward climatology to provide forcing over the entire
forecast period. The current version of the global HYCOM forecast system includes
a built-in cnergy loan, thermodynamic tcc model. In this non-rheological system,
ice grows or melts as a function of SST and heat fluxes. For an extensive validation
of the global forccast system see Metzger et al. (2008, 2010a,b).

The NCODA 3DVAR analysis system consists of three scparate programs that
are executed in sequcnce. The first program does the analysis and data preparation,
including computation of the innovation vector. The sccond program performs the
3DVAR, where it reads the innovation vector and outputs the analysis increment
correction fields. The third program performs several post-processing tasks, such
as updating the background error fields and computing somc diagnostic and
verification statistics. The global HYCOM 3DVAR analysis is split into seven
overlapping regions covering the global ocean (Fig. 13.9). The Atlantic, Indian and
acific Ocean regions covcr the Mercator part of thc model grid. The remaining four
ions cover the irrcgular part of the modcl domain, onc region in the Antarctic,
nc each in the northern part of the Atlantic and Pacific and thc last region covering
he Arctic Ocean. The boundary between the different regions follows the natural
oundary of the continents. The rcgions overlap to ensurc that the analyses will be
mooth across the boundaries that fall over the ocean. At prcsent the forecast systcm
running on 624 Cray XTS5 processors. The processors are split among the sub-
gions so that cach regional analysis can run in parallel and finish at about the same
imc. Notc that performing the 3DVAR in sub-regions is a holdover from the old
AVOI system. There arc no limitations in the 3DVAR that prcvent the analysis
om being exccuted on the full global HYCOM grid. However, at the prescnt time,
emory limitations in the data prep program do not allow the system to be exccuted
obally. This problem is being addressed.

Two assimilative runs of thc 3DVAR cycling with global HYCOM on a daily
i (24-h update cycle) are reported herc. Both runs were initialized from a non-
Similative spin-up of the model. The run initialized on | May 2010 was executed in
dcast mode and has the advantage of assimilating synoptic ocean observations.
C run initialized on 29 November 2011 is a real-timc run and must deal with
a latency issues associated with some of the ocean observing systems. Satcllite
imeter and profilc observations have the longest time dclays before the data are
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Fig. 13.9 NCODA 3DVAR analysis regions for global HYCOM. The three regions in the
Indian and Pacific Ocean cover the Mercator projection part of the global model grid. The ths
regions in the Arctic Cap cover the irregular bi-polar part of the global grid: northern part off
Atlantic, northern part of the Pacific, and a region covering the Arctic Ocean. A spherical
projection is used in the vicinity of Antarctica '

available for assimilation in real-time. The delays in the altimeter data are af
7296 h due to orbit corrections that have to be applied to improve the
the measurements. Profile data can be delayed up to ~72 h. Since ocean data
sparse it is important to use all of the data in the assimilation. Accordingly, in &
time applications the 3DVAR has the capability to select data for the assiml
based on receipt time (the time the observation is received at lhe center) insi
of observation time. In this way all data received since the previous analysisd
used in the next real-time run of the 3DVAR. However, data sclected this way
necessarily contain non-synoptic measurement times. This source of errorin
analysis is reduced by comparing observations against time dependent backgi
fields using FGAT. Hourly forecast fields are used in the FGAT for assimilation
SST observations in order to maintain a diurnal cycle in the model. Daily ave!
forecast ficlds are used in FGAT for profile data types (both synthetic and red
SSH data are assimilated in global HYCOM using the MODAS synthetic profl
approach. The 3D temperature, salinity, and u, v velocity analysis increments
incrementally inserted into the model over a 6 h time period using the incre
analysis updale procedure (Bloom et al. 1996). A scparate 2D ice concent
analysis is used to update the ice concentration in the thermodynamic ice ;
Figures 13.10, 13.11, and 13.12 give time series of innovation and residuale
statistics in the Pacific domain of the hindcast run. The statistics are compul
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Temperature Verification
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g 13.10 Time of RMS and mean bias crror statistics for temperature observations in HYCOM
jeific basin. Upper panel reports RMSE, middle pane! reports mean bias, and botiom gives
ralure data counts. Tick marks along lime axis indicate 24-h update cycle periods

pservation space and represent averages across all data assimilated for a particular
sis variable. Innovation RMS errors for temperature (Fig. 13.10) and salinity
13.11) show increased errors for the first few update cycles while the free
unning model adjusts to the data. Afier this initial adjustmeni time, RMS errors
e very stable, with temperature errors ~0.4°C and salinity errors ~0.1 PSU.
‘The model innovations are remarkably unbiased in both temperature and salinity.
The 3DVAR analysis produces a reduction in error from the innovations to the

iduals of about 60 %, which is clearly seen in both temperature and salinity.
‘However, the time series of the layer pressure error statistics (Fig. 13.12) are the
‘most interesting. When cycling with HYCOM, the 3DVAR includes a sixth analysis
variable, layer pressure. Layer pressure innovations are computed as differences in
the depths of density layers in the observations and the mode! forecast. The layer

s correction fields are then used to correct isopycnal layer depths in the
‘ . Unlike the fairly rapid response of the free-running model to the assimilation
of temperature and salinity observations, bias in the layer structure of the model
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Fig. 13.11 Same as Fig. 13.10, excepi for salinily observations

high (~100 db) after the adjusiment time period due to the assimilation of MOD
synthetic profiles at high lalitudes. MODAS synthetics were not thinned based
stratification (Sect. 13.4.3) in these model runs. Layer pressure RMS erfors
reduced more than SO % when weakly stratified MODAS synthetics are reje
(not shown). 1
Figure 13.13 shows a verification result from the real-time run for sca s
height in the Kuroshio region on 12 January 2012, The assimilation of §
anomalies is crucial to accurately map the circulation in these highly chaotic régios
dominated by flow insiabilitics. The white (black) line overlain is an indepér
analysis of available infrared observations of the north edge of the current systen
performed a1 the Naval Oceanographic Office. The fronial analysis clearly indig
thai the forecast system is able to accurately map the mesoscale features i !
western boundary current. 1
Table 13.2 gives run times for the 3DVAR conjugant gradient solver and posts
multiplication steps. The run times are listed for a typical day (28 January 2012)ia
six of the global HYCOM analysis subdomains. A 1otal of 2.2 million observatiof
were assimilated into the HYCOM grid thai contained more than 520 million grid.
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Layer Pressure Verification

1 Aug

ints. The total time of the 3DVAR step in the NCODA analysis system is the
“maximum time needed to complete any of the subdomains—in this case 14.2min to
‘complete the Indian Ocean analysis. Efficiency of the 3DVAR is clear, especially
in the large Pacific basin where >1 million observations were assimilation into
- 195.2 million grid points in ~9.8 min wall clock time. Table 13.2 also shows how
~well the analysis scales using different numbers of processors. Reduction of the
ian Ocean run time, and thus speed-up of the 3DVAR analysis step in global
- HYCOM analysis/lorecast system, can easily be achieved by simply increasing
. the number of processors. In general, the post-multiplication step of the analysis
" is more computationally expensive than the observation space solver. Accordingly,
 the analysis contains an option to perform the post-multiplication step on a reduced
~ resolution grid. The innovations are always formed from the full resolution model
- grid, and the solution vector is calculated using all of the observations, but now the
- solution is mapped 1o every other (or any multiple) horizontal grid point. This option
- results in a considerable saving in computational time with no loss of information
- when analysis correlation length scales gencrally exceed the model grid resolution.
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Fig. 13.13 Sea surface height in the Kuroshio region from the 1/12° global HYCOM/NCOD
forecast sysiem on January 12, 2012. An independent infrared (IR) analysis of the north edge of
the current system performed by the Naval Oceanographic Office is overlain. A white (black) i
means the IR analysis is based on data less (more) than four days old

Table 13.2 3IDVAR run times for six of the scven global HYCOM analysis domains on 28
January 2012

Number  Number Solver Postproc 76

Domain Grid size procs obs (min)  (min) (

Atlantic 1,751 x 1,841 x 42 88 613,525 48 56 10.7
Indian 1,313 x 1,569 x 42 64 468,828 6.6 73 142
Pacific 2,525 x 1,841 x 42 416 1,028,369 6.7 2.6 98
Arctic Ocean 1,630 x 551 x 42 16 11,879 0.1 0.2 1
Arctic Atlantic 1,490 x 551 x 42 16 82,137 0.1 0.6 235

Arctic Pacific 1,335 x 551 x 42 16 17,630 04 0.2 1.6
Totals 520,250.556* 616 2,222,368
*Total for grid size is the total number of grid points

Full resolution correction fields for the model updaie are produced for each analysig ™
variable in the NCODA 3DVAR posl-processing step by interpolation. This reduced
resolution grid option is used in global HYCOM where the solution vector i§
mapped to every other model grid point.
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13.7 Future Capabilities

The NCODA 3DVAR and Navy global ocean forecasting systems continue to be
developed and improved. These new developments and capabilities are summarized
in this section.

'13.7.1 HYCOM GOFS

The present 1/12° global HYCOM/NCODA system is the first step towards a 1 /25°
global forecast system. The first phase of the upgrade will continue to usc the 1/12°
model. In this phase the simple thermodynamic ice model will be replaced by the
Los Alamos Community Ice CodE (CICE). CICE is the result of an effort to develop
a computationally efficient sea ice component for a fully coupled forecast system.
CICE has several interacting components: a thermodynamic model that computes
local growth rates of snow and ice due to vertical conductive, radiative and turbulent
fluxes, along with snowfall; a model of ice dynamics, which predicts the velocity
field of the ice pack based on a modcl of the material strength of the ice; a transport
model that describes advection of the areal concentration, ice volumes and other
state variables; and a ridging parameterization that transfer icc among thickness cat-
egories based on energetic balances and rates of strains. HYCOM and CICE will be
fully coupled via the Earth System Modeling Framework (ESMF: Hill et al. 2004).
An interim, fully coupled, real time Arctic Cap HYCOM/CICE/NCODA-3DVAR
orecast system has been set up until CICE is implemented in the global model
Posey et al. 2010). The second phase of the upgrade includes the implementation
f a fully coupled 1/25° HYCOM/CICE model that includes tidal forcing and uses
CODA 3DVAR as the data assimilation component for both HYCOM and CICE.
reliminary experiments with the assimilative 1/25° model are under way. This
odel will have ~3 km mid latitude resolution.

3.7.2 Satellite SST Radiance Assimilation

the present time, SST retrievals are empirically derived using stored regressions
ween cloud cleared satellite SST radiances and drifting buoy SSTs. The regres-
ns are global, calculated once, and held constant. The coefficients represent a very
0ad range of atmospheric conditions with the result that subtle systematic errors
introduced into the empirical SST when the method is uniformly applied to new
iance data. In the 3DVAR, work is underway to develop an observation operator
direct assimilation of satellite SST radiances. This new physical SST algorithm
s an incremental approach. 1t takes as input prior estimates of SST and short-term
dictions of air temperature and water vapor profiles from NWP. The algorithm is
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forced by differences between observed and predicted top-of-the-atmosphere (T
brightness temperatures (BTs) for the different sateilite SST channel waveleng
Calculation of the TOA-BTSs requires use of a fast radiative transfer model. For
purpose the Community Radiative Transfer Model (CRTM; Han et al. 2006) is bej
integrated into the 3DVAR. In addition to the TOA forward model, CRTM provj
the tangent linear radiance sensitivities (Jacobians) with respect to the prior §
water vapor, and atmospheric temperature predictor variables as a function of
infrared satellite 3.5, 11 and 12 pm wavelengths. The physical SST inverse m
for a given channel is given by,

8BT - J.m 5;,' : Jm * Jsst J.m | J: J.m : Jq 8T.m .
8BT-J, | = Jood VAo d Jie U, 8T, (13.
8BT - J, U e Joodi €7 Jg-Jg ) L8Qa

where 8BT are the TOA-BT innovations, Js, J;, and J are the radiative trans
model Jacobians for SST, atmospheric temperature, and water vapor, respecti
€t €1, and gq are the errors of the priors, and 8T, 8Tam, and 8Quy, are
corrections output for each of the priors that take into account the variable
and temperature and water vapor content of the atmosphere at the time and locati
of the radiance measurement. The prior corrections are calculated and summ
over the SST channels (3 channels at night, 2 channels during the day)’'W
this approach, coefficients that relate radiances to SST in the observation oper
are dynamically defined for each atmospheric situation observed. The met
removes atmospheric signals in the radiance data and extracts more informa
on the SST, which improves the time consistency of the SST estimate, especi
in the tropics where water vapor variations create unrealistic sub-daily variati
in the empirically derived SST. However, the physical SST method requires car
consideration of biases and error statistics of the NWP fields. Biases are expec
since the NWP information may represent areas that are both cloudy and clear,
the satellite radiance data, by definition, are only available in clear-sky, cloud
conditions. Accordingly, a bias correction step is under development following
ideas developed by Merchant et al. (2008). Proper specification of the error statis
of the priors is also required to correctly partition the observed TOA-BT differ
into the various sources of variability (atmospheric temperature, water vapor,
sea surface temperature). Sensitivity experiments are underway to evaluate situat
dependent error statistics for the atmospheric temperature and water vapor pri
using the 96-member global NWP ensemble operational at FNMOC.
Implementation of the physical SST method via an observation operator W
have many advantages in the 3DVAR. First, in a coupled model forecast, t
prior SST will come from the coupled ocean model forecast and differen
between observed and predicted TOA-BTs will be computed using the coup
model atmospheric state. This is a true example of coupled data assimilation:
observation in one fluid (atmospheric radiances) creates an innovation in a differ
fluid (ocean SST). Second, the method can easily be extended to incorporate t
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effects of aerosols; the presence of which tends to introduce a cold bias in infrared
estimates of SST. To do this prior information on the microphysical properties of
dust and its amount and vertical distribution is obtained from the Navy Aerosol
Analysis Prediction System (NAAPS; http://www.nrlmry.navy.mil/aerosol/). The
contribution of NAAPS aerosol information to the TOA-BTs is determined using
CRTM, which contains aerosol Jacobians defined for 91 wavelengths and 6 aerosol
species. Equation (13.11) is then expanded to a 4 x 4 matrix to further partition
differences between observed and simulated TOA BTs into an additional aerosol
source of variability. Third, the method can be applied to radiances from ice covered
seas to determine ice surface temperature (IST). Knowledge of IST is important
since it controls snow metamorphosis and melt, the rate of sea ice growth, and
modification of air-sea heat exchange. IST has been added as an analysis variable in
the 3DVAR and is analyzed simultaneously with SST to form a seamless depiction
of surface temperature from the open ocean to ice covered seas. This capability will
pe used in the coupled HYCOM/CICE system (Posey et al. 2010).

13.7.3 SSH Velocity Assimilation

An alternative to assimilating SSH information referenced to the along-track mean
i5 to assimilate the dynamically important along-track SSH slope. Altimeter SSH
lopes provide the cross-track component of the vertically averaged geostrophic
urrent. As noted in Sect. 13.4.3, current methods for assimilating altimeter SSH
ata via synthetic temperature and salinity profiles have known deficiencies. One
najor difficulty is the need to specify a reference MDT matching that contained
the altimeter data; a non-trivial problem. The mean height of the ocean includes
e Geoid (a fixed gravity equipotential surface) as well as the MDT, which is not
own accurately enough relative to the centimeter scales of variability contained
the dynamic topography. The use of SSH slopes obviates the need for a MDT.

To derive geostrophic currents from SSH slopes appropriate for the ocean
esoscale, noise in the along-track altimeter data must be suppressed. For this
rpose a quadratic LOESS smoother (LOcally wEighted Scatterplot Smoother:
eveland and Devlin 1988; Schlax and Chelton 1992) with varying cutoff wave
gths is applied. The wave lengths are adjusted in accordance with the Rossby
dius of deformation to account for the varying eddy length scales. The advantage
this method is that noise in the data, the SSH slope derivative, and the u,v
ctor velocity components are all computed in a single operation. Figure 13.14
ws the LOESS smoothing of the altimeter SSH data along two tracks; track 109
10ss the Gulf Stream (Fig 13.14a) and track 106 across the Kuroshio (Fig. 13.14b).
1¢ quality of the LOESS filter is clearly seen when the altimeter data exhibit
nsiderable noise (distance points 1,000-3,000, track 109; distance points 1,200
40, track 106), and when the altimeter data show strong signals from crossing the
If Stream and Kuroshio fronts (distance points 3000-3800, track 109; distance
Ints 400-1,000, track 106). Figure 13.15 shows the Atlantic and Pacific basin
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Fig. 13.14 Smoothed along-track SSH computed using LOESS filter. All data from 10 January

filter fit to altimeter SSH data along track 106 in the Kuroshio area. Plus marks give raw altimel
SSH data values, solid line gives LOESS fit
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cross-track geostrophic velocities computed using the LOESS filter for one day
along-track altimeter data (10 January 2012). It is readily apparent that a tremendoy
amount of mesoscale oceanographic information is contained in the geostroph
velocities derived from the along-track altimeter data.

Once the altimeter SSH along-track geostrophic currents are calculated
model equivalents are determined. Cross-track geostrophic velocity relative 1o
deep level of no motion (2,000m) is computed from the model using dynam;
height differences at points adjacent to the along-track estimate of the SSH sloy
The difference between the vertically averaged model and altimeter cross-tra
geostrophic velocities is used to correct the relative geostrophic shear from
model and form the velocity profile u,(z) for the assimilation according to:

Us(2) = ug(2) —ug + ¢ (1312

where u,(z) is the model relative geostrophic shear profile, Uy is its vertical avera
and c is the integral cross track velocity component calculated from the altimet
slope. Assimilation of the u, v velocity vectors formed this way via the multivaria
correlations in the 3DVAR provide balanced geopotential increments, which i
turn are decomposed into balanced temperature and salinity increments using
linearized equation of state. The velocity profiles in this scheme are very sensiti
to the reference level of no motion. One option here is to use Argo trajectory data
infer a time dependent geopotential field at the float parking depth (cf. Davis 200
A dynamic geopotential field would go a long way in solving a long-standi
problem of hydrography: properly referencing geostrophic shear.

13.7.4 Hybrid Ensemble Four Dimensional Data Assimilation

A four-dimensional (4D) ensemble-enhanced data assimilation scheme for glol
HYCOM is being developed to better deal with the late receipt, tempor
distributed observations than the current 3DVAR methodology. As previously not
a crucial aspect of all ocean data assimilation schemes is thc way in which
background error covariances are specified. The data assimilation process is optil
if the background error covariances are perfectly known, which is never the ca
A major challenge then is to find ways to estimate accurate and comprehensi
background error covariances. Ensemble methods provide a method for doing thi
including the ability to provide a flow-dependent estimate of the background err
covariances.

When ensemble covariances are used in a variational data assimilation frai
work to augment the existing background-error covariance, analyses are furth
improved. This method is called a hybrid ensemble variational method. In cor
parison with conventional ensemble-based data assimilation, a hybrid scheme
attractive for the following reasons. First, the hybrid schemes build upon existi
variational systems enabling the ensemble information to be incorporated relativel
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easily. Existing variational ocean data assimilation technology and capabilities are
not lost. Second, when ensemble variances are imperfect the optimal error variance
estimate is a linear combination of a climatological covariance and an ensemble
covariance. The superiority of hybrids over conventional ensemble assimilation
schemes is particularly marked when the ensemble size is small or the model error
is large.

A static 4D ensemble covariance data base will be computed from an ensemble
of mesoscale anomalics using the long term integration of global HYCOM in
the 1993-2009 reanalysis product, which includes NCODA 3DVAR assimilation.
Covariances calculated in this way have clear physical meanings and represent 4D
modcl climate flow depcndence and model variable interactions. Existing 3DVAR
initial covariances will be extended to 4D by assuming that the error covariances
between variables are a scparable function of space and time. The computational
overhead of imparting this 4D aspect to the 3DVAR covariances is expected to be
very small. The 4D extcnsion of the NCODA covariances will then be linearly
combined with the 4D localized HYCOM static ensemble covariances forming
a fully 4D hybrid data assimilation scheme. Optimum values for weighting the
ensemble and cxtended 3DVAR covariances in the hybrid are determined from
model statistics.

13.8 Summary

is paper describes the development, implementation, and validation of a new
oceanographic 3DVAR assimilation system. The system is unified and flcxible
nd a key component of many Navy ocean and atmosphere applications. It is
un globally or regionally, where it can be applied to nested, successfully higher-
esolution grids, providing analyscs on a range of scales. NCODA 3DVAR provides
he assimilation component for both ocean and wave model prediction systcms as
ell as multiple atmospheric prediction systems, where it is used to provide sea
e and SST lower boundary conditions. It assimilates a wide range of ocean data
spes and it contains numerous diagnostic features for assessing and tuning the
latistics needed for the assimilation as well as quality control. The background error
ovariance formulation permits considerable anisotropy with adaptive horizontal
nd vertical length scales and error variances that vary with location and evolve with
ime. It is shown to be efficient for very large scale, high resolution global ocean
odel grids, assimilating millions of observations a day. The intelligent, adaptive
ata thinning algorithm permits all sources of the high density surfacc data types to
assimilated with minimal loss of information. The parallel implementation has
inimal communication overhead, with granularity of the codc (important for load
alancing) easily controlled by the number and size of the observation data blocks.
e NCODA 3DVAR system is operational at the Navy oceanographic production
nters and is in the final phase of pre-operational testing as the data assimilation
omponent for the global HYCOM forecasting system.




342 J.A. Cummings and O.M. S,

Acknowledgements The first author gratefully acknowledges the work of Roger Daley g
Barker in developing the NAVDAS solution algorithm which forms the basis of the
3DVAR. This work was funded in part by NRL base projects *“Variational Data Assimilang
Ocean Prediction” and “Observation Impaet using a Variational Adjoint System”. Funding wag
received from the National Ocean Partnership Program (NOPP) through the projeet “US GO
Global-Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM)” and the
of Naval Research (ONR) under program element number 61153 N. The Department of Def
High Performanee Computing Modernization Program provided grants of computer time at Ma,
Shared Resource Centers operated by the Naval Oceanographic Office, Stennis Space Center,
USA. This is NRL eontribution NRL/BC/7320-12-1125 and has been approved for public rele
Distribution is unlimited.

References

Bishop CH, Toth Z (1999) Ensemble transformation and adaptive observations. J Almos‘
56:1748-1765
Bleck R (2002) An oceanic general circulation model framed in hybrid isopyenie- Caneb
coordinates. Ocean Model 4:55-88
Bloom SC, Takacs LL, Da Silva AM, Ledvina D (1996) Data assimilation using incremen
analysis updates. Mon Weather Rev 124:1256-1271 |
Chassignet EP, Smith LT, Halliwell GR, Bleck R (2003) North Atlantic simulations with
HYbrid coordinate ocean model (HY COM): impact of the vertical coordinate choice, refemn
pressure, and thermobarieity. J Phys Oceanogr 33(12):2504-2526
Chelton DB, DeSzoeke RA, Sehlax MG, Naggar KE, Siwertz N (1998) Geographieal variabily
of the first barocliniec Rossby radius of deformation. J Phys Oceanogr 28:433-460
Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysi
by local fitting. J Am Stat Assoc 83:596-610 F
Cooper M, Haines KA (1996) Altimetric assimilation with water property conservation. J Geop
Res 24:1059-1077 .
Cummings JA (2005) Operational multivariate ocean data assimilation. Q J R Met Soc 13
3583-3604
Cummings JA (2011) Ocean data qaulity eontrol. In: Sehiler A, Brassington GB (eds) Operation:
oceanography in the 21st eentury. Springer, Dordrecht, pp 91-121
Courtier P (1997) Dual formulation of four-dimensional variational assimilation. Q J R Mete !
Soc 123:2449-2461
Daley R (1991) Atmospheric data analysis. Cambridge University Press, Cambridge, p 457
Daley R, Barker E (2000) The NAVDAS source book. Naval Research Laboratory NR
7530-00-418, Monterey, 151pp
Daley R, Barker E (2001) NAVDAS formulation and diagnosties. Mon Weather Rev 129:869-8 8:
Davis R (2005) Intermediate-depth circulation of the Indian and South Pacific Oceans measur
by autonomous floats. J Phys Oceanog 35:683-707
Fofonoff NP, Millard RC (1983) Algorithms for eomputation of fundamental properties 0
seawater. Tech Pap Mar Sei UNESCO 44:53
Fox DN, Teague WJ, Barron CN, Carnes MR, Lee CM (2002) The modular ocean data assimilatio
system. J Atmos Ocean Technol 19:240-252
Halliwell GR (2004) Evaluation of vertical eoordinate and vertical mixing algorithms in th |
HYbrid Coordinate Ocean Model (HYCOM). Ocean Model 7(3-4):285-322
Han Y, van Delst P, Liu Q, Weng F, Yan B, Treadon R, Derber J (2006) JCSDA Community
Radiative Transfer Model (CRTM)—version 1, NOAATechnical Report. NESDIS 122:40
Helber RW, Carnes MR, Townsend TL, Barron CN, Dastugue JM (2012) Validation test 1 report
for the Improved Synthetic Ocean Profile (ISOP) system, Part 1: Stand-alone capability (In
preparation)



13 Vanational Data Assimilation for the Global Ocean 343

Hill C, DeLuca C, Balaji V, Suarez M, da Silva A (2004) The architecture of the earth system
modeling framework. Comp Sci Eng 6:18-28

Hogan PJ, Hurlburt HE (2000) Impact of upper ocean—topographic coupling and isopycnal
outcropping in Japan/East Sea models with 1/8° to 1/64° resolution. J Phys Oceanogr
30:2535-2561

Hollingsworth A, Lonnberg P (1986) The statistical structure of short-range forecast errors as
determined from radiosonde data. Part 1: The wind field. Tellus 38A:111-136

Hollingsworth A, Lonnberg P (1989) The verification of objective analyses: diagnostics of analysis
system performance. Meteor Atmos Phys 40:3-27

Holt TR, Cummings JA, Bishop CH, Doyle JD, Hong X, Chen S, Jin Y (2011) Development and
testing of a coupled ocean—atmosphere mcsoscale ensemble prediction system. Ocean Dynam
61:1937-1954

Hurlburt HE, Hogan PJ (2008) The Gulf Stream pathway and thc impacts of thc eddy-driven
abyssal circulation and the deep westcrn boundary current. Dynam Atmos Oceans 45:71-101

Hurlburt HE, Wallcraft AJ, Schmitz W1J Jr., Hogan PJ, Metzger EJ (1996) Dynamics of the
Kuroshio/Oyashio current system using eddy-resolving models of the North Pacific Ocean.
J Geophys Res 101(C1):941-976

Hurlburt HE, Chassignet EP, Cummings JA, Kara AB, Metzger EJ, Shriver JF, Smedstad OM,
Wwallcraft AJ, Barron CN (2008a) Eddy-resolving global ocean prediction. In: Hecht M,
Hasumi H (eds) Ocean modeling in an eddying regimc. Geophysical monograph, vol 177.
American Geophysical Union, Washington, DC, pp 353-381

Hurlburt HE, Metzger EJ, Hogan PJ, Tilburg CE, Shriver JF (2008b) Steering of upper ocean
currents and fronts by the topographically constrained abyssal circulaiion. Dynam Atmos
Oceans 45:102-134. doi:10.1016/j.dynatmoce.2008.06.003

Large WG, Mc Williams JC, Doney SC (1994) Oceanic vertical mixing: a rcview and a model with
a nonlocal boundary layer paramcterization. Rev Geophys 32.363-403

Karra B, Rochford PA, Hurlbut H (2000) An optinal definition for mixed layer depth. J Geophys
Res 105:16803-16821

Martin MJ, Hines A, Bell MJ (2007) Data assimilation in the FOAM operational short-range ocean
forecasting systcm: a description of the scheme and its impact. Q J R Meteorol Soc 133:981-995

McLay J, Bishop CH, Reynolds CA (2008) Evaluation of the ensemble transform analysis
perturbation scheme at NRL. Mon Weather Rev 136:1093-1108

Merchant CJ, Le Borgne P, Marsouin A, Roquet 11 (2008) Optimal estimation of sea surfacc

temperature from split-window observations. Rem Sens Environ 112:2469-2484

etzger EJ, Smedstad OM, Thoppil PG, Hurlburt HE, Wallcraft AJ, Franklin DS, Shriver JF,

Smedstad LF (2008) Validation Test Report for the Global Ocean Prediction System V3.0—

1/12° HYCOM/NCODA: Phase I. NRL Memo. Report NRL/MR/7320-08- 9148

tzger EJ, Smedstad OM, Thoppil PG, Hurlburt HE, Franklin DS, Peggion G, Shriver JF,

- Townsend TL, Wallcraft AJ (2010a) Validation Test Report for the Global Ocean Forecast

System V3.0 — 1/12° HYCOM/NCODA: Phase 11. NRL Memo. Report NRL/MR/7320-10-

9236

etzger EJ, Thoppil PG, Smedstad OM, Franklin DS (2010b) Global Ocean Forecast Systcm

V3.0 Validation Test Report Addendum: addition of the Diurnal Cycle. NRL Memo. Report

NRL/MR/7320-10-9305

osey PG, Metzger EJ, Wallcraft AJ, Smedstad OM, Phelps MW (2010) Validation of the 1/12°

Arctic Cap Nowcast/Forecast System (ACNFS). NRL Memo. Report NRL/MR/7320-10-9287

lishpjgaard LP (1998) A direct way of specifying flow-dependent background error correlations

_for meteorological analysis systems. Tellus S0A:42-57

lax MG, Chelton DB (1992) Frequency domain diagnostics for linear smoothers. ] Am Stat

- Assoc 87:1070-1081

itmann P, Cummings J (2005) Assimilation of altimeter wave measurements into WAVE-

WATCH 1I1. In: Proceedings of the 8th international workshop on wave hindcasting and

forecasting, North Shore Oahu, Hawaii 16 pp



