Status of the UV Cure Powder Coating Demonstration Project
Title: Status of the UV Cure Powder Coating Demonstration Project

Performing Organization: Air Force Research Laboratory/RXSSO, Wright-Patterson AFB, OH, 45433

Report Date: 2012

Dates Covered: 00-00-2012 to 00-00-2012

Abstract: Presented at the ASETSDefense 2012: Workshop on Sustainable Surface Engineering for Aerospace and Defense August 27-30, 2012, San Diego, CA

Distribution/Availability Statement: Approved for public release; distribution unlimited.

Security Classification of:
- Report: Unclassified
- Abstract: Unclassified
- This Page: Unclassified
Outline

- Project Team
- UV Cure Technology
- UV Curable Powder Overview
- UV Cure Powder Coating
 Demonstration/Validation
Project Team

- Mr. William Hoogsteden, Principal Investigator
 Air Force Research Laboratory/RXSSO
 Wright-Patterson AFB, OH 45433
 William.Hoogsteden@wpafb.af.mil
 (937) 656-4223

- Mr. Christopher W. Geib, Co-Principal Investigator
 Science Applications International Corp.
 3745 Pentagon Blvd
 Beaver Creek, OH 45431
 Christopher.W.Geib@saic.com
 (937) 431-4332
UV Cure Technology
UV Cure Technology

- Requires a source of UV light
UV Cure Technology

Example lamp output power 10 kW

Typical medium pressure mercury discharge lamp power distribution.
UV-Cure Technology

- We use a Gallium doped lamp:
UV Cure Technology

- **Chemistry of UV-cure coatings**
 - Can be virtually any polymer matrix used for organic coatings
 - The common denominator is the presence of a UV light reactive species on/in the polymer matrix
 - Commonly vinyl, acrylate or methacrylate groups

![Chemical structures of vinyl, acrylates, and methacrylates](chart.png)
UV Cure Technology

- UV Cure formulations require:
 - Light reactive polymer resins
 - Additives such as pigments and flow agents
 - Photoinitiators
UV Cure Technology

- UV-cure powder coatings
 - Typically, the most common UV curable powders are:
 - Polyurethanes
 - Polyesters
 - Epoxies
 - Hybrids and mixtures of the above
 - For the UVCPC project, we use a special composition of light activated polyurethanes and polyesters
UV Curable Powder Overview
UV-Curable Powder Overview

- Previous ways of thinking about powder
 - Coating cure temperatures – typically above 220°C
 - Prohibitive for use on tempered metals (Al, Mg, Ti)
 - Prohibitive to use on composites
 - Powder coatings were designed as barrier protection
UV-Curable Powder Overview

- Modern powder coatings can be formulated to have:
 - Lower melt & flow temperatures (< 110°C)
 - UV or EB cure functionality can be added
 - Various advanced non-chrome corrosion inhibitors
Advantages of UV-cure powder coating:

- Elimination of volatile organics (VOC)
- Elimination of hazardous air pollutants (HAP)
- Reduction/elimination of hazardous waste
- Transfer efficiencies as high as 95% (w/reclaim)
- Decrease in thermal exposure.
- Large bulky parts that cannot fit into existing ovens can be coated and cured.
- UV-cure powder requires less energy because the energy is focused to a specific part only as long as needed.
UV Curable Powder Overview

- Powder is applied using electrostatic powder gun
- Applied powder is cured with IR and UV lights mounted on robotic curing system
The UV cure powder process:
UV Curable Powder Overview

- Crosslinking occurs during UV irradiation:

Unsaturated resin + photoinitiator → Photoinitiator breaks down to form free radicals → Resin crosslinks
UV Cure Powder Coating Demonstration/Validation
UVCPC Dem/Val

Timeline

- Project based on Commercial Off The Shelf (COTS) UV cured powder coatings
- Project started in 2008
- Initially had two powder vendors
- One dropped because of constant merger issues
- Initial validation testing completed in 2010
 - Results questionable due to adhesion issues
 - A number of tests rerun as a result
- Adhesion study completed in 2010
 - Found one of the reasons for poor adhesion
UVCPC Dem/Val

Timeline (Cont.)

Adhesion study completed in 2010 (Cont.)

- Low copper alloys (6000, 3000 series) not a problem
- High copper alloys scavenge free radicals at surface
- Determined that certain surface treatments are effective:
 - Anodized
 - Alodine 1600
 - Zinc Phosphate
 - Epoxy wash primers

Building 2801 modification completed end 2010

Robot installation occurred in 2011
UVCPC Dem/Val

- **Timeline (Cont.)**
 - First light and testing in early 2012
 - Discovery that kinetics also play major role in adhesion
 - First parts coated with UVCPC
 - Ammo can
 - Aircraft jack hydraulic reservoirs
 - USAF aircraft wheels
UVCPC Dem/Val

- Validation Testing Results (Summary) of COTS UVCPC

UVCPC Validation Test Matrix

<table>
<thead>
<tr>
<th>Corrosion Tests</th>
<th>500</th>
<th>1000</th>
<th>1250</th>
<th>1500</th>
<th>1750</th>
<th>2000</th>
<th>2250</th>
<th>2500</th>
<th>2750</th>
<th>3000</th>
<th>3250</th>
<th>3500</th>
<th>3750</th>
<th>4000</th>
<th>4250</th>
<th>4500</th>
</tr>
</thead>
<tbody>
<tr>
<td>B117 - 4130 steel (ZnPhos)</td>
<td></td>
</tr>
<tr>
<td>B117 - Aluminum (Alodine 1600)</td>
<td></td>
</tr>
<tr>
<td>Filiform Corrosion</td>
<td></td>
</tr>
<tr>
<td>SO₂ Corrosion - steel (500 hr)</td>
<td></td>
</tr>
<tr>
<td>SO₂ Corrosion - aluminum (500 hr)</td>
<td></td>
</tr>
</tbody>
</table>

General Tests

<table>
<thead>
<tr>
<th>Impact Flexibility</th>
<th>Pass/ Fail</th>
<th>Pass/ Fail</th>
<th>Initial</th>
<th>Redo</th>
</tr>
</thead>
<tbody>
<tr>
<td>-60°F flexibility</td>
<td></td>
<td></td>
<td>Not run</td>
<td></td>
</tr>
<tr>
<td>Wet tape adhesion</td>
<td></td>
<td></td>
<td>Not run</td>
<td></td>
</tr>
<tr>
<td>Dry tape adhesion</td>
<td></td>
<td></td>
<td>Not run</td>
<td></td>
</tr>
<tr>
<td>Pencil hardness</td>
<td></td>
<td></td>
<td>Not run</td>
<td></td>
</tr>
<tr>
<td>Initial Appearance</td>
<td></td>
<td></td>
<td>Not run</td>
<td></td>
</tr>
<tr>
<td>Initial Color</td>
<td></td>
<td></td>
<td>Not run</td>
<td></td>
</tr>
<tr>
<td>Initial Gloss</td>
<td></td>
<td></td>
<td>Not run</td>
<td></td>
</tr>
<tr>
<td>Weatherability</td>
<td></td>
<td></td>
<td>Not run</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td></td>
<td>Not run</td>
<td></td>
</tr>
<tr>
<td>Gloss</td>
<td></td>
<td></td>
<td>Not run</td>
<td></td>
</tr>
<tr>
<td>Cleanability</td>
<td></td>
<td>Not rerun</td>
<td>Not run</td>
<td></td>
</tr>
<tr>
<td>Heat Resistance</td>
<td></td>
<td></td>
<td>Not run</td>
<td></td>
</tr>
<tr>
<td>Fluid Resistance</td>
<td></td>
<td></td>
<td>Not run</td>
<td></td>
</tr>
<tr>
<td>Strippability</td>
<td></td>
<td></td>
<td>Not run</td>
<td></td>
</tr>
<tr>
<td>Erosion</td>
<td></td>
<td></td>
<td>Not run</td>
<td></td>
</tr>
</tbody>
</table>

Outdoors beach exposure (months)

<table>
<thead>
<tr>
<th>Aluminum - color</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum - gloss</td>
<td></td>
</tr>
<tr>
<td>Aluminum - corrosion</td>
<td></td>
</tr>
<tr>
<td>Steel - color</td>
<td></td>
</tr>
<tr>
<td>Steel - gloss</td>
<td></td>
</tr>
<tr>
<td>Steel - corrosion</td>
<td></td>
</tr>
</tbody>
</table>

Note: Passed 40in-lb; Failed 40in-lb reverse
Note: Cracked at bend
Note: >F to H
Note: Initial gloss was a failure before weatherability. Will use beach exposure for weatherability gloss change.
Note: Initial gloss passed outdoors; Failed after outdoor exposure
Note: ΔE ~ 1.84

UVCPC Dem/Val

- General test results
 - Color (FED-STD-595C)
 - FED-STD-595C 17925 Reference Chip
 - L*: 96.06
 - a*: -1.95
 - b*: 3.10
 - ΔL*: Δa*: Δb*: ΔE*: 0
 - PCRG High Gloss White
 - L*: 95.82
 - a*: -1.96
 - b*: 2.66
 - ΔL*: -0.24
 - Δa*: -0.01
 - Δb*: -0.45
 - ΔE*: 0.5
 - FED-STD-595C 26173 Reference Chip
 - L*: 55.05
 - a*: -1.24
 - b*: -3.66
 - ΔL*: Δa*: Δb*: ΔE*: 0
 - PCRG Semigloss Initial
 - L*: 55.13
 - a*: -1.24
 - b*: -3.98
 - ΔL*: 0.08
 - Δa*: 0.00
 - Δb*: 0.32
 - ΔE*: 0.2

- Gloss (FED-STD-595C)
 - Sample ID
 - 20° | 60° | 85°
 - PCRG High Gloss White
 - 55.1 | 84.4 | 95.6
 - PCRG Semi Gloss Initial
 - 8.8 | 45.8 | 78.1

UVCPC Dem/Val

- **General test results**
 - **Pencil Hardness (ASTM D3363)**
 - Marginal, falls between F and H pencil
 - **Impact Flexibility (MIL-PRF-85285D)**
 - Passed 40 in-lb forward, Failed 40 in-lb reverse
UVCPC Dem/Val

- General test results
 - Low temperature (-60°F) flexibility initial (MIL-PRF-85285D)
UVCPC Dem/Val

- General test results
 - Low temperature (-60°F) flexibility rerun
UVCPC Dem/Val

- General test results
 - Dry/Wet tape adhesion (ASTM D3359, FED-STD-141D)
 - Initial results were failures due to adhesion issue
 - Dry adhesion was rerun on various pretreatments
 - Because adhesion seemed to change with time, a month of testing run
 - Summary of the dry tape adhesion results is shown on next slide
General test results

<table>
<thead>
<tr>
<th></th>
<th>Film Thickness</th>
<th>Cross Hatch Adhesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alodine 12005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 sec</td>
<td>1.3 - 1.4</td>
<td>4B</td>
</tr>
<tr>
<td>90 sec</td>
<td>1.5 - 1.8</td>
<td>3B</td>
</tr>
<tr>
<td>3 min</td>
<td>1.7 - 2.2</td>
<td>2B</td>
</tr>
<tr>
<td>Alodine 1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 min</td>
<td>1.7 2.1</td>
<td>5B</td>
</tr>
<tr>
<td>3 min</td>
<td>1.5 - 1.7</td>
<td>5B</td>
</tr>
<tr>
<td>5 min</td>
<td>1.4 - 1.7</td>
<td>5B</td>
</tr>
<tr>
<td>20 sec</td>
<td>1.6 - 2.0</td>
<td>5B</td>
</tr>
<tr>
<td>Alodine 5200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 min</td>
<td>1.3 - 1.5</td>
<td>5B</td>
</tr>
<tr>
<td>2 min</td>
<td>1.5 - 1.8</td>
<td>5B</td>
</tr>
<tr>
<td>4 min</td>
<td>1.5 - 2.0</td>
<td>4B</td>
</tr>
<tr>
<td>Alodine 5900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 min</td>
<td>1.3 - 1.4</td>
<td>4B</td>
</tr>
<tr>
<td>10 min</td>
<td>1.2 - 1.5</td>
<td>4B</td>
</tr>
<tr>
<td>Alodine 8800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td>1.6 -1.7</td>
<td>5B</td>
</tr>
<tr>
<td>Light</td>
<td>1.5 - 1.7</td>
<td>5B</td>
</tr>
<tr>
<td>Control</td>
<td>1.5 - 1.9</td>
<td>0B</td>
</tr>
<tr>
<td>Carpenter B/700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-W Wash Primer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024-T3</td>
<td>Dry</td>
<td>5B + no change</td>
</tr>
<tr>
<td>2024-T3</td>
<td>Wet</td>
<td>5B + no change</td>
</tr>
<tr>
<td>4130 steel</td>
<td>Dry</td>
<td>5B + no change</td>
</tr>
<tr>
<td>4130 steel</td>
<td>Wet</td>
<td>5B + no change</td>
</tr>
</tbody>
</table>

UVCPC Dem/Val

- General test results
 - Wet tape adhesion
General test results

- Fluid resistance (MIL-PRF-85285D)
- Initial fluid resistance test halted as soon as adhesion issue discovered
- Follow on fluid resistance test rerun passed
UVCPC Dem/Val

General test results

- Weatherometer (MIL-PRF-85285D, ASTM G155)
 - 500 hour test
 - $\Delta E^* = 0.97$ (Pass)
 - Gloss loss ≈ 63.7 units (Fail)

- Heat Resistance (MIL-PRF-85285D)
 - $\Delta E^* = 1.84$ (Marginal)

- Cleanability (MIL-PRF-85285D)
 - Efficiency = 67% (Marginal)

- Strippability (MIL-PRF-85285D)
 - 100% removed in < 4 hours (Pass)
UVCPC Dem/Val

- Corrosion resistance tests
 - Neutral salt fog (MIL-PRF-23377J, ASTM B117)
 - UVCPC over Zn Phosphate 4130 steel, 2000 hrs (Pass)
 - UVCPC over Alodine 1600, 2024-T3 Al, 4430 hrs (Pass)
UVCPC Dem/Val

- Corrosion resistance tests
 - SO$_2$ corrosion resistance (ASTM G85, Annex 4)
 - UVCPC over Aluminum (Pass)
 - UVCPC over cold rolled steel (Fail)
UVCPC Dem/Val

- Corrosion resistance tests
 - Filiform corrosion resistance (MIL-PRF-23377J, ASTM D2803)
 - 1000 hour test (Pass)
UVCPC Dem/Val

- **Erosion/Abrasion tests**
 - Falling sand erosion testing (ASTM D968)
 - Within 1σ of the legacy coating

Falling Sand Evaluation (UVCPC)

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Liters (V)</th>
<th>Mean thickness (t)</th>
<th>A Factor A=V/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>144</td>
<td>2.32</td>
<td>62.1</td>
</tr>
<tr>
<td>3</td>
<td>162</td>
<td>2.8</td>
<td>57.9</td>
</tr>
<tr>
<td>4</td>
<td>144</td>
<td>2.53</td>
<td>56.9</td>
</tr>
<tr>
<td>5</td>
<td>133</td>
<td>2.53</td>
<td>52.6</td>
</tr>
<tr>
<td>6</td>
<td>144</td>
<td>2.58</td>
<td>55.8</td>
</tr>
<tr>
<td>8</td>
<td>143</td>
<td>2.49</td>
<td>57.4</td>
</tr>
</tbody>
</table>

Mean 57.0

Std Dev 3.09
UVCPC Dem/Val

- Long term outdoor exposure (ASTM D1014)
 - Three parameters evaluated
 - Color drift
 - Gloss drift
 - Overall corrosion
 - Semi-gloss gray UVCPC used
 - Results:
 - Color drift maximum $\Delta E^* = 0.82$ (Pass)
 - Gloss drift 36.6 gloss units (Fail)
 - Corrosion overall:
 - Aluminum still passing after 18 months (~12900 hours exposure)
 - Cold rolled steel failed after 7 months (~5000 hours exposure)
UVCPC Dem/Val

- Long term outdoor exposure
- Color drift

<table>
<thead>
<tr>
<th>Coating</th>
<th>L*</th>
<th>a*</th>
<th>b*</th>
<th>ΔL*</th>
<th>Δa*</th>
<th>Δb*</th>
<th>ΔE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>FED-STD-595C 26173 Reference Chip</td>
<td>55.05</td>
<td>-1.24</td>
<td>-3.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCRG Semigloss Initial</td>
<td>55.13</td>
<td>-1.24</td>
<td>-3.98</td>
<td>0.08</td>
<td>0.00</td>
<td>0.32</td>
<td>0.2</td>
</tr>
<tr>
<td>PCRG 7-month color</td>
<td>55.40</td>
<td>-1.18</td>
<td>-4.16</td>
<td>0.35</td>
<td>-0.06</td>
<td>0.50</td>
<td>0.32</td>
</tr>
<tr>
<td>PCRG 12-month color</td>
<td>55.77</td>
<td>-1.16</td>
<td>-4.11</td>
<td>0.72</td>
<td>-0.08</td>
<td>0.45</td>
<td>0.75</td>
</tr>
<tr>
<td>PCRG 18-month color</td>
<td>55.82</td>
<td>-1.21</td>
<td>-4.17</td>
<td>0.76</td>
<td>-0.07</td>
<td>0.31</td>
<td>0.82</td>
</tr>
</tbody>
</table>
UVCPC Dem/Val

- Long term outdoor exposure
- Gloss drift

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>20°</th>
<th>60°</th>
<th>85°</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCRG Semi Gloss Initial</td>
<td>8.8</td>
<td>45.8</td>
<td>78.1</td>
</tr>
<tr>
<td>PCRG 7-month semigloss</td>
<td>3.0</td>
<td>25.7</td>
<td>66.9</td>
</tr>
<tr>
<td>PCRG 12-month semigloss</td>
<td>2.2</td>
<td>21.9</td>
<td>60.2</td>
</tr>
<tr>
<td>PCRG 18-month semigloss</td>
<td>0.9</td>
<td>9.2</td>
<td>41.6</td>
</tr>
</tbody>
</table>

UVCPC Dem/Val

- Long term outdoor exposure
 - Aluminum after 18 months (~12,900 hours)
UVCPC Dem/Val

- Long term outdoor exposure
- Steel after 7 & 18 months
UVCPC Dem/Val

- Actual components coated
 - Ammunition can
UVCPC Dem/Val

- Actual components coated
- Aircraft jack hydraulic reservoirs
UVCPC Dem/Val

- Actual components coated
 - F-16 main wheel (before)
UVCPD Dem/Val

- Actual components coated
 - F-16 main wheel (after)
UVCPC Dem/Val

- Actual components coated
 - F-15 nose wheel (before)
UVCPC Dem/Val

- Actual components coated
 - F-15 nose wheel (after)
UVCPC Dem/Val

- Actual components coated
 - Coast Guard MC-130 landing gear door
Summary

- Overall, the COTS UVCPC did well
 - Better overall test results than previous Low Temp powder
- Positives
 - Excellent B117 corrosion resistance over aluminum
 - Good corrosion resistance over zinc phosphated steel
 - Excellent Filiform corrosion resistance
 - Good room temperature flexibility
 - Erosion resistance on par with legacy 2K coatings
Summary

- Overall, the COTS UVCPC did well (cont.)
- Could use some improvements going forward
 - Coating
 - Lower melt/flow temperature
 - Improve -60°F flexibility
 - Increase hardness to 2H or greater pencil
 - Improve impact flexibility
 - Better heat resistance
 - Improve weatherability (gloss)
 - Reformulate for direct-to-metal
Summary

- Overall, the COTS UVCPC did well (cont.)
 - Could use some improvements going forward
 - Robotics
 - Better profiling
 - Use profiling radiometers
 - Better thermal profiling
 - Better control during operations (thermal, UV)
 - IR and UV feedback to robot
 - Powder Coating
 - Incorporate non-contact uncured powder thickness gauge
Questions?
UVCPC Back up slides
UVCPC Adhesion

- Adhesion of UVCPC over 2000 series aluminum
 - Adhesion results could not be duplicated between CTIO and PCRG
 - Key differences between locations was power of UV lamps
 - Formulation developed under a 300 Watt/in lamp
 - Originally thought it was photoinitiator based
 - “Flash” effect considered
 - Determined to test on the robotic curing system at NASWI
 - Nordson lamp is power adjustable unlike the CTIO/PCRG lamps
 - Robot can duplicate conveyor speeds (5 fpm vs. 9 fpm)
 - Robot can execute multiple passes in programming
 - Felt that the system could duplicate either lab
 - However, the results were completely unexpected
 - Realized the lamp at NASWI is a non-focused lamp
 - NASWI results led to the belief that both chemistry and kinetics play a role in the cure and adhesion on metallic substrates
UVCPC Adhesion

- Adhesion of UVCPC over 2000 series aluminum
 - The robotic curing system was able to cure with 5B adhesion
 - 5086, 6061, 3003 aluminum, and 4130 steel
 - None of the test panels had been prepared
 - Wiped free of dust
 - No pretreatment
 - No scuffing of surface (except steel which was bead blasted)
 - On 2000 series untreated, unprepared aluminum, 3B to 4B adhesion was possible
 - Kinetics plays a role as well as free radical scavengers
 - Free radical concentration at an instant in time
 - Focused lamps vs. unfocused lamps

UV CPC Adhesion

- Adhesion of UV CPC over 2000 series aluminum
 - Focused vs. unfocused reflectors

![Elliptical Diagram](image1)

- Used by CTIO and PCRG

![Parabolic Diagram](image2)

- Used by NASWI

UVCPC Adhesion

- Adhesion of UVCPC over 2000 series aluminum
 - Focused vs. unfocused reflectors
 - Dose at each location (typical)

<table>
<thead>
<tr>
<th></th>
<th>WPAFB lamp (focused) J/cm² 2-pass, 9 fpm</th>
<th>PCRG lamp (focused) J/cm² 2-pass, 5 fpm</th>
<th>NASWI lamp (unfocused) J/cm² 1-pass, ~4 fpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVA</td>
<td>2.54</td>
<td>2.22</td>
<td>1.53</td>
</tr>
<tr>
<td>UVB</td>
<td>1.83</td>
<td>1.39</td>
<td>1.62</td>
</tr>
<tr>
<td>UVC</td>
<td>0.13</td>
<td>0.17</td>
<td>0.22</td>
</tr>
<tr>
<td>UVV</td>
<td>12.7</td>
<td>10.41</td>
<td>12.23</td>
</tr>
</tbody>
</table>
UVCCPC Adhesion

- Adhesion of UVCCPC over 2000 series aluminum
 - Focused puts almost full dose in a 1” path
 - Unfocused puts similar dose down across ~4” path
 - Between 0.6 (WPAFB) and 1 (PCRG) second for full dose in focused
 - About 5 seconds (NASWI) for full dose in unfocused
UVCCPC Adhesion

- Adhesion of UVCCPC over 2000 series aluminum
- Kinetics of the cross linking reaction in UVCCPC
- Time based equations

\[\nu_i = 2k_d f[I] \]

\[\nu_p = k_p [M][M \cdot] \]

\[\nu_t = 2k_t [M \cdot]^2 \]
UVCPC Adhesion

- Adhesion of UVCPC over 2000 series aluminum
 - Concentration of free radicals directly related to dose received
 - For a given “instant” in time:
 - WPAFB instantaneous free radical conc. is 3.4 times PCRG lamp
 - WPAFB instantaneous free radical conc. is 5.4 times NASWI lamp
 - Results in a relative increase of 11.6, or 29 time increase in \(v_t \) between WPAFB, PCRG, and NASWI lamps

\[
\begin{align*}
 v_p &= k_p [M][M \cdot] \\
 v_t &= 2k_t [M \cdot]^2
\end{align*}
\]

- If \(v_t \) is \(\geq v_p \), then:
 - Premature termination
 - Excessive shrinkage
 - Low cross link density
 - No or poor adhesion

UVCPC Adhesion

Summary of Adhesion Issue:

- Copper or other free radical scavengers have an effect
 - Scavenger “effect” can be overcome with:
 - Certain chromate conversion coatings
 - Anodizing
 - Epoxy based wash primer
 - Adjustment “tweak” in formulation

- Kinetics based on free radical concentration at an instant in time
 - Overcome termination rate by spreading the dose
 - A little longer cure is a “better” cure (5 seconds vs. 1 second)

- These factors have now been demonstrated by actual test
UVCPC Demonstration

- General test results
 - Strippability
UV-CPC Demonstration

- Falling sand testing

UV-CPC over 2024 Anodized

Legacy over 2024 Anodized

UVCPC Demonstration

- Actual components coated
 - Coast Guard MC-130 landing gear door
 - Entrained moisture created huge bubble during IR phase
UV CPC Demonstration

- Actual components coated
 - Coast Guard MC-130 landing gear door
 - Entrained moisture created huge bubble during IR phase
UV CPC Demonstration

- Actual components coated
 - Coast Guard MC-130 landing gear door
 - Entrained moisture created huge bubble during IR phase
UVCCPC Demonstration

- Better Robotic Profiling
 - Use of small radiometers
 - Extended use of thermal profiling
UV CPC Demonstration

- Better Powder Coating
 - Use of non-contact uncured powder thickness gauge
UV CPC Demonstration

- Estimated Cost of Improvements
 - Hardware - $6K
 - Robotics modifications - $12K
 - Coatings reformulation and revalidation - $120K