Science of Information, Computation and Fusion

Date: 06 03 2013

Tristan Nguyen
Program Officer
AFOSR/RTC

Air Force Research Laboratory
Science of Information, Computation and Fusion

Report Documentation Page

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 MAR 2013</td>
<td></td>
<td>00-00-2013 to 00-00-2013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science of Information, Computation and Fusion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Office of Scientific Research ,AFOSR/RTC,875 N. Randolph,Arlington,VA,22203</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presented at the AFOSR Spring Review 2013, 4-8 March, Arlington, VA.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same as Report (SAR)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std Z39-18
NAME: Tristan Nguyen

BRIEF DESCRIPTION OF PORTFOLIO:

- Research new techniques that enable or facilitate extracting, assembling, and understanding of information collected from multiple sources.
- Challenges:
 1. Dealing with information at different levels of abstraction
 2. Mechanizing patterns of reasoning in terms of computation.

LIST SUB-AREAS IN PORTFOLIO:

<table>
<thead>
<tr>
<th>Sub-Areas</th>
<th>Objectives</th>
</tr>
</thead>
</table>
| Bottom-up Low-level Data Analytics | • Discover structures in data and shape them into information
 • Formulate models to describe different data sources
 • Find efficient and provable computational algorithms |
| Top-down High-level Information Processing | • Develop expressive, computable representation of information
 • Synthesize contextual information with observed data through reasoning |
Bottom-up Data-driven

Focus On:
- New Data Structures
- Information Extraction Procedures
- Constructive Computational Algorithms
- Provable Performance Guarantees

Stay Away From:
- Data Provenance
- Information Management
- Cloud Computing
- Radar, Communications, Signal Processing

NEW TRENDS (Dealing with Big Data)
- Few data samples in high dimensions
- Nonlinear high-dimensional data
- Fast approximation algorithms
- Integration of multiple models/techniques

Important but being funded elsewhere
Top-down Concept-driven

Focus On:

- Construction of rich data types
- Models of computation
- New programming language
- Connection with data analytics

Stay Away From

- Cognitive modeling
- Decision analysis and modeling
- Current semantic technologies
- Various database models

NEW TRENDS

- Higher-order structures
- Constructive techniques
- Synthesis of reasoning & computing
- Merging qualitative & quantitative models

Important but being funded elsewhere
Similar Programs But with Different Emphases and Approaches

Mathematics of Sensing, Exploitation, and Execution

- Network-based Hard/Soft Information Fusion
- Value-centered Information Theory for Adaptive Learning, Inference, Tracking, and Exploitation
- Revolutionizing High-Dimensional Microbial Data Integration

- Information Integration and Informatics
- EarthCube
- Algorithms for Threat Detection (NSF-DTRA-NGA)

- Information Integration
- Intelligent and Autonomous Systems
Collaborations & Transitions

- NSF-DTRA-NGA – Algorithms for Threat Detection
- OSD/AFRL/RH – Autonomy
- DARPA/AFRL/RY – Mathematics of Sensing, Exploitation and Execution (MSEE)
- ASD R&E/JCTD – Advanced Mathematics for DoD Battlefield Challenges
- STTR – Space-time Signal Processing for Detecting and Classifying Distributed Attacks in Networks, Numerica Corporation
Air Force Relevance

Technological Applications:

- Information Triage
- Automated Reasoning
- Human-Machine Interface
- Formal Verification

Intelligence, Surveillance, Reconnaissance

Cyber Domain

Space Situational Awareness

Autonomy
Highlights of Research
Motivation: Data are “sparsely” collected by a moving platform

Challenges:
- How to integrate the motion information with data
- Lack of mathematical tools

Objective: To develop a mathematical foundation for Image Articulation Manifolds

New Techniques:
- Generalization of group action
- Generalization of many ideas in differential geometry

Applications: Beyond videos
Objective: Relating multiple time series for analysis and fusion

Main Theme: The time-series collection encodes shared dynamic behaviors (features)

New Idea: Using Beta and Bernoulli processes to
- Allow for infinitely many features
- Induce sparsity with shared features.

Notes:
- This generative model provides a probabilistic, top-down model for data sources.
- The PI is collaborating with Ed Zelnio’s group in AFRL/RY.
Objectives: Detection and localization of weak structured patterns in large graphs from a small number of compressive measurements.

Achievements:
- Determined the minimum number of measurements and weakest SNR required for detection and localization in lattices.
- Adaptivity of measurements and structure of activation can improve localization but not detection.

Future Research: Consider more general structures of activation on any graphs.
Objective: Develop reasoning and computing mechanisms across different domains of information to support information fusion.

Key Ingredients:
- Reasoning - Making inference, generating hypothesis, verifying hypothesis based on observed data
- Computing - Manipulating data or its mathematical structures and connecting with bottom-up data analytics

Motivation: Dependent Type Theory was recently applied (2012) to information fusion and situation awareness. Types allows for expressive data structures and properties (logical, mathematical, etc.)

Technical Approach: Develop Homotopy Type Theory to mechanize reasoning, computing, and constructing data types in the same framework.
Objective: To model networks of coupled random processes with causal dependence structures.

Technical Approaches:

- Discovered two new equivalent graphical models –
 - Minimum Generative Model Graph
 - Directed Information Graph

- Constructed efficient algorithms to identify these graphs.

Future Research: Can the time-invariance hypothesis on the causal dependence structures be weakened or removed?
Sensor Scheduling for Tracking Resident Space Objects
I. Clarkson, University of Queensland

Objective: To improve the current tracking system, Tasking Autonomous Sensors in a Multiple Application Network (TASMAN).

Current Technical Approaches: Unscented Kalman Filter for updating objects’ states and setting up scheduling.

Challenge: Objects can be out of field of view in a scheduling period.

New Approach: Integrated searching and tracking via particle-filtering (in collaboration with AFRL’s AMOS)

Simulated Results
Some Intramural Projects

- **J. Culbertson (RY) & K. Sturtz (Universal Mathematics)**
 - Categorical Formulation of Probability and Bayesian
 - Collaborating with D. Koditschek (U Penn) and MURI Team

- **W. Sakla (RY) & T. Klausutis (RW)**
 - Manifold Learning and Sparse Representation
 - Will collaborate with a new PI

- **R. Ilin & L. Perlovsky (RY)**
 - Integration of text with sensor data via parametric models

- **W. Curtis (RW)**
 - Map-based Particle Filtering for Target Tracking
Objective: To formulate a new perspective on the joint control of heterogeneous information sources to simultaneously achieve quantified informational and physical objective.

- **RCA.1 Unified Mathematical Representation**
 - for sensor, control, mission objectives
 - incorporating multiple scales of resolution and uncertainty

- **RCA.2 Joint Physical-Information State Descriptors**
 - capturing physical state of the information gathering system and the state of the information
 - include formal expression of constraints limiting state transitions

- **RCA.3 Control-Information Linkage to:**
 - robustly link control actions to information states
 - support feedback to enable simultaneous control of physical and information states
Consistent Vision-aided Inertial Navigation System (VINS) – S. Roumeliotis et al. (U Minnesota)

Challenge: VINS is a nonlinear estimation problem; Linearized estimators (e.g., Extended Kalman filter (EKF), Unscented (U)-KF) become inconsistent.

Solution:
- Determined unobserved directions of the nonlinear system using finitely many Lie derivatives
- Linearized states using the observability matrix
- Identified cause of inconsistency
- Used the computed unobserved directions to improve consistency and accuracy
Multi-robot Team To Find Targets and Avoid Hazardous Areas – V. Kumar et al. (U Penn)

Challenge: Sensing, communication, and coordination are coupled.

Solution:
- Distributed algorithms for detection and multi-target detection and localization using
 - a recursive filter based on Finite Set statistics
 - approximated gradient of mutual information between sensor readings & target locations.
- Complexity reduction by
 - clustering robots into groups
 - adding access points connected to a central server.

Next Step: Empirical validation and merge with VINS in complex environments.
Summary

- Bottom-up data-driven analysis can discover structures in data.
- Top-down conceptually driven processing can integrate these structures.
- These two directions may not align nicely. So recursion may require.
- There are several layers of abstraction in information processing.
- Different technical tools are needed to treat various layers of abstraction.

Symbols, Magnitudes, etc.
Semantics, Logics, etc.

More Abstract
Thank You!

Comments/Questions?