Information, Decision, & Complex Networks
AFOSR/RTC Overview

06 MAR 2013

Robert J. Bonneau, Ph.D.
Division Chief
AFOSR/RTC

Air Force Research Laboratory
1. REPORT DATE
06 MAR 2013

2. REPORT TYPE

3. DATES COVERED
00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Information, Decision & Complex Networks AFOSR/RTC Overview

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Office of Scientific Research ,AFOSR/RTC,875 N. Randolph, Arlington, VA, 22203

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the AFOSR Spring Review 2013, 4-8 March, Arlington, VA.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES 7

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Information Decision and Complex Networks AFOSR/RTC

Supported Key Air Force Technology Areas Include: Air and Space Situational Awareness/ISR, Autonomy, Cyber/C2

Technical Questions Addressed:
- How well modeled and structured is data in the problem?
- How inter-dependent, heterogeneous, and dynamic is the problem?
AFOSR/RTC: Information

Information: Problem has strong models such as from EM propagation and data characterized accordingly

Example AF Problem: Sensor Resource Management Air and Space ISR Situational Awareness
AFOSR/RTC: Decision

Decision: Problems have less well defined model – requires human intervention/analysis

Example Problem: Human/Machine Behavior Modeling and Risk Characterization – (Autonomy)

- Partially Autonomous Infrastructure
- Real Time Data Analytics
- Human Modeling & Sensing
 - Natural Language
 - User Applications
 - Physical Environ.
 - Resource Const.
 - Cultural Influence
 - Social Media
 - Social Network

- Machine Lower Mission Risk
- Online Mission Risk Analysis
- Human Lower Mission Risk

DISTRIBUTION A: Approved for public release; distribution is unlimited.
AFOSR/RTC: Complex Networks

Complex Networks uses measured information to assure, manage, predict, and design distributed networks, systems, and architectures.
Complex Networks/Foundations of Information Systems – Robert Bonneau
- mathematically represent networks of all kinds including communications and computational at all levels including content, protocol, and architecture/verify validate critical infrastructure performance

Computational and Machine Intelligence/Mathematical Computational Cognition – Jay Myung
- objective is to maximize the ability of machines to conduct higher level cognitive activities with quantifiable risk and accurate models of human decision makers

Dynamic Data Driven Application Systems – Frederica Darema
- enables analysis of the interplay between physical systems such as fluid dynamical systems and software systems and architectures as in the case of aircraft flight systems

Information Operations and Security – Robert Herklotz
- looks at fundamental issues for assessing systems in terms of secure operations and mission assurance
Science of Information Computation and Fusion – Tristan Nguyen
- enables the ability to collect, disseminate and integrate information in such a way as to mathematically characterize and assess the most appropriate information for a range of mission critical tasks

Sensing Surveillance and Navigation – Tristan Nguyen
- develops algorithms to collect and decompose critical sensing information and enables techniques that interface between the physical domains such as electromagnetics and methods in navigation and geo-location

Systems and Software – Kathleen Kaplan
- assesses these systems from a verification and validation standpoint to guarantee operations under a variety resource constraints

Trust and Influence – Joe Lyons
- seeks to model and measure the way collections of individuals make decisions and are influenced both in small groups and culturally