Award Number: W81XWH-10-1-1002

TITLE: Salmon Thrombin as a Treatment to Attenuate Acute Pain and Promote Tissue Healing by Modulating Local Inflammation

PRINCIPAL INVESTIGATOR: Beth A. Winkelstein, PhD

CONTRACTING ORGANIZATION: Trustees of the University of Pennsylvania, Philadelphia, PA, 19104-6205

REPORT DATE: December 2012

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: (Check one)

X Approved for public release; distribution unlimited

☐ Distribution limited to U.S. Government agencies only; report contains proprietary information

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
The objectives of this project are to quantitatively define the biochemical and cellular mechanisms by which salmon thrombin may be responsible for alleviating pain. Work during the project period utilized biochemical, in vitro, and in vivo approaches to understand and define how human and salmon thrombin differ enzymatically and in modulating cellular inflammatory responses. We established relevant culture systems for making these assessments in astrocytes and mixed cultures and determined that salmon thrombin can reduce astrocytic activation, cytokine production, and not modify cellular mechanics. Substrates were identified for defining cleavage rates of PARs and comparisons between human and salmon thrombin revealed that salmon thrombin cleaves PAR1 at a significantly slower rate than human thrombin does. Our data suggest this may be due to the lower affinity for hirudin. PAR1 is decreased in pain states, differentially based on the type of neural trauma and in association with the absence of pain. Early cleavage of PAR1 by thrombin may provide its anti-nociceptive properties. We were very productive, having met all of the milestones that were laid out in the approved statement of work. We have reported findings in presentations and manuscripts and are also poised to continue these investigations having proven our initial hypothesis that salmon thrombin has different properties from other species and that those properties confer tremendous potential for pain relief and tissue healing.
Table of Contents

Page

Introduction ...4

Body..4

Key Research Accomplishments ..11

Reportable Outcomes ..12

Conclusion ..13

References ...15

Appendices ..17
INTRODUCTION

This project focuses on defining how salmon thrombin can serve as a novel biomaterial to simultaneously reduce pain, while also promote hemostasis and wound healing subsequent to neural trauma. Broadly, the objectives of studies under this project were to quantitatively define the biochemical and cellular mechanisms by which salmon thrombin may be responsible for alleviating pain and to test if, and how, salmon thrombin can achieve a reduction in pain from painful nerve injury. This research project utilizes biochemical, in vitro, and in vivo approaches to define mechanisms of action and to evaluate effects of salmon thrombin on mitigating pain responses. We hypothesized that differences in the catalytic activities between human and salmon thrombin and differences in immune cell activation, make salmon thrombin effective at reducing pain while also promoting wound healing and neuronal survival after neural trauma. Work under this project has focused on measuring rates of proteolysis of thrombin substrates by human and salmon thrombin, quantitatively comparing cellular activation by human and salmon thrombin, measuring cytokine production by mammalian inflammatory cells in response to human and salmon thrombin, quantifying effects of thrombin treatment on cellular mechanics, and evaluating recovery, pain responses and cellular mechanisms with thrombin formulations in an in vivo model of painful nerve trauma. In the first year of this project we made good progress on all studies and met the timeline of activities and milestones that were laid out in the approved statement of work. The details of those efforts were previously summarized in detail in the annual report submitted in the Fall of 2011. In April 2012, we submitted a request for no-cost-extension of the project activities, which was granted in July of 2012. Since our last report of progress, we continued to make substantial progress in all areas, including publishing work from Aims 1 and 3, as well as focusing primarily on the in vivo studies under Aims 4 and 5. During the period of this award, we presented our findings at several national meetings related to basic science, clinical groups and military health services, have applied for funding from other mechanisms using this work as pilot data, and have several publications and several more due to be submitted based on the work completed under this project. We are poised now to continue to investigate our initial hypothesis in more detail and with more specific grounding, based on this Hypothesis Development Award.

BODY

Since our last report we have made substantial progress on all Tasks and have met the milestones proposed in the approved statement of work. We have presented/published our work in a variety of venues and continue to do so. In this portion of the report we include those methods and results in detail that were not previously summarized in our last annual report and that have not been reported or included in other publications. Where applicable, we refer to those publications, abstracts and presentations; the abstracts and presentations are provided in the Appendix. A primary goal of this work was to study how human and fish thrombin differ enzymatically in order to understand why the pain response with treatment from each species is different. As such, coordinated studies using in vitro and in vivo approaches were performed in this project. We structure this section of the report to provide an overall summary of each task, followed by a more-detailed report of the relevant data and findings.

The GANTT chart below summarizes the specific tasks that were associated with each aim across the entire project period under the approved statement of work. Before providing a detailed summary of the research findings, we indicate the current status of each activity to provide an overview of the research activities completed and the remaining activities. For all activities, we have completed the experiments and analysis and the remaining activities are limited to publication in only a few Aims (Milestone #6). Of note, the original Tasks related to the microfluidics for macrophage migration studies (Tasks 3d and 3e) were redirected to focus on defining the activation responses (mechanical and inflammatory) of astrocytes since that work is more-relevant and meaningful given the findings from our studies to date on inflammation and pain [Dong & Winkelstein 2010; Rothman & Winkelstein 2010;
Dong et al. 2013; Smith et al. submitted]. This modification was previously addressed in our prior approved report. Further, the macrophage responses are complemented by studies of blood-spinal cord barrier breakdown in the in vivo studies under Aims 4 and 5.

<table>
<thead>
<tr>
<th>TASK</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>TASK 1 – Aim 1: Proteolysis studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a. Acquire thrombin</td>
<td>completed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b. Define protease activation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1c. Data analysis & integration</td>
<td>completed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1d. Milestone #2–Publish findings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TASK 2 – Aim 2: Cell activation studies (in vitro)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a. Establish cell cultures & test thrombin concentrations</td>
<td>completed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2b. Perform activation assays</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2c. Data analysis & integration</td>
<td>completed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2d. Milestone #4–Publish findings</td>
<td>Studies completed & publication in 2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TASK 3 – Aims 3 & 4: Cytokine (Aim 3) & Macrophage migration (Aim 4) studies (in vitro)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a. Test thrombin concentrations & optimize time points</td>
<td>completed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3b. PCR & IHC assays for day 3 & day 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3c. PCR & IHC assays for 6 hr & day 1</td>
<td>completed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3d. Set-up thrombin gradient techniques</td>
<td>removed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3e. Macrophage migration studies</td>
<td>removed & modified for in vivo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3f. Data analysis & integration</td>
<td>completed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3g. Milestone #5–Publish findings</td>
<td>completed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TASK 4 – Aims 4 & 5: Behavioral studies (in vivo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a. Milestone #1–Obtain regulatory approval for rat studies</td>
<td>completed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4b. Acquire thrombin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4c. Milestone #3–Identify thrombin concentrations for rat studies</td>
<td>completed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4d. Perform day 14 rat studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4e. Perform day 3 & 7 rat studies</td>
<td>completed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4f. IHC assays & analysis (rat)</td>
<td>completed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4g. Analysis of rat data</td>
<td>ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4h. Milestone #6 – Submit publication (rat studies)</td>
<td>planned publications in early 2013</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Task 1

Work under Task 1 corresponds to Aim 1 which had the main goal of evaluating the proteolysis rate of human and salmon thrombin. Thrombin is a serine protease that cleaves fibrinogen to form fibrin, but it also is responsible for many of the cascades that cause pain and inflammation and stimulates inflammatory cytokine production. Activation of those cascades occurs primarily through the cleavage
of PARs, or protease activated receptors which are G-protein coupled receptors. As detailed in our prior report, there are four PARs –1, 2, 3, and 4; thrombin can cleave PARs 1, 3, and 4. The PARs are self-activating, so when thrombin cleaves them near the N-terminal the remaining end acts as a tethered ligand that then activates the PAR. There is also a second thrombin receptor site which is a hirudin-like site, which is present on PARs 1 and 3.

In our prior report we summarized activities under Tasks 1a and 1b to evaluate if there are enzymatic differences between salmon and human thrombin. The kinetics of protease activation were tested using fluorogenic synthetic substrates that mimic the thrombin receptors. Details of those methods are provided in our publications in the Appendix [Oake et al. 2011; Smith et al. 2012a] and in the paper we recently submitted to Molecular Pain [Smith et al. 2012]. For the PAR1 peptide at 37 degrees, human thrombin was found to cleave the peptide faster than fish thrombin. When quantifying the rate of cleavage for each of the PARs tested, it was found that the rate of cleavage for human thrombin is significantly \(**p=0.01 \) faster than for salmon thrombin [Oake et al. 2011; Smith et al. 2012a]. PAR3 and PAR4 were also tested, but the rate of PAR4 cleavage was so slow that any difference was undetectable using this approach; no difference was observed between species in PAR3 cleavage rate [Oake et al. 2011; Smith et al. 2012a].

Thrombin activity, as measured by fibrinogen cleavage rate, was inhibited by hirudin and antithrombin III (ATIII) in separate studies, for both species of thrombin (Figure 1) but with different dose-dependence. Salmon thrombin retains significantly \(p<0.0001 \) more activity than human thrombin overall, as evidenced by a faster fibrinogen cleavage rate over a range of [hirudin]/[thrombin] ratios (Figure 1A). Specifically, salmon thrombin exhibits a significantly \(*p<0.002 \) faster fibrinogen cleavage rate at ratios of 1 and 1.5 (Figure 1A). In contrast to the differential inhibition by hirudin, there is no difference in the reduction of human and salmon thrombin activities by human antithrombin III (ATIII) (Figure 1B). Taken together, hirudin inhibits salmon less effectively than human thrombin but ATIII inhibited both salmon and human thrombin equally [Smith et al. 2012b].

Synthesizing (Task 1c) these collective results we have been able to develop several conclusions and reported (Task 1d; Milestone #2) them in the 3 presentations (see Appendix) and in 1 submitted manuscript [Smith et al. 2012b] (#2, #3, #6, #8 in Bibliography). Salmon thrombin hydrolyzes peptides mapping the PAR1 cleavage sequence at slower rates than human thrombin, suggesting that salmon thrombin may be less efficient at activating cellular PAR1. This cleavage data suggests there to be an inherent difference in PAR1 cleavage rate between these species that may also be related to the difference in their effectiveness of attenuating pain. In many physiological systems thrombin can initiate dual signaling cascades at least partially based on the type of proteins that are coupled to the activated receptor or the degree of PAR1 activation [Dale & Vergnolle, 2008; Ma & Dorling, 2012]. For example, PAR1 activation by thrombin in endothelial cells can induce vascular protection or vascular leakage depending on which sphingosine 1-phosphate (SIP) receptor PAR1 is coupled to, SIP1 or SIP3 [Ma & Dorling, 2012]. Within the nervous system, PAR1 agonist concentration seems to be more important for the subsequent signaling; low concentrations of PAR1-AP decrease levels of phosphorylated ERK
(pERK), a marker of cellular trauma, whereas high concentrations increase pERK expression, suggesting that high concentrations may amplify trauma [Gao et al. 2009; Shavit et al. 2011]. In our studies, salmon thrombin cleaves PAR1-like peptides slower than human thrombin for both the PAR1 cleavage sequence and the cleavage sequence plus a hirudin-like domain [Smith et al. 2012b]. Previous studies show that salmon and human thrombin are equally efficient at cleaving peptides based on the human fibrinogen cleavage site [Michaud et al. 2002]; our findings study agree with prior reports. Since PAR1 is activated slower by salmon thrombin than human thrombin it is possible that salmon thrombin mitigates cellular trauma following nerve root injury while human thrombin may exaggerate trauma. Although PAR1 activity is different between salmon and human thrombin it is possible that other receptors also are partially responsible for the effects observed here. For example, the activation of thrombin-cleavable PAR4 via a PAR4 activating peptide (PAR4-AP) in cultures of primary sensory neurons attenuates intracellular calcium responses [Asfaha et al. 2007]. It is possible that salmon thrombin activates PAR4 more readily than human thrombin, also contributing to its analgesic properties. In our studies, differences in affinity for various molecules was observed between the two species of thrombin, including the PAR1 cleavage sequence, the PAR1 cleavage sequence with a hirudin-like domain, and the thrombin inhibitor hirudin which suggests that there may also be differences in their affinities for other molecules [Smith et al. 2012b]. Future studies inhibiting the action of the PARs after nerve root injury would provide further information on whether this and other PAR receptors contribute to the analgesic properties of salmon thrombin. Nonetheless, the results from this study indicate that PAR1 activation rate may be a key contributor to the analgesic and anti-inflammatory actions induced by salmon thrombin, which are not exhibited by human thrombin.

Task 2

Work under Task 2 corresponds to Aim 2 with the main goal of evaluating if there is a difference in the activation of cells involved in pain in vitro due to stimulation by human and salmon thrombin. We use primary neurons and astrocytes obtained by standard methods from rodents. Under Task 2a we established methods for culturing and stimulating isolated astrocytes and mixed cultures of astrocytes and neurons. We evaluated cellular activation in response to thrombin alone and with thrombin treatment following an inflammatory stimulus. Activation was assayed by quantifying changes in cell shape and area and GFAP expression for astrocytes, using routine methods of fluorescence. For proliferating cells, cell counts were performed using DAPI. For both human and salmon, thrombin concentrations were varied between 1U/ml and 10U/ml. Cells were routinely observed for morphologic changes and cytokine production for up to 7 days under these conditions. Based on cytokine production for each concentration, the 10U/ml actually induced increases in IL1β while the 1U/ml resulted in decreased inflammatory response. Further, cells were stimulated using both substance P (a common mediator of nociception) and LPS (a common initiator of inflammation in experimental studies) [Chung & Benveniste 1990; Miyano et al. 2010; Loram et al. 2011]. From those studies that were previously summarized in our prior annual report, it was determined to use a 1U/ml concentration of both human and salmon thrombin in subsequent studies.

Mixed cultures of astrocytes and neurons were used for studies in Task 2b and have been previously described in our last report. Cells are plated onto poly-L-lysine-treated (PLL; Sigma-Aldrich; St. Louis, MO) T75 tissue culture flasks (Fisher Scientific, Inc.; Pittsburgh, PA) at a concentration of 1x10^6 cells/ml. Media was changed every 3-4 days. After 13 days in vitro (DIV), cells are released from the flasks with trypsin at 37°C. After 5 minutes, enzymatic activity is stopped with serum containing media and cells are centrifuged at 1000 rpm for 5 minutes. Cells are resuspended and plated onto 114 PLL-coated glass bottom dishes (MatTek Corp.; Ashland, MA) at a concentration of 1x10^5 cells/ml. Cultures are allowed to stabilize at 37°C in 5% CO2 for 7 days with media changes every 3-4 days prior to any stimulation or treatment. Since in the last report, we summarized our studies of mixed astrocyte/neuron cultures that were stimulated with lipopolysaccharide (LPS) at day 0 at a concentration
of 1 µg/mL, we provide only a brief summary of those findings here. In the mixed culture of astrocytes and neurons, LPS stimulation increases PGE2 production by approximately 1.2-fold at both day 2 and day 7. LPS stimulation also reduces the astrocyte perimeter by 20% compared to the unstimulated control, indicating activation of astrocytes (Figure 2).

Based on those studies with LPS, we also administered salmon thrombin at a concentration of 1 µg/ml in mixed neuronal-astrocytic cultures that had been stimulated by LPS and probed for PAR1 expression at 1 hour and 1 day after treatment. PAR1 expression decreases within 1 hour of stimulation, but is returned to control levels when thrombin is given, further supporting the hypothesis that salmon thrombin provides anti-inflammatory effects (Figure 3).

Extending that work, we evaluated the rate of cleavage of the PAR1 using the in vitro cultures. Human and salmon thrombin were given at the same doses as above and PAR1 expression was assayed at 15 minutes and 30 minutes. The number of cells positive for PAR1 was found to be significantly greater (p=0.001) for salmon thrombin than human thrombin at 15 minutes (Figure 4), supporting the findings that salmon thrombin cleaves the PAR1 N-terminus slower than human thrombin (Task 1; Figure 1). Together, all of these findings were the basis of a larger study that was recently accepted in the Journal of Neurotrauma [Dong et al. 2013; #7 in Bibliography].

In order to extend work defining cell activation, we also implement atomic force microscopy (AFM) to define the cellular mechanics of astrocytes in response to thrombin treatment. The experimental conditions were the same as those described above, with astrocyte cultures treated for 30 minutes with thrombin (either salmon or human) and then rinsed 3 times with PBS. There is mounting evidence that as astrocytes become activated their stiffness is also altered; AFM enables the measurement of cellular modulus. We determined that there is a significant difference (p=0.01) in the stiffness of astrocytes treated with human thrombin compared to untreated controls (Figure 5), while treatment with salmon thrombin does not modify cellular stiffness. These findings are indeed quite exciting as they may provide an explanation for some of the in vivo results we observe under Task 4.
As we proceed with analyzing these in vitro studies and the in vivo studies under **Task 4g**, we expect to incorporate these AFM results in the manuscript we are preparing for submission in early 2013 (#9 in Bibliography).

Task 2c includes the data analysis and integration across Tasks in this Aim 1, and as described above is almost complete. **Task 2d** involves the publication of this work and is expected in the next few months. Parts of these findings have been published and presented in several podium presentations and submitted papers (see Appendix; #6, #7, #8 in Bibliography).

Task 3

Work under **Task 3** corresponds to Aims 3 and 4 of the proposal and focused on quantifying cytokine production in response to thrombin stimulation, at early time points in the in vitro studies of Aim 2. Cytokine production in astrocytes was measured in response to human and salmon thrombin using PCR to define message levels and ELISA to quantify inflammatory mediators implicated in pain. We evaluated TNFα and IL1β because of their known roles as pro-inflammatory agents, and their ability to induce pain [DeLeo & Yezierski 2001]. Under **Task 3a**, we had proposed to establish the cultures and optimize the proposed time points for assessment. We originally proposed to probe responses at 6 hours, day 1, day 3, day 7 after stimulation, but following pilot studies, we in our last report we revised those assessment points to 1 and 24 hours since the cytokine cascade is regulated early and the in vivo studies in Aim 5 will capture the later responses. Accordingly, under **Tasks 3b and 3c**, we performed PCR and ELISA at these time points. In our last report, we detailed findings from studies in which cells were stimulated by 100nM substance P and treated 1 day later with 1U/mL of either human or fish thrombin. Briefly, the amount of IL-1β in the supernatants from the astrocyte cultures was lower (to nearly one-third) for treatment with the fish thrombin compared to the human thrombin (p=0.037). However, after 1 day in culture, the fish thrombin was also less active than the human thrombin (p=0.0003). These data suggest that the reduced astrocytic inflammatory response to fish thrombin may be caused by the reduced activity of fish thrombin or by the slower proteolysis rate of fish thrombin on PAR1. Those data were included in the publication at the Annual Meeting of the Biomedical Engineering Society (BMES) in October 2011 [Oake et al. 2011] (see Appendix). This same significant relationship was observed in cultures of astrocytes alone and in mixed astrocyte-neuronal cultures. Additional studies were performed to assess PAR1 mRNA in spinal cells at two early time points following painful nerve root trauma. The specific details of those methods are included in the abstract that presented this work at the American Society of Mechanical Engineers Summer Bioengineering Conference in June 2011 (ASME-SBC) [Smith et al. 2011b] (see Appendix). In summary, those data indicate that decreases in PAR1 mRNA relate to pain and can be regulated early on following the injury. Upon further investigation, we also were able to localize PAR1 expression in both neurons and astrocytes in our cultures (Figure 6). Since that time, we expanded the group sizes and reported that work at the Military Health System Research Symposium in August 2012 (see Appendix; #4 in Bibliography).

We also performed additional dose response studies with thrombin treatment at different doses to evaluate effects on IL-6 production (Figure 7) [Smith et al. submitted]. The concentration of IL-6 protein...
in the supernatants of mixed cortical cultures was significantly (p<0.0001) increased when the cultures were treated with human thrombin as compared to salmon thrombin (Figure 7). Further, cultures treated with human thrombin released significantly (p<0.0363) more IL-6 than cultures treated with salmon thrombin at each individual thrombin concentration of 0.2, 0.5 and 1 U/ml (Figure 7).

Assessments of macrophage migration were originally proposed in studies under Tasks 3d and 3e. Of note, we elected to evaluate integrity of the blood brain barrier in the in vivo studies as a more relevant metric of cellular migration since that will provide a more comprehensive understanding of the consequences of such changes in vivo and in the context of pain behaviors. These studies (Task 3e) are included in work under Task 4, accordingly. Also, Task 3f was removed as per the review detailed in our prior report. Since the main goal is to evaluate these responses in the context of pain such in vivo assessments will provide more added value than simple migration assays in vitro.

Tasks 3f and 3g include the data analysis and integration as well as the publication of this work and is completed as described above. To date, parts of the findings under this Aim were published and presented at several meetings and in already submitted and planned manuscripts (see Appendix; #4, #6, #8, #9, #10 of Bibliography).

Task 4

Work under Task 4 corresponds to Aims 4 and 5 which utilizes an in vivo model of traumatic nerve injury in the rat. Specific sub-tasks of those Aims were the primary effort over the last period of this project. As previously reported, Tasks 4a-4c were completed during the prior reporting period and Tasks 4d-4f have been ongoing in the last period. We obtained regulatory approval from both the University of Pennsylvania and USAMRMC, in August 2010 and September 2010, respectively (see Appendix for approval letter from Penn IACUC). In addition, it was determined based on the in vitro studies, that thrombin would be used at a concentration of 1U/ml for all in vivo studies (Task 4c).

Rats underwent a transient painful compression of the right C7 dorsal nerve root [Smith et al. 2012b; Syre et al. 2012]. Briefly, surgical procedures were performed under inhalation anesthesia with the rat in the prone position (4% isoflurane for induction, 2% for maintenance). An incision was made from the base of the skull to the T2 spinous process. A hemilaminectomy and partial facetectomy were performed on the right side of the C6/C7 spinal levels in order to expose the right C7 dorsal nerve root. The nerve root was compressed for 15 minutes with a calibrated 10 gram-force microvascular clip (World Precision Instruments, Sarasota, FL). Following clip removal, any blood was cleared from the compressed nerve root and 20 µl of either salmon (salmon, n=6) or human (human, n=6) thrombin (2 U/ml in neurobasal media) was added to the nerve root. A separate control group received a vehicle treatment (vehicle, n=6) of 20 µl of only the neurobasal media. Wounds were closed with polyester suture and surgical staples. Rats were allowed to recover in room air under continuous monitoring.

Behavioral sensitivity was assessed in the forepaw by measuring mechanical allodynia on days 1, 3, 5 and 7 post-injury. Allodynia was also measured for each rat before any surgical procedures to establish baseline responses. Prior to each testing session rats were placed in elevated cages with mesh bottoms and allowed to acclimate for 15 minutes. Mechanical allodynia was measured by stimulating the plantar surface of the forepaw on the side ipsilateral to the root compression, using 1.4 and 4 gm von Frey filaments (Stoelting Co., Wood Dale, IL). Testing sessions consisted of three rounds of 10 stimulations to each paw, separated by a 10 minute rest period. A positive response was considered as a paw withdrawal and was often accompanied by licking or shaking of the paw. The number of paw...
withdrawals in a session were counted for each rat and averaged within groups for each day. A repeated measures analysis of variance (ANOVA) with Tukey’s test was used to determine statistical differences between groups overall and on individual days for each testing filament.

Mechanical allodynia in the ipsilateral forepaw of rats that received a painful nerve root compression with vehicle treatment of neurobasal media is significantly elevated over baseline responses on all days for testing with the 4 g von Frey filament (p<0.0001) and at day 1 using the 1.4 g filament (p=0.006) (Figure 8). A single administration of salmon thrombin is sufficient to significantly reduce (p=0.004 for 1.4 filament; p=0.0004 for 4 filament) allodynia compared to vehicle for both von Frey filament strengths. Further, allodynia responses are significantly (p<0.002) different between salmon and vehicle treatments on days 5 and 7 when testing with a 4 g von Frey filament (Figure 8). In contrast, administration of human thrombin does not modify mechanical allodynia after injury on any post-operative day compared to vehicle (Figure 8). Rats treated with human thrombin exhibit mechanical allodynia that is significantly elevated over the salmon thrombin group overall (p<0.0004) and on each post-operative day (p<0.036).

Additional studies using separate rats (n=4 each group) measured neuronal activity in the spinal cord (Figure 9) and suggest a reduction also in neuronal activity following salmon thrombin treatment. We continue to analyze those data, together with the immunohistochemical data from these same studies for insight into the mechanisms by which salmon thrombin attenuates pain. Although these data were recently presented at 2 scientific meetings [Syre et al. 2012; Smith et al 2012a] (see Appendix; #5, #6 in Bibliography), the in-depth analyses (under Task 4g) are ongoing since there is a large amount of data generated. We anticipate submitting 2 more manuscripts from these analyses in early 2013 (Task 4h; Milestone #6).

Further, these pilot data from early in vivo studies under this project formed the basis of a proposal for continued funding from the Cervical Spine Research Society, that we were successful in obtaining funding (see Funding Applied For below).

KEY RESEARCH ACCOMPLISHMENTS

- Established relevant culture systems for assaying thrombin effects on inflammation.
- Determined that both salmon and human thrombin decrease TNFα and IL1β mRNA, but salmon thrombin produces a more robust and significant decrease in astrocytes than does human thrombin.
• Established methodology and identified relevant substrates for studying enzymatic activities of PARs.
• Determined that salmon thrombin cleaves PAR1 at a slower rate than human thrombin.
• Identified that the slower rate of cleavage by salmon thrombin may be due to its lower affinity for hirudin.
• Determination that PAR1 is associated with pain and neural trauma and appears to be regulated in activated immune cells in response to painful trauma.
• Identification that the modifications in PAR1 occur very early following its exposure to thrombin.
• Determined that salmon thrombin does not modify astrocyte cell stiffness whereas human thrombin does.
• Anti-inflammatory treatment that attenuates pain also modulates PAR1 expression in vivo.
• Determination that salmon thrombin given at the time of injury eliminates the development of pain in vivo, in association with attenuating spinal hypersensitivity.

REPORTABLE OUTCOMES

Bibliography of Published Manuscripts & Abstracts (see Appendix for Abstracts & Slides of Presentations)

Funding Applied for Based on Work by this Award

1. Jenell Smith, graduate student on this project applied for and received a Student Travel Grant Award from GAPSA at Penn to present the poster presentation for #1 above, 2011.

2. Collaborative Research Grant from Comprehensive Neuroscience Center at Penn in 2011 – not funded.

3. 21st Century Grant Award from Cervical Spine Research Society – funding provided ($75,000) to implement additional electrophysiology assessments in vivo with thrombin treatment to investigate the neuronal functional responses as follow-on funding in 2012.

4. NIH grant application planned for submission February 2013, using the data in this report as pilot data for that application.

List of Personnel Receiving Pay from this Award

1. Dr. Beth Winkelstein

2. Dr. Paul Janmey

3. Dr. Raz-Ben Arouch

4. Ms. Jenell Smith

CONCLUSION

Salmon thrombin as a biomaterial has a long shelf-life and can be easily deployed in wounds with little-to-no medical expertise. Considering these advantages, together with the results of the studies completed already, salmon thrombin has tremendous promise for rapid translation to provide major benefit for alleviating pain. We hypothesized that differences in the catalytic activities between human and salmon thrombin, and differences in the spectra of cell types that are activated by this protein, render salmon thrombin effective at reducing chronic pain. Studies completed under this award support our original hypothesis and have importance in moving forward. Among the major findings of importance include the fact that salmon thrombin decreases mRNA and protein for two pro-inflammatory cytokines involved in pain, TNFα and IL1β, more robustly than human thrombin does in astrocytes, which are known regulators of pain. A second major important finding is that salmon thrombin cleaves PAR1 at a slower rate than human thrombin and that this thrombin receptor is also associated with pain. Also, the lower affinity for hirudin that was found for salmon thrombin compared to human may explain the slower cleavage rate for salmon thrombin. Most importantly, perhaps, are the findings from the in vivo pain model. Salmon thrombin treatment reduces pain behaviors, spinal hypersensitivity, inflammation, and PAR1 expression. These findings are quite novel and have tremendous implications for both hemostasis and pain. In addition, they establish a strong and exciting foundation for future in vivo and in vitro studies to better define the specific cellular and biochemical mechanisms responsible for attenuating inflammation, neuronal injury and pain.
We made only minor changes to our Work Plan from the original proposal, as approved in our last annual report. The collection of other studies (both in vitro and in vivo) removed the need for the macrophage migration studies originally proposed under Tasks 3d and 3e. We believe such an undertaking would indeed have been unnecessary and would have detracted from the exciting in vivo experiments that were carried out under our no-cost-extension of this project. We have evaluated the macrophage response in our studies using salmon fibrin treatment and found them to be highly variable [Weisshaar et al. 2011]. Under this project, we have been very productive, having produced 10 publications and/or abstracts and have successfully received additional follow-on funding and plan to apply for more, based on the promising data that were obtained while evaluating our hypothesis.

Current methods to alleviate pain from neural trauma are limited in effectiveness, are sedative, and are not easy-to-use in combat field conditions. Accordingly, there is a tremendous and immediate necessity for the development of novel approaches to treat trauma injuries that enable pain management and can provide early treatment at the point and time of injury. Findings to date on this project indicate that this product – a salmon thrombin biomaterial – provides very rapid (within 15 minutes) regulation of the cascades that are involved in clotting and that it also mediates inflammatory and possibly nociceptive processes. In addition, the new knowledge regarding the cleavage rates and hirudin binding differences that we have uncovered between these two species can have far-reaching basic science implications as well. This material product has a long shelf-life and can be easily deployed in wounds with little-to-no medical expertise. Taking that information together with the findings from our research under this award, this biomaterial has tremendous promise for rapid translation to provide major benefit to the military should these studies show promise for alleviating pain. We are very encouraged by the findings in this project and are excited to continue to pursue studies further defining the anti-inflammatory and pro-survival pathways of salmon thrombin for pain relief and neural tissue healing.
REFERENCES

Gao YJ, Ji RR. c-Fos or pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury? *Open Pain J* 2:11-17, 2009.

Distinct Effects of Human and Salmon Thrombin on the Inflammatory Response of Mammalian Astrocytes

S. A. Oake¹, J. R. Smith¹, P. A. Janney¹, and B. A. Winkelman¹
¹University of Pennsylvania, Philadelphia, PA

Introduction: Thrombin inhibition has the potential to prevent the neurotoxic responses that can be caused by local increases in clotting factors after traumatic neural tissue damage [1,2]. Thrombin triggers cellular responses by activating protease activated receptors (PARs), of which thrombin can cleave three of the four identified subtypes (PAR 1, 3, 4). Thrombin cleavage of PAR 1 and PAR 3 is strongly aided by the hirudin-like sequence of the extracellularly exposed N-terminal [3]. Thrombin activation through these PARs in glia, including astrocytes, propagates inflammation and can lead to pain [1,4]. However, blocking the activity of endogenous thrombin can lead to uncontrolled bleeding which makes it also desirable to reduce the inflammatory effects of thrombin while maintaining its normal functions in coagulation. The effects of thrombin on coagulation, inflammation, and pain evolved separately and engage different substrates. Coagulation is strongly preserved between mammals and fish; the reaction of human coagulation proteins with human and salmon thrombin are nearly indistinguishable [5,6]. In contrast, mechanisms of inflammation and nociception are highly divergent between mammals and fish [6], suggesting that salmon thrombin might have distinct effects on mammalian inflammation. This study compared the activity of human and fish thrombin by measuring the proteolysis rates of PARs, the inhibition of thrombin by hirudin, and effects of thrombin treatment on the inflammatory response of astrocytes.

Materials and Methods: To quantify proteolysis rates, the indicated fluorogenic peptide and thrombin were mixed and the change of fluorescence intensity, which corresponds to cleavage, was recorded. Human and fish thrombin activities were first made equal by normalizing the cleavage rate of a peptide sequence corresponding to fibrinogen. Peptide sequences corresponding to the thrombin cleavage sites in PAR 1, 3 and 4 were functionalized with -AMC fluorogenic groups (Abgent). Hirudin binding affinity to thrombin was quantified by measuring cleavage of the fibrinogen-based substrate after addition of varying ratios of hirudin to thrombin. In vitro studies used primary astrocytes harvested from Sprague-Dawley rat pup brains (E18) and prepped for culture (IACUC-approved). After 14 days in culture, cells were stimulated by 100 nM Substance P and treated 1 day later with 1U/mL of either human or fish thrombin. Supernatants were collected 1 day later and IL-1β concentration was quantified using ELISA. Thrombin activity in those supernatants was also quantified using the fibrinogen peptide. Differences between human and fish thrombin were compared using t-tests.

Results and Discussion: At physiological temperature (37°C), fish thrombin cleaves PAR1 approximately 3 times slower than human thrombin (p=0.0013). Cleavage rates of PAR3 and PAR4 were not different. Fish thrombin binds hirudin half as strongly as human thrombin at a hirudin/thrombin ratio of 1 (p=0.008) and one-third as well at a ratio of 1.5 (p=0.011) (Figure 1). In addition, the amount of IL-1β in the supernatants from the astrocyte cultures was also lower (to nearly one-third) for treatment with the fish thrombin compared to the human thrombin (p=0.037). However, after 1 day in culture, the fish thrombin was also less active than the human thrombin (p=0.0003). These data suggest that the reduced astrocytic inflammatory response to fish thrombin may be caused by the reduced activity of fish thrombin or by the slower proteolysis rate of fish thrombin on PAR1. The slower PAR1 proteolysis rate may be partially explained by fish thrombin’s lower affinity for hirudin compared to human thrombin, since the hirudin-like sequence of PAR1 is largely related to its activation [3].

Conclusions: The reduced inflammatory response by cultured astrocytes to fish thrombin compared to human thrombin may be related to the lower proteolysis rate of PAR1 by fish thrombin compared to human. Future work is needed to quantify PAR cleavage in vitro and define the time course of these modifications as related to inflammation.

Acknowledgements: Support from a DOD grant (W81XWH-10-1-1002) and an Ashton Fellowship.

Figure 1. Cleavage of fibrinogen (fluorescence/time) by fish thrombin is significantly less strongly impaired by hirudin than human thrombin at [Hir]/[Thr] ratios of 1 and 1.5.
Spinal PAR1 mRNA expression decreases early after painful nerve root injury with inflammation

J. Smith1, S. Rothman2, J. Black1, and B. A. Winkelstein3

1University of Pennsylvania, Philadelphia, PA

Introduction: Neural trauma not only induces tissue damage and bleeding but also initiates a local inflammatory response for repair. High concentrations of clotting factors, such as thrombin, are present to promote healing. Thrombin cleaves protease targets including the protease activated receptors (PARs) which leads to the release of clotting and inflammatory factors [1]. PAR activation in platelets is well defined, but only recently has the expression of the PAR subtypes been confirmed for spinal neurons and glia [2,3]. Activation of thrombin-cleaved spinal PARs by injection of thrombin induces both thermal and tactile sensitivity, implicating the role of these receptors in pain [4,5]. Although there is growing evidence that PARs are involved in pain, it is not known whether the spinal expression of these receptors is affected by painful neural injury. The objective of this study was to measure PAR1 and PAR4 mRNA levels in the spinal cord at early time points after two different painful nerve root injuries involving neural compression and inflammation.

Materials and Methods: Separate groups of Holtzman rats underwent a painful C7 nerve root injury [6,7] (IACUC approved) compression (10gf, n=11), combined compression and inflammation (10gf+chr, n=14), or sham control (sham, n=4). Mechanical allodynia in the ipsilateral forepaw was measured to evaluate behavioral sensitivity (i.e. pain) before surgery (baseline) and at day 1 after surgery. Responses were compared between groups using a repeated-measures ANOVA with Bonferroni. Spinal cord tissue was harvested from separate groups at 1 hour (10gf n=8, 10gf+chr n=9) and day 1 (10gf n=3, 10gf+chr n=5; sham n=4) to assay PAR1 and PAR4 mRNA. Total RNA was isolated for RT-PCR analysis. PAR1 and PAR4 mRNA expression was quantified, normalized by Cyclophilin-A levels, and further normalized to levels in normal unoperated rats. Differences between groups were evaluated for each gene separately using a two-way ANOVA with Bonferroni correction.

Results and Discussion: Both types of compression injuries produced mechanical allodynia in the ipsilateral forepaw at day 1 that was significantly elevated (p<0.0001) over their corresponding baseline responses. Yet, only the 10gf+chr injury produced allodynia that was significantly (p=0.037) elevated over sham at that time point. Spinal PAR1 and PAR4 mRNA levels at 1 hour after either injury were unchanged from normal levels. PAR4 mRNA was also unchanged at 1 day after both injuries. In contrast, PAR1 mRNA was significantly reduced (p=0.0001) at day 1 after a 10gf+chr compared to corresponding levels at 1 hour (Figure 1). Spinal PAR1 mRNA was unchanged between time points after the 10gf injury (Figure 1). These findings imply that spinal PAR1 is modulated within 1 day after a painful injury and may require an inflammatory component for such regulation. Taken together with the allodynia responses, this change in PAR1 in the spinal cord may relate to pain. The decrease in spinal PAR1 transcription does not support reports of its increase at 1 day after spinal cord injury. However, the spinal glial response after spinal cord injury is different temporally than for this injury [7,8].

Conclusions: Spinal PAR1 production decreases early (within 1 day) after nerve root injury with a combined compressive and inflammatory component and this decrease corresponds to the onset of pain. Further studies that quantify this and other PARs at later time points will help to establish their relationship to and role in maintaining pain after neural injury.

Acknowledgements: Support provided by a DOD grant (W81XWH-10-1-1002) and an Ashton Fellowship.

INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE (IACUC)
(Multiple Project Assurance # A5079-01)

BETH A WINKELSTEIN
1301 - Bioengineering
210 S. 33rd Street
Room 240 Skirkanich Hall
PHILA, PA 19104

10-Aug-2010

Dear DR. WINKELSTEIN:

With receipt of the requested revisions for the above protocol your study now stands fully approved as of 09-Aug-2010. Work may begin at any time. This study will be due for review on or before 09-Aug-2013. Protocols are only valid for three years from the date of approval. Please use Ben Reports (https://galaxy.isc-seo.upenn.edu/ws/benreports) on a routine basis to check the status of your protocols.

If notification of IACUC review is required by the funding source required, please notify our office in writing of the contact person, agency name, address, phone number, fax number, and email as soon as possible.

Please take note of the following information:

Personnel Training: It is the responsibility of the Principal Investigator to ensure that all persons have completed all necessary IACUC and EHS training prior to participating in the research described in this protocol.

Amendments: If you wish to change any aspect of this study, such as procedures, sponsor, analgesics, anesthetics, or the investigator, please communicate your requested changes in writing to the Director for Regulatory Affairs. The new procedures cannot be initiated until Committee approval has been given.

Reapproval: It is the investigator’s responsibility to apply for reapproval of ongoing research annually for protocols involving USDA covered species, or more often if required by the funding agency.

*Forms for amendments and re-approval (Form B) are available from the Office of Regulatory Affairs web site [http://www.upenn.edu/regulatoryaffairs].

Completion of Study: Please notify the Director for Regulatory Affairs as soon as the research has been completed.

Thank you for your cooperation with the Committee.

Sincerely,

Troy Hallman, MS, VMD
Director of Animal Welfare, IACUC
Spinal PAR1 RNA Levels are Regulated by Mechanical & Inflammatory Cues in Painful Nerve Root Compression

Jenell R. Smith (1), Sarah M. Rothman (1), Paul A. Janney (2), Beth A. Winkelstein (1)

(1) Spine Pain Research Lab
Department of Biomedical Engineering
University of Pennsylvania
Philadelphia, PA

(2) Department of Physiology
University of Pennsylvania
Philadelphia, PA

Introduction

Painful radicular pain can be caused by a disc herniation that compresses the nerve root as it exits the spinal canal (1). Pain models in the rat mimic both the mechanical and chemical components of a disc herniation, where individually or in combination, these components can be shown to increase the specific nociceptive input (i.e., mechanical, inflammatory) and produce the pain response (2,3). For both types of nerve root compression, axotomy (i.e., pain) is elicited at 3 days after injury by its mechanical response over time exceeding the type of injury (1). Painful nerve root injury also induces a host of inflammatory markers in the spinal cord that promote neuronal survival and repair (4). Although inflammatory responses have been shown to be influenced by nerve root injury in animals and humans, the role of inflammation in the nerve root injury in the spinal cord is not yet fully defined.

The current study was designed to investigate the role of spinal PAR1 in the spinal cord at day 1 following different types of painful mechanical and chemical injuries to the nerve root.

Methods

All experimental procedures were IACUC-approved and were performed using male Sprague-Dawley rats (330-350 g). Mechanical injury to the left C7 nerve root was performed via a modification of the injury paradigm used in previous studies (2,3). Nerve root compression involved transverse compression of the dorsal root for 15 minutes using a calibrated Instron machine (Instron Inc., Canton, MA). Injury severity was graded by placing 4 pieces of 3-30% compression on the dorsal roots of the right and left side of the dorsal roots of the right and left side of the lumbar spinal cord. Hypothyroidism, mechanical injury to the lumbar spinal cord was measured using two measures of PAR1 mRNA expression (Fig. 2). In the sham group, PAR1 mRNA was measured by reverse transcription-PCR (RT-PCR) and a real-time RT-PCR assay in the spinal cord and brain. The results of the experiments were analyzed using the Student’s t-test or one-way analysis of variance (ANOVA) followed by Fisher's least significant difference (LSD) test. The data were expressed as mean ± standard error of the mean (SEM) and compared using the Student’s t-test or one-way ANOVA followed by Fisher's LSD test. Differences were considered significant at p < 0.05.

Results

In the sham group, PAR1 mRNA was reduced following motor axotomy alone (Fig. 3) or axotomy combined with mechanical compression (Fig. 4). These changes were significant compared to control levels (Fig. 3, 4). The results of the experiments were analyzed using the Student’s t-test or one-way ANOVA followed by Fisher’s LSD test. The data were expressed as mean ± standard error of the mean (SEM) and compared using the Student’s t-test or one-way ANOVA followed by Fisher’s LSD test. Differences were considered significant at p < 0.05.

Discussion

This study is the first to show that the type of painful nerve root injury modulates spinal PAR1 mRNA levels in a dose-dependent manner. The results of this study provide evidence that spinal PAR1 mRNA expression is modulated by the mechanical components of injury, but may depend more on the inflammatory response. It is not known how different aspects of the mechanical loading scenario (i.e., compression duration, compression load magnitude, etc.) may further modulate the PAR1 response. In this study, we demonstrate that mechanical injury alone induces significant decreases in both axotomy and spinal PAR1 expression (Fig. 2). The data suggest that mechanical injury alone is sufficient to reduce PAR1 mRNA expression. This study did not investigate the tissue response to mechanical injury and the role of mechanical factors in modulating responses.

Acknowledgments

This work was supported in part by grant NIH-NS047280 and an Advancement Fellowship.

References

Introduction

- Distal herniation both imposes mechanical compression and introduces inflammatory agents to the spinal nerve roots that each have been shown to modulate pain in human clinical studies and in rat models.
- Mechanic compression of the nerve root induces a neural release of neuropeptides in the dorsal horn of the spinal cord leading to central sensitization, glial activation, and pain, in a -dependent manner as early as day 1 [3, 5]. These responses are all enhanced with the administration of inflammatory insult [3].
- Protease-activated receptors, such as PAR1, have been implicated in inflammation and are known to be expressed on neurons and glia resident in the CNS [6-9]. Yet, the effect of nerve root mechanics and inflammation on spinal PAR1 production is unknown.

The goal of this study was to quantify spinal PAR1 mRNA expression after different types of painful nerve root injury and to determine if PAR1 production relates to injury cues and/or pain onset.

Methods

Surgical Procedures

Male Holtzman rats received either a C7 dorsal nerve root compression (10gf, n=7), a C7 compression with an inflammatory insult (10gf+car, n=5), or a sham surgery with only exposure (sham, n=4) [3, 4] (Fig. 1). Compression was applied by a calibrated 10gf clip for 15 minutes and assessments were made at day 1.

Behavioral Testing

To quantify behavioral sensitivity, mechanical allodynia in the ipsilateral forepaw was measured using two strengths of von Frey filaments (2g, 4g). Testing was performed prior to any surgical procedures (day 0; baseline) and on day 1 after the injury [2-4]. Mechanical allodynia data were statistically compared over time among all groups using a repeated measures ANOVA with Bonferroni correction.

Reverse Transcriptase PCR

Reverse Transcriptase PCR: Ipsilateral spinal cord tissue was harvested on day 1 after behavioral testing. Total RNA was isolated and PAR1 mRNA (5'-AGCGGAGTGGAGAGAAAGGAGGAGGA-3' and rev. 5'-GCAGGGTAGCCTGACTGATTAG-3') was quantified using reverse transcriptase PCR [6]. Gene expression was normalized to Cyclophilin-A for each sample and normalized to PAR1 levels in normal rats (n=2). Fold increases of normalized PAR1 mRNA were calculated using the ∆∆Ct method [4]. A one-way ANOVA with Bonferroni correction was used to compare differences in PAR1 mRNA levels between groups.

Results

Behavior

- Mechanical allodynia on day 1 was significantly elevated over baseline for both 10gf and 10gf+car (p<0.001), whereas injured sham responses were unchanged.
- Although mechanical compression (10gf) elevated mechanical allodynia over sham responses in the ipsilateral forepaw, the increase was not significant (Fig. 2). Only the combined mechanical and inflammatory insult (10gf+car) significantly increased allodynia over sham on day 1 for testing with both filament strengths (p(2)=0.001; p(4)=0.003) (Fig. 2).

Spinal PAR1 mRNA Levels

- PAR1 mRNA was detected in all ipsilateral spinal cord samples from all groups on day 1 (Fig. 3).
- For 10gf+car, PAR1 mRNA levels were 71.4+/-. 5.3% of those expressed in the spinal cord of normal unoperated rats. Spinal PAR1 mRNA expression for the combined injury (10gf+car) was lower than both 10gf and sham (Fig. 3), but this decrease was only significant when compared to compression alone (10gf) (p=0.02).

Discussion

This study shows that specific injury cues modulate spinal PAR1 mRNA levels as early as day 1 after nerve root compression. Since the two injury groups (10gf & 10gf+car) did not induce different allodynia responses (Fig. 2) but did exhibit significant differences in spinal PAR1 mRNA (Fig. 3), PAR1 production might not be regulated by the mechanical components of an injury, but may depend more on the inflammatory insult.

References

PURPOSE: Protease activated receptor 1 (PAR1) cleavage by thrombin has been shown to both attenuate and exacerbate pain depending on the level of activation and its route of administration. In contrast to the generally pro-inflammatory properties of mammalian thrombin, salmon thrombin has been shown to attenuate pain after cervical nerve root compression if given at the site of injury. Although PAR1 is implicated in pain, few studies have examined its expression following injury. The purpose of this work was to define the expression of PAR1 after painful nerve root injury and to define if salmon thrombin’s analgesic effect is related to PAR1.

DESIGN: Immediately following cervical nerve root compression, salmon thrombin or vehicle treatment was applied to the location of injury and rats were monitored for behavioral hypersensitivity for up to 7 days after injury. PAR1 protein expression was measured at day 1 and day 7 in both the injured nerve root and spinal cord.

POPULATION STUDIED: Male Holtzman rats (n=17; 330-440g) were used under IACUC-approved conditions.

METHOD(S): Rats underwent a C7 nerve root compression using a calibrated 10gf clip for 15 minutes, immediately after that, either salmon thrombin (0.4 U/rat) or vehicle treatment was administered at the injury site. Mechanical allodynia was measured before injury and on each postoperative day by stimulating the ipsilateral forepaw using von Frey filaments. Nerve root and spinal cord was harvested on either day 1 or 7 in separate groups, and fixed and immunolabeled for PAR1 expression.

DATA ANALYSIS: The number of paw withdrawals elicited on each day was averaged within groups and compared using a repeated measures ANOVA with a Tukey’s test. PAR1 expression was quantified in the nerve root and spinal cord as a fold increase over levels in normal rats. Differences between groups were detected by a two-way ANOVA with Tukey’s HSD test.

FINDINGS: Pain was significantly attenuated for rats given thrombin compared to vehicle treated rats for all days following injury (p<0.02). Spinal PAR1 expression was increased over normal levels for the injured groups at both time points (p<0.01). However, at day 1 after thrombin treatment, spinal PAR1 was not different from normal levels and was significantly lower than the expression levels at day 7 (p=0.005). PAR1 expression in the nerve root was not different between any groups.

CONCLUSIONS: Salmon thrombin transiently blocks PAR1 increases in the spinal cord after painful nerve root compression and provides sustained pain relief in the rat.

IMPLICATIONS: Increases in neural PAR1 may be linked to pain from nerve root compression and can be partially blocked by PAR1-reaction with salmon thrombin. Future studies aim to map the functionality of PAR1 by defining which cells are responsible for the increased expression and how this leads to pain.

FUNDING: Support provided by the Department of Defense (W81XWH-10-1-1002).
Aktivated Receptor 1 Expression Following Painful Nerve Root Injury.

Jenell R. Smith, Christine L. Weisshaar, Paul A. Janney, Beth A. Winkelstein

Departments of Biomechanics, Neuroscience and Physiology, University of Pennsylvania, Philadelphia, PA

Background

• Chronic neck pain affects up to 75% of the adult population with a major source being cervical nerve root compression.1 High levels of nerve root compression produce sustained hyperactivity at least partially due to degeneration at the injury site in the central nervous system (CNS).2,3

• Due to its anti-inflammatory properties, salmon thrombin has been suggested to attenuate pain after painful nerve root compression when administered at the site of injury.4 However, the mechanism through which this occurs is unknown.

• Protease activated receptor 1 (PAR1) is the main thrombin-activated receptor and is expressed on cells in the CNS, such as neurons and astrocytes. Its activation has a complex role in pain initiation and maintenance.4,5

Materials and Methods

General Procedures: Experimental procedures were approved by the University of Pennsylvania’s IACUC. Male Holtzman rats were housed 5-6/oo/0/0, under standard procedures for a careful cervical nerve root compression. In order to evaluate thrombin treatment for the compression injury group, separate groups received either salmon thrombin (0.5mg/0.5mg/0.5mg) or neuromodulatory media as a vehicle control (0.5mg/0.5mg/0.5mg) (Fig 1). These groups were equally divided by analysis of PAR1 expression in the nerve root and spinal cord on either day 1 or 7 after injury (1 time point).

Surgical Procedures & Treatment: The right C7 dorsal root was compressed for 15 minutes using a 27g needle (Fig 1). Treatment was administered immediately after clip removal. Salmon thrombin (0.5mg) was applied directly to the injured nerve root immediately after clip removal. An equal volume of control media was administered at the treatment time.

Behavioral Analysis: Mechanical allodynia was assessed in the groups that were sacrificed until day 7 (Fig 1). The number of paw withdrawals elicited by von Frey filament (3g, 4g, 5g, 7g) applied to the skin overlying the injured nerve root site was recorded as a quantitative measure of behavioral hypersensitivity. Allodynia was measured on day 5 before surgery (baseline) and post-compression day 7, 10, and 30. A representational analysis with a 3-day post-injury followed by a 3-day post-treatment behavioral response between groups.

Results

• Mechanical allodynia following nerve root compression with vehicle treatment is severe at all time points (Figs 2, 3). Thrombin treatment significantly reduces the duration and intensity of paw withdrawals overall. findings in both 0.25mg and 0.5mg treatment groups (p<0.01) (Fig 2).

• Allodynia is significantly (p<0.04) reduced by thrombin treatment on post-operative day 3, 5 and day 7 for the 0.5mg group, and on day 5 and day 7 for the 0.25mg group, compared to vehicle responses (Fig 2).

• PAR1 expression in the injured nerve root remains at normal levels at day 1 after both thrombin and vehicle treatment (Fig 3). PAR1 expression elevated in both groups at day 7, with the control-treated group exhibiting robust labeling, although this increase is not significant (Fig 3).

• Spinal PAR1 expression is significantly elevated (p<0.05) over normal uninjured contralateral side in both treatment groups at day 7 (Fig 4). Thrombin treatment produces spinal PAR1 expression at day 7 that is unchanged from uninjured control levels and is significantly lower (p<0.05) than expression levels seen in the group at day 3 (Fig 4).

Discussion

Salmon thrombin transiently blocks increases in spinal PAR1 expression after painful nerve root compression in association with sustained pain relief in the rat (Figs 2, 3, 4). The behavioral results agree with previous findings that salmon thrombin treatment to the injured site is sufficient to decrease nerve root-induced sensitivity.6 Findings from this study suggest that PAR1 is an early regulator of neuropathic pain and that salmon thrombin can modulate this receptor’s expression in the spinal cord.

Spiral PAR1 expression increases early after a painful nerve root compression and remains elevated for up to one week after that painful injury, corresponding to the immediate and long-term increase in mechanical allodynia following nerve root injury (Figs 2, 3). Previous work with a painful nerve injury reported a similar increase in spinal PAR1 expression at day 7 after that peripheral injury.7

Changes in PAR1 expression were not observed at the site of injury (Fig 2). In contrast, increased PAR1 mRNA has been observed in the dorsal horn at day 3, 4 and 7 after partial sciatic nerve ligation.8 Although the current study did not investigate mRNA, together these findings suggest that PAR1 modulation after injury likely depends on the location and type of injury, as well as the time course following injury.

Salmon thrombin treatment (but not a thrombin carrier) abolishes spinal PAR1 expression and allows spinal cord activation at day 7 after this injury, which suggests that the increased PAR1 expression observed in this study may be a part of expression by activated spinal glial cells.9 Future studies investigating the cellular source of PAR1 after painful nerve root compression are needed to determine if the modification of PAR1 expression is due to neuronal or glial cells.

Noteworthy, this study demonstrates that spinal PAR1 expression is induced early after a painful mechanical injury to the central nervous system. Further, salmon thrombin can transiently ablate PAR1 expression, which leads to alleviation of pain. Additional studies examining the functionality of PAR1 by delivering the 3-proteins coupled to them and the amounts of endogenous agonists present in the CNS can provide more information about this receptor’s role in neuropathic pain and would help to identify potential therapeutic interventions to treat pain.

References

Acknowledgement

Modulation by thrombin

Conclusions & next steps
- Treatment of compressed neural tissue with salmon thrombin attenuates the behavior and spinal cord hyperactivity that is associated with a painful compressive injury or following treatment with human thrombin.
- This restored neuronal signaling may account for part of salmon thrombin's mechanism of analgesia.
- Complete further electrophysiological studies
 - Define responses to injury in the deep brain structures, such as the thalamus.

Thank you
Thrombin-induced inflammation in vitro

PAR cleavage rate by thrombin

Myelin basic protein & Iba1 in nerve root

Aim 2: Electrophysiology methods

Aim 2: Electrophysiology results

Ongoing activities

Complete electrophysiology experiments.

Define differences in the neural recovery associated with pain responses following human and salmon thrombin thrombin treatment.

Characterize effects on inflammatory responses in vivo & in vitro.

PAR1 kinetics:
- modified peptides
- on cells
Conclusions

Salmon thrombin exhibits unique analgesic properties compared to human thrombin which may be due to its:
- slower activation of PAR1
- reduced inflammation & macrophage infiltration at the site of injury
- increased nerve root repair
- possible restored neuronal signaling in the spinal cord