Taking Command and Control Data to the Tactical Edge

Addressing the challenge of Air-to-Ground communications
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 JAN 2013</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

4. TITLE AND SUBTITLE
Cursor on Target (CoT) 101 Briefing

5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER
5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

6. AUTHOR(S)
The CoT Project Office

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cursor-on-Target, AFLCMC/HNBC Architecture & Standards Division

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT SAR

18. NUMBER OF PAGES 15

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Z39-18
Effective warfare requires...

- Seamless communications between combat elements
- Addressing the challenge of low-bandwidth restrictions at the tactical edge
- Timely Situation Awareness
- Ability to pass data across disparate systems without significant information loss
DOD’s Complex Enterprise Communications

- Multiple message formats
 - Link-16
 - VMF
 - GCCS
 - Etc.

- Radio transmissions can be on the order of 2400 bps
 - Communications at the tactical edge cannot handle the data being passed on the GIG

- Multiple versions of equipment do not communicate with each other
 - F-16 Block 50/52 and F-16 Block 60
 - VMF support for Digital CAS complicated by multiple versions
Complexity Example: VMF K05.19 in Context

The “total” complexity is simply overwhelming!

Taking Command and Control Data to the Tactical Edge
This is a long-term interoperability and maintenance nightmare…

(E.g., How many systems must change to implement MIL-STD-6016D?)

(E.g., How many systems implement “the full” standard?)

(E.g., How do you “synchronize” rollout of standards versions?)

(E.g., Will I need to carry another radio to talk to a new link?)
Cursor on Target resolves many of these issues...
CoT Takes a Different Approach: Start with the most common info

Traditional approach: Add a new message for each new exchange... and the “catalog” gets large.

One system, info intersection is everything
Two systems, much info less is common
Three systems, intersection gets smaller
CoT starts here with a core set of common info!
What is the core? “What, Where, When”

Blue Force Tracking:
- **What:** Friendly
- **Where:** 72.31234°...
- **When:** 1930Z—...
- **Details:** www.4thBgd/...

Direct Fire Mission:
- **What:** Engage Hostile
- **Where:** 72.558°...
- **When:** 1950Z—...
- **Details:** www.biggun.army/...

Surveillance results:
- **What:** ISR data
- **Where:** 73°—74°...
- **When:** 1930Z—...
- **Details:** www.intel.af/...

Deconfliction:
- **What:** Reservation
- **Where:** 72°, 73°, 74°
- **When:** 1950Z—...
- **Details:** www.biggun.army/...
CoT Architectures Vary Widely

- CoT is designed to be *link agnostic*
- Interaction model push or pull (req/resp)
- Used: UDP, TCP, tactical radio, SOAP, etc

Simple Case

Daisy-Chain with Feedback

Centralized Monitoring/Logging

Pub/Sub with Disparate Links
CoT Reduces Communication Complexity

Connects disparate systems to enable mission capability

Capability
• TST
• BFT
• ISR
• TAC SA
130+ DoD Systems “speak” CoT...
CoT Components

- An XML message schema
 - Basic (mandatory): “what, when, where”
 - Extensible (optional): add subschema to add details

- A standard
 - Established as USAF standard by SECAF memo April 2007
 - Incorporated in USAF (SAF/XC) Enterprise Architecture
 - Registered by SAF/XC in DISRONline as a USAF Organizationally Unique Standard (OUS)
 - Foundation for UCore data model

- A set of software plug-ins to enable systems to input and output CoT messages

- A set of software translators to exchange messages with VMF and Link-16 networks

- A CoT message router (software + computer) to facilitate publish/subscribe message routing

- A simple developer’s tool kit
CoT Usage

- Employed heavily in AFSOC systems and UAS communities; used operationally 24x7 in Iraq and Afghanistan
- All Services, not just USAF
- Widely used in experimentation/demonstration venues
 - JEFX, CWID, Empire Challenge, Bold Quest
 - Many others

Examples

<table>
<thead>
<tr>
<th>ISR</th>
<th>UAV</th>
<th>Manpack</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Mobility FLIR</td>
<td>Video Scout</td>
<td>BAO Kit</td>
<td>AFATDS</td>
</tr>
<tr>
<td>Litening Pod</td>
<td>Raven and Wasp</td>
<td>Soldier-worn gunfire detection</td>
<td>Combat Track II</td>
</tr>
<tr>
<td>RAVE video exploitation</td>
<td>Air RECCE Low, MARSS</td>
<td>THLDS</td>
<td>FCS Test Bed</td>
</tr>
<tr>
<td>Constant Hawk</td>
<td></td>
<td></td>
<td>JADSI</td>
</tr>
</tbody>
</table>
CoT User Group Organizations

402 XMSG (AFMC)
642 AESS (AFMC)
645 AESS (AFMC)
653 ELSG (ESC)
653 ELSW/EID (ESC)
670th AESS (ASC)
720 STG/OSS
8 AF
812 AESG/SYCA (ITC)
HAF/A2U
HAF/A2UI
AAI Corporation
AFRL
AFSOC
AGIS, Inc.
Applied Research
ARINC
AVWatch
BBN
Boeing
BOSH Global Services
Critical Response
Deloitte
DHS
DRS-IAS
DSCI
ForceX
Foster-Miller
General Dynamics
Georgia Tech Electronic Systems Laboratory
Harris
Insight Technology
Insitu
ITT Advanced Engineering and Sciences
Jackpine Technologies
JFCOM
Lockheed Martin
Johns Hopkins Advanced Physics Lab
Joint Interoperability Test Center
JFIIT
Kihomac
KC Regional Terrorism Early Warning Group
L-3 Com
Lakota Technical Solutions
Missouri Civil Air Patrol
MIT Lincoln Labs
MITRE
Naval Postgraduate School
Naval Surface Warfare Center
NGA
Northrop Grumman
Oregon National Guard
Orion Networks
Proxy Aviation Systems
RAIDER TPG (US Navy)
Raytheon
Rockwell Collins
SET Corporation
Sierra Nevada Corporation
Smartronix
Symetrics
System Dynamics Int.
TAIS
Thales
Ticom Geomatics
 Traverse Technologies
US Army
US Navy
USASOC-SOAR
USSOCOM
VIPMobile
Wintec Aeromaker, Inc.
WVHTC Foundation
Summary

- Simple light weight core – Starts with most common data elements
- Sub-schema extension “Future-Proofs” standard
- Network-centric – Value grows as N^2, not cost
- Readily Reconfigurable - Approach handles unforeseen needs
- Government developed, all material openly available to all with US DoD sponsorship