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ABSTRACT
 

The mechanical behavior of soils may be approximated using different models that depend on 

particular soil characteristics and simplifying assumptions. For this reason, researchers have 

proposed and expounded upon a large number of constitutive models and approaches that 

describe various aspects of soil behavior. However, there are few material models capable of 

predicting the behavior of soils for engineering applications and are at the same time appropriate 

for implementation into finite element (FE) and multibody system (MBS) algorithms. This paper 

presents a survey of some of the commonly used continuum-based soil models. The aim is to 

provide a summary of continuum-based soil models and examine their suitability for integration 

with the large-displacement FE absolute nodal coordinate formulation (ANCF) and MBS 

algorithms. Special emphasis is placed on the formulation of soils used in conjunction with 

vehicle dynamics models. The implementation of these soil models in MBS algorithms used in 

the analysis of complex vehicle systems is also discussed. Because semi-empirical 

terramechanics soil models are currently the most widely used to study vehicle/soil interaction, a 

review of classical terramechanics models is presented in order to be able to explain the modes 

of displacements that are not captured by these simpler models. Other methods such as the 

particle-based and mesh-free models are also briefly reviewed. A Cam-Clay soil model is used in 

this paper to explain how such continuum-mechanics based soil models can be implemented in 

FE/MBS algorithms. 

Keywords: Soil mechanics; Finite element; Multibody systems; Terramechanics. 
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1. INTRODUCTION 

There are a number of situations in which a vehicle may need to traverse an unprepared terrain. It 

may happen that the only viable means of reaching a desired objective is through an off-road 

route. In such an instance, it would be desirable to have an understanding of how a vehicles 

design affects its performance in such an environment. Often, vehicles are specifically designed 

for off-road usage. This is the case for military, construction, and agriculture vehicles as well as 

unmanned/manned rovers. In all cases it is important to be able to predict (to varying degrees) 

the conditions under which a vehicle may become incapacitated due to loss of traction. There are 

other vehicle-terrain related effects that might need to be modeled. For instance, in the case of 

agricultural vehicles, it is important to be able to predict the compaction induced in the soil. Soil 

compaction has been determined to cause a reduction in crop yield. It is thus important to 

minimize a vehicles impact on the terrain. Terramechanics is the field tasked with producing the 

tools necessary to model the vehicle-terrain interaction over unprepared terrain. 

Over the past decades, there have been a number of vehicle terrain interaction studies 

published which explicitly treat the simplified vehicle dynamic equations of motion together 

with the semi-empirical equations for the soil. One of the recent trends is the incorporation of 

semi-empirical terramechanics equations or the co-simulation of finite element (FE) soil models 

with MBS environments. These environments provide a framework in which the dynamic 

interaction between vehicle and terrain may be modeled.  Incorporation of FE soil within 

multibody system algorithms can provide a higher fidelity simulation of the dynamic vehicle-

terrain interactions. The integration of these FE soil models with MBS algorithms for modeling 

vehicle/soil interaction represents a challenging implementation and computational problem that 
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has not been adequately covered in the literature. This integration is necessary in order to be able 

to develop a more detailed and a more accurate vehicle/terrain dynamic interaction models. 

The ability to capture the soil behavior modeled under dynamic loading conditions is of 

particular interest in the FE/MBS approach to terramechanics. The mechanical characteristics of 

soils, as with any other material, depend on the loading and soil conditions. 

The mechanical characteristics of soils, as with any other material, depend on the loading 

and material state. The response of the soil model to loading conditions depends on the 

assumptions used in and the details captured by the specific model. Some approximations are 

based on simple discrete elastic models that do not capture the distributed elasticity and inertia of 

soil. More detailed soil models employ a continuum mechanics approach that captures the soil 

elastic and plastic behaviors. Continuum mechanics-based soil models can be implemented in 

finite element (FE) algorithms. Nonetheless, the integration of these FE soil models with 

multibody system (MBS) algorithms for modeling vehicle/soil interaction represents a 

challenging implementation and computational problem that has not been adequately covered in 

the literature. This integration is necessary in order to be able to develop more detailed and more 

accurate vehicle/terrain dynamic interaction models.  

1.1 Complexity of Soil Modeling 

Depending on the level of detail that needs to be considered in a soil investigation, the 

parameters that define the soil in a computer model can significantly vary. However, among the 

many different characteristics of soil behavior, there are a few that must be considered in a soil 

model suitable for integration with FE MBS environments. These characteristics are summarized 

as follows: 
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1. Shear strength and deformation characteristics:  The mean stress and change in 

volume produced by shearing greatly affects the shear strength and deformation 

characteristics of soil. Soils generally exhibit higher shear strength with increasing mean 

stress (applied pressure) due to interlocking effects. At very high mean stresses, however, 

soils may fail or yield due to pore collapse, grain crushing, or other phenomena. The 

dilatation of soil under shear loading is shown in Figure 1b as adapted from [1,2]. Sand 

demonstrates interlocking behavior that increases with a corresponding increase in the 

density of soil.  

2. Plasticity: An increase of applied stress beyond the elastic limit results in an 

irrecoverable deformation which often occurs without any signs of cracking or failure. A 

small elastic region which results in plastic behavior at or near the onset of loading is 

characteristic of many soils.  

3. Strain-hardening/softening: This soil characteristic can be defined as change in the size, 

shape, and location of the yield surface. This can be identified graphically as shown in 

Figure 1 [2]. The dilatation of dense granular material, such as sand, and over-

consolidated clays is commonly associated with the strain-softening behavior. Likewise, 

the compaction of loose granular material, such as sand, and normally consolidated clays 

is commonly associated with the strain-hardening behavior (Figure 1). 

Other characteristics of soil such as temperature dependency, etc. are not considered here 

because they are beyond the scope of this review paper. 

The complexities involved in modeling soil stem from the anisotropy, inhomogeneity, 

and nonlinear material response of soil. Confounding the situation more is that a standard set of 

material parameters have not been chosen for characterization of soil. Also, a single all-
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encompassing soil model has not been produced and may not be produced in the near future. The 

geotechnical engineer has at his disposal countless numbers of soil models all with different 

areas of applicability. The terramechanicist must pick through these models to find those which 

are suitable for integration with finite element and MBS environments. 

1.2 Objective and Scope of this Paper 

This paper aims to review some of the existing basic terramechanics and continuum mechanics-

based soil models and discuss their suitability for incorporation into FE/MBS simulation 

algorithms. The main goal is to review continuum soil models that have the potential to be 

integrated with MBS vehicle models. The paper also discusses how this FE soil/MBS vehicle 

integration can be achieved. It is important to point out that the goal of this paper is not to review 

all geotechnical soil mechanics models or provide a comprehensive review of standard or 

classical terramechanics models. There are several excellent review articles on these two topics. 

The objective of this review paper is to address problems associated with the use of continuum-

based soil models in the area of vehicle/soil interaction. The literature is weak in this area as 

evident by the small number of investigations that are focused on the use of continuum-based 

soil models in the study of the vehicle/terrain interaction. Nonetheless, since semi-empirical 

terramechanics models are the most widely used, a review of these models is appropriate to make 

clear the basic differences between terramechanics and continuum-based soil models. This also 

applies to the mesh-free and discrete element methods which are reviewed briefly to give an 

explanation of what they are and distinguish them from the continuum-based soil models. 

Therefore, the intention is not to provide a comprehensive review of terramechanics or 

continuum-based soil models or other methods, but to focus on continuum-based FE soil models 
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that can be integrated with MBS vehicle algorithms. The review presented in the paper clearly 

shows a weakness of the literature in this area, as evident by the following facts: 

1. The weakness of the literature on continuum-based soil models for vehicle/soil 

interaction is evident by the small number of investigations on this important topic. The 

authors attempted to cite most papers in this area. This weakness in the literature is 

attributed to the problems and challenges encountered when developing accurate 

continuum-based soil models that can be integrated with detailed MBS vehicle models. 

2. Most of the investigations that employ continuum-based soil models in vehicle 

dynamics are based on a co-simulation approach that requires the use of two different 

computer codes; a finite element code and a MBS dynamics codes. This is also the 

approach which is used when FE models are used for tires. The co-simulation approach 

allows only for exchanging state and forces between the two codes; but does not allow 

for a unified treatment of the algebraic constraint equations that must be satisfied at the 

position, velocity, and acceleration levels in the MBS algorithms.  

3. This paper proposes a method that can be considered as a departure from the co-

simulation approach (Sections 6 and 7). ANCF finite elements can be used for both 

tires and soils and can be integrated with MBS algorithms. While the concern that a 

detailed ANCF model may lead to significant increase of the CPU time is a valid 

concern, it is important to realize that the models with significant details that are 

currently being simulated were un-imaginable to simulate a decade ago. ANCF models 

with significant details are becoming computationally feasible, unlike DEM models 

which are still out of the range of possibility. Models being simulated today were not 
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computationally feasible a decade ago. The concerns with regard to the use of ANCF 

finite elements for soil and tire modeling are addressed in Section 7 of this paper. 

4. All commercial MBS computer codes do not have the capability of modeling 

continuum-based soils. These codes are not designed for large deformations and do not 

allow for the use of general constitutive equations when structural finite elements are 

used. This paper aims at addressing this deficiency as part of its objective and critical 

analysis. 

1.3 Organization of the Paper 

This paper is organized as follows. Section 2 outlines the empirical, analytical, semi-empirical, 

and parametric approaches used in terramechanics. Together, in this manuscript, these are 

referred to as the classical or standard terramechanics approaches. Also reviewed are some of the 

tools and methodologies which determine the parameters used in the definitions of the 

terramechanics models. Section 3 describes the continuum mechanics based soil models. These 

models include elastic-plastic, viscoplastic, and bounding surface plasticity formulations.  

Section 4 describes three of the most popular particle-based and meshfree methods; the discrete 

element method, smoothed particle hydrodynamics, and reproducing kernel particle method. The 

current research interests of the authors emphasize FE based soil/MBS methods. Section 5 offers 

a comparison of the various soil models presented in the previous sections and a suitable soil 

model for implementation in a FE/MBS algorithm is selected. The ANCF computer 

implementation and the use of ANCF kinematics to predict basic continuum-based soil 

deformation tensors are outlined in Section 6.  Section 7 describes the procedure for the 

incorporation of the selected soil model with an ANCF/MBS formulation. The structure of the 

dynamic equations that allows for systematically integrating soil models with FE/MBS system 
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algorithms used in the virtual prototyping of vehicle systems is presented. Section 8 offers a 

summary and describes the direction of future work. 

 

2.  TERRAMECHANICS-BASED SOIL MODELS  

Terramechanics is the study of the relationships between a vehicle and its environment. Some of 

the principal concerns in terramechanics are developing functional relationships between the 

design parameters of a vehicle and its performance with respect to its environment, establishing 

appropriate soil parameters, and promoting rational principles which can be used in the design 

and evaluation of vehicles [3]. The standard parameters by which vehicle performance is 

compared include drawbar-pull, tractive efficiency, motion resistance, and thrust. If the normal 

and shear stress distributions at the running gear-soil interface are known, then these parameters 

are completely defined. The following subsections review some of the more common 

terramechanics models suitable for implementation in a MBS environment.   

2.1 Empirical Terramechanics Models  

One approach used to establish the appropriate parameters, properties, and behaviors of soil 

involves the determination of empirical relationships based on experimental results which can be 

used to predict at least qualitatively the response of soils under various conditions [4]. Concerns 

were raised as to whether the relationships established by this method could be applied in 

circumstances which were entirely dissimilar to those in which they were established [4]. Bekker 

proposed using only experiments that realistically simulated the manner in which the running 

gear of a vehicle traversed the terrain. This entailed using soil penetration plates comparable in 

size to the contact patch of a tire (or track), and producing pressures and shear forces of 

comparable magnitude to those produced by a vehicle. Parametric models, which are based on 
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experimental work and have been widely used, offer practical means by which an engineer can 

qualitatively evaluate tracked vehicle performance and design. Using these principles, Bekker 

developed the Bevameter. When a tire or a track traverses a terrain, soil is both compressed and 

sheared. A Bevameter measures the terrains response to normal and shear stresses by the 

application of penetration plates and shear heads. These responses are then used to produce 

pressure-sinkage and shear stress-shear displacement curves. These curves are then taken as 

characteristic response curves for each type of terrain.  

Another terrain characterization device of importance (due to its widespread use) is the 

cone penetrometer. A penetrometer applies simultaneously shear and normal stresses. A 

simplified version of a penetrometer can be visualized as a long rod with a right circular cone on 

one end. Penetrometers are pushed (at a certain rate) into the soil and the resulting force per unit 

cone base area, called the cone index (CI), is measured. These cone indices can then be used to 

establish the trafficability, on a one or fifty pass basis, of vehicles in different types of terrain [5]. 

Trafficability is the measure of a vehicle’s ability to traverse terrain without becoming 

incapacitated. Hence, a vehicle with a CI on a fifty pass basis can be expected to make fifty 

passes on a particular route without becoming incapacitated. It is important to note that 

individual soil parameters cannot be derived from cone penetration tests. It has been established 

that the cone penetrometer measures different terrain properties in combination and it is 

impossible to determine to what degree each particular property affects the results of cone 

penetrometer tests [5].  

 A collection of data (CI, Vehicle Cone Index, Rating Cone Index, etc.) and algorithms 

used to predict vehicle mobility on terrain specific to certain parts of the world, as compiled 

beginning in the late 1970's, is referred to as the NATO Reference Mobility Model (NRMM). 
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Using the NRMM, the cone penetrometer and the cone index derived from it can be used on a 

“go/no go” basis of vehicle trafficability in a variety of terrains around the world. While the use 

of the cone index and the NRMM for in situ measurement of soil strength for use in decision 

making is invaluable, the empirical method is not suited for vehicle development, design, and 

operation purposes [6]. Design engineers require the use of vehicle parameters which are simply 

not taken into consideration in the empirical methods. 

2.2 Analytical and Semi-Empirical Terramechanics Models 

Purely analytical terramechanics models inadequately capture the interaction between the tire 

and soil interface. For this reason, semi-empirical approaches are more common. Soils modeled 

as elastic media can be used to predict the stress distribution in the soil due to normal loads. 

Figure 2 gives a depiction of the formula used to define the stress a at point R units away from 

the point of application of the load. The resulting equation for the normal stress at a point is 

called the Boussinesq equation and is given below [4]. 

                                                     

3

2

3
cos

2
z

W

R
 


                                                            (1) 

where W  is the magnitude of the point load applied at the surface, R  is radial distance at which 

the stress is being calculated, and   is the angle between the z  axis and the line segment for R . 

Notice that the Boussinesq equation does not depend on the material; it gives the stress 

distribution for a homogeneous, isotropic, elastic medium subject to a point load on the surface 

[4]. Once the stress distribution for a point load is known, then, given the contact area one may 

integrate the point load stress formula over the contact area to determine the normal stress 

distribution in the soil. For an evenly distributed load applied under a circular loading area, as 
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shown in Figure 3, one can show that integrating the Boussinesq equation over the contact area 

leads to  
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Where the variables for the above equation are defined as in Figure 3, and  
22u r z . For a 

contact strip (shown in Figure 4), which may be taken as the idealization of the contact area 

under a track, one can show that the equations for the stresses at a point are 
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These equations are derived with the assumptions that the contact patch is an infinitely long strip 

with constant width, the track links are rigid, and a uniform pressure is applied (see Figure 4 for 

definition of variables). Models based on the theory of elasticity which do not take into account 

the effect of plastic deformations cannot, in general, be used to predict the shear stress 

distribution at the soil-tire interface. Another shortfall of these elasticity models is that they may 

not be applied when loads become too large. 

The most widely known methods for semi-empirical analysis of tracked vehicle 

performance are based on the developments initiated by Bekker. Bekker’s pressure-sinkage 

equations, and its modifications, are now widely used in track-terrain interaction studies. For 

examples of such studies refer to Ryu et al. [7], Garber and Wong [8], Okello [9,10], Rubinstein 

and Coppock [11], Park et al. [12]. Similarly for tire-terrain interactions see, among others, Mao 
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and Han [13], Sandu et al. [14], Schwanghart [15]. A modified Bekker’s pressure sinkage 

relationship is given by [3] 

                                             
   

1 1

0

/
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c c

p W bl
z

k b k k b k 
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                                            (4) 

In this equation, 0z  is the sinkage, p  is the pressure, W  is magnitude of the applied load, b  is 

contact depth, l  is the contact patch length, ck  and K  are the pressure-sinkage parameters for 

the Reece equation [16]. This pressure-sinkage relationship together with a criterion for shear 

failure (most often the Mohr-Coulomb failure criteria) can be used to predict the performance of 

the vehicle.  

 A variety of pressure-sinkage relationships exist; these pressure sinkage models attempt 

to capture and correct for behavior that was not considered in the original formulation. Response 

to cyclic loading, addition of terms that capture the rate effect of loading, the use of elliptical 

contact areas, and the extension to small diameter wheels are examples of some of the 

modifications made to the pressure sinkage formulation. An example of a recently published 

modification to the pressure-sinkage formulation is that proposed by Sandu et al. [17]. The 

uncertainty in the terrain and moisture content is incorporated into the pressure-sinkage and 

shear-displacement relations to allow for the propagation of uncertainty in the model. This 

polynomial chaos approach can efficiently handle large uncertainties and can simulate systems 

with high nonlinearities. In the proposed model, the moisture content is written as 

                                                                    
1

S
jj

j

m m  


                                                           (5) 

where S is the number of terms in the expansion, jm is the jth moisture content proportionality 

factor,  
j

   are orthogonal polynomials, and   is a random variable. This moisture content 
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formulation is then used to model the propagation of uncertainty in the pressure-sinkage and 

shear-displacement relations using the collocation method. The resulting substitution gives the 

stochastic pressure-sinkage and stochastic shear-displacement relations. 

 As another example, recent work has been directed at capturing the manner in which 

grousers on tracked vehicles affect terrain. The oscillations seen in the experimental pressure-

sinkage plots caused by grousers can be captured by enhancing the pressure–sinkage relationship 

with a dynamic term as follows [18]: 

                                                     sin
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z
p z ck bk A t

b
  
 
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                                     (6) 

where the parameters in the equivalent standard Bekker’s equation are defined as above, A is the 

amplitude of the oscillation, t is time,  is the frequency at which the oscillations occur, and   

is an optional phase shift that can be applied to the model for fitting the simulation predictions to 

experimental data or applying a correction to account for the initial orientation of the grousers. 

Dynamic terramechanics models of this sort offer a better approximation of soil response to 

effects caused by grousers.  

 Other semi-empirical models have been proposed by Wong [3] including the NTVPM, 

RTVPM, and NWVPM models. Wong’s models are based on the design parameters of vehicles 

and an idealization of the track terrain interface. These idealizations, for the case of the flexible 

track NTVPM model, can be seen in Figure 5. With this configuration and variable definitions, 

the following pressure-sinkage relationship was given [3]: 
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where 1liZ   is the sinkage at point F  shown in Figure 5, T  is the tension in the track per unit 

width, R  is the radius of the road wheel, and uk  and ri  are modal parameters. aiZ , riZ , and uiZ  

are the sinkage of road wheel i  at points A, B, and C respectively. The associated shear-

displacement relationship is given by 
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where  p x  is the normal pressure on the track at x, l  is the distance between the point at which 

shearing begins and the corresponding point on the track, i  is the slip, K  is the shear 

deformation parameter, and c  and   are the Mohr-Coulomb failure criteria parameters. 

Experimental and semi-empirical terramechanics models tend to be simple and do not capture 

many modes of the soil deformations that can be captured using the more general continuum 

mechanics-based soil models.  

 

3. CONTINUUM MECHANICS-BASED SOIL MODELS 

A large number of continuum soil models have been proposed in the literature, however, as 

previously mentioned, the focus of this investigation is not to present a comprehensive review of 

the soil models. The focus is mainly on soil models which have the potential for integration with 

MBS vehicle models. We discuss the basic framework for such models and some of the more 

common models. Most of these models are suited for implementation in a finite element 

framework, as will be discussed in Sections 6 and 7. These continuum-based soil models are 

briefly reviewed in this section; starting in Section 3.1 with the theory of elastoplasticity which is 

a framework for developing material models. The subsequent subsections present soil models 

that fall within this framework and its extensions.  
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3.1  Theory of Elastoplasticity 

Given that soils typically experience both recoverable and non-recoverable deformation under 

loading, elastoplastic theory and several augmentations of the theory have been widely applied to 

soils. Elastoplasticity theory is based on the decomposition of the strain into elastic and plastic 

parts. In the case of small strains, the additive strain decomposition e p= +ε ε ε  is used, where                                                                                                                  

ε  is the total strain, eε  is the elastic strain, and pε is the plastic strain. In the case of large strains, 

the following multiplicative decomposition of the deformation gradient J  is used. This 

decomposition is defined as e pJ J J , where subscripts e  and p  in this equation refer, 

respectively, to the elastic and plastic parts. The stress is related to the elastic strain. Since the 

elastic region, is often relatively small in soils, the linear stress-strain relationship :e eσ C ε  is 

often sufficient, where eC  is the fourth order tensor of elastic coefficients, σ
 
is the stress tensor, 

and eε
 
is the elastic strain tensor. While the linear stress-strain relationship has been widely used 

in many soil models, it is important to point out that some models have incorporated nonlinear 

elastic relationships in both the small strain (e.g. [19]) and large deformation (e.g. [20]) cases. 

Such models help correct the amount of elastic strain during large plastic deformation. 

 The elastic region is defined by a generic yield function  ,f tσ  shown in Figure 6. 

When f < 0, the stress state is within the elastic region. Plasticity can only occur when f = 0, 

which defines the yield surface. Stress states where f > 0 are inadmissible. However, the yield 

surface may evolve or translate, as discussed below, allowing initially inadmissible stress states 

after some plastic deformation. The evolution of plastic strain is governed by the flow rule 

[21,22]  pd d g  ε σ , where d  is the plastic multiplier, and g is a plastic potential 

function that determines the direction of plastic flow. If f = g, then the flow rule is said to be 
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associative. Associative flow follows from the principle of maximum plastic dissipation, 

allowing the body to reach the lowest possible energy state; hence it is commonly employed in 

the plasticity theory of metals. However, the principle of maximum plastic dissipation tends to 

overestimate dilatation in soils and other cohesive-frictional materials, and hence many soil 

models use nonassociative flow rules. While any plasticity model may experience a loss of 

ellipticity condition that leads to spurious mesh dependency in numerical solutions during 

softening, nonassociative models may experience loss of ellipticity even during the hardening 

phase [23], adding a necessity to check for this condition.  

 The yield function and plastic flow rule together operate under the Kuhn-Tucker 

optimality conditions 0,  0,  0f d f d     . These conditions appear in many contexts in 

mathematics and solution techniques are well studied. In incremental form for plasticity, these 

are typically solved by first assuming that the response is elastic. If the resulting solution violates 

the first condition, the equation 0f   is then used along with the hardening laws and 

momentum balance equations to solve for the  (the finite increment analogue of d ) and the 

other unknown variables.  

 The last element needed to define a plasticity model is the evolution of internal state 

variables. The yield surface and plastic potential may not be constant but may evolve with plastic 

work or strain. For example the size of the yield surface may increase, allowing plastic hardening.  

The elastic constitutive equation, yield function, flow rule, and hardening laws, together, define 

the mechanical behavior for a particular model. The equations are usually written in rate form 

because of the history (path) dependence of the material. 

 As stated above, the incremental form for plasticity is used to predict the elastic 

response of the material. This predicted elastic response is known as the trial state. It is typically 
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found by freezing plastic flow. The trial state is identical to the actual state when the condition 

0f  is satisfied. Otherwise the trial solution needs to be corrected for plastic effects; this 

process is known as return mapping. Loosely speaking, one maps the trial state back to the yield 

surface so that the condition 0f  is always enforced. The mapping can be accomplished using a 

variety of methods but in most cases the principle of maximum plastic dissipation is used to 

determine a direction for the correction for plastic flow normal to the yield surface. In certain 

formulations of the plasticity equations one can use the condition 0f  along with the hardening 

laws and momentum balance equations to find a closed form solution for d . When this is the 

case the return mapping can be accomplished in one step and thus is given the name “one-step” 

return mapping.  

While a brief outline of plasticity is provided in this section, a broader overview of 

plasticity and the constitutive modeling of soils is provided by Scott [24].  Some of the more 

common soil models are detailed in the following subsections. 

3.2  Single Phase Plasticity Models 

In this section, single phase homogenized plasticity models are discussed. Here, the soil is 

treated as a homogenized medium of solid and fluid mass. These models include the Mohr-

Coulomb model, the Drucker-Prager and uncapped three-invariant models, modified Cam-Clay 

and Cap models, and viscoplastic soil models. 

Mohr-Coulomb Model The Mohr-Coulomb model is one of the oldest and best-known 

models for an isotropic soil [25]. Initially the yield surface was used as a failure envelope, and 

still is in geotechnical practice. It was later adopted as a yield surface for plasticity models. In 

two dimensions, the yield surface of the Mohr-Coulomb model is defined by a linear relationship 

between shear stress and normal stress which is written as [26]  
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                                                                    - - tan 0f c                                               (9) 

where   and   are, respectively, the shear and normal stresses, and the constants c and   are 

the cohesion and internal friction angle, respectively. In three dimensions, the yield surface is 

more complicated and is defined by the following equation [26]: 

                          2
1 2

1
sin sin cos sin cos 0

3 3 3 3

J
f I J c

 
    

   
         

   
                  (10) 

where  1 trI  σ  is the first invariant of the stress tensor σ ,  2 : 2J  q q  is the second 

invariant of the deviatoric stress tensor   11 3 I σ Iq , and   is equal to the Lode angle defined 

by [26]: 

 
2/3

2

3

2

33
3cos

J

J
                                                       (11) 

where  3 detJ  q  is the third invariant of deviatoric stress tensor and the lode angle   varies 

from 0 to 60 degrees. A Mohr-Coulomb yield surface forms a hexagonal pyramid in principal 

stress space, as shown in Figure 6a. As can be seen from Figure 6a, the yield surface defined by 

the Mohr-Coulomb model includes discontinuous gradients. These discontinuities add 

complexity to the return-mapping algorithm. While multi-surface plasticity algorithms have been 

used to handle this situation, such algorithms are complex and relatively time consuming.  

While the Mohr-Coulomb model is still useful in among other things, as a first 

approximation, most modern vehicle-terrain studies with continuum soil models favor more 

advanced and sometimes more efficient schemes. An example of an application of the Mohr-

Coulomb yield criteria in a tire-snow interaction study can be found in Seta et al. [27]. An 

explicit finite element method tire model was used in conjunction with a finite volume method 

approximation of snow using a Mohr-Coulomb yield model. Tire traction tests under differing 
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tire contact and inflation pressures were conducted. Also, the simulation of the influence of 

different tread patterns was investigated. It was found that the results agreed well with 

experimental data. 

Drucker-Prager and Uncapped Three-Invariant Models  A simpler method to handle 

the discontinuities apparent in a Mohr-Coulomb model is to use a smooth approximation to the 

yield surface. Drucker et al. [28] initially proposed a cone in principal stress space (Figure 6b), 

by adding a pressure-dependent term to the classical von Mises yield surface, resulting in the 

yield function:  

                                                      2f J p c                                                         (12) 

where 2J  and 1 3p I  are invariants of the stress tensor, c  is the cohesion,   and   are 

parameters used to approximate the Mohr-Coulomb criterion. Like von Mises plasticity, one-step 

return-mapping can be achieved for linear hardening, making the model quite efficient to 

implement. While the associative model over predicts dilatation, nonassociative versions correct 

this [28]. Initially developed as an elastic-perfectly plastic model (no change in the yield surface 

on loading), researchers later added hardening of the yield surface parameters to the model in 

various forms. See, for example, Vermeer and de Borst [29] for a relatively sophisticated 

phenomenological hardening model. 

One of the limitations that this model shares with other plasticity models is that 

hydrostatic loading and unloading produces considerable hysteresis which cannot be predicted 

using the same elastic bulk modulus of loading and unloading and a yield surface which does not 

cross the hydrostatic loading axis  for hydrostatic compression [30]. Another limitation being 

that the cone does not approximate the Mohr-Coulomb hexagonal pyramid well for low friction 

angles. To account for this last issue, researchers have developed smooth yield surfaces that 
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better approximated the Mohr-Coulomb yield surface. These yield surfaces have different yield 

points in triaxial extension versus compression for a given mean stress, like the Mohr-Coulomb 

yield surface, but are smooth. The Matsuoka and Nakai [31] model actually captures both the 

extension and compression edges of the Mohr-Coulomb yield surface, unlike the Lade-Duncan 

model as can be seen from Fig. 7d which has been adapted from [32]. While this fact does not 

necessarily make the Matsuoka-Nakai yield surface more correct, it does make it easier to fit to 

standard geotechnical strength tests.  

An example of a contemporary simulation of tire-soil interaction using a Drucker-Prager 

model can be found in Xia [33]. A Drucker-Prager/Cap model which was capable of predicting 

transient spatial density was implemented in the commercial finite element code ABAQUS. This 

model was used in representative simulations to provide demonstrations of how the tire/terrain 

interaction model can be used to predict soil compaction and tire mobility in the field of 

terramechanics [33]. The model predicted that soil compaction was minimized by increasing the 

rolling of the simulated tire.  

For other examples of tire-terrain studies which include a Drucker-Prager soil the reader 

is directed to Lee [34], Fassbender et al. [35], or Meschke et al. [36]. The Drucker-Prager model 

has also been used to capture the behavior of snow, as noted in the referenced articles above. 

Drucker-Prager models are often used to model snow for their sensitivity to changes to pressure. 

The differences in yielding triaxial extension and compression that have been 

demonstrated in experiments can also be captured by modifying a Drucker-Prager-type yield 

surface by using a smooth third-invariant modifying function. Two of these functions are 

developed by Gudehus [37] and William and Warnke [38]. While the former is simpler in form, 

it is only convex when the ratio of triaxial extension to compression strength, , is greater than 
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0.69. The William-Warnke function is convex until = 0.5. Convexity is essential in yield 

surfaces to ensure proper return mapping.  

 A shortcoming of the above models is that they assume a constant ratio between pressure 

and deviatoric stress, or normal and shear stress, during yielding, that is, a constant friction 

coefficient; research in soils shows that this is not the case and the friction angle decreases with 

increasing pressure. Also, modifications to the return mapping algorithm are necessary at the 

tensile vertex. Furthermore, at high confining pressures, soils may exhibit compactive plasticity 

due to pore collapse, grain crushing, and other phenomena.  With the exception of the 

compression cap in Xia [33], there are no vehicle-terrain studies which include the above-

mentioned modifications or extensions to the Drucker-Prager model.  

Modified Cam-Clay and Cap Models The original Cam-Clay model has not been as 

widely used for numerical predictions of soil response as the modified Cam-Clay (MCC). The 

qualifier “modified” is often dropped when referring to the modified Cam-Clay model [39]. The 

modified Cam-Clay model by Roscoe and Burland [40] is based on the critical state theory and 

was meant to capture the properties of near-normally consolidated clays under triaxial 

compression test conditions. The yield surface is assumed to have an elliptical relationship 

between the pressure and magnitude of deviatoric stress that may be expanded with the increase 

of volumetric strain, as shown in Figure 8. The function for the yield surface of the MCC model 

is defined as 

      2 2- ' ' - ' 0cq M p p p                                                (13) 

Here, q is the norm of the deviatoric stress, 'p  is the effective mean stress, the pre-consolidation 

stress 'cp  acts as a internal state parameter, and the stress ratio 'M q p  at critical state is 
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related to the angle of friction through the relationship     6sin 3 sinM    . The modified 

Cam-Clay model has been extended to the finite deformation case in Borja and Tamagnini [41].  

 Cam-Clay models can predict failure and the nonlinear stress-path dependent behaviors 

prior to failure fairly accurately, especially for clay type soils [30]. This model, however, still has 

some disadvantages [30]: the behavior near the p axis varies from experimental results (Figure 8); 

points on the yield surface above the critical state line do not satisfy Drucker’s postulate of 

stability; and the shear strain predicted by Cam-Clay models is too high at low stress ratios [42].  

An example of a tire-terrain interaction study that includes a Cam-Clay model can be 

found in Meschke et al. [36]. A finite deformation Cam-Clay model was used to model the 

mechanical interaction between a tire tread running over a snow covered surface. The material 

model was calibrated with experimental data of hydrostatic and shear-box tests of snow [36]. 

The Cam-Clay model was found to realistically replicate an experimentally observed failure 

mode of snow. 

 Similarly, a track-terrain study utilizing a Cam-Clay soil model is given in Berli et al. 

[43]. The compaction sensitivity of a loess soil at different soil moisture conditions was studied. 

It was found that the observed compaction effects for loess soil were in agreement with the 

model predictions if the soil was assumed to be partially drained [43]. If the wet subsoil was 

assumed in fully drained conditions then the predictions disagreed. Also, the moisture 

dependence of the precompression stress needed to be taken into account in order for the model 

to agree with the experimental data [43]. 

 There are several advanced derivatives of the Cam-Clay type soil models that include the 

three-surface kinematic hardening model and the K-hypoplastic model [44,45]. For instance, the 

three-surface kinematic hardening (3-SKH) model employs the following kinematic surfaces: the 
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first surface is defined as the yield surface, the second surface is named the history surface and is 

the main feature of the 3-SKH model, and the third surface is the state bounding (or boundary) 

surface. The state boundary surface is sometimes taken to be the MCC surface since it 

incorporates kinematic hardening [46]. The history surface defines the influence of recent stress 

history, and the yield surface defines the onset of plastic deformations. Kinematic hardening 

allows it to better predict load reversals. It has been found that the 3-SKH model can acceptably 

predict over-consolidated compression behavior for clay but can have difficulty modeling pore 

pressure variations [44]. The K-Hypoplastic model employs critical state soil mechanics 

concepts that can be applied to the modeling of fine-grained soils. It can be formulated in two 

manners; by enhancing the model with the intergranular strain concept, it can be extended to the 

case of cyclic loading and further improve the model performance in the range of small-strains. 

Even without the above enhancement, the K-Hypoplastic model is suitable for fine-grained soils 

under monotonic loading at medium to large strain levels [45]. These derivatives of the MCC 

model have yet to be included in a vehicle-terrain study. 

 Cap-plasticity models were developed to address the shortcomings of the Cam-Clay type 

models. Drucker et al. [47] first proposed that “successive yield surfaces might resemble an 

extended Drucker-Prager cone with convex end spherical caps” as shown in Figure 7c [48]. As 

the soil undergoes hardening, both the cone and the end cap expand. This has been the 

foundation for numerous soil models.  

The plastic yield function f in the inviscid cap model of DiMaggio and Sandler [30] is 

formulated in terms of the first stress invariant 1I  and the second deviatoric stress invariant 2J  

[49,50]. As shown in Figure 9, the yield surface is divided into three regions. The cap is a 

hardening elliptical surface defined as 
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   1 2 2 1, , ,cf I J k J F I k       
2 2

2 1

1
0J X k L k I L k

R
                    (14) 

where 2J  is the second invariant of the deviatoric stress q , R  is a material parameter, and k is a 

hardening parameter related to the actual plastic volumetric change   11 22 33trp p p p p

v      ε
 

through the hardening law   1 exp
DX kp

v W


  . Where W and D are material parameters and  

( )X k  is the value of 1I  at the end of the cap.  In Equation 14, ( )kL  is the value of 1I  at the 

intersection of the failure envelope and the cap;  L k k  if 0k  , and    0L k   if 0k  . The 

yield surface is of a Drucker–Prager type modified for nonlinear pressure dependence and is 

defined by the function 

                           
     1 2 2 1 2 1 1, exp 0ef I J J F I J I I                               (15) 

where  ,  ,  , and   are material parameters. The tension cutoff surface is defined by 

   1 1f I I T   , where T  is the tension cutoff value. A number of material parameters are 

necessary for the elastoplastic cap model:  , N ,  0f   in the viscous flow rule to be discussed 

later; 0, , ,W D R X  in the cap surface;  ,  ,  ,   in the failure surface; and T  in the tension 

cutoff surface. In addition, the bulk modulus K  and the shear modulus G  are needed for the 

elastic soil response.  An example of a Cap plasticity model used in a tire-terrain model can be 

found in Xia [33] which was detailed above. 

The Sandia GeoModel builds on the Cap model with some modifications. It is capable of 

capturing a wide variety of linear and nonlinear model features including Mohr-Coulomb and 

Drucker-Prager plasticity depending on the model parameters incorporated. Unlike the Cap 

model, the cap surface and shear yield surface are connected in a smooth manner, and the model 
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also accounts for differences in triaxial extension and compression strength using either Gudehus 

or William-Warnke modifying function described above. The yield function can be written as  

                                                           
2 2

2 0c ff J F F N                                                (16) 

where   accounts for the differences in material strength in triaxial extension and triaxial 

compression, 2J   is the second invariant of the relative stress tensor -s a  (here a  is a back 

stress state variable), cF  is a smooth cap modifying function, fF  represents the ultimate limit on 

the amount of shear the material can support, and N  characterizes the maximum allowed 

translation of the yield surface when kinematic hardening is enabled [19]. The plastic potential 

function is given by [51] 

                                                            
2 2

2

g g

c fg J F F N                                                   (17) 

where g

cF  and g

fF  play analogous roles in the plastic potential function as their counterparts in 

the yield function. The Sandia GeoModel suffers from the following limitations: the triaxial 

extension/compression strength ratio does not vary with pressure and it is computationally 

intensive when compared to similar idealized models [19]. This model has been further adapted 

to the Kayenta model [52]. 

 The Sandia GeoModel has yet to be included in tire-terrain interaction studies. However, 

the kinematic hardening feature captures cyclic loading in interaction cycles, the smooth cap 

improves efficiency compared to similar cap models, and the flexible nonlinear pressure 

dependence more accurately captures soil behavior over a range of pressures. Hence, it is a 

candidate for future studies in vehicle-soil interaction. 

Soil is not always an isotropic material. Layering and fracture networks, as well as 

compaction and other history effects may give the soil higher strength or stiffness in certain 
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directions. Often the effects impart different strength and stiffness in one plane, and there is a 

transversely anisotropic version of the Kayenta model. Anisotropy may also be addressed using 

fabric tensors [53]. Other anisotropic models include the work of Whittle and Kavvadas [54], and 

the S-CLAY 1 model [55]. Aside from the kinematic hardening mentioned in some of the models, 

detailed review of anisotropic soil models is beyond the scope of this article, however, and the 

reader is referred to the above references. 

Viscoplastic Soil Models  Plasticity models such as those described above do not 

include strain-rate dependent behavior often observed in soils under rapid loading. These viscous 

effects are more pronounced in the plastic region of most clay soils and rate independent elastic 

response is generally adequate for practical engineering applications [56,57]. The models 

described above can be modified to account for rate-dependent plastic effects. Such viscoplastic 

models are more accurate under fast loading conditions. However, it is difficult to determine the 

correct value of the material time parameter (which may not correspond to physical time scale) if 

the stress history is not known.  

 Two major types of viscoplastic overlays are the Perzyna and Duvaut-Lions formulations. 

Perzyna's formulation is among the most widely used viscoplasticity models [58]. In this model, 

the rate form of the flow rule is used to describe viscous behavior leading to a viscoplastic 

potential which is identical if not at least proportional to the yield surface [48,50,59]. In 

Perzyna’s viscoplasticity formulation [56], the viscoplastic flow rule can be expressed as 

 vp g
f 





ε

σ
                                                 (18) 

where   is a material constant called the fluidity parameter, the Macauley bracket is defined 

as 2x x x  , g is the plastic potential function, and  f  is a dimensionless viscous flow 
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function commonly expressed in the form    0

N
f f f  , where N  is an exponent constant 

and 0f  is normalizing constant with the same unit as f . The Cap model has been extended to 

the viscoplastic case using Perzyna’s formulations. The viscoplastic cap model is adequate for 

modeling variety of time dependent behaviors such as high strain rate loading, creep, and stress 

relaxation [60]. 

  A joint bounding surface plasticity and Perzyna viscoplasticity constitutive model has 

been developed for the prediction of cyclic and time-dependent behavior of different types of 

geosynthetics [61]. This model can simulate accelerating creep when deviator stresses are close 

to the shear strength envelope in a q  creep test and it can also model the behavior in unloading–

reloading and relaxation [62]. It has been noted that for multi-surface plasticity formulations the 

Perzyna type models have uniqueness issues [63]. 

Another widely used formulation for viscoplasticity is based on Duvant-Lions theory [64]. 

In this formulation, the viscoplastic solution is constructed through the relevant plastic solution. 

An advantage of the Duvant-Lions model is that it requires the simple addition of a stress update 

loop to incorporate it into existing plasticity algorithms. Another advantage is that the 

viscoplastic solution is guaranteed to deteriorate to the plastic solution under low strain rate [50].  

Viscoplasticity is thought to simulate physical material inelasticity behavior more 

accurately than the plasticity approach. It eliminates potential loss of ellipticity condition 

associated with elasto-plastic modeling [65]. A viscoplastic GeoModel version, based on the 

Duvan-Lions framework, was developed with separate viscous parameters for volumetric and 

shear plasticity. Saliba [66] presents a rate dependent model for tire-terrain analysis as well as a 

review of the mathematical theory of visco-plasticity.  
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3.3 Multiphase Models 

Soils may either be treated as homogenized continua or as a mixture in which each phase (solid, 

liquid, and gas) is treated separately. The latter approach is considered to be more accurate, but 

more complicated to implement. Mixture theory can be used at the continuum level to account 

for each phase, by tracking the total stress σ , fluid pore pressure 
wp , and a pore air pressure ap . 

For saturated soils (no gas phase), an effective stress 'σ  is defined, typically as 
wpσ I (though 

variations exist). The deformation of the soil skeleton is taken to be a function of the effective 

stress. Any of the plasticity models above can then be implemented using the effective stress in 

place of the total stress to determine the solid deformation.  

In the unsaturated case, two independent variables are usually used to determine the 

mechanical response, due to apparent cohesion created by menisci in fluid phase. The total stress 

may be broken down into a net stress σ  for the solid skeleton, and suction stress cp   defined as 

,a c a wp p p p    σ σ I              (19) 

An effective stress and suction may also be used, typically  ' a a wp p p   σ σ I I , where   

is a parameter that varies from 0 for dry soil to 1 for fully saturated. The advantage of this 

formulation is that it reduces to the standard effective stress at saturation. The solid phase may 

then be modeled in terms of net stress in suction. Some of the above plasticity and viscoplasticity 

models have been used, with substantial extensions, to model solid deformation in this 

framework. In rapid loading, the fluid may be thought of as moving with the solid in the 

saturated case (undrained), but otherwise fluid flow through the solid matrix needs to be 

accounted for. In the limit where the fluid has enough time to return to steady state conditions, 

the material is said to be fully drained. Standard coupled fluid flow-solid deformation finite 

elements often fail due to volumetric mesh locking phenomena. This shortcoming can be solved 
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by either using a lower order interpolation scheme for fluid flow equations [67], or by stabilizing 

the element ([68] and references therein).  

The Barcelona Basic Model (BBM) proposed by Alonso et al. [69] remains among the 

fundamental elasto-plastic models for unsaturated soils. The BBM model is an extension of the 

modified Clam-Clay model that captures many of the mechanical characteristics of mildly or 

moderately expansive unsaturated soils. As originally proposed by Alonso, utilizing a critical 

state framework, the BBM is formulated in terms of the hydrostatic pressure ''p  associated with 

the net stress tensor ''σ , suction s , and the deviatoric stress q . One may write a yield function 

for the model as follows: 
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                             (20) 

where M  is the slope of the critical state lines, k  is parameter that describes increase in 

apparent cohesion with suction, cP  is the pre-consolidation pressure, and the function  g   is 

given by     sin cos sin sin 3g       , where   is the friction angle, and   is the 

Lode angle. The hardening law is given by the following relationship: 
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                                                  (21) 

where 0P  is the hardening parameter defined by the location of the yield surface at zero suction, 

*

0  is the slope modified at the normal compression line, and *κ  is the modified swelling index 

that is assumed to be independent of suction. The plastic potential is a slight modification of the 

yield function given by 
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where α  is defined as        * *9 3 1 1 9 6oα=Μ Μ Μ k Μ    [69].                                                                                 

Some of the shortcomings of the BBM model are as follows: the BBM cannot completely 

describe hydraulic hysteresis associated with wetting and drying paths, it does not give the 

possible ranges of suction over which shrinkage may occur, and it does not include a nonlinear 

increase in shear strength with increasing suction.  

Elasto-Plastic Cap Model of Partially Saturated Soil  This section deals with the 

extension of a cap model which can describe the material behavior of partially saturated soils, in 

particular, of partially saturated sands and silts. The soil model is formulated in terms of two 

stress state variables; net stress σ , and matric suction cp . These stress state variables are defined 

in Eq. 19. 

The yield surface (Figure 10), consisting of a shear failure surface and a hardening cap 

surface, the plastic potentials for the non-associated flow rule and the hardening law for the cap 

are extended by taking into account the effects of matric suction on the material behavior. Using 

net stress and matric suction as stress state variables allows modeling independently the effects 

of a change in the skeleton stress and of a change in suction effects on the mechanical behavior 

of the soil skeleton [70]. The functional form of the shear failure surface is  

       1 2 1, 2c e s cf p L J F I F p   σ                                    (23) 

where 1I
  denotes the first invariant of the net stress tensor σ . In the preceding equation, 

      1 cos3 1L


   


   , where   and   are parameters defining the shape of the yield 
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surface with respect to the Lode angle  . In Eq. 23,  1eF I   defines the shear failure envelope at 

vanishing matric suction, and  s cF p  accounts for the dependence of the shear strength on the 

matric suction [70]. These two functions are defined as  1 1eF I I    and  s c cF p kp , 

where k is a parameter controlling the increase of the shear failure envelope with increasing 

matric suction, and α  is a material parameter [70]. The functional form of the strain hardening 

cap is  

          2 2 1, , 2 , , ,c c c c e c s cf p p F J I p F p F p      σ                       (24) 

with     1c cp I X p   , and  
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The plastic strain rate is determined by the non-associative flow rule  
2

1

p

i ii
g


  ε  σ , 

where i  are the plasticity consistency parameters. The direction of the plastic flow is 

determined by means of a plastic potential 

          1 2 1, 2c s cg p J I F p     σ                                   (26) 

In this equation,   is a parameter that governs the amount of plastic dilatation. The plastic 

potential for the strain hardening cap is assumed as 
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The plastic volumetric strain rate is  
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where   cX p  corresponds to the apex of the elliptical cap. 

Bounding Surface Plasticity Unsaturated Soil Model Dafalias and Popov [71] developed 

bounding surface plasticity for metals. This approach was later applied to clays by Dafalias and 

Herrmann [72], extended to pavement based materials by McVay and Taesiri [73], and to sands 

by Hashigushi and Ueno [74], Aboim and Roth [75], and Bardet [76]. Bounding surface 

plasticity provides a framework with which to capture the cyclic behavior of engineering 

materials. The advantages of this framework over conventional plasticity theory have been 

investigated for monotonic and cyclic loads. Wong et al. [77] developed a new bounding surface 

plasticity model, which includes an evolving bounding surface, for unsaturated soils with a small 

number of parameters based on Bardet’s model [76].  

The bounding surface plasticity model developed by Wong et al. [77] is elliptical in the 

plane of effective mean-stress p' and deviatoric stress q  with  1 2 3' 3p         and using 

cylindrical symmetry ' '

1 3q    . The bounding surface can be defined as 

              

 
22

2'
, , ,

1

p

p

p A q
f p q s A

M









   
      

   
                               (29) 

where M is the slope of the saturated soil critical state line (CSL), p A  , q xM A   , 

 0x q Mp q  , and        22 21 1 1 2 1 1x x           . M and A are 

assumed to be material parameters that are independent of suction s. Also,   is a material 

parameter. The bounding surface plasticity soil model has the following limitations and 

shortcomings [26]: (1) more experimental data is needed to define the suction dependence of 

material parameters; and (2) an objective relation, defined by the retention curve, is needed 

between the degree of saturation and suction. 
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The multiphase models presented above, up to date, have not been included in tire-terrain 

studies. These models, while more complex, will offer a better approximation for vehicle-terrain 

interactions than their single phase counterparts. 

 

4. PARTICLE BASED AND MESHFREE METHODS 

The finite element method is a widely accepted and used approach to the solution of engineering 

problems which can be modeled using a continuum approach. However, simulations of 

explosions, fragmentations, and inherently granular problems require the use of adaptive 

meshing techniques that can become computationally intensive [78]. Particle-based and meshfree 

methods offer engineers a new methodology with which they may more accurately tackle highly 

discrete or granular problems. Particle based methods offer a number of advantages. The 

connectivity between nodes, or particles, is (re)computed at each time step and this allows for 

simulations of large deformations [79]. Fracture and other discontinuous behaviors are explicitly 

captured by particle-based methods. The following is a brief overview of three of the most 

commonly used particle based and mesh-free methods; the discrete element method, smoothed 

particle hydrodynamics, and reproducing kernel particle methods. 

4.1  Discrete Element Method (DEM)  

In the case of the finite element method, the material (soil in this study) is assumed to be a 

continuum. For the cases in which the granular behavior of soil is to be accurately modeled the 

discrete element method (DEM) is applied. The DEM was developed to simulate the dynamic 

behavior of granular material such as granular flow. In the DEM, the material is represented by 

an assembly of particles with simple shapes (circles and spheres), although there have been 

simulations in which non-circular rigid particles are used [80,81]. The disadvantages of using 
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simple shapes, such as spherical grains, are that they are unable to interlock and that they can 

rotate without dilating the surrounding soil. Poly-ellipsoidal and polyhedral grain shapes may 

offer a more realistic representation of particulate soil [82], but the contact algorithms are more 

complicated and solution times can increase significantly. 

The elastic and inelastic properties at the contact between the particles are introduced 

using springs with spring constants (elastic response) and dashpots with viscous damping 

constants. These model parameters can be difficult to obtain by direct physical measurement. 

Indirect methods of parameter determination have been developed. Among them, the trial-and-

error approach has been used successfully and the method of dimensional analysis combined 

with biaxial test simulation can obtain best-fit parameters of the DEM model [82].  

 The contact forces between particles are sometimes calculated from the interpenetration 

between those particles using the spring constant and the viscous damping constant [83]. The 

determination of contact between two particles is a computationally intensive component of 

DEM simulations. For example, if we take the shapes to be ellipsoids and poly-ellipsoids as in 

Knuth et al. [82], the contact detection algorithm is based on the use of dilated particles. This 

dilation process is accomplished by placing spheres of a fixed radius on the surface of every 

particle. One then determines contact between two spheres chosen from the infinite sets of 

spheres between the two particles [82]. An efficient algorithm is mandatory for such an 

exhaustive search. Finally, once contact is detected and evaluated, the displacements of the 

particles are obtained for a certain time interval by solving the governing kinetic equations of 

motion. This process is repeated for all particles in the analyzed region for very short time 

intervals until the end of the simulation time.  
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Some of the shortcomings associated with the discrete element method are as follows: it 

can be computationally very inefficient for soil in which the granular effect can be approximated 

using a continuum model [83], it is difficult to accurately determine the spring and damping 

constants that define the contact forces between the particles [84], and the representation of soil 

cohesion and adhesion properties is difficult to incorporate within DEM analysis [85]. 

Nonetheless, there are a number of applications of the discrete element method to tire-soil 

interaction. As mobility of planetary rovers is of considerable contemporary interest, much work 

has been done in the simulation of lunar soil-tire interactions; as examples of such work see 

Nakashima et al. [86] or, as another example, Knuth et al. [82].  An example of such a study 

can be found in Li et al. [87]. In that study, a discrete element model based on the fractal 

characteristics, particle shape, and size distribution of returned samples from the Apollo-14 

mission was developed. Four basic compound spheres where used to model the lunar particles 

and the model parameters were found using dimensional analysis. It was found that since 

subsurface regolith particles are arranged in a looser manner the rover wheel required less drive 

torque [87].  

4.2  Smoothed Particle Hydrodynamics (SPH) and Reproducing Kernel Particle 

Methods (RKPM)  

As one of the earliest meshfree methods, smoothed particle hydrodynamics has been widely 

adopted and used to solve applied mechanics problems. In SPH, the idea is to discretize the 

material into particles, with each particle having a unique neighborhood over which its properties 

are "smoothed" by a localized interpolation field, called the kernel function [79]. The 

neighborhood of each element defines the interaction distance between particles, often referred 

to as the smoothing length. Smoothed particle hydrodynamics has been used to model soil 
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behavior. In particular, Bui et al. [88] proposed a Drucker-Prager model for elastic-plastic 

cohesive soils which showed good agreement to experimental results. However, the model 

suffered from tensile instability which was overcome by using the tension cracking treatment, 

artificial stress, and other methods.  

Other shortcomings associated with SPH methods include: a zero energy mode, difficulty 

with essential boundary conditions, and an inability to capture rigid body motions correctly. It 

should be noted that these fundamental issues have been addressed by subsequent SPH 

formulations [79] but further work is necessary to determine the suitability in tire-terrain 

applications. Zero energy modes are not only evident in SPH models but they have also been 

found in finite difference and finite element formulations. SPH suffers from a zero energy mode 

due to the derivatives of kinematic variables being evaluated (at particle points) by analytical 

derivatives [79]. The zero energy mode can be avoided by adopting a stress point approach [79]. 

One of the disadvantages that SPH shares with other particle methods is the difficulty in 

enforcing essential boundary conditions. The image particle method and the ghost particle 

approach have been developed to address this issue [79]. 

SPH interpolants among moving particles cannot represent rigid body motion since SPH 

is not a partition of unity [79]. This leads to the development of a corrective function; this new 

interpolant is named the reproducing kernel particle method (RKPM) [79]. RKPM improves the 

accuracy of the SPH method for finite domain problems [89]. In this method, a modification of 

the kernel function, through the introduction of a correction function to satisfy reproducing 

conditions, results in a kernel that reproduces polynomials to a specific order. Unlike traditional 

SPH methods, the RKPM method can avoid the difficulties resulting from finite domain effects 

and minimize the amplitude and phase errors through the use of a correction function which 
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allows for the fulfillment of the completeness requirement. While RKPM methods have not been 

used in vehicle-terrain interactions, they have been quite successfully applied to geotechnical 

applications. RKPM methods demonstrate promising potential for large deformation problems 

but require a systematic approach for the selection of appropriate dilation parameter in order to 

be made robust [89]. Complexities in meshfree methods, especially with boundary conditions, 

make them more difficult to couple with other techniques in contact problems. 

 

5.  COMPARISON OF SOIL MODELS 

The soil models described in Sections 2, 3, and 4 offer a broad overview of the various common 

methods used in soil modeling. The categories for vehicle-terrain interaction presented in this 

paper include: empirical, analytical, and semi-empirical, continuum mechanics-based, particle 

and mesh-free terramechanics methods. Terramechanics studies exist that include a combination 

of the aforementioned broad categories. Nakashima and Oida [90] present a combined FEA and 

DEM tire-soil interaction model. Recently, SPH methods have been used in conjunction with 

FEM to produce tire-soil interaction models [91], but it was concluded that further validation 

would be required to analyze the effects of SPH parameters on results [92]. 

5.1  Comparison of Models Based on Soil Characteristics and Geotechnical 

Applications  

Throughout this work, each soil model was presented along with its disadvantages; a brief 

summary of the advantages of the methods will now be given. Empirical terramechanics models 

are often invaluable for quick in situ trafficability decisions. On the other hand, analytical and 

semi-empirical terramechanics models are well suited for real time vehicle evaluation for 

operation in off road environments. In the case of continuum models, the Mohr-Coulomb model 
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is well known for the simulation of isotropic materials. It is well suited for use as a first 

approximation in soil modeling. Drucker-Prager models work very well as approximations to 

materials that exhibit high compressibility. Modified Cam-Clay models work well for clay type 

materials although they have been applied to the simulations of sand type soils. Viscoplastic 

formulations are especially suited for scenarios in which the soil is under fast loading conditions. 

Multiphase models often require the formulation of new finite elements that are capable of 

capturing the soil skeleton deformation accurately and efficiently. However, these soil mixture 

approximations are considered a better representation of physical soil. Particle and meshfree 

models are particularly suited for problems in which the granular aspect of soil plays a prominent 

role. Along with meshfree methods, they are suited for large deformation problems such as 

fragmentation and simulation of explosions in soil.  

The advantages of each model serve to guide the designer or analyst in the applicability 

of certain models to a particular problem domain. Plainly stated: model selection depends largely 

on trade-offs between the behavior of the desired soil being modeled and the availability of 

material parameter information [93]. At present, there does not exist a soil material model which 

can capture every soil characteristic in a realistic manner. One must match each model to a 

particular problem and it is expected that multiple models would be required to fully analyze a 

complex engineering problem.  

Table 1 offers a comparison of the soil models presented in this paper based on the ability 

of the model to capture work hardening, fracture, cyclic loading, etc. In the table, "CM" implies 

that if the continuum model has the trait then so does the corresponding model. A comparison 

between Drucker-Prager and Cam-Clay models has been presented in Chi and Tessier [94]. A 

similar comparison for snow is published in Meschke et al. [36].  
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5.2  Comparison Based on Terramechanics Applications 

Comparisons can be made between the broad categories of soil models. Early empirical 

terramechanics models were not formulated in terms of design parameters used to evaluate the 

effectiveness of vehicles in varying terrains. This has been a major disadvantage of their use. The 

semi-empirical terramechanics approach remains among the most popular methods used for 

vehicle-terrain interaction studies in MBS simulations [95]. This popularity can be attributed to 

the efficiency of most implementations for analytical terramechanics. However, Azimi et al. [96] 

has concluded that the Bekker and Wong models need further improvement and validation. The 

dynamic terramechanics models presented above offer a good starting point for such 

improvements. Of the FEA, particle based, and mesh-free methods, the DEM is unattractive due 

to its computational cost and inherent difficulty in capturing cohesive and adhesive tensile 

phenomena of soil (though it can capture soil rupture and other particle phenomenon quite 

easily). Mesh-free methods are computationally intensive and require further testing and 

validation [92]. While FEA and DEM methods are gaining popularity, the initial resistance 

towards the use of these methods was due to the computational intensity required for such 

vehicle-terrain interaction. Considerable progress in computational power of personal computing 

systems is making this avenue of analysis more appealing. FEA implementations of soil 

plasticity that employ highly efficient algorithms have been developed in recent decades, often 

with quadratic rates of convergence, for the solution of the plasticity equations. Leveraging these 

algorithms within a FEA/MBS environment will allow for the development of high fidelity 

vehicle-terrain interaction models.  

  Over the last decade or so there have been a number of studies which have presented the 

results of modeling the interaction between rigid and deformable tires on soft terrain simulated 



UNCLASSIFIED 
 

Contreras et al.                                                           AMR-12-1012                                                                       41 

using the continuum terramechanics approach. The results of a literature review of continuum 

based terramechanics studies are presented in Table 2. For a summary of such interaction studies 

prior to the year 2000, see Shoop [93] or Liu and Wong [97]. From the table we see that there is 

a clear trend towards the conduction of such interaction studies the closer we move to our present 

time. Also, all of the reviewed tire-continuum soil interaction studies were found to be 

undertaken within a FE framework.   

As can be seen from Table 2, almost all of the terramechanics applications with 

continuum soil models investigate the interaction between tire and soft soil. However, in [98], 

Grujicic et al. investigated the interaction of a standard and up-armored full vehicle on soft soil 

under several off-road maneuvers. For the study, the soft soil was modeled using the parametric 

CU-ARL sand model. The vehicle consisted of interconnected subcomponents which include the 

chassis, suspension system, and multilayered tire modeled using a combination of structural 

finite elements. It was found that the up-armoring of the vehicle negatively impacted the 

stopping distance and traction in a straight-line flat-land braking scenario. In a straight-line off-

angle downhill braking scenario it was found that up-armoring caused increase vehicle instability 

and a propensity for the vehicle to roll over. Similar or higher fidelity simulations offer an 

attractive method for vehicle design and evaluation. 

Xia and Yang [99] provide a four tire - soft soil simulation in which they studied the 

dynamic tire - soft soil interaction in a straight-line scenario. A suspension - less set of four tires 

was used to investigate soil compaction and rutting and it was found that the transient spatial 

density due to compaction with geometric nonlinearity can be directly predicted. It is important 

to note the study was not meant to investigate the tractive phenomenon between tire and soft soil 

and so the use of a tread-less tire was justified; this was also the case in Shoop [93]. The contact 
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patch and stress distribution of the tires was investigated and it was found that the tire contact 

areas are not constant. Also, they are neither rectangular nor circular and so the conventional 

assumptions of certain other terramechanics approaches are not accurate.        

The two studies summarized above represent the vehicle - soft terrain interaction studies 

conducted in the past decade.  While the literature may be weak for vehicle - terrain interaction 

studies using a continuum mechanics approach, there exists a number of tire - soft soil 

interaction studies that can serve as a foundation for developing more detailed vehicle - terrain 

models. The reader is encouraged to consult the references given in Table 2 for details on the 

topics discussed below.   

Almost all of the tire - soft soil models investigated in this review offered a simulation of 

the tire contact stress distribution and the contact area. It is one of the advantages of using a FEA 

approach to terramechanics that the dynamic variation in the contact area can be realistically 

modeled.  

Hambleton and Drescher [100] investigated the differences between modeling the tire - 

soft soil interaction as a two-dimensional and three-dimensional process. It was found that the 

rolling resistance of a tire modeled as a two and three-dimensional processes agree qualitatively 

but wheel penetration and material deformation are considerably different, especially for narrow 

wheels. Nankali et al. [101] studied the response of soil under vertical loading conditions with a 

multilayered tire model. Their study focused on the effects of tire inflation on stress prediction in 

the tire and soil, which was found to be modeled sufficiently as a two-dimensional process. 

It is known that interfacial behavior related to frictional response is very important in soil 

compaction and traction simulation [99]. Shoop [93], Liu and Wong [97] discuss the suitability 

of the coulomb friction law often used in simulations in conjunction with penalty and kinematic 
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contact methods. They find that a modified law is necessary to more accurately define the 

traction characteristics of tire - soft soil interaction. While many of the studies surveyed use both 

coulomb friction law together with a penalty contact method, further work is needed in 

determining a better model for the frictional response between deformable tire and soft terrain. 

One may use a rigid wheel assumption for light loads on soft soil, however, for general 

simulation needs one should take into consideration the flexible nature of the tire [102]. The 

material models used to simulate tire behavior range from linear elastic [103] to various 

hyperelastic formulations (see for example [104]). It is it generally accepted that nearly 

incompressible hyperelastic formulations more closely model the behavior of rubber tires.  Also, 

it has been found that in order to best describe the deformable behavior of the tires, multilayered 

tire models are necessary. A unique approach used to accomplish this can be found in Shoop [93]. 

In that study the combined effects of the layers of the tire are taken into consideration by using a 

modal analysis approach.  Similarly, in order to best describe the traction and interfacial behavior 

of such models, consideration of the detailed tire tread is necessary.  

In order to reduce the computational load required for simulation, it may be advantageous 

to model the soil using multiple layers (with varying properties) and variable mesh coarseness.  

As can be seen from the table, the multiple soil layer approach has not been as widely adopted. 

Xia [33] adopted a multi-layered soil approach and was able to efficiently model the spatial 

density change in soil. It is hoped that future investigations will take advantage of using multi-

layered soils to reduce the computational demand of high-fidelity models.      

 One last consideration that can be gleaned from Table 2 is that with the exception of a 

few investigations, almost all of the tire - soft soil investigations that employ a continuum soil 

model employ a modified Drucker-Prager/Cap plasticity model. Considering that one soil model 
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cannot capture all necessary phenomenon, it is hoped that future investigations will venture to 

adopt alternate soil models so that comparisons with regards to terramechanics related issues can 

be made in earnest between the soil models.  

Considering the continuum-based soil models category of Table 1, it can be seen that of 

the soil plasticity models presented not many capture work hardening, nonlinear pressure 

dependence, and cyclic loading. Cam-Clay type soil models offer an attractive entry to the 

modeling of soils through FEA plasticity theory because of the sequential developments of these 

types of models and the general acceptance of such models in the geomechanics community. 

Cam-Clay models began with infinitesimal strain assumptions and have been developed to the 

case of finite strains. Furthermore, Cam-Clay models have been extended to capture the cyclic 

behavior of soils [105]. While Cam-Clay models remain among the most popular constitutive 

approximations of soil, they suffer from convergence issues [93]. This should be kept in mind 

when working with such models. 

 

6. INTEGRATION OF SOIL PLASTICITY WITH ANCF/MBS ALGORITHMS 

As previously mentioned, all MBS commercial computer codes do not have the capability of 

modeling continuum-based soils. Many MBS codes are not designed for large deformations and 

do not allow for the use of general constitutive equations when structural finite elements are used. 

This paper aims at addressing this deficiency as part of its objective and critical analysis. The FE 

implementation of the soil mechanics plasticity equations requires the use of an approach that 

allows employing general constitutive models. The vehicle/soil interaction can lead to a 

significant change in geometry that cannot be captured using finite elements that employ only 

translational displacement coordinates without significant refinement. In some soil applications, 
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such a significant change in geometry may require the use of elements that employ gradients and 

accurately capture curvature changes. This requirement can be met using the FE absolute nodal 

coordinate formulation (ANCF) [106]. In this and the following section, the integration of 

ANCF/MBS and continuum-based soil models is discussed. The finite deformation Cam-Clay 

soil model proposed by Borja and Tamagnini [41] is used as an example. 

 6.1 Absolute Nodal Coordinate Formulation (ANCF) 

Because of the challenges in integrating the vehicle and environment models, most of the 

investigations that employ continuum-based environment models in vehicle dynamics are based 

on a co-simulation approach that requires the use of two different computer codes: an FE code 

and a MBS dynamics codes. The MBS code is used for solving the system differential/algebraic 

equations, while the FE code is used for the large deformation analysis and prediction of forces 

and state variables that are made available to the MBS code. This co-simulation approach is also 

used to develop FE tire models. The co-simulation approach allows only for exchanging state 

variables and forces between the two codes; but does not allow for a unified treatment of the 

algebraic constraint equations that must be satisfied at the position, velocity, and acceleration 

levels in the MBS algorithms. This paper proposes a method that can be considered as a 

departure from the co-simulation approach.  

ANCF finite elements, which can be used for both tires and soils and can be integrated 

with MBS algorithms, do not employ infinitesimal or finite rotations as nodal coordinates; 

instead, absolute slopes and displacements at the nodal points are used as the element nodal 

coordinates. The position vector j
r  of an arbitrary point on element j  can be defined in a global 

coordinate system XYZ as    , ,j j j j j jx y z tr S e . In this equation, ,j jx y , and jz  are the 
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element spatial coordinates, jS  is the shape function matrix, je  is the vector of element nodal 

coordinates, and t  is time. The nodal coordinate vector jke  at node k can be defined as follows: 

T
T T T

jk jk jk
jk jkT

j j jx y z

        
       

         

r r r
e r                         (30) 

While fully parameterized ANCF finite elements do not exclude the use of any elastic force 

formulation, they allow using a general continuum mechanics approach to define the Green-

Lagrange strain tensor   2T ε J J I , where J  is the matrix of position vector gradients. This 

matrix of position vector gradients can also be used to evaluate the right and left Cauchy-Green 

deformation tensors whose invariants enter in the formulation of several popular continuum-

based soil models that include the Cam-Clay soil models previously discussed in this paper. 

Using the ANCF description, the left Cauchy-Green deformation tensor lC  can be evaluated in 

terms of the ANCF coordinates as T

l C JJ , where the matrix of position vector gradients J  can 

be expressed in terms of the ANCF gradients at an arbitrary point on the soil. In large strain 

plasticity formulations, the multiplicative decomposition e pJ J J  is used, where eJ  is 

associated with the elastic deformation, and p
J  is associated with the plastic deformation. In a 

similar manner, the left Cauchy-Green deformation tensor can be decomposed multiplicatively as  

e p

l l lC C C , where superscripts e  and p  refer, respectively, to elastic and plastic. In the Cam-

Clay model discussed in the preceding section, the soil constitutive equations are formulated in 

terms of the logarithms of the invariants of the elastic Cauchy-Green deformation tensor e

lC . It 

can be shown that e

lC  can be written as  
1

e e eT p T

l l



 C J J J C J . ANCF fully parameterized 

plate and solid finite elements ensure continuity of the gradients at the nodal points and can 

capture the change in the soil geometry as the result of its interaction with the vehicle. These 
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elements allow for systematically evaluating the matrix of position vector gradients J  and the 

left and the elastic left Cauchy-Green deformation tensors lC  and e

lC . The evaluation of these 

three tensors requires the use of full parameterization. In the Cam-Clay model discussed in the 

preceding section, the elastic strain measures used are  ln , 1,2,3e e

i i i   , where  
2

e

i  is the 

ith principal value of the elastic left Cauchy-Green deformation tensor e

lC  [41]. One can then 

define the deviatoric strain vector  1 3e e e

v e ε δ , with 
e e

v  ε δ  as the volumetric strain 

invariant. One can also define a deviatoric strain invariant as 2 3e e

s  e . If , 1,2,3e

i i   can 

be determined from the solution of the plasticity equations, the principal values e

i  can be 

determined. It can be shown that in isotropic plasticity models such as this one that the trial 

principal directions are the same as the current principal directions. Hence the deformation tensor 

e

lC  can be determined. In the Cam-Clay model, the principal directions of the effective Cauchy 

stress tensor Kσ  are assumed to coincide with the principal directions of the elastic left Cauchy-

Green deformation tensor e

lC . 

 ANCF representations can also be used to develop accurate geometry of complex-shaped 

terrains as well as tires and track links. This is another important ANCF feature that distinguishes 

this new formulation from other existing FE formulations which are not compatible with 

computational geometry methods. B-spline and NURBS (Non-Uniform Rational B-Splines) 

cannot in general be converted to other FE formulation meshes without geometry distortion. On 

the contrary, B-spline and NURBS representations can be converted to ANCF meshes using a 

linear transformation that preserves the geometry; thereby ensuring that the geometry and the 

analysis models are the same. 
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In dynamic soil, tire, and track problems, ANCF leads to a constant inertia matrix and to 

zero Coriolis and centrifugal forces. The mass matrix obtained using ANCF finite elements can 

always be written as 
j

j j jT j j

V
dV M S S , where j  and jV  are, respectively, the mass 

density and reference volume of the finite element. While the inertia may not be important in 

some soil applications, it is important in the case of spinning tires and rotating track links. In fact, 

new meshes with constant inertia and linear connectivity conditions can be developed for tracked 

vehicles using ANCF finite elements. These new ANCF finite element meshes can be used to 

significantly reduce the number of nonlinear algebraic constraint equations of the joints and 

achieve an optimum sparse matrix structure, as will be explained in Section 7.  

6.2 Dynamic Equations 

For a finite element or a deformable body, the principle of virtual work can be written using the 

reference configuration as 

                                                2 : 0T T

P b
V

V V

dV dV dV       r r σ ε f r                                  (31) 

In this equation, V  is the reference volume,   is the mass density, r  is the global position 

vector of an arbitrary point, 2Pσ  is the second Piola Kirchhoff stress tensor, ε  is the Green-

Lagrange strain tensor, and bf  is the vector of body forces. The second term in the preceding 

equation can be recognized as the virtual work of the internal forces, it can be rewritten to define 

the generalized internal forces, that is 

                                                          2 : T

s P s

V

W dV   σ ε Q e                                               (32) 

where e  is the virtual change in the nodal coordinates associated with a particular ANCF finite 

element or a body, and sQ  is the vector of the generalized internal forces. The vector of internal 
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forces often takes a fairly complicated form, especially in the case of plasticity formulations, and 

is obtained using numerical integration methods. Equation 32 allows for systematically 

incorporating the continuum mechanics based soil models discussed in this paper. It also allows 

for the systematic implementation of the return mapping algorithm required for the solution of 

the soil plasticity problem as will be explained in Section 7 of this paper. The principle of virtual 

work leads to the following equations of motion:  

                                                                   + =s eMe Q Q 0                                                    (33) 

where M  is the constant symmetric mass matrix, and eQ  is the vector of body applied nodal 

forces.  

 As previously mentioned, the plasticity equations of the Cam-Clay model are formulated 

in terms of the logarithms of the invariants of the left Cauchy-Green deformation tensor e

lC  and 

the invariants of the Kirchhoff stress tensor Kσ . These invariants are used in the formulation of 

the yield function, the flow rule, the hardening law, etc. The ANCF implementation allows for 

systematically developing the elastic/plastic force of such a Cam-Clay model in a straight 

forward manner using both fully parameterized ANCF plate and solid elements. In the finite 

deformation Cam-Clay model discussed in this investigation as an implementation example, the 

yield function f  is expressed in terms of two invariants, the mean normal and deviatoric 

effective Kirchhoff stress invariants P  and Q  as    
2

cf Q M P P P   , where M  is a 

material parameter that defines the aspect ratio of the Cam-Clay ellipsoid, cP  is a effective 

Kirchhoff plastic variable (pre-consolidation pressure parameter),  1 3P . βδ , and 

3 2Q  s  with  1 2 3

T
β     is the set of the principal values of the Kirchhoff stress 
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tensor,  1 1 1
T

δ ,  and P s β δ  [41]. The stored energy function   that defines the 

constitutive relations is expressed in terms of two strain invariants e

v  and e

s , previously defined 

in this section. Using these two invariants, the stored energy function    can be defined as 

    2

0
ˆ, 3 2e e e e

v s sP e        , where e  is the shear modulus, ̂  is the elastic 

compressibility,  0
ˆe e

v v     , and 0

e

v  is the volumetric strain at a reference stress. Using 

the stored energy function, the constitutive equations of the model are defined as 

       e e e e e e e

v v s s            β ε ε ε       ,  where e e

v  ε δ , 

ˆ2 3e e

s  ε n , and e eˆ n e e . It follows that  

ˆ2 3e P Q P      β ε δ n δ s     (34) 

where  

 

 

 

2
3

1
ˆ2

0 0 0, 3

e
s

e e e

v s sP P e Q P e

 
 

  
 

         

 



         (35)  

In this model, the elastic shear modelus is defined as  0
ˆe      where   is a constant 

coefficient, and 0
ˆP e    . 

 The Cam-Clay model proposed by Borja and Tamagnini [41] leads to a constitutive 

model that has certain features that can be exploited in the design of the solution algorithm. The 

isotropic property, which is assumed in this model, makes the principal directions of Cauchy 

stress tensor Kσ  the same as the principal directions of the elastic left Cauchy-Green deformation 

tensor e

lC . In this model, the stored energy function    is assumed to depend on e

lC . The 

Cauchy stress tensor is defined as  2 e e

K l l  σ C C . Because of the isotropy property of this 
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model, one has    e e e e

l l l l    C C C C  . One can use this identity to show that Kσ  and e

lC  

have the same principal directions. To this end, we write the eigenvalue problem 

    2e e

l l  C C n n  , where n  is the principal direction of  
Kσ . One can also write 

       2e e e e

l l l l     C C n C C n n   . Multiplying both side of this equation by 

 e

l C , one obtains          2e e e e

l l l l      C C C n C n    . This equation 

shows both vectors  e

l C n  and n  have the same direction. It follows that 

      2e e e

l l l   C C n C n n   , where   is a scalar multiplier. This latter equation 

shows that n  is also a principal direction of e

lC . 

 The Cam-Clay model analysis presented in this section shows that if e

v  and e

s  are 

known, one can determine the mean normal and deviatoric effective Kirchhoff stress invariants 

P  and Q  of Eq. 34. If n̂  is known, then the principal values of effective Kirchhoff stress tensor 

1 2 3i ,i , , , can be determined using Eq. 34. Using the principal values 1 2 3i ,i , , , the 

Kirchhoff stress tensor Kσ  can be calculated if the principal directions 1 2 3i ,i , ,n  of this tensor 

are known. The second Piola-Kirchhoff stress tensor can then be determined as 1 1

2

T

P K

 σ J σ J . 

This tensor can then be used with the Green-Lagrange strain tensor to formulate the ANCF force 

vector sQ  of Eq. 32. The procedure for determining e

v , e

s , i , n̂ , and in  will be discussed in 

the following section. 

 

 

 



UNCLASSIFIED 
 

Contreras et al.                                                           AMR-12-1012                                                                       52 

7. INTEGRATION WITH MBS ALGORITHMS 

In addition to identifying a weakness in the literature in the area of continuum-based soil/vehicle 

interaction, one of the objectives of this paper is to propose an approach that can be considered 

as a departure from the co-simulation approach used in the large deformation analysis of MBS 

applications. In the co-simulation approach, two independent computer codes are used. The first 

is a MBS code that allows for solving the differential and algebraic equations, while the second 

is an FE code that allows for the analysis of large deformations. By adopting ANCF finite 

elements, the use of the co-simulation approach is not necessary since ANCF finite elements can 

be used to develop a unified framework for the treatment of the constraints and the analysis of 

large deformations. The goal is to be able to develop new computational environment that allow 

for the simulations of the interaction of soil and complex MBS vehicles as the one shown in 

Figure 11.  

The main objective of this paper, however, is to present a review of soil mechanics 

formulations that can be integrated with computational MBS algorithms used for the virtual 

prototyping of vehicle systems. These algorithms allow for modeling rigid, flexible, and very 

flexible bodies. The small deformation of flexible bodies in vehicle systems are often examined 

using the floating frame of reference (FFR) formulation. Therefore, efficient modeling of 

complex vehicle system dynamics requires the implementation of different formulations that can 

be used for rigid body, small deformation, and large and plastic deformation analyses. A 

Newton-Euler or Lagrangian formulation can be used to model rigid bodies, the FFR formulation 

that employs two sets of coordinates (reference and elastic) can be used to model small 

deformations, and ANCF finite elements can be used to model large and plastic deformations 

including soil deformations.  
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7.1 Integration of FE/MBS Algorithms 

MBS algorithms are designed to exploit the sparse matrix structure of the resulting dynamic 

equations. Because ANCF finite elements lead to a constant inertia matrix, Cholesky coordinates 

can be used to obtain an identity generalized mass matrix, leading to an optimum sparse matrix 

structure. Computational MBS algorithms are also designed to solve a system of differential and 

algebraic equations. The differential equations define the system equations of motion, while the 

algebraic equations define the joint constraints and specified motion trajectories. The nonlinear 

algebraic constraint equations can be written in a vector form as  ,t C q 0 , where q  is the 

vector of the system generalized coordinates, and t  is time. Using the constraint equations and 

the equations of motion, the augmented form of the equations of motion can be written as [107]:  

               

T

T

T

r

f

a

r f a

rr rf rr

fr ff ff

aaaa

c

    
    
         
    
       

q

q

q

q q q

M M 0 C Qq

M M 0 C Qq

Qq0 0 M C

QλC C C 0

                         (36) 

where subscripts ,r f  and a  refer, respectively, to reference, elastic, and absolute nodal 

coordinates, rrM , rfM , frM , ffM  are the inertia sub-matrices that appear in the FFR 

formulation, aaM  is the ANCF constant symmetric mass matrix, qC  is the constraint Jacobian 

matrix, λ  is the vector of Lagrange multipliers, rQ , fQ , and aQ  are the generalized forces 

associated with the reference, elastic, and absolute nodal coordinates, respectively, and cQ  is a 

quadratic velocity vector that results from the differentiation of the kinematic constraint 

equations twice with respect to time, that is cqC q Q . The generalized coordinates rq  and fq  

are used in the FFR formulation to describe the motion of rigid and flexible bodies that 

experience small deformations. The vector aq  is the vector of absolute nodal coordinates used to 
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describe the motion of flexible bodies that may undergo large displacement as well as large and 

plastic deformations as in the case of soils. The vector 
aq  includes the ANCF coordinates, which 

can be the nodal coordinates e  of all ANCF bodies including the ANCF soil coordinates or the 

ANCF Cholesky coordinates. Similarly, the mass matrix 
aaM  includes the soil inertia matrix as 

well as the inertia of the vehicle components modeled using ANCF finite elements. This mass 

matrix can be made into an identity mass matrix using Cholesky coordinates, leading to an 

optimum sparse matrix structure. Using the Cholesky transformation cB , the nodal coordinates 

e  can be expressed in terms of the Cholesky coordinates p  as ce B p . Using this Cholesky 

transformation, the mass matrix aaM  reduces to an identity mass matrix [108]. The generalized 

force vector aQ  includes also the contributions of the forces eQ  and sQ  of Eq. 33. The vectors 

eQ  and sQ  account for the vehicle soil interaction forces.  

The solution of Eq. 36 defines the vector of accelerations and Lagrange multipliers. The 

independent accelerations can be integrated to determine the coordinates and velocities including 

those of the soil. The soil coordinates can be used to determine the total strain components that 

enter into the formulation of the soil constitutive equations. Knowing the strains, the soil 

properties, yield function, and the flow rule; the state of soil deformation (elastic or plastic) can 

be determined as previously discussed in this paper. Knowing the state of deformation, the 

constitutive model appropriate for this state can be used to determine the elastic force vector sQ . 

Therefore, the structure of Eq. 36 allows for systematically integrating soil models into MBS 

algorithms used in the virtual prototyping of complex vehicle systems.  The Cam-Clay soil 

model proposed by Borja and Tamagnini [41] is considered as an example to explain how the 

solution of the FE/MBS equations can be used to solve the soil plasticity problem. Efficient 
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solution of the plasticity equations requires the use of the return mapping algorithm. In order to 

use this algorithm, the soil plasticity equations in their rate form are converted to a system of 

nonlinear algebraic equations using one of the existing integration formulas. 

7.2 Solution of the Soil Plasticity Equations 

As explained in the preceding section, in the Cam-Clay model proposed by Borja and Tamagnini  

[41], one needs to determine e

v  and e

s  , which can be used to determine the mean normal and 

deviatoric effective Kirchhoff stress invariants P  and Q  of Eq. 34. If n̂  is known, one can use 

Eq. 34 to determine the principal values of Kirchhoff stress tensor 1 2 3i ,i , , , which can be 

used to determine the Kirchhoff stress tensor Kσ , provided that the principal directions 

1 2 3i ,i , ,n  of this tensor are known. The second Piola-Kirchhoff stress tensor 1 1

2

T

P K

 σ J σ J  

can be determined and used with the Green-Lagrange strain tensor to formulate the ANCF force 

vector sQ  of Eq. 32. In this section, the procedure for determining e

v , e

s , 1 2 3i ,i , , , n̂ , and 

1 2 3i ,i , ,n  will be discussed. 

 Using the ANCF coordinates at the current time step, the matrix of position vector 

gradients J  can be evaluated. In order to solve the Cam-Clay plasticity equations, one defines 

the trial elastic left Cauchy-Green Lagrange deformation tensor    
tr

e e T

l l n
C J C J , where 

subscript n  refers to previous time step. Clearly, using ANCF coordinates at the current time 

step, one can evaluate  
tr

e

lC  In the Cam-Clay model, proposed by Borja and Tamagnini [41], it 

is known that the principal directions of   
tr

e

lC  are the same as the principal directions 

1 2 3i ,i , ,n  of e

lC . Similarly,  
tr

n̂  is assumed to be the same as n̂ . Therefore, the solution of 
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the plasticity equations is complete if  e

v  and e

s  are determined along with the consistency 

parameter and the Kirchhoff pre-consolidation pressure parameter 
cP . 

As previously mentioned, the rate form of the constitutive equations can, in general, be 

used with other plasticity equations to define a set of differential equations that can be integrated 

using implicit integration methods or the return mapping algorithm. The plasticity equations 

presented in section 3.1 are typically solved in either an implicit or explicit fashion. The explicit 

solution, while easier, requires small time steps for stability. Implicit schemes are more 

computationally intensive, but are stable. Fairly small times steps may still be needed for 

accuracy. The number of equations that govern the behavior of the hyperelastic elastoplastic 

finite deformation Cam-Clay model [41] is much smaller than the number of equations required 

for solving a general plasticity problem. In this model, advantage is taken of the properties of the 

natural logarithms to formulate the flow rate equations in terms of elastic strain variables, 

thereby allowing for the use of empirical hardening formulas. If J is the determinant of the 

matrix of position vector gradients e pJ J J , it follow that e pJ J J , where eJ  and pJ  are, 

respectively, the determinants of eJ  and p
J . Because      

3

1 2 31
ln ln lnv ii

J


       , it 

follows that  

     ln ln lne p e p e p

v v vJ J J J           (37) 

This relationship, upon differentiation, leads to the following rate form: 

= =
e p

e p

v v v e p

J J J

J J J
         (38) 

In the Cam-Clay model of Borja and Tamagnini [41], the following hardening law is used: 

0

0

= c

c

Pv

v P

 
 
 



     (39) 
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In this equation,   1v e   is the specific volume, e  is the soil void ratio,   is a soil 

compressibility index, and subscript 0 refers to the reference configuration. Because 
0J v v  

and 0J v v , it follows that 

= =e p c
v v v

c

PJ v

J v P
            (40) 

In the special case of virgin isotropic loading, 0e

s  , and cP P . It follows then from Eq. 35 

that 0cP P e  and    0

e e

c v c v
ˆ ˆP P e P       . Using this equation and Eq. 40, one obtains 

the following hardening law expressed in terms of p

v : 

1
,    ,    

ˆ ˆ

p
p pc

v v p

c

P J

P J
 

 
    


    (41) 

It is also important to point out that on the isotropic consolidation curve, one has the equation 

   ˆv v P P  , and on the swelling/recompression curves, one has    ˆv v P P  . Finally, 

using the assumption of the associative plasticity, the discrete flow rule at time 1nt   for implicit 

time integration in the space defined by the elastic Eulerian logarithmic stretches can be written 

as 

                                                                 1 1 1

1

tr
e e

n n n

n

f
  




 


 


                                          (42) 

where    2 2, , ( )c cf f P Q P Q M P P P    ,  1

tr
e

n  is the trial elastic strain,   is the vector 

of the principal values of the effective Kirchhoff stress tensor, and   is a plastic multiplier. 

The above equations can be shown to lead to the following set of equations that can be used to 

define a scalar return mapping algorithm [41] in the invariants of the elastic logarithmic stretches: 
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                                   (43) 

An example implicit integration scheme for the finite deformation Cam-Clay plasticity soil 

model can be developed by considering Eq. 43 as a set of simultaneous nonlinear equations. An 

application of the Newton-Raphson method can be used to solve this set of nonlinear equations. 

To this end, the residual vector r  and the vector of unknowns x  are written as follows:   
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r x                                     (44) 

The Newton-Raphson solution procedure requires the iterative solution of the algebraic system 

  1p p p p    r x x r , where 1px  is the vector of Newton differences. Having determined e

v  

and e

s , the effective Kirchhoff pre-consolidation pressure cP  can be determined from the Cam-

Clay hardening law. One can also determine e e e

v s
ˆ ε δ n  . Using these elastic strain 

components, the principal values of e

lC  can be determined. Using these values and the principal 

directions, , 1,2,3i i n , the tensor e

lC can be calculated and stored for use in the next time step. 

A closed form expression for the consistent tangent operator  p p r x  can be found and the 

algorithm can be made more efficient by the application of the static condensation technique 

[41]. 

7.3 ANCF Challenges 

The goal of using ANCF finite elements as the basis for the integration of continuum-based soil 

models and MBS algorithms is to develop a new computational framework for the systematic 
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and efficient simulations of wheeled and tracked vehicles. Nonetheless, there are several 

fundamental issues that need to be addressed in order to successfully develop such a new and 

integrated computational environment. Some of these fundamental issues are discussed below. 

1. ANCF finite elements are classified as fully parameterized and gradient deficient finite 

elements. Fully parameterized elements employ complete set of coordinate lines, while 

gradient deficient elements do not employ a complete set of coordinate lines. Some of 

fully parameterized ANCF finite elements, as with other existing finite elements, may 

suffer from locking problems in the case of thin and stiff structures. In order to explain 

the source of the locking, it is helpful to distinguish between two fundamentally different 

sources of locking; kinematic and stiffness-produced locking. In the case of kinematics-

produced locking, the ANCF interpolating polynomials used for some elements cannot 

assume shapes that are expected in response to loading conditions. This kinematic-

produced locking can be encountered with any other polynomial-based FE formulations. 

For example, a first order approximation (straight line) cannot be used to capture 

bending regardless of the loading conditions. The problem of kinematic-produced 

locking can always be solved by developing a library of finite elements that employ 

interpolating functions that have different polynomial orders and different numbers and 

types of degrees of freedom. Research in the important area of element technology is, 

therefore, necessary in order to develop new ANCF finite elements that are suited for 

different applications. 

2. The stiffness-produced locking, on the other hand, can be the result of very high stress 

forces in some directions. These high stress forces can be the result of high stiffness 

coefficients and/or the result of coupling between different modes of deformations. For 
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example, most existing beam formulations assume that the beam cross section remains 

rigid regardless of the type and magnitude of deformations and loadings. It is unrealistic, 

for example, to have a beam elongation without deformation in the beam cross section. 

This important Poisson mode of deformation can be systematically captured using 

ANCF beam elements. This is a unique and desirable feature despite the fact that such 

mode coupling can, in some applications, introduce very high frequencies and can lead 

to the deterioration of the element performance. The objective of the research in the area 

of element technology is to address these problems in order to develop new elements, 

force formulations, and integration schemes that provide accurate and efficient solutions 

for the stiffness-produced locking problems. 

3. While fully parameterized ANCF finite elements allow the use of general continuum 

mechanics approach, these elements do not preclude using other elastic force 

formulations [109]. To further explain this important point, one may consider the trivial 

case of zero elastic forces, =sQ 0  (see Eq. 33). In this case, the equations of motion can 

be written as  eMe Q , where the vector 
eQ  is the nodal force vector that does not 

include any elastic restoring forces (zero stiffness). Because ANCF finite elements lead 

to a constant mass matrix, the LU factorization of the mass matrix M  can be performed 

only once in advance. Even for very large systems, the ANCF equation  eMe Q  can be 

solved order of magnitude faster than real time. Therefore, the ANCF kinematic 

description (assumed displacement field) is not the source of the stiffness-produced 

locking. The formulation of the elastic forces is the source of the stiffness-produced 

locking. ANCF finite elements allow the use of elastic force formulations used in other 



UNCLASSIFIED 
 

Contreras et al.                                                           AMR-12-1012                                                                       61 

FE formulations and also allow for the use of the well-developed techniques documented 

in the FE literature to solve the locking problems.  

4. Another issue that must be addressed when continuum-based soil models are integrated 

with ANCF/MBS algorithms is the dimensionality of the problem. ANCF finite elements 

employ more coordinates than what is normally used in conventional structural FE 

formulations. The increase in the dimensionality, however, allows, as previously 

mentioned, for capturing important deformation modes that cannot be captured using 

other FE formulations. Warping, for example, can be systematically captured using 

ANCF finite elements without the need for artificially introducing warping functions. 

Similarly, tapered structure geometry can be described exactly using ANCF finite 

elements without the need for using several stepping elements. It is also important to 

point out that the increase in dimensionality does not have the same adverse effect as the 

increase in the stiffness. Many existing numerical time integration techniques, 

particularly the explicit ones, are designed to efficiently solve very large systems, but 

these methods can fail in the case of stiff equations. While the problems associated with 

high stiffness and locking were previously discussed in this section, it is important to 

point out that ANCF finite elements can be used to develop new meshes that have 

constant mass matrix and linear connectivity conditions. An optimum sparse matrix 

structure of the equations of motion with minimum number of nonzero entries can 

always be obtained using ANCF finite elements. For example, for tracked vehicles as the 

one shown in Figure 11, the rigid-link chains of the vehicle have a highly nonlinear 

inertia matrix. The two chains of the vehicle shown in Figure 11 have 128 revolute (pin) 

joints that introduce 640 highly nonlinear algebraic equations. Using ANCF finite 
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elements, it is possible to develop a flexible-link chain model that has linear joint 

formulations, thereby eliminating the joint constraint equations at a preprocessing stage 

and reducing the number of nonzero elements by more than 12000 [110]. The dimension 

of the constraint formulations (constraint functions, Jacobian, and first and second 

derivative vectors), used at the position, velocity, and acceleration steps, and the number 

of nonzero entries resulting from the constraint formulation are significantly reduced. 

Additionally, by using Cholesky coordinates, the inertia matrix reduces to an identity 

matrix. This allows for developing efficient flexible-link chain tracked vehicle models 

that capture significant details that cannot be captured using previously developed 

vehicle models.  

5. Capturing geometric details can be important when the analysis is performed. This may 

require, in some applications, the use of a larger number of finite elements. This can lead 

to an increase in the dimensionality of the problem. While the dimensionality problem is 

an issue that must be addressed, as previously discussed in this section, it became 

recently clear that the use of geometrically correct finite elements is necessary. All 

existing structural finite elements (conventional elements that employ infinitesimal 

rotations and large rotation vector formulation elements) lead to geometric distortion, 

and this is the reason that such elements are being now abandoned. When using these 

elements as the basis for analysis, CAD models cannot be converted to analysis meshes 

without geometry distortion. Furthermore, there is no linear mapping between such 

elements and CAD representations developed using B-splines and NURBS geometries. 

B-spline and NURBS representations, on the other hand, can be converted to ANCF 

meshes without geometric distortion. This allows for developing accurate tire and 
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uneven terrain geometries using ANCF finite elements, thereby facilitating the 

integration of solid CAD modeling and analysis. 

  

8. SUMMARY 

In this paper, soil mechanics formulations that can be integrated with FE/MBS algorithms to 

study vehicle dynamics are reviewed. Several simple models including analytical terramechanics 

models are discussed. Bekker’s model as well as other parametric and analytical terramechanics 

models have been used in the study of track/soil interaction and can be implemented in MBS 

algorithms using simple discrete force elements. These simple models, however, have serious 

limitations because they do not capture the distributed elasticity and plasticity of the soil. The 

advantages and limitations of the discrete element method (DEM) are also discussed in this paper. 

More general continuum plasticity soil formulations are reviewed. Among the continuum soil 

plasticity formulations discussed in this paper are the Mohr-Coulomb, Drucker-Prager, modified 

Cam-Clay, Barcelona Basic, elasto-plastic cap model for partially saturated soil, viscoplastic cap, 

and bounding surface plasticity unsaturated models. The integration algorithm that is commonly 

used to solve the plasticity equations is discussed. This algorithm can be integrated within the 

absolute nodal coordinate formulation (ANCF) to develop a computational procedure that allows 

for the study of vehicle/soil interaction dynamics. The ANCF/soil model integration will be the 

subject of future investigations.  
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