AIS History and Future Improvements in Waterway Management

Brandan Scully, PE
USACE Charleston District

Kenneth Ned Mitchell, PhD
US Army Engineer Research and Development Center
Coastal and Hydraulics Laboratory
Vicksburg, Miss.
on detail to USACE-HQ

June 26th, 2012
AIS History and Future Improvements in Waterway Management

Presented at the Transportation Research Board (TRB-MTS) Conference held in Washington, DC 26-28 June, 2012

Abstract

Presented at the Transportation Research Board (TRB-MTS) Conference held in Washington, DC 26-28 June, 2012
WHAT IS AIS?

- Primarily for safety and maritime domain awareness
- Time-stamped position
- Vessel identifying information
- Vessel type classification
- Vessel dimensions
- Vessel “behavioral” information
AIS IN REAL TIME
AGGREGATE AIS RECORD

\[X_{T0}, Y_{T0}; \{ P_{T0} \} \]

\[X_{T1}, Y_{T1}; \{ P_{T1} \} \]

\[X_{T2}, Y_{T2}; \{ P_{T2} \} \]
WHAT DOES IT MEAN?
Aggregate AIS Record

- Automatic Identification System (AIS) essentially provides a remote sensing technology for:
 - Quantifying vessel interactions with navigation projects
 - Assessing system-level dynamics (project-to-project vessel movements)
 - Real-time monitoring of navigable conditions in USACE projects

Source: Scully, 2012
BASIC IMPLEMENTATION

- User Profiles
- Decision Support
- Vessel Transit Data Collection
User Profiles

- Size
- Type
- Activity
- Reach-Level
Decision Support

- Suitability
- Interactions
- Potential Hazards
- Potential Damage
Vessel Transit Data Collection

- Similar Data
- Less Processing
- More Detail
- Cheaper
Vessel Transit Data Collection

- Channel Obstruction
- Event Verification
COMPLEX APPLICATIONS

- When are vessels in the channel?
- Tide corrected comparisons
- Detailed vessel comparisons
- How are traffic patterns changing?
- How do conditions affect vessels?
- Are navigation features working?

- Draft-centered focus
- Draft compared to authorized project depth
- Draft compared to available depth
- Speed, heading or other
Detailed Vessel Comparisons

Draft as % Tide
Available Channel

- Scenario 1
- Scenario 2

Levels:
- High
- 106%
- 104%
- 102%
- 100%
- 98%
- 96%

- Mid (Flood)
- Mid (Ebb)
- Low
Detailed Vessel Comparisons

Average Speed of TANKER vs CARGO 1/1-6/2009

- Tanker Average Speed (m/s)
- Cargo Average Speed (m/s)

- High
- Flood
- Low
- Ebb

15.0
10.0
5.0
0.0
Changing Traffic Patterns

- Density plot changes over time represent response to changes in channel conditions.
Vessel Response

L = LENGTH, LB = DIM BOW, LS = DIM STERN
B = BEAM, BP = DIM PORT, BS = DIM STARBOARD
C = CENTERLINE LOCATION
OC = KEEL OFFSET = (BS - BP)/2

+ OFFSET, KEEL IS STARBOARD OF ANTENNA
- OFFSET, KEEL IS PORT OF ANTENNA
Feature Performance
Optimize System Performance

- System inputs include decision variables (things we control) as well as natural forcings that we don’t control.
- Also must account for real-world constraints, capacities, schedules, etc.
- Optimization techniques reveal the best combination of decisions to ensure the highest possible:
 - engineering performance
 - environmental benefits
 - system reliability
AIS History and Future Improvements in Waterway Management

Questions?

Brandan Scully
Brandan.m.scully@usace.army.mil

Dr. Kenneth Ned Mitchell
Kenneth.n.mitchell@usace.army.mil
USACE-HQ: (202)-761-0259