The morphodynamics of the John’s Pass-Blind Pass dual inlet system were investigated based on hydrodynamic and morphology measurements, and numerical modeling. The co-existence of the dual inlets is realized by the dominance of mixed-energy John’s Pass in terms of tidal prism and size of the ebb delta and the artificial maintenance of the wave-dominated migratory Blind Pass. Due to the secondary role of Blind Pass, the aggressive anthropogenic activities there do not seem to have a significant influence on the morphodynamics of John’s Pass. On the other hand, the opening (in 1848) and subsequent evolution of John’s Pass had substantial influence on Blind Pass, causing it to migrate rapidly to the south. In addition anthropogenic activities had much more influence on the morphodynamics of the secondary Blind Pass than that of the dominating John’s Pass. Results from numerical modeling provide a semi-quantitative understanding of the hydrodynamics and morphodynamics of John’s Pass and Blind Pass in association with cold front passages, which have substantial influences on inlet morphology. Two large eddies are modeled from the interactions between the southward longshore current and John’s Pass ebb and flood flow, respectively. These eddies are closely related to the morphodynamics of the channel margin linear bar and longshore transport divergence at the downdrift side. Both are key features of a mixed-energy inlet. The shallow water and wave-breaking-induced longshore current and elevated sediment suspension along the ebb delta terminal lobe provide the pathway for sediment bypassing. The morphodynamics of Blind Pass are dominated by wave forcing. The weak ebb jet is not capable of forming a sizable ebb delta and tends to be deflected by the strong longshore current, causing elevated longshore transport along the downdrift beach. The 90-degree turn of the inlet, which is common for wave-dominated migratory inlets, results in weak ebb flushing along the updrift (north) side of the inlet, and is responsible for the alongshore migration of the inlet before the artificial stabilization and sedimentation along the northern side of the inlet following stabilization.
<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
<td>Same as Report (SAR)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Morphodynamics of an anthropogenically altered dual-inlet system: John’s Pass and Blind Pass, west-central Florida, USA

Ping Wang a,⁎, Tanya M. Beck b

Abstract

The morphodynamics of the John’s Pass–Blind Pass dual inlet system were investigated based on hydrodynamic and morphology measurements, and numerical modeling. The co-existence of the dual inlets is realized by the dominance of mixed-energy John’s Pass in terms of tidal prism and size of the ebb delta and the artificial maintenance of the wave-dominated migratory Blind Pass. Due to the secondary role of Blind Pass, the aggressive anthropogenic activities there do not seem to have a significant influence on the morphodynamics of John’s Pass. On the other hand, the opening (in 1848) and subsequent evolution of John’s Pass had substantial influence on Blind Pass, causing it to migrate rapidly to the south. In addition, anthropogenic activities had much more influence on the morphodynamics of the secondary Blind Pass than that of the dominating John’s Pass.

Results from numerical modeling provide a semi-quantitative understanding of the hydrodynamics and morphodynamics of John’s Pass and Blind Pass in association with cold front passages, which have substantial influences on inlet morphology. Two large eddies are modeled from the interactions between the southward longshore current and John’s Pass ebb and flood flow, respectively. These eddies are closely related to the morphodynamics of the channel margin linear bar and longshore transport divergence at the downdrift side. Both are key features of a mixed-energy inlet. The shallow water and wave-breaking-induced longshore current and elevated sediment suspension along the ebb delta terminal lobe provide the pathway for sediment bypassing. The morphodynamics of Blind Pass are dominated by wave forcing. The weak ebb jet is not capable of forming a sizable ebb delta and tends to be deflected by the strong longshore current, causing elevated longshore transport along the downdrift beach. The 90-degree turn of the inlet, which is common for wave-dominated migratory inlets, results in weak ebb flushing along the updrift (north) side of the inlet, and is responsible for the alongshore migration of the inlet before the artificial stabilization and sedimentation along the northern side of the inlet following stabilization.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Tidal inlets provide a link between the coastal ocean and back-barrier bay, exchanging water, sediment, nutrients, and other materials between them. Natural sediment supply for an inlet system can be from the land via rivers and estuaries, offshore, and alongshore. Sediment transport through and in the vicinity of tidal inlets is active and complicated, driven by interactive hydrodynamic forcing including tidal currents, breaking and non-breaking waves, wave-driven currents, wind-driven currents, and fluvial currents. Tidal inlet morphology is highly variable, ranging from deep channels to shallow shoals, and with a variety of bedforms across the ebb- and flood-tidal deltas (FitzGerald, 2011). Interactive morphological features associated with a tidal inlet system typically include a main channel between the barrier islands, an ebb-tidal delta complex, a flood-tidal delta complex, and adjacent beaches and spit complexes (Hayes, 1979; FitzGerald, 1996, 2011). Depending on the relative dominance of tide and wave forcing, tidal inlet systems can be classified as tide-dominated, wave-dominated, and mixed energy (Hayes, 1979; Davis and Hayes, 1984; Davis, 1994). Generally, tidal forcing tends to maintain a deep and straight inlet channel for efficient tidal exchange. Wave forcing tends to transport sediment alongshore, resulting in infilling of the inlet channel and causing the inlet to migrate in the downdrift direction (Bruun, 1978). The morphodynamics of tidal inlets reflect the dynamic balance between tidal forcing and wave forcing. A tide-dominated inlet has a deep and straight main channel with a well developed ebb-tidal delta characterized by large, shore-parallel channel margin linear bars (Davis, 1994). A wave-dominated inlet tends to be migratory with a small ebb-tidal delta or none at all. A tide-dominated inlet tends to have a relatively large tidal prism, whereas a wave-dominated inlet typically has a relatively small tidal prism (Davis, 1994). Two kinds of mixed-energy inlets are distinguished:
mixed-energy offset inlets and mixed-energy straight inlets (Davis, 1994). A mixed-energy offset inlet is characterized by a modest ebb-tidal delta and a distinct downdrift offset in the shoreline, whereas a mixed-energy straight inlet has an ebb-tidal delta bending toward the downdrift without significant shoreline offset (Gibeaut, 1991). For the dual-inlet system examined here, John’s Pass is a mixed-energy straight inlet and Blind Pass is a wave-dominated inlet.

Many inlets also support artificially maintained navigation channels, further complicating the system by introducing substantial anthropogenic controls (Kraus, 2009). Dean (1988) concluded that more than 80% of the beach erosion issues along the Florida coast can be directly linked to tidal inlets. Rapid and large morphological changes are often measured at tidal inlets, tidal deltas, and their adjacent beaches, making them one of the most dynamic systems in the nearshore environment. Therefore, understanding and quantifying the morphodynamics of tidal inlets is a challenging task.

Many bays along the microtidal, mixed energy west-central Florida coast are served by more than one tidal inlet (Davis, 1994). If the multiple inlets are relatively close to each other, the hydrodynamic and morphologic change at one inlet can be directly influenced by the evolution of the other inlets (Van de Kreeke, 1990; Aubrey and Giese, 1993; Fitzgerald, 1993; Fitzgerald, 1996; Van de Kreeke et al., 2008; Pacheco et al., 2010). Numerous studies have been conducted to examine the hydrodynamics and co-existence of multiple inlets (e.g., Van de Kreeke, 1990; Salles et al., 2005; Van de Kreeke et al., 2008; Pacheco et al., 2010); however, morphodynamic interactions between adjacent inlets are not well understood. In addition, most of the west-central Florida inlets are heavily modified anthropogenically. Engineering activities at one inlet can significantly influence the morphodynamics of another. Typical engineering activities at a tidal inlet include construction of jetties, channel dredging, ebb-tidal delta mining, construction of causeways, and artificial islands in the back-bay, and nourishment of adjacent beaches. In the case of the west-central Florida coast, the co-existence of multiple inlets is at least partially artificially maintained. The morphodynamics of the John’s Pass and Blind Pass system are influenced by nearly all the natural and anthropogenic factors discussed above.

In this study, the John’s Pass and Blind Pass morphodynamics are examined through analysis of data from field measurements and numerical modeling. Time-series aerial photos from 1926 were compared to examine large-scale morphological changes. Bathymetric surveys, along with flow and wave measurements, were conducted to link the hydrodynamics to morphological changes. The state-of-the-art numerical model, Coastal Modeling System (CMS), is employed to examine the spatial patterns of current, wave, and sediment transport. The CMS was developed by the US Army Engineer Research and Development Center’s (ERDC) Coastal Inlets Research Program (CIRP) specifically for integrated numerical modeling of hydrodynamics (Buttolph et al., 2006; Lin et al., 2011; Reed et al., 2011; Wu et al., 2011), sediment transport (Larson et al., 2011), and morphologic changes (Sanchez and Wu, 2011) associated with tidal inlets.

The objectives of this study are to examine: 1) morphodynamics of an interactive dual-inlet system; 2) factors controlling the morphodynamics of the inlets, evaluated on the basis of both field data and simulated data from the CMS; 3) anthropogenic influences on the morphodynamics of the two inlets; and 4) sediment pathways controlling the morphodynamics of the inlet system.

2. Study area

John’s Pass and Blind Pass, separated by the 6-km long Treasure Island, service a portion of Boca Ciega Bay along the west-central Florida coast (Fig. 1). Regionally, the John’s Pass-Blind Pass system is part of the west-central Florida barrier-island chain that extends north from the mouth of Tampa Bay. The entire area, from the beaches to the inlets to the back-bay, is densely developed since the 1930s. Several causeways and bridges and numerous dredge and fill finger channels dissect the back-barrier bay, especially within the water body landward of Blind Pass (Fig. 1).

The overall wave energy along this coast is mild with average breaker heights for west-central Florida estimated to be 0.25–0.30 m (Tanner, 1960). Nearshore waves approximately 400 m offshore Blind Pass were measured from November 25, 2003 to February 26, 2005. A total of 4181 measurements were obtained with a measurement interval of 1.5 h. This yields roughly 261 days of wave data (Fig. 2). The average significant wave height was 0.26 m with an average peak wave period of 5.8 s. The influences of cold-front passages are apparent, as illustrated by the frequent high wave events during the winter season from October to March. The spring season (March and April) can have relatively high wave energy induced by the passage of late cold fronts. The summer of 2004 was exceptional in that the passage of three tropical storms in September and October, Frances, Ivan and Jeanne (Elko and Wang, 2007) resulted in three substantial, high-wave events. The distal passage of Hurricane Ivan generated long-period (12–16 s) swells (Fig. 2, lower), which are rare for this coast. Although representing a short period of time, Fig. 2 illustrates the typical pattern of wave conditions, with the exception of the three tropical storms. Consequent to the wave conditions, sediment transport in the study area tends to be episodic as it is controlled by high-energy events typically associated with the frequent passages of winter cold fronts (Walton, 1973; Davis, 1997; Elko et al., 2005; Elko and Wang, 2007). Sustained wind and waves during these events tend to come from a northerly direction, driving a net southward longshore sediment transport.

The study area is characteristic of a mixed tidal regime. The spring tide is typically diurnal with a range of roughly 0.8 to 1.2 m, whereas the neap tide is semi-diurnal with a range of 0.4 to 0.5 m (Fig. 3). Although the spring tide tends to be diurnal, a short pause or slight water-level fall typically occurs during the prolonged flooding phase, whereas the shorter ebbing phase is typically not interrupted. The magnitude of the slight water-level fall during the spring flooding phase increases as the tidal cycle changes to a neap tidal cycle, and eventually becomes a semi-diurnal tide during the neap phase (Fig. 3). The tides measured in the offshore (seaward of John’s Pass at the edge of Fig. 1), John’s Pass channel, Blind Pass channel, and inside the bay (next to the St. Pete Beach Causeway; Fig. 1) matched well in terms of both tidal range and phase, indicating that the relatively small system and bay interconnectivity did not produce a considerable tidal phase lag (Fig. 3). However, a noticeable phase lag between the tides measured in the back-bay and the tides at the other three locations was observed toward the end of the deployment in early August (Fig. 3, right end). This was caused by the storm surge associated with the passage of Tropical Storm Faye.

Sediments along the west-central Florida coast are bimodal composed of silicilastic and carbonate fractions. The silicilastic component is primarily fine quartz sand with a mean grain size of 0.17 mm. The carbonate fraction is mostly shell debris of various sizes. Mean grain size in the study area varies typically from 0.2 mm to 1.0 mm, controlled by the varying amounts of shell debris. The largest grain sizes are found in the channel thalweg where coarse lag deposits are concentrated.

John’s Pass is a jettied inlet located between Treasure Island to the south and Sand Key to the north. Since its opening in 1848 by a hurricane, John’s Pass has gradually become the dominant inlet of the John’s Pass—Blind Pass system, capturing 70–80% of the tidal prism (Mehta et al., 1976). As shown in Fig. 1, the portion of Boca Ciega Bay landward of John’s Pass is larger and not as dissected by man-made islands as compared to the portion landward of Blind Pass. Time-series aerial photos show that substantial anthropogenic activities at John’s Pass started in the 1950s (Fig. 4). Three of the significant
The engineering activities at John’s Pass include: 1) construction and extension of the inlet jetties along both sides, 2) construction of numerous artificial islands (aka, finger channels) in the back-barrier bay, and 3) a nearshore berm nourishment (~1970), which was artificially moved onshore and attached to the shoreline in 1974. Also apparent from the time-series aerial photos, the shoreline positions in

![Fig. 1. The John’s Pass and Blind Pass inlet system, illustrated with a 2004 aerial photograph. The long spit and relic Blind Pass flood-tidal delta (shoal) indicates the southward migration of the inlet.](image)

![Fig. 2. Wave conditions measured at ~400 m offshore Upham Beach at 4 m water depth. The measurements were conducted from November 25, 2003 to February 26, 2005 with some gaps in time due to equipment maintenance. A total of 4181 measurements were obtained representing roughly 261 days. Upper panel: significant wave height. Lower panel: peak wave period.](image)
the vicinity of the inlet varied substantially. Except for vegetation changes, the flood-tidal delta has remained largely stable. John’s Pass is characteristic of a mixed-energy straight inlet with a large ebb-tidal delta, skewed to the south in the direction of the southward net longshore sediment transport (Fig. 5). The channel-margin linear bar along the updrift (north) side, the relatively shallow terminal lobe, and the swash bar complex over the downdrift portion of the ebb-delta are illustrated by the detailed bathymetry. The downdrift attachment point where the bypassed sediment reaches the beach is outlined by the protruding shoreline (Fig. 6). The Sunshine Beach, updrift (north) of the attachment point (Fig. 6 middle), experiences chronic erosion, whereas the beach downdrift (south) of the attachment point is wide with up to 300 m of dry beach, and has shown an accretionary trend over the last two decades. John’s Pass and its ebb-tidal delta have been dredged in 1960, 1961, 1966, 1971, 1980, 1985, 1988, 1991, and 2000 (Barnard, 1998). The dredged sand is typically used to nourish the adjacent beaches.

The origin of Blind Pass is not historically recorded. Prior to the opening of John’s Pass in 1848, Blind Pass appeared to have been the dominant inlet serving Boca Ciega Bay, having large flood- (Fig. 1) and ebb-tidal deltas. As John’s Pass gradually captured a substantial portion of the tidal prism, the net longshore sediment transport caused rapid southward migration of Blind Pass (Davis and Barnard, 2003), as illustrated by the long southward migrating spit (Figs. 1 and 7). Blind Pass was eventually stabilized with jetties constructed in 1937, fixing the entrance channel into a sharp 90-degree turn with a relatively wide (160 m) entrance channel (Fig. 7). Similar to John’s Pass, extensive dredge-and-fill construction was conducted in the back-barrier bay between the 1940s and 1960s (Figs. 1 and 7). The engineered islands, as well as the construction of several causeways, resulted in an approximately 30% reduction of the back-bay area and thus a continued decrease in tidal prism (Davis and Barnard, 2000, 2003). The gradual “takeover” of John’s Pass since its opening in 1848 and the artificial reduction of the bay area have resulted in substantial...
3.2. Numerical modeling using the Coastal Modeling System (CMS)

The CMS is a process-based suite of models that integrate hydrodynamics, sediment transport, and morphologic change through the coupling of two modules, CMS-Flow and CMS-Wave. The CMS was developed specifically for modeling inlet processes and morphology changes. CMS-Flow solves depth-integrated continuity and momentum equations using a finite-volume method (Kraus and Miliotello, 1999; Buttolph, et al., 2006; Reed et al., 2011). Both CMS-Flow and CMS-Wave have been tested extensively for inlet applications at numerous locations. Generally, the calculated tidal-driven flow velocity and wave field matched the measured values well (e.g., Beck and Kraus, 2011; Lin et al., 2011; Reed et al., 2011). In this study, the CMS is applied to semi-quantitatively illustrate regional patterns of wave–current interaction and sediment transport in relation to inlet morphodynamics. CMS-Flow results for water level and current
were compared and validated for the measurement sites. Validation of the individual hydrodynamics parameters (such as wave height) and sediment transport parameters is not directly related to the regional semi-quantitative morphodynamics discussions here.

The unified sediment transport formula, Lund-CIRP (Camenen and Larson, 2007; Larson et al., 2011), and a non-equilibrium transport formula (NET) (Wu, 2008; Sanchez and Wu, 2011) were applied for the computation of sediment transport and morphology change. The sediment transport computation included transport of non-cohesive sediments by both currents and waves (non-breaking and breaking waves). Given the large areas of shallow water typically associated with tidal inlets, e.g. over the ebb-tidal delta and near the shoreline, an accurate representation of wave breaking and the subsequent elevated sediment suspension and transport is essential.

CMS-Flow (Reed et al., 2011) is coupled with CMS-Wave (Lin et al., 2011), which is a steady-state, spectral transformation wave model. CMS-Wave is an improved and modified version of the wave model WABED for inlet applications with options to include several different structures (Mase and Kitano, 2000; Mase, 2001; Mase et al., 2005; Lin et al., 2006, 2008). The model computes wave refraction, shoaling, reflection, diffraction, and breaking. The radiation stress induced by breaking is computed and passed to CMS-Flow for the calculation of the wave-induced longshore current, in addition to wave height, period, and setup, all of which are necessary for calculating sediment transport under combined waves and currents.

An accurate bathymetric grid is essential because wave propagation is strongly influenced by nearshore bathymetry. In addition, high spatial resolution is necessary to adequately resolve the inlets. The nearshore, the two inlets, the back-barrier bay, and adjacent beaches were surveyed between 2006 and 2008. Data from the NOAA NGDC Coastal Relief Model (http://ngdc.noaa.gov) covered the offshore regions that were not surveyed by this study. The CMS grid was constructed based on the above bathymetric data (Fig. 9). A variable-sized rectangular-cell grid system, with a spatial resolution ranging from 10×10 m in the vicinity of the channels, the ebb-tidal deltas, and the nearshore zone, to 80×100 m near the ocean boundary was generated with the main axes (oriented along 35°–215°) parallel to the regional shoreline and bathymetric trend. The large depth variations associated with deep channels, and shallow flood- and ebb-tidal deltas are apparent.

To simulate the flow field, CMS-Flow was driven by the measured tide at the offshore boundary. It is assumed that a 4-week record measured during July–August 2008 can adequately represent the offshore tidal variation (Fig. 3). The 4-week record was therefore replicated to cover a 2-year period. The WIS (Wave Information Study) hindcast data, developed by the U.S. Army Corps of Engineers (USACE), was used to provide a continuous wave record. The closest WIS station is located approximately 30 km offshore John’s Pass at 17 m water depth, or about 27 km seaward of the ocean boundary. Snell’s Law was applied to transform waves from the 17 m water depth to the seaward boundary of the modeling domain. After examining a 20-year (1980–1999) WIS record, waves during two years, 1997 and 1999, were judged to be representative and used in the modeling effort. Since the WIS hindcast wave data was computed based on regional wind forcing, it was, therefore, not considered again in the wave-propagation modeling to avoid over-prediction. Although CMS-Wave

Fig. 7. Time-series aerial photos of Blind Pass from 1926 to 2006. Note the diminishment of the ebb-tidal delta over the years and the severe beach erosion at the downdrift.

Fig. 8. Monthly survey lines across the Blind Pass northern shoal, and locations and times of current meter deployments. UADP: upward-looking Acoustic Doppler current Profiler; SADP: side-looking Acoustic Doppler current Profiler.
suggesting that a depth-averaged model like CMS should provide a numerical modeling. The simulated straight inlet channel and the large ebb-tidal delta. Flow velocity through John’s Pass is also responsible for the relatively deep and (Barnard, 1998) yielded a much larger tidal prism at John’s Pass than whereas the fl

168

-\textit{uence on beach-inlet morphology and can therefore be neglected in the modeling. A spatially constant grain size of 0.26 mm, roughly representing the average size of a large number of samples, was used. Although a nearly 2-year morphology change was produced, this study focuses on the spatial pattern of current, wave, and sediment transport for the analysis of morphodynamics. Detailed comparison between the predicted morphologic changes and measured ones is beyond the scope of this paper.

4. Results and discussion

In the following, the morphodynamics of the John’s Pass and Blind Pass system are discussed based on field data and the results from the numerical modeling. The simulated flow, wave, and sediment transport fields provide insight into the interpretation of the observed morphodynamics at the dual inlets.

4.1. Measured tidal currents through the inlet channel

Simultaneous flow measurements through the channel thalweg were conducted in 2001. Much faster flow was measured through John’s Pass than through Blind Pass, especially during the flooding tide (Fig. 10). The peak ebb velocity through the 200-m wide John’s Pass approaches 1.5 m/s versus about 1.0 m/s through the 160-m wide Blind Pass. The peak flood velocity through John’s Pass reaches 1.2 m/s, whereas the flood velocity is mostly less than 0.5 m/s at Blind Pass. The high flow velocity combined with the large cross-sectional area (Barnard, 1998) yielded a much larger tidal prism at John’s Pass than at Blind Pass, confirming that the John’s Pass inlet is the dominant inlet of the two, as suggested by Mehta et al. (1976). The strong flow through John’s Pass is also responsible for the relatively deep and straight inlet channel and the large ebb-tidal delta. Flow velocity through most of the water column is largely homogeneous (Fig. 11), suggesting that a depth-averaged model like CMS should provide a reasonable representation of hydrodynamics at John’s Pass and Blind Pass.

Tidal flow velocity exhibits substantial variation across the Blind Pass channel. In addition, the cross-channel distribution pattern differs between ebb and flood tide (Fig. 12). During ebb tide, the flow velocity measured at the channel thalweg is 2 to 3 times larger than that measured over the north shoal (Fig. 12A; Fig. 8 for location). The peak ebb velocity through the channel thalweg approaches 1.0 m/s. During flooding tide, the flow velocity is primarily uniform across the channel, peaking at about 0.5 m/s. The flow patterns measured across the channel near the bend (Fig. 12B, Fig. 8 for location) are different from those measured near the entrance. Both the flood and ebb velocity show a decreasing trend toward the channel bend where sedimentation was measured. For this particular tidal cycle, the peak ebb velocity is nearly 1.2 m/s. The smaller peak flood velocity relates to the characteristics of the spring tides, which tend to have a prolonged rising phase followed by a sharp falling phase (Fig. 3). The documented tidal flow pattern across the inlet channel can be attributed to the nearly 90-degree turn. The northern side of the inlet lies in the shadow zone of the ebb current as it turns around the corne. Such a sharp bend is common for migratory inlets, resulting from extension of the updrift barrier-island and recession of the downdrift side. Therefore, the tidal flow distribution shown in Fig. 12 should be representative of many wave-dominated migratory inlets. For the mixed-energy straight John’s Pass, flow is largely uniform across almost the whole channel.

4.2. Measured morphological changes at Blind Pass and John’s Pass

As discussed earlier, the morphological features at John’s Pass and Blind Pass are quite different, reflecting the relative dominance of tides and waves. John’s Pass is the dominant inlet of the two and remains relatively stable, whereas the weaker Blind Pass responds more actively to changes at John’s Pass and anthropogenic activities. A major morphological feature of Blind Pass is the infilling between the structured channel and the severe erosion along the downdrift Upham Beach. A field study aimed at quantifying sedimentation in the Blind Pass channel was conducted after the dredging in the summer of 2000 (Wang et al., 2007). Three years after the dredging occurred, the northern side of the inlet had filled to a level less than 1 m below mean sea level from the cut depth of about 5 m. Recently, an ebb-tidal delta has developed with a west–southwest trending orientation (Fig. 13). By 2008, i.e. eight years after the last dredging, the ebb-tidal delta had become relatively substantial in size with visible wave shoaling and breaking along much of the delta during both fair and stormy weather. The development of the ebb-tidal delta at this wave-dominated inlet was influenced by the sand introduced to the nearshore system by the beach nourishments of 2004 and 2006 on Treasure Island and Long Key (Wang et al., 2008), located north and south of the inlet, respectively. The ebb-tidal delta may thus not be maintained by natural wave-dominated conditions alone.

Based on time-series survey data, the shoaling rate in the entrance channel of Blind Pass was 35,000 m3/year during the first two years, reducing to 26,000 m3 in the third year probably due to sediment bypassing around the corner into the back channels (Wang et al., 2007). The inlet effectively serves as an efficient trap for sediment supplied by southward longshore transport. Most of the sediment shoaling occurs along the north side of the inlet. This corresponds to 1) its proximity to the sand source, 2) limited impoundment at the north jetty, 3) peak ebb flushing due to preferential location of the ebb jet along the south side, and 4) relatively stronger flood current in comparison to the ebb current along the north side (Figs. 11 and 12). Accumulation and erosion patterns in the Blind Pass channel demonstrate a distinct seasonal trend, with typically active sedimentation in the winter driven by frequent cold front passages and sediment redistribution during the calmer summer season (Fig. 14).
The channel infilling took the form of a distinct sediment body, with the deposition occurring near the mouth at the beginning of the winter season and migrating further into the inlet during late winter and early summer.

Upham Beach, directly south and downdrift of Blind Pass, is a well-documented erosional hot spot characterized by a persistent sand deficit because of the net southward longshore transport (Elko et al., 2005; Elko and Wang, 2007). The main cause of erosion at Upham Beach is its proximal location to Blind Pass, which impounds nearly the entire sand supply from southward longshore transport during a typical dredging interval (4–7 years). The beach south of Upham Beach tends to be accretory, as the erosional hotspot serves as a feeder beach supplying sand to the downdrift coast (Elko and Wang, 2007).

The morphological characteristics of John’s Pass include the distinct channel-margin linear bar along the updrift side of the inlet, the large southward skewed ebb-tidal delta with numerous swash bars, and the apparent downdrift attachment point. The beach north and updrift of John’s Pass has been relatively stable over the last decade. Sunshine Beach, south and downdrift of John’s Pass, has shown an erosive trend over the years, driven by a reversal of the regional southward longshore transport induced by wave refraction over the John’s Pass ebb-tidal delta. The beach at and south of the John’s Pass attachment point is accretory, benefiting from the sand bypassing the ebb-tidal delta. Compared to the inlet morphology of Blind Pass, John’s Pass morphological features reflect a substantial influence of the much stronger tidal forcing.

4.3. Calculated tidal currents and waves

The numerical model provides a regional scope to examine the flow, wave, and sediment transport fields, which cannot be obtained from point measurements in the field. Because morphological changes are strongly controlled by temporal and spatial variation (i.e., gradients) in hydrodynamics and sediment transport, flow and wave fields provide insight into the morphological trends. For

![Fig. 10. Measured flow velocity through the main channels of John’s Pass and Blind Pass. Negative velocity represents ebb flow and positive represents flood flow.](image)

![Fig. 11. An example profile of velocity through the water column measured during one tidal cycle over the channel thalweg at Blind Pass. The velocities are largely uniform throughout the water column above roughly 1 m from the bed. Note that ebb velocity (negative) is greater than the flood velocity (positive).](image)
example, as discussed above, the 90-degree turn of Blind Pass resulted in strong ebb flow (~1 m/s) along the southeast side of the inlet and weak ebb flow (~0.4 m/s) along the northwest side, whereas the flood flow is rather uniform across the entire inlet (Figs. 11 and 12). This tidal flow pattern is responsible for the preferential sedimentation in the channel.

The tidal flow patterns, as computed by the CMS model, differ between the mixed-energy John’s Pass and the wave-dominated Blind Pass. Strong flows of up to 1.2 m/s are modeled through the entire John’s Pass channel during both flood and ebb phases. The ebb jet, which is important for the formation of the ebb-tidal delta, as discussed further in the following, extends to about 1 km offshore. The tidal flow at Blind Pass, by contrast, is considerably weaker and strongly influenced by the 90-degree turn. The flood flow is relatively weak and largely uniform across the entire inlet channel. This contrasts with the ebb flow, which is focused along the south side of the inlet with much larger velocities than the flood flow. Along the north side of the inlet, the ebb flow is quite weak. The modeled pattern agrees well with the measured flow pattern (Fig. 12). The ebb jet, extending along the south side, is rather narrow and extends less than 400 m seaward. The CMS model thus reproduced the John’s Pass dominance in terms of tidal flow well.

Regional patterns of wave propagation and wave–current interaction are crucial to sediment transport and therefore morphological change at John’s Pass and Blind Pass. Spatial patterns of hydrodynamic forcing are very difficult to measure in the field and therefore are typically inferred from point measurements. Here we attempt to illustrate regional patterns of wave–current interaction and sediment transport semi-quantitatively using the CMS.

Based on field measurements, Wang et al. (2007) suggested that the frequent passage of winter cold fronts and the associated high waves from the north are the dominant mechanisms driving morphological change, as also discussed in Davis (1997). In the following, the calculated interactions of high waves from the north

Fig. 12. Examples of velocity distribution across Blind Pass channel. The locations of the gages are shown in Fig. 8. Upper: Velocity distribution measured in the middle section of the inlet. Note that the ebb flow (negative) is much greater than the flood flow (positive) over the channel thalweg. Lower: Velocity distribution measured at the bend in the channel. Note the decreasing velocity toward the bend.
formation of drum-stick barrier islands (Hayes, 1979; Davis and Hayes, 1984), and further demonstrates that this particular mechanism occurs mostly during the flooding tide. A strong wave-generated current was computed over the ebb lobe, providing the mechanism for sediment bypassing.

Under peak ebb flow, the southward longshore current along the updrift beach is blocked by the strong ebb jet, forming a large eddy north of the inlet (Fig. 16). This large eddy provides the mechanism for the development of the channel margin linear bar, a typical feature of tide-dominated and mixed-energy inlets. In other words, the ebb jet needs to be strong enough to block the longshore current in order to form the large eddy. A strong southward longshore current and a somewhat broadened ebb jet were modeled along the terminal lobe. This current merges with the nearshore longshore current primarily at the attachment point to provide a pathway for southward sand bypassing, similar to the case of the flooding tide.

The wave–current interaction during the passage of the same modeled cold front at the wave-dominated Blind Pass follows a different pattern from that observed at the mixed-energy John’s Pass. Overall, the weak tidal flow is overwhelmed by the strong longshore current that flows across the inlet entrance under both flood (Fig. 17) and ebb (Fig. 18) conditions. The two large eddies resulting from the interaction of the longshore current with strong tidal flow over the active ebb-tidal delta, as computed for the mixed-energy John’s Pass, are not observed in the modeling results at Blind Pass because of the weak current along the northern portion of the entrance channel (consistent with field observations) and the lack of an ebb-tidal delta. A strong longshore current, responsible for transporting sediment into the inlet, was calculated around the north jetty during the flooding tide (Fig. 17). The relatively weak ebb jet is deflected by the stronger southward longshore current (Fig. 18), resulting in a broad, strong southerly flow along the downdrift Upham Beach. This circulation pattern corresponds to the strong erosive trend observed at this beach (Elko et al., 2005; Elko and Wang, 2007). The modeled current field thus semi-quantitatively illustrates the domination of wave forcing at Blind Pass.

4.4. Calculated sediment transport

Sediment transport processes at tidal inlets are complex, involving both current and wave forcing. Wave breaking occurs over a large portion of the ebb-tidal delta and along the adjacent shoreline. Breaking waves result in much more active sediment suspension than non-breaking waves (Van Rijn, 1993; Wang, 1998; Wang et al., 1998, 2002a, 2002b). Therefore, sediment suspension and transport induced by wave breaking play a crucial role in inlet morphodynamics. In the following, the same examples as discussed above are used to illustrate calculated sediment transport patterns during the passage of a cold front. The modeled transport employed the empirical relationships described in the Lund-CIRP formula (Larson et al., 2011) for non-cohesive sediment transport.

Comparing the calculated flow field (Fig. 15) and associated sediment transport pattern (Fig. 19) at John’s Pass under a flooding tide, the significance of breaking waves on sediment suspension and transport is clearly illustrated. The greatest depth-averaged sediment concentration and rate of sediment transport occur at locations where breaking waves (shallow water) occur in combination with strong currents. For this situation, greater sediment concentrations and rates of sediment transport were predicted in three areas: (1) the nearshore area north of the inlet, (2) over the channel-margin linear bar, and (3) along the terminal lobe of the downdrift portion of the ebb-tidal delta. Although strong flow was predicted through the deep channel thalweg (Fig. 15), relatively lower depth-averaged sediment concentrations and rates of transport were predicted due to the absence of wave breaking. A divergence of sediment transport was calculated at Sunshine Beach directly south of John’s Pass, which is
responsible for the erosive trend observed there. Sediment bypassing along the terminal lobe of the ebb-tidal delta and on to the beach at the attachment point are related to the longshore current generated by the breaking waves and associated active sediment suspension.

The sediment suspension and transport at John’s Pass under peak ebb current (Fig. 20) is substantially different from that of the flood current (Fig. 19). Greater depth-averaged sediment concentrations and rates of sediment transport were calculated in four areas: (1) the nearshore area north of the inlet, (2) the channel margin linear bar and the nearby ebb channel, (3) along the terminal and downdrift lobe of the ebb-tidal delta, and (4) over a broad area of the ebb delta.

The active sediment transport in area (1) under both flood and ebb tides is responsible for the littoral sediment supply to the ebb delta. The active transport in area (2) represents sediment flushing by the ebb jet and the development of the channel-margin linear bar. The strongest flow through the channel thalweg does not correlate with the greatest sediment concentration due to the lack of active sediment suspension due to wave breaking. Similar to the flood tide case, the active sediment transport in area (3) provides the mechanism for sand bypassing across the inlet. The active sediment transport in area (4) illustrates the formation of the ebb-tidal delta in a general way.

Fig. 14. Profiles from the monthly survey. Locations of the profiles are shown in Fig. 8. Note the sediment accumulation near the inlet entrance at the beginning of the winter season, and sequent landward migration.

Fig. 15. Calculated wave–current interaction at John’s Pass, under a high northerly approaching (arrow) wave with $H_s = 1.9$ m and $T_p = 7.7$ s, during a peak flooding tide. Note the divergent current due to wave refraction in the vicinity of the attachment point.

Fig. 16. Calculated wave–current interaction at John’s Pass, under a high northerly approaching (arrow) wave with $H_s = 2.0$ m and $T_p = 6.1$ s, during a peak ebbing tide. Note the large eddy developed at the converging longshore current and the ebb jet, which is likely responsible for the development of the channel margin linear bar.
In summary, the numerical modeling results suggest that a particular morphological feature in the inlet system behaves differently during different phases of the tide. For example, the channel-margin linear bar tends to be accretional during the ebbing tide but erosive during the flooding tide. The downdrift longshore sediment transport tends to be more active during the flooding tide than during the ebbing tide when it is sheltered by the ebb jet.

At Blind Pass, under peak flood flow (Fig. 21), greater depth-averaged sediment concentrations and transport rates were calculated in three areas: (1) along the Sunset Beach north of the inlet, (2) over the newly developed ebb-tidal delta, and (3) along the downdrift Upham Beach. Active sediment transport in areas (1) and (2) contributes to sedimentation in the inlet channel. The erosion along the updrift Sunset Beach and downdrift Upham Beach corresponds to the active transport in areas (1) and (3). It is worth noting that the calculated sediment transport pattern is based on the bathymetry of 2008 when substantial ebb-tidal delta development occurred at Blind Pass, influenced by the artificial sediment supplies from recent beach nourishments. Without the artificial sediment supply, the ebb delta may not have developed or been maintained. Fairly active sediment bypassing over the developing ebb delta is predicted by the model. It is questionable, however, whether this trend could be maintained at a wave-dominated inlet without artificial sediment supply.

During a peak ebb tide, elevated sediment concentrations and transport rates were predicted in two areas (Fig. 22), the updrift Sunset Beach and extending into the inlet, and across the main ebb channel and along the downdrift Upham Beach. The weak ebb current along the northern side of the inlet is not capable of flushing the sediment deposited during the flood tide. The southward deflected ebb jet, in addition to the strong longshore current, resulted in intensified southward longshore transport along Upham Beach (Fig. 22). This pattern is also interpreted from field observations.
...there measured there.

transport along the downdrift beach, which is likely responsible for the chronic erosion measured there.

Fig. 21. Calculated depth-averaged sediment volume concentration (dimensionless) and transport vectors at Blind Pass, under a high northerly approaching wave with $H_s = 1.9 \text{ m}$ and $T_p = 7.7 \text{ s}$, during a peak flooding tide. Note the active sediment transport into the inlet, which is responsible for the deposition measured along the north side.

(Wang et al., 2007). Overall, the calculated sediment transport patterns can be used to interpret several key morphological trends.

5. Conclusions

The co-existence of the dual John's Pass and Blind Pass is realized by the dominance of John's Pass in terms of the tidal prism and size of the ebb delta, and the artificial maintenance of Blind Pass. John's Pass adopts the morphology of a mixed-energy straight inlet with a large, southward skewed ebb-tidal delta, whereas Blind Pass is an artificially stabilized and maintained wave-dominated inlet. Due to the secondary role of Blind Pass, the aggressive anthropogenic activities there do not seem to have a significant influence on the dominating John's Pass. On the other hand, the opening and subsequent evolution of John's Pass had significant influence on the morphodynamics of Blind Pass, causing a sizeable decrease of the tidal prism and a rapid southward migration. In addition, anthropogenic activities had much more influence on the morphodynamics of the more delicate Blind Pass than the more stable John's Pass.

Existing studies and field observations have shown that the morphodynamics of the west-central Florida inlets are substantially influenced by the frequent passages of winter cold fronts. Results from the numerical model, CMS, provide a semi-quantitative understanding and illustration of the morphodynamics of the mixed-energy John’s Pass and the wave-dominated Blind Pass in association with cold front passages. A large eddy is modeled from the interaction between the ebb jet and the southward longshore current at John’s Pass. This eddy is responsible for the development of the channel-margin linear bar. The interaction between flood flow and southward longshore current results in a large eddy updrift of the attachment point, which is responsible for longshore transport divergence commonly observed downdrift of a mixed-energy tidal inlet. The breaking-induced longshore current and elevated sediment suspension along the ebb delta terminal lobe provide the pathway for sediment bypassing. The morphodynamics of Blind Pass, by contrast, are dominated by wave forcing. The weak ebb jet is not capable of forming a sizable ebb delta and tends to be deflected by the strong longshore current, causing elevated longshore transport along the downdrift beach. The 90-degree turn of the inlet, which is common for wave-dominated migratory inlets, results in weak ebb flushing along the updrift (north) side of the inlet, which was responsible for the historical migration of the inlet before the artificial stabilization, and presently the sedimentation along the north side of the inlet following stabilization.

Acknowledgments

This study was supported by US Army Engineer Research and Development Center’s (ERDC) Coastal Inlet Research Program (CIRP), Pinellas County Florida, and the University of South Florida. Permission was granted by Headquarters, U.S. Army Corps of Engineers, to publish this information.

References

