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Abstract 

Rule based inference has demonstrated its applicability for 
a wide variety of domains. As users have grown more ~omfort­
able with this technology, the scope of attempted proJects has 
grown from small laboratory demonstrations into massive real 
world time-critical systems. However, as the scope of systems 
has increased, execution speed has become u~acceptabl~. <?ne 
method of improving inference performance IS parallehzatwn. 
The parallelization of inference is n?t as s~ightforw~d as ~he 
parallelization of traditional numenc algonthms. Difficulties 
stem from the unpredictability _of exe~ution paths, ~mall absol_ute 
task sizes, wide relative task Size vanances, and high proportion 
of shared volatile data. 

This paper describes the completed and ongoing efforts of 
the Parallel Inferencing Performance Evaluation and Refinement 
project1 (PIP~R) . PIPER Phase I p~oduced an initial parallil 
inference engme (expert system tool kit) for the BBN Butterfly< l 
Plus. Currently, PIPER Phase II is investigating parallel 
inference techniques on Thinking Machines' Connection 
Machine (CM) parallel computer. 

The Phase I inference engine is based on the Merit 
Enhanced Traversal Engine (METE) algorithm which is an 
extension of Forgy's (1979) RETE algorithm. To evaluate the 
efficacy of this design and implementation, an iterating 108 rule 
knowledge base was composed. This rule set was designed to 
roughly simulate ~he inform~tion rich nat~r~ ~f its target 
application domam, Strategic Defense Imtiative contact 
discrimination, and was processed on from 7 to 85 Butterfly(R) 
Plus processor nodes. Three uniprocessor control groups were 
also employed to gauge speed-up. ,Using the control group 
which produced the most conservative speed-up factors, the 
Phase I inference engine achieved a maximum true speed-up in 
excess of 29 utilizing. This speed-up was attributed to: 

(I) parallelism in constant tests and two input node tests, as 
well as 

(2) pipelining between 
(a) two input node tests and conflict resolution, and 
(b) test processing and overhead corresponding to the 
parallel implementation. 

INTRODUCTION 

Rule based inference has demonstrated its applicability for 
a·wide variety of domains. As users have grown more comfort­
able with this technology, the scope of attempted projects has 
grown from small laboratory demonstrations into massive real 

1. This work has been performed by Merit Technology, Inc. under contract 
N00014-88-C-2163 for the Naval Research Laboritory. 
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world time-critical systems. However, as the scope of systems 
has increased execution speed has become unacceptable. One 
method of i~proving inference performance is parallelization. 
The parallelization of inference is n?t as s~ightforw~d as ~e 
parallelization of traditional numenc algonthms. Difficulties 
stem from the unpredictability of ex~ution paths, ~mall absol_ute 
task sizes, wide relative task size vanances, and high proportion 
of shared volatile data. 

Inference Introduction 

Expert systems are specialized problem solving computer 
software systems. A knowledge base contains (among other 
items) facts and rules. Facts and rules are processed by an 
inference engine to derive additional or modified facts. _Rules, 
also called productions, generally take the form of p;emiSe and 
action. Production premises, also called Left Hand S1des (LHS), 
are composed of conjunctive and ~sjunctive cond~tions_ . . When 
all of a rule's conditions are satisfied, the rule IS eligible to 
execute or fire its action clauses. ~ction clauses, also called 
Right Hand Sides (RHS), of productions allow new facts to be 
asserted, existing facts to be modified and deleted, messages to 
be printed, and so on. 

There are two major inference strategies, (1) For­
ward Chaining (data directed); and (2) Backward Chaining (goal 
directed). Forward chaining evaluates f~cts against rul~ _Prem­
ises. If a premise is true, then th~ _production become_s ehgt~l~ to 
fire . Rule firings produce additional facts or modify exisn_ng 
facts which may satisfy the LHS's of other rules. With 
additional facts, further production firings may occur. Forward 
Chaining continues until no additional productions can be fired 
(or in some systems, until a goal fact_ h_as ~een asserted). This 
paper discusses only the forward chrumng mference aspects of 
PIPER. 

Parallel Inference 

The majority of inference tasks are small grained, in that 
they require as few as one to a couple ~f assembl~ in.structions.l21 
A few inference tasks are large gramed, cons1stmg of cross 
product operations requiring hundreds to thousand~ of ~sseq~_bly 
level instructions. The variance among task execution timeS· IS a 
limiting factor to total speed-up because execution time can be 
no less than the time necessary to run the longest task. Gupta 
proposed that speed-uf can be estimated as a ratio of average to 
maximum task times. I 31 

The success of parallel computation also relies on the even 
and efficient distribution of work among available processors 
(load balancing). Compile Time or Static Load Balancing can 
efficiently occur only when subtask use can be accurately 



anticipated. This method introduces very .little run-ti~e 
overhead. Since inference paths cannot be predicted at comp~Je 
time this method of load balancing is not useful in this domrun. 
Dyn~mic load balancing allocates work as it becomes ~vailabl~. 
This method is better suited to the inference problem m that It 
makes no assumptions about execution o!der. Dynamic lo~d 
balancing can introduce significant run-time overhead. This 
overhead is a function of the size and number of subtasks that 
must be managed. As task size (grain size) decreases, the 
number of tasks that must be managed increases. 

Inference overhead derives from four major sources: 

• 

• 

• 

• 

Scheduling: Resources needed by a parent task to notify 
the scheduler(s) that a new task has become available and 
the resources needed by the scheduler(s) to insert this 
new task into the task queue. 

Dispatching: Resources needed by the scheduler(s) and 
the available processor to transfer a task from the queue 
to the destination processor. 

Results Management: Resources needed to fan-out 
inference results to other processors. Typically, inference 
requires a large volume of global memory to maintain the 
constantly changing state of known facts. 

Task Conclusion: Resources needed to infonn the 
scheduler(s) that a processor has become idle, and thus, 
can accept another task. 

Many have investigated a wide range of parallel inference 
strategies. Forgy,l11 Gupta and Forgy,l31 Gupta,l21 .Mir~er,14 

51 Oflaser,161 Kelly and Seviora17 ~ and othe~s have mvestlgated 
the parallelization of RETE denved algonthms. Cheng and 
Juang,l81 Conrey,l91 Conrey and Kibler,1 101 Lin, .Kumar and 
Leung,llll Kumar and Linl121 and others have ~t~died meth~s 
of compile time panitioning of back\~ard cha1_nmg a~d logic 
programming knowledge bases to explOit parallelism. B1swas, et 
al.II31, de Kergormmeaux and Roben,l 141 Kale'1151 and others 
have published detailed tech_nic~l rev.iews and p~rformed 
simulations of AND/OR parallelism m logic programrnmg. 

Butterfly<R> Parallel Computer 

The BBN Butterfly<Rl Plus comput~r consists of ~f to .256 
processor nodes that are interconnected via !1 Butterfly< Switch. 
This switch is implemented by connecting 4-by-4 crossbar 
switches in the pattern similar to the butterfly transforms of 
FFfs. Each processor node contains a 16-MHz Motorola 68020 
mpu, 68881 floating point processor, 68851 ?lemory 
management unit, 4-Megabytes of local RAM, and .rrucrocoded 
processor node controller (PNC) for accessing the switch. 

All memory in the Butterfly(R) Plus is shared, giving each 
processor access to a. maximum, .1-Gigabyte of ~erno~. Shared 
memory is accomplished by usmg the upper eight bus of the 
memory address to identify the memory's hosting processor 
node. When the memory management unit receives a request for 
a non-local memory access, it forwards this request to the PNC. 
The PNC generates a packet containing the specific request ~d 
sends it through the switch. If the remote memory request m­
volves a read, then all processing is suspended on the local ~ode 
until the memory request has been sausfied. Other operauons, 
like writes can be sent and monitored by the PNC without 
suspending' other local processor node functions. T~e switch 
includes redundant paths between processor nodes, which allows 
the PNC to reroute packets from busy or disabled paths. 

The major advantage of the switch int~~connection strategy 
is that bandwidth can grow freely as addmonal processor are 
added. Thus, the switch does not have the saturation problem 
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<hat is common to bus based architectures. The switch path 
length between any two processor nodes grows as a function of 
Lo&4(N), where N is the number of processor nodes. The major 
disadvantage of the switch is its speed - remote memory 
accesses can take uo to 7000 nanoseconds vs 530 nanoseconds 
for local accesses.lllil Because of this local to remote memory 
access bias, experienced Butterfly<R> users pay special attention 
to minimizing remote memory reads. 

The Butterfly(R) Plus computer runs the Chrysalis 
operating system, as well as the recently released Butterfly(R) 
MACH operating system. User application programs can. be 
written in Butterfly<R> Fonran, Lisp, C and other programrrung 
languages. Shared memory access and management can be 
performed using progrrunming languages (using 32 bit pointers) 
or via calls to the BBN Chrysalis operating system. Our 
experience found programming language shared memory 
management to be much faster than Chrysalis system calls. 
Unfonunately, programming language shared memory access 
proved extremely unreliable when used to communicate among 
more than two nodes of a heavily loaded system. The Chrysalis 
system calls proved absolutely reliable. We believe that this 
reliability difference relates to Chrysalis' integration of PNC 
microcode that handles local bus timings, switch packet 
collisions and packet retries. 

PIPER is written in C running under the Chrysalis 
operating system and all shared memory access is managed with 
Chrysalis system calls. 

THE METE ALGORITHM 

The Knowledge Base Compiler 

With the METE and PIPER inference technology, 
knowledge bases are compiled into a discrimination network 
called the METE net prior to inference. This compiler generates 
a processor-independent file containing test, memory, terminal, 
right hand side and back chaining nodes, in addition to data 
structures that are necessary to suppon the execution of forward 
and backward chaining inference. Nodes are linked to other 
nodes which serve as data token sources and sinks. During 
inference the METE net processes tokenized facts to recognize 
the satisfaction of rule LHSs. 

METE Net Node Description 

The METE net's test nodes correspond to rule LHS con­
ditions. There are two types of test nodes, Constant Test (CT) 
and TAND Test nodes. CT test nodes contain a relational 
operator (CT Operator) and a CT Value. CT values can be a 
constant, an expression, or a pointer to a user defined function 
(such as a database , database query, or an expression. During 
inference, the CT value is compared (with respect to the CT 
operator) to the value of fact tokens. Figures I and 2 below 
contain a production and the corresponding compiled network, 
respectively. These figures will help illustrate the compilation 
process and relationship among the various node types. 

The compilation of the production in Figure 1 will produce 
two CT paths . The first path (see Figure 2) will recognize 
instances of this specific Target and the second path will recog­
nize instances of this specific Aircraft. The heads of the object 
paths are hashed memory addresses. Thus, if a fact token type 
was for Target objects, the token would be forwarded to the 
Target path. In sequence, this Target head node is followed by 
CT nodes that recognize attributes of Type equal to "YAK-38", 
Range less than "1000" nautical miles and Bearing equal to 



"Closing" If a token fails any CI' test, then it is absorbed and 
will not reach the next test. 

RULE-I : 
IF Target WITH /*IF there is an instance of object-type TARGET 0 / 

Type E YAK-38 AND /*WITHattributeTYPE · YAK-38 °/ 
Ranee < 1000 AND /*AND attribute RANGE less than 1000 

= ~ 
Bearing= Closing AND /* AND attribute BEARING • Closing 

AND 0 / 

Aircraft WITH 
Type • F-14 AND 
Weapon = Guns 

t• an inswx:e of object-type AIRCRAFf 0 / 

/*WITH attribute TYPE • F-14 °/ 
/*AND attribute WEAPON • Guns 0 / 

THEN /*THEN CREATEaninstance ofObjectSTATUS 0 / 

ASSERT Status WITH /*WITH attribute CONDITION • Yellow· 0 / 

Condition= Yellow. 

Figure 1: Sample Rule to Compile. 

Figure 2: Compiled METE Network 

Fact tokens that pass all tests in a CI' path are stored in a 
memory node called an AMEM2• Each cr path has a distinct 
AMEM structure to maintain the set of successful tokens. In this 
example, there may be multiple Target objects (TI and T3) and 
Aircraft (AI and A6) that satisfy the attribute conditions of the 
CI' test paths for Target and Aircraft, respectively. The Target 
AMEM will contain references to the Target object instances TI 
and T3 . Tokens and AMEM objects reference a global structure 
called the Working Memory. The Working Memory maintains all 
facts that are currently known to the system. 

The other kind of test nodes, TAND3s, perform Unification 
between two memory nodes to determine if they contain tokens 
that satisfy and are consistent with dependent premise conditions. 
In the case of the current example, the TAND node would check 
the Target and Aircraft AMEMs. If both of these AMEMs 
contain tokens, then the TAND node can perform a join of the 
two sets and pass the resulting joined tokens to a Terminal Node. 

2. The name AMEM derives from the first (or alp)la.l memories that were use in the 
original RETE net algorithm developed by Forgyllf 

3. For simplicity, we call all two input unification nodes, regardless of node operator 
type, TAND nodes. Typical knowledge bases use far more AND node operators than 
all other operators combined. 
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With the tokens that have already been mentioned, the Terminal 
node would receive the join of the successful Aircraft and Target 
objects ({AI TI, AI T3, A6 TI, and A6 T3)). These four 
tuples represent four satisfactions of example rule 1. Tokens that 
do not meet the constraints of a TAND node are absorbed and do 
not progress to subsequent nodes. 

TAND nodes contain a binary Boolean operator, the TAND 
Operator. A diversity of TAND operators allows for an 
extensive variety of possible object relations. The current 
example uses the AND operator. To handle increased unification 
complexity for productions that contain more than two dependent 
conditions, a tree is constructed of multiple TAND nodes. 
Successful tokens cascade through this tree. Increasingly 
complex relations can be achieved by increasingly deeper TAND 
trees. Between successive TAND nodes are SMEMs (Smart 
MEMorys). A SMEM contains the reference sets of tokens that 
passed the preceding TAND nodes' tests and serves as the input 
buffer for the subsequent TAND node.4 

Terminal nodes are the culmination of production prem­
ises. Terminal nodes reference the immediately preceding 
SMEM which contains references to the set of joined tokens, 
each set satisfies all conditions of the production. A Terminal 
node also contains references to RHS Nodes and to Backward 
Chaining Nodes (BCON Nodes). When executed, the RHS 
Nodes modify Working Memory by asserting (creating new 
objects), deleting existing objects, or modifying attributes of 
existing objects. BCON Nodes reference AMEM structures that 
contain object references that are necessary to prove sub-goals 
needed to support backward chaining inference. 

The Inference Cycle 

The METE algorithm employs a three stage inference 
cycle similar to the RETE algorithm. The first stage, Match, 
reviews existing facts to determine which productions are 
eligible to fire. The second stage, Select, picks the highest 
priority, eligible production(s) (maintained in a structure called 
the Activation List) to fire based on a selection strategy (See 
Brownston, et aJ. I171 for a discussion of conflict resolution 
methods). If no productions are eligible to fire, then inference is 
complete. The final stage, Act, fires the selected production(s) 
and updates the working memory structure. Following the Act 
stage the next inference cycle begins with the start of a Match 
stage. 

The PIPER parallel-METE algorithm exploits multiple 
forms of parallelism. This parallelism is made possible by 
partitioning processors into thre_e functional sets. The first set 
consists of a single processor called the Inference Manager (IM). 
The other two sets perform functions related to the node types 
that they contain, Constant test nodes (CT processors) and 
TAND test nodes (TAND processors). The IM maintains a 
Chrysalis operating system dual queue between itself and each of 
the CI' and TAND processors. The Chrysalis dual queue use a 
PNC microprogrammed function to maintain a message queue 
between two Butterfty(R) processors. See Figure 3. 

Each CI' processor contains a copy of all CI' test nodes, 
and thus, any cr processor can perform the constant tests on any 
token that it receives. The IM begins each inference cycle by 
distributing new fact tokens (using a round-robin scheme) to cr 
processors. CT processors acknowledge (to the IM) the 
completion of each token's processing. Tokens that meet the 
conditions of a CT path are forwarded to a distinct TAND 

4. It is relatively rare for a production to consist of only a single object In this case, 
there is no need for a T AND node and therefore a path can be constructed directly 
from a CT to AMEM to Terminal node. 



• 

• 

cycle_ counter value, two diffe!'Cnt tester objects' type 
attribute (namely the I and J of the rule label), and 
matched 2 tester objects' slot values. These rules 
required 3 Cf te~ts and 2 TAND tests to imJ?lem~nt. 
Each rule satisfaction created two tester facts of Identical 
types (say I and J) to the tester facts that satisfied their 
LHSs. These new tester facts were used in the next 
iteration to completely or partially satisfy the rules 
containing /'s or J's in their rule labels. The interaction 
of these rules and tester facts created a rapid explosion of 
rule satisfactions and new fact assertions. Each of these 
rules fired I time the first iteration and I 0 times the 
second iteration. The number of rule firings would have 
continued to grow at a rate of one magnitude per 
iteration. Fact growth was two times that of rule firings 
since each rule produced two new facts. 

1- typo body rule. This rule was labeled rule_!_ 2 and 
was intended to be the sixth body rule, but because of a 
typo this rule contained one additional condition. This 
rule executed once in each of the first and second iter­
ations and produced two facts. This rule required the 
satisfaction of 4 cr tests and 2 TAND tests to fire. 

100- body filler rules. These rules were labeled 
rule X J (where X is and alpha character from 'a' to 'x' 
and] varied from 0 to 4) and were identical to body rules 
except that they tested cycle counter value and tester slot 
values that were never satisned. Thus, facts failed at the 
top level cr tests. These rules added a great deal of 
additional processing load. 

To summarize the benchmark processing scenario, six 
initial facts were asserted. These initial facts resulted in a total of 
59 (7 first iteration and 52 second iteration) rule firings, which 
produced 114 (12 first ite;.uio!l and 192 second i~erati?n) new 
fact assertions, 1 fact modificanon (dunng the first lteranon) and 
one fact deletion (during the second iteration). Of the 100 rules 
that were never satisfied, each failed objects at their top level cr 
nodes. This knowledge base produced a testing load similar to a 
much larger knowledge base. 

The Experimental Design 

This knowledge base was executed under several con­
ditions on the NRL 128 node Butterfly<Rl Plus computer and also 
on a SUN 3/60 UNix<Rl workstation. The experimental 
conditions were grouped along two dimensions, 

(1) Total number of processors utilized, and 

(2) Ratio of cr to TAND processors. The current design used 
only a single IM processor, regardless of the number of cr or 
TAND processors. 

Since this design assigned distinct activities to three dif­
ferent processors classes, varying the ratio of processors assigned 
to these classes yielded an understanding of their interrelation. 
Levels of processor numbers included: 1 (PIPER uniprocessor 
and MeriToolun serial versions), 7, 13, 19, 25, 31, 37, 43, 49, 55, 
61, 67, 73, 79 and 85 processors. Number of processors 7 
through 85 allowed the testing of even ratios of cr to TAND 
processors corresponding to the ratios of 1:5, 2:4, 3:3, 4:2, and 
5:1. Total execution time was the dependent variable. 

The assignment of functions to specific processors .can 
affect the communication loading at individual switch elements. 
Switches that are are more heavily loaded have higher incidences 
of packet collisions and associated message delays. To balance 
the consequences of node alloc~tions, a c.omplete and .r~ndomly 
ordered presentation of all possible expenmental conditions was 
attempted on three different days. Because of a condition 
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(known as node rot among NRL Butterfly users) not all of the 
conditions could be completed. The 3:3 ratio for 85 processors 
was never completed, the other ratios of 85 processor conditions 
were only completed once, and the 4:2 ratio of 76 processors was 
completed twice. 

The Benchmark Control Conditions 

Three different control conditions were evaluated in this 
study. These control conditions included: 

(1) The C language version of the commercial product fonn of 
MeriToolun, with as few modifications as possible. Changes 
were needed to confonn with Chrysalis conventions of heap 
memory allocation. This version was run on a single node of 
the NRL Butterfty(Rl Plus . 

(2) The C language version of the commercial product fonn of 
MeriToolun, without modification, run on a SUN 3/60 worlc­
station owned by Merit Teclmology. 

(3) A PIPER uniprocessor version, containing only minor 
changes to the parallel PIPER version. These changes sup­
ported dual queues from and to the single processor. 

THE BENCHMARK RESULTS 

The Control Conditions' Results 

MeriToolun serial ran the BOGUS.KB in 6.7 seconds on 
the SUN 3/60 and 7.3354 seconds on a single node of the 
Butterfiy(R) Plus. Both of these computers are based on 
MC68020 microprocessors and have other similar Motorola 
68XXX chip set components. The two major differences are 
clock speed and operating systems{Rthe SUN 3/60 CPU is 
clocked at 20 MHz while the Butterfly >Plus CPUs are clocked 
at 16 MHz. When the Butterfly<Rl Plus node clock speed was 
normalized to that of the SUN's 20 MHz, its execution time 
would be 5.87 seconds5• From these results one can see that the 
Butterfly(R) version of MeriToolun's execution time on a single 
node was representatively similar to that of the conunercial SUN 
version of MeriToolun. See Table 1 below for a summary of 
these results. 

The PIPER uniprocessor version ran considerably slower 
(13.0679 seconds, 9.80 seconds normalized to 20 MI-Iz) than the 
Butterfly<R> MeriToolun version. The authors attribute much of 
this performance lag to Chrysalis overhead related to dual queue 
message transmissions. We suspect that even though the single 
processor version of PIPER was sending messages to itself, the 
messages went through the PNC, through the Butterfly(Rl Switch 
and back to the PNC. Thus, in the uniprocessor PIPER version, 
communications took the long way around and the PNC probably 
got in the way of itself, creating contention for the switch. 

Gupta!2l reported results from simulation of uniprocessor 
and mulitporocessor environments for several historically 
significant rule sets. These simulations were based on timing 
Rete net code segments. Because these results do not include 
execution of fully functional code, absolute time comparisons 
between PIPER and Gupta's results can not be made. Gupta!21 
reported both true speed-up and nominal speed-up times. True 
speed-up used the execution time of an efficient uniprocessor 
model (without any of the parallel synchronization or overhead) 
as the speed-up basis; thus, true speed-up represents the speed 
advantage between an efficient uniprocessor and an efficient 

5. This normalization may not be entirely valid as it assumes all resources are scaled at 
the same rate as the microprocessor clock. 



processor. This CT to TAND communication is implemented 
using Chrysalis system dual queues. 

Duel Qu•u•• 
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Figure 3: PIPER Parallel Inference Architecture 

Processing multiple tokens through the CT portion of the 
METE net represents one form of parallelism. CT tests tend to 
be more homogeneous in processing time than does the pool of 
CT and TAND processing tasks. The more homogeneous the 
processing time for CT tasks, the better this simple but efficient 
load balancing strategy will be. 

Tokens that are received by TAND processors from CT 
processors are immediately dequeued and placed in appropriate 
AMEM structures. This queuing and dequeuing is potentially a 
significant overhead source. But, since the queuing by a CT pro­
cessor occurs in parallel with other CTs' token processing and 
the TAND token dequeuing is occurring simultaneously with CT 
processing, this potential for overhead is minimized. Each 
TAND processor is specialized, containing only specific TAND 
tests. The top level of TAND nodes are associated with a left and 
right hand AMEM structure. TAND nodes test a binary Boolean 
relationship between the "m" left hand and the "n" right hand 
AMEM entries. Thus, although this process is of O(m*n) com­
plexity, each iteration is extremely simple computationally, being 
primarily limited by memory bandwidth. 

Various investigators have studied the possibility of per­
forming asynchronous TAND testing (testing as each AMEM 
entry arrives; Gupta[21 provides a fine analytical review of tech­
niques). The major difficulty with completely asynchronous 
processing centers around the added overhead involved in per­
forming cross product type operations on two simultaneously 
volatile sets. Both left and right hand TAND node input sets are 
subject to simultaneous additions and deletions. Considering the 
computational simplicity of the Boolean tests that are being per­
formed in this cross product operation, it is not surprising that the 
overhead of completely asynchronous TAND token processing 
can easily overcome any benefit. 

When the PIPER IM receives the acknowledgment that the 
last CT token has been processed, it transmits a TANDing start­
up token to each of the TAND processors . Parallel TAND 
processing is a second form of parallelism. 
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Terminal nodes send Activation List updates to the IM via 
dual queues. The IM processes these updates as they are 
received using one of the user specified conflict resolution 
strategies. Conflict resolution involves sorting rules that are 
eligible to fire based on a priority scheme. Thus, the TAND 
processing of the Match phase is pipelined to the conflict 
resolution of the Select phase. This represents a third major 
source of parallelism. Once all TAND processing is completed, 
the 1M can immediately start the Act phase. 

With the selection of a production(s) to fire, the Act Stage 
begins. Each processor maintains a copy of working memory 
facts. In the ACT stage, the IM distributes working memory 
update information to all CT and TAND processors using the 
same dual queues as the Match phase. Working memory updates 
result from the execution of the RHS(s) of a rule(s). 
Additionally, a list of working memory changes, in the form of 
fact tokens, is produced. This list of fact tokens is processed by 
the CT processors in the next Match stage to determine which 
additional rules become eligible to fire. Since the dual queues 
maintain order of their entries, the IM does not have to wait for 
the ACT stage to complete before passing out the fact tokens for 
the Match stage. Thus, the Act and the Match stage are 
pipelined. This pipelining minimizes communications overhead 
of fact token fan out and working memory updating. 

THE BENCHMARK METHOD 

The Benchmark Knowledge Base 

To estimate the efficacy of the PIPER parallel method, an 
iterating 108 rule knowledge base was composed (we call it 
BOGUS.KB). This knowledge base was designed to roughly 
simulate the fact-rich environment of PIPER's target domain, 
SDI contact discrimination. The knowledge base contained three 
object types: 

• tester - which had two attributes, type and slot. There 
were four initial assertions of this fact that varied the 
value of the the type attribute from 0 to 3. The slot 
attribute of each fact was initially set to 0 and was tested 
and incremented by ten in each inference cycle. 

• cycle counter - had a single attribute, value, that was 
initiaTized to 0 and was incremented by 1 in each in­
ference cycle. Each rule required the existence of this 
fact to fire. 

• max cycle - had a single attribute, count, that was 
initiaTized to 1 and was tested against the value attribute 
of the cycle_counter object. Thus, two complete 
inference cycles were performed (0 and 1). When the 
two attributes, count and value, were equal, the 
cycle_counter object was deleted, which blocked all 
future rule satisfactions. 

The knowledge base contained the following numbers and 
types of rules: 

• 1- cycle counter rule incremented and tested the 
cycle-counter value attribute in all but the last iteration. 
If "k" inference cycles were run, this would fire "k-1" 
times. 

• 1- stopper rule executed the last iteration in place of the 
cycle counter rule and deleted the cycle counter fact 
which made the truth value of the other rules false. 

• 5- body rules. These rules labeled rule I J (where I and 
J varied from 0 to 3, except rule I 2 which is described 
immediately below). Each oCthese rules tested the 



parallel execution of ~ rule. set. _Nomin'!l speed-up used a 
uniprocessor execution time (mcludtng the. unneeded 
synchronization and overhead added for parallelism) as the 
speed-up basis. Thus, nominal sp~ed-up c_orresponds to the 
difference between a less than optimal uniprocessor and an 
efficient parallel execution. 

Table 1: Benchmark Control Groups' Results 

CONTROL GROUP EXECUTION TIME 

Sun 3/60 MeriTooltm 
20MHz 6.7 seconds 

B utterfly(R) MeriTooltm 
16MHz 7.3354 seconds 
20 MHz (normalized) 5.87 seconds 

PIPER Buuerfly(R) Uniprocessor 
16MHz 13.0679 seconds 
20 MHz (normalized) 9.80 seconds 

The data from all three control groups yielded interesting 
results when they were used as the basis value of speed-up. The 
speed-up functions o.f the .three are, multiplicativ~ly related _and 
vary as a ratio of therr baSIS ~oups speeds. For mstan.ce, s~nce 
the uniprocessor PIPER version ~ad ~e longest execuuon tu~, 
it greatly inflated speed-up. Thts uniprocessor PIPER versiOn 
corresponds to the basis value of Gupta's nominal speed-up 
reports . For the remainder of the results discussion, the 
MeriTooltm Butterfiy(R) version was used as the basis. It is the 
authors' opinion that this MeriTooltm Butterfiy(R) version's 
performance most fairly represents the speed-up a ~ser could 
anticipate going from a 16 MHz MC68020 based umprocessor 
computer to a 16 MHz MC68020 based parallel processor (like 
the Butterfiy(R) Plus). This uniprocessor MeriTooltm Butterfty<R> 
version corresponds to the basis value of Gupta's true speed-up 
reports. 

The Experimental Conditions' Results 

Using the Butterfty<R> Plus MeriTooltm version (16 MHz) 
as a basis, a maximum single run speed-up of 31.5~ was 
observed with 49 nodes (40 CTs and 8 TANDs). The maximum 
mean speed-up over three trails was 29.17 with 61 processors (50 
CTs and 10 TANDs). The six fastest mean speed-ups all occured 
within the 5:1 (CT:TAND) ratio (see Figure 4). 

The mean, standard deviation of the within experimental 
condition speed-ups (using only ~on<;titions with three co~pleted 
observations) was 0.602. Thts mdtcates that an expenmental 
condition's speed-ups could be expected to vary within a range 
of plus or minus 0.602 of its mean about 68 percent about of the 
time. 

The ratios of 5 CTs to I TAND and then 4 CTs to 2 
TANDs consistently out performed the other ratios. Over 75% of 
the maximum achieved speed-up was gained with the first 25 
processors. After the employment of 25 processors the gain in 
speed gradually siO\yed. Beyond 55 processo;s all ratios demon­
strated slowing and m some cases small neganve speed-ups. 

DISCUSSION OF THE RESULTS 

This total speed-up was attributed to 

(1) Parallelism in constant tests and two input node tests, as 
well as 

(2) Pipelining between 
(a) Two input node tests and conflict resolution, and 

(b) Test processing and overhead corresponding to the 
parallel implementation. 

To gain a detailed understanding of these results, one must 
evaluate the amount and type of work available, th~ num~r and 
type of processors available to perf~rm ~e work, m. addiuo~ to 
the overhead functions. Although trrne dtd not permit a detruled 
empirical study of this matter, below is one set of likely hy­
potheses. 

In the second iteration, where the majority of the facts 
were processed, 102 facts went through CT testing. ~ese facts 
only completely supplied tokens (to both left and nght hand 
AMEMs of TANDs) to AMEMs of seven distinct TAND sub­
trees. Of these TAND sub-trees, only the five body rules 
required significant processing time. Thus, at most, five TAND 
processors were heavily employed, while any number of TAND 
processors over five, added little useful p~essing (in the case of 
increment and stopper rules) or no work (m the case of the 100 
body _filler rule) . TAND processors that were not u~efully 
employed still required resources of the 1M processor dunng the 
act phase of the inference cycle and in synchronization between 
CT testing and TAND testing sub-phases of the match phase. 

Speed-up as a function of rumber and ratio ol process<n 
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Thus, for this specific two iteration benchmark using the 
BOGUS.KB rule set, some number between 5 and 7 TAND 
processors would probably be optimal. 

Similarly, the inference engine performed CT testing of at 
most 102 distinct facts in an inference cycle. As the reader will 
recall from a previous section on the design of the inference 
engine, CT testing is much less computationally demanding than 
TAND testing. The benchmark results are consistent with the 
hypothesis. It seems that by the time the IM had distributed 
several tokens for CT testing (say about 50) the first CT 
processors that received tokens had completed their testing and 
then sat idle. For this benchmark, any more than approximately 
50 CT processors did not seem to benefit overall processing 
speed. If additional iterations of the knowledge base inference 
cycle could have been run6, additional CT processors most likely 
could have been usefully engaged. Also, if the initial scheme of 
using lower level communications (rather that Chrysalis dual 
queues) would have been technically feasible, then the 1M would 
have been able to disperse tokens faster (an estimated 4 to I 0 
times faster). Thus, additional CT processors could have 
probably been successfully employed. For this specific two 
iteration benchmark using the BOGUS.KB rule set, some 
number between 40 and 50 CT processors would probably be 
optimal. 

Because the maximum speed-ups were recorded at the 
highest ratio of CTs to TANDs and also to determine ifour 
hypotheses about CT to TAND ratios were correct, we executed 
several after the fact tests employing higher ratios. Basically, 43, 
49 and 55 total processors with from one to seven TANDs (the 
remainder of the processors were assigned to an 1M and the rest 
to CT processors). The maximum speed-up observed in these 
sessions was 26.19 at 49 total processors configured as 1 IM, 42 
CTs, and 7 TANDs. These data do not completely endorse our 
conclusions as we would have expected the 42 CTs to 7 Tands or 
the 47 CTs to 7 Tands ratios to actually out perform all of the 
original experimental conditions. 

CONCLUSIONS 

Using a completely different mix of speed-up techniques, 
PIPER's actual results compare favorably to those of Gupta's 
simulations. When all expected overhead sources were added to 
Gupta's simulations (pages 140-144)121 an average true speed-up 
across his six rule sets of 9.29 was achieved (with the single best 
rule set achieving a 13 fold speed up}. To reach this 
performance, Gupta employed the following features: 

• Hardware task schedulers that minimized the overhead 
needed to support optimized load balancing; 

• Intra-node parallelism which reduced the impact of cross­
product TAND-typc testing; and 

• Action parallelism which processed the working memory 
changes of the ACT phase in parallel. 

Perhaps one reason for PIPER's successful speed-up is the 
nature of its benchmark rules set. Most knowledge bases are by 
design explicitly serial. The domain which the BOGUS.KB 
roughly simulates is inherently information rich, and thus, it 
more easily utilizes parallel processing techniques. The authors 
strongly believe that there are many other real world domains 
with similar fact-rich processing characteristics. A few examples 
of these domains include: 

6. The third iteration exhausted memory resources of the Butterf!y(Rl Plus. This 
iteration attempted to assen in excess of 1000 additional facts. 
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• Strategic Defense Ini tiative categorization and dis­
crimination tasks. 

• Rule based event simulations. 

• Rule based sensor fusion and threat avoidance. 

• Real time factory control and process monitoring. 

• Intelligence analysis and data fusion. 

Gauging from the high level task analysis, the performance 
functions seem to be moderately well behaved. Performance 
modeling and prediction is one of the topics that we are 
investigating. This topic can be subdivided in to two related 
areas: 

"' predict inference performance given a hardware 
configuration and rule set, or 

• predict optimal configuration for a given rule set. 

The Butterfly architecture is burdened with an 
interconnection topology that is more suited to large grained 
parallelism. We are currently investigating implementation 
techniques for a Connection Machine. At this point the 
Connection Machine seems better suited to the very fine grained 
parallelism of inference tasks. 
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