

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18

May 1990 Conference paper

See report.

See report.

See report.

See report.

Distribution Statement A - Approved for public release; distribution is unlimited.

Presented at the IEEE 1990 National Aerospace and Electronics Conference (NAECON 1990) held in Dayton, Ohio, on 21-25 May 1990.

See report.

Unclassified Unclassified Unclassified
UU

Forward Chaining Parallel Inference1

Jay Labhart, Michael C. Rowe,
Merit Technology Incorporated

5068 W. Plano Parkway
Plano, Texas 75093-5009, (214) 248-2502

Steve Matney, and Steve Carrow
Naval Research Laboratory

4555 Overlook Ave. S.W.
Washington D.C. 20375-5000

Abstract

Rule based inference has demonstrated its applicability for
a wide variety of domains. As users have grown more ~omfort­
able with this technology, the scope of attempted proJects has
grown from small laboratory demonstrations into massive real
world time-critical systems. However, as the scope of systems
has increased, execution speed has become u~acceptabl~. <?ne
method of improving inference performance IS parallehzatwn.
The parallelization of inference is n?t as s~ightforw~d as ~he
parallelization of traditional numenc algonthms. Difficulties
stem from the unpredictability _of exe~ution paths, ~mall absol_ute
task sizes, wide relative task Size vanances, and high proportion
of shared volatile data.

This paper describes the completed and ongoing efforts of
the Parallel Inferencing Performance Evaluation and Refinement
project1 (PIP~R) . PIPER Phase I p~oduced an initial parallil
inference engme (expert system tool kit) for the BBN Butterfly< l
Plus. Currently, PIPER Phase II is investigating parallel
inference techniques on Thinking Machines' Connection
Machine (CM) parallel computer.

The Phase I inference engine is based on the Merit
Enhanced Traversal Engine (METE) algorithm which is an
extension of Forgy's (1979) RETE algorithm. To evaluate the
efficacy of this design and implementation, an iterating 108 rule
knowledge base was composed. This rule set was designed to
roughly simulate ~he inform~tion rich nat~r~ ~f its target
application domam, Strategic Defense Imtiative contact
discrimination, and was processed on from 7 to 85 Butterfly(R)
Plus processor nodes. Three uniprocessor control groups were
also employed to gauge speed-up. ,Using the control group
which produced the most conservative speed-up factors, the
Phase I inference engine achieved a maximum true speed-up in
excess of 29 utilizing. This speed-up was attributed to:

(I) parallelism in constant tests and two input node tests, as
well as

(2) pipelining between
(a) two input node tests and conflict resolution, and
(b) test processing and overhead corresponding to the
parallel implementation.

INTRODUCTION

Rule based inference has demonstrated its applicability for
a·wide variety of domains. As users have grown more comfort­
able with this technology, the scope of attempted projects has
grown from small laboratory demonstrations into massive real

1. This work has been performed by Merit Technology, Inc. under contract
N00014-88-C-2163 for the Naval Research Laboritory.

CH2881-1 /90/0000-1124 $1.00 o 1990 IEEE 1124

world time-critical systems. However, as the scope of systems
has increased execution speed has become unacceptable. One
method of i~proving inference performance is parallelization.
The parallelization of inference is n?t as s~ightforw~d as ~e
parallelization of traditional numenc algonthms. Difficulties
stem from the unpredictability of ex~ution paths, ~mall absol_ute
task sizes, wide relative task size vanances, and high proportion
of shared volatile data.

Inference Introduction

Expert systems are specialized problem solving computer
software systems. A knowledge base contains (among other
items) facts and rules. Facts and rules are processed by an
inference engine to derive additional or modified facts. _Rules,
also called productions, generally take the form of p;emiSe and
action. Production premises, also called Left Hand S1des (LHS),
are composed of conjunctive and ~sjunctive cond~tions_ . . When
all of a rule's conditions are satisfied, the rule IS eligible to
execute or fire its action clauses. ~ction clauses, also called
Right Hand Sides (RHS), of productions allow new facts to be
asserted, existing facts to be modified and deleted, messages to
be printed, and so on.

There are two major inference strategies, (1) For­
ward Chaining (data directed); and (2) Backward Chaining (goal
directed). Forward chaining evaluates f~cts against rul~ _Prem­
ises. If a premise is true, then th~ _production become_s ehgt~l~ to
fire . Rule firings produce additional facts or modify exisn_ng
facts which may satisfy the LHS's of other rules. With
additional facts, further production firings may occur. Forward
Chaining continues until no additional productions can be fired
(or in some systems, until a goal fact_ h_as ~een asserted). This
paper discusses only the forward chrumng mference aspects of
PIPER.

Parallel Inference

The majority of inference tasks are small grained, in that
they require as few as one to a couple ~f assembl~ in.structions.l21
A few inference tasks are large gramed, cons1stmg of cross
product operations requiring hundreds to thousand~ of ~sseq~_bly
level instructions. The variance among task execution timeS· IS a
limiting factor to total speed-up because execution time can be
no less than the time necessary to run the longest task. Gupta
proposed that speed-uf can be estimated as a ratio of average to
maximum task times. I 31

The success of parallel computation also relies on the even
and efficient distribution of work among available processors
(load balancing). Compile Time or Static Load Balancing can
efficiently occur only when subtask use can be accurately

anticipated. This method introduces very .little run-ti~e
overhead. Since inference paths cannot be predicted at comp~Je
time this method of load balancing is not useful in this domrun.
Dyn~mic load balancing allocates work as it becomes ~vailabl~.
This method is better suited to the inference problem m that It
makes no assumptions about execution o!der. Dynamic lo~d
balancing can introduce significant run-time overhead. This
overhead is a function of the size and number of subtasks that
must be managed. As task size (grain size) decreases, the
number of tasks that must be managed increases.

Inference overhead derives from four major sources:

•

•

•

•

Scheduling: Resources needed by a parent task to notify
the scheduler(s) that a new task has become available and
the resources needed by the scheduler(s) to insert this
new task into the task queue.

Dispatching: Resources needed by the scheduler(s) and
the available processor to transfer a task from the queue
to the destination processor.

Results Management: Resources needed to fan-out
inference results to other processors. Typically, inference
requires a large volume of global memory to maintain the
constantly changing state of known facts.

Task Conclusion: Resources needed to infonn the
scheduler(s) that a processor has become idle, and thus,
can accept another task.

Many have investigated a wide range of parallel inference
strategies. Forgy,l11 Gupta and Forgy,l31 Gupta,l21 .Mir~er,14

51 Oflaser,161 Kelly and Seviora17 ~ and othe~s have mvestlgated
the parallelization of RETE denved algonthms. Cheng and
Juang,l81 Conrey,l91 Conrey and Kibler,1 101 Lin, .Kumar and
Leung,llll Kumar and Linl121 and others have ~t~died meth~s
of compile time panitioning of back\~ard cha1_nmg a~d logic
programming knowledge bases to explOit parallelism. B1swas, et
al.II31, de Kergormmeaux and Roben,l 141 Kale'1151 and others
have published detailed tech_nic~l rev.iews and p~rformed
simulations of AND/OR parallelism m logic programrnmg.

Butterfly<R> Parallel Computer

The BBN Butterfly<Rl Plus comput~r consists of ~f to .256
processor nodes that are interconnected via !1 Butterfly< Switch.
This switch is implemented by connecting 4-by-4 crossbar
switches in the pattern similar to the butterfly transforms of
FFfs. Each processor node contains a 16-MHz Motorola 68020
mpu, 68881 floating point processor, 68851 ?lemory
management unit, 4-Megabytes of local RAM, and .rrucrocoded
processor node controller (PNC) for accessing the switch.

All memory in the Butterfly(R) Plus is shared, giving each
processor access to a. maximum, .1-Gigabyte of ~erno~. Shared
memory is accomplished by usmg the upper eight bus of the
memory address to identify the memory's hosting processor
node. When the memory management unit receives a request for
a non-local memory access, it forwards this request to the PNC.
The PNC generates a packet containing the specific request ~d
sends it through the switch. If the remote memory request m­
volves a read, then all processing is suspended on the local ~ode
until the memory request has been sausfied. Other operauons,
like writes can be sent and monitored by the PNC without
suspending' other local processor node functions. T~e switch
includes redundant paths between processor nodes, which allows
the PNC to reroute packets from busy or disabled paths.

The major advantage of the switch int~~connection strategy
is that bandwidth can grow freely as addmonal processor are
added. Thus, the switch does not have the saturation problem

1125

<hat is common to bus based architectures. The switch path
length between any two processor nodes grows as a function of
Lo&4(N), where N is the number of processor nodes. The major
disadvantage of the switch is its speed - remote memory
accesses can take uo to 7000 nanoseconds vs 530 nanoseconds
for local accesses.lllil Because of this local to remote memory
access bias, experienced Butterfly<R> users pay special attention
to minimizing remote memory reads.

The Butterfly(R) Plus computer runs the Chrysalis
operating system, as well as the recently released Butterfly(R)
MACH operating system. User application programs can. be
written in Butterfly<R> Fonran, Lisp, C and other programrrung
languages. Shared memory access and management can be
performed using progrrunming languages (using 32 bit pointers)
or via calls to the BBN Chrysalis operating system. Our
experience found programming language shared memory
management to be much faster than Chrysalis system calls.
Unfonunately, programming language shared memory access
proved extremely unreliable when used to communicate among
more than two nodes of a heavily loaded system. The Chrysalis
system calls proved absolutely reliable. We believe that this
reliability difference relates to Chrysalis' integration of PNC
microcode that handles local bus timings, switch packet
collisions and packet retries.

PIPER is written in C running under the Chrysalis
operating system and all shared memory access is managed with
Chrysalis system calls.

THE METE ALGORITHM

The Knowledge Base Compiler

With the METE and PIPER inference technology,
knowledge bases are compiled into a discrimination network
called the METE net prior to inference. This compiler generates
a processor-independent file containing test, memory, terminal,
right hand side and back chaining nodes, in addition to data
structures that are necessary to suppon the execution of forward
and backward chaining inference. Nodes are linked to other
nodes which serve as data token sources and sinks. During
inference the METE net processes tokenized facts to recognize
the satisfaction of rule LHSs.

METE Net Node Description

The METE net's test nodes correspond to rule LHS con­
ditions. There are two types of test nodes, Constant Test (CT)
and TAND Test nodes. CT test nodes contain a relational
operator (CT Operator) and a CT Value. CT values can be a
constant, an expression, or a pointer to a user defined function
(such as a database , database query, or an expression. During
inference, the CT value is compared (with respect to the CT
operator) to the value of fact tokens. Figures I and 2 below
contain a production and the corresponding compiled network,
respectively. These figures will help illustrate the compilation
process and relationship among the various node types.

The compilation of the production in Figure 1 will produce
two CT paths . The first path (see Figure 2) will recognize
instances of this specific Target and the second path will recog­
nize instances of this specific Aircraft. The heads of the object
paths are hashed memory addresses. Thus, if a fact token type
was for Target objects, the token would be forwarded to the
Target path. In sequence, this Target head node is followed by
CT nodes that recognize attributes of Type equal to "YAK-38",
Range less than "1000" nautical miles and Bearing equal to

"Closing" If a token fails any CI' test, then it is absorbed and
will not reach the next test.

RULE-I :
IF Target WITH /*IF there is an instance of object-type TARGET 0 /

Type E YAK-38 AND /*WITHattributeTYPE · YAK-38 °/
Ranee < 1000 AND /*AND attribute RANGE less than 1000

= ~
Bearing= Closing AND /* AND attribute BEARING • Closing

AND 0 /

Aircraft WITH
Type • F-14 AND
Weapon = Guns

t• an inswx:e of object-type AIRCRAFf 0 /

/*WITH attribute TYPE • F-14 °/
/*AND attribute WEAPON • Guns 0 /

THEN /*THEN CREATEaninstance ofObjectSTATUS 0 /

ASSERT Status WITH /*WITH attribute CONDITION • Yellow· 0 /

Condition= Yellow.

Figure 1: Sample Rule to Compile.

Figure 2: Compiled METE Network

Fact tokens that pass all tests in a CI' path are stored in a
memory node called an AMEM2• Each cr path has a distinct
AMEM structure to maintain the set of successful tokens. In this
example, there may be multiple Target objects (TI and T3) and
Aircraft (AI and A6) that satisfy the attribute conditions of the
CI' test paths for Target and Aircraft, respectively. The Target
AMEM will contain references to the Target object instances TI
and T3 . Tokens and AMEM objects reference a global structure
called the Working Memory. The Working Memory maintains all
facts that are currently known to the system.

The other kind of test nodes, TAND3s, perform Unification
between two memory nodes to determine if they contain tokens
that satisfy and are consistent with dependent premise conditions.
In the case of the current example, the TAND node would check
the Target and Aircraft AMEMs. If both of these AMEMs
contain tokens, then the TAND node can perform a join of the
two sets and pass the resulting joined tokens to a Terminal Node.

2. The name AMEM derives from the first (or alp)la.l memories that were use in the
original RETE net algorithm developed by Forgyllf

3. For simplicity, we call all two input unification nodes, regardless of node operator
type, TAND nodes. Typical knowledge bases use far more AND node operators than
all other operators combined.

1126

With the tokens that have already been mentioned, the Terminal
node would receive the join of the successful Aircraft and Target
objects ({AI TI, AI T3, A6 TI, and A6 T3)). These four
tuples represent four satisfactions of example rule 1. Tokens that
do not meet the constraints of a TAND node are absorbed and do
not progress to subsequent nodes.

TAND nodes contain a binary Boolean operator, the TAND
Operator. A diversity of TAND operators allows for an
extensive variety of possible object relations. The current
example uses the AND operator. To handle increased unification
complexity for productions that contain more than two dependent
conditions, a tree is constructed of multiple TAND nodes.
Successful tokens cascade through this tree. Increasingly
complex relations can be achieved by increasingly deeper TAND
trees. Between successive TAND nodes are SMEMs (Smart
MEMorys). A SMEM contains the reference sets of tokens that
passed the preceding TAND nodes' tests and serves as the input
buffer for the subsequent TAND node.4

Terminal nodes are the culmination of production prem­
ises. Terminal nodes reference the immediately preceding
SMEM which contains references to the set of joined tokens,
each set satisfies all conditions of the production. A Terminal
node also contains references to RHS Nodes and to Backward
Chaining Nodes (BCON Nodes). When executed, the RHS
Nodes modify Working Memory by asserting (creating new
objects), deleting existing objects, or modifying attributes of
existing objects. BCON Nodes reference AMEM structures that
contain object references that are necessary to prove sub-goals
needed to support backward chaining inference.

The Inference Cycle

The METE algorithm employs a three stage inference
cycle similar to the RETE algorithm. The first stage, Match,
reviews existing facts to determine which productions are
eligible to fire. The second stage, Select, picks the highest
priority, eligible production(s) (maintained in a structure called
the Activation List) to fire based on a selection strategy (See
Brownston, et aJ. I171 for a discussion of conflict resolution
methods). If no productions are eligible to fire, then inference is
complete. The final stage, Act, fires the selected production(s)
and updates the working memory structure. Following the Act
stage the next inference cycle begins with the start of a Match
stage.

The PIPER parallel-METE algorithm exploits multiple
forms of parallelism. This parallelism is made possible by
partitioning processors into thre_e functional sets. The first set
consists of a single processor called the Inference Manager (IM).
The other two sets perform functions related to the node types
that they contain, Constant test nodes (CT processors) and
TAND test nodes (TAND processors). The IM maintains a
Chrysalis operating system dual queue between itself and each of
the CI' and TAND processors. The Chrysalis dual queue use a
PNC microprogrammed function to maintain a message queue
between two Butterfty(R) processors. See Figure 3.

Each CI' processor contains a copy of all CI' test nodes,
and thus, any cr processor can perform the constant tests on any
token that it receives. The IM begins each inference cycle by
distributing new fact tokens (using a round-robin scheme) to cr
processors. CT processors acknowledge (to the IM) the
completion of each token's processing. Tokens that meet the
conditions of a CT path are forwarded to a distinct TAND

4. It is relatively rare for a production to consist of only a single object In this case,
there is no need for a T AND node and therefore a path can be constructed directly
from a CT to AMEM to Terminal node.

•

•

cycle_ counter value, two diffe!'Cnt tester objects' type
attribute (namely the I and J of the rule label), and
matched 2 tester objects' slot values. These rules
required 3 Cf te~ts and 2 TAND tests to imJ?lem~nt.
Each rule satisfaction created two tester facts of Identical
types (say I and J) to the tester facts that satisfied their
LHSs. These new tester facts were used in the next
iteration to completely or partially satisfy the rules
containing /'s or J's in their rule labels. The interaction
of these rules and tester facts created a rapid explosion of
rule satisfactions and new fact assertions. Each of these
rules fired I time the first iteration and I 0 times the
second iteration. The number of rule firings would have
continued to grow at a rate of one magnitude per
iteration. Fact growth was two times that of rule firings
since each rule produced two new facts.

1- typo body rule. This rule was labeled rule_!_ 2 and
was intended to be the sixth body rule, but because of a
typo this rule contained one additional condition. This
rule executed once in each of the first and second iter­
ations and produced two facts. This rule required the
satisfaction of 4 cr tests and 2 TAND tests to fire.

100- body filler rules. These rules were labeled
rule X J (where X is and alpha character from 'a' to 'x'
and] varied from 0 to 4) and were identical to body rules
except that they tested cycle counter value and tester slot
values that were never satisned. Thus, facts failed at the
top level cr tests. These rules added a great deal of
additional processing load.

To summarize the benchmark processing scenario, six
initial facts were asserted. These initial facts resulted in a total of
59 (7 first iteration and 52 second iteration) rule firings, which
produced 114 (12 first ite;.uio!l and 192 second i~erati?n) new
fact assertions, 1 fact modificanon (dunng the first lteranon) and
one fact deletion (during the second iteration). Of the 100 rules
that were never satisfied, each failed objects at their top level cr
nodes. This knowledge base produced a testing load similar to a
much larger knowledge base.

The Experimental Design

This knowledge base was executed under several con­
ditions on the NRL 128 node Butterfly<Rl Plus computer and also
on a SUN 3/60 UNix<Rl workstation. The experimental
conditions were grouped along two dimensions,

(1) Total number of processors utilized, and

(2) Ratio of cr to TAND processors. The current design used
only a single IM processor, regardless of the number of cr or
TAND processors.

Since this design assigned distinct activities to three dif­
ferent processors classes, varying the ratio of processors assigned
to these classes yielded an understanding of their interrelation.
Levels of processor numbers included: 1 (PIPER uniprocessor
and MeriToolun serial versions), 7, 13, 19, 25, 31, 37, 43, 49, 55,
61, 67, 73, 79 and 85 processors. Number of processors 7
through 85 allowed the testing of even ratios of cr to TAND
processors corresponding to the ratios of 1:5, 2:4, 3:3, 4:2, and
5:1. Total execution time was the dependent variable.

The assignment of functions to specific processors .can
affect the communication loading at individual switch elements.
Switches that are are more heavily loaded have higher incidences
of packet collisions and associated message delays. To balance
the consequences of node alloc~tions, a c.omplete and .r~ndomly
ordered presentation of all possible expenmental conditions was
attempted on three different days. Because of a condition

1127

(known as node rot among NRL Butterfly users) not all of the
conditions could be completed. The 3:3 ratio for 85 processors
was never completed, the other ratios of 85 processor conditions
were only completed once, and the 4:2 ratio of 76 processors was
completed twice.

The Benchmark Control Conditions

Three different control conditions were evaluated in this
study. These control conditions included:

(1) The C language version of the commercial product fonn of
MeriToolun, with as few modifications as possible. Changes
were needed to confonn with Chrysalis conventions of heap
memory allocation. This version was run on a single node of
the NRL Butterfty(Rl Plus .

(2) The C language version of the commercial product fonn of
MeriToolun, without modification, run on a SUN 3/60 worlc­
station owned by Merit Teclmology.

(3) A PIPER uniprocessor version, containing only minor
changes to the parallel PIPER version. These changes sup­
ported dual queues from and to the single processor.

THE BENCHMARK RESULTS

The Control Conditions' Results

MeriToolun serial ran the BOGUS.KB in 6.7 seconds on
the SUN 3/60 and 7.3354 seconds on a single node of the
Butterfiy(R) Plus. Both of these computers are based on
MC68020 microprocessors and have other similar Motorola
68XXX chip set components. The two major differences are
clock speed and operating systems{Rthe SUN 3/60 CPU is
clocked at 20 MHz while the Butterfly >Plus CPUs are clocked
at 16 MHz. When the Butterfly<Rl Plus node clock speed was
normalized to that of the SUN's 20 MHz, its execution time
would be 5.87 seconds5• From these results one can see that the
Butterfly(R) version of MeriToolun's execution time on a single
node was representatively similar to that of the conunercial SUN
version of MeriToolun. See Table 1 below for a summary of
these results.

The PIPER uniprocessor version ran considerably slower
(13.0679 seconds, 9.80 seconds normalized to 20 MI-Iz) than the
Butterfly<R> MeriToolun version. The authors attribute much of
this performance lag to Chrysalis overhead related to dual queue
message transmissions. We suspect that even though the single
processor version of PIPER was sending messages to itself, the
messages went through the PNC, through the Butterfly(Rl Switch
and back to the PNC. Thus, in the uniprocessor PIPER version,
communications took the long way around and the PNC probably
got in the way of itself, creating contention for the switch.

Gupta!2l reported results from simulation of uniprocessor
and mulitporocessor environments for several historically
significant rule sets. These simulations were based on timing
Rete net code segments. Because these results do not include
execution of fully functional code, absolute time comparisons
between PIPER and Gupta's results can not be made. Gupta!21
reported both true speed-up and nominal speed-up times. True
speed-up used the execution time of an efficient uniprocessor
model (without any of the parallel synchronization or overhead)
as the speed-up basis; thus, true speed-up represents the speed
advantage between an efficient uniprocessor and an efficient

5. This normalization may not be entirely valid as it assumes all resources are scaled at
the same rate as the microprocessor clock.

processor. This CT to TAND communication is implemented
using Chrysalis system dual queues.

Duel Qu•u••

+.tolcen ACK

<- StutTAllllln&
+ Rule S.Uit'eeUool

Figure 3: PIPER Parallel Inference Architecture

Processing multiple tokens through the CT portion of the
METE net represents one form of parallelism. CT tests tend to
be more homogeneous in processing time than does the pool of
CT and TAND processing tasks. The more homogeneous the
processing time for CT tasks, the better this simple but efficient
load balancing strategy will be.

Tokens that are received by TAND processors from CT
processors are immediately dequeued and placed in appropriate
AMEM structures. This queuing and dequeuing is potentially a
significant overhead source. But, since the queuing by a CT pro­
cessor occurs in parallel with other CTs' token processing and
the TAND token dequeuing is occurring simultaneously with CT
processing, this potential for overhead is minimized. Each
TAND processor is specialized, containing only specific TAND
tests. The top level of TAND nodes are associated with a left and
right hand AMEM structure. TAND nodes test a binary Boolean
relationship between the "m" left hand and the "n" right hand
AMEM entries. Thus, although this process is of O(m*n) com­
plexity, each iteration is extremely simple computationally, being
primarily limited by memory bandwidth.

Various investigators have studied the possibility of per­
forming asynchronous TAND testing (testing as each AMEM
entry arrives; Gupta[21 provides a fine analytical review of tech­
niques). The major difficulty with completely asynchronous
processing centers around the added overhead involved in per­
forming cross product type operations on two simultaneously
volatile sets. Both left and right hand TAND node input sets are
subject to simultaneous additions and deletions. Considering the
computational simplicity of the Boolean tests that are being per­
formed in this cross product operation, it is not surprising that the
overhead of completely asynchronous TAND token processing
can easily overcome any benefit.

When the PIPER IM receives the acknowledgment that the
last CT token has been processed, it transmits a TANDing start­
up token to each of the TAND processors . Parallel TAND
processing is a second form of parallelism.

1128

Terminal nodes send Activation List updates to the IM via
dual queues. The IM processes these updates as they are
received using one of the user specified conflict resolution
strategies. Conflict resolution involves sorting rules that are
eligible to fire based on a priority scheme. Thus, the TAND
processing of the Match phase is pipelined to the conflict
resolution of the Select phase. This represents a third major
source of parallelism. Once all TAND processing is completed,
the 1M can immediately start the Act phase.

With the selection of a production(s) to fire, the Act Stage
begins. Each processor maintains a copy of working memory
facts. In the ACT stage, the IM distributes working memory
update information to all CT and TAND processors using the
same dual queues as the Match phase. Working memory updates
result from the execution of the RHS(s) of a rule(s).
Additionally, a list of working memory changes, in the form of
fact tokens, is produced. This list of fact tokens is processed by
the CT processors in the next Match stage to determine which
additional rules become eligible to fire. Since the dual queues
maintain order of their entries, the IM does not have to wait for
the ACT stage to complete before passing out the fact tokens for
the Match stage. Thus, the Act and the Match stage are
pipelined. This pipelining minimizes communications overhead
of fact token fan out and working memory updating.

THE BENCHMARK METHOD

The Benchmark Knowledge Base

To estimate the efficacy of the PIPER parallel method, an
iterating 108 rule knowledge base was composed (we call it
BOGUS.KB). This knowledge base was designed to roughly
simulate the fact-rich environment of PIPER's target domain,
SDI contact discrimination. The knowledge base contained three
object types:

• tester - which had two attributes, type and slot. There
were four initial assertions of this fact that varied the
value of the the type attribute from 0 to 3. The slot
attribute of each fact was initially set to 0 and was tested
and incremented by ten in each inference cycle.

• cycle counter - had a single attribute, value, that was
initiaTized to 0 and was incremented by 1 in each in­
ference cycle. Each rule required the existence of this
fact to fire.

• max cycle - had a single attribute, count, that was
initiaTized to 1 and was tested against the value attribute
of the cycle_counter object. Thus, two complete
inference cycles were performed (0 and 1). When the
two attributes, count and value, were equal, the
cycle_counter object was deleted, which blocked all
future rule satisfactions.

The knowledge base contained the following numbers and
types of rules:

• 1- cycle counter rule incremented and tested the
cycle-counter value attribute in all but the last iteration.
If "k" inference cycles were run, this would fire "k-1"
times.

• 1- stopper rule executed the last iteration in place of the
cycle counter rule and deleted the cycle counter fact
which made the truth value of the other rules false.

• 5- body rules. These rules labeled rule I J (where I and
J varied from 0 to 3, except rule I 2 which is described
immediately below). Each oCthese rules tested the

parallel execution of ~ rule. set. _Nomin'!l speed-up used a
uniprocessor execution time (mcludtng the. unneeded
synchronization and overhead added for parallelism) as the
speed-up basis. Thus, nominal sp~ed-up c_orresponds to the
difference between a less than optimal uniprocessor and an
efficient parallel execution.

Table 1: Benchmark Control Groups' Results

CONTROL GROUP EXECUTION TIME

Sun 3/60 MeriTooltm
20MHz 6.7 seconds

B utterfly(R) MeriTooltm
16MHz 7.3354 seconds
20 MHz (normalized) 5.87 seconds

PIPER Buuerfly(R) Uniprocessor
16MHz 13.0679 seconds
20 MHz (normalized) 9.80 seconds

The data from all three control groups yielded interesting
results when they were used as the basis value of speed-up. The
speed-up functions o.f the .three are, multiplicativ~ly related _and
vary as a ratio of therr baSIS ~oups speeds. For mstan.ce, s~nce
the uniprocessor PIPER version ~ad ~e longest execuuon tu~,
it greatly inflated speed-up. Thts uniprocessor PIPER versiOn
corresponds to the basis value of Gupta's nominal speed-up
reports . For the remainder of the results discussion, the
MeriTooltm Butterfiy(R) version was used as the basis. It is the
authors' opinion that this MeriTooltm Butterfiy(R) version's
performance most fairly represents the speed-up a ~ser could
anticipate going from a 16 MHz MC68020 based umprocessor
computer to a 16 MHz MC68020 based parallel processor (like
the Butterfiy(R) Plus). This uniprocessor MeriTooltm Butterfty<R>
version corresponds to the basis value of Gupta's true speed-up
reports.

The Experimental Conditions' Results

Using the Butterfty<R> Plus MeriTooltm version (16 MHz)
as a basis, a maximum single run speed-up of 31.5~ was
observed with 49 nodes (40 CTs and 8 TANDs). The maximum
mean speed-up over three trails was 29.17 with 61 processors (50
CTs and 10 TANDs). The six fastest mean speed-ups all occured
within the 5:1 (CT:TAND) ratio (see Figure 4).

The mean, standard deviation of the within experimental
condition speed-ups (using only ~on<;titions with three co~pleted
observations) was 0.602. Thts mdtcates that an expenmental
condition's speed-ups could be expected to vary within a range
of plus or minus 0.602 of its mean about 68 percent about of the
time.

The ratios of 5 CTs to I TAND and then 4 CTs to 2
TANDs consistently out performed the other ratios. Over 75% of
the maximum achieved speed-up was gained with the first 25
processors. After the employment of 25 processors the gain in
speed gradually siO\yed. Beyond 55 processo;s all ratios demon­
strated slowing and m some cases small neganve speed-ups.

DISCUSSION OF THE RESULTS

This total speed-up was attributed to

(1) Parallelism in constant tests and two input node tests, as
well as

(2) Pipelining between
(a) Two input node tests and conflict resolution, and

(b) Test processing and overhead corresponding to the
parallel implementation.

To gain a detailed understanding of these results, one must
evaluate the amount and type of work available, th~ num~r and
type of processors available to perf~rm ~e work, m. addiuo~ to
the overhead functions. Although trrne dtd not permit a detruled
empirical study of this matter, below is one set of likely hy­
potheses.

In the second iteration, where the majority of the facts
were processed, 102 facts went through CT testing. ~ese facts
only completely supplied tokens (to both left and nght hand
AMEMs of TANDs) to AMEMs of seven distinct TAND sub­
trees. Of these TAND sub-trees, only the five body rules
required significant processing time. Thus, at most, five TAND
processors were heavily employed, while any number of TAND
processors over five, added little useful p~essing (in the case of
increment and stopper rules) or no work (m the case of the 100
body _filler rule) . TAND processors that were not u~efully
employed still required resources of the 1M processor dunng the
act phase of the inference cycle and in synchronization between
CT testing and TAND testing sub-phases of the match phase.

Speed-up as a function of rumber and ratio ol process<n

25

20

Speed-up 15

10

5

• 1 CT : STANDs

0 2CTs : 4TANDs

+ 3 CTs : 3 TANDs

0 4 CTs : 2 TANDs

'--··:-··-:···-:····; •sCTs : 1TAND

' ' o • o • o ! 0 I

- ·- - - - ~ .. - ·: ;· ... ! ... ·: :- - - - ~ - - - : - . - -:- . - - ~ ... !

13 19 25 31 37 43 49 55 61 67 73 79 85

T olaf processors used

Figure4

1129

Thus, for this specific two iteration benchmark using the
BOGUS.KB rule set, some number between 5 and 7 TAND
processors would probably be optimal.

Similarly, the inference engine performed CT testing of at
most 102 distinct facts in an inference cycle. As the reader will
recall from a previous section on the design of the inference
engine, CT testing is much less computationally demanding than
TAND testing. The benchmark results are consistent with the
hypothesis. It seems that by the time the IM had distributed
several tokens for CT testing (say about 50) the first CT
processors that received tokens had completed their testing and
then sat idle. For this benchmark, any more than approximately
50 CT processors did not seem to benefit overall processing
speed. If additional iterations of the knowledge base inference
cycle could have been run6, additional CT processors most likely
could have been usefully engaged. Also, if the initial scheme of
using lower level communications (rather that Chrysalis dual
queues) would have been technically feasible, then the 1M would
have been able to disperse tokens faster (an estimated 4 to I 0
times faster). Thus, additional CT processors could have
probably been successfully employed. For this specific two
iteration benchmark using the BOGUS.KB rule set, some
number between 40 and 50 CT processors would probably be
optimal.

Because the maximum speed-ups were recorded at the
highest ratio of CTs to TANDs and also to determine ifour
hypotheses about CT to TAND ratios were correct, we executed
several after the fact tests employing higher ratios. Basically, 43,
49 and 55 total processors with from one to seven TANDs (the
remainder of the processors were assigned to an 1M and the rest
to CT processors). The maximum speed-up observed in these
sessions was 26.19 at 49 total processors configured as 1 IM, 42
CTs, and 7 TANDs. These data do not completely endorse our
conclusions as we would have expected the 42 CTs to 7 Tands or
the 47 CTs to 7 Tands ratios to actually out perform all of the
original experimental conditions.

CONCLUSIONS

Using a completely different mix of speed-up techniques,
PIPER's actual results compare favorably to those of Gupta's
simulations. When all expected overhead sources were added to
Gupta's simulations (pages 140-144)121 an average true speed-up
across his six rule sets of 9.29 was achieved (with the single best
rule set achieving a 13 fold speed up}. To reach this
performance, Gupta employed the following features:

• Hardware task schedulers that minimized the overhead
needed to support optimized load balancing;

• Intra-node parallelism which reduced the impact of cross­
product TAND-typc testing; and

• Action parallelism which processed the working memory
changes of the ACT phase in parallel.

Perhaps one reason for PIPER's successful speed-up is the
nature of its benchmark rules set. Most knowledge bases are by
design explicitly serial. The domain which the BOGUS.KB
roughly simulates is inherently information rich, and thus, it
more easily utilizes parallel processing techniques. The authors
strongly believe that there are many other real world domains
with similar fact-rich processing characteristics. A few examples
of these domains include:

6. The third iteration exhausted memory resources of the Butterf!y(Rl Plus. This
iteration attempted to assen in excess of 1000 additional facts.

1130

• Strategic Defense Ini tiative categorization and dis­
crimination tasks.

• Rule based event simulations.

• Rule based sensor fusion and threat avoidance.

• Real time factory control and process monitoring.

• Intelligence analysis and data fusion.

Gauging from the high level task analysis, the performance
functions seem to be moderately well behaved. Performance
modeling and prediction is one of the topics that we are
investigating. This topic can be subdivided in to two related
areas:

"' predict inference performance given a hardware
configuration and rule set, or

• predict optimal configuration for a given rule set.

The Butterfly architecture is burdened with an
interconnection topology that is more suited to large grained
parallelism. We are currently investigating implementation
techniques for a Connection Machine. At this point the
Connection Machine seems better suited to the very fine grained
parallelism of inference tasks.

BIBLIOGRAPHY

I. Forgy, C.L., "On The Efficient Implementation of Production
Systems", Ph.D. Thesis, Camegi-Mellon University Department
of Computer Science, 1979.

2. Gupta, A., Parallelism in Produ ction Systems, Morgan
Kaufmann, 1987.

3. Gupta, A. and C.L. Forgy, "Measurements on Production
Syslems", CMU-CS-83-167, 1983.

4. Miranker, D.P .. ''TREAT: A New and Efficient Match Algorithm
for AI Produclion Systems", UT Austin TR-87-03, 1987.

5. Mirankcr, D.P., "TREAT: A Better Match Algorithm for AI Pro­
duction Systems", UT Austin TR-87-58, I987.

6. Oftazer, K., "Partitioning in Parallel Processing of Production
Systems", Carnegie Mellon University TR CMU-87-114, 1987.

7. Kelly, M.A. and R.E. Seviora, "A Multiprocessor Architecture for
Production System Matching", AAAI-87, 1987.

8. Cheng, P.D. and J.Y. Juang, "A Parallel Resolution Procedure
Based on Connection Graph", AAAJ-87, 1987.

9. Conery, J.S., "The AND/OR Process Model for Parallel Inter­
pretation of Logic Programs", University of California, Irvine TR
204, 1983.

10. Conery, J. S. and Kibler, D. F., "AND Parallelism and Nondc­
terminism in Logic Programs", New Generation Computing,
vol.3, 1985.

II. Lin,Y.J ., Kumar,V. and Leuny,C.,"An Intelligent Backtracking
Algorithm For Parallel Execution Of Logic Programs", UT Austin
TR 86-22, 1986.

12. Kumar, V. and Lin, Y.J. ,"A Framework for Intelligent
Backtracking in Logic Programs", UT Austin TR 86-36, I986.

13. Biswas, Prasenjit, Su, S.C., and Yun, D.Y.Y., "A Scalable Ab­
stract Machine Model to Support Limited-OR (LOR) I Re­
stricted-AND Parallelism (RAP)", Proceedings of the Fifth

International Logic Programming Conference, The MIT Press,
1988.

14. de Kergommeaux, C. and Robert, P: "An Abstract Machine to
Implement Efficiently OR-AND Parallel Prolog", Proceedings of
the Fifth International Logic Programming Coriference, The MIT
Press, 1988.

15. Kate!, L.V., Ramkumar, B., and Shu, W. "A Memory Organ­
ization Independent Binding Environment for AND and OR
Parallel Execution of Logic Programs", Proceedings of the Fifth
International Logic Programming Conference, The MIT Press,
1988.

16. BBN 1988, The ButterjiyiRJ GPJOOO Switch: Design and
Function, BBN Advanced Computers Inc., 1989.

17. Brownston, L., Farrell, R., Kant, E., and Martin, N.,
Programming Expert Systems in OPS5, Addison-Wesley, 1985.

TRADEMARKS

Butterfty (R) is a registered trademark of BBN Advanced
Computers, Inc.

MeriTooltm is a trademark of Merit Technology Incorporated.

UNix<Rl is a registered trademark of AT&T.

1131

