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1. Introduction

Uncertainty Quantification (UQ) of multi-scale and multi-physics sys-
tems is a field of great interest and has attracted the attention of many
researchers and communities in recent years. However, it is difficult to con-
struct a complete probabilistic model of such problems mainly because they
often involve high-dimensional and continuous random variables, which have
complex, multi-modal distributions.

Over the past few decades, many methods and algorithms have been de-
veloped to address UQ problems. The most widely used method is the Monte
Carlo (MC) method. MC’s wide acceptance is due to the fact that it can
uncover the complete statistics of the solution, while having a convergence
rate that is (remarkably) independent of the input dimension. Nevertheless,
it quickly becomes inefficient in high dimensional and computationally inten-
sive problems, where only a few samples can be observed. Other methods are
attempting to construct a surrogate model for the complex physical system.
The idea is to run the deterministic physical solver on a small, well-selected
set of inputs and then use these data to learn the response surface, so that
the UQ problem can be studied based on the surrogate instead of the com-
putationally expensive simulator. Such kind of methods include, the adap-
tive sparse grid collocation method (AGSC) [1], the multi-response Gaussian
process method (MGP) [2], adaptive locally weighted projection regression
methods (ALWPR) [3], and so on. However, all these methods have to face
the “curse of dimensionality” problem, when the inputs are high-dimensional.

Recently developed probabilistic graphical models [4] can provide a pow-
erful framework to effectively interpret complex probabilistic problems in-
volving many inter-correlated variables. The two basic elements of a graphi-
cal model are its nodes and edges. The nodes represent the random variables
and an edge linking two nodes represents the correlation between them. The
joint probability distribution can be accessed by decomposing the complex
network into local clusters defined by connected subsets of nodes. Then,
by applying appropriate inference algorithms, the marginal and conditional
probabilities of interest can be effectively calculated.



The probabilistic graphical model has been used in a range of applica-
tion domains, which include web search [5], medical and fault diagnosis [6],
speech recognition [7], robot navigation [8], bioinformatics [9], communica-
tions [10], natural language processing [11], computer vision [12], and many
more. Most of the above applications have demonstrated the excellent per-
formance of graphical model in the discrete world and the low-dimensional
continuous world. However, for problems involving high-dimensional contin-
uous variables, the number of efficient and accurate algorithms is limited.

The simplest way to investigate continuous graphical models is discretiza-
tion. However, for problems involving high-dimensional variables, exhaustive
discretization of the random space is computationally infeasible. Gaussian
approximation is a widely used technique to build the continuous model,
however, the performance of Gaussian model is not very satisfactory, espe-
cially for problems involving non-Gaussian features. Therefore, in this work,
we propose to build a nonparametric (non-Gaussian) graphical model.

The general procedure of studying a graphical model problem can be sum-
marized as follows: (1) Prepare the training data for the graphical model; (2)
Design the structure of the graphical model; (3) Learn the graphical model
with the training data, including designing the potential functions and learn-
ing the unknown parameters; (4) Solve an inference problem, that is, find
the conditional or marginal probabilities of interest. In this work, we con-
sider a graphical model that interprets the probabilistic relationship between
the inputs of a physical system with the corresponding responses. Generally
speaking, for a complex physical problem, the input variables are the key fac-
tors which determine the characteristics or the performance of the physical
system (response variables). For example, in flow in porous media, the input
variable is the discretized representation of the permeability field, while the
response variables are the physical properties such as velocity and pressure,
which are strongly influenced by the inputs. Model reduction techniques
often have to be applied first to the input due to its high dimensionality.
All the unknown parameters in the graphical model can be learned locally
via techniques such as maximum likelihood (MLE), or maximum a posteriori
probability (MAP). To address the inference problem several sampling and
variational algorithms can be applied. Since the designed graphical model
in this work is nonparametric, a sampling based nonparametric belief prop-
agation [13, 14] algorithm is selected to carry out the inference task. In the
following sections, we will discuss how we build the graphical model and how
to study the problems of interest in detail. In particular, in this work, the



problem under investigation is flow through porous (heterogeneous) media.
We are interested in investigating how the uncertainty propagates from the
input permeability field to the corresponding response properties field. In
addition, we want to build a surrogate model to the deterministic solver that
will allows us for any realization of the input permeability to predictive the
physical responses as well as our confidence on these predictions (induced by
the limited data used to train the graphical model).

In [15], the authors proposed a probabilistic graphical model for multiscale
stochastic partial differential equations (SPDEs) that focuses on the corre-
lation between physical responses. The distribution of physical responses
conditioned on stochastic input was approximated using conditional random
field theories. Different physical responses (such as flux and pressure in flows
in heterogeneous media) are correlated in such a way that their interactions
are assumed to be conditioned on fine-scale local properties. No model re-
duction of fine-scale properties was involved in this process. The influence of
fine-scale properties on coarse-scale responses was modeled through a set of
hidden variables. The approach in this paper is significantly different in mul-
tiple fronts: (1) an undirected graph model is introduced rather than a factor
graph as in [15]; (2) the graphical model considers output responses that are
independent of each other; (3) an explicit model reduction scheme is consid-
ered to reduce the dimensionality of the random permeability field without
the need for introducing hidden variables; and (4) the graph structure and
graph learning scheme are implemented in a completely different algorithmic
approach based on the Expectaction/Maximization (EM) algorithm and a
sampling based approach to nonparametric belief propagation.

This paper is organized as follows. First, the problem definition is given
in Section 2. Then the basic procedure of how to construct an appropri-
ate graphical model and all the associated algorithms are discussed in Sec-
tions 3, 4 and 5. In Section 6, we introduce the porous media flow problem
and provide various examples demonstrating the efficiency and accuracy of
the graphical model approach. Brief discussion and conclusions are finally
provided in Section 7.

2. Problem definition

Let (2, F,P) be a probability space, where Q2 is the sample space corre-
sponding to the outcomes of some experiments, F a o-algebra of subsets in
) (these subsets are called events) and P : F — [0, 1] the probability mea-
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sure. In this framework, let us define D C R, d = 1,2, 3 the spatial domain
of interest (physical space), x € D a spatial point, where x = (z1,...,x4).
Consider a random field {A}xep. We assume Ay is a function that maps
the probability space ) to R, i.e.,

A, Q) — R, (1)

which assigns to each element w € () a real-value (considering isotropic per-
meability) Ay at a specific point x. We define a = A(w),w € 2, a realization
of A.

In practice, the physical domain is decomposed into fine-elements where
the permeability is defined. For example, consider a partition, 7; for the
domain D into non-overlapping elements e;, i.e., 7; = vazfl e;, where Ny
is the number of fine-elements in the domain. The random input field is
specified on the fine-grid and A (w) can be written as follows:

Aw) = (A (@), Ag(w), .., A, (). 2)

For most cases, we are only interested in the responses on a coarser grid
than 7;. Therefore, let us define a coarser partition of the same domain D.
Denote this partition as 7, = Ufi‘l FE;, where N, is the number of coarse-
elements. Fig. 1 shows a fine-grid (finer lines) and a corresponding coarse-
grid (heavier lines). Let Ng denotes the number of nodes on the coarse-grid.
Then we can represent the response field Y(w) = {Yx(w) : x € D} as a
discrete set of responses on the coarse-nodes as follows:

Y(w)=(Yi1(w), Ya(w),..., Yn,(w)). (3)

The values of Yy(w) on other spatial points can be interpolated.

In uncertainty quantification tasks, one specifies a probability density on
the input A, p(A), and is interested to quantify the probability measure
induced by it on the response field. This can be achieved by marginalizing
Y from the joint distribution of p(Y, A) as:

oY) = / p(Y. A)dA

- / (Y| A)p(A)dA. (4)

If we assume a constant permeability at each fine-scale element, then
A is described by a high-dimensional (Ny) set of highly correlated random

5



(a) )

Figure 1: Schematic of the domain partition: (a) fine- and coarse-scale grids and (b)
fine-scale local region in one coarse-element.

variables with a distribution that is hard to evaluate. A common way to deal
with such problem is creating a reduced-dimensionality input model. For
example, one can perform a Karhunen-Loeve expansion [16] for a given set
of permeability realizations, and then truncate this expansion after k¢ terms,
and use ke (ke << dim(A)) random variables £ to represent the permeability
distribution. Therefore, the above uncertainty propagation problem can be
re-formulated as:

p(Y) = / p(Y, A)dA
~ / (Y, €)de
- / (Y 1€)p(€)dE. (5)

In many problems, £ is still high-dimensional which prevents us from
efficiently finding the conditional distribution p(Y|£). Hence, we propose a
way to localize the connection between the inputs and responses, but also
link each local connection in a global sense. The localized connection will be
introduced by assuming that the response at a give coarse-node is correlated
mostly with the random permeability at the neighboring coarse-elements.
Thus for each coarse-node i (and thus response y;), we can affiliate a reduced
set of random variables s; that define the permeability random field at the
coarse-elements adjacent to node 7. This is discussed next.



3. Model reduction

Let us assume that a set of realizations of the random input field A are
given. Using the Karhunen-Loéve expansion [16] with the given permeability
realizations defined over the whole spatial domain D, we can compute the
global reduced representation of the permeability in terms of the random
variables &. We can symbolically write the model reduction process as follows:

£ =TRy(a), (6)

where a is a realization of the random field defined on the fine-grid, and
R, is the global reduction map. As part of this map, for each realization
of the permeability field, we assume that there is a unique realization of the
random variables £&. However, the difficulty arises because the dimensionality
of &, ke, is high, ie., k¢ >> 1. Considering that each response on the
coarse-grid depends on the permeability field over the whole domain (via the
solution of the underlying porous media flow boundary value problem), it
is rather difficult to build a probabilistic link between the response Y and
the reduced input &. Hence, we make a physically reasonable assumption for
many problems that the response at one coarse-grid node correlates strongly
on the input permeability in the underlying nearest coarse-elements, and that
the influence by the permeability at all other coarse-elements can be ignored,
as shown in Fig. 2.

Let T'; € {1,..., N.} be the set of coarse-elements corresponding to the
coarse-node i. Let ap, denote the input permeability field over the corre-
sponding coarse-elements to coarse-node i (see Fig. 2). Based on the given
realizations of the permeability ar,, one can perform a Karhunen-Loeve ex-
pansion and obtain the reduced representation s; of the permeability field
over I'; that encodes most of the information relevant to the response at
coarse-node 7 as:

si = Rr, (aFi)7 (7>

where Rp, is the reduction map for the permeability in the elements I';. s;
should be correlated to its neighboring reduced representation s; due to the
overlapped inputs considered, as shown in Fig. 2.

The connection between this local model reduction and the global model
reduction in Eq. (6) is given as follows: Let C, be the global reconstruction
map such that:

Ry(Cy(8)) =&, (8)
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Figure 2: An illustration of the model reduction framework considered in this paper.
The response at each coarse-node depends on the permeability field at the neighboring
coarse-elements.

and let Cr, be the local reconstruction map corresponding to the model re-
duction for the i*" coarse-grid node defined as:

51“1- = Cri (Sz), (9)

where ar, is the reconstructed local random field on the coarse-elements I';.
We can write the following;:

s = R, ([Cy(§)lr,), (10)
where [-]p, is the restriction of a = C,(£) over I';. Similarly, we can write,
£~ Ry{HI[Cr,(s1), -, Cry, (sne)1} (11)

where H is an implicit function that averages permeability realizations ob-
tained from local overlapping reduction models. The above equation implic-
itly defines how the local reduced input s; is correlated to & through the
reduction /reconstruction maps. The function H approximates the global re-
construction function C,, thus the better the choice of H is, the closer the
local/global approximations we obtain. In this work, the function H is simply
chosen as:

Noverlap
1
H() B = Z [CF]‘ (Sj)]Ei7 (12)
Noverlap =1



where Noyerlap is the number of overlapped reconstruction over coarse-element
E;, and [-]; is the restriction of ar; = Cr,(s;) over the E; element.

Remark 1: The reduced variables s; affiliated with different locations 7 are
different random variables. For a stationary permeability random field, local
features have the same distribution on coarse-elements, therefore, the local-
ized reduced random variables s; are going to follow the same distribution
for all ¢ (not considering boundary effects). However, notice that one can
not say these s; are the same random variables even if they follow the same
distribution. Given a realization of stationary stochastic input a™, the local
features a,i") and al(n) on coarse-elements Fj and FE; are in general different.
For nonstationary random permeability field, the s; variables at different
locations ¢ follow different marginal distributions.

The localization of the input model reduction outlined above can be im-
plemented with literally any model reduction technique including linear and
nonlinear dimension reduction algorithms. For linear dimension reduction,
the most famous and the most widely used method is the Principal Compo-
nent Analysis (PCA) [17] method. The first version of PCA method appeared
half a century ago and it has been shown since then to be a reliable reduc-
tion method forming the basis of many other more advanced mathematical
reduction methodologies. In the last decade, a large number of nonlinear di-
mensional reduction techniques have been proposed (e.g., [18, 19, 20]). Most
of the nonlinear techniques are not as well studied and have been shown
often to provide better performance than PCA for artificial than physical
nonlinear datasets [21]. These methods perform not better (sometimes much
poorer) than PCA for natural datasets [21]. Therefore, here for simplicity
of the presentation, we choose PCA as the dimension reduction technique.
This will allow us to emphasize the graph theoretic approach for solving the
underlying stochastic flow problem of interest. The basic algorithm for the
PCA method used is summarized for completeness in Appendix A.

Up to now, we have completely defined the relationship between £ and
S = {s1,...,8n.}. Given the distribution of &, it is straightforward to use
Monte Carlo method to find the distribution of S, p(S). Then computing
p(Y) requires to compute the conditional p(Y|S) where Y = {y1, 92, ..., Un, }-



Indeed, we can write the following:

Q

pY) = [ (YI€(e)de

[ YISIpisiem(edsae

= [wvis)| [ sslemieae] as
— [ oYI8)p()as

- / D1, Y2s- s ynalSis - s S50)P(S)dS. (13)

Q

As discussed in Section 1, probabilistic graphical models [4] can be used to
systematically explain the probabilistic relationship between S = {sy,...,sn,}
and the responses Y = {y1,¥2, ..., yn, }- Their joint distribution can be par-
titioned in a way the accounts for the local nature of the dependence/correlation
of the response to the input variables. The details of such approach are in-
troduced in Section 4.

4. Probabilistic graphical model

We are given a number of realizations of the localized reduced input
random variables S and corresponding responses Y, and also the distribution
of S. Our first objective is building a probabilistic graphical model between S
and Y, based on the given set of realizations. We next plan to use an inference
algorithm on the probabilistic graph to address uncertainty quantification
problems.

4.1. Brief introduction to probabilistic graphical models

A graphical model aims to represent the joint probability distribution
of many random variables efficiently by exploiting factorization [4]. The
two most common forms of graphical models are directed graphical models
and undirected graphical models, based on directed graphs and undirected
graphs, respectively. The dependence relationship is visible directly from
the graph for the directed graph model, while the dependence relationship
is hidden in the undirected graph. In this work, the dependence relation-
ships between the response random variables are not clear, so we focus on
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the undirected graph, which is also called pairwise Markov Random Field
(MRF) [11].

Let G(V, £) be an undirected graph, where V are the nodes (random vari-
ables) and & are the edges of the graph (correlations). Let {Xy : z; € V} be
a collection of random variables indexed by the nodes of the graph and let
C denote a collection of cliques of the graph (i.e., fully connected subsects
of nodes). Associated with each clique ¢ € C, let ¢.(X.) denote a nonnega-
tive potential function, which implicitly encodes the dependence information
among the nodes within the clique. The joint probability p(Xy) is defined
by taking the product over these potential functions and normalizing,

p(x) = o [T 0u(50), (14)

ceC

where Z is a normalization factor.

The graphical model representation makes the inference problem eas-
ier. The general algorithm of probabilistic inference is that of computing
the marginal probability p(X3) or conditional probability p(Xx|Xe), where
Y = O UH for given subsets O and H. The belief propagation algorithm
(inference) is then applied to find the marginal or conditional probabilities
of interest. Notice if an event {Xp = xp} is observed, the original clique
potentials need to be modified, that is, for {X;,7 € O}, we multiply the po-
tential ¢.(X.) by the Kronecker Delta function dx,(x;) for any clique ¢ € C
such that {i € ¢ N O}, where x; is the observation of node i. The detailed
inference algorithm will be discussed in Section 5.

4.2. The structure of the graph

To find an efficient structure of the graph, let us start from the joint
distribution of (Y, S, ),

p(Y, S, &) = p(Y[S)p(S|€)p(§). (15)

The above decomposition is based on the assumption that S contains all
information & contains for the calculation of Y. The probabilistic relationship
between S and & is discussed in Section 3. Each variable s; € S has a
deterministic relationship with &, therefore, all the s;’s should be directly
linked with &. The correlation among the s; variables is then reflected via
their connections with &. The corresponding structure between S and £ is
given in Fig. 3.

11



Figure 3: The general graph structure for the problem of interest. The y variables represent
the response of the system (velocities and/or pressure on a coarse-grid), € represents the
reduced set of random variables defining the random permeability over the whole domain
D and s; is the reduced set of random variables defining the random permeability on the
patch of coarse-elements that share the coarse-node i.

To find the structure between Y and S, we need to find an approximate
decomposition of p(Y|S) in Eq. (13),

p(Y|S) = p(y1,92, - - -, YngIS1,82, - - -, SN )- (16)

In this work, we consider only the pairwise correlations between the re-
sponse random variables y, among which, only correlations between neigh-
boring response variables are considered. We further assume that these cor-
relations do not depend on the local features. So the conditional distribution
p(Y|S) can be decomposed as

Ng
p(Y|S> %Hp(yi|sl7527"'7SNG> H p(yivyj>7 (17>
i=1 i

JEr(@)
where I'(7) denotes the set of neighboring nodes of node 1.

Remark 2: This decomposition is inspired by the general treatment to
the conditional random field representation of a Gibbs distribution, where
in principle the explicit expansion of the conditional distribution involves
one-body term and two-body interaction terms to n-body interaction term.

12



In practice, we ignore higher-order interactions and only keep the first two
terms [22, 23]. In [15], the authors also apply a similar idea in factorizing
the complex conditional probability distribution, however they assume that
the correlations between the physical responses are also dependent explicitly
on property features.

To further simplify the dependencies in the factorization of p(Y|S), we
further assume that the response at one coarse-grid node is strongly depen-
dent on the inputs in its underlying nearest coarse-elements, thus the influ-
ence by all other inputs is ignored. In other words, we are assuming that y;
only depends on its underlying localized reduced input s;. This is in analogy
to various multiscale methods (e.g. the MsFEM method [24]) where in the
calculation of the local multiscale basis functions only the local permeability
is considered. Hence, the above equation can be further decomposed as

p(Y[S) ~ Hp(yi|si) Hp(yi>?/j)- (18)

The constructed structure of the undirected graph is shown in Fig. 3. If
we write Eq. (18) as a product of potential functions in the graphical model,
we can obtain

p(Y1S) o [ welvs) [ toalviw). (19)

key () (i,5)€EW)

There are two kinds of potential functions in Eq. (19), one is pair potential
functions, (%), that model the correlation between neighboring response
variables, the other one is the cross potential functions, ¢(x), which interprets
the relationship between the reduced input variables s; and response variables
y;. In the following, we denote with V® the set of the localized reduced
input nodes (coarse-grid nodes), and with £¥) the set of the edges between
the response variables (edges of the coarse-elements).

In this work, the potential functions between s; and & are difficult to
model due to their high dimensionality nature. However, S and & are explic-
itly known to us, so is the relationship between them. Therefore, we do not
have to learn these potential functions. In Section 5, we will discuss how we

perform the inference problem without using the potential functions between
s; and &.
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4.8. Learning the graphical model

Since we are considering a nonparametric graphical model, the potential
functions should have Gaussian mixture forms. As discussed above, there
are two types of potential functions, the pairwise potential function for the
response variables; 1(x), and the cross potential function for response vari-
ables and localized reduced input variables, ¢(x), as given in Eq. (19). In
this work, both of the potential functions are designed to have the following
form,

wz,y Zis Z] Z w sz Zj); Iu(m)7 2(m)) ) (20>

where z; and z; denote the random variables on node 7 and node j and
N(-) is the Gaussian distribution. The unknown parameters in the above
potential functions are {w(™, ™ X" m = 1,... M}, where w™ is the
weight (scalar) for component m, u(™ is the mean for component m (the
size of the mean vector is equal to the sum of dimensions of z; and z;), and
¥ (™) is the covariance matrix.
In this work, the unknown parameters in the potential functions are
learned by maximizing the log-likelihood. Denote ® = {0” (2 ) c&EWand 9;:i € V(y)}

as the set of all the unknown parameters, where 6; ; = {wf’f), I s ZZ(T m=1,..., M}

2

and 0; = {w-(m ,,uz Z(m =1,..., M} These parameters can be calcu-

lated locally in the coarse-grid. For specific i,j such that i € V&) and

(i,j) € EW let us consider given N observations of {(s\"”, s§")), (y™, y](-"))}

forn =1,..., N. The log-likelihood can then be calculated as,
1 N 1 N) (N
£(0:,0:55", ...t (i yi), L,y

N
=> [logp(yi(”), si”10:) + log p(y", y\" 92-,3-)} : (21)
n=1

By maximizing the log-likelihood, we obtain

(51, @Z]) = arg maXei,ei,jﬁ(em 0i,j|Sz(1)a R SEN) (yz(l)7 y( )), SR (yz( )> ?/J(N)))-
(22)

Notice that maximizing the log-likelihood is equivalent to maximizing
each component of Eq. (21) separately, therefore, the graph learning problem
can be divided into a number of local learning problems. For example, to

14



learn @;, we only need to maximize > " log p(yi("), s§"’\0i) using the local
training data set {yi(n), s =1,.. ., N}.

Remark 3: The parameters 0, ; define the correlation between the response
variables, whereas 6; interpret the dependence relation between a response
variable and its underlying localized reduced random input. Both of these
parameters are computed locally using the training data. Thus the compu-
tational cost affiliated with the estimation of the parameters that define the
probabilistic dependencies in the graph is minimal. Note that the approach
used here is different from that in [15] where local estimation problems are
only posed to compute the dependencies on the input permeability permeabil-
ity of the local potentials. In this work, the effect of the input permeability
is introduced via the local random variables s; and the potentials considered
are Gaussian mixtures with unknown parameters. The potentials in [15] are
simple Gaussians. In general case, all the 6, ; and 6, are different across the
graph (i.e. for different 7 and j).

Remark 4: For a stationary permeability case, the variables s; follow the
same distribution but this does not imply that 6; are the same parame-
ters. Taking simultaneous realizations of s; and s; leads to different lo-
cal permeability realizations and thus different response fields yi(") and yj(»"),
n =1,...,N. In the calculation of 0;, the training data set {yi("), SE"),Z' =
1,..., N} that we use vary with the location i and therefore 6, differs with
location. Similar argument can be made about the location dependence of
the parameters 6, ;.

The Expectation Maximization (EM) algorithm is chosen to maximize
the local log-likelihood. The details of the EM algorithm are given in Ap-
pendix B. Note that in the EM algorithm employed, the number of mixture
components M is predefined. A discussion of how to choose M is provided
in Section 6.1.

5. Inference problem

The general inference problem in a graphical model is to find the marginal
or conditional probabilities of interest in the graph. This task is usually
performed by using the belief propagation (BP) algorithm [4]. In this work,
after all the underlying parameters in the graph are successfully learned, the
inference problem can be performed. In the following, we first provide a brief
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introduction to the general belief propagation algorithm, and then we discuss
in detail how to apply the belief propagation algorithm into our framework.

5.1. General belief propagation

Belief propagation (BP) is a general inference algorithm for graphical
models. In the BP algorithm, each node k iteratively solves the global in-
ference problem by integrating information from the local environment, and
then transmits a summary message to all its neighbors [ € T'(k) along the
edges, where I'(k) denotes all the neighboring nodes of node k. The infor-
mation flow during this process is called the message, or belief, which is a
function containing sufficient information of the “influence” that one variable
exerts on another.

The BP algorithm begins by randomly initializing all messages m,, (y;),
where m,, (y;) denotes message from node y;, to node y;, and then updating
the messages along each edge according to the following recursion [11, 4], as
shown in Fig. 4(b):

iy, (45) o / Sy [T (v due (23)

Llel(k)\j

(b)

Figure 4: Message-passing recursions underlying the BP algorithm: (a) Approximate
estimate of the marginal distribution p(yx) (Eq. (24)) combines the local input information
with messages from neighboring nodes; (b) A new outgoing message m,, (y;) from node
Yk, towards neighboring node y; is computed from all other incoming messages to node yy,
except node y;, as in Eq. (23).

Generally, the marginal distribution of each node (e.g., node k) given the
observation can be computed by gathering all the messages coming into that
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node [11, 4], as shown in Fig. 4(a):

plye) o< T mu(w)- (24)

1T (k)

5.2. Inference approach for the problem of interest

In this section, suppose p(§) is known. The objective is then to find the
marginal distribution of p(Y) via the belief propagation algorithm. In the
particular problem of interest, there are three main challenges with regards to
the inference algorithm: (1) how to represent and calculate the message from
& to S (discussed in Section 5.2.1), (2) how to treat the loops in the graph
(discussed in Section 5.2.2), and (3) how to calculate the message update in
the form of a Gaussian mixture (discussed in Section 5.2.3).

Figure 5: Message flow in the present graphical model framework. We assume a two-
dimensional response with response variables (velovity components/pressure indicated by
the blue nodes).

5.2.1. Detailed inference algorithm

The illustration of the message flow in the current graphical model frame-
work is given in Fig. 5. Note that in this two-dimensional framework, we iden-
tify our nodes with two indices (7, j) rather than the single indices 1,2, , ..., Ng
used in our earlier analysis. There are four types of messages in the figure,
(a) message from a response node ;) to its neighboring response node y; ;)
My, (Yij) (Ed. (25) below), (b) message from a response node y(; ;) to its
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neighboring localized reduced input node, my,, . (s;.) (Eq. (26) below), (c)
message from a localized reduced input node s; ;) to its neighboring response
node Y j), Ms, ; (Yaj) (Ed. (27) below), and (d) message from the global
reduced input node § to s; j), me(s(;,;)) (calculated by Eq. (29) shown below).

Following Eq. (23), the message from a response node y  to its neigh-
boring response node y; ;) can be calculated as:

My (Y g)) / V(Y(3)s Yiit) sy Yk) 1T My, o Wik Y (i),
Y.a) EL Y (Y0, \Y(G, )

(25)
where I'® (1)) \ Y(i.;) denotes all the nearest neighboring response variables
to Yy, excluding yg ;), and s ) is the corresponding reduced input repre-
sentation that locally 1nﬁuences the response variable y ). Ms (y(k l)) is
the message sent from s ;) to Yy, and it can be calculated by Eq. (27)
given below.

The message from a response node y; ;) to its neighboring localized re-
duced input node s; j) can be calculated as:

My, 5 (SG.5) < / Pi.5) (Y(ig)s i) IT e Wei)dyes.  (26)

Y €L (Y )

Denote the message sent from & to the s ;) variable as me(s( ;). As-
suming that this message is known now (it will be discussed next), then the
message from a localized reduced input node s; ;) to its neighboring response
node y(; j) can be calculated as:

M W) [ 9160 W10 360160 @0

Lastly we discuss the task of calculating the message from & to s ;). It
is hard to obtain message update from Eq. (23), because both & to s; ;) are
high dimensional, and in addition we need to calculate the messages from all
the other s variables except s(; ;) to . To bypass these difficulties, we use a
different way to construct the unknown message from the information that
is already known to us as follows. According to Eq. (24), we can write the
following;:

P(SGig)) o< me(Sei )My, ; (S(i))- (28)
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Since S are known to us, we know exactly what p(s(;;)) is, and also we
know my,, - (s@z) from Eq. (26). Then we can write:

p(si.p)

_Psan) (29)
My i (S(i,j))

meg(Si,)) <

As a result, the message sent from £ to s ;) is updated using the known
marginal distribution of s ;) and my,  (si). In this work, this message is

P(s(i,5)) . . . ~
e (7)) using the Metropolis Hastings algo

rithm [25]. The details of how to calculate me(s(; ;) are given in Appendix C.

calculated by sampling from

Remark 5: If a realization of the stochastic input, a, is given, then there is
no need to calculate Egs. (26) and (29) because S and &€ can be exactly known
from the model reduction scheme. The message from SE?;) to y(,j), as given in

Eq. (27), can be calculated as: Ms, (Y(ig)) < f ©6i.5) Yig) s(i,j))és(i’j) (SEZ;))dS(iJ)’

(n)

where the Delta function only takes value when S(i;

alization.

After the belief propagation algorithm is completed, we obtain the marginal
distribution of the physical responses conditioned on the given input, e.g.
p(yajla). Let the expectation E[y; j)|a] be the predicted values of the phys-
ical responses and the variance be the corresponding error bars. We thus
obtain a surrogate model based on the graphical model that for an any input
realization provides us the response of the system as well as our confidence
on this prediction.

In the uncertainty quantification problem, one exerts a known distribu-
tion on the input A, p(A), and is interested to quantify the probability
induced by it on the response. Using the model reduction techniques dis-
cussed in Section 3, we can explicitly compute the distribution of & and S,
p(&€) and p(S), respectively, given p(A) or a set of realizations of A. Then, by
executing the inference problem discussed above, we can obtain an explicit
representation of the marginal distribution of all the responses by gathering
all the messages coming from the neighbors (as in Eq. (24)). The statistics
of interest can be calculated directly from the marginal distribution.

) equals to the given re-

5.2.2. Loopy belief propagation (LBP)
For graphs with loops, there are two major types of treatment. The first
approach is to break the loops, by either cutting the cycles or finding an
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equivalent surrogate graph, such as in the graph cut [26] or the junction tree
algorithms [27]. The second approach is to find an efficient way to recursively
update the messages until convergence. Although until now there is no strict
mathematical justification that the loopy belief propagation converges to the
true marginals, in many applications, the resulting LBP algorithm exhibits
excellent performance [28, 29, 30, 31]. Recently, several theoretical studies
have provided insights into the approximations made by LBP, establishing
connections to other variational inference algorithms and partially justifying
its application to graphs with cycles [32, 33]. In this work, we simply follow
the second approach, by finding an efficient way to calculate all the messages
in one iteration. The complete procedure is given in Algorithm 1 and depicted
in Fig. 6. The messages are considered as converged if their change is less
than a threshold in two successive iterations as in Eq. (30).

Vin Y Yin Y

Y <« @<« — Pa—

171 d 7 1
% Yua V2 Yo
H . . (—

Jn

(a) (b)

Figure 6: Illustration of the Loopy Belief Algorithm used in this paper. (a) Message flow
from the root node to the end node, as in Step 2.1.b in Algorithm 1. (b) Message flow
from the end node to the root node, as in step 2.1.c in Algorithm 1.

5.2.3. Nonparametric belief propagation

In the nonparametric graphical model, each message is represented by
a Gaussian mixture. Then the belief update (Eqs. (25)-(27)) becomes an-
alytically intractable. Currently there are two possible approximations for
performing the belief update. The first one is using a variational method [34].
The basic idea of the variational method is using a much simpler form (user
defined) to obtain an approximation that is as close as possible to the target
message. The second approach is using a sampling method [13]. The idea of
the sampling method comes from particle filters. In [14], it was extended to
graphs containing continuous, non-Gaussian variables leading to the so called
“Nonparametric belief propagation (NBP) method”. In this work, we utilize
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Algorithm 1 The complete inference algorithm

1: Initialization: With given p(£) and the deterministic relationship between
S and &, p(S) can be obtained via MC method as discussed in Section 3.
We set the initial message as mg)) (sij)) = p(s(i,j)), and all other messages
as a standard Gaussian N(0,1).

2: Iterate: At step t,
(1) Update mg()k’l) (yi,j)) as in Eq. (25),

a) Set one node as the root node, and another node as the end
node.

b) Calculate all the messages from the root node to the end node,
as shown in Fig. 6(a).

c¢) Calculate all the messages from the end node to the root node,
as shown in Fig. 6(b).

(2) Update mg() (s@,)) as in Eq. (26).

)
(3) Update mg) (s(i)) as in Eq. (29).
(4) Update mgt() (Ya,j)) as in Eq. (27).

i,5)

3: Convergence: the algorithm stops when,

1 1 e
. Ny Z Nty Z (Uy(k’”(y(i’j))(t) ~ Uy (y(i,j))(t 1)) < 0,

Nry,, .
Pe.s) Y1) EL (Y, 5))

(30)
where vy, (yi.;))Y denotes the estimated variance of the message from
the neighboring node ;) of yi ;) to node y ), which can be cal-

2
_ M (m) (m)
culated as vy, (yi)" = X (Wy:-,z)—’y(i,j)UyZZ,l)—’yum) (see Ap-
pendix D for the proof), where w@(,:?l)_)y(iyj) and O'@(/ZZ?I)—)y(i,j) are the
weight and variance for component (m) in the representation of message

(t) _ M (m) (m) (m) :
My (Yiig) = Zm:1wyﬁ,l)—>y(i,j)f\/’ (Myﬁ,l)_)y(i,j),(ayﬁ,l)_)y(iyj)f). Notice
that in this work, all the messages are normalized after being updated.
The subscript t denotes the step number.
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the NBP algorithm to perform the inference problem. Specifically, we use the
NBP algorithm to approximately find the update of Egs. (25), (26) and (27)
(corresponding to Steps 2.1, 2.2, and 2.4 in Algorithm 1, respectively). In the
following, we clearly demonstrate how to use the NBP algorithm to compute
the message update in Eq. (25). The message update in Egs. (26) and (27)
is similar.

The NBP algorithm approximates the belief update Eq. (25) using a
sampling method [14]. It circumvents sampling directly from Eq. (25) (which
is rather difficult task) by decomposing the process into two steps. In the
first step, we draw N independent samples @éz)l) from a partial belief estimate
combining the marginal influence function of the pairwise potential function
Y(Y(ij)> Yikt)) O Yy, cross potential @y (Ykys Skyr)), and all the other
incoming messages (Eq. (32)). The marginal influence function ((y@) is
defined by

C(Ywa) = /w(y(i,j),y(k,z))dy(i,j)- (31)

In this work, ¥ (Y@ ), Yk,n) is a Gaussian mixture, so ((y(,) is simply the
Gaussian mixture obtained by marginalizing each component.
In the second step, for each of these auxiliary particles @'((Z)l), we make

samples g}é";) from the normalized conditional potentials proportional to

V(Yeig)s Yed) = ?7((2,)1)) (Eq. (33)). The detailed algorithm of NBP is sum-
marized in Algorithm 2.

Remark 6: Since we are using a Gaussian mixture to represent all messages,
an inevitable problem will arise with the increase of the number of mixture
components. For example, assume that all the messages are M-component
Gaussian mixtures, and the BP belief update of Eq. (25) is defined by a
product of h mixtures. The product of h Gaussian mixtures, each containing
M components, is itself a mixture of M" Gaussian distributions. While
in principle this belief update could be performed exactly, the exponential
growth in the number of mixture components quickly becomes intractable.
Therefore, in this work, we use Gaussian mixture reduction via clustering
(GMRC) method to reduce the number of mixture components whenever
the number of mixture components of the beliefs exceed M. The details of
GMRC algorithm are given in Appendix E.
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Algorithm 2 The detailed algorithm for nonparametric belief propagation

Given: Input message my, , (yp) = {WZ(/?;,)«;W?J(IW“%?qﬁy(ww Z%?qﬁyw,l)}%:l
for each yg,.q) € I'(ywn) \ Y-
Objective: Construct an output message my, , (y(.j))-
1: Determine the marginal influence ¢(y)) by Eq. (31).
2: Draw N independent, weighted samples from the product,

y(k,)l) ~ CYe0)) ety Yk Set)) H My, o Yen) (32)
Yp,q) ELWH,1)\Y(i.5)

GMRC (A Gaussian mixture reduction technique discussed in Ap-
pendix E) is first adopted to reduce the components of the product and
then exact sampling method [35] is applied.

3: For each g}fz)l), sample from,

@f:;) ~ w(y(i,j)a Ykt = @f}j}l))- (33)
4: Construct my, , (yi) from @“éf;) by taking gj((f;) as realizations
of message M (Yij))- Specifically, —assume my, (Yag)) o

M (m) (m) (m)
> et Yoo =N (Boten —viiy s Sy —ue ), Where the unknowns are

(m) m m M .
LWy =iy Fgen —vi.s > 2uen—viig Sm—1- Lhese can be learned using the

EM algorithm discussed in Appendix B by taking gj((?;) as training sam-

ples.
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6. Numerical examples

In this paper, we construct a probabilistic graphical model to study two-
dimensional, single phase, steady-state fluid flow through random heteroge-
neous porous media. A review of the mathematical models of flow through
porous media can be found in [36]. The spatial domain D is chosen to be the
unit square [0, 1]%, representing an idealized oil reservoir. Let us denote with
p and u the pressure and the velocity fields of the fluid, respectively. These
are connected via the Darcy law:

u=—-KVp,in D, (34)

where K is the permeability tensor that models the easiness with which the
liquid flows through the reservoir. Combining the Darcy law with the con-
tinuity equation, it is easy to show that the governing PDE for the pressure
is:

V- (KVp) = f,in D, (35)

where the source term f may be used to model injection/production wells. In
this example, we consider square wells: an injection well on the left-bottom
corner of D and a production well on the top-right corner. The particular
mathematical form of the source term f is as follows:

—r, if |z, — fw| < w, for i = 1,2,
f(x) = r, if |y — 1+ %w\ < %w, fori=1,2, (36)
0, otherwise,

where 7 specifies the rate of the wells, w their size (chosen here to be r = 10
and w = 1/8), and x = (z1,22) € D. Furthermore, we impose no-flux
boundary conditions on the walls of the reservoir:

u-n=0,on 0D, (37)

where n is the unit normal vector to the boundary. These boundary condi-
tions specify the pressure p up to an additive constant. To assure uniqueness
of the boundary value problem defined by Egs. (34), (35) and (37), we impose

the constraint [37]:
/ p(x)dx = 0.
D
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The boundary value problem is solved using a mixed finite element formu-
lation. We use first-order Raviart-Thomas elements for the velocity [38], and
zero-order discontinuous elements for the pressure [39]. The permeability is
defined on a 64 x 64 fine-grid and we are interested in the physical responses
on a 8 x 8 coarse-grid. The solver was implemented using the Dolfin C4+ li-
brary [40]. The eigenfunctions of the exponential random field used to model
the permeability were calculated via Stokhos which is part of Trilinos [41].

In this work, the final responses taken into consideration include x—velocity,
Uy, y—velocity, u, and pressure, p. We assume independence of the multi-
ple output responses so we can build an independent graphical model for
each of them. This is typical of many uncertainty quantification methods
but methodologies where correlations are accounted can be considered as
well [15]. As previously discussed, the constructed graphical model is a non-
parametric model. Then naturally an important question arises as to what
the proper number is of the mixture components considered. One should
avoid to choose a large number due to the exponential increase for the com-
putational cost, especially at the loop belief propagation step. A large num-
ber of mixture components does not necessarily lead to better results and for
some cases may lead to over-fitting. In the context of the examples presented
below, three mixture components were shown to provide an adequate choice
for the accuracy desired.

6.1. Stationary random field

In this example, the log-permeability is considered as a stationary random
field. We restrict ourselves to an isotropic permeability tensor:

Kij - Kélj

K is modeled as
K(x) = exp{G(x)},

where G is a Gaussian random field:
G(-) ~ N(m,cal(:,-)),

with constant mean m and an exponential covariance function given by

(1) 2) (1) 2)
Cg(X(l),X(2)) _ véexp {_|1'1 — | _ [zy " — xy |} (38)

[ [

25



The parameter [ represents the correlation lengths of the field, while vg > 0
is its variance. In order to obtain a finite dimensional representation of G, we
employ the Karhunen-Loeve expansion [16] and truncate it after k¢ terms:

ke
G&x)=m+ Y Gon(x), (39)
k=1
where § = (£, ..., &) is a vector of independent, zero mean and unit vari-

ance Gaussian random variables and ¢y(x) are the eigenfunctions of the
exponential covariance given in Eq. (38) (suitably normalized).

The values we choose for the parameters are m = 0,/ = 0.1 and vg = 1 in
Eq. (38), and k¢ = 50 in Eq. (39). In the following, we first verify the model
reduction framework in Section 6.1.1 and then we move to the inference
tasks on the graph: 1) given the input distribution of &, investigate how
the uncertainty propagates to the response in Section 6.1.2; 2) given a new
permeability field, find the prediction of unobserved responses with proper
error bars in Section 6.1.3.

6.1.1. Model reduction

As discussed in Section 3, PCA model reduction technique is applied to
reduce the dimensionality of the input permeability field. Fig. 7 shows the
normalized eigen-plot and energy-plot for the PCA reduction for the input
permeability over the corresponding coarse-elements to two random coarse-
nodes. Here, “normalized” means that each eigenvalue is divided by the
sum of all the eigenvalues. As shown on these plots, by using less than ten
eigenvectors, the cumulative preserved energy is almost one, which means
a ten-dimensional random variable representation is enough to describe the
original data set. In addition, we compare the reconstructed input perme-
ability field with the original one (the dimension of the original permeability
field is 64 x 64 = 4096) with different k, where k is the dimensionality of the
reduced space, as shown in Figs. 8 and 9. The major differences occur along
the coarse-grid boundaries. This is indeed expected by using the reconstruc-
tion strategy discussed in Section 3. It is clear from these figures that as the
reduced dimensionality k increases, the reconstructed permeability field gets
closer to the original microstructure. Also as the number of training data N
used increases, the reconstructed permeability becomes closer to the original
realization.
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Figure 7: Stationary random field - Normalized eigenspectrum and energy plot for the
input permeability in two random subdomains.
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Figure 8: Stationary random field - Comparison of the reconstructed input permeability
field with the original given sample (a) with different number of training data for k = 10,
where k is the dimensionality of the reduced space; (b)(d)(f) The reconstructed input
permeability using N = 200,1000, and 4000 training data, respectively; (c)(e)(g) The
error between the reconstructed permeability field and the original sample.
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Figure 9: Stationary random field - Comparison of the reconstructed input permeability
field with the original given sample (a) with different & for N = 1000; (b)(d)(f) The
reconstructed input permeability using k = 5, 10, and 30, respectively; (c)(e)(g) The error
between the reconstructed permeability field and the original sample.
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Finally, we compare the reconstruction error of the input permeability
field with different number of training data and different reduced dimension-
ality k (Fig. 10). The reconstruction error is computed by

N
1 ) ~ .

— E A@ _ A@))2 40

€ ]Vé]V'i:1 H ’| ? ( )

where A = [a;,ay,...,ay,], Ny is the number of elements on the fine-mesh

and A = [a;,ay,...,ay,] where a; is the reconstructed permeability on the

fine-element e;. The superscript (i) denotes the ¢ — th sample and N is the
total number of samples used. The given figure indicates that the number of
reduced dimensionality & has a higher impact on the final performance of the
reconstruction than the number of training data. The reduced dimensionality
k is chosen as 10 in this problem.
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Figure 10: Stationary random field - Comparison of the reconstruction error of the input
permeability field with different number of training data, and different reduced dimension-
ality k.

6.1.2. Uncertainty propagation

In this section, we are going to investigate how the uncertainties propagate
from the input permeability to the output (velocity and pressure) response.
After the graphical model is completely learnt by the training data, we send
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the distribution of S, p(S), which is calculated from the known input dis-
tribution p(§), to the graphical model as the input message, and then run
the nonparametric belief propagation algorithm. After all the messages in
the graph converge, we compute the marginal distribution of the response
variables by combining all the messages coming into the response variable as
in Eq. (24).

Fig. 11 compares the predicted mean of u, with a Monte Carlo estimate
using 10° observations. We can clearly see that as the number of training data
increases, the prediction gets more and more accurate. The same statistic
for u, and p is reported in Figs. 12 and 13, respectively.

Fig. 14 compares the predicted variance of u, to a Monte Carlo estimate
using 10° observations. Also, the predicted variance converges to the MC
results with the increase of the number of the training data. The same
statistic for u, and p is given in Figs. 15 and 16, respectively. We can see
that NV = 1000 training samples can already give rather accurate predictions
for the marginal mean and variance of the responses. Notice that in this
work, the predicted marginal probability is given in a Gaussian mixture form
with three components. For example, the response at one coarse-grid node,

Yi;) (random variable) can be represented as yu ) = S ob_, w((;%j))y(znj)), where

yé?j)) ~ N (UE?;)V (a((zlj)))z). As discussed in Appendix D, the first-order and
second-order statistics can be obtained by Elyq.,] = Z%le((;%j))u%)) and

Varly | = Z%;l(w((zlj)))z(a E?j)))z, respectively.
The error of the statistics is evaluated using the (normalized) Ly norm of

the error in variance defined by:

Ng

1 -
Er, = N Z(Ui,Mc — ;)2 (41)

i=1

where v; yr¢ is the Monte Carlo estimate of the variance of the response on
the i-th coarse-node using 10° samples, and v; is the predictive variance given
by the graphical model. In Fig. (17), we plot the Ly norm of the error as a
function of the number of samples for u,, u, and p and a comparison with
the MC results is shown. In addition, we compare the predicted probability
densities of u,, u, and p at physical positions (0.429,0.429) and (0.571,0.571),
with the PDFs obtained from the MC estimate using 10° observations, as
shown in Figs. 18 and Fig. 19, respectively. From the figures, we can see that
the PDFs do not have symmetric tails, so obviously, they are not Gaussian
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Figure 11: Stationary random field - Mean of u,: (a) MC estimate using 10° observations;
(b)(d)(f) The predicted mean of u, using 100, 400, and 1000 training samples, respectively;
(¢)(e)(g) The error between the predicted mean and the MC mean for N = 100,400, and
1000, respectively.
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Figure 12: Stationary random field - Mean of u,: (a) MC estimate using 10° observations;
(b)(d)(f) The predicted mean of u, using 100,400, and 1000 training samples, respectively;

(c)(e)(g) The error between the predicted mean and the MC mean for N = 100,400, and
1000, respectively.
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Figure 13: Stationary random field - Mean of p: (a) MC estimate using 10° observations;
(b)(d)(f) The predicted mean of p using 100, 400, and 1000 training samples, respectively;

(c)(e)(g) The error between the predicted mean and the MC mean for N = 100,400, and
1000, respectively.
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Figure 14: Stationary random field - Variance of u,: (a) MC estimate using 10° observa-
tions; (b)(d)(f) The predicted variance of u, using 100,400, and 1000 training samples,
respectively; (c)(e)(g) The error between the predicted variance and the MC variance for
N =100, 400, and 1000, respectively.
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Figure 15: Stationary random field - Variance of u,: (a) MC estimate using 10° observa-
tions; (b)(d)(f) The predicted variance of u, using 100,400, and 1000 training samples,
respectively; (c)(e)(g) The error between the predicted variance and the MC variance for
N =100, 400, and 1000, respectively.
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Figure 16: Stationary random field - Variance of p: (a) MC estimate using 10° obser-
vations; (b)(d)(f) The predicted variance of p using 100,400, and 1000 training samples,
respectively; (c)(e)(g) The error between the predicted variance and the MC variance for
N = 100,400, and 1000, respectively.
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Figure 17: Stationary random field - The Lo norm of the error as a function of the number
of samples observed for graphical model framework.

distributions. This is especially true for the velocity components that should
be positive. As the number of observations increases, we can observe that
the graphical model prediction gradually captures the major key features of
the PDFs.

6.1.3. Response Prediction

In this section, we will show that the constructed graphical model is also
capable of acting as a surrogate model of the deterministic solver. The prob-
lem can be described as follows: Given a new observation of the permeability
field, a, the objective is to obtain the conditional distribution p(Y|A = a).
With a new realization of the permeability field a, we first compute the
localized reduced input variables S(a). After that, instead of using the dis-
tribution of S, p(S), we use a Kronecker Delta function dg(S(a)) as the input
message, and we send it to the pre-learned graphical model to execute the
nonparametric belief propagation algorithm. Notice that now, all the poten-
tial functions involving the S variable need to be multiplied by the Kronecker
Delta function dg(S(a)), as discussed in Section 5.2.1.

Figs. 20, 21, and 22 show a comparison of the predicted u,, u, and p fields,
respectively, with the results of the deterministic solver for given a new input
permeability field a. This permeability sample was generated from the same
process as the training data. The predictions are given by the nonparametric
model using different number of training data. As the number of training
data (V) increases, the predictions gradually converge to the true response
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Figure 18: Stationary random field - Comparison of the predicted PDF's using different
training data with the MC estimate at physical position ((0.429,0.429)): (a) ug, (b) uy,

(c) p.
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Figure 19: Stationary random field - Comparison of the predicted PDF's using different
training data with the MC estimate at physical position (0.571,0.571): (a) ug, (b) uy, (c)
p.
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fields. Note that in the learning process, the unknown parameters in the
potential functions converge after some N and using more data does not
improve considerably the final predictions.

6.2. Non-stationary random field

In the previous example, it was assumed that the permeability field con-
sidered was stationary such that the covariance between any two points in the
domain depends on their distance rather than their actual locations. How-
ever, hydraulic properties may exhibit spatial variations at various scales.
Therefore, it is important to extend the probabilistic graphical model to non-
stationary random fields. In this example, we use a non-stationary random
field as stochastic input. The log-permeability on the k-th coarse-element is
still a Gaussian random field with mean zero and an exponential covariance
function, as given in Eq. (38):

(1) 2) (1) 2)
Cg(X(l),X(2)) _ véexp _‘xl — x| _ 2y — 25| ‘ (42)
lia L2

However, the correlation length in the non-stationary case is not a con-
stant anymore. Since the coarse-grid has N, = 8 rows and N, = 8 columns
of elements, we define the coordinate of the k-th element as (i, ji.) where iy
is the index in row and jj, is the index in column. Then the correlation length
is set to be l;; = 0.1 + Nz'fljk and 2 = 0.1 + Ngflik. The source term f is
set to zero. Flow is induced from left to right side with Dirichlet boundary
conditions p=1onxz =0, p =0 on y = 1. No—flow Neumann boundary
conditions are applied on the other two sides of the square domain.

In this example, we investigate the non-stationary problem in a similar
way as the previous stationary case. First, we verify the model reduction
framework in Section 6.2.1 and then we investigate the uncertainty propa-
gation from the inputs to the responses in Section 6.2.2. Finally, we use the
graphical model to predict the responses given a new permeability field, in
Section 6.2.3.

6.2.1. Model reduction

In this section, we first compare the reconstructed input permeability
field with the original one for different k, where k is the dimensionality of
the reduced space, as shown in Fig. 23. Fig. 24 shows the comparison of the
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Figure 20: Stationary random field - Comparison of the prediction of u, given a new input
permeability field using the nonparametric model versus the true u, from the deterministic
solver: (a) The new observed input permeability field; (b) The contour plot of the true
uy field; (¢)(f)(i) The predicted mean by the nonparametric graphical model using N =
400,1000 and 4000 training data, respectively; (d)(g)(j) The corresponding predictive
variance for N = 400, 1000 and 4000 cases, respectively; (e)(h)(k) The error between the
predicted mean and the true response field for N = 400, 1000 and 4000 cases, respectively.
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Figure 21: Stationary random field - Comparison of the prediction of u, given a new
input permeability field using the nonparametric model versus the true u, from the de-
terministic solver: (a) The new observed input permeability field; (b) The contour plot
of the true u, field; (c)(f)(i) The predicted mean by the nonparametric graphical model
using N = 400, 1000 and 4000 training data, respectively; (d)(g)(j) The corresponding
predictive variance for N = 400, 1000 and 4000 cases, respectively; (e)(h)(k) The differ-
ence between the predicted mean and the true response field for N = 400, 1000 and 4000
cases, respectively.
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Figure 22: Stationary random field - Comparison of the prediction of p given a new input
permeability field using the nonparametric model versus the true p from the determin-
istic solver: (a) The new observed input permeability field; (b) The contour plot of the
true p field; (¢)(f)(i) The predicted mean by the nonparametric graphical model using
N = 400,1000 and 4000 training data, respectively; (d)(g)(j) The corresponding predic-
tive variance for N = 400,1000 and 4000 cases, respectively; (e)(h)(k) The difference
between the predicted mean and the true response field for N = 400, 1000 and 4000 cases,
respectively.
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reconstructed input permeability field with the original given sample for dif-
ferent number of training samples V. In comparison with the reconstruction
results in the previous example in Section 6.1.1, a higher k is needed here to
obtain a relatively good reconstruction. This is expected because the non-
stationary permeability field is much more complicated than the stationary
case. We obtain the similar conclusions from these figures as in the earlier
example. As the reduced dimensionality k increases, the reconstructed per-
meability field gets closer to the original permeability. Also as the number
of training data /N used increases, the reconstructed permeability becomes
closer to the original realization.
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Figure 23: Non-stationary random field - Comparison of the reconstructed input perme-
ability field with the original given sample: (a) With different k& for N = 2000; (b)(c)(d)
The reconstructed input permeability using k& = 10, 30, and 50, respectively.
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Figure 24: Non-stationary random field - Comparison of the reconstructed input perme-
ability field with the original given sample: (a) With different number of training data for
k = 30, where k is the dimensionality of the reduced space; (b)(d)(f) The reconstructed
input permeability using N = 1000, 2000, and 4000 training data, respectively.

Finally, we compare the reconstruction error of the input permeability
field with different number of training data N and different reduced dimen-
sionality & using Eq. (40) in section 6.1.1, as shown in Fig. 25. In this
example, k is chosen as 20, that is, the dimensionality of each s variable is
20.
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Figure 25: Non-stationary random field - Comparison of the reconstruction error of the
input permeability field with different number of training data, and different reduced
dimensionality k.

6.2.2. Uncertainty propagation

In this section, we are also going to investigate how the uncertainty prop-
agate from the input permeability to the output (velocity and pressure) re-
sponse, as in Section 6.1.2. Figure 26 compares the predicted mean of wu,
with a Monte Carlo estimate using 10° observations. We can clearly see that
as the number of training data increases, the prediction gets more and more
accurate. The same statistic for w, and p is reported in Figs. 27 and 28,
respectively.

Fig. 29 compares the predicted variance of u, to a Monte Carlo estimate
using 10° observations. Also, the predicted variance converges to the MC
results with the increase of the number of the training data. The same
statistic for u, and p is given in Figs. 30 and 31, respectively. We can
see that in this example, N = 4000 training samples can only provide a
reasonable predictions for the marginal mean and variance of the responses,
while in the previous stationary example in section 6.1.2, N = 1000 training
samples can already give rather accurate predictions. The predictions of the
pressure, compared to the predictions of velocity, are much more accurate,
this is because the pressure has less variability than the velocity in porous
media flow problem.
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Figure 26: Non-stationary random field - Mean of u,: (a) MC estimate using 10° ob-
servations; (b)(d)(f) The predicted mean of u, using 400, 1000, and 4000 training sam-
ples, respectively; (c)(e)(g) The error between the predicted mean and the MC mean for
N =400, 1000, and 4000, respectively.
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Figure 27: Non-stationary random field - Mean of u,: (a) MC estimate using 10° ob-
servations; (b)(d)(f) The predicted mean of u, using 400, 1000, and 4000 training sam-
ples, respectively; (c)(e)(g) The error between the predicted mean and the MC mean for
N =400, 1000, and 4000, respectively.
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Figure 28: Mean of p: (a) MC estimate using 10° observations; (b)(d)(f) The predicted
mean of u, using 400, 1000, and 4000 training samples, respectively; (c¢)(e)(g) The error
between the predicted mean and the MC mean for N = 400, 1000, and 4000, respectively.
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Figure 29: Non-stationary random field - Variance of u,: (a) MC estimate using 10°
observations; (b)(d)(f) The predicted variance of u, using 400, 1000, and 4000 training
samples, respectively; (c)(e)(g) The error between the predicted variance and the MC
variance for N = 400, 1000, and 4000, respectively.
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Figure 30: Non-stationary random field - Variance of u,: (a) MC estimate using 10°
observations; (b)(d)(f) The predicted variance of u, using 400, 1000, and 4000 training
samples, respectively; (c)(e)(g) The error between the predicted variance and the MC
variance for N = 400, 1000, and 4000, respectively.
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Figure 31: Non-stationary random field - Variance of p: (a) MC estimate using 10> obser-
vations; (b)(d)(f) The predicted variance of u, using 400, 1000, and 4000 training samples,

respectively; (c)(e)(g) The error between the predicted variance and the MC variance for
N =400, 1000, and 4000, respectively.
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Figure 32: Non-stationary random field - The Ly norm of the error as a function of the
number of samples observed for graphical model framework.

Similarly, in Fig. 32, we plot the Ly norm (Eq. (41)) of the error as a
function of the number of samples for u,, u, and p and compare with the
MC results. In addition, we compare the predicted probability densities of
uy, u, and p at physical positions (0.429,0.429) and (0.571,0.571), with the
PDFs obtained from the MC estimate using 10° observations, as shown in
Figs. 33 and Fig. 34, respectively. From the figures, we can see that as the
number of observations increases, the graphical model prediction gradually
captures the major key features of the PDFs.

6.2.3. Response Prediction

In this section, we also provide an example to demonstrate that the con-
structed graphical model is capable of acting as a surrogate model for the
deterministic solver, as in section 6.1.3. Fig. 35 shows a comparison of the
predicted u,, u, and p fields, with the results of the deterministic solver for
given a new input permeability field a, using N = 4000 training samples.
Fig. 36 gives the comparison results for another realization. As shown from
the figures, the predictions capture the main features of the responses.

7. Discussion and Conclusions

A probabilistic graphical model framework was developed to address the
uncertainty propagation problem for flows in porous media. The framework
could quantify the uncertainties propagating from the random input to the
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Figure 33: Non-stationary random field - Comparison of the predicted PDFs using different
training data with the MC estimate at physical position ((0.429,0.429)): (a) ug, (b) uy,

(c) p.
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Figure 35: Non-stationary random field - Comparison of the predicted physical responses
given a realization of stochastic input permeability with the true response: (a) The new
observed input permeability field; (b)(e)(h) The true responses for the given permeability
realization, from top to bottom, u,, u, and p, respectively; (c)(f)(i) The predicted means
for uy, uy and p by graphical model using N = 4000 training data, respectively; (d)(g)(j)
The difference between the predicted mean and the true response field for u;, u, and p,
respectively.
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Figure 36: Non-stationary random field - Comparison of the predicted physical responses
given a realization of stochastic input permeability with the true response: (a) The new
observed input permeability field; (b)(e)(h) The true responses for the given permeability
realization, from top to bottom, us, u, and p, respectively; (c)(f)(i) The predicted means
for uy, u, and p by graphical model using N = 4000 training data, respectively; (d)(g)(j)
The difference between the predicted mean and the true response field for u;, u, and p,
respectively.
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multi-output system response. The high dimensionality nature of the rela-
tionship between the inputs and responses was addressed by breaking the
global problem into small local problems posed over coarse-elements. The
whole framework was designed to be nonparametric (Gaussian mixture), so
it was capable of capturing non-Gaussian features and thus it should have a
wider applicability to other multiscale problems. The graphical model was
shown that it can serve as a surrogate model for predicting the responses for
any new observed permeability input.

Various examples were considered to study the accuracy and efficiency
of the probabilistic graphical model framework and inference algorithms. It
was shown that this framework is capable of predicting the correct output
statistics with rather limited number of observations. In the provided ex-
amples, it was shown to capture well the first- and second-order statistics,
and also provided reasonable predictions of the PDFs of the outputs. The
framework can be used to address inverse problems (e.g. from limited output
data predict unobservable permeability information). Such inverse problems
and extending the applicability of the framework to other critical engineering
applications are topics of current research interest.

A. PCA model reduction

The basic algorithm for the PCA method used is briefly illustrated as
follows: Consider a set of D dimensional data X := {x(™;n = 1,... N}
where N is the number of data. We first compute the mean as x = E[x| =
* SV x™ and the covariance matrix as C = * SOV (x™) — %) (x™ —x)T
The eigenvalues \; and eigenvectors v; of the covariance matrix C are then
computed. We sort the eigenvalues \; in a descending order, and take the first
corresponding K eigenvectors to assemble the transform matrix T. Finally,
we map the original data set to a K-dimensional space via the transform

matrix T as

€W =R(xM) = Tg,p(x™ —%),n=1,...,N. (43)
The random vector € := [£y, .. ., k] satisfies the following two conditions:
Ai

E[&] =0, E[&&]=4

Therefore, the random coefficients &; are uncorrelated but not independent.
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The reconstruction is a reverse process to the reduction process:
Rid) = C(€™) = Th €™ +xn=1,...,N. (45)

Here, the subscript K is used to emphasize that the realization Eg) is con-

structed using only the first K eigenvectors, and we use X to denote the
reconstructed random variable.

B. Expectation Maximization Algorithm

EM [42, 43] is an elegant and powerful method to find maximum likelihood
solutions for mixture models. The log-likelihood function is given by

N M
L(w(m), pm B =1, M|Z) = Zlog Z w(m)N(Zi\u(m), E(m))
i=1 m=1

(46)
The log-likelihood is calculated based as in [44]. The detailed steps are
described in Algorithm 3. Notice that in our implementation of the EM
algorithm, the number of mixture components M was kept fixed.

C. Metropolis Hastings algorithm

The Metropolis Hastings (MH) algorithm can draw samples from any
probability distribution, especially, it can generate samples without knowing
the normalization constant [25]. Therefore, in this work, we use MH algo-

rithm to generate samples from myp(s<71(;2))) in Eq. (29). In the following, for
(1,9 8(0rd

mathematical convenience, we use x to denote the random variable s; ;), and

P(z) to denote the distribution %

The detailed steps are given in Algorithm 4. The main disadvantage of
the MH algorithm is that the samples generated are correlated. Even though
over the long term they do correctly follow P(z), a set of nearby samples
will be correlated with each other and not correctly reflect the distribution.
This means that if we want a set of independent samples, we have to throw
away the majority of samples and only take every n — th sample, for some
value of n (in this work, we set n = 5). In addition, although the Markov
chain eventually converges to the desired distribution, the initial samples
may follow a very different distribution, especially if the starting point is in
a region of low density. So a “burn-in” period is needed, where an initial
number of samples (e.g. the first 1,000) are thrown away.
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Algorithm 3 The EM Algorithm

1: Initialize the means (™, covariance (™ and mixing coefficient w™,
and evaluate the initial value of the log likelihood.
2: E-step: Evaluate the responsibilities using the current parameter values

ij‘il WDN (2| pl), £W)

3: M-step: Re-estimate the parameters using the current responsibilities:

N
m 1
/’L1(’Lel)u = N—ZV(Tim)Zia (48)
moi=1
1 N
S, = N—Zv(nm)(zi—u%)(zi— T, (49)
moi=1
N,
(m) _ _m 50
wnew N Y ( )

where

N

Now = 3 A(Fim). (51)

i=1

4: Evaluate the log likelihood given in Eq. (46) using the current parame-
ters and check for convergence of the log-likelihood. If the convergence
criterion is not satisfied, then return to Step 2.
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Algorithm 4 The Metropolis Hastings Algorithm

1: Pick an arbitrary probability density Q(z'|z;), where @ is the proposal
jumping distribution, which suggests a new sample value 2’ given a sam-
ple value x;. Here, we choose a widely used symmetric jumping distribu-
tion — Gaussian distribution centered at x;.

2: Start with some arbitrary point zy as the first sample.

3: To generate a new sample x; 1 given the most recent sample z;, proceed
as follows:

(1) Generate a proposed new sample value z’ from the jumping distri-
bution Q(z’|x;).

(2) Calculate the acceptance ratio as:

(52)

(3) If r > 1, accept 2’ by setting x;,1 = .

(4) Else, accept 2’ with probability r. That is, pick a uniformly dis-
tributed random number u ~ U[0, 1], and if u < r set x4 = 2/,
else set w41 = x4.
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D. Proof of estimated variance for Gaussian mixture

Assume y is a random variable that can be represented as y = fozl WinYm,
where ¥, ~ N (fim,02). The mean of y can be calculated as

M
= Z Win o - (53)
m=1

And the variance of y can be calculated as

Varly] = E[y’] - (E[y])”
M
== Z wmym Z wmlu’m
n]\;:l
= Z W%y% + Z menymyn Z wmum + Z wmwnum,un)
=1 mn=1,m#n m,n=1,m#n
M M

= ( M%E[yzn] + Z wmwnE[ym]E[yn]>

m,n=1,m#n

M
W2 2+ Z wmwnumun>

m=1 mn=1,m#n

MS/_\

wi (Blyz] — pz,)

m=1

2 2
m%m:

[
NE

w
1

3
Il

E. Gaussian Mixture Reduction

Given a N-components Gaussian mixture, we want to find an effectively
reduced Gaussian mixture form without losing too much information from
the original Gaussian mixture. The problem can be defined as follows:

M
sz (710, ) = f@) =D w;- N5, %5). (55)
j=1

General approaches dealing with the problem of Gaussian mixture reduc-
tion can be classified into two fields. Bottom-up approaches start with a
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single Gaussian function and iteratively add additional components until the
original mixture density is approximated appropriately (e.g. PGMR [45]).
Top-down approaches take the original Gaussian mixture density and it-
eratively decrease the number of mixture components, either by remov-
ing single unimportant components or by merging similar components (e.g.
Salmond’s algorithm [46]). In addition, these algorithms can be further di-
vided into local and global methods. Gaussian mixture reduction via clus-
tering (GMRC [47]) method can be classified as a top-down algorithm using
global information. The interested reader can refer to [47] for the detailed
algorithm.
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