

AFRL-OSR-VA-TR-2013-0204

Architectural Support for Detection and Recovery using Hardware
Wrappers

Bhagirath Narahari
Rahul Simha

The George Washington University

April 2013
Final Report

DISTRIBUTION A: Approved for public release.

AIR FORCE RESEARCH LABORATORY
AF OFFICE OF SCIENTIFIC RESEARCH (AFOSR)

ARLINGTON, VIRGINIA 22203
AIR FORCE MATERIEL COMMAND

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware
that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

02-26-2013 FINAL REPORT March 1, 2009 - Nov 30, 2012

Architectural Support for Detection and Recovery using Hardware Wrappers

FA9550-09-1-0194

Narahari, Bhagirath
Simha, Rahul

The George Washington University
2121 I St, NW, 6th Floor
Washington, DC 20052

Air Force Office of Scientific Research
875 N. Randolph St Room 3112
Arlington VA 22203

AFRL-OSR-VA-TR-2013-0204

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE

The objective of this project was the development of secure execution environments for applications that use third party software
components developed by a variety of vendors, and restrict how code shares the application memory space, and provide isolation
within the application space. A hardware-software approach was taken to provide fine grained memory access protection by placing
each software component or package in a hardware wrapper which enforces limits on the resources accessed by these software
packages, and thus helps detect an attack and enables recovery from an attack. Current computing platforms were augmented with
hardware that enforces limits on resources accessed by the software packages – these hardware wrappers constrain the damage that
can be done by a malicious software package and maintain a stable system through recovery mechanisms. Extensive experiments,
which revealed modest performance overhead, conducted on a full system simulation infrastructure demonstrated that fine grained
memory protection using the concept of wrappers is both practical and effective.

security, hardware architectures, software security, authorization, memory protection,

U U U SAR 15

Bhagirath Narahari

202 994 8323

Reset

1

Final Performance Report

Architectural Support for Detection and Recovery using
Hardware Wrappers

AFOSR Contract Number FA9550-09-1-0194

Principal Investigator:

Bhagirath Narahari
Department of Computer Science

The George Washington University
 2121 I St. NW, Suite 601
 Washington, DC 20052

narahari@gwu.edu
(202)-994-8323

Cover Sheet: Form SF 298 attached.

1. Executive Summary.

The overall objective of the project was to enable the development and execution of
secure applications that use third party software components developed by a variety of
vendors, and restrict how code shares the application memory space, and provide
isolation within the application space. An integrated hardware-software approach was
developed, and this has the potential of significantly raising the barrier against such
attacks and that, in addition, includes an orderly recovery process. The solution augments
current computing platforms with hardware that enforces limits on resources accessed by
the software packages – these hardware wrappers ensure that a software application can
only read its own memory, cannot engage in denial-of-service and that a violation results
in a hardware-supervised automated recovery process. The hardware wrapper is based on
a manifest generated during application development process and contains information on
authorized memory access policies, timing information, and recovery code. The
conventional CPU is modified to incorporate an enforcement engine which checks the
manifest at run-time to detect and prevent any unauthorized access to memory and to
invoke recovery process after an attack is detected. In addition to the original objectives,
investigations were started on topics related to the project objectives with a focus on
embedded systems. Modern embedded control systems feature multiple processors that
must coordinate sensing and action. For this reason, the research explored extending the
monitoring and recovery features to the context of distributed control. In particular, the
focus was on language and runtime support for distributed control of actuators in the
presence of attacks and failures.

2

To achieve the goal, research was conducted to integrate and advance current techniques
in security, computer architecture, compilers, and languages to develop novel system to
protect against attacks through backdoors placed in third party software. The specific
research objectives included:

• Architecture design to implement the hardware wrappers and containers concept
• Manifest/meta-information needed to track authorized accesses
• Testbed and simulation infrastructure development to quantify and measure

performance in terms of architecture parameters.
• Performance analysis to evaluate overhead incurred by our approach,
• Design, and evaluation, of language and runtime support for distributed control of

actuators in the presence of attacks and failures.
The innovation in the approach was in developing a solution that exploited the power of
integrated software-hardware techniques. The results of this research included
architectures for fine grained protection of memory and involved design of algorithms,
models for automated recovery, programming language and runtime support, architecture
design, compiler techniques, simulations, and performance analysis. Several techniques
were proposed and designed to address these objectives. The research involved faculty
and graduate students at the doctoral level, and partly supported two completed doctoral
dissertations. The overall impact of the research is in the development of secure
applications that use third party code.

2. Status of Effort:

The research proposed involved a number of research areas: (1) design of the architecture,
and compiler support, for protection against attacks on an application through backdoors
placed in third party code; (2) explore the use of reconfigurable logic as a hardware
acceleration platform to implement security mechanisms; (3) exploring system support
for hardware structures; and (4) development of complete architecture and system
simulation infrastructure to measure the effectiveness of the proposed solution.

A hardware-software approach was taken to provide a secure execution environment that
uses third party code. The idea is to prevent attacks launched from third party code
through application’s memory space. The solution approach places each software
package in a hardware wrapper, or each software component in a hardware container.
(We use the terms wrapper and container to primarily distinguish the granularity at which
we apply our software protection technique.) The innovation in our approach is to
augment the standard von Neumann architecture with a few hardware primitives to
carefully check memory accesses and CPU usage at runtime so that no application, or
software package, can access memory beyond specific bounds nor can slow down the
CPU by hogging compute-time. In addition, we performed preliminary research that
focused on language and runtime support for secure embedded system in the context of a
distributed control system.

3

Figure 1: Hardware-Software Processes in our Approach

The effort for developing our secure execution environment lies on two fronts, as shown
in Figure 1, which illustrates the hardware-software processes in our approach:

(a) On the software engineering front are extraction of program properties (i.e., the
meta properties needed to track accesses), compiler techniques, and writing of
recovery code that satisfies the developer’s security policies. These properties
would determine the manifest/meta-information needed to track unauthorized
access. In addition, on the secure, robust embedded systems with distributed
control, the development of language and runtime features for distributed control
of actuators in the presence of attacks, failures, and timing constraints.

(b) On the computer architecture front, design of a trusted execution platform that
validates fine-grained memory access, checks control flow, and enforce an orderly
recovery procedure. In addition, design of high-throughput, low-latency
cryptographic hardware using reconfigurable logic to provide fast implementation
of cryptographic techniques.

We demonstrated through a series of experiments that fine-grained memory protection, as
provided by our approach, is both practical and achievable. Further, we showed that
architectural optimizations and careful design and integration of wrappers with the
processor pipeline could result in modest performance penalty while providing improved
security. This suggests that our approach of hardware wrappers provides an effective
secure execution environment for modern embedded systems which use third party code.

Application
Source(s)

Application
Source(s)

User
Constraints

User
Constraints

Functions
Wrapper
Inference

Stage

Basic Blocks
Instruction
Wrappers

Heap Data

Stack Data
Data

Wrappers

Rule GenerationRule GenerationSW CompilationSW Compilation

Target HW
Platform

Wrapper
Runtime
Records

Wrapper
Runtime
Records

Application
Executable

Codes

Application
Executable

Codes

Standard CPU Enforcement
Engine(s)

HW/SW
Boundary

M
em

or
y

4

Figure 2: Wrapper Concept

Figure 3: Architecture Overview

3. Summary of Accomplishments
We made progress on several fronts in the project, both on the primary objective of
developing the hardware wrappers concept as well as other complementary objectives
that were identified during our investigations. Below we itemize these achievements by

CPU
Core

Instructions
Cache

Data
Cache

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

Memory

Permissions
Cache

xxxxx
xxxxx
xxx

xxxxx
xxxxx
xxx

xxxxx
xxxxx
xxx

Stack

Heap

Static Data
& Code

Permission
Tables

xxxx
xxxx
xxx

01100
10011
1110

01100
10011
1110

01100
10011
1110

Wrapper Manager
Dynamic

Permissions
Buffer

Identification
Table

Runtime
Record

Permission
Stack

BusProcessor

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

CPU
Core

Instructions
Cache

Data
Cache

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

Memory

Permissions
Cache

xxxxx
xxxxx
xxx

xxxxx
xxxxx
xxx

xxxxx
xxxxx
xxx

xxxxx
xxxxx
xxx

xxxxx
xxxxx
xxx

xxxxx
xxxxx
xxx

xxxxx
xxxxx
xxx

xxxxx
xxxxx
xxx

xxxxx
xxxxx
xxx

Stack

Heap

Static Data
& Code

Permission
Tables

xxxx
xxxx
xxx

xxxx
xxxx
xxx

xxxx
xxxx
xxx

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

Wrapper Manager
Dynamic

Permissions
Buffer

Identification
Table

Runtime
Record

Permission
Stack

BusProcessor

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

01100
10011
1110

5

topic and summarize the main results obtained. More detailed results are available in the
papers listed in the publications section, and available at
http://www.seas.gwu.edu/~narahari/afosr/ .

1. Hardware Wrapper Concept and Architecture:

An application may be developed using open source third party software, including
libraries and plug-ins. In the conventional architecture, shown on the left half of Figure 1,
malicious code in the third-party software can make an unauthorized access to the user
code’s memory (since the user specified this malicious code as part of their application)
and launch various kinds of attacks on the code and data. In our approach [15,16], as
shown in the right half of the Figure 2, a conventional application’s components are
instrumented with a wrapper, which is a manifest containing metadata created at the time
of application development that specifies the resources needed by individual software
components/packages and also contains recovery code. Our approach modifies the
standard von Neumann architecture, Figure 3, by providing a wrapper enforcement
engine to enable fast runtime checking of memory accesses and CPU usage by packages.
These checks are made against the manifest. At run-time, the hardware detects improper
memory accesses (reads or writes) or denials-of-service (slowing down the CPU) and can
detect an attack or initiate a hardware-supervised recovery process that restores operation
and also records a snapshot of events that might assist a forensic examination of the
attack. Thus, a malicious component that misuses a pointer, to make an unauthorized
memory access, or runs in an infinite loop, will be trapped by the supporting hardware
and the attack will be detected and prevented. The hardware can then oversee an orderly
recovery. The recovery process we outlined in [17] could itself be a chain of interrupts
going back up the component creation hierarchy all of which is supervised and enforced
by the hardware so that the recovery process itself cannot be hijacked.

A primary goal of our Hardware Wrappers approach was to make both our hardware and
software enhancements as transparent as possible. In the case of hardware, we provide
the bulk of the needed hardware functionality in a module called the Wrapper Manager
that sits between the CPU and cache as shown in the Figure 3. In this manner, a processor
designer would merely insert our module and interface it with both the CPU and the
cache. Similarly, our goal in software is to have most of the work done by the compiler
and loader, with minimal work required for the programmer. In fact, the only action on
the part of the programmer is to define the units of isolation – this requires modification
of a software development tool that builds the application (such as make). Figure 3 also
shows the additional bookkeeping data (the permissions) stored in main memory, which
are fetched into the Wrapper Manager as needed to enforce isolation boundaries.

The wrapper architecture, a hardware-software technique to provide fine-grained memory
protection, was evaluated by through a prototype implementation and measuring the
performance overhead. Several techniques were developed to reduce the performance
overhead. We built a full system support for fine-grained memory access and developed
of a full-blown system simulator using Opal/Gems toolkit. Further, we explored
concurrency support for management of wrappers and evaluating and improving

6

multithreaded performance by optimizing cost of context switches. Extensive
experiments were conducted using our simulation infrastructure, and the salient
experimental results are tabulated in Appendix A along with details of the experimental
platform. Some key accomplishments and observations are summarized in what follows,
and are reported in detail in [2,3,15,16].

• Performance Overhead incurred by Hardware Wrappers. The big challenge
in our approach to fine-grained memory protection, using wrappers, is to
minimize the performance overhead incurred by the extra cycles taken by the
processor to check the authorizations, by checking the manifests in the wrapper
enforcement engine. After careful architectural optimizations, our system incurred
very modest average overhead of approximately 15% across a range of
benchmarks. Figure 4 in Appendix provides the tabulated results of our
experiments, including the effect of architectural optimizations on the
performance.

• Concurrency support for wrappers management. The traditional model of
processes and threads strongly relates to where protection boundaries exist.
Instead of multiple execution sequences inside a protection domain, hardware
wrappers introduce multiple protection domains inside a continuous execution
sequence. Wrappers hardware automatically manages the context switch between
security protection domains, but the hardware is unaware of a task context switch
which requires loading the wrapper metadata for the new task. We extended
RTEMS operating system with support for the new model of security context
switching thus providing concurrency support in our wrapper architecture.

• Evaluating and improving multithreaded performance. The performance
overhead caused by using hardware wrappers for multithreaded applications
includes both the overhead of a single-threaded application and the increased cost
of the context switch. We explored different strategies for optimizing context
switches. By increasing bus width, between wrapper manager and cache, the
overhead due to context switch was reduced to 8% (Figure 5).

• Improving permission assignment for dynamic data structures. Complex data
structures, such as linked lists, trees or graphs, pose a challenge for permission
assignments. In order to pass the full structure to another principal for processing
the same processing as traversing the data structure is needed for security
attributes assignment. We created a variant of the permission delegation primitive:
ALLOWM (allow multi) that receives as parameters the number of ranges and the
location in memory of security permission data structure that holds multiple
delegation attributes. Such security attributes can be made part of the data
structure itself and maintained by the base operations (such as add, remove, etc)
and reused without re-parsing the structure.

• A micro benchmark for evaluating wrappers. We continued to enhance our
benchmark suite with a set of synthetic tests that allow us to vary program
features that affect the performance cost of using wrappers.

• Enhancing the security and safety of object-oriented languages with
wrappers. Object-oriented programming languages like C++ allow developers to
encapsulate the inner workings of object implementation with access specifiers

7

such as public and private. A compiler can then enforce encapsulation by
checking whether object interactions violate the specified visibility. However,
encapsulation is easily broken if a program uses direct memory access—for
example, with pointers. Thus C++ programmers are taught that “private is not
secure.” This maxim is a result of the general security problems that unchecked
pointers can bring. Hardware wrappers enable fine-grained memory access
control to constrain memory accesses to well-defined boundaries, which we use to
provide programmers with the ability to enforce both encapsulation and memory
safety for C++ programs. Providing applications written in C++ with internal
memory protection—that is, protection between objects executing in the same
thread—is difficult because of the intricate features in C++. In particular,
inheritance and class composition frustrate hardware enforcement of
encapsulation, and the dynamic behavior of objects at runtime, such as
polymorphism and exception-handling, presents challenges for hardware
monitoring of memory accesses.

2. Systems software support for hardware data structures.
As we explore the role of hardware and systems software in security we see that the
interfaces between applications and memory are primitive and inefficient. For
example, the ALLOWM primitive requires enhanced knowledge of how algorithms
act on data structures. Using our simulation test bed we have developed novel
techniques for managing data structures that admit to efficient hardware support [1,7].
In particular, we are using priority queues as an example data structure that has many
practical applications—almost any sorting problem can be solved with a priority
queue—and has an efficient hardware implementation. Our research explored how
the limitations of the hardware (size and inflexibility) can be circumvented by
systems software support. By moving data structures into hardware, we can
implement tight memory access bounds on applications by constraining code to
accessing data structures through hardware interfaces secured by hardware wrappers.

3. Untrusted Hardware: We also explored the complementary problem of designing
a secure execution environment when the hardware, and specifically the Integrated
Chip (IC), may be compromised at the fabrication foundry by third party developers.
Our solutions explored (i) limiting the amount of data that could leak “out” of a
hardware wrapper over a system memory bus [11], (ii) looking into some real-world
implementation issues [14], and (iii) proposing mechanisms to validate that
manufactured hardware is true to its design [8]. This is complementary to the main
architectural wrappers approach and should provide consumers of our technology
some added confidence that the wrapper hardware itself can be protected.

4. Language and Runtime Support for Distributed Control of Secure Embedded
Systems. We explored the language support for embedded systems that feature
distributed control, such as those applied in robotics, control software, and avionics.
The goal was to understand the systems infrastructure needed to support robust,
secure embedded systems. We explored an infrastructure for distributed control built
on the Lua run-time system. We chose the Lua run-time system as it has a very small

8

code base, which made extending and modifying the language and run-time
environment a fairly easy process. However, object-oriented programming in Lua is
not as accessible as it is in other programming languages. To facilitate the ease of
object-oriented programming in our system, we developed a fairly rudimentary
Python to Lua translator. This translator will not convert legacy Python code to Lua,
but any code written with the intent of being translated will work. We also ported
Lua to RTEMS, which will allow us to modify the architectural simulator in the
future to investigate how architectural modifications can better support the robustness
of our system. Only a few changes were needed to get Lua to execute in RTEMS, and
the main change was to Lua's timing mechanisms. Since RTEMS is run in a
simulator, there is no macro defined which can be used to convert the clock() into
seconds like Lua expects. A separate system call is used to access the ticks per
second the simulator is configured to run. This change allows us to obtain fairly
precise timing of not only program execution, but also specific language features we
wish to test. Within the new Lua run-time system, we are implementing distributed
control tasks that model multiple agents (e.g. robots) that must coordinate to complete
each task. As each agent executes, its system-level parameters can be measured and
maintained within a secure envelope defined by a wrapper.

5. Reconfigurable Logic for Cryptographic Needs of Wrapper Architecture.

We looked at the high-throughput, low-latency cryptographic needs of the wrapper
hardware, based on its placement in the memory hierarchy [12,18,9,10]. A continued
investigation into conventional private-key cryptography provided evidence that
while throughput requirements could be met using conventional block ciphers such as
AES, there would be (variable) high latency requirements. This could potentially
cause problems for implementation in real-time systems. We then expanded our
hardware crypto work to look at stream ciphers, and have found that approaches
based on chaotic cryptography show some promise for this application [18]. With
safety critical systems as the focus of our investigations, we also continued to explore
solutions for hardening embedded platforms that operate in adversarial environments.
This includes encrypted execution and control flow verification with minimum
architectural changes [10].

5. Personnel Supported.

During the third year of the award:
At The George Washington University:

o Professor Bhagi Narahari (PI) supported in part during summer months.
o Professor Rahul Simha. Supported in part during summer months.
o Dr. Gedare Bloom, graduate (doctoral) student, graduated 2012. His thesis

explored the use of hardware data structures.
o Dr. Eugen Leontie, graduate (doctoral) student, graduated 2012. His doctoral

research was on the topic of using fine grained hardware wrappers – called
containers – and is directly related to the objectives of this project.

o Professor Gabriel Parmer, Supported in part during summer months.

9

o Mr Christopher Smith, doctoral student, was partially supported by this grant. He
explored language and runtime support for secure embedded systems.

o Mr. James Marshall, doctoral student, was partially supported by this grant. He
explored distributed control task generation and simulation for secure embedded
sytems.

At Iowa State University:

o Professor Joseph Zambreno was partially supported in summer months.
o Dr Amit Pande, PhD 2010, was partially supported by this grant and worked on

FPGA architectures.
o Alex Baumgarten, and Justin Rilling, were partially supported by this grant to

help with implementing FPGA designs.

6. Publications:

1. G. Bloom, G. Parmer, B. Narahari, and R. Simha. Shared Hardware Data
Structures for Hard Real-Time Systems, 12th International Conference on
Embedded Software, EMSOFT 2012, October 2012.

2. E. Leontie, G. Bloom, B. Narahari, and R. Simha. No Principal Too Small:
Memory Access Control for Fine-Grained Protection Domains, 15th Euromicro
Conference on Digital System Design, DSD 2012, September 2012.

3. E. Leontie, G. Bloom, and R. Simha. Automation for Creating and Configuring
Security Manifests for Hardware Containers, 4th Symposium on Configuration
Analytics and Automation, SafeConfig 2011, October 2011.

4. Stefan Popoveniuc, John Kelsey, Eugen Leontie, On the privacy threats of
electronic poll books, International Conference on Security and Cryptography
SECRYPT 2011, Seville, Spain 2011.

5. A. Baumgarten, M. Steffen, M. Clausman, and J. Zambreno. "A Case Study in
Hardware Trojan Design and Implementation", International Journal of
Information Security (IJIS), vol. 10, no. 1, pp. 1-14, 2011.

6. Gedare Bloom, Eugen Leontie, Bhagirath Narahari, Rahul Simha, Hardware and
Security: Vulnerabilities and Solutions, Book Chapter in “Handbook on Securing
Cyber-Physical Critical Infrastructure – Foundations and Challenges”, Elsevier,
ISBN-13: 978-0124158153, 2011.

7. G. Bloom, G. Parmer, B. Narahari, and R. Simha. Real-Time Scheduling with
Hardware Data Structures, Work-in-Progress Session, IEEE Real-Time Systems
Symposium, 2010. RTSS 2010. December 2010.

8. G. Bloom, B. Narahari, and R. Simha. Fab Forensics: Increasing Trust in IC
Fabrication, IEEE International Conference on Technologies for Homeland
Security, 2010. HST '10. November 2010.

9. Eugen Leontie, Gedare Bloom, Olga Gelbart, Bhagirath Narahari, and Rahul
Simha. "A Compiler-Hardware Technique for Protecting Against Buffer
Overflow Attacks", Journal of Information Assurance and Security (JIAS), vol. 5,
no. 1, pp. 1-8, 2010.

10. Eugen Leontie, Olga Gelbart, Bhagirath Narahari, Rahul Simha, Detecting
Memory Spoofing in Secure Embedded Systems using Cache-Aware FPGA

10

Guards, Sixth International Conference on Information Assurance and Security,
IAS2010.

11. A. Das, G. Memik, J. Zambreno, and A. Choudhary. "Detecting/Preventing
Information Leakage on the Memory Bus due to Malicious
Hardware", Proceedings of Design, Automation, and Test in Europe (DATE),
March 2010.

12. A. Pande and J. Zambreno. "Efficient Mapping and Acceleration of AES on
Custom Multi-Core Architectures", Concurrency and Computation: Practice and
Experience, 2010.

13. Stefan Popoveniuc, Eugen Leontie, SAFE RPC - Auditing mixnets safely using
Randomized Partial Checking, International Conference on Security and
Cryptography SECRYPT 2010, Athens, Greece 2010

14. A. Baumgarten, A. Tyagi, and J. Zambreno. "Preventing Integrated Circuit Piracy
using Reconfigurable Logic Barriers", IEEE Design and Test of Computers, vol.
27, no. 1, pp. 66-75, January 2010.

15. E. Leontie, G. Bloom, B. Narahari, R. Simha, and J. Zambreno. Hardware-
enforced Fine-grained Isolation of Untrusted Code, Proceedings of the CCS
Workshop on Secure Execution of Untrusted Code (SecuCode), November 2009.

16. E. Leontie, G. Bloom, B. Narahari, R. Simha, and J. Zambreno. Hardware
Containers for Software Components: A Trusted Platform for COTS-Based
Systems, 2009 IEEE/IFIP International Symposium on Trusted Computing and
Communications, TRUSTCOM 2009, August 2009.

17. J. Sathre, A. Baumgarten, and J. Zambreno. "Architectural Support for Automated
Software Attack Detection, Recovery, and Prevention", Proceedings of the
International Conference on Embedded and Ubiquitous Computing (EUC),
August 2009.

18. A. Pande and J. Zambreno. "A Chaotic Encryption Scheme for Real-time
Embedded Systems: Design and Implementation", Telecommunication Systems,
2011.

Doctoral Dissertations
1. Gedare Bloom. "Operating System Support for Shared Hardware Data Structures",

Dissertation Thesis, The George Washington University, 2012.
2. Eugen Leontie. "Hardware-enforced Fine-grained Isolation of Untrusted Code",

Dissertation Thesis, The George Washington University, 2012.

7. Interactions/Transitions:

Participation/Presentation at Meetings, Conferences, Seminars:
o Presentation of papers at various conferences.
o Bhagi Narahari, Integrated Hardware-Software approaches to software

security, Indian Institute of Technology, Hyderabad, Dec.2010.
o Bhagi Narahari, Integrated Hardware-Software approaches to software

security, Indian Institute of Technology, Bombay, Jan.2011.

11

o G. Bloom, Hardware Data Structures, Fifth Annual SEAS Student Research
and Development Showcase, 2011. The George Washington University,
Washington, DC
o Meeting with Cisco groups at Bangalore, India to discuss hardware

assisted security techniques (March 2012).

8. New Discoveries, inventions, patents: None.

9. Honors/Awards: N/A

12

Appendix A: Experimental Platform and Results.

We implemented and simulated our Wrapper architecture and evaluated its architectural
effectiveness through extensive simulations.

Simulation Infrastructure and Test Bed.

In order to evaluate a system enhanced with our wrapper mechanism, we conducted a
series of simulations that provide an accurate comparison between an unprotected system
and a security enhanced device. As expected, the extra validations, code instrumentations
and run-time metadata cause a performance penalty. We developed a simulator-based
infrastructure for evaluating the performance impact of using wrappers to secure
embedded systems. We implemented the wrapper hardware on top of a modern processor
architecture based on the UltraSPARC III architecture. The UltraSPARC III represents an
iteration of a long line of RISC processor designs, and it is equipped with state-of-the-art
architectural features. Simics/GEMS implements a cycle-accurate model of a complex
out-of-order architecture with functional simulation of the UltraSPARC III instruction set.
We implemented extensions to GEMS and plugins for Simics to emulate the hardware
features of the wrapper reference monitor. We chose architectural parameters of our
simulation and experiments to match typical system-on-chip and embedded platforms
available as commercial products. To demonstrate the feasibility of the fine-grained
memory access control in a complex software environment we chose RTEMS as a
suitable OS. We developed a Board Support Package (BSP) for the UltraSPARC III (and
OpenSparc Niagara) and contributed it as the first 64-bit target port for RTEMS; it is now
part of the upstream RTEMS distribution. RTEMS is POSIX-compliant and offers
support for custom task extensions including a context switch call-out, which we utilized
to implement the wrapper context switch. We evaluate the performance of our solution
with experiments using benchmark applications from MiBench, the Data Intensive
Systems (DIS) benchmark suite, a reduced size Dhrystone test, and the heap-intensive
Richards benchmark. Graphical results are presented as the percent overhead compared
with the baseline execution time, so a lower percentage represents better performance.
Figure 4 shows the performance cost of using hardware wrappers across a sample of the
benchmarks.

Experimental Results

• Concurrency support for wrappers management. The traditional model of
processes and threads strongly relates to where protection boundaries exist.
Instead of multiple execution sequences inside a protection domain, hardware
wrappers introduce multiple protection domains inside a continuous execution
sequence. Wrappers hardware automatically manages the context switch between
security protection domains, but the hardware is unaware of a task context switch
which requires loading the wrapper metadata for the new task. We extended
RTEMS with support for the new model of security context switching: on a
context switch, the OS saves together with the normal execution context (registers,
program counter) the dynamic part of the security context (dynamic permission

13

buffer and dynamic permissions from the container run-time record) for the active
container. We implemented the context switch as a RTEMS task extension. Task
switching is triggered by the OS, which notifies the container manager by a
dedicated instruction that handles security context saving, flushing and loading
the new context before allowing the task to continue execution.

• Evaluating and improving multithreaded performance. The performance
overhead caused by using hardware wrappers for multithreaded applications
includes both the overhead of a single-threaded application and the increased cost
of the context switch. We explore three strategies for optimizing context switches.
The first is a simple extension to the controller logic that allows loads and stores
to be validated against partially loaded permission list. If a hit occurs, the memory
operation is valid. If not instead of triggering a security violation, the CM
continues to stall the pipeline and retries the memory access once the permission
list is fully loaded. Experimental results show us a reduction in stalled loads to as
much as 21% and stalled stores up to 30% in the best cases. The second
optimization considers a windowing mechanism that matches the register window
of the processor for the container manager. Such a mechanism reduces many of
the memory transfers during a security context switch, at the cost of a much
higher chip space used. We obtained the most significant overall speedup after an
architectural optimization—bus widening—that reduces the bandwidth bottleneck
between the container manager and the permission cache. For register to memory
operations a word size bus (16/32/64 bit) is typically used. For context switch
operations, the CM transfers large continuous sequences, consisting of permission
lists. Increasing the bus width by a factor of 2 or 4 significantly reduces the
performance bottleneck. Figure 5 shows the cost of context switching as
frequency increases, how adding wrapper management to the context switch
increases that cost, and how bus widening reduces the cost.

• A microbenchmark for evaluating wrappers. We continued to enhance our
benchmark suite with a set of synthetic tests that allow us to vary program
features that affect the performance cost of using wrappers. In particular our
microbenchmark allows us to control the rate and ratio of memory operations,
function calls, and cpu-intensive workloads. Figure 6 shows the results of our
synthetic tests as we vary the ratio of function calls to total number of instructions.

14

Figure 4. Performance cost of benchmarks with hardware wrappers (smaller is

better). Hardware optimizations reduce the cost: most improvement is gained by
increasing the cache bus width.

Figure 5. Context switch cost as frequency increases. Shows how bus widening
reduces the cost, and how the cost compares to the cost without any wrapper

management during the context switch.

cr
c

di
jk

st
ra

fie
ld

co
rn

er
s

ed
ge

s

sm
oo

th
in

g

ric
ha

rd
s

dh
ry

st
on

e

0

5

10

15

20

25

30

35

40

% Performance Overhead

simple
windowing
partial checks
cache bus 2
cache bus 4%

 p
en

al
ty

no preemp 50Hz 100Hz 200Hz 250Hz 333Hz 500Hz 1Khz
0

2

4

6

8

10

12

14

16

Multithreaded Tests

no protection
(with software
ctx overhead)
bus 1
bus 2
bus 4

Context switch preemption

%
 O

ve
rh

ea
d

15

Figure 6. How varying the ratio of function calls to other instructions affects
performance.

7.32 10.75 17.16 22.37 25.06 26.69 30.3
0

2

4

6

8

10

12

14

16

18

20

Function Call Frequency Tests

ALLOW
overhead
unoptimized
protection

Function call ratio (per 1000 intructions)

%
 O

ve
rh

ea
d

	Title Page_Dist A-09-1-0194
	AFRL-OSR-VA-TR-2013-0204

	sf 298-09-1-0194
	09-1-0194

