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1. Introduction

The mechanics of a continuum are commonly described byinglato sets of coordinates: a set
of reference coordinatethat serves to label the particles in an arbitrary (perhagisli or even
fictitious) configuration, and a set spatial coordinateshat fixes locations in space (that is, in
the laboratory) 1, 2). The importance of the reference coordinates in continmeauohanics is

that they serve toameeach individual particle so it can be tracked in the spabtaldinates.

This is the sense in which the reference coordinates mayleyéntitious—since they merely
serve to label each patrticle; reference coordinates thHeesseeed not have any particular
geometric meaning so long as they fulfill this requirememt this report, we seek to clarify the
relationship between the two standard coordinate sets #nttaset of coordinates, generally
calledconvectiveeoordinates which are related in subtle ways to both thead@atd reference
coordinates. Convective coordinates are particularlyortgmt with respect to nonmechanical
physics occurring against the background of a deforming el are almost essential within the
framework of the theory of relativity, as that theory doesmeaognize the universality of
simultaneity.

More specifically, in this report, we clarify the relatiofsé between these three coordinate
systems, and use the convective coordinate system to fatenthle classical theory of
electromagnetism in the presence of material deformatitdms reformulation is useful in
numerical work because the physically required continoitglectromagnetic field descriptions
depends intimately on the geometry of the boundary, whigergerally simple to describe only in
reference or convective coordinates. By reformulatingufagwell equations in convective
coordinates, we also demonstrate that the standard vectoufation of them is not covariant in
classical physics3). In other words, we demonstrate that a proper formulatidlaxwell’s
equations, implying the invariance of physical law for diservers, cannot be achieved within the
confines of classical physics. This difficulty is a primaryste of the conflicting formulation of
the Maxwell equations in continuum mechanics literatugeq.

2. Background and Curvilinear Coordinates

To understand the subtle differences in the various coatdisystems presented in this work,
definitions need to be made clearly and with a modicum of rigdoreover, the formulations



presented in the following concentrate on the use of gewerallinear coordinates, a subject
likely unfamiliar to many readers. Therefore, in the ingtr@f precision and clarity, we describe
curvilinear tensor theory in the next two sections. Thigisaconcentrates on the algebra of
curvilinear systems, their metric structure, and the velséses used to define field quantities.
The next section describes the formulation of differerdjarators for the differentiation of field
guantities defined in such spaces.

2.1 The Background Cartesian System

Before defining the physical coordinate systems at the lo¢#nis report, we first describe an
absolute, mathematical coordinate system disconneateddny material continuum and fixed
firmly as a background description of space. This backgremade is assumed Cartesian and
fixed for all time, and is denoted 3y The space is constructed given a poii (theorigin) and
three orthonormal vectots;, u,, anduz. An arbitrary pointP hascoordinatesz!, 22, %) if the
vector fromO to P is given by theposition vector

X = xiui. (1)

Superscripts are used here for indexing for reasons theb@&ibme clear later. In any case, here
we use the Einstein convention that an index repeated inerseciipt and a subscript is to be
summed over its range.

In addition to serving as the basis for geometrical desorps can be used to describe physical
scalar and vector fields. For instance, if we have a (stateggure associated with each pointin
space, we may write

p=np(z'), 2

where ther’ refer to points of space as defined by equation 1. Simildryglectric field at the
point with coordinates® can be written in the form

e=¢ (:cj) u;, 3)

where now both the coordinates and the basis vectors of iyitgbackground description are
employed.

2.2 Curvilinear Coordinates and Metrics

Our initial description is based on Cartesian coordinagzsbse such a description allows us to
define coordinates through equation 1 and thus directlyectrooordinates with position vectors.



On the other hand, any set of three numkéts 72, #3) suffices to locate points in space if every
such triplet is mapped uniquely to a point in space; thaf the mapping

#=(") 1i€{1,2,3} (4)

has the properties that each coordinateisét the image of a exactly one coordinate set
(From this point on, the range on indices, which for this wisrklways{1, 2, 3}, is assumed and
suppressed.) Thatis, we are assuming the magpiisgpijective i.e., there is a unique set of
functions¢® such that

o= g7 (5)
These newt’ coordinates function as well for point location as did the::dl coordinates because
of this one-to-one mapping: Given th& thex’ are determined uniquely, and associated with the
point described by equation 1. We therefore refer to this ci@wilinear coordinate systems @s
and label all vectors ig just like their counterparts is, but with a tilde. The only weakness of

usings to describe space is that nothing as simple as equationtéselee point location to the
coordinates.

Given this failure of equation 1 and the unclear relatiopsigtween thé’ and theu,, it makes
sense to define new basis vectors to describe vector fiekdgfinot position vectors). Inspired
by the original Cartesian basis vectors, we might define ewur lpasis to be in the direction of
increase of a single coordinate, computed holding the atbe@rdinates constant. Specifically,
define oy

i, = a—;iui. (6)
These vectors are not necessarily of unit length or orthalgbat they do point in the direction
desired. The basis is illustrated at a fixed point in figure These vectors, and any other
tensorial quantities indexed by a subscript and therefabgest to variable changes in the manner

of equation 6, are callecbvariant

The Cartesian basis vectors are not only well suited to ttusirdinate system because they point
in the direction of increase of a coordinate holding all ottwordinates constant; they are also
orthogonal to the constant coordinate value surfaces anstl by holding a single variable
constant and letting all other coordinates vary. Théo not have this property. In view of this,
we can define a new set of basis vectors

- o1t

u =



Figure 1. (a) Covariant basis vectdis and (b) contravariant basis vectdrsat the point(b, b). The grid
is drawn assuming < b <c<d.

where for notational convenience we define
u' = 6"uy, (8)

and as usual” (with indices as superscripts or subscripts or both) is trenkcker delta. These
vectors are orthogonal to the constant coordinate valfas (i.e.fi’ is orthogonal to the

7' = constant surface) since they are the gradients of the mawgil coordinate values with
respect to the underlying Cartesian system. Indeedjitirehogonalityof the covariant and
contravariant components follows from the chain rule:

~ PN\ (o 00105 0wl 0F
& iy = (01’ u’) ‘ <0:)3 ) yﬁx 0r’ _ 0x’ 0% _ 5 ©)

o 0x1 ) T %05 003 0% 0x

They are illustrated in figure 1b, and are caléeshtravariantbecause they change in a manner
opposite that of the covariant basis as expressed by equé&tio

Finally, we note that we can define higher-order tensorsabay similar rules, and that they can
be covariant or contravariant in any of their indices. Isthork, no tensors of higher than
second order appears. As an example, a twice-contravaeanf second-order tensor
coefficientsa® transforms according to the formula

= LY 1
8 07 (10)

IS )




precisely because the vectmuter productu,u; is twice-covariant:

uiﬁj = = 7uiuj. (11)
Indeed, these two equations taken together ensure thegqirafdsuch quantities iswvariant, since

W=\ e g @ 07 o 1Y

= 9,,07a""u;u;

= a"u;u;. (12)

This invariance under the change of coordinates is a halliwizat correctly formulated physical
theory since it ensures that the meaning of physical quesiig independent of their
mathematical description. Similarly, a mixed second-otdesorag'- changes coordinates in the
by now expected fashion

07" 0x? |
= w0 13)

because the produdti’ changes in the opposite fashion.

a

Oy =

Because of these notational observations, it is easy to etatipe inner product of two vectors
expanded with respect to the two different bases. If we write

and

b = by = b, (15)
then

a-b=ab,=ab. (16)

(As an aside, note that the boldface vector notation doedistguish between covariant and
contravariant coordinate systems. This is because vdtiensselves, as independent, physically
meaningful entities, are by definition independent of cowte system. Basis vectors, which
seem to be an exception to this rule, are in fact not excegtidfor them, the use (or nonuse) of a
tilde indicates for which space they form a covariant or cardriant basis, rather than having
anything to do with their expansion in any system.)

To ease the computation of scalar products between pai®/afiant or contravariant vectors, a



metric tensor is introduced. Defining the metric tensor
g7 = 0; - uy, 17)
the inner product od andb can be computed from contravariant components alone:
a-b=g,adb. (18)
In a similar manner, the twice contravariant metric tensatdfined:
vl (19)
These two tensors are trivially symmetric and are inver§ese another by the chain rule:

G’ = 6%, (20)

The introduction of the metric tensor creates the possytofiworking entirely with vector
coefficients, and assuming and suppressing the basis s¢btdrare always defined by
equations 6 and 7. (Indeed, some bodk:gever even mention these vectors, assuming them
superfluous.) For this approach to be useful, the metriotesisould be computable from the
functionse and¢, and indeed itis. The standard covariant metric tensor reayomputed from

_ - . oz 0’ Ozt O’

== (G ) (Gow) =05 &)
recalling in the final step thatis orthonormal say; - u; = §;;. This computation has the added
benefit of demonstrating tha; is a tensor, since the metric tensosiis trivially given by

gi; = d;;. In precisely the same way, the inverse of the metric tefiéaman be directly computed

according to the formula
,..,Z ~j
i — ma_x 9z '
ot Oxd’
and is a twice contravariant tensor.

(22)

Finally, computing the dot product of the vectodefined above with each of the basis vectors in
turn demonstrates that the covariant and contravarianpoasnts of a vector are related through
the metric tensor:

a; = Gy, (23)



and
i’ = g'a;. (24)

These operations are known as weeringandraising of an index, respectively.

2.3 Determinants and Cross Products

In addition to the computation of dot products (and theremgths), work in physics requires the
computation of cross products and determinants. These watigns depend intimately upon
the definition of the Levi-Civita system

0 ifi=jj7=k ori=xk,
€ijk = 1 if ijk is an even permutation of 123 (25)
—1 if ijk is an odd permutation of 123

This definition shows clearly that all completely antisyntneethird-order systems are scalar
multiples of the Levi-Civita system, a fact we will need lat&Ve can also define the
contravariant Levi-Civita system in the obvious way, speaily

Eijk — 5i7.5j85kt67'8t (26)

Determinants and Jacobians can be easily computed in terimis tensor. The Jacobian of the
mapping from the:’ to the’ is given by the formula

i i 9 Ak
det (g%) =, O 0nf bu* 27

This observation can be used to clarify the tensorial naifitkee Levi-Civita system.
Specifically, we can consider the system

. 0z’ 927 Ox*
A = Uk 37 97 ok (28)

This system is completely antisymmetric because, for ntgta

Ozt Ox? Ok Ox? Oxt Ox*
B = Gk i gt oah o 0 gk S (29)

Therefore, because all antisymmetric systems of thirdradeuniquely determined up to a



multiplicative constant, we find that

oz’ 07 Ox* ox!
ik B O ok O (a_) i (30)
and, by the same token, ~
1, 0T 037 Ok IF\ i
ik~ Y Y — t [ = zyk‘ 1
0w 0at ok — X (axi) ‘ (1)

These two equations imply that the Levi-Civita system isantgnsor in the usual sense, but in a
new sense in which the usual tensorial transformation israpanied by multiplication with a
power of the Jacobian determinant. Such tensors are galkil/e tensorsor, if the power of

the determinant i1, tensor densitie€7). (Note that no tilde is ever put arsince it has the
same values in all systems and so needs no such distinctionh)s sense, we may refer to it as
the “Levi-Civita tensor.”

Because the determinant of the variable transformatiosotemccurs so frequently in the
following, we can simplify the remaining exposition withtber notation. If we let the
determinant of a twice-covariant tensor be representetslynsubscripted symbol, we can write

_ . _ oz’ ox?
g = det (g;;) = det [<%uz> . (@uj)}
o () ()
= {det (gi)] , (32)

V7 = det (gﬁ) . (33)

Note again that this definition pertains only to the deteants of twice-covariant tensors, and in
particular to the twice-covariant metric tensor.

or, more simply,

This clean expression for the Jacobian can be used to sinipdifexpression of cross products in
the curvilinear system. If the original Cartesian spacégistrhanded, as we shall always
assume, the cross product c'u; = c;u’ of the vectorsa andb of equations 14 and 15 has
contravariant components given by

¢ = eijkajbk (34)

and covariant components given by
¢ = epa’bt. (35)



Applying all the change of basis rules described above teeti@mulas, we find that the
coefficients of the cross product are given in the curviliretem by

N 1 . -
&= \/?e”’fajb,;, (36)
and
& = /7 ezalt". (37)

3. Differential Operators in Curvilinear Spaces

Having completed the description of the algebra underlytmegdescription of fields in curvilinear
coordinate systems in the last section, we turn to the @iffigation of such fields in this section.
The main idea is that tensors should be differentiated inyaiphlly meaningful way; that is, that
the results of such differentiations should be tensors. -8adled covariant derivative ensures the
physicality of results. It is defined immediately below.

3.1 The Covariant Derivative

The last section described the algebra involved in changmogdinates between a fixed Cartesian
systems and a curvilinear system In this section, we explore the analytical properties of
coordinate system changes. In particular, given a vectere wish to determine how its
derivatives with respect to space can be computed suchhidianheaning is not bound to any
particular coordinate system.

To this end, consider the change undergone by a veatwer a differential distancéx. In thes
system, the change imcan be expressed in terms of a dot product as
da = 22437 (38)
oT?
To actually apply this formula, a more specific formula fog tomponents of the partial
derivative indicated above is needed. To this end, we ddiimeavariant derivative®f the
components as

Da; . Oda _
Di o W (39)
and D& 8
a’ a _-
DF 0w (40)

9



The word “covariant” used here in concert with the derivatiefinition is not meant to indicate
the nature of an index (though covariant differentiatioeslcesult in the addition of a covariant
index to a tensor). Rather, the word implies that the resultnsorial; that is, it is covariant in
that it changes form appropriately under a change of coatem

To find practical formulas for the covariant derivative campnts, we begin with equation 39 and
apply the product rule of differentiation to find
oa  O(ad) o i o

oF ~ om om T "gm 41

Computing the inner product of this equation with the basisteri;, and defining th€hristoffel
symbol of the second kirigy

i _ ok ;. o,
=y —— =0 42
{jz} AT (42)
we find that 7, 8
Da;  0a; kol
Di O { ji }a’f' (*+3)

Other authors use the notation

Ik — { f{l } (4)
Jji

for the Christoffel symbols, but this notation is not empdyhere. In particular, the alternative
notation makes the Christoffel symbols look like third-erdensors, which they are not.

The covariant derivative of the contravariant componehgswector can similarly be shown to be

(7.9
D&’ ddl 7| i
Dﬁ_@fi—i_{]}z}a' (45)

The definition can even be extended to covariant, contravarand mixed tensors of second

10



order yielding 7, 8

Dot;g~ _ 8ai~j _lm s — m i, (46)
Dik Ok ik i
D&’  da” 7 . k .

_ = 4 . opa™ 4 am, 47
Dik Ok {mk} {TTLJ} 47
Da:  0al 7 ) 7 )

R I T Y (48)
Dik Ok mk kj

as the appropriate formulas for the coefficient derivatives
3.2 The Christoffel Symbols

The Christoffel symbols used in the definition of the covatr@derivative and defined in
equation 42 obey some important identities that find usdsisntork. These identities are for
the most part proven by complicated (but purely formal) rpatstions, and their proofs can be
found in almost any work on tensor analysis, such as refeeior 8.

First, it can be demonstrated that the symbols are symmetiti@ir lower indices; that is, that

{ i }E{ & } “
655’5{ ;]% } =0. (50)

This symmetry can be used to derive their expansion in tefrtieeanetric tensor, which after
some tedious manipulations can be shown tohe)(

T L (09m5 , 00mi 995
{il%}_?q (agsé+aat~5 o) 1)

Two more facts about Christoffel symbols are important embmainder of the work. The first is

so that in particular

Ricci’s lemma, which states that the covariant derivativihe metric tensor vanishes. The proof

is simple: Ins, g;; = d,;, SO its covariant derivative vanishes trivially. Since thetric tensor is
itself a tensor, its covariant derivative is also a tensdner&fore, its vanishing in one system

proves its vanishing in all systems. Ricci’s lemma impliggttthe metric tensor can be treated as

a constant for the purposes of covariant differentiation.

11



Finally, intricate (but ultimately straightforward) mamuilations of the Christoffel symbol

definition show that{, 8)
7 1 07
- V7 52
{ %5} VG 0w 2

3.3 Differential Operators

With all of this detail in hand, the standard differentiakogtors of multivariate calculus can now
be introduced. Im, the gradient of a scalar(x’) has components equal to the partial derivatives
with respect to the underlying coordinate dimensions:

.09

T o

Vo (53)

Note that the components of the gradient are covariant,egsdie associated with the
contravariant basis vectors ensuring the consistencyedtihstein summation convention.
Assuming that) has a physical meaning independent of the coordinate systesmich it is
defined (that is, assuminga true physical scalar), its valuesmmust obey

o(z") = ¢(a"). (54)

To find the gradient value i&, we invoke the formula for contravariant change of basis,

96 , .. ¢ [Oxi_.
afi (u') = afi (afz%“) ! (55)

so that, by the chain rule, the gradient is given by

0 _
Vo= i (56)

=

=y

The divergence of a vecteris given by the formula

Da’
V-a= ,
a Dat

(57)

in s. Covariant differentiation is used here to ensure thatekalt is a true scalar. (It is trivially
identical to partial differentiation here anyway given thartesian assumption @) Now,
because covariant derivatives change coordinates aogaiaihe laws of tensor algebra, we can

12



immediately write

Da’
V.a= D (58)
Using equations 45 and 52, we can expand this expressiordto fin
Da'  da’ 1 | ., oa 1 OVG -
=~ = po J = = = J 59
D7 09?’+{ij}a 0w e 0 (59)
or finally, by separating a factor @f% and recognizing the derivative of a product,
1 a ~ ~i
Lastly, there is the curl. In, the curl is defined as
V xa= eijkD—%ui. (61)

DaJ

This formula can be brought intousing equation 31 and the usual covariant variable change
formulas to find

 Day 1 0z 019 92F __\ (037 0i* Da: \ /07 _
eIy = emnP ——k -1;
Dzi VG 0T 0z™ 0P Oxi Oxk DFI | \ Ozt "

= %em"paﬁayag%y
- %Jﬁff 32’3 fi; (62)
In view of equation 50, however, ) )
Ik g;’; = (i g;’;f, (63)
so that the curl may finally be written without the covariaatidative notation as
V xa= %eﬁ’? g‘;’; {i;. (64)

13



4. The Coordinate Systems of Continuum Mechanics

4.1 Reference Coordinates

To begin applying the mathematics of the foregoing sectiom®ntinuum mechanics, coordinate
systems must be introduced to describe continua and theéionscand deformations. The first
set of coordinates introduced in this regard isrgference coordinate sewhich serves to name
the particles. Indeed, in more general, mathematical ramgieof continuum mechanics, the
reference “coordinates” hardly even need to be coordir@atesen numerical, so long as each
particle is identified as a member of a st (We therefore assume that a material body is
composed of particles, which, at some time, could have mrtified by their locatiok’ in a
Cartesian coordinate systath By the seeming circumlocution “at some time, could havenjee
we mean to imply that while the particles may never have bedind reference configuratiox’,
the mapping from that configuration to any future configurati’ is

e Injective, so that each patrticle in the current configuratorresponds to only one
reference particle,

e Surjective, so that each particle in the current configaraias a name, and

e Characterized by a mapping with a positive Jacobian detemmtj so that the chirality of
the mapping is preserved throughout space and time.

In most work in elasticity, thé(? are imagined to represent the rest state of the matter, dle¥oi
elastic potential energy. In other work, the reference dimates may be the initial state of the
continuum, or they may even be ignored altogether, exceggdame their existence. (This last
approach is often seen in fluid mechanics.)

Finally, in this work, we always assume tlétis Cartesian, as mentioned above but this need not
be the case in more general applications. For some problemlying lower dimensional
formulations of the theory or special symmetry, it might Iseful to introduce curvilinear

material coordinates through the mappﬂﬁ’é = Ef(Xf). By the assumptions listed above and
the discussion of the previous two sections, these new owiss would name the particles as
well as the original coordinates, and could therefore bé asahe basis of a theory with no
essential complications.

14



4.2 Spatial Coordinates

The current state of the particles of the body named by tlezerte coordinates is related by the
spatial coordinates’. The location of a given particl&’ at a given time is completely
specified by thenotionof the particle

ot =¢(X ). (65)

This relation completely specifies particle kinematics exitie basis for the theory of continuum
mechanics.

At any fixed timet = t,, this relationship must be bijective with a positive Jaeplileterminant
as mentioned in the previous section. Because of this, weatsaywrite

X' =Z="(a"t). (66)

This equation should not be interpreted as meaning thaXthéepend on time; they don’t. For
an arbitrary fixed value of time= t,, what equations 65 and 66 mean is thand= are inverse
functions, i.e., that

v = (X k) = E(E (¢ 1) 1 to) | (67)

or, equivalently,
XT == 1) = Z1(€1(X T, 10) 1 to) 4 (68)

for all ¢,.

Because the particles move, the relationship betweendheent location and their reference
designation does evolve, and that is captured by equatioV@éen combined with the

curvilinear coordinate information provided in the prayécsections, this observation can be used
as a basis for the definition of the coordinate system at theecef the work, which is provided

in the next subsection.

4.3 Convective Coordinates

The description of boundaries, inclusions, and other g&cadly relevant physical features of a
body are often more simply described in the reference sy&ighan in the spatial system

After all, the reference system is merely a matter of partndmenclature, whereas the particle
trajectories ins are governed by the applied excitations and the laws of physThis can be
illustrated through the example of an elastic bar in the slid@m rectangular prism whose axes
are aligned with the coordinate axes, subjected to a lamge foAssuming that the reference
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coordinates are taken to be the initial coordinates of tme@begest at = 0, this situation is
depicted in figure 2a. 1®, the boundaries of the bar correspond to equations of tine for
X! =K', whereK' is some fixed constant for each boundary in each dimensiorco@ge, at
t = 0, the boundaries in are just as simple to describe, since at this instant theycate.

,,,,,

,,,,,,,,,,

,,,,,,,,,,

\
/

(c)

Figure 2. (a) The initial state of the bar labeled in the sppdtiasheds) and
reference (solidS) coordinate systems, (b) the deformed bar la-
beled in spatial coordinates)( and (c) the deformed bar labeled
in convective coordinatess), The reference coordinates never
change, remaining associated with (a) even as the defamadt-
curs .

At a later time, under the action of outside forces, the b#irhave deformed. Suppose it takes
the shape depicted in figure 2b. The spatial coordinateseguietéd in this picture, and the
boundaries (obviously) do not align with them. By definititime reference coordinates never
change, and are still depicted in figure 2a.

To arrive at a coordinate system in which features simplygidesd in reference coordinates
retain their simple description as the body evolves andrdefpwe turn to a set of spatial
curvilinear coordinates commonly callednvective coordinatesSince they are curvilinear
spatial coordinates, we denote the convective variablas bgd the convective system by The
mapping that gives rise to these coordinates can be wratergch instantas

F =82t t) = O (o)1), (69)
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where the functiorx is defined in equation 66. (Note that these coordinates easha function
of the “parametert.) The virtue of this choice is that at any arbitrary timethe particle with
material coordinateX’ in & has coordinates’ = X in 5. After all, by equation 68,

# = 02 (o 1) = G (€ (X" 1) 1) = 01X (70)

In particular, the algebraic description of interestingeabfeatures never changes. This s
depicted in figure 2c, which labels the deformed bar of figurevith the convective coordinates
of systems.

The systens does both of the following:

e Describes the system as it evolves, even if the “continuuapiated breaks apart during its
evolution, and

e Tracks the trajectory of fixed particles during that evalati

This can be very useful for the discussion of nonmechanitgsios unfolding against the
background of the continuum. In particular, because seneity is not absolute in the theory of
relativity (10, 17, convective descriptions can become essential. In thesseexion, operations
necessary for the formulation of continuum kinematics invaztive coordinates are described.

5. The Operations of Continuum Mechanics in Convective Codafinates

5.1 Temporal Differentiation

Temporal differentiation i is not very different than iis because at all timeg = X°.
Therefore, many of the formulas presented here have deéatence counterparts discussed at
length in standard texts on continuum mechanics such aerefes 1, 2, and 9.

Perhaps the most important temporal derivative definiscadso the most basic: the particle
velocity, which is computed by holding the material cooedas (theX’) of the particle fixed, and
differentiating the spatial coordinates with respect toeti

;dx"
Codt

Ui

(71)

The use of the “total derivative” notatialydt here is meant to indicate that th&' remain fixed
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but thez* vary during the differentiation. The resulting vectéiis the velocity of a fixed particle
through space.

Another type of velocity that can be measured is the speddwhich particles flow past a given
point in space. To compute this, we need to fix the point in sfthez?), and differentiate thé’
with respect to time. We can thus define

T

ot’ (72)

where the “partial derivative” notatiaf)/ 0t indicates that the’ remain fixed and th&’! are
allowed to vary as particles pass. The definitions of the teadglifferentiation operators above
should make it clear that

or'
5 = 0, (73)
and e
xl
T = 0. (74)

Finally, functions are often presented in terms of theirad&j®ence on the spatial variables, but
need to be differentiated holding the particle constantveGi functionf = f(z*,t), its material
derivativeis computed as

df _of , ofdu' _of | .of

ot | oxi dt ot U@x"'

= o (75)

5.2 Deformations, Transformations, and Metrics

Consider two points im separated by an infinitesimal displacemént. This displacement is
related to an infinitesimal displacemeht’ in & by the equation

B oz’
- 9X!

dat dx’, (76)

and to an infinitesimal variable transformatia# in 5 by

ox'

= o

da’. (77)

Equations of this form, of course, hold for any change ofalalgs; after all, this is just a
straightforward application of the chain rule of calculudoreover, becaus&’ = z! at alll
times, the set of numbers invoked on the right-hand sidegqudittons 76 and 77 are the same.
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Nonetheless, their meanings are different because theytespaces with different metric
structures. The squared magnitudelaf’ is given by

dS? = 6,,dXTdX7, (78)
whereas the squared magnitudelof is
d&* = g;;dz'd7. (79)

The reason for this “discrepancy” is that two different [drsjare involved:dS? is the square
length of thereferencesegment that correspondsde in the spatial domain, whereds? = ds?
because they are the squared length of the same segmendifferent coordinate systems. Of
course, by equation 76 we may write

ds® = C;dXTdXx’ (80)

where the Green deformation tensdy ¢r right Cauchy-Green tensat?) is defined by

oxt ox?

o = o pxT X7

(81)

Recalling thati! = X! at all times, and recalling the definition of the metric tariaderms of
the variable transformations given in equation 21, we firad th

that is, that the right Cauchy-Green tensor and the comeentetric tensor are numerically
indistinguishable.

From these observations, the computation of (orientedsaaad lengths using reference,
convective, and spatial coordinates is simple. A diffdedmtriented area in the reference
configurationS is given by

dA; = epypd X7dXE. (83)

In the current configuration, this oriented area is tramséa into a new vector with components
given by
da; = e;jpdr!da® (84)

in s, or by ]
da; = \/§ ez ditdit (85)
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in 5. The coefficients of the oriented are&is andda; obey a simple tensor relationship; they
represent the same tensor quantity in two different coatdisystems. The relationship between
these coefficients and thied; can be computed from the definition, resulting finally in

~7 I
da; = 2% e = Vo 22X qa,. (86)
oz’ ox’

Volumes are computed in much the same way. Reference volun@are computed by the
Euclidean scalar triple product

dV = dX'U; - (dX*U, x dX°U;) = dX'dX?dX°. (87)
Spatial volumes im are computed likewise, resulting in
dv = dz'da?da?. (88)

The curvilinear definition of the vector product needs toriv®ked to compute volumes i
resulting in
do = di'; - (7%, x d7%hy) = /g di'da?di®. (89)

These three different expressions for two different déferal volumes are related by

dv = do = VCO'aV, (90)
since at all time€” = g andd X’ = ¢/di".
5.3 Three More Basic Relationships

Before presenting the Maxwell equations in convective doates, three more basic results of
geometry and continuum mechanics are needed. In the sthogiainuum mechanics literature,
these relationships are often written in reference coatds) but here we translate them (where
needed) into convective coordinates.

5.3.1 Particle Velocity and Identity Flux

The first basic equation derived here relates the partidteeitg components® of equation 71 to
the identity flux components’ of equation 728). By equation 7447’ /dt = 0, so that choosing

f = 7% in equation 75 gives
- ot .
b= i (91)

_axiv
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5.3.2 The Spatial Equation of Continuity

The second equation presented here is the spatial equationtinuity (1-3, 9. This
relationship is predicated on the ability to compute thegeral derivative to the evolving metric
Vg, which, in turn, involves differentiating the transforruwat tensor with respect to time. In
particular, the temporal derivative of the transformatiemsor is given by

d [0z o’ ov' Ox?
&<) (92)

ot ) 9% oI 0

Given the definition of the transformation determinant,gheduct rule of calculus, and the
vanishing of determinants with equal rows, this relatiopshay be used to show that

dyvg  dv'
i 4V ©3)

Given any (scalar, vector, or tensor) quanfityinvoking the above along with the product rule
gives rise to thespatial equation of continuity

1 d(V3F) B 8.7-"+ I(V'F)

N AL ox' (o4)

5.3.3 Convected Time Derivative

Finally, we have occasion to compute the material derieativa flux. Given a vectoy’ we seek
a vectorg® called theconvected time derivativ@, 9 of ¢* such that

/ﬁi da; = i ¢' da;. (95)

Here,I' C R3 is an open surface in space; that is, it is isomorphic to afiitrt of a plane. We
may compute the necessary quantity in several steps. Byrstyoking equations 30 and 77, the
integrand may be brought into convective coordinates aaddhnivative moved inside the integral:

d - d [ . o'l 1 0xf

— [ ¢'da; = | — |¢'/ G — | —=—= €, pdzFdat. 96

at ) 9 /dt {gﬁﬁx’]ﬁai i (%6)
T T

Thus, using the product differentiation formula and equag4,

, Ort d (07
k i 7
V) + <8xj) ‘ (97)

. 0g
=57+ 5 (
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Using the fact thazﬁ;i is constant in time,

oxt d [ 07" o’
o7 dt <8xj) T (%8)

follows immediately. Therefore, inserting this relatiorid equation 97, we find

i 0q N o(vkg) o'

_ _ J
T N (99)

which, upon relabeling indices and applying the product hdcomes the desired relationship

i g’ ik O m 0 99’
g:ﬁ+€]%[€k[mv g]—@v. (100)

This is the final form of the convected time derivative.

6. Maxwell's Equations in Convective Coordinates

6.1 Maxwell's Equations in Vacuum in Spatial Coordinates

Before transforming the Maxwell equations to a convectraee, they must be stated in the
usual spatial frame. In Sl units, the basic quantities aftebenagnetic theory aetal chargeg
measured in coulombs per meter cubed (§/motal current densityi’ measured in amperes per
meter squared (A/f), theelectric fielde; measured in volts per meter (V/m), and thagnetic

flux densityp’ measured in tesla (T). We have not demonstrated that angsé thuantities is
tensorial; therefore, we make these definitions at the batgkdo not assume they have tensorial
properties. In particular, we do not change bases by ra@ihgvering indices. (These
definitions are the ones that make sense later in that thegmwethe form of the macroscopic
Maxwell equations in all systems. Therefore, these defingtihave been made with considerable
hindsight.) In vacuum, the Maxwell equations are

o q
ij, )y - 4
o (09e) = L. (101)
o'
o =0, (102)
. Oe b’
ijk Yk —
0w T ot (103)
e, ¢ oy .
€ % ((Skgb ) = ,UJQEQE (5 6]') + 1o (104)
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The quantityu, = 47 x 10~ henries per meter (H/m) is called thermeability of free spacand
the quantitye, = (uoc?)~* farads per meter (F/m) is called thermittivity of free spacevhere

¢ = 299792458 m/s is thespeed of light in vacuumThe electric field and magnetic flux density
described above are basic in the sense that the Lorentzdqreion

fi = q (e; + €07 b") (105)

relates the mechanical force densftyN/m?) to these two fields, the charge densifyand the
speed at which the charge is movinig Of course, the current density is related to the charge
density by the usual formul# = ¢v®. Equation 101 is known as Gauf'’s law for the electric
field; equation 102 is known as Gauld’s law for the magnetid;fiefjuation 103 is known as
Faraday’s law, and equation 104 is known as the Ampére-Mijave Charge conservation
follows immediately upon taking the divergence of equafiéd and inserting equation 101,
resulting in the equation of continuity

9j"  0q
ox? +§ N

0. (106)

6.2 Maxwell's Equations in Ponderable Materials in SpatialCoordinates

Ponderable, that is massive, materials affect electroetapwave propagation because they are
constructed out of charged particles like protons and last Equations 101-104 are not
particularly convenient in practice in such media becabseharge and current they reference
are the total charge and current; that is, they make no digimbetween charges and currents
impressed externally to create fields and those arisinglyneeeause fields acting upon charges
bound in matter are acted upon by other fields. (Another waaging this is that they are in
microscopidorm; they consider all matter from a corpuscular, rathantbontinuum, viewpoint.)
Bound charge densities arise either through the creatioewfdipoles or the alignment of
existing dipoles in response to an external field. The dg$ithese dipoles can be reckoned as
a vector dipole moment per unit volumpé(C/n¥) related to the bound charge density by

op'

o

qs (107)

and this dipole density can be related, in turn, to the toédd fL3). Defining the free charge as
the difference between the total charge and the bound charge

qr = q — g, (108)
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the Gaul law for the electric field becomes

€ 86; (6¢;) = qr — gﬁ (109)
This is generally simplified by defining tledectric displacement density
' = e (8¢;) + ', (110)
(in C/m?) and writing the GauR law as ‘
o = a11)
Similarly, the total current density may be broken into bsstitutive parts:
Jh =g+ %Z: + eijk% <mk + ekmnpmv") (112)

Here i is the free current (impressed and conducted) densityethedy’ /ot is the current
caused by local increase or decrease of polarization chaagd the term related tg,,,,p™v™ has
to do with the convected polarization charges. Finally,thes the magnetization per unit
volume (A/n?), resulting from the formation of magnetic dipoles in réactto the field 8, 13).
Inserting this definition into equation 104 gives rise to ti@croscopic Ampere-Maxwell law
Ohy, . Od

E Jr T+ o (113)

(iik

where themagnetic fieldh;, (in A/m) is defined as

0;; b7 ,

6.3 Maxwell's Macroscopic Equations in Convective Coordiates

In principle, translating the Maxwell equations into coctie coordinate form should be easy.
After all, if electromagnetics is a proper physical thediyguantities should change coordinate
systems as tensors, and formulas can be written immediat&tjortunately, that basic physical
observations prohibit this is clear upon momentary refbectiAn observer holding a charge sees
an electric field, but another observer moving with respethé first sees a current and therefore
a magnetic field. This implies immediately that the elecind magnetic fields must be part of
the same physical entity, as indeed they are in the theomiativity (10, 11, 13. Despite this,
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nonunique theories may be constructed via other meanssttiie approach taken here to
illustrate the convective form of reference 3. This work athto preserve the macroscopic
Maxwell equations. Though other approaches are possilel€lomot consider them here.

To convert equation 113 to convective coordinates, we rategoth sides over an arbitrary
surface and apply Stokes’s theorem to find

/ eijkﬁ—hk.dai = 7{ hydz®. (115)
oz’
r or

Here, the covariant components of the spatial directeérdifftial area are given by equation 84,
and the right-hand side indicates a line integral arounalibeged patdI” surroundind” in spatial
coordinates. (The pathl" has direction related to that of the normalidy the right-hand rule.
The circle notation on the path integral indicates that @ ;s necessarily closed.) We can
simplify the right-hand side of equation 113 using the caitee time derivative defined in
equation 100. Specifically, using equation 100 to substitut the partial derivative of the
electric displacement, and recognizing the meaning ofdbatative, equation 113 can be written
in the form .

j{ (hZ — eijkvjdk) dzt = i d' da; +/ <]’F — v’aip.) da;. (116)

dt oxJ
r T

Because the time derivative in this equation is the maténed derivative, the integrals can be
converted to convective coordinates using the technicues the previous sections.
Recognizing the free charge, this procedure results in tiaéifitegral form of the

Ampeéere-Maxwell law in convective coordinates,

coa o0t d 0T o 0T
or r r

and Stokes’s theorem gives its final differential form:

0 o 0r] d (0P, o OF

Because we want the form of this equation preserved undecirelinate change, we insist that
this equation be interpreted as the convective Ampeére-Néaw
L 0h _dd

—€ —

N A

(119)
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so that we define the convective magnetic field by

< 02
hi = (hi — ey’ d¥) o (120)
the convective displacement density by
= . 01
d' = — 121
axz Y ( )
and the conducted convected current by
, | 07"
ic = (Jp — qr?" - 122
jo = (jk — qrv') i (122)

(This last is callectonducted currenand not free current because the only charge moving relative
to the convected frame must be that conducted through ittadag’s law is converted in the

same way and becomes .
L 0 _d¥

= T a (123)
where .
€ = (6i + eijkvjbk) g;, (124)
and s
i 0Ty (125)
ox'

The divergence equations can be converted even more sirgrating both sides of
equation 111 over an arbitrary volume and applying the dmece theorem immediately gives
the convective, integral form of the Gaul3 law for the eledigld:

07
42 da; = / grdd. (126)
oxt

o0 Q
Here,Q) C R? is a volume andX is the surface enclosing it. The circle around the integral
symbol used on the left-hand side of this equation impliesrfase that is necessarily closed. If

we define
qr = qr, (127)

and apply equation 121 and the divergence theorem againotivective differential form of the

electric Gauf? law obtains: L s
—(ﬁ d) = Gr. (128)



The magnetic Gaul3 law

\/L a; (\/5 b) =0, (129)

g
is derived similarly.

6.4 Maxwell's Microscopic Equations in Convective Coordimates

Many of the same techniques can be applied to transform tbestopic Maxwell equations to
convective coordinates. That this needs to be discussdidsatiags from the fact that these
equations directly incorporate the contravariant comptsef the electric field vector and the
covariant components of the magnetic flux density, in sdita@fact that these cannot be derived
from the usual process of raising or lowering indices. (Tthatis the case is already clear from,
for instance, equation 124; the coordinate change fornaulthe electric field should not involve
the magnetic field if the electric field is a true independensbr quantity.)

On the other hand, two of the microscopic Maxwell equatioesdentical to their macroscopic
counterparts because they are homogeneous. These twmegutdte Gaul3’s law for the
magnetic field (equation 129) and the Faraday law (equa@a) therefore are not altered. The
two equations containing sources, however, are more coatplli and we turn to them now.

6.4.1 Gaul’’s Law for the Electric Field

Integrating Gaul3’s law for the electric field in microscofnion (equation 101) over an arbitrary
volume, and using Stokes’s theorem to convert the field ratég a surface integral yields

Eoféijﬁ’j da; = /qdv (130)

o0 Q

Using equations 86 and 90, these areas and volumes can be&teahto convective coordinates

resulting in ~
€ f{ 5% g”j ¢; da; = / qd. (131)

1t

o0 Q
Using the divergence theorem again to convert the left-tséhelof this equation back into a
volume integral, and defining the convected total chargherobvious way (i.e§ = ¢), we find

1 0 01!
_— a oy . = ado
60/ T [\/?5 8xi6]] do /qdv. (132)
Q Q
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Finally, recognizing the arbitrariness of the integratimtume, and substituting the expression
for the electric field from the inverse of equation 124 (wihiteoking the velocity transformation
of equation 91), we find the final microscopic form of the Gaa for the electric field:

1 0 | 7 (s = iim .
eoﬁ%{ﬁ{g (6] + \/Eejkmz/)kb )]} =q. (133)

We can derive the definition of the electric displacemensdgin terms of the electric field and
polarization density from this equation. By expressingttital charge in terms of its free and
bound components in equation 131 (while substituting thpeession for electric field from
equation 133), then proceeding on the left-hand side agdyef@ can write

eOQ/ \}?%{\/EF]U (éj + \/Eeﬂ;mq/j%m) } } dv = Q/qF dv — Q/ gi: dv. (134)

Now, following the same steps as before to convert the rigistrimtegral first to a surface integral
and back, changing to the convected coordinate system #iengay, the right-hand side

becomes oy 1 g -
(N TR Y v 0T i\ -~
/qF dv /8xidv = /qF do /\/?0%5 <\/?8xip) do. (135)
Q Q Q

Thus, defining the convected polarization density throinghstandard tensorial transformation

N
5= 136
i (136)

7t

we may write that in the convected coordinates

q=Gr— ;?% (\/Eﬁ) , (137)

so that

1 9 =i (5 ~ Tkim =~ ~ s
eo/ﬁ@{ﬁ{w(eﬁﬁ%wb )w}}dv:/quv. (138)
Q Q
Comparison of this equation with equation 128, coupled withrealization that the volume of
integration is arbitrary, leads to the final form of the casteel constitutive law:

0" = e0g™ (& + /G et) + 5™ (139)
This is not of the formd = ¢ye + p seen ins. Therefore, if we are to believe this equation, we
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must believe that the laws of physics depend on the obsenvéirect contradiction to the
principle of relativity. The reader may object that thistparar equation results only from our
decision to force the macroscopic Maxwell equations to lagesame form in different
coordinate systems. This, of course, is true, but if we gitedhto force the constitutive relation
to hold in all systems, we would find the macroscopic Maxwellaions would be of different
form in each system. We conclude from this that electromtggiess incompatible with the
Galilean relativity assumed in standard Newtonian physics

6.4.2 The Ampére-Maxwell Law

We finally turn to the convective form of equation 104, the mézopic Ampere-Maxwell law.
Integrating this equation, and using Stokes’s theorem laadefinition of the convected time
derivative (equation 100), we find

1 m i d ij » d ' i
%l b; —(—:Oewkvj ((5"C em)} dz 260&/5J€j dai—i—/ |:7 —60@ (53kek)v da;. (140)
ar T

Mo
r

The integrals are now converted over to convective cootdgasing the usual formulas, giving

1 . o' .
%{Mob — €0€ijrV? ((5"C em)] o dz
or

d
_60& 6]8 i dal /|;] _an A 5]k€k)
r

T

Z@x

(141)

From the last term of this equation, we immediately recogtiie convective total current

5 0T i
7= B (] —qv). (142)

Now, the left-hand side of equation 141 can be manipulatgebahically to show that

ibl — EOEijk’Uj (5kzm ) ngnb + €0 \/—‘6 kiﬂ] <ém —+ \/56771@5 Nﬁl;ﬁ) . (143)

Mo

Inserting these relations into equation 141, and once agaaking the inverse of equation 124
and recognizing the arbitrariness of the integration vaugives the final form of the
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microscopic Ampére-Maxwell law:

1 a m~n 718
ﬁezﬂ%@ {f [M g,db + EofekMﬁw g (610 + fep ¢ b )} }
d Iy
— o [ (ej G e],dqpkbf)} 7. (144)
This result is inconsistent with the principle of relatyitt looks nothing like its spatial version.

Finally, we need to derive the magnetic constitutive reladiin convective coordinates from this
equation. We proceed in a manner similar to that for the etealationship. To begin, we can
separate the current and charge into their component psintg equations 112 and 108, and
insert these definitions into the integral of equation 144udl equation 144 is written as

% l%gﬁb@ + EO\/?%j/}WQM <€g + \/EEE;E@D’"Z)S)} di =
or
d ~] 24 ~ mae ~
‘g [ 97 <65 + \/565f5¢r58> da;

T

or' ., op ijk % i Com\ | _ _ a_py i\ das
+/8xi {jF+ BT + € [axj + 5 (ekgmpv ) qr e o'y da;. (145)
T

The conduction current is immediately recognizable herd,s® can be simplified out of the
messy last integral. The resulting expression reads

1 . SO .~ -
% {_gzibé + €o \/ENTEUI%@WEJM (éf + \/Eeff§¢rbs)] dz*
EA Ho
d [ 5/ ~ AN
60& g J (65 + \/565;51# b ) dCLg

T

0" [0 0 o :
+/ { (9236 + ¢k {mm 97 (exemp™v )} +p?j“2} dd;+/j¢cdd;, (146)
2 T

where _
.0 . 0F!

-1

Jo = 8xi]0 = 9 (]p — qrv ) =+ Grt)". (147)

Next, by transforming the Levi-Civita symbol and invokinpies’s theorem, we can show that

o' ... 0m
’lj ik k ~7
8xl Er da; = 7{ m;— dx (148)

T
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from which we gather that
my = km (149)
ET ok

Finally, we invoke the definition of the convected time dative (equation 100) to simplify the
terms involving the polarization:

0F [Op' |y O , op’ / _
i [a +e€ % (€kgmp (% ) + ﬁ'l} CICLZ = — dal. (150)
r

Substituting all of these equations back into equation 1#lfi yields
L 57 ~ Tikl [ ~ 7775 ~ ~7
f Lb—g”;bé + eo\/;ezj,;@bjgke (6g + \/;eﬁg@b b ) — m;} dz
0
or

— oy [ 07 (o5 + VaensiF) + 5] dav+ [ Fodan. 51

r r

Recognizing the expression fdtburied in here, we find that the constitutive relationship

h;_ -~ ~éb eov/7 €t (eﬁ NG eéwwmz;") ; (152)

recovers equation 119. Notice that once again, this equedbtes not resemble its spatial form.
Finally, a careful accounting of the dispensation of allre#f terms in the above demonstrates that

. o0 dp
SIS gm T

(153)

The convective contribution of the polarization densitggant in the spatial domain is absent
here as it is bound to the material that is not moving in the filame.

7. Conclusions

This report has documented the formulation of physical lemwaoving reference frames, with
extra attention paid to the Maxwell equations of electronadig theory. The first part of the
report, making up its bulk, describes how the expressiorhgsjgal theories change with
changing coordinate systems. In particular, this portiothe work discusses what sort of
relationships physical quantities must obey so that thatiag theory is consistent when the
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coordinate system that forms the basis for its descripsawurvilinear, nonorthogonal, and
time-varying. In particular, the discussion shows that tifterent sets of basis vectors are
convenient for the expression of physical law in nonorth@deystems: A covariant set (called

1; in the text), in which each basis vector points in the digchf variation of a given coordinate
holding all other coordinates fixed, and a contravarian{cateda’ in the text) pointing

orthogonal to the constant coordinate surfaces. In orttroabsystems, these bases are identical,
but in nonorthogonal systems they are merely biorthogonal.

These different bases are chosen merely because they &unkfaséhe expression of physical
laws, and, in general, have no deep physical significancedroathemselves. Changing from
one system to the other is merely a mathematical change i, h@sthe underlying physical
theory to be meaningful, such a transformation must be phjgiirrelevant. (A theory that said
otherwise would imply that the world is affected by our dgstoon of it!) When the Maxwell
equations are formulated in the material coordinate syst#montinuum mechanics this simple
consistency requirement fails, and for this reason, tieeditire is filled with a profusion of
contradictory theories about how the Maxwell equationsughbe expressed in the coordinate
systems used by continuum mechanics other than the spatial.

The second “half” of this report seeks to clarify the expi@s®f the Maxwell equations in
coordinate systems relevant to continuum mechanics. losmgdit subtly illustrates two
primary points:

e The consistency or inconsistency of a theory cannot be mé@ted by its expression in
materialor “Lagrangian” coordinates, but must be determined in a coordinate system
describing the same physics as the spatial system, suchk esryectivecoordinate system.

e Under standard Newtonian physics, invoking the Galileangformation for moving
systems, the convective form of the Maxwell laganotbe consistently formulated,
resulting in the confusion in the literature. Consistemtrfolation requires the theory of
relativity and is the subject of the sequel to this report.

We discuss each of these points in turn.

The first point is perhaps most clearly understood as it tefuadm the definition of material
coordinates as merely labels for material points; theytionas a way of tracking individual
particles on their journey through space and time. For gason, not only need they not
correspond to the state of the body in question at the initrad, they need not match the physical
arrangement of the body at any time whatsoever. They neeelynmepresent a potential state of
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the body so that the mapping describing its motion retainsessimple topological consistency.
As a mere labeling of points, there is no need for any phys$ieairy to be satisfied in material
coordinates; the configuration they describe is a fictionis Tdaves the theorist at a loss in
distinguishing between different expressions of the th@othe material frame, since there is no
reason for preferring one transformation to any other.

In this regard, we also note that for precisely the same redke experimentalist cannot resolve
the issue. The “value of the electric field in material conades” is not something that can be
measured since it refers to a coordinate system that may have existed in the lab. This is not
a mere matter of accessibility either; there is simply nalftet can be measured or even suitably
manipulatedh posterioriinto a quantity that can be coherently called the materesdtek field.

The second point is made clear from section 6. By forcing taensscopic Maxwell equations to
have the same form in convective coordinates, some vasabéforced to be covariant and
others are forced to be contravariant. While the Maxwellgigns still stand in a recognizable
form with the proper choices, the resulting constitutivgdare bizarre. The equations
transforming fields between frames are coupled, which shioot be the case if the electric and
magnetic fields are independent physical entities. Woikgmstlices cannot be “raised” or
“lowered” in the usual way, a situation literally tantamétmsaying that the physics of the
situation depends on a choice of basis, i.e., on an arbiisane of mathematical depiction.
These problems (with the description in convective coattin) spring from the constancy of the
speed of light relative to all observers predicted by the Wialkrelations but not by Newtonian
physics, and they cannot be remedied without appeal to #n@adgheory of relativity.
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