SYSTEMS ENGINEERING METHODOLOGY FOR FUEL EFFICIENCY AND ITS APPLICATION TO THE FUEL EFFICIENT DEMONSTRATOR (FED) PROGRAM

Paul Luskin – Ricardo, Inc.
1. REPORT DATE
13 AUG 2010

2. REPORT TYPE
Briefing Charts

3. DATES COVERED
09-02-2010 to 04-08-2010

4. TITLE AND SUBTITLE
SYSTEMS ENGINEERING METHODOLOGY FOR FUEL EFFICIENCY AND ITS APPLICATION TO THE FUEL EFFICIENT DEMONSTRATOR (FED) PROGRAM

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
Paul Luskin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Ricardo, Inc., 40000 Ricardo Drive, Belleville, MI, 48111

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi, 48397-5000

10. SPONSOR/MONITOR’S ACRONYM(S)
TARDEC

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
#21088

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
For 2010 GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM (GVSETS) AUGUST 17-19

14. ABSTRACT
briefing charts

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Public Release

18. NUMBER OF PAGES
17

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Agenda

- Fuel Efficient Demonstrator (FED) Program
- Total Vehicle Fuel Economy® process
- Complex Systems Modeling & Simulation
- Results
- Conclusions
FED Background

- Initiative by Office of the Secretary of Defense to:
 - Improve vehicle technology to reduce fuel consumption on the battlefield
 - Reduce US dependence on oil

FED Objectives

- To demonstrate a tactical vehicle with significantly greater fuel economy than an M1114 HMMWV while maintaining tactical vehicle capability

Objective: 30% Fuel Economy Improvement
FED concept meets or exceeds M1114 HMMWV capabilities with 70+% better fuel efficiency
A robust process flow with thorough planning and complete analysis of results.
Successful and risk-managed strategy for product development.
• Unique military drive cycle developed for FED program with government input
• Criteria for quantitatively evaluating design alternatives
• Robust cycle
 – High & Low Speed
 – Flat & Grades
 – On & Off Road
 – Tactical Idle
• Focus on battle space
Prioritization Framework – Total Systems

- Energy Balance
 - Unique to vehicle & drive cycle

- Efficiency Measures
 - Mapping fundamentals

- Energy Balance

- Efficiency Measures
• Outreach efforts prioritized by energy balance results & subject matter expertise
• Opportunities primarily outside defense supply base
• Focus on key subsystem data to support modeling & simulation
Leverage for Improvements

- Requirements
- Architecture
- Technology
- Specifications
Surrogate model based technology selection & vehicle performance toolset

- Supplements traditional M&S tools by integrating them
- Supports multi-attribute trade-offs
- Real-time performance prediction & sensitivity
Design Space Exploration

• Surrogate models allow simulation of hundreds of thousands of feasible design configurations
 – Trade space definition
 – Filtering according to requirement scenarios
 – Generation of Pareto frontiers

Composite FE

GVW
System Selection

- Pareto optimization
 - No optimal solution, only data driven trade-offs
- Normalization against requirement scenarios
 - Apples to apples comparisons
- Risk management
 - Unique issue for demonstration program
- Baseline concept development
 - Early mitigation of feasibility risks
Results

- Predicted 70% efficiency improvement vs M1114
- Roadmap to 110% identified for upgrades
 - Additional improvements outside drive cycle
Conclusions

- Critical for government staff to understand requirements sensitivities
 - “The realities of system development are that EVERY requirement has a cost to implement and deliver. Given limited resources and stakeholder values, bounding the solution space requires reconciling the cost of the desired requirements with the available resources.”

Conclusions

• Feasible solutions are available to address the fuel efficiency of the military ground vehicle fleet
 – Mix of improvements oriented toward both legacy fleets versus ongoing and future programs
 – Focus on relatively low risk solutions
 – More than just technology solutions