Engineered Resilient Systems
A DoD Science and Technology Priority Area

Overview Presentation
June 2012

Robert Neches
Director, Advanced Engineering Initiatives / ERS PSC Lead
Office, Deputy Assistant Secretary of Defense, Systems Engineering
5. AUTHOR(S)
Office, Deputy Assistant Secretary of Defense, Systems Engineering, Advanced Engineering Initiatives, 1000 Defense Pentagon, Washington, D.C., 20301

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
24

19a. NAME OF RESPONSIBLE PERSON

Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
MEMORANDUM FOR SECRETARIES OF THE MILITARY DEPARTMENTS
CHAIRMAN OF THE JOINT CHIEFS OF STAFF
UNDER SECRETARY OF DEFENSE FOR ACQUISITION,
TECHNOLOGY AND LOGISTICS
ASSISTANT SECRETARY OF DEFENSE FOR RESEARCH AND ENGINEERING
DIRECTORS OF THE DEFENSE AGENCIES

SUBJECT: Science and Technology (S&T) Priorities for Fiscal Years 2013-17 Planning

The Department’s S&T leadership, led by the Assistant Secretary of Defense for Research and Engineering, in close coordination with leadership from the Undersecretary of Defense for Policy, the Assistant Secretary of Defense for Nuclear, Chemical, and Biological Defense, the Deputy Assistant Secretary of Defense for Manufacturing and Industrial Base Policy, and the Joint Staff, has identified seven strategic investment priorities. These S&T priorities derive from a comprehensive analysis of recommendations resulting from the Quadrennial Defense Review mission architecture studies directed in the FY12-16 Defense Planning Programming Guidance.

The priority S&T investment areas in the FY13-17 Program Objective Memorandum are:

1. Data to Decisions – science and applications to reduce the cycle time and manpower requirements for analysis and use of large data sets.
2. Engineered Resilient Systems – engineering concepts, science, and design tools to protect against malicious compromise of weapon systems and to develop agile manufacturing for trusted and assured defense systems.
3. Cyber Science and Technology – science and technology for efficient, effective cyber capabilities across the spectrum of joint operations.
4. Electronic Warfare / Electronic Protection – new concepts and technology to protect systems and extend capabilities across the electro-magnetic spectrum.
5. Counter Weapons of Mass Destruction (WMD) – advances in DoD’s ability to locate, secure, monitor, tag, track, interdict, eliminate and attribute WMD weapons and materials.
6. Autonomy – science and technology to achieve autonomous systems that reliably and safely accomplish complex tasks, in all environments.
7. Human Systems – science and technology to enhance human-machine interfaces to

The Assistant Secretary of Defense for Research and Engineering, with the Department’s S&T Executive Committee and other stakeholders, will oversee the development of implementation roadmaps for each priority area. These roadmaps will coordinate Component investments in the priority areas to accelerate the development and delivery of capabilities consistent with these priorities.

Secretary of Defense Guidance on Science & Technology (S&T) Priorities FY13-17

Priority S&T Investment Areas:

1. Data to Decisions
2. Engineered Resilient Systems
3. Cyber Science and Technology
4. Electronic Warfare / Electronic Protection
5. Counter Weapons of Mass Destruction
6. Autonomy
7. Human Systems
Engineered Resilient Systems: A DoD-wide Activity

The Assistant Secretary of Defense for Research and Engineering, with the Department's S&T Executive Committee and other stakeholders, will oversee the development of implementation roadmaps for each priority area. These roadmaps will coordinate Component investments in the priority areas...

Working Toward A DoD-Wide Roadmap
Resilient Systems, Defined

A resilient system is trusted and effective out of the box in a wide range of contexts, easily adapted to many others through reconfiguration or replacement, with graceful and detectable degradation of function.

Research in Engineered Resilient Systems focuses on agile and cost-effective design, development, testing, manufacturing, and fielding of trusted, assured, easily-modified systems
Conventional Engineering Practice

50 years of process reforms haven’t controlled time, cost and performance

- Sequential and slow
- Information lost at every step
- Prematurely reduces alternatives
- Under-evaluated Requirements refinement
- Decisions made with incomplete information

Engineering practice must meet *new challenges*:
- Pace of technology development
- Uncertain sociopolitical futures
- Global availability of technology to potential competitors
Transforming Engineering of Complex Systems

Engineering for resilience: **robust** systems with **broad utility**

- *In a wide range of joint operations*
- *Across many potential alternative futures*

Faster engineering, less rework

AFFORDABLE

Better informed decision-making

EFFECTIVE

Design/test for wider range of mission contexts

ADAPTABLE
Increased computational power and availability allow more flexibility in data exploitation and application of services.

ERS envisions an ecosystem in which a wide range of stakeholders continually cross-feed multiple types of data that inform each other’s activities.

Effective
- Better informed

Affordable
- Faster engineering

Adaptable
- Wider range of mission contexts

New tools help engineers & users:
- Understand interactions
- Identify implications
- Manage consequences
Key Technical Thrust Areas

Systems Representation and Modeling
- Physical, logical structure, behavior, interactions, interoperability…

Characterizing Changing Operational Contexts
- Deep understanding of warfighter needs, impacts of alternative designs

Cross-Domain Coupling
- Model interchange & composition across scales, disciplines

Data-driven Tradespace Exploration and Analysis
- Multi-dimensional generation/evaluation of alternative designs

Collaborative Design and Decision Support
- Enabling well-informed, low-overhead discussion, analysis, and assessment among engineers and decision-makers
A Possible Development Path

Black = in progress, or likely to happen
Red = needs to happen

Thoughts about Foci over Time

Support for Collaborative Analyses (Design and Decision Support)

Data-driven engineering concept development and evaluation
Accelerated exploitation of user operational information

Trade space Generation and Analysis
Tools Incorporating Risk and Cost

Models Aiding Design and Analysis
Physical/environmental models
Behavioral/contextual models

Risk and Cost Tools that Learn

Analysis of Tradespaces in Joint Contexts

Cooperating Heterogeneous Models & Services
Physical/environmental models
Behavioral/contextual models

User-Friendly Control of Distributed Systems

Massive Scale Engineering Computations

Ubiquitously Available Massive Scale Engineering from Libraries

Today 3 Years 5 Years 7 Years 10 Years

IEEE Collaboration Systems and Technologies
5/23/12 | Page-9

Distribution Statement A – Cleared for public release by OSR, SR Case #s 12-S-0258, 0817, 1003, and 1854 apply.
Who Owns the Tools?

No Single Winning Answer

Looking for a Win-Win

- Tools for Government
 - Better understanding and specifier of needs
 - Better evaluator of offerings
- Tools for Systems Providers
 - Risk mitigation through better understanding of customer
 - Ability to pre-qualify offerings, present meaningful opportunities
- Tool Vendors: New Products to Sell Both

Pull too hard and everyone loses

Key Connectors are Data Exchange Protocols and Architectures
Building on Proven Concepts

Leverage and build upon promising technologies to transform engineering capabilities

Engineered Resilient Systems

Modeling Technologies
Physics-based Models for Engineering and Training

Network-Centric Operations
Command & Control

Risk Management
Financial & Business Analysis Community
Envisioned End State

Improved Engineering and Design Capabilities
• More environmental and mission context
• More alternatives developed, evaluated and maintained
• Better trades: managing interactions, choices, consequences

Improved Systems
• Highly effective: better performance, greater mission effectiveness
• Easier to adapt, reconfigure or replace
• Confidence in graceful degradation of function

Improved Engineering Processes
• Fewer rework cycles
• Faster cycle completion
• Better managed requirements shifts
SUPPLEMENTAL MATERIAL
Engineered Resilient Systems (ERS)

More effective, affordable, adaptable

50 years of process reforms haven't controlled time, cost and performance

- Prematurely reduces alternatives
- Decisions made with incomplete information
- Sequential, slow
- Information lost at every step
- Ad hoc requirements refinement

ERS envisions an ecosystem in which a wide range of stakeholders continually cross-feed multiple types of data that inform each other’s activities.

Effective
- Better informed

Affordable
- Faster engineering

Adaptable
- Wider range of mission contexts
What Constitutes Success?

Faster, more efficient engineering iterations
- Virtual design – integrating 3D geometry, electronics, software
- Find problems early:
 - Shorter risk reduction phases with prototypes
 - Fewer, easier redesigns
 - Accelerated design/test/build cycles
- **Target:** 12x speed-up in development time

Adaptable (and thus robust) designs
- Diverse system models, easily accessed and modified
- Potential for modular design, re-use, replacement, interoperability
- Continuous analysis of performance, vulnerabilities, trust
- **Target:** 50% of system is modifiable to new mission

Decisions informed both ways (engineering by mission needs, missions by engineering opportunities/risks)
- More options considered deeply, broader trade space analysis
- Interaction and iterative design among collaborative groups
- Ability to simulate & experiment in synthetic operational environments
- **Target:** 95% of system informed by trades across ConOps/env.
Potential High-level Goals and Metrics over 10 Years

<table>
<thead>
<tr>
<th></th>
<th>FY13</th>
<th>FY16</th>
<th>FY18</th>
<th>FY20</th>
<th>FY23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>1.5X</td>
<td>2X</td>
<td>4X</td>
<td>12X</td>
<td></td>
</tr>
<tr>
<td>% Informed</td>
<td>25%</td>
<td>75%</td>
<td>90%</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>% Adaptable</td>
<td>10%</td>
<td>25%</td>
<td>35%</td>
<td>50%</td>
<td></td>
</tr>
</tbody>
</table>

How Fast?
- Developmental response time improvement (relative to baseline)

How Informed?
- Percent of system informed by models and trades within operational environment

How Adaptable?
- Percent reduction in cost and effort required to adapt system to support new mission
Potential Detailed Goals and Metrics

System Representation & Modeling, plus Cross-Domain Coupling

<table>
<thead>
<tr>
<th></th>
<th>FY13</th>
<th>3 Yrs / FY16</th>
<th>5 Yrs / FY18</th>
<th>7 Yrs / FY20</th>
<th>10 Yrs / FY23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadth</td>
<td>25%</td>
<td>75%</td>
<td>90%</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>Fidelity</td>
<td>±20% error limit</td>
<td>±10% error limit</td>
<td>±5% error limit</td>
<td>±2% error limit</td>
<td></td>
</tr>
<tr>
<td>Degree of Integration</td>
<td>Electronics and CAD (swap circuit board)</td>
<td>Cross-scaling (swap micro-processors)</td>
<td>Software and micro elec (change oper system)</td>
<td>Ability to swap major subsys, remodel without redesign</td>
<td></td>
</tr>
</tbody>
</table>

* = Predict behaviors accurately

Characterizing the Changing Operational Context

<table>
<thead>
<tr>
<th></th>
<th>FY13</th>
<th>3 Yrs / FY16</th>
<th>5 Yrs / FY18</th>
<th>7 Yrs / FY20</th>
<th>10 Yrs / FY23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadth</td>
<td>25%**</td>
<td>75%</td>
<td>90%</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>Fidelity</td>
<td>±20% error limit</td>
<td>±10% error limit</td>
<td>±5% error limit</td>
<td>±2% error limit</td>
<td></td>
</tr>
<tr>
<td>Degree of Integration</td>
<td>Single model sys embedded in simple realistic env</td>
<td>Single model sys embedded in complex realistic env</td>
<td>Mult modeled systems integrated in a simple, realistic env</td>
<td>Mult modeled systems interacting in a complex realistic system</td>
<td></td>
</tr>
</tbody>
</table>

* = % of sys in realistic, simulated environment

Data-driven Tradespace Exploration & Analysis

<table>
<thead>
<tr>
<th></th>
<th>FY13</th>
<th>3 Yrs / FY16</th>
<th>5 Yrs / FY18</th>
<th>7 Yrs / FY20</th>
<th>10 Yrs / FY23</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Trades</td>
<td>SOA</td>
<td>Cloud data</td>
<td>Implementation</td>
<td>Full service</td>
<td></td>
</tr>
<tr>
<td>Basic algorithms</td>
<td>Add 2 dimensions (such as affordability and reliability)</td>
<td>Add 1 dimension</td>
<td>Heuristics</td>
<td>Tradespace algorithms that "think"</td>
<td></td>
</tr>
<tr>
<td>1000 Trades</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application prototype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000 Trades</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heuristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100,000 Trades</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tradespace algorithms that "think"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add 2 dimensions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Collaborative Design/Decision Support

<table>
<thead>
<tr>
<th></th>
<th>FY13</th>
<th>3 Yrs / FY16</th>
<th>5 Yrs / FY18</th>
<th>7 Yrs / FY20</th>
<th>10 Yrs / FY23</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 domains of expertise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>collaborate on a design w/o speed degradation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 domains of expertise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>collaborate on a design w/o speed degradation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 domains of expertise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>collaborate on a design w/o speed degradation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 domains of expertise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>collaborate on a design w/o speed degradation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ERS Capability Exercise (OSD)

<table>
<thead>
<tr>
<th></th>
<th>FY13</th>
<th>3 Yrs / FY16</th>
<th>5 Yrs / FY18</th>
<th>7 Yrs / FY20</th>
<th>10 Yrs / FY23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>1.5X</td>
<td>2X</td>
<td>4X</td>
<td>12X</td>
<td></td>
</tr>
<tr>
<td>% Informed</td>
<td>25%</td>
<td>75%</td>
<td>90%</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>% Adaptable</td>
<td>10%</td>
<td>25%</td>
<td>35%</td>
<td>50%</td>
<td></td>
</tr>
</tbody>
</table>
System Representation and Modeling: Technical Gaps and Challenges

<table>
<thead>
<tr>
<th>Technology</th>
<th>10-Yr Goal</th>
<th>Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capturing</td>
<td>Model 95% of a complex weapons system</td>
<td>• Combining live and virtual worlds</td>
</tr>
<tr>
<td>• Physical and logical structures</td>
<td></td>
<td>• Bi-directional linking of physics-based & statistical models</td>
</tr>
<tr>
<td>• Behavior</td>
<td></td>
<td>• Key multidisciplinary, multiscale models</td>
</tr>
<tr>
<td>• Interaction with the environment and other systems</td>
<td></td>
<td>• Automated and semi-automated acquisition techniques</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Techniques for adaptable models</td>
</tr>
</tbody>
</table>

We need to create and manage many classes (executable, depictional, statistical...) and many types (device and environmental physics, comms, sensors, effectors, software, systems ...) of models
Characterizing Changing Operational Environments: Technical Gaps and Challenges

<table>
<thead>
<tr>
<th>Technology</th>
<th>10-Yr Goal</th>
<th>Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deeper understanding of warfighter needs</td>
<td>Military Effectiveness Breadth Assessment Capability</td>
<td>• Learning from live and virtual operational systems</td>
</tr>
<tr>
<td>Directly gathering operational data</td>
<td></td>
<td>• Synthetic environments for experimentation and learning</td>
</tr>
<tr>
<td>Understanding operational impacts of alternatives</td>
<td></td>
<td>• Creating operational context models (missions, environments, threats, tactics, and ConOps)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Generating meaningful tests and use cases from operational data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Synthesis & application of models</td>
</tr>
</tbody>
</table>

“Ensuring adaptability and effectiveness requires evaluating and storing results *from many, many scenarios* (including those presently considered unlikely) *for consideration earlier* in the acquisition process.”
Cross-Domain Coupling: Technical Gaps and Challenges

<table>
<thead>
<tr>
<th>Technology</th>
<th>10-Yr Goal</th>
<th>Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better interchange between incommensurate models</td>
<td>Weapons system modeled fully across domains</td>
<td>• Dynamic modeling/analysis workflow</td>
</tr>
<tr>
<td>Resolving temporal, multi-scale, multi-physics issues</td>
<td></td>
<td>• Consistency across hybrid models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Automatically generated surrogates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Semantic mappings and repairs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Program interface extensions that:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Automate parameterization and boundary conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Coordinate cross-phenomena simulations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tie to decision support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Couple to virtual worlds</td>
</tr>
</tbody>
</table>

Making the wide range of model classes and types work together effectively requires new computing techniques (not just standards)
Tradespace Analysis: Technical Gaps and Challenges

<table>
<thead>
<tr>
<th>Technology</th>
<th>10-Yr Goal</th>
<th>Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiently generating and evaluating alternative designs</td>
<td>Trade analyses over very large condition sets</td>
<td>• Guided automated searches, selective search algorithms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ubiquitous computing for generating/evaluating options</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Identifying high-impact variables and likely interactions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• New sensitivity localization algorithms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Algorithms for measuring adaptability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Risk-based cost-benefit analysis tools, presentations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Integrating reliability and cost into acquisition decisions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cost-and time-sensitive uncertainty management via experimental design and activity planning</td>
</tr>
</tbody>
</table>

Exploring more options and keeping them open longer, by managing complexity and leveraging greater computational testing capabilities
Collaborative Design & Decision Support: Technical Gaps and Challenges

<table>
<thead>
<tr>
<th>Technology</th>
<th>10-Yr Goal</th>
<th>Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well-informed, low-overhead collaborative decision making</td>
<td>Computational / physical models bridged by 3D printing</td>
<td>• Usable multi-dimensional tradespaces</td>
</tr>
<tr>
<td></td>
<td>Data-driven trade decisions executed and recorded</td>
<td>• Rationale capture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Aids for prioritizing tradeoffs, explaining decisions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Accessible systems engineering, acquisition, physics and behavioral models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Access controls</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Information push-pull without flooding</td>
</tr>
</tbody>
</table>

ERS requires the transparency for many stakeholders to be able to understand and contribute, with low overhead for participating.
ERS: Foundational for Defense Systems across All Mission Areas

Seven Strategic Principles to Ensure Success, including:
- Offer versatility
- Enable course changes
- Reduce costs
- Develop new capabilities leveraging network warfare

Ten DoD Strategic Missions
Overwhelming majority require affordable, adaptable & effective systems and Concepts of Operation:

Key ERS Contributing Concepts
- Co-evolution of systems and missions via information sharing and decision aids
- Option-preserving tradespace exploration
 - Analyzed/evaluated wrt lifecycle issues
 - Informing requirements refinement
- Accelerated design and testing via rapidly composable modeling & analysis tools, risk-sensitive engineering planning aids

Engineered Resilient Systems:
Engineering Technology and Tools to Rapidly Develop, Deliver, and Adapt Affordable, Versatile Systems and Concepts of Operation

Target Outcomes
- 50% reduction in cost and effort to adapt to new mission
- 12X Speed up in time to initial operating capability
- 95% of system informed by models and operational trades