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Abstract: An all-fiber, tunable, short-wave infrared transmitter is 
demonstrated using efficient four-wave mixing in conventional L and O 
bands. To realize this source a highly-nonlinear fiber, exhibiting low bend 
loss over the short-wave infrared spectral band, is employed because of its 
advantageous properties as a nonlinear mixing medium. The transmitter was 
subsequently exploited to probe and detect trace levels of carbon dioxide in 
the 2051-nm spectral region where its beam properties, tunability, narrow 
linewidth, and stability all coalesce to permit this application. This work 
indicates this transmitter can serve as a robust source for sensing carbon 
dioxide and other trace gasses in the short-wave infrared spectral region and 
should therefore play an important role in future applications. 

©2011 Optical Society of America 
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1. Introduction 

Over the short-wave infrared (SWIR) spectrum, which is typically defined as spanning from 
1700 to 2500 nm, a variety of molecular gases and environmental pollutants exhibit strong 
well-defined absorption features [1]. To detect their unique “fingerprints” requires remote 
sensing in the SWIR band via a light detection and ranging (LIDAR) technique which must 
itself rely on high-power, high-frequency-fidelity, tunable laser sources in conjunction with 
low-noise photodetectors [2]. The state-of-the-art SWIR sources that have been utilized in 
LIDAR systems to date are custom-made, crystal-based, optical parametric oscillators 
(OPOs), providing multiple Watts of output power and typical linewidths of several MHz 
[1,3,4]. To their credit, these OPOs allow broadband tunability (hundreds of nanometers); 
however, their mode-hop-free tuning range is limited to approximately 100 GHz (order of 1 
nm), which precludes their use in sensitive spectroscopy applications [5]. Another practical 
limitation to the widespread use of traditional OPOs for this application is their construction. 
OPOs rely on free-space optical elements and as such they are highly sensitive to thermal and 

#140287 - $15.00 USD Received 3 Jan 2011; revised 16 Mar 2011; accepted 22 Mar 2011; published 14 Apr 2011
(C) 2011 OSA 25 April 2011 / Vol. 19, No. 9 / OPTICS EXPRESS  8174

2 
Approved for public release; distribution unlimited.



vibration perturbations; their performance when fielded is depreciated over that which can be 
demonstrated in a laboratory environment. Furthermore, SWIR-based LIDAR is not only 
plagued by these source-specific issues but is also impaired by a lack of sensitive, high-
bandwidth photodetectors. The most promising detector technology in the SWIR band has 
been shown to be extended-band InGaAs, still the performance of these devices is frustrated 
by high thermal and dark current noise due to the reduced semiconductor bandgap at these 
wavelengths and the high impurity and defect concentrations [6]. 

Sources and detectors available in the SWIR band contrast sharply with their near-infrared 
(NIR) (800-1700 nm) counterparts which have benefited from years of intense commercial 
development predominantly driven by the optical telecommunications industry. As a result, 
mode-hop-free, widely-tunable, narrow-linewidth NIR sources are readily available and 
relatively inexpensive. Furthermore, NIR InGaAs(P) photoreceivers have significantly lower 
dark current and thermal noise than their SWIR equivalents. The photodetection sensitivity in 
the NIR band can also be improved by several orders of magnitude through optical pre-
amplification. Here the combination of rare-earth doped fiber amplifiers (Erbium- and 
Ytterbium-doped fiber amplifiers) and semiconductor optical amplifiers (SOAs) provides for 
more than 30 dB of optical gain over the entire NIR spectrum with routinely reproducible low 
noise figures in 3-5 dB range [7,8]. 

In this work, a widely-tunable, cavity-less parametric transmitter operating in the SWIR 
wavelength range was constructed and used to detect the presence of carbon dioxide. An 
important aspect of this transmitter, one that cannot be overemphasized, is that it is 
constructed entirely of NIR components and, as a consequence, benefits from the high-quality 
performance and low cost of these constituent elements. The ability to remotely sense carbon 
dioxide is not only a good proof-of-principal experiment but is of critical importance in 
climate change studies, long-term weather forecasting, early forest fire detection, and global 
fossil-fuel combustion monitoring [9–17]. We specifically chose to probe the R30 absorption 
line of CO2, centered at 2050.967 nm, because of the high contrast it exhibits with respect to 
problematic water vapor and its inherently low temperature sensitivity [18]. The results 
obtained in this work are in excellent agreement with absorption data obtained from the HIgh-
resolution TRANsmission molecular absorption database (HITRAN2008) [19]. 

2. Parametric SWIR Transmitter: Experimental Results and Discussion 

Single-pass fiber-optic parametric amplifiers/converters (FOPA/Cs) have recently been 
identified as a practical platform for bridging the gap between the spectrally important SWIR 
band, where few components exist, and the technologically developed NIR band [20,21]. On 
the transmitter end, the FOPC offers efficient wide band NIR-to-SWIR conversion by means 
of phase-matched four-wave mixing (FWM) in dispersion-engineered highly-nonlinear fiber 
(HNLF). In this process two NIR pump photons are annihilated while the existing NIR signal 
wave is amplified and a newly-generated, so-called „idler,‟ wave is created in the SWIR band. 
The transmitter‟s all-fiber construction allows for long nonlinear interaction lengths which 
results in high conversion gains. The ability to optimize the parametric gain spectrum and its 
magnitude is critically dependent on the dispersive properties of the HNLF and therefore 
one‟s ability to accurately measure and subsequently minimize the HNLF‟s local dispersion 
fluctuations [22]. The high-index-contrast of the transmitter‟s HNLF, which confers increased 
nonlinearity and tailored dispersion, also yields the fiber highly resilient to macrobending, 
allowing for ultracompact packaging of the nonlinear mixer [23]. The FWM interaction also 
allows any amplitude or phase coding imparted on the signal wave to be converted to the 
newly-generated idler [24,25]. On the receiving end of a system, a FOPA can also play a 
critical role by enabling the creation of an optically pre-amplified receiver anywhere in the 
SWIR band. A well-designed FOPA is limited only by a 3-dB noise figure which is 
theoretically associated with phase-insensitive amplifiers [26]. Therefore, these amplifiers 
outperform their technologically-mature inverted-population counterparts (EDFAs and SOAs) 
at low input signal power levels [27]. Because the FOPA/C described in this work rely on a 
traveling-wave construction (i.e. they are cavity-less), they circumvent all the impairments 
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associated with conventional OPO designs including cavity stability, limited mode-hop-free 
tuning range, and tuning speed. 

The SWIR parametric transmitter used in this work is depicted at the top of Fig. 1. The 
pump source was a tunable external-cavity laser (ECL), which was amplitude modulated to 
produce 500-ps pulses with a 0.05% duty cycle to avoid saturation effects in the EDFAs. The 
modulated pump was subsequently amplified and excess amplified spontaneous emission 
(ASE) noise was rejected using a pair of band-pass optical filters. Another ECL, tunable from 
1260 to 1360nm, was chosen as the signal source to enable precision tuning of the signal and, 
as a consequence, idler wavelengths. The amplified pump pulse and continuous-wave signal 

seed were combined and sent into a 7-m-long HNLF with a nonlinear coefficient 15 W
1

km
1

 
measured using the method reported in [28]. The HNLF‟s zero-dispersion wavelength (ZDW) 
of 1583.0 nm and the dispersion slope of 0.027 ps/nm

2
-km were measured using a commercial 

lightwave analyzer (Advantest Q7750), while the fourth-order dispersion coefficient was 

measured at 1.4 × 10
5

 ps
4
/km via the method reported in [29]. The HNLF coil used in this 

work was chosen because it provided the lowest available positive fourth-order dispersion. 
This parameter negatively affects phase-matching when the signal-to-idler‟s spectral 
separation becomes large and we therefore seek to minimize its contribution in order to permit 
broadband parametric gain synthesis. 
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Fig. 1. Experimental setup depicting (top) the parametric SWIR transmitter; (bottom left) the 
optical spectrum following NIR-to-SWIR conversion in HNLF; (bottom right) the optical 
spectrum following rejection of pump, signal, and excess amplified quantum noise; Acronyms: 
AM – amplitude modulator, EDFA – Erbium doped fiber amplifier, DWDM – dense 
wavelength division multiplexer, VOA – variable optical attenuator, Rx – optical receiver. 

The left inset in Fig. 1 depicts the optical spectrum following parametric amplification and 
conversion in the HNLF. The pump wavelength was set to 1587.9 nm and the signal 
wavelength to 1295.4 nm, resulting in the 2051.0-nm idler wave at the output of the FOPC. 
The broadband amplified quantum noise (AQN) is present in approximately a 600-nm 
bandwidth around the optical pump, due to the high degree of phase matching that exists at 
these wavelengths. The broadband AQN can be completely done away with by employing 
HNLFs with negative fourth-order dispersion coefficient [30]. However, such nonlinear fibers 
are characterized by increased dispersion slopes and therefore increased sensitivity of phase-
matching to local ZDW fluctuations [31]. For this reason, efficient broadband conversion 
(beyond 2 μm) in these devices has not yet been reported to the best of the authors‟ 
knowledge. The pump, signal, and excess AQN were filtered out using several wavelength-
division multiplexers (WDMs) and the resulting parametric SWIR source spectrum is shown 
in the bottom right inset of Fig. 1. 

The measured conversion gain spectrum shown in Fig. 2(a) for several different pump 
wavelength positions indicates the spectral tunability available to this source while 
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simultaneously hinting that the spectral stability of the pump is critical for this application. 
The conversion gain is defined as the ratio of the output idler power to the input signal power. 
The pump power was set to 54.6 dBm and the wavelength detuned over approximately 4 nm 
in the L band, resulting in a conversion gain peak shift across a 150-nm bandwidth. The 
conversion gain peak can therefore be positioned arbitrarily in the SWIR band via a small 
detuning of the pump wavelength. In order to place the FWM peak at the R30 line of CO2, the 
pump wavelength was detuned to 1587.9 nm which produced the conversion gain spectrum 
shown in Fig. 2(b). The peak conversion gain of 31 dB resulted in 4 W of measured idler peak 
power at the wavelength of 2051 nm as previously indicated in Fig. 1 (bottom right). 
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Fig. 2. (a) Measured conversion gain spectra for several different pump wavelength positions; 
(b) Measured conversion gain spectrum with pump wavelength optimized for peak conversion 
gain at 2051 nm. 

Following the rejection of pump, signal, and excess AQN by the WDMs, the idler pulse 
was sent through a 24-cm CO2 cell held at a constant pressure of 600 Torr. The idler pulse 
was subsequently attenuated using a variable optical attenuator to miliwatt power levels 
acceptable for a commercially available 5-GHz bandwidth, 2-μm, extended-band InGaAs p-i-
n photodetector (EOT, Inc.). By subtly changing the pump wavelength the idler was precisely 
tuned to the four different positions shown in Fig. 3(a). One of the wavelength positions (color 
coded blue) was purposely centered off-line, while the other three were exactly positioned at 
three different absorption peaks. The absorption spectrum of CO2, obtained from the 
HITRAN2008 database is included in Fig. 3(b) to show the relative strengths of the different 
absorption peaks. The received idler pulses corresponding to the four different wavelength 
positions were displayed on an electrical equivalent-time scope and are shown in Fig. 3(c). As 
expected, the longer wavelength on-line idlers were attenuated more strongly by the CO2 cell. 
The slope of the on-line idlers is due to slight chirping of the pulse in the parametric SWIR 
transmitter setup. The SWIR idler‟s electrical SNR was measured to be in excess of 30 dB 
over the entire tuning range. 
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Fig. 3. (a) Measured idler optical spectra at four different positions; (b) CO2 absorption data 
obtained from HITRAN2008 database; (c) Measured idler pulses corresponding to the four 
different idler wavelengths shown in (a). 

At this point we wish to emphasize an important benefit of using parametric SWIR 
transmitters which cannot be matched by conventional devices operating in the SWIR band. 
While the pump pulse is in its “off” state, the only photons that exist at the idler wavelength 
are due to zero-point vacuum field fluctuations. As a result, the SWIR idler pulse possesses a 
vacuum-limited extinction ratio. Poor pulse extinction ratios result in so-called ghost LIDAR 
returns which severely limit the sensing range of the system [32]. To mitigate this problem, 
some commercial all-fiber LIDAR technologies employ a cascade of acousto-optic 
modulators in order to achieve extinction ratios of more than 100 dB, which allows for an 
operation rage of approximately 1 km [33]. Keeping in mind that the technical requirements 
placed on longer range LIDAR systems grow with the square of the distance from the sensed 
target, the parametric conversion platform offers an inherent solution as the sensing system is 
never extinction-ratio-limited. 

3. Conclusion 

In this work, carbon-dioxide trace detection has been demonstrated for the fist time using a 
continuously tunable parametric SWIR transmitter. Although this device has obvious 
implications for DIAL-type systems, we found it had a sufficient margin to operate even 
without relying on a differential-detection scheme. Clearly, such a scheme can be used to 
further improve its performance in the future. 

The transmitter utilizes a dispersion-engineered highly-nonlinear fiber platform for 
efficient wavelength conversion from NIR to SWIR band while using conventional NIR 
components. 

By precisely controlling the pump wavelength position, the conversion gain spectrum was 
accurately tuned to probe a number of absorption lines of carbon dioxide in this proof-of-
concept demonstration. Overall we feel this platform offers a practical way to leverage the 
benefits of advanced NIR technology for sensing and spectroscopy in the poorly-developed 
SWIR band. Moreover, the all-fiber design represents a significant advancement in terms of 
portability, stability, and cost when compared to existing SWIR technologies. 
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