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ABSTRACT 

The mechanical behavior of soils may be approximated using different models that depend on 
particular soil characteristics and simplifying assumptions. For this reason, researchers have 
proposed and expounded upon a large number of constitutive models and approaches that 
describe various aspects of soil behavior. However, there are few material models capable of 
predicting the behavior of soils for engineering applications and are at the same time appropriate 
for implementation into finite element (FE) and multibody system (MBS) algorithms. This paper 
presents a survey of different commonly used terramechanics and continuum-based soil models. 
The aim is to provide a summary of soil models, compare them, and examine their suitability for 
integration with large-displacement FE absolute nodal coordinate formulation (ANCF) and MBS 
algorithms. Special emphasis is placed on the formulations of soils used in conjunction with 
vehicle dynamic models. A brief review of computer software used for soil modeling is provided 
and the implementation of these soil models in MBS algorithms used in the analysis of complex 
vehicle systems is discussed. 

Keywords: Soil; Finite element; Multibody systems; Terramechanics. 
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1. INTRODUCTION 

The characteristics of soils, as with any other material, depend on the loading and the soil 

conditions. The response of the soil model to loading conditions depends on the assumptions 

used in and the details captured by the specific model. Some models are based on simple discrete 

elastic models that do not capture the soil distributed elasticity and inertia. More detailed soil 

models employ a continuum mechanics approach that captures the soil elastic and plastic 

behaviors. Continuum mechanics-based soil models can be implemented in finite element (FE) 

algorithms. Nonetheless, the integration of these FE soil models with multibody system (MBS) 

algorithms for modeling vehicle/soil interaction represents a challenging implementation and 

computational problem that has not been adequately covered in the literature. This integration is 

necessary in order to be able to develop more detailed and more accurate vehicle/terrain dynamic 

interaction models.  

Depending on the level of detail that needs to be considered in a soil investigation, the 

parameters that define the soil in a computer model can significantly vary. However, among the 

many different characteristics of soil behavior, there are a few that must be considered in a soil 

model. These characteristics are summarized as follows: 

1. Shear strength and deformation characteristics:  The mean stress and change in 

volume produced by shearing greatly affects the shear strength and deformation 

characteristics of soil. Soils generally exhibit higher shear strength with increasing mean 

stress (applied pressure) due to interlocking effects. At very high mean stresses, however, 

soils may fail or yield due to pore collapse, grain crushing, or other phenomena. The 

dilatation of soil under shear loading is shown in Fig. 1a. Sand demonstrates interlocking 

behavior that increases with a corresponding increase in the density of soil.  
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2. Plasticity: An increase of applied stress beyond the elastic limit results in an 

irrecoverable deformation which often occurs without any signs of cracking or failure. A 

small elastic region which results in plastic behavior at or near the onset of loading is 

characteristic of many soils.  

3. Strain-hardening/softening: This soil characteristic can be defined as change in the size, 

shape, and location of the yield surface. This can be identified graphically as shown in 

Fig. 1 (Maugin, 1992). The dilatation of dense granular material, such as sand, and over-

consolidated clays is commonly associated with the strain-softening behavior. Likewise, 

the compaction of loose granular material, such as sand, and normally consolidated clays 

is commonly associated with the strain-hardening behavior (Fig. 1). 

Other characteristics of soil such as tensile strength, temperature-dependency, and drainage 

effects, etc. are not considered here because they are beyond the scope of this review paper. 

 This paper aims to review some of the existing basic terramechanics and continuum 

mechanics based soil models and discuss their suitability for incorporation into FE/MBS 

simulation algorithms. Section 2 outlines the empirical, analytical, and parametric approaches 

used in terramechanics. Also reviewed are some of the tools and methodologies which determine 

the parameters used in the definitions of the terramechanics models. Section 3 describes the 

continuum mechanics based soil models. These models include elastic-plastic, viscoplastic, and 

bounding surface plasticity formulations.  Section 4 describes three of the most popular particle-

based and meshfree methods; the discrete element method, smoothed particle hydrodynamics, 

and reproducing kernel particle method. Examples of computer programs used to model the 

behaviors of soils are presented in Section 5. Section 6 offers a comparison of the various soil 

models presented in the previous sections and a suitable soil model for implementation in a 
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FE/MBS algorithm is selected. The computer implementation of the selected soil model and 

solution procedure is outlined in Section 7.  Section 8 describes the procedure for the 

incorporation of the selected soil model with an ANCF/MBS formulation. In Section 8, the 

structure of the dynamic equations that allows for systematically integrating soil models with 

FE/MBS system algorithms used in the virtual prototyping of vehicle systems is presented. 

Section 9 offers a summary and describes the direction of future work. 

 

2.  TERRAMECHANICS-BASED SOIL MODELS  

Terramechanics is the study of the relationships between a vehicle and its environment. Some of 

the principal concerns in terramechanics are developing functional relationships between the 

design parameters of a vehicle and its performance with respect to its environment, establishing 

appropriate soil parameters, and promoting rational principles which can be used in the design 

and evaluation of vehicles (Wong, 2010). The standard parameters by which a vehicle 

performance is compared include drawbar-pull, tractive efficiency, motion resistance, and thrust. 

If the normal and shear stress distributions at the running gear-soil interface are known, then 

these parameters are completely defined. 

2.1 Empirical Terramechanics Models  

One approach used to establish the appropriate parameters, properties, and behaviors of soil 

involves the determination of empirical relationships based on experimental results which can be 

used to predict at least qualitatively the response of soils under various conditions (Bekker, 

1969). Concerns were raised as to whether the relationships established by this method could be 

applied in circumstances which were entirely dissimilar to those in which they were established 

(Bekker, 1969). Bekker proposed using only experiments that realistically simulated the manner 
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in which the running gear of a vehicle traversed the terrain. This entailed using soil penetration 

plates comparable in size to the contact patch of a tire (or track), and producing pressures and 

shear forces of comparable magnitude to those produced by a vehicle. Parametric models, which 

are based on experimental work and have been widely used, offer practical means by which an 

engineer can qualitatively evaluate tracked vehicle performance and design. Using these 

principles, Bekker developed the Bevameter. When a tire or a track traverses a terrain, soil is 

both compressed and sheared. A Bevameter measures the terrains response to normal and shear 

stresses by the application of penetration plates and shear heads. These responses are then used 

to produce pressure-sinkage and shear stress-shear displacement curves. These curves are then 

taken as characteristic response curves for each type of terrain. 

Another terrain characterization device of importance (due to its widespread use) is the 

cone penetrometer. A penetrometer applies simultaneously shear and normal stresses. A 

simplified version of a penetrometer can be visualized as a long rod with a right circular cone on 

one end. Penetrometers are pushed (at a certain rate) into the soil and the resulting force per unit 

cone base area, called the cone index (CI), is measured. These cone indices can then be used to 

establish the trafficability, on a one or fifty pass basis, of vehicles in different types of terrain 

(Priddy and Willoughby, 2006). Trafficability is the measure of a vehicles ability to traverse 

terrain without becoming incapacitated. Hence, a vehicle with a CI on a fifty pass basis can be 

expected to make fifty passes on a particular route without becoming incapacitated. It is 

important to note that individual soil parameters cannot be derived from cone penetration tests. It 

has been established that the cone penetrometer measures different terrain properties in 

combination and it is impossible to determine to what degree each particular affects the results of 

cone penetrometer tests (Priddy and Willoughby, 2006).  
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A collection of data (CI, Vehicle Cone Index, Rating Cone Index, etc.) and algorithms 

used to predict vehicle mobility on terrain specific to certain parts of the world, as compiled 

beginning in the late 1970's, is referred to as the NATO Reference Mobility Model (NRMM). 

Using the NRMM, the cone penetrometer and the cone index derived from it can be used on a 

“go/no go” basis of vehicle trafficability in a variety of terrains around the world. While the use 

of the cone index and the NRMM for in situ measurement of soil strength for use in decision 

making is invaluable, the empirical method is not suited for vehicle development, design, and 

operation purposes (Schmid, 1995). Design engineers require the use of vehicle parameters 

which are simply not taken into consideration in the empirical methods. 

2.2 Analytical Terramechanics Models 

Soils modeled as elastic media can be used to predict the stress distribution in the soil due to 

normal loads. Figure 2 demonstrates the stress distribution formula for points in the soil due to a 

point load on the surface. The resulting equation for the normal stress at a point is called the 

Boussinesq equation and is given below (Bekker, 1969). 

                                                     

3
2

3
cos

2z

W

R
 


                                                            (1) 

where W  is the magnitude of the point load applied at the surface, R  is radial distance at which 

the stress is being calculated, and   is the angle between the z  axis and the line segment for R . 

Notice that the Boussinesq equation does not depend on the material; it gives the stress 

distribution for a homogeneous, isotropic, elastic medium subject to a point load on the surface 

(Bekker, 1969). Once the stress distribution for a point load is known, then, given the contact 

area one may integrate the point load stress formula over the contact area to determine the 
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normal stress distribution in the soil. For a load applied under a circular loading area, as shown 

in Fig. 3, one can show that integrating the Boussinesq equation over the contact area leads to  
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For a contact strip (shown in Fig. 4), which may be taken as the idealization of the contact area 

under a track, one can show that the equations for the stresses at a point are 
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These equations are derived with the assumptions that the contact patch is an infinitely long strip 

with constant width, the track links are rigid, and a uniform pressure is applied. Models based on 

the theory of elasticity which do not take into account the effect of plastic deformations cannot, 

in general, be used to predict the shear stress distribution at the soil-tire interface. Another 

shortfall of these elasticity models is that they may not be applied when loads become too large. 

The most widely known methods for analytical analysis of tracked vehicle performance are 

based on the developments initiated by Bekker. A modified Bekker’s pressure sinkage 

relationship is given by (Wong, 2010) 

                                                     
   

1 1

0

/
n n

c c

p W bl
z

k b k k b k 
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                                    (4) 

In this equation, 0z  is the sinkage, p  is the pressure, W  is magnitude of the applied load, b  is 

contact depth, l  is the contact patch length, ck  and K  are the pressure-sinkage parameters for 

the Reece equation (Reece, 1965). This pressure-sinkage relationship together with a criterion for 
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shear failure (most often the Mohr failure criteria) can be used to predict the performance of the 

vehicle.  

 A variety of pressure sinkage relationships exist; these pressure sinkage models attempt 

to capture and correct for behavior that was not considered in the original formulation. Response 

to cyclic loading, the use of elliptical contact areas, and the extension to small diameter wheels 

are examples of some of the modifications made to the pressure sinkage formulation.  

 Other analytical models have been proposed by Wong (2010) including the NTVPM, 

RTVPM, and NWVPM models. Wong’s models are based on the design parameters of vehicles 

and an idealization of the track terrain interface. These idealizations, for the case of the flexible 

track NTVPM model, can be seen in Fig. 5. With this configuration and variable definitions, the 

following pressure-sinkage relationship was given (Wong, 2010): 
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where 1liz   is the sinkage at point F  shown in Fig.5, uiz  is the sinkage of road wheel i , T  is the 

tension in the track per unit width, R  is the radius of the road wheel, and uk  and ri  are modal 

parameters. The associated shear-displacement relationship is given by 
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                                  (6) 

where  p x  is the normal pressure on the track, l  is the distance between the point at which 

shearing begins and the corresponding point on the track, K  is the shear deformation parameter, 

and c  and   are the Mohr-Coulomb failure criteria parameters. Experimental and analytical 

terramechanics models tend to be simple and do not capture many modes of the soil 
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deformations that can be captured using the more general continuum mechanics-based soil 

models.  

 

3. CONTINUUM MECHANICS-BASED SOIL MODELS 

In the literature, there are many continuum-based soil models that employ different assumptions. 

Most of these models are suited for implementation in a finite element framework, as will be 

discussed in Section 7. These models are briefly reviewed in this section.  

3.1  Theory of Elastoplasticity 

Given that soils typically experience both recoverable and non-recoverable deformation under 

loading, elastoplastic theory and several augmentations of the theory have been widely applied to 

soils. Elastoplasticity theory is based on the decomposition of the strain into elastic and plastic 

parts. In the case of small strains, the additive strain decomposition e p= +ε ε ε  is used, where                        

ε  is the total strain, eε  is the elastic strain, and pε is the plastic strain. In the case of large strains, 

the following multiplicative decomposition of the deformation gradient J  is used. This 

decomposition is defined as e pJ J J , where subscripts e  and p  in this equation refer, 

respectively, to the elastic and plastic parts. The stress is related to the elastic strain. Since the 

elastic region, is often relatively small in soils, the linear stress-strain relationship e eσ C ε  is 

often sufficient, where eC  is the fourth order tensor of elastic coefficients, σ
 
is the stress tensor, 

and eε  is the elastic strain tensor. While the linear stress-strain relationship has been widely used 

in many soil models, it is important to point out that some models have incorporated nonlinear 

elastic relationships in both the small strain (e.g. Fossum and Brannon, 2004) and large 

deformation (e.g. de Souza Neto et al, 2008) cases. Such models help correct the amount of 

elastic strain during plastic deformation. 
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 The elastic region is defined by a yield function  f σ . When f < 0, the stress state is 

within the elastic region. Plasticity can only occur when f = 0, which defines the yield surface. 

Stress states where f > 0 are inadmissible. However, the yield surface may evolve or translate, as 

discussed below, allowing initially inadmissible stress states after some plastic deformation. The 

evolution of plastic strain is governed by the flow rule (Araya and Gao, 1995; Mouazen and 

Nemenyi, 1999)  pd d g  ε σ , where d  is the plastic multiplier and g is a plastic potential 

function that determines the direction of plastic flow. If f = g, then the flow rule is said to be 

associative. Associative flow follows from the principle of maximum plastic dissipation, 

allowing the body to reach the lowest possible energy state; hence it is commonly employed in 

the plasticity theory of metals. However, the principle of maximum plastic dissipation tends to 

overestimate dilatation in soils and other cohesive-frictional materials, and hence many soil 

models use nonassociative laws. While any plasticity model may experience a loss of ellipticity 

condition that leads to spurious mesh dependency in numerical solutions during softening, 

nonassociative models may experience loss of ellipticity even during the hardening phase 

(Rudnicki and Rice, 1975), adding a necessity to check for this condition.  

 The yield function and plastic flow rule together operate under the Kuhn-Tucker 

optimality conditions 0,  0,  0f d f d     , which are important to the solution of the 

problem. Section 7 will outline the importance of the return mapping algorithms typically 

employed in the solution to the plasticity equations.  

 The last element needed to define a plasticity model is the evolution of internal state 

variables. The yield surface and plastic potential may not be constant but may evolve with plastic 

work or strain. For example the size of the yield surface may increase, allowing plastic hardening.  

The elastic constitutive equation, yield function, flow rule, and hardening laws, together, define 
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the mechanical behavior for a particular model. They are often reformulated in rate form in order 

to define a solution procedure which can be subjected to the Kuhn-Tucker optimality conditions. 

Some of the more common soil models are detailed in the following subsections. 

3.2  Single Phase Plasticity 

In this section, single phase plasticity models are discussed. Here, the soil is treated as a 

homogenized medium of solid and fluid mass. These models include the Mohr-Coulomb model, 

the Drucker-Prager and uncapped three-invariant models, modified Cam-Clay and Cap models, 

and viscoplastic soil models. 

Mohr-Coulomb Model The Mohr-Coulomb model is one of the oldest and best-known 

models for an isotropic soil (Goldscheider, 1984). Initially the yield surface was used as a failure 

envelope, and still is in geotechnical practice. It was later adopted as a yield surface for plasticity 

models. In two dimensions, the yield surface of the Mohr-Coulomb model is defined by a linear 

relationship between shear stress and normal stress which is written as (An, 2010)  

                                                                    - - tan 0f c                                               (7) 

where   and   are, respectively, the shear and normal stresses, and the constants c and   are 

the cohesion and internal friction angle, respectively. In three dimensions, the yield surface is 

more complicated and is defined by the following equation (An, 2010): 

                          2
1 2

1
sin sin cos sin cos 0

3 3 3 3

J
f I J c

                 
   

                  (8) 

where  1 trI  σ  is the first invariant of the stress tensor σ ,  2 : 2J  S S  is the second 

invariant of the deviatoric stress tensor   11 3 I S σ I , and   is equal to the Lode angle defined 

by (An, 2010): 
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 
2/3

2

3

2

33
3cos

J

J
                                                       (9) 

where  3 detJ  S  is the third invariant of deviatoric stress tensor. A Mohr-Coulomb yield 

surface forms a hexagonal pyramid in principal stress space, as shown in Fig. 6a. As can be seen 

from Fig. 6a, the failure envelope defined by the Mohr-Coulomb model includes discontinuous 

slopes between failure surfaces. These discontinuities add complexity to the return-mapping 

algorithm. While multi-surface plasticity algorithms have been used to handle this situation, such 

algorithms are complex and more time consuming. 

Drucker-Prager and Uncapped Three-Invariant Models  A simpler method to handle 

the discontinuities is to use a smooth approximation to the yield surface. Drucker and Prager 

(1952) initially proposed a cone in principal stress space (Fig. 6b), by adding a pressure-

dependent term to the classical von Mises yield surface, resulting in the yield function:  

                                                      2f J p c                                                         (10) 

where 2J  and 1 3p I  are invariants of the stress tensor, c  is the cohesion,   and   are 

parameters used to approximate the Mohr-Coulomb criterion. Like von Mises plasticity, one-step 

return-mapping can be achieved for linear hardening, making the model quite efficient to 

implement. While the associative model over predicts dilatation, nonassociative versions correct 

this (Drucker et al., 1952). Initially developed as an elastic-perfectly plastic model, i.e. with no 

change in the yield surface on loading, researchers later added hardening of the yield surface 

parameters to the model in various forms. See, for example, Vermeer and de Borst (1984) for a 

relatively sophisticated phenomenological hardening model. 

Limitations of the model include: hydrostatic loading and unloading produces 

considerable hysteresis which cannot be predicted using the same elastic bulk modulus of 
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loading and unloading and a yield surface which does not cross the hydrostatic loading axis 

(DiMaggio and Sandler, 1971), and that the cone does not approximate the Mohr-Coulomb 

hexagonal pyramid well for low friction angles. To account for this last issue, researchers have 

developed smooth yield surfaces that better approximated the Mohr-Coulomb yield surface. 

These yield surfaces have different yield points in triaxial extension versus compression, like the 

Mohr-Coulomb yield surface, but are smooth. The Matsuoka and Nakai (1974) model actually 

captures both the extension and compression corners of the Mohr-Coulomb yield surface, unlike 

the Lade-Duncan model (Fig. 6d). While this fact does not necessarily make the Matsuoka-Nakai 

yield surface more correct, it does make it easier to fit to standard geotechnical strength tests.  

 The differences in triaxial extension and compression strength can also be captured by 

modifying a Drucker-Prager type yield surface using a smooth third-invariant modifying 

function. Two of these functions are developed by Gudehus (1973) and William and Warnke 

(1975). While the former is simpler in form, it is only convex when the ratio of triaxial extension 

to compression strength, , is greater than 0.69. The William-Warnke function is convex until 

= 0.5. Convexity is essential in yield surfaces to ensure proper return mapping.  

 A shortcoming of the above models is that they assume a constant ratio between pressure 

and deviatoric stress, or normal and shear stress, during yielding, that is, a constant friction 

coefficient. Research in soils shows that this is not the case and the friction angle decreases with 

increasing pressure. Furthermore, at high confining pressures, soils may exhibit compactive 

plasticity due to pore collapse, grain crushing, and other phenomena. 

Modified Cam-Clay and Cap Models The original Cam-Clay model has not been as 

widely used for numerical predictions as the modified Cam-Clay (MCC). The qualifier 

“modified” is often dropped when referring to the modified Cam-Clay model (Wood, 1990). The 
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modified Cam-Clay model by Roscoe et al. (1968) is based on the critical state theory and was 

meant to capture the properties of near-normally consolidated clays under triaxial compression 

test conditions. The yield surface is assumed to have an elliptical shape that may be expanded 

with the increase of volumetric strain, as shown in Fig. 7. The function for the yield surface of 

the MCC model is defined as 

       2 2- - 0cq M p p p                                                (11) 

Here, p  is the effective mean stress, the pre-consolidation stress cp  acts as a hardening 

parameter, and the stress ratio M q p  at critical state is related to the angle of friction through 

the relationship     6sin 3 sinM    . The modified Cam-Clay model has been extended to 

the finite deformation case in Borja and Tamagnini (1996).  

 Cam-Clay models can predict failure and the nonlinear stress-path dependent behaviors 

prior to failure accurately, especially for clay type soils (DiMaggio and Sandler, 1971). This 

model, however, still has some disadvantages (DiMaggio and Sandler, 1971): the slope 

discontinuity at the intersection with the  p  axis predicts behavior not supported by experiments 

(Fig. 8); points on the yield surface above the critical state line do not satisfy Drucker’s postulate 

of stability; and the shear strain predicted by Cam-Clay models is too high at low stress ratios 

(Karim and Gnanendran, 2008). 

 There are several advanced derivatives of the Cam-Clay type soil models that include the 

three-surface kinematic hardening model and the K-hypoplastic model. The three-surface 

kinematic hardening (3-SKH) model employs the following kinematic surfaces: the first surface 

is defined as the yield surface, the second surface is named the history surface and is the main 

feature of the 3-SKH model, and the third surface is the bounding surface. The bounding surface 
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is taken to be the MCC yield surface, the history surface defines the influence of recent stress 

history, and the yield surface defines the onset of plastic deformations. Kinematic hardening 

allows it to better predict load reversals. It has been found that the 3-SKH model can acceptably 

predict over-consolidated compression behavior for clay but can have difficulty modeling pore 

pressure variations (Bryson and Salehian, 2011). The K-Hypoplastic model employs critical state 

soil mechanics concepts that can be applied to the modeling of fine-grained soils. It can be 

formulated in two manners; by enhancing the model with the intergranular strain concept, it can 

be extended to the case of cyclic loading and further improve the model performance in the range 

of small-strains. Even without the above enhancement, the K-Hypoplastic model is suitable for 

fine-grained soils under monotonic loading at medium to large strain levels (Masin et. al., 2006). 

 Cap-plasticity models were developed to address the shortcomings of the Cam-Clay type 

models. Drucker et al. (1957) first proposed that “successive yield surfaces might resemble an 

extended Drucker-Prager cone with convex end spherical caps” as shown in Fig. 6c (Chen and 

Baladi, 1985). As the soil undergoes hardening, both the cone and the end cap expand. This has 

been the foundation for numerous soil models.  

The plastic yield function f in the inviscid cap model of DiMaggio and Sandler (1971) is 

formulated in terms of the first stress invariant 1I  and the second deviatoric stress invariant 2J  

(Sandler and Rubin, 1979; Simo et al., 1988). As shown in Fig. 8, the static yield surface is 

divided into three regions. The cap is a hardening elliptical surface defined as 

   1 2 2 1, , ,cf I J k J F I k       2 2

2 1

1
0J X k L k I L k

R
                    (12) 

where 2J  is the second invariant of the deviatoric stress S , R  is a material parameter, and k is a 

hardening parameter related to the actual plastic volumetric change   11 22 33trp p p p p
v      ε . 
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In Equation 1, ( )kL  is the value of 1I  at the location of the start of the cap;  L k k  if 0k  , 

and    0L k   if 0k  . The yield surface is of a Drucker–Prager type modified for nonlinear 

pressure dependence and is defined by the function 

                           
     1 2 2 1 2 1 1, exp 0ef I J J F I J I I                               (13) 

where  ,  ,  , and   are material parameters. The tension cutoff surface is defined by 

   1 1f I I T   , where T  is the tension cutoff value. Eleven material parameters are 

necessary for the elastoplastic cap model:  , N ,  f0  in the viscous flow rule to be discussed later; 

0, , ,W D R X  in the cap surface;  ,  ,  ,   in the failure surface; and T  in the tension cutoff 

surface. In addition, the bulk modulus K  and the shear modulus G  are needed for the elastic 

soil response.  

The Sandia GeoModel builds on the Cap model with some modifications. It is capable of 

capturing a wide variety of linear and nonlinear model features including Mohr-Coulomb and 

Drucker-Prager plasticity depending on the model parameters incorporated. Unlike the Cap 

model, the cap surface and shear yield surface are connected in a smooth manner, and the model 

also accounts for differences in triaxial extension and compression strength using either Gudehus 

or William-Warnke modifying function described above. The yield function can be written as  

                                                           2 2

2 0c ff J F F N                                                (14) 

where   accounts for the differences in material strength in triaxial extension and triaxial 

compression, 2J   is the second invariant of the relative stress tensor -  (here   is a back 

stress state variable), cF is a smooth cap modifying function, fF  represents the ultimate limit on 

the amount of shear the material can support, and N  characterizes the maximum allowed 
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translation of the yield surface when kinematic hardening is enabled (Fossum and Brannon, 

2004). The plastic potential function is given by (Foster, et al. 2005) 

                                                            2 2

2
g g

c fg J F F N                                                   (15) 

where g
cF  and g

fF  play analogous roles in the plastic potential function as their counterparts in 

the yield function. The Sandia GeoModel suffers from the following limitations: the triaxial 

extension/compression strength ratio does not vary with pressure and it is computationally 

intensive when compared to similar idealized models (Fossum and Brannon, 2004). This model 

has been further adapted to the Kayenta model (Brannon et. al., 2009). 

Soil is not always an isotropic material. Layering and fracture networks, as well as 

compaction and other history effects may give the soil higher strength or stiffness in certain 

directions. Often the effects impart different strength and stiffness in one plane, and there is a 

transversely anisotropic version of the Kayenta model. Anisotropy may also be addressed using 

fabric tensors (Wan and Guo, 2001). Other anisotropic models include the work of Whittle 

(1994), and the S-CLAY 1 model (Wheeler et. al., 2003), which builds on the MCC model. 

Aside from the kinematic hardening mentioned in some of the models, detailed review of 

anisotropic soil models is beyond the scope of this article, however, and the reader is referred to 

the above references. 

Viscoplastic Soil Models  Plasticity models such as those described above do not 

include strain-rate dependent behavior often observed in soils under rapid loading. These viscous 

effects are more pronounced in the plastic region of most clay soils and rate independent elastic 

response is generally adequate for practical engineering applications (Perzyna, 1966; Lorefice, 

2008). The models described above can be modified to account for rate-dependent plastic effects. 
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Such viscoplastic models are more accurate under fast loading conditions. However, it is difficult 

to determine the correct value of the material time parameter if the stress history is not known.  

 Two major types of viscoplastic overlays are the Perzyna and Duvaut-Lions formulations. 

Perzyna's formulation is among the most widely used viscoplasticity models (Darabi et al., 2011). 

In this model, the associative time-rate flow rule is used to describe viscous behavior leading to a 

viscoplastic potential which is identical if not at least proportional to the yield surface (Katona, 

1984; Chen and Baladi, 1985; Simo et al., 1988). In Perzyna’s viscoplasticity formulation 

(Perzyna, 1966), the viscoplastic flow rule can be expressed as 

 vp g
f  




ε
σ

                                                  (16) 

where   is a material constant called the fluidity parameter, the Macauley bracket is defined 

as 2x x x  , g is the plastic potential function, and  f  is a dimensionless viscous flow 

function commonly expressed in the form    0

N
f f f  , where N is an exponent constant 

and 0f  is normalizing constant with the same unit as f. The Cap model has been extended to the 

viscoplastic case using Perzyna’s formulations. The viscoplastic cap model is adequate for 

modeling variety of time dependent behaviors such as high strain rate loading, creep, and stress 

relaxation (Tong and Tuan, 2007). 

  A joint bounding surface plasticity and Perzyna viscoplasticity constitutive model has 

been developed for the prediction of cyclic and time-dependent behavior of different types of 

geosynthetics (Liu and Ling, 2007). This model can simulate accelerating creep when deviator 

stresses are close to the shear strength envelope in a q  creep test and it can also model the 

behavior in unloading–reloading and relaxation (Yin and Graham, 1999). It has been noted that 
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for multi-surface plasticity formulations the Perzyna type models have uniqueness issues (Simo 

and Hughes, 1998). 

Another widely used formulation for viscoplasticity is based on Duvant-Lions theory 

(Duvaut and Lions, 1972). In this formulation, the viscoplastic solution is constructed through 

the relevant plastic solution. An advantage of the Duvant-Lions model is that it requires the 

simple addition of a stress update loop to incorporate it into existing plasticity algorithms. 

Another advantage is that the viscoplastic solution is guaranteed to deteriorate to the plastic 

solution under low strain rate (Simo et al., 1988).  

Viscoplasticity is thought to simulate physical material inelasticity behavior more 

accurately than the plasticity approach. It eliminates potential loss of ellipticity condition 

associated with elasto-plastic modeling (Abdullah, 2011). A viscoplastic version of the 

GeoModel has been developed with separate viscous parameters for volumetric and shear 

plasticity. 

3.3 Multiphase Models 

Soils may either be treated as homogenized continua or as a mixture in which each phase (solid, 

liquid, and gas) is treated separately. The latter approach is considered to be more accurate, but 

more complicated to implement. Mixture theory can be used at the continuum level to account 

for each phase, by tracking the total stress σ , fluid pore pressure wp , and a pore air pressure ap . 

For saturated soils (no gas phase), an effective stress 'σ  is defined, typically as ' wpσ I (though 

variations exist). The deformation of the soil skeleton is taken to be a function of the effective 

stress. Any of the plasticity models above can then be implemented using the effective stress in 

place of the total stress to determine the solid deformation.  
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In the unsaturated case, two independent variables are usually used to determine the 

mechanical response, due to apparent cohesion created by menisci in fluid phase. The total stress 

may be broken down into a net stress σ  for the solid skeleton, and suction stress cp   defined as 

,a c a wp p p p    σ σ I              (17) 

An effective stress and suction may also be used, typically  ' a a wp p p   σ σ I I , where   

is a parameter that varies from 0 for dry soil to 1 for fully saturated. The advantage of this 

formulation is that it reduces to the standard effective stress at saturation. The solid phase may 

then be modeled using the effective stress in place of the total stress. Many of the above 

plasticity and viscoplasticity models have been used to model solid deformation in this 

framework. In rapid loading, the fluid may be thought of as moving with the solid in the 

saturated case (undrained), but otherwise fluid flow through the solid matrix needs to be 

accounted for. In the limit where the fluid has enough time to return to steady state conditions, 

the material is said to be fully drained. Standard coupled fluid flow-solid deformation finite 

elements often fail due to volumetric mesh locking phenomena. This shortcoming can be solved 

by either using a lower order interpolation scheme for fluid flow equations (Brezzi, 1990), or by 

stabilizing the element (White and Borja, 2008, and references therein).  

The Barcelona Basic Model (BBM) proposed by Alonso et al. (1990) remains among the 

fundamental elasto-plastic models for unsaturated soils. The BBM model is an extension of the 

modified Clam-Clay model that captures many of the mechanical characteristics of mildly or 

moderately expansive unsaturated soils. As originally proposed by Alonso, utilizing a critical 

state framework, the BBM is formulated in terms of the hydrostatic pressure ''p  associated with 

the net stress tensor ''σ , suction s , and the deviatoric stress S . One may write a yield function 

for the model as follows: 
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                              (18) 

where q  is the difference between the maximum and minimum principal stresses, M  is the 

slope of the critical state lines, k  is parameter that describes increase in apparent cohesion with 

suction, cP  is the pre-consolidation pressure, and the function  g   is given by                        

    sin cos sin sin 3g       , where   is the friction angle, and   is the Lode angle. 

The hardening law follows the following relationship: 

                                                                       0
0 * *

0

ε
κ

p
v

P
dP d





                                                  (19) 

where 0P  is the hardening parameter defined by the location of the yield surface at zero suction, 

*
0  is the slope modified at the normal compression line, and *κ  is the modified swelling index 

that is assumed to be independent of suction. The plastic potential is a slight modification of the 

yield function given by 

                                   
 
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                             (20) 

where α  is defined as        * *9 3 1 1 9 6oα=Μ Μ Μ k Μ     (Alonso et al., 1990).                         

Some of the shortcomings of the BBM model are as follows: the BBM cannot completely 

describe hydraulic hysteresis associated with wetting and drying paths, it does not give the 

possible ranges of suction over which shrinkage may occur, and it does not include a nonlinear 

increase in shear strength with increasing suction.  

Elasto-Plastic Cap Model of Partially Saturated Soil  This section deals with the 

extension of a cap model which can describe the material behavior of partially saturated soils, in 
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particular, of partially saturated sands and silts. The soil model is formulated in terms of two 

stress state variables; net stress σ , and matric suction cp (Fig. 9). These stress state variables are 

defined in Eq. 17. 

The yield surface, consisting of a shear failure surface and a hardening cap surface, the 

plastic potentials for the non-associated flow rule and the hardening law for the cap are extended 

by taking into account the effects of matric suction on the material behavior. Furthermore, the 

third invariant of the deviatoric stress tensor is incorporated in the formulation of the yield 

surfaces (Kohler, 2007). Using net stress and matric suction as stress state variables allows 

modeling independently the effects of a change in the skeleton stress and of a change in suction 

effects on the mechanical behavior of the soil skeleton (Kohler, 2007). The functional form of 

the shear failure surface is  

       1 2 1, 2c e s cf p L J F I F p   σ                                    (21) 

where 1I   denotes the first invariant of the net stress tensor σ . In the preceding equation, 

      1 cos3 1L


   


   , where   and   are parameters defining the shape of the yield 

surface with respect to the Lode angle  . In Eq. 22,  1eF I   defines the shear failure envelope at 

vanishing matric suction, and  s cF p  accounts for the dependence of the shear strength on the 

matric suction (Kohler, 2007). These two functions are defined as 

 1 1eF I I    and  s c cF p kp , where k is a parameter controlling the increase of the shear 

failure envelope with increasing matric suction, and α  is a material parameter (Kohler, 2007). 

The functional form of the strain hardening cap is  

          2 2 1, , 2 , , ,c c c c e c s cf p p F J I p F p F p      σ                       (22) 
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with     1c cp I X p   , and  

         2
2

2 1
2 1 2

-
2 , , , 2 c

c c

I p
F J I p L J

R


  

 
    

 
                     (23) 

The plastic strain rate is determined by the non-associative flow rule  
2

1

p
i i

i

g


  ε  σ , where 

i  are the plasticity consistency parameters. The direction of the plastic flow is determined by 

means of a plastic potential 

          1 2 1, 2c s cg p J I F p     σ                                   (24) 

In this equation,   is a parameter that governs the amount of plastic dilatation. The plastic 

potential for the strain hardening cap is assumed as 
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σ              (25) 

The plastic volumetric strain rate is  

                      
  
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
                                                       (26) 

where   cX p  corresponds to the apex of the elliptical cap. 

Bounding Surface Plasticity Unsaturated Soil Model Dafalias and Popov (1976) 

developed bounding surface plasticity for metals. This approach was later applied to clays by 

Dafalias and Herrmann (1982), extended to pavement based materials by McVay and Taesiri 

(1985), and to sands by Hashigushi and Ueno (1977), Aboim and Roth (1982), and Bardet (1985). 

Bounding surface plasticity provides a framework with which to capture the cyclic behavior of 

engineering materials. The advantages of this framework over conventional plasticity theory 

have been investigated for monotonic and cyclic loads. Wong, Morvan, and Branque (2009) 
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developed a new bounding surface plasticity model, which includes an evolving bounding 

surface, for unsaturated soils with a small number of parameters based on Bardet’s model 

(Bardet, 1985).  

The bounding surface plasticity model developed by Wong et al. (2009) is elliptical in the 

plane of effective mean-stress p' and deviatoric stress q  with  1 2 3' 3p         and using 

cylindrical symmetry ' '
1 3q    . The bounding surface can be defined as 
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where M is the slope of the saturated soil critical state line (CSL), p A  , q xM A   , 

 0x q Mp q  , and        22 21 1 1 2 1 1x x           . M and A are 

assumed to be material parameters that are independent (in particular, of suction s). Also,   is a 

material parameter. The bounding surface plasticity soil model has the following limitations and 

shortcomings (An, 2010): (1) more experimental data is needed to define the suction dependence 

of material parameters; and (2) an objective relation, defined by the retention curve, is needed 

between the degree of saturation and suction. 

 

4. PARTICLE BASED AND MESHFREE METHODS 

The finite element method is a widely accepted and used approach to the solution of engineering 

problems which can be modeled using a continuum approach. However, simulations of 

explosions, fragmentations, and inherently granular problems require the use of adaptive 

meshing techniques that can become computationally intensive (Belytschko, Liu, and Moran, 

2000). Particle-based and meshfree methods offer engineers a new methodology with which they 
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may more accurately tackle highly discrete or granular problems. Particle based methods offer a 

number of advantages. The connectivity between nodes, or particles, is (re)computed at each 

time step and this allows for simulations of large deformations (Li and Liu, 2002). Fracture and 

other discontinuous behaviors are explicitly captured by particle-based methods. The following 

is a brief overview of three of the most commonly used particle based and mesh-free methods; 

the discrete element method, smoothed particle hydrodynamics, and reproducing kernel particle 

methods. 

4.1  Discrete Element Method (DEM)  

In the case of the finite element method, the material (soil in this study) is assumed to be a 

continuum. For the cases in which the granular behavior of soil is to be accurately modeled the 

discrete element method (DEM) is applied. The DEM was developed to simulate the dynamic 

behavior of granular material such as granular flow. In the DEM, the material is represented by 

an assembly of particles with simple shapes (circles and spheres), although there have been 

simulations in which non-circular rigid particles are used (Tutumluer et al., 2006; Reeves et al., 

2010). The elastic and inelastic properties at the contact between the particles are introduced 

using springs with spring constants (elastic response) and dashpots with viscous damping 

constants. The contact forces between particles are calculated from the interpenetration between 

those particles using the spring constant and the viscous damping constant (Oida and Momozu, 

2002). The displacements of the particles are obtained for a certain time interval by solving the 

governing kinetic equations of motion. This process is repeated for all particles in the analyzed 

region for very short time intervals until the end of the simulation time. Some of the 

shortcomings associated with the discrete element method are as follows: it can be 

computationally very inefficient for soil in which the granular effect can be approximated using a 
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continuum model (Oida and Momozu, 2002), it is difficult to accurately determine the spring and 

damping constants that define the contact forces between the particles (Khulief and Shabana, 

1987), and the representation of soil cohesion and adhesion properties is difficult to incorporate 

within DEM analysis (Asaf et. al., 2006).  

4.2  Smoothed Particle Hydrodynamics (SPH)  

As one of the earliest meshfree methods, smoothed particle hydrodynamics has been widely 

adopted and used to solve applied mechanics problems. In SPH, the idea is to discretize the 

material into particles, with each particle having a unique neighborhood over which its properties 

are "smoothed" by a localized interpolation field, called the kernel function (Li and Liu, 2002). 

The neighborhood of each element defines the interaction distance between particles, often 

referred to as the smoothing length. Smoothed particle hydrodynamics has been used to model 

soil behavior. In particular, Bui et al. (2008) proposed a Drucker-Prager model for elastic-plastic 

cohesive soils which showed good agreement to experimental results. However, the model 

suffered from tensile instability which was overcome by using the tension cracking treatment, 

artificial stress, and other methods. Recently, SPH methods have been used in conjunction with 

FEM to produce tire-soil interaction models, but it was concluded that further validation would 

be required to analyze the effects of SPH parameters on results (Lescoe et. al., 2010). 

4.3  Reproducing Kernel Particle Methods (RKPM)  

RKPM improves the accuracy of the SPH method for finite domain problems (Chen et al., 1997). 

In this method a modification of the kernel function, through the introduction of a correction 

function to satisfy reproducing conditions, results in a kernel that reproduces polynomials to a 

specific order. Unlike traditional SPH methods, the RKPM method can avoid the difficulties 

resulting from finite domain effects and minimize the amplitude and phase errors through the use 
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of a correction function which allows for the fulfillment of the completeness requirement. While 

RKPM methods have not been used in vehicle-terrain interactions, they have been quite 

successfully applied to geotechnical applications. RKPM methods demonstrate promising 

potential for large deformation problems but require a systematic approach for the selection of 

appropriate dilation parameter in order to be made robust (Chen et al., 1997). 

 

5.  EXISTING SOFTWARE 

There are several commercial and research computer programs that are used in soil modeling. 

Some of these programs are based on nonlinear finite element algorithms. In this section, a brief 

review of some of these programs is presented. 

ABAQUS  ABAQUS is a popular FE analysis program that contains a wide variety of 

material models and is further configurable by user defined material models. The inelastic 

material models that are deployed with ABAQUS /Standard (as of version 6.8) include the 

following broad categories: metal plasticity, fabric materials, jointed materials, concrete, and 

permanent set in rubberlike materials. The plasticity models that are included in ABAQUS 

/Standard and are of most relevance include: extended Drucker-Prager models, Modified 

Drucker-Prager/Cap models, Mohr-Coulomb plasticity, Critical State (Clay) plasticity models, 

and crushable foam plasticity models. These inelastic material models are applicable only when 

the elastic region is linearly elastic. In addition to the built in material models, one may develop 

user defined material models for use with ABAQUS. The constitutive models of the user defined 

materials can be programmed in the user subroutine UMAT. Many user defined material models 

can be found as extensions for ABAQUS. For example, the finite elasto-plasticity material model 
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(FeFp material model) developed for use with nonlinear elastic finite strains and nonlinear 

plastic hardening is offered as an extension. 

ANSYS  ANSYS is another popular computer aided engineering (CAE) FE program 

capable of static, non-linear, thermal, modal, frequency response, and coupled field analysis and 

transient simulation. Its widespread popularity can be said to spur from its parametric language 

(ANSYS Parametric Design Language) which allows for the scripting of all commands 

necessary to perform pre-processing, solution, and post-processing of a problem. It includes a 

diverse set of material models. Among which are included the following: anisotropic elastic, 

plastic kinematic, Mooney-Rivlin rubber, three parameter Barlat plasticity, strain rate dependent 

plasticity, and geological Cap. 

MARC  The general purpose FE program MARC includes a modified critical state model 

in conjunction with a new nonlinear elastic law which gives a non-associative elastoplastic 

model for geomaterials within the regime of large strains. This model includes fully implicit 

integration and algorithmic tangent moduli, resulting in a quadratic rate of convergence in global 

Newton iterations. The essential features of this model are the satisfaction of the principle of 

conservation of energy, flexibility with respect to consideration of the evolution of Poisson’s 

ratio and the physically meaningful interpretations of all model parameters (Liu et al., 2000, 

1996). 

OPENSEESPL The standard incremental theory of elasto–plasticity is implemented in 

OPENSEESPL. Implementation within OpenSEES finite element platform allows for the use of 

existing material models and development of new elasto–plastic material models by simply 

combining yield functions, plastic flow directions (or plastic potential functions) and evolution 

laws into a working elastic–plastic models. An advantage of using OPENSEESPL is that one 
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may benefit from the use of the object oriented paradigm offered for the separation of elastic 

models, yield function, plastic flow directions, and evolution laws (hardening and/or softening). 

CRISP  CRISP was developed at Cambridge University starting 1975 (Britto and Gunn, 

1987) and further developed by the CRISP Consortium Ltd (Carter et al., 1982). In CRISP, a 

small strain formulation is implemented and, of the material models implemented in CRISP, the 

elastic perfectly-plastic Mohr–Coulomb model may be used as the basis for modeling certain soil 

behavior. 

TREMORKA and SHAKE91 These programs are written for the analysis of earthquake 

phenomena. These linearized programs are based on a nonlinear model proposed by Schnabel et 

al. (1972), except for the method used to choose frequency-dependent moduli and damping 

(Hartzell et al., 2004). 

NOAHW and NOAH  NOAHW is a second-order, staggered-grid finite difference code. 

NOAH is a multi-spring model for total stress analysis. 

LS-DYNA Is a scalable combined implicit/explicit solver for highly nonlinear transient 

problems. It offers a comprehensive materials library which includes the following broad 

categories: metals, plastics, glass, foams, elastomers, fabrics, concrete and soils, etc. The code 

can be augmented to include user defined material models. An example of a model incorporated 

into LS-DYNA is the two-invariant inviscid cap model developed for simulating soil behaviors 

under high strain rate based on a two-invariant, inviscid cap model proposed by (Simo et al., 

1988) and augmented with the Perzyna’s viscoplastic formulation (Tong and Tuan, 2007). 

 

6. COMPARISON OF SOIL MODELS 
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The soil models described in Sections 2, 3, and 4 offer a broad overview of the various common 

methods used in soil modeling. The categories for terrain-vehicle interaction presented in this 

paper include: terramechanics, continuum mechanics based soil models (FEA), and particle 

(DEM) and mesh-free methods (SPH and RKPM). Vehicle interaction studies exist that include a 

combination of the aforementioned broad categories, as in Nakashima and Oida (2004) for 

example. Table 1 offers a comparison of some of the soil models presented in this paper based on 

the ability of the model to capture work hardening, fracture, and cyclic loading.   

The analytical terramechanics approach remains among the most popular methods used 

for vehicle-terrain interaction studies in MBS simulations (Ding et. al., 2011). This popularity 

can be attributed to the efficiency of most implementations for analytical terramechanics. Of the 

FEA, DEM, and mesh-free methods; the DEM is unattractive due to its computational cost and 

inherent difficulty in capturing cohesive and adhesive tensile phenomena of soil (though it can 

capture soil rupture and other particle phenomenon quite easily). Mesh-free methods are 

computationally intensive and require further testing and validation (Lescoe et. al., 2010). While 

FEA and DEM methods are gaining popularity, the initial resistance towards the use of these 

methods was due to the computational intensity required for such terrain-vehicle interaction. 

Considerable progress in computational power of personal computing systems is making this 

avenue of analysis more appealing.  FEA implementations of soil plasticity that employ highly 

efficient algorithms have been developed in recent decades, often with quadratic rates of 

convergence, for the solution of the plasticity equations. Leveraging these algorithms within a 

FEA/MBS environment will allow for the development of high fidelity vehicle-terrain 

interaction models.  
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Considering the continuum-based soil models category of Table 1, it can be seen that of 

the models presented many capture both work hardening as well as cyclic loading. Cam-Clay 

type soil models offer an attractive entry to the modeling of soils through FEA plasticity theory 

because of the sequential developments of these types of models and the general acceptance of 

such models in the geomechanics community. Cam-Clay models began with infinitesimal strain 

assumptions and have been developed to the case of finite strains. Furthermore, Cam-Clay 

models have been extended to capture the cyclic behavior of soils (Carter et al., 1982). 

 

7. CONTINUUM SOIL PLASTICITY FE IMPLEMENTATION 

The rate form of the constitutive equations can be used with other plasticity equations to define a 

set of differential equations that can be integrated using implicit integration methods or the return 

mapping algorithm. The plasticity equations presented in section 3.1 are typically solved in 

either an implicit or explicit fashion. The explicit solution, while easier, requires small time steps 

for stability. Implicit schemes are more computationally intensive, but are stable; small times 

steps may still be needed for accuracy.  

7.1  Integration Algorithm  

The constitutive equations that govern the behavior of the hyperelastic elastoplastic finite 

deformation Cam-Clay model (Borja et al., 1996) are summarized in this section for convenience. 

The yield function is defined by 

                                                         
2

2
, , ( )c c

Q
f f P Q P P P P

M
                                          (28) 
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where P , Q , cP , and M  are the finite deformation analogs of the parameters defined for the 

infinitesimal case using the Kirchhoff stress tensor. The hardening law expressed in terms of the 

plastic component of the volumetric strain is given by 
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p pc
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where pJ is the plastic component of the Jacobian. The parameters ̂  and ̂  can be calculated 

from the corresponding infinitesimal model analogs. The discrete flow rule at time 1nt   for 

implicit time integration in the space defined by the elastic Eulerian logarithmic stretches can be 

written as 
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where   is the Kirchhoff stress tensor, and    is a plastic multiplier. 

The above equations can be shown to lead to the following set of equations that can be 

used to define a scalar return mapping algorithm (Borja, 1998) in the invariants of the elastic 

logarithmic stretches 
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                                   (31) 

An example implicit integration scheme for the finite deformation Cam-Clay plasticity soil 

model can be developed by considering Eq. 32 as a set of simultaneous nonlinear equations. An 

application of the Newton-Raphson method can be used to solve this set of nonlinear equations. 

To this end, the residual vector r  and the vector of unknowns x  are written as follows:   
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The Newton-Raphson solution procedure requires the iterative solution of the algebraic system 

 p p p p    r x x r , where px  is the vector of Newton differences. A closed form expression 

for the consistent tangent operator  p p r x  can be found and the algorithm can be made more 

efficient by the application of the static condensation technique (Borja et al., 1996). 

 

8. INTEGRATION OF SOIL PLASTICITY WITH ANCF/MBS ALGORITHMS 

The FE implementation of the soil mechanics plasticity equations requires the use of an approach 

that allows employing general constitutive models. The vehicle/soil interaction can lead to a 

significant change in geometry that cannot be captured using finite elements that employ only 

translational displacement coordinates without significant refinement. In some soil applications, 

such a significant change in geometry may require the use of elements that employ gradients and 

accurately capture curvature changes. This requirement can be met using the FE absolute nodal 

coordinate formulation (ANCF). 

 8.1 Absolute Nodal Coordinate Formulation (ANCF) 

ANCF finite elements do not employ infinitesimal or finite rotations as nodal coordinates; 

instead, absolute slopes and displacements at the nodal points are used as the element nodal 

coordinates. The position vector jr  of an arbitrary point on element j  can be defined in a global 

coordinate system XYZ as    , ,j j j j j jx y z tr S e .  In this equation, ,j jx y , and jz  are the 
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element spatial coordinates, jS  is the shape function matrix, je  is the vector of element nodal 

coordinates, and t  is time. The nodal coordinate vector jke  at node k can be defined as follows: 

TT T Tjk jk jk
jk jkT

j j jx y z

        
                

r r r
e r                               (33) 

Fully parameterized ANCF finite elements allow using a general continuum mechanics approach 

to define the Green-Lagrange strain tensor   2T ε J J I , where J  is the matrix of position 

vector gradients. In dynamic soil problems, ANCF leads to a constant inertia matrix and to zero 

Coriolis and centrifugal forces. The mass matrix obtained using ANCF finite elements can 

always be written as 
j

j j j j j

V
dV M S S , where j  and jV  are, respectively, the mass density 

and volume of the finite element. ANCF finite elements allow for straight forward 

implementation of general constitutive models including the continuum mechanics-based soil 

models discussed in this paper.  

8.2 Dynamic Equations 

For a finite element or a deformable body, the principle of virtual work can be written using the 

reference configuration as 

                                                2 : 0T T
P bV

V V

dV dV dV       r r σ ε f r                                 (34) 

In this equation, V  is the volume,   is the mass density, r  is the global position vector of an 

arbitrary point, 2Pσ  is the second Piola Kirchhoff stress tensor, ε  is the Green-Lagrange strain 

tensor, and bf  is the vector of body forces. The second term in the preceding equation can be 

recognized as the virtual work of the elastic forces, it can be rewritten to define the generalized 

elastic forces, that is 
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                                                          2 : T
s P s

V

W dV   σ ε Q e                                                 (35) 

Where e  is the virtual change in the nodal coordinates associated with a particular ANCF finite 

element or a body, and sQ  is the vector of the generalized elastic forces. The vector of elastic 

forces often takes a fairly complicated form, especially in the case of plasticity formulations, and 

is obtained using numerical integration methods. The principle of virtual work leads to the 

following equations of motion:  

                                                                   + - =s eMe Q Q 0                                                        (36) 

where M  is the symmetric mass matrix, and eQ  is the vector of body applied nodal forces.  

8.3 Integration with MBS Algorithms 

The objective of this paper is to present a review of soil mechanics formulations that can be 

integrated with computational MBS algorithms used for the virtual prototyping of vehicle 

systems. These algorithms allow for modeling rigid, flexible, and very flexible bodies. The small 

deformation of flexible bodies in vehicle systems are often examined using the floating frame of 

reference (FFR) formulation. Therefore, efficient modeling of complex vehicle system dynamics 

requires the implementation of different formulations that can be used for rigid body, small 

deformation, and large and plastic deformation analyses. A Newton-Euler or Lagrangian 

formulation can be used to model rigid bodies, the FFR formulation that employs two sets of 

coordinates (reference and elastic) can be used to model small deformations, and ANCF finite 

elements can be used to model large and plastic deformations including soil deformations.  

MBS algorithms are designed to exploit the sparse matrix structure of the resulting 

dynamic equations. Because ANCF finite elements lead to a constant inertia matrix, Cholesky 

coordinates can be used to obtain an identity generalized mass matrix, leading to an optimum 
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sparse matrix structure. Computational MBS algorithms are also designed to solve a system of 

differential and algebraic equations. The differential equations define the system equations of 

motion, while the algebraic equations define the joint constraints and specified motion 

trajectories. The nonlinear algebraic constraint equations can be written in a vector form as 

 , t C q 0 , where q  is the vector of the system generalized coordinates, and t  is time. Using 

the constraint equations and the equations of motion, the augmented form of the equations of 

motion can be written as (Shabana, 2005):  
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where subscripts ,r f  and a  refer, respectively, to reference, elastic, and absolute nodal 

coordinates, rrM , rfM , frM , ffM  are the inertia sub-matrices that appear in the FFR 

formulation, aaM  is the ANCF constant symmetric mass matrix, qC  is the constraint Jacobian 

matrix, λ  is the vector of Lagrange multipliers, rQ , fQ , and aQ  are the generalized forces 

associated with the reference, elastic, and absolute nodal coordinates, respectively, and cQ  is a 

quadratic velocity vector that results from the differentiation of the kinematic constraint 

equations twice with respect to time, that is cqC q Q . The generalized coordinates rq  and fq  

are used in the FFR formulation to describe the motion of rigid and flexible bodies that 

experience small deformations. The vector aq  is the vector of absolute nodal coordinates used to 

describe the motion of flexible bodies that may undergo large displacement as well as large and 

plastic deformations as in the case of soils. The vector aq  includes the nodal coordinate vector e  
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of all ANCF bodies, including the ANCF soil coordinates. Similarly, the mass matrix aaM  

includes the soil inertia matrix as well as the inertia of the vehicle components modeled using 

ANCF finite elements. This mass matrix can be made into an identity mass matrix using 

Cholesky coordinates, leading to an optimum sparse matrix structure. The generalized force 

vector aQ  includes also the contributions of the forces eQ  and sQ  of Eq. 37. The vectors eQ  

and sQ  account for the vehicle soil interaction forces.  

The solution of Eq. 38 defines the vector of accelerations and Lagrange multipliers. The 

independent accelerations can be integrated to determine the coordinates and velocities including 

those of the soil. The soil coordinates can be used to determine the total strain components that 

enter into the formulation of the soil constitutive equations. Knowing the strains, the soil 

properties, yield function, and the flow rule; the state of soil deformation (elastic or plastic) can 

be determined as previously discussed in this paper. Knowing the state of deformation, the 

constitutive model appropriate for this state can be used to determine the elastic force vector sQ . 

Therefore, the structure of Eq. 38 allows for systematically integrating soil models into MBS 

algorithms used in the virtual prototyping of complex vehicle systems. 

 

9. SUMMARY 

In this paper, soil mechanics formulations that can be integrated with FE/MBS algorithms to 

study vehicle dynamics are reviewed. Several simple models including analytical terramechanics 

models are discussed. Bekker’s model as well as other parametric and analytical terramechanics 

models have been used in the study of track/soil interaction and can be implemented in MBS 

algorithms using simple discrete force elements. These simple models, however, have serious 

limitations because they do not capture the distributed elasticity and plasticity of the soil. The 
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limitations of the discrete element method (DEM) are also discussed in this paper. More general 

continuum plasticity soil formulations are reviewed. Among the continuum soil plasticity 

formulations discussed in this paper are the Mohr-Coulomb, Drucker-Prager, modified Cam-

Clay, Barcelona Basic, elasto-plastic cap model for partially saturated soil, viscoplastic cap, and 

bounding surface plasticity unsaturated models. 

 Existing computer codes that are used in the soil modeling are reviewed. The integration 

algorithm that is commonly used to solve the plasticity equations is discussed. This algorithm 

can be integrated within the absolute nodal coordinate formulation (ANCF) to develop a 

computational procedure that allows for the study of vehicle/soil interaction. The ANCF/soil 

model integration will be the subject of future investigations.  
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Category Soil Model 
Hardening or Work 

Hardening Fracture
Cyclic 

Loading

  

  

Continuum Based 
Models 

  

  

  

  

Mohr Coulomb Elastic Perfectly-
Plastic  O    

Drucker-Prager  O    

Modified Clam-Clay O   O  

Elasto-Plastic Cap Model for 
Partially Saturated Soils O     

Visco-Plastic Cap Model O     

Bounding Surface Plasticity 
Unsaturated Soil Model O    O 

Elasto-Plastic Barcelona Basic 
Model O   O 

Terramechanics 
Models 

  

Bekker's Soil Model     O 

Modified Bekker Soil Model  O   O 

Particle Based 
Models 

  

Discrete Element Method   O   

Smoothed Particle 
Hydrodynamics   O   

 

Table 1 Summary of Soil Models 
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(a)                                                    (b) 

Figure 1 Response of soil with respect to shearing (Whitlow, 1995) 

 

Figure 2 Stress at a point R units away from the point load (Wong, 2010) 
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Figure 3 Contact area under a circular loading area (Wong, 2010) 

 

Figure 4 Stress at a point due to a rectangular loading area (Wong, 2010) 
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Figure 5 Idealized flexible track and terrain interaction (Wong, 2010) 

 (a) Mohr-Coulomb      (b) Drucker-Prager   (c) Strain-hardening cap model   (d) Lade-Duncan 

Figure 6 Failure surfaces in stress space (Brinkgreve, 2005)    

 

(a)                                                                                (b) 

Figure 7 The Modified Cam-Clay model (An, 2010) 
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Figure 8 Static yield surface for Cap Model (Kohler, 2007) 

 

 

Figure 9 Yield surface of the extended cap model in terms of net stress and matric suction 

(Kohler, 2007) 


