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Abstract

We aim to characterize the maximum link throughput of a multi-channel opportunistic communi-
cation system. The states of these channels evolve as independent and identically distributed Markov
processes (the Gilbert-Elliot channel model). A user, with limited sensing and access capability, chooses
one channel to sense and access in each slot and collects a reward determined by the state of the chosen
channel. Such a problem arises in cognitive radio networks for spectrum overlay, opportunistic trans-
missions in fading environments, and resource-constrained jamming and anti-jamming. The objective of
this report is to characterize the optimal performance of such systems. The problem can be generally
formulated as obtaining the maximum expected long-term reward of a partially observable Markov
decision process or a restless multi-armed bandit process, for which analytical characterizations are
rare. Exploiting the structure and optimality of the myopic channel selection policy established recently,
we obtain a closed-form expression of the maximum link throughput for two-channel systems and lower
and upper bounds when there are more than two channels. These results allow us to study the rate at
which the optimal performance of an opportunistic system increases with the number of channels and

to obtain the limiting performance as the number of channels approaches to infinity.
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. INTRODUCTION

The fundamental idea of opportunistic communications igdgpathe transmission parameters
(data rate, modulation, transmission power, etc) according to the state of the communication envi-
ronment including, for example, fading conditions, interference level, and buffer state. Since the
seminal work by Knopp and Humblet in 1995 [1], the concept of opportunistic communications
has found applications beyond transmission over fading channels. An emerging application is
cognitive radios for spectrum overlay (also referred to as opportunistic spectrum access), where
secondary users search in the spectrum for idle channels temporarily unused by primary users
[2]. Another application is resource-constrained jamming and anti-jamming, where a jammer
seeks channels occupied by users or a user tries to avoid jammers.

We take a simplified model of these opportunistic communication systems/N\vigarallel
channels. Thesév channels are modeled as independent and identically distributed Gilbert-
Elliot channels [3] as illustrated in Fig. 1. The state of a channel — “goddl”of “bad”

(0) — indicates the desirability of accessing this channel and determines the resulting reward.
With limited sensing and access capability, a user chooses one of the channels to sense and
access in each slot, aiming to maximize its expected long-term rewerd, throughput). The
objective of this report is to characterize analytically the maximum throughput of such a system.
In particular, we are interested in the relationship between the maximum throughput and the

number of channels.

Po1

Pao (bad) (good) P

DP1o

Fig. 1. The Gilbert-Elliot channel model.

This problem can be treated as a partially observable Markov decision process (POMDP) [4]

or more specifically, a restless multi-armed bandit process [5] due to the independence across
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channels. The maximum throughput of the multi-channel opportunistic system is essentially
the maximum expected total reward, or the value function, of a POMDP [6]. Unfortunately,

obtaining optimal solutions to POMDPSs, even numerically, is often intractable, and closed-form
expressions for value functions are rare.

In this report, we obtain a closed-form expression of the maximum throughput for two-channel
opportunistic systems. For systems with more than two channels, we develop lower and upper
bounds that monotonically tighten as the numbeof channels increases. These results allow
us to study the rate at which the optimal performance of an opportunistic system increases with
N and to obtain the limiting performance &é approaches to infinity. They demonstrate that
the optimal link throughput of a multi-channel opportunistic system with limited sensing quickly
saturates as the number of channel increases.

Our analysis hinges on the structure and optimality of the myopic policy established in [7],
[8]. The optimality of the myopic policy makes it sufficient to obtain the maximum throughput
from the performance of the myopic policy, and the simple structure of the myopic policy makes
it possible to characterize analytically its performance. Specifically, based on the structure of
the myopic policy, we show that the performance of the myopic policy is determined by the
steady-state distributions of a discrete random process with countable sample space-Ror
this random process is a first-order Markov chain. We obtain the stationary distribution of this
Markov chain in closed-form, leading to exact characterizations of the maximum throughput. For
N > 2, we construct first-order Markov processes that stochastically dominate or are dominated
by the discrete random process. The stationary distributions of the former, again obtained in

closed-forms, lead to lower and upper bounds on the maximum throughput.

[I. PROBLEM FORMULATION

We consider the scenario where a user is trying to access ttede®s spectrum using a
slotted transmission structure. The spectrum consisfé mfdependent and statistically identical
channels. The stat§;(¢) of channel: in slot ¢ is given by a two-state discrete-time Markov
chain shown in Fig. 1.

At the beginning of each slot, the user selects one ofhehannels to sense. If the channel
is sensed to be in the “good” state (stajethe user transmits and collects one unit of reward.

Otherwise the user does not transmit (or transmits at a lower rate), collects no reward, and waits
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until the next slot to make another choice. The objective is to maximize the average reward
(throughput) over a horizon df’ slots by choosing judiciously a sensing policy that governs
channel selection in each slot.

Due to limited sensing, the system stafg(t),---,Sx(t)] € {0,1}" in slot ¢ is not fully
observable to the user. It can, however, infer the state from its decision and observation history. It
has been shown that a sufficient statistic of the system for optimal decision making is given by the
conditional probability that each channel is in statgven all past decisions and observations [4].
Referred to as the belief vector, this sufficient statistic is denoteﬁ(byé [wi(t), -+ wn(t)],
wherew;(t) is the conditional probability that;(¢) = 1. Given the sensing actiom and the

observationS, in slot ¢, the belief vector for slot + 1 can be obtained as follows.

P11, a=1,9,=1
wi(t+1) = ¢ por, a=1,5,=0 . 1)
wi(t)p1n + (1 — wi(t))por, a#1i
A sensing policyr specifies a sequence of functions= [ry,m, - -+, 7] wherer; maps a
belief vector()(¢) to a sensing action(t) € {1,---, N} for slot¢. Multi-channel opportunistic

access can thus be formulated as the following stochastic control problem.

Y

> R(m(Q))1)

t=1

™ = argmax E,
K

where R(m;(€2(t))) is the reward obtained when the belief (Xt) and channelr;(2(¢)) is
selected, and(1) is the initial belief vector. If no information on the initial system state is
available, each entry of)(1) can be set to the stationary distributiay of the underlying
Markov chain:

W, = — P )
Po1 + P1o

[1l. STRUCTURE AND OPTIMALITY OF MYOPIC POLICY

A. The Value Function

Let V4(£2) be the value function, which represents the maximum expected total reward that can
be obtained starting from slotgiven the current belief vectd?. Given that the user takes action
a and observes,,, the reward that can be accumulated starting fromistainsists of two parts:

the immediate reward, (2) = w, and the maximum expected future rewafd (7 (2|a, s,)),
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where 7 (Q|a, s,) denotes the updated belief vector for siot 1 as given in (1). Averaging
over all possible observatiorts, and maximizing over all actions, we arrive at the following

optimality equation.

VT(Q) = ,E-)-J-}fN Wa

a=1

V(@) = max (wi+w.Visr (T (Qa, 1)) + (1 = wa)Verr (T (Qa, 0)) - 3)
In theory, the optimal policyr* and its performancé’;(€),) can be obtained by solving the
above dynamic programming. Unfortunately, due to the impact of the current action on the future
reward and the uncountable space of the belief veQtoobtaining the optimal solution using
directly the above recursive equations is computationally prohibitive. Even when approximate
numerical solutions can be obtained, they do not provide insight into system design or analytical

characterizations of the optimal performari¢éQ(1)).

B. The Myopic Policy

A myopic policy ignores the impact of the current action on the future reward, focusing solely
on maximizing the expected immediate rewdt@2). Myopic policies are thus stationary. The

myopic actiona under belief stat€) = |w,, - - - ,wy] iS simply given by

a(2) = arg Imax wo. (4)

In general, obtaining the myopic action in each slot requires the recursive update of the
belief vector() as given in (1), which requires the knowledge of the transition probabilities
{pi;}. Interestingly, it has been shown in [7], [9] that the myopic policy has a simple structure
that does not need the update of the belief vector or the precise knowledge of the transition
probabilities.

The basic structure of the myopic policy is a round-robin scheme based on a circular ordering
of the channels. Fop,; > py, the circular order is constant and determined by a descending
order of the initial belief values. The myopic action is to stay in the same channel when it is
good (statel) and switch to the next channel in the circular order when it is bad. In the case
of p11 < po1, the circular order is reversed in every slot with the initial order determined by the
initial belief values. The myopic policy stays in the same channel when it is bad; otherwise, it

switches to the next channel in the current circular order.



TECHNICAL REPORT TR-07-04UC DAVIS, JULY 2007. 6

Another way to see the channel switching structure of the myopic policy is through the last visit
to each channel (once every channel has been visited at least once). Specifically,>fqr,,,
when a channel switch is needed, the policy selects the channel visited the longest time ago. For
p11 < po1, When a channel switch is needed, the policy selects, among those channels to which
the last visit occurred an even number of slots ago, the one most recently visited. If there are
no such channels, the user chooses the channel visited the longest time ago.

Note that the above simple structure of the myopic policy reveals that other than the order of
p11 andpgi, the knowledge of the transition probabilities are unnecessary.

Surprisingly, the myopic policy with such a simple and robust structure achieves the optimal
performance folV = 2 [7], [9]. It has been conjectured in [7], [9] (based on numerical exaniples
that the optimality of the myopic policy can be generalized\to- 2. In a recent work [8], the

optimality of the myopic policy has been established for a gen&rainder the condition of

P11 > Poi-

C. Smulation Examples

1) Figure 2 below shows the throughput (average reward per slot) as a function of time,
where N = 10, p;; = 0.1,pp; = 0.9. The throughput achieved by the myopic policy
increases with time, which results from the improved information on the channel state
drawn from accumulating observations. This demonstrates that the myopic policy can
learn from observations and track channels with the good state more effectively as the
observations accumulate. Up §0% gain can be achieved over random sensing whose
performance is static with time.

2) Another example is shown in Figure 3, where we assume the channel transition probabilities
change frompg; = 0.1,p1; = 0.6 to po; = 0.4,p;; = 0.9 att = 6. Note that after the
change, each channel is more likely to be in the good state. From Figure 3, we can see
that the myopic policy can track this change in the system model; the throughput improves

significantly aftert = 5.

1Among extensive examplepp: andpi; are randomly chosen from intervdl, 1], N is chosen betweef and 7, and T’
is chosen betweeih and 20. We compare the myopic actions with the optimal actions in each example, which shows that the

myopic policy is optimal.
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IV. LINK THROUGHPUTLIMITS

The objective here is to characterize the link throughpuit lirnof multi-channel opportunistic

access with limited sensing.

A. Uniqueness of Seady-Sate Performance and Its Numerical Evaluation
We first establish the existence and uniqueness of the system steady states under the myopic

policy. The steady-state throughput of the myopic policy is given by

U@ 2 i Ver(@1)

Jim ; (5)
whereV,.7(Q(1)) is the expected total reward obtainedZirslots under the myopic policy when
the initial belief isQ(1).

The simple structure of the myopic policy allows us to work with a Markov reward process
with a finite state space instead of one with an uncountable state spacbglief vectors) as
we encounter in a general POMDP. Details are stated in the Theorem below.

Theorem 1. Let S@(t) denote the state of thieth channel in the current circular ordgi(t),
where the starting point of the circular order is fixed to the myopic aciien,a(t) = 1 for
all t. ThenS(#) 2 [SM(t), S@ (1), -, SM(1)]} forms a2"-state Markov chain with transition
probabilities{g; ;} given in (6), and the performance of the myopic policy is determined by the

Markov reward proceséS(t), R(t)) with R(t) = SM(¢).

P11 = Poi P11 < Po1
" if i) = [T Pir if iy =1
Hk:l Piy.j if 1= 1 k=1 DPir,in—k+1 1 =
qZJZ N e ) q;,j: N f . 7(6)
DPivin Hk:Q Diy gk if 1 = 0 Piq 51 Hk:2 Pigin—k+o M = 0
wherei = [iy,ia,- - ,in]y ] = [j1,J2: - Jn]-

Proof: The proof follows directly from the structure of the myopic policy by noticing that
SM(¢) determines the channel orderingSiit + 1) and each channel evolves as Markov chains.
Specifically, forpy; > poi, if S®(¢) = 1, the channel ordering i8(t + 1) is the same as that
in S(¢); if SW(t) = 0, the first channel ir5(t) is moved to the last one i8(t + 1) with the
ordering of the restV — 1 channel intact. Fop,;, < po1, if SO (¢) = 0, the first channel irS(t)

remains the first irS(¢ + 1) while the ordering of the rest channels is reversedi(if(¢) = 1,



TECHNICAL REPORT TR-07-04UC DAVIS, JULY 2007. 9

the ordering of allV channels are reversed. The transition probabilities given in (6) thus follow.
LT

From Theorem 1{J(€2(1)) is determined by the Markov reward proce&g¢), R(¢)}. It is easy
to see that the"-state Markov chain{S(¢)} is irreducible and aperiodic, thus has a limiting
distribution. As a consequence, the limit in (5) exists, and the steady-state throughigut
independent of the initial belief value(1).

Theorem 1 also provides a numerical approach to evaludfiryy calculating the limiting
(stationary) distribution oi{§(t)} whose transition probabilities are given in (6). Specifically,
the throughput’ is given by the summation of the limiting probabilities of tha¥& ! states
with first entry S = 1. This numerical approach, however, does not provide an analytical
characterization of the throughpit in terms of the numbeN of channels and the transition
probabilities{p; ;}. In the next section, we obtain analytical expressiong/adnd its scaling

behavior with respect t&v based on a stochastic dominance argument.

B. Analytical Characterization of Throughput

Our analysis hinges on the structure and optimality of the myopic policy given in Sec. IlI-B.
The optimality of the myopic policy makes it sufficient to obtainfrom the performance of the
myopic policy, and the simple structure of the myopic policy makes it possible to characterize
analytically its performance.

1) Transmission Period: From the structure of the myopic policy we can see that the key to
the throughput is how often the user switches channels, or equivalently, how long it stays in
the same channel. When; > py1, the event of channel switch is equivalent to a stathout

reward. The opposite holds whem, < py;: a channel switch corresponds to a skoth reward.

channel switch

-

t
~— =3 Tt~ L,=6 — >

Fig. 4. The transmission period structure.
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We thus introduce the concept of transmission period, which is the time the user stays in the
same channel, as illustrated in Fig. 4. gt denote the length of thith transmission period.
We thus have a discrete-time random procgsg} ; with a sample space of positive integers.
It is easy to show that throughpUt is determined by the average lengthof a transmission
period as given in Lemma 1 below.

K
Yo L

Lemma 1: Let L = limy_oo —— denote the average length of a transmission period. The

throughput limitU is given by

1—-1/L, pu > po
U — ) . (7)
1/L, P11 < Po1
Proof: Whenp,; > po1, the user collect§L,, — 1) units of reward during each transmission
period L, obtainU as the average reward over an infinite number of transmission periods. We

have

YK (L, —1) 1 1
U= lim ==~/ 1 =1-+, (8)
K—co XK L, limge 2;%{1% L
where L denotes the average length of a transmission period.
Whenp,; < po1, the user collectd unit of reward during each transmission period.
YE 1 1 1
U= lim —= = ==. )
Koo B, Ly limp_ oo %L’“ L
(111

C. Link Throughput Limit for N = 2
For N =2, {L;}%2, is a first-order Markov chain. We have the following lemma.
Lemma 2: {L;}2, is an irreducible, recurrent, and aperiodic first-order Markov chain with

the following unique stationary distribution (the limiting distributiopy, }°,.

« Case 11 > por

1—w, =1
)\l = _ 19 ) (10)
wp11 Pio, [>2



TECHNICAL REPORT TR-07-04UC DAVIS, JULY 2007. 11

wherew is the expected probability that the channel we switch to is in stdte., , the expected

belief value of the channel we switch to. It is given by

Py
o= (11)
1+ Po1r — A
2 —po1)° (1=
wherepél) = pooPo1 + Po1p11, A= 1+p§(1)1—1011 (1 o %)

« Case 2:]911 < Po1

o' [=1
)\l - ) (12)
(1—&"pho’por, 1>2
whered’ is the expected probability that the channel we switch to is in dtateis given by
B
/

-, (13)
1-p) +B

w

)

_ _ Po1 (p11—po1)3(1—p11)
= pwpo1 +pupn, B = 14+po1—p11 (1 + 1—(1—1001)(:011—:001))'

wherep!?
Proof: Since{L;}?2, is an irreducible, recurrent, and aperiodic first-order Markov Chain,
if there exists a stationary distributioﬁz A1, Ay o], theny is the limiting distribution.
Case 1: pi1 > pn

The transition matrix@) = {¢;; } of the Markov chain{L;}?° , is

(i+1)

q=1— . 0>
di1 (i+12)901j—2 » | (14)
4ij = Po1 P11 Pio, = 1,7 =2
Let Q(:, k) denote thekth column of Q. We have
Q(:,2
P1o

wherel is the unit column vectofl, 1, ...]7. Based on the definition of stationary distribution,

we have

Q1) =N (16)

NOQ(,2) = A (17)
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Combine (15)-(17), we have:

A
M=1——77"— 18
1 =) (18)
For k > 2, we haveQ(:, k) = Q(:,2)(p11)* 2. Together with the following equations
—
AQ( k) = A, (19)
XQ(2) = X, (20)
we obtain
A = Aophy? (21)

Substituting (19) and (21) into (20), we hayje— 22— Xy, Aop11, Aap?y, - - Q5 2) = Ns.

1-p11’
Solving for \,, we have\, = wp,y, wWhich gives us the stationary distribution as

l—o, k=1
=93, (22)
wpi1 Pio, k> ]-7

(2) 3
- _ _ Py _ Po1 _ (p11—=po1)?>(1—p11)
wheres = 1+pgy —A’ andA = 1+P01—p11<1 1—(p11)?+p11P01 )

Case 2: P11 < Po1
The transition matrix@) = {¢;; } of the Markov chain{L;}?° , is

(i+1)

i1 = ) 1>1
T 23)
Gij = P1o  (Poo) *por, i >1,5>2
Similar to Case 1, we can obtain the stationary distributiorof Q as
o, k=1
e = - (24)
(1 - (D,)pOO_ Do, k> 17
N : _ _p (p11—p01)® (1=p11)
wherew’ = 1—P§21)+B’ and B = 1+P0?1—p11(1 + 1—8—poi)(ml—;$1))'
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(111
From Lemma 2 and Lemma 1, we obtain the throughput lithitor N = 2 as given in the
theorem below.

Theorem 2: For N = 2, the throughput limitJ is given by

1— =B pyy > poy
1+w—p11’ —
U — . , (25)
1_5&1,017 P11 < Po1

wherew andw’ are given, respectively, in (22) and (24).

D. Link Throughput Limit for N > 2

For N > 2, it is difficult to obtain the average lengihof a transmission period. Our objective
is to develop lower and upper bounds on the throughput limit

The approach is to construct first-order Markov chains that stochastically dominate or are
dominated by{L;}%2,. The limiting distributions of these first-order Markov chains, which
can be obtained in closed-form, thus lead to lower and upper boundS @ecording to
Lemma 1. Specifically, fop;; > po1, @ lower bound oriJ is obtained by constructing a first-
order Markov chain whose limiting distribution is stochastically dominated by the stationary
distribution of { L }3°,. An upper bound orU is given by a first-order Markov chain whose
stationary distribution stochastically dominates the stationary distributidd.of>° ;. Similarly,

bounds onU for p;; < py; can be obtained.

Theorem 3: For N > 2, we have the following lower and upper bounds on the throughput
limit U.

« Case 111 > por

C W,
<UV< —MM—, 26
C+(1—D+C)(1—p11)_ _1—p11+w0 ( )
. o )N (1
wherew, is given by (2),C' = w,(1 — (p11 — po1)"™), D = wo(1 — (plf_(’;,ill))Qipﬂpoplll)).
o Case 2:])11 < Po1

2) (2)
P1o Pio

1l-—<U<]l— ——— 27

E—punH —  — E — pnG @7)
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2
Wherepﬁo) = P1oPoo + P11P10,

E =p8)(1+po) +pu(l - F),

B 1 po1(p11—po1)*

F = (1 —po1)(1 - WO)(z—pm - 1—(1011—1001)2(1—1701)2)’
B 1 Ppo1(p11—po1)°

G=(1- WO)(Q_pm - 1—(10111—101011)2(11—1001)2)7
1 1 _por(pri—po)*N !

H= (1 wO)(2—p01 1—(171112701)21(1—1701)2)'

« Monotonicity: for both cases, the difference between the upper and lower bounds monoton-
ically decreases withV; for p;; > po1, the lower bound converges to the upper bound as

N — oo.

Proof:
Case 1. pi1 > poi
Let w, denote the belief value of the chosen channel in the first slot of-tieTP. The length

Ly (wy) of this TP has the following distribution.

1— Wk, =1
Pr[Lk(wk) = l] = I—2 . (28)
WEPy1 Pro, [ >1

It is easy to see that i’ > w, thenL,(w’) stochastically dominates,.(w).

Po1

m.v

(b) p11 < por

Fig. 5. Thej-step transition probabilities of the Gilbert-Elliot channel.

From the round-robin structure of the myopic policy, = pé{k), whereJ, = Zﬁi‘ll Ly_;i+1.
Based on the monotonic increasing property of tketep transition probabilityoéﬂ) (see Fig. 5),

we havew, < w,, Wherew, is the stationary distribution of the Gilbert-Elliot channel given in
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(2). Ly(w,) thus stochastically dominatds; (wy), and the expectation of the formdr; (w,) =

1 4+ =, leads to the upper bound 6f given in (26).

1-p11
Next, we prove the lower bound &f by constructing a hypothetical system where the initial

belief value of the chosen channel in a TP is a lower bound of that in the real system. The average
TP length in this hypothetical system is thus smaller than that in the real system, leading to

a lower bound orl/ based on (7). Specifically, sincg, = p{/*) and.J, = SN ' Ly, +1 >

(N+Lg—1-1
1

N+ Ly — 1, we havew;, < p; ). We thus construct a hypothetical system given by a

first-order Markov chair{ L} }3>, with the following transition probability:; ;.
L=y Y, iz1, =1
p(()]1V+i_1) (pll)j_2p107 7’ Z 17 j Z 2

Lemma 3: The stationary distribution of the first order Markov chéiti }>° , is stochastically

(29)

Tij =

dominated by the stationary distribution £} ;.
Proof:
Let w; denote the expected probability that the chosen channel is in state 1 in the first slot of
the k-th transmission period gfL; }7° ;. Assume in thé-th transmission period, the distributions
of L; and L, both equal to the same distributioTn), which may or may not be the statrionary
distribution of { L;}32, . Next we showu;,, > w; ., for anyn > 1 by induction.

Whenn = 1, we have

143k

L.
_ oo i=k— N+25i
W+l = Zl:l]EkaNJer‘ka—l [p(Jl

> SEEL el e = 0Pr(Ly =1)
= E?ilpé\g_lﬂ)‘l

= Wy (30)

Assumewy,y, > wy,,,,, then

14xktn L;
— oo i=k+n—N+2"-7
Wk+n+1 = ElzlEijLanjsz“,ijLnfl[p01

Lk+n = l]PT’(Lk.H/L = l)
> Y2 Er v b Doy T L = D Pr(Ligpn = 1)

= Z?ilp(J)\;_HlPT(LHn =1) (31)
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Sincewyy, > w;,.,, by (28), we have

PT<L/€+H = l) < PT(L;H-n = l)v if 1=1;
Pr(Lisn = 1) = Pr(Li., =1), if 1> 1. (32)

Since the largest number in the serigg; ™'}, is the first one, by (32) and the fact that
S Pr(Lygn =1) = X2, Pr(L,, = 1) = 1, we have

E?imévl_lHPT(LlHn = l) > Eloilpé\g_lﬂpr( ;e+n = l) = Wl/e+n+1 (33)

Combine (31) and (33), we hav@, 1 > wj, ;-
By the above induction, we havg,, > w; ., for anyn > 1. So the stationary distribution
of the first order Markov chaig L} }?° , is dominated by the stationary distribution ok} ;.
(111

The first order Markov chaif L, } 22, has the following transition matri¥ = {s;; }75_,

Si1 = 1— pé]l\/—i-i—l)’ 7> 1

o - . (34)

Sij = P(()]1V+ Dpu)=2pg, i>1,5>2
Let L’ denote the average length of a transmission period/ofSolving for the stationary
distribution of { L} }2°, from S, we obtainZ’, which leads to a lower bound di according to

Lemma 3 and Lemma 1.

Case 2! p11 < pn

In this case, the larger the initial belief of the chosen channel in a given TP, the smaller the
average length of the TP. On the other hand, (7) showslthat inversely proportional to the
average TP length. Thus, similar to the case@f> py;, we will construct hypothetical systems
where the initial belief of the chosen channel in a TP is an upper bound or a lower bound of
that in the real system. The former leads to an upper bound,ahe latter, a lower bound on
U.

Consider first the upper bound. From the structure of the myopic policy, it is clear that when
Ly, is odd, in thek-th TP, the user will switch to the channel visited in tfie— 2)-th TP. As

a consequence, the initial belief. of the k-th TP is given byw, = p%’”“). When L;_; is
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even, we can show that, < pﬁ’“*lﬂ). This is because that fa¥ > 3 and L,_; even, the user

cannot switch to a channel visitdg._; + 2 slots ago, anqb%) decreases with for evenj’s and
% > pl for any evenj and oddi (see Fig. 5). We thus construct a hypothetical system given

by the first-order Markov chaif L} }7° , with the following transition probabilities.

(P, if i is odd, j — 1
- p%ﬂ)(poo)j_zpm, if ¢is odd,j > 2 (35)
v pﬁﬂ), if is even,j =1

L p§i0+4) (poo)’ %po1, if iis even,j > 2

Similar to the proof of Lemma 3, it can be shown that the stationary distributidLpfy° , is
stochastically dominated by that ¢f.;}7° ,. The former leads to the upper bound @fgiven
in (27).

We now consider the lower bound. Similarly, = pﬁ’““) when L;_; is odd. WhenL;,_,
is even, to find a lower bound an,, we need to find the smallest ogdsuch that the last visit
to the channel chosen in thieth TP isj slots ago. From the structure of the myopic policy, the
smallest feasible odglis L,_,+2N —3, which corresponds to the scenario whereNakthannels
are visited in turn from th€k — N + 1)-th TP to thek-th TP withL;,_n.1 = Ly_nio =+ =
Li_o = 2. We thus havev, > p%’H“N_?’). We then construct a hypothetical system given by

the first-order Markov chaif L }>, with the following transition probabilities.

(Pl if 4is odd,j =1
pgioﬂ)(poo)j_zpoh if 7is odd,j > 2
Tij = (i+2N—3) o : (36)
P11 , if 7iseven,j =1
L p%HN_S)(poo)j_me, if 7 is even,j > 2

The stationary distribution of this hypothetical system leads to the lower bourid given
in (27).

Monotonicity
The monotonicity statements can be shown by noticing that for both cases, the lower bound
increases withV, while the upper bound is not a function of.
(111
Coroallary 1. For p;; > po1, the lower bound on throughpudf converges to the constant

upper bound at geometrical ratg;; — po1) as N increases; fop;; < po1, the lower bound on
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U converges to a constant at geometrical rakg — pi1)>.

Proof:
Let z = |p11 — po1|- FOr p11 > po1, after some simplifications, the lower bound has the form
a+ b/(zN + ¢), wherea,b,c (¢ # 0) are constants. The upper bounddist b/c. We have
la+b/ @ 4c)—azbjel _, b/c* as N — oo. Thus the lower bound converges to the upper bound with

T

geometric rater.
For p1; < poi, the lower bound has the forah+ e¢/(z*¥~! + f), whered, e, f (f # 0) are

constants. It converges 0+ ¢/f as N — oo. We havelte/_Hh-d-c/Jl _, ¢/(;f?) as

N — oo. Thus the lower bound converges with geometric rete (1]
Though it is difficult to get a closed-form throughput limit fof > 2, we can calculate the

throughput limit numerically by Theorem 1. We show an example of the throughput limit for

N > 2 andp;; > po; as follows.

Py 703 P1,=08

0.75 ———
~ Y -
7
/
/
/
3 /
5 S
S 0.745[ / The upper bound of the throughput limit
3] o — — — The lower bound of the throughput limit
g | "'\ The throughput limit
he] |
c
[ ]
g |
S 0.74r1!
|
|
[
0.735 ! ‘ * L
3 10 15 20 25 30

number of channels

Fig. 6. The throughput limit fodV > 2 and pi1 > po1.
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E. Link Throughput over A Finite Horizon

It is interesting to note that we can obtain a closed-form expression for the throughput during
a finite period7” under certain conditions.
Theorem 4: Whenp,; > py; and N > T, the maximum expected total reward ovErslots

when the initial belief2(1) is given by the stationary distributian, is a function of7" andw,:

Viwo T) = 1%(;;1123)0 s 22111):)’(19111]2;)2_ o) +wo +pr1wo + (1 —wo)w, (37)
Proof: From the structure of the myopic policy, if the user observes stétem a channel,
it will stay on that channel. Otherwise, it will switch to a new channel. Cledrlydoes not
depend onV since at mosf’ channels need to be considered duringlots.
In the first slot, the user randomly chooses one channel andvgetsit of reward. Then the
user will either stay or switch. This process is a Markov chain with states “stay” and “switch”

as shown below.

1 —pn

P11 1—w,

Wo

Fig. 7. The Markov chain with states “stay” and “switch”.

If the user observes after the fist slot, it will stay and get;; unit of reward. Otherwise it
will switch to a new channel and get, unit of reward. Sol” is determined by the distribution

of the states of the above two-state Markov chain.
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- - M-1
1 —
V(wo, T) _ ZTM_:ll [wO 1_ wo] b1 P11 b1 +w,
Wo 1 - Wo Wo
- -
1 —
= E?\}_:zl [wo 1 - Wo] b b b + Wo + P11Wo + (1 - wo)“o
we 1—uw, W
1 w, 1— —w,)M
= E?\l,_:zl [u)o 1— wo]{4 P11 4 (p11 w )
L=pu+wo | w, 1-ppy L —pu+wo
I—pn pu—1 p
Hoa } H + wo + pr1woe + (1 — wy)w,
—W, W W
wo(T —2) wo(wo — p11)*(1 = (P11 — wo) T 72)
= + + wo + Pr1we + (1 — wy)w,
1 —pi+w, (1 —pi1 +w,)? ( )
(38)
1]

From the above, we immediately see the link throughput lithias N — oo is given as

follows:

U= lim Viwo, T) o

= 39
T—o0 T 1—pu+w, (39)

which agrees with the upper bound given in Theorem 3.

F. Numerical Examples

In this section, we demonstrate the tightness of the bound& agiven in Sec. IV-D by
examining the relative differenc& V') between the upper and the lower bound, wh&¥) is
defined as the difference of the lower and upper bound divided by the upper bound. In Fig. 8, we
plot d(N = 5) with respect to the upper bound fpr; > po;. From Fig. 8 we observe that for
most values of,; andpy;, d(N = 5) is below 6%, demonstrating the tightness of the bounds
even for a small number of channels. Furthermore, Fig. 8 shows that the bounds are tighter for

largerpg;. Similarly observations can be drawn from Fig. 9 for the casg;pK po;.
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Relative Difference

.
d(N)=0.0581

0.1 0.2 0.3 0.4

Fig. 8. The relative differencé(N = 5) between the upper and the lower bound fer > po:.

—e—1p,,701

Raletive Difference

d(N)=0.086~y

0.1 0.2 0.3 0.4

Fig. 9. The relative differencé(N = 5) between the

upper and the lower bound #er < po1.
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In Fig. 10 and 11 we examine the rate at which the lower bound approaches to the upper
bound asN increases. Specifically, we plot the ratio &fN = 10) to d(N = 3). We observe
that in both cases, the lower bound approaches to the upper bound quickly. While demonstrating
the usefulness of the bounds for smal| this observation conveys a pessimistic message: the
optimal link throughput of a multi-channel opportunistic system with limited sensing quickly

saturates agv increases.

Convergence rate to lower bound

Fig. 10. The rate at which the lower bound approaches to the upper bouNdireseasesyi1 > po1).

10

10"

Convergence rate of lower bound

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

[

Fig. 11. The rate at which the lower bound approaches to the upper bouNdireseasesyi1 < po1).
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V. CONCLUSION AND FUTURE WORK

In this report, we have analyzed the optimal link throughputmalti-channel opportunistic
communication systems under an i.i.d. Gilbert-Elliot channel model. The obtained analytical
results allow us to systematically examine the impact of the number of channels and channel
dynamics (transition probabilities) on the system performance. Future work includes the gen-
eralization to cases with sensing errors and non-identical channels. The former can again be
addressed by exploiting the structure and optimality of the myopic policy in the presence of

sensing errors as established in [10].

REFERENCES

[1] R. Knopp and P. Humblet, “Information capacity and powentcol in single cell multi-user communications,” Froc.
Intl Conf. Comm., (Seattle, WA), pp. 331-335, June 1995.

[2] Q. Zhao and B. Sadler, “A Survey of Dynamic Spectrum Access: Signal Processing, Networking, and Regulatory Policy,”
IEEE Sgnal Processing magazine, vol. 24, pp. 79-89, May 2007.

[3] E.N. Gilbert, “Capacity of burst-noise channels,” Bell Syst. Tech. J., vol. 39, pp. 1253-1265, Sept. 1960.

[4] R. Smallwood and E. Sondik, “The optimal control of partially ovservable Markov processes over a finite horizon,”
Operations Research, pp. 1071-1088, 1971.

[5] P.Whittle, "Restless bandits: Activity allocation in a changing world”Jaurnal of Applied Probability, Volume 25, 1988.

[6] Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized Cognitive MAC for Opportunistic Spectrum Access in Ad Hoc
Networks: A POMDP FrameworkEEE JSAC, April 2007.

[7] Q. Zhao and B. Krishnamachari, “Structure and optimality of myopic sensing for opportunistic spectrum accesx;’ in
of IEEE CogNet, June, 2007.

[8] T.Javidi, B. Krishnamachari, Q. Zhao, and M. Liu, “Optimality of Myopic Sensing in Multi-Channel Opportunistic Access,”
in Proc. ofICC, May, 2008.

[9] Q. Zhao, B. Krishnamachari, and K. Liu, “On Myopic Sensing for Multi-Channel Opportunistic Access: Structure,
Optimality, and Performance,” submitted to IEEE Transactions on Wireless Communications in November, 2007, revised
in May, 2008.

[10] Q. Zhao, B. Krishnamachari, and K. Liu, “Low-Complexity Approaches to Spectrum Opportunity TrackinBrban of
CrownCom, August 2007.



