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Abstract

We aim to characterize the maximum link throughput of a multi-channel opportunistic communi-

cation system. The states of these channels evolve as independent and identically distributed Markov

processes (the Gilbert-Elliot channel model). A user, with limited sensing and access capability, chooses

one channel to sense and access in each slot and collects a reward determined by the state of the chosen

channel. Such a problem arises in cognitive radio networks for spectrum overlay, opportunistic trans-

missions in fading environments, and resource-constrained jamming and anti-jamming. The objective of

this report is to characterize the optimal performance of such systems. The problem can be generally

formulated as obtaining the maximum expected long-term reward of a partially observable Markov

decision process or a restless multi-armed bandit process, for which analytical characterizations are

rare. Exploiting the structure and optimality of the myopic channel selection policy established recently,

we obtain a closed-form expression of the maximum link throughput for two-channel systems and lower

and upper bounds when there are more than two channels. These results allow us to study the rate at

which the optimal performance of an opportunistic system increases with the number of channels and

to obtain the limiting performance as the number of channels approaches to infinity.
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I. INTRODUCTION

The fundamental idea of opportunistic communications is to adapt the transmission parameters

(data rate, modulation, transmission power, etc) according to the state of the communication envi-

ronment including, for example, fading conditions, interference level, and buffer state. Since the

seminal work by Knopp and Humblet in 1995 [1], the concept of opportunistic communications

has found applications beyond transmission over fading channels. An emerging application is

cognitive radios for spectrum overlay (also referred to as opportunistic spectrum access), where

secondary users search in the spectrum for idle channels temporarily unused by primary users

[2]. Another application is resource-constrained jamming and anti-jamming, where a jammer

seeks channels occupied by users or a user tries to avoid jammers.

We take a simplified model of these opportunistic communication systems withN parallel

channels. TheseN channels are modeled as independent and identically distributed Gilbert-

Elliot channels [3] as illustrated in Fig. 1. The state of a channel — “good” (1) or “bad”

(0) — indicates the desirability of accessing this channel and determines the resulting reward.

With limited sensing and access capability, a user chooses one of the channels to sense and

access in each slot, aiming to maximize its expected long-term reward (i.e., , throughput). The

objective of this report is to characterize analytically the maximum throughput of such a system.

In particular, we are interested in the relationship between the maximum throughput and the

number of channels.

0 1

(bad) (good)

p01

p11p00

p10

Fig. 1. The Gilbert-Elliot channel model.

This problem can be treated as a partially observable Markov decision process (POMDP) [4]

or more specifically, a restless multi-armed bandit process [5] due to the independence across
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channels. The maximum throughput of the multi-channel opportunistic system is essentially

the maximum expected total reward, or the value function, of a POMDP [6]. Unfortunately,

obtaining optimal solutions to POMDPs, even numerically, is often intractable, and closed-form

expressions for value functions are rare.

In this report, we obtain a closed-form expression of the maximum throughput for two-channel

opportunistic systems. For systems with more than two channels, we develop lower and upper

bounds that monotonically tighten as the numberN of channels increases. These results allow

us to study the rate at which the optimal performance of an opportunistic system increases with

N and to obtain the limiting performance asN approaches to infinity. They demonstrate that

the optimal link throughput of a multi-channel opportunistic system with limited sensing quickly

saturates as the number of channel increases.

Our analysis hinges on the structure and optimality of the myopic policy established in [7],

[8]. The optimality of the myopic policy makes it sufficient to obtain the maximum throughput

from the performance of the myopic policy, and the simple structure of the myopic policy makes

it possible to characterize analytically its performance. Specifically, based on the structure of

the myopic policy, we show that the performance of the myopic policy is determined by the

steady-state distributions of a discrete random process with countable sample space. ForN = 2,

this random process is a first-order Markov chain. We obtain the stationary distribution of this

Markov chain in closed-form, leading to exact characterizations of the maximum throughput. For

N > 2, we construct first-order Markov processes that stochastically dominate or are dominated

by the discrete random process. The stationary distributions of the former, again obtained in

closed-forms, lead to lower and upper bounds on the maximum throughput.

II. PROBLEM FORMULATION

We consider the scenario where a user is trying to access the wireless spectrum using a

slotted transmission structure. The spectrum consists ofN independent and statistically identical

channels. The stateSi(t) of channeli in slot t is given by a two-state discrete-time Markov

chain shown in Fig. 1.

At the beginning of each slot, the user selects one of theN channels to sense. If the channel

is sensed to be in the “good” state (state1), the user transmits and collects one unit of reward.

Otherwise the user does not transmit (or transmits at a lower rate), collects no reward, and waits
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until the next slot to make another choice. The objective is to maximize the average reward

(throughput) over a horizon ofT slots by choosing judiciously a sensing policy that governs

channel selection in each slot.

Due to limited sensing, the system state[S1(t), · · · , SN(t)] ∈ {0, 1}N in slot t is not fully

observable to the user. It can, however, infer the state from its decision and observation history. It

has been shown that a sufficient statistic of the system for optimal decision making is given by the

conditional probability that each channel is in state1 given all past decisions and observations [4].

Referred to as the belief vector, this sufficient statistic is denoted byΩ(t)
∆
= [ω1(t), · · · , ωN(t)],

whereωi(t) is the conditional probability thatSi(t) = 1. Given the sensing actiona and the

observationSa in slot t, the belief vector for slott + 1 can be obtained as follows.

ωi(t + 1) =



















p11, a = i, Sa = 1

p01, a = i, Sa = 0

ωi(t)p11 + (1 − ωi(t))p01, a 6= i

. (1)

A sensing policyπ specifies a sequence of functionsπ = [π1, π2, · · · , πT ] whereπt maps a

belief vectorΩ(t) to a sensing actiona(t) ∈ {1, · · · , N} for slot t. Multi-channel opportunistic

access can thus be formulated as the following stochastic control problem.

π∗ = arg max
π

Eπ

[

T
∑

t=1

R(πt(Ω(t)))|Ω(1)

]

,

where R(πt(Ω(t))) is the reward obtained when the belief isΩ(t) and channelπt(Ω(t)) is

selected, andΩ(1) is the initial belief vector. If no information on the initial system state is

available, each entry ofΩ(1) can be set to the stationary distributionωo of the underlying

Markov chain:

ωo =
p01

p01 + p10
. (2)

III. STRUCTURE AND OPTIMALITY OF MYOPIC POLICY

A. The Value Function

Let Vt(Ω) be the value function, which represents the maximum expected total reward that can

be obtained starting from slott given the current belief vectorΩ. Given that the user takes action

a and observesSa, the reward that can be accumulated starting from slott consists of two parts:

the immediate rewardRa(Ω) = ωa and the maximum expected future rewardVt+1(T (Ω|a, sa)),
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whereT (Ω|a, sa) denotes the updated belief vector for slott + 1 as given in (1). Averaging

over all possible observationsSa and maximizing over all actionsa, we arrive at the following

optimality equation.

VT (Ω) = max
a=1,··· ,N

ωa

Vt(Ω) = max
a=1,··· ,N

(ωa + ωaVt+1 (T (Ω|a, 1))) + (1 − ωa)Vt+1 (T (Ω|a, 0)) . (3)

In theory, the optimal policyπ∗ and its performanceV1(Ωo) can be obtained by solving the

above dynamic programming. Unfortunately, due to the impact of the current action on the future

reward and the uncountable space of the belief vectorΩ, obtaining the optimal solution using

directly the above recursive equations is computationally prohibitive. Even when approximate

numerical solutions can be obtained, they do not provide insight into system design or analytical

characterizations of the optimal performanceV1(Ω(1)).

B. The Myopic Policy

A myopic policy ignores the impact of the current action on the future reward, focusing solely

on maximizing the expected immediate rewardR(Ω). Myopic policies are thus stationary. The

myopic actionâ under belief stateΩ = [ω1, · · · , ωN ] is simply given by

â(Ω) = arg max
a=1,··· ,N

ωa. (4)

In general, obtaining the myopic action in each slot requires the recursive update of the

belief vectorΩ as given in (1), which requires the knowledge of the transition probabilities

{pij}. Interestingly, it has been shown in [7], [9] that the myopic policy has a simple structure

that does not need the update of the belief vector or the precise knowledge of the transition

probabilities.

The basic structure of the myopic policy is a round-robin scheme based on a circular ordering

of the channels. Forp11 ≥ p01, the circular order is constant and determined by a descending

order of the initial belief values. The myopic action is to stay in the same channel when it is

good (state1) and switch to the next channel in the circular order when it is bad. In the case

of p11 < p01, the circular order is reversed in every slot with the initial order determined by the

initial belief values. The myopic policy stays in the same channel when it is bad; otherwise, it

switches to the next channel in the current circular order.
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Another way to see the channel switching structure of the myopic policy is through the last visit

to each channel (once every channel has been visited at least once). Specifically, forp11 ≥ p01,

when a channel switch is needed, the policy selects the channel visited the longest time ago. For

p11 < p01, when a channel switch is needed, the policy selects, among those channels to which

the last visit occurred an even number of slots ago, the one most recently visited. If there are

no such channels, the user chooses the channel visited the longest time ago.

Note that the above simple structure of the myopic policy reveals that other than the order of

p11 andp01, the knowledge of the transition probabilities are unnecessary.

Surprisingly, the myopic policy with such a simple and robust structure achieves the optimal

performance forN = 2 [7], [9]. It has been conjectured in [7], [9] (based on numerical examples1)

that the optimality of the myopic policy can be generalized toN > 2. In a recent work [8], the

optimality of the myopic policy has been established for a generalN under the condition of

p11 > p01.

C. Simulation Examples

1) Figure 2 below shows the throughput (average reward per slot) as a function of time,

where N = 10, p11 = 0.1, p01 = 0.9. The throughput achieved by the myopic policy

increases with time, which results from the improved information on the channel state

drawn from accumulating observations. This demonstrates that the myopic policy can

learn from observations and track channels with the good state more effectively as the

observations accumulate. Up to50% gain can be achieved over random sensing whose

performance is static with time.

2) Another example is shown in Figure 3, where we assume the channel transition probabilities

change fromp01 = 0.1, p11 = 0.6 to p01 = 0.4, p11 = 0.9 at t = 6. Note that after the

change, each channel is more likely to be in the good state. From Figure 3, we can see

that the myopic policy can track this change in the system model; the throughput improves

significantly aftert = 5.

1Among extensive examples,p01 and p11 are randomly chosen from interval[0, 1], N is chosen between3 and 7, and T

is chosen between1 and20. We compare the myopic actions with the optimal actions in each example, which shows that the

myopic policy is optimal.
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Fig. 2. myopic policy v.s. random sensing policy.
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IV. L INK THROUGHPUT L IMITS

The objective here is to characterize the link throughput limit U of multi-channel opportunistic

access with limited sensing.

A. Uniqueness of Steady-State Performance and Its Numerical Evaluation

We first establish the existence and uniqueness of the system steady states under the myopic

policy. The steady-state throughput of the myopic policy is given by

U(Ω(1))
∆
= lim

T→∞

V̂1:T (Ω(1))

T
, (5)

whereV̂1:T (Ω(1)) is the expected total reward obtained inT slots under the myopic policy when

the initial belief isΩ(1).

The simple structure of the myopic policy allows us to work with a Markov reward process

with a finite state space instead of one with an uncountable state space (i.e., belief vectors) as

we encounter in a general POMDP. Details are stated in the Theorem below.

Theorem 1: Let S(i)(t) denote the state of thei-th channel in the current circular orderK(t),

where the starting point of the circular order is fixed to the myopic action,i.e., â(t) = 1 for

all t. Then~S(t)
∆
= [S(1)(t), S(2)(t), · · · , S(N)(t)]} forms a2N -state Markov chain with transition

probabilities{q~i,~j} given in (6), and the performance of the myopic policy is determined by the

Markov reward process(~S(t), R(t)) with R(t) = S(1)(t).

p11 ≥ p01 p11 < p01

q~i,~j =







∏N
k=1 pik,jk

if i1 = 1

pi1,jN

∏N
k=2 pik,jk−1

if i1 = 0
, q~i,~j =







∏N
k=1 pik ,jN−k+1

if i1 = 1

pi1,j1

∏N
k=2 pik,jN−k+2

if i1 = 0
,(6)

where~i = [i1, i2, · · · , iN ], ~j = [j1, j2, · · · , jN ].

Proof: The proof follows directly from the structure of the myopic policy by noticing that

S(1)(t) determines the channel ordering in~S(t+1) and each channel evolves as Markov chains.

Specifically, forp11 ≥ p01, if S(1)(t) = 1, the channel ordering in~S(t + 1) is the same as that

in ~S(t); if S(1)(t) = 0, the first channel in~S(t) is moved to the last one in~S(t + 1) with the

ordering of the restN − 1 channel intact. Forp11 < p01, if S(1)(t) = 0, the first channel in~S(t)

remains the first in~S(t + 1) while the ordering of the rest channels is reversed; ifS(1)(t) = 1,
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the ordering of allN channels are reversed. The transition probabilities given in (6) thus follow.

From Theorem 1,U(Ω(1)) is determined by the Markov reward process{~S(t), R(t)}. It is easy

to see that the2N -state Markov chain{~S(t)} is irreducible and aperiodic, thus has a limiting

distribution. As a consequence, the limit in (5) exists, and the steady-state throughputU is

independent of the initial belief valueΩ(1).

Theorem 1 also provides a numerical approach to evaluatingU by calculating the limiting

(stationary) distribution of{~S(t)} whose transition probabilities are given in (6). Specifically,

the throughputU is given by the summation of the limiting probabilities of those2N−1 states

with first entry S(1) = 1. This numerical approach, however, does not provide an analytical

characterization of the throughputU in terms of the numberN of channels and the transition

probabilities{pi,j}. In the next section, we obtain analytical expressions ofU and its scaling

behavior with respect toN based on a stochastic dominance argument.

B. Analytical Characterization of Throughput

Our analysis hinges on the structure and optimality of the myopic policy given in Sec. III-B.

The optimality of the myopic policy makes it sufficient to obtainU from the performance of the

myopic policy, and the simple structure of the myopic policy makes it possible to characterize

analytically its performance.

1) Transmission Period: From the structure of the myopic policy we can see that the key to

the throughput is how often the user switches channels, or equivalently, how long it stays in

the same channel. Whenp11 ≥ p01, the event of channel switch is equivalent to a slotwithout

reward. The opposite holds whenp11 < p01: a channel switch corresponds to a slotwith reward.

channel switch

Lk = 3 Lk+1 = 6
t

Fig. 4. The transmission period structure.
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We thus introduce the concept of transmission period, which is the time the user stays in the

same channel, as illustrated in Fig. 4. LetLk denote the length of thekth transmission period.

We thus have a discrete-time random process{Lk}
∞
k=1 with a sample space of positive integers.

It is easy to show that throughputU is determined by the average lengthL̄ of a transmission

period as given in Lemma 1 below.

Lemma 1: Let L̄ = limk→∞
ΣK

k=1Lk

K
denote the average length of a transmission period. The

throughput limitU is given by

U =







1 − 1/L̄, p11 ≥ p01

1/L̄, p11 < p01

. (7)

Proof: Whenp11 ≥ p01, the user collects(Lk −1) units of reward during each transmission

periodLk, obtainU as the average reward over an infinite number of transmission periods. We

have

U = lim
K→∞

ΣK
k=1(Lk − 1)

ΣK
k=1Lk

= 1 −
1

limK→∞
ΣK

k=1Lk

K

= 1 −
1

L̄
, (8)

whereL̄ denotes the average length of a transmission period.

Whenp11 < p01, the user collects1 unit of reward during each transmission period.

U = lim
K→∞

ΣK
k=11

ΣK
k=1Lk

=
1

limK→∞
ΣK

i=1Lk

K

=
1

L̄
. (9)

C. Link Throughput Limit for N = 2

For N = 2, {Lk}
∞
k=1 is a first-order Markov chain. We have the following lemma.

Lemma 2: {Lk}
∞
k=1 is an irreducible, recurrent, and aperiodic first-order Markov chain with

the following unique stationary distribution (the limiting distribution){λl}
∞
l=1.

• Case 1:p11 ≥ p01

λl =







1 − ω̄, l = 1

ω̄pl−2
11 p10, l ≥ 2

, (10)
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whereω̄ is the expected probability that the channel we switch to is in state1, i.e., , the expected

belief value of the channel we switch to. It is given by

ω̄ =
p

(2)
01

1 + p
(2)
01 − A

, (11)

wherep
(2)
01 = p00p01 + p01p11, A = p01

1+p01−p11
(1 − (p11−p01)3(1−p11)

1−(p11)2+p11p01
).

• Case 2:p11 < p01

λl =







ω̄′, l = 1

(1 − ω̄′)pl−2
00 p01, l ≥ 2

, (12)

whereω̄′ is the expected probability that the channel we switch to is in state1. It is given by

ω̄′ =
B

1 − p
(2)
11 + B

, (13)

wherep
(2)
11 = p10p01 + p11p11, B = p01

1+p01−p11
(1 + (p11−p01)3(1−p11)

1−(1−p01)(p11−p01)
).

Proof: Since{Lk}
∞
k=1 is an irreducible, recurrent, and aperiodic first-order Markov Chain,

if there exists a stationary distribution
−→
λ = [λ1, .., λi, ...], then

−→
λ is the limiting distribution.

Case 1: p11 ≥ p01

The transition matrixQ = {qij} of the Markov chain{Lk}
∞
k=1 is







qi1 = 1 − p
(i+1)
01 , i ≥ 1

qij = p
(i+1)
01 pj−2

11 p10, i ≥ 1, j ≥ 2.
(14)

Let Q(:, k) denote thekth column ofQ. We have

1 − Q(:, 1) =
Q(:, 2)

p10
, (15)

where1 is the unit column vector[1, 1, ...]T . Based on the definition of stationary distribution,

we have

−→
λ Q(:, 1) = λ1 (16)

−→
λ Q(:, 2) = λ2 (17)
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Combine (15)-(17), we have:

λ1 = 1 −
λ2

(1 − p11)
(18)

For k ≥ 2, we haveQ(:, k) = Q(:, 2)(p11)
k−2. Together with the following equations

−→
λ Q(:, k) = λk, (19)

−→
λ Q(:, 2) = λ2, (20)

we obtain

λk = λ2p
k−2
11 (21)

Substituting (19) and (21) into (20), we have[1 − λ2

1−p11
, λ2, λ2p11, λ2p

2
11, · · ·]Q(:, 2) = λ2.

Solving for λ2, we haveλ2 = ω̄p10, which gives us the stationary distribution as

λk =







1 − ω̄, k = 1

ω̄pk−2
11 p10, k > 1,

(22)

whereω̄ =
p
(2)
01

1+p
(2)
01 −A

, andA = p01

1+p01−p11
(1 − (p11−p01)3(1−p11)

1−(p11)2+p11p01
).

Case 2: p11 < p01

The transition matrixQ = {qij} of the Markov chain{Lk}
∞
k=1 is







qi1 = p
(i+1)
11 , i ≥ 1

qij = p
(i+1)
10 (p00)

j−2p01, i ≥ 1, j ≥ 2
. (23)

Similar to Case 1, we can obtain the stationary distribution
−→
λ of Q as

λk =







ω̄′, k = 1

(1 − ω̄′)pk−2
00 p01, k > 1,

(24)

whereω̄′ = B

1−p
(2)
11 +B

, andB = p01

1+p01−p11
(1 + (p11−p01)3(1−p11)

1−(1−p01)(p11−p01)
).
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From Lemma 2 and Lemma 1, we obtain the throughput limitU for N = 2 as given in the

theorem below.

Theorem 2: For N = 2, the throughput limitU is given by

U =







1 − 1−p11

1+ω̄−p11
, p11 ≥ p01

p01

1−ω̄′+p01
, p11 < p01

, (25)

whereω̄ and ω̄′ are given, respectively, in (22) and (24).

D. Link Throughput Limit for N > 2

For N > 2, it is difficult to obtain the average length̄L of a transmission period. Our objective

is to develop lower and upper bounds on the throughput limitU .

The approach is to construct first-order Markov chains that stochastically dominate or are

dominated by{Lk}
∞
k=1. The limiting distributions of these first-order Markov chains, which

can be obtained in closed-form, thus lead to lower and upper bounds onU according to

Lemma 1. Specifically, forp11 ≥ p01, a lower bound onU is obtained by constructing a first-

order Markov chain whose limiting distribution is stochastically dominated by the stationary

distribution of {Lk}
∞
k=1. An upper bound onU is given by a first-order Markov chain whose

stationary distribution stochastically dominates the stationary distribution of{Lk}
∞
k=1. Similarly,

bounds onU for p11 < p01 can be obtained.

Theorem 3: For N > 2, we have the following lower and upper bounds on the throughput

limit U .

• Case 1:p11 ≥ p01

C

C + (1 − D + C)(1 − p11)
≤ U ≤

ωo

1 − p11 + ωo
, (26)

whereωo is given by (2),C = ωo(1 − (p11 − p01)
N), D = ωo(1 − (p11−p01)N+1(1−p11)

1−(p11)2+p11p01
).

• Case 2:p11 < p01

1 −
p

(2)
10

E − p01H
≤ U ≤ 1 −

p
(2)
10

E − p01G
(27)
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wherep
(2)
10 = p10p00 + p11p10,

E = p
(2)
10 (1 + p01) + p01(1 − F ),

F = (1 − p01)(1 − ωo)(
1

2−p01
− p01(p11−p01)4

1−(p11−p01)2(1−p01)2
),

G = (1 − ωo)(
1

2−p01
− p01(p11−p01)6

1−(p11−p01)2(1−p01)2
),

H = (1 − ωo)(
1

2−p01
− p01(p11−p01)2N−1

1−(p11−p01)2(1−p01)2
).

• Monotonicity: for both cases, the difference between the upper and lower bounds monoton-

ically decreases withN ; for p11 ≥ p01, the lower bound converges to the upper bound as

N → ∞.

Proof:

Case 1: p11 ≥ p01

Let ωk denote the belief value of the chosen channel in the first slot of thek-th TP. The length

Lk(ωk) of this TP has the following distribution.

Pr[Lk(ωk) = l] =







1 − ωk, l = 1

ωkp
l−2
11 p10, l > 1

. (28)

It is easy to see that ifω′ ≥ ω, thenLk(ω
′) stochastically dominatesLk(ω).

p01

j

p
(j)
01

p11

p01

ωo

j1 2 3 4

p
(j)
11

(b) p11 < p01

Fig. 5. Thej-step transition probabilities of the Gilbert-Elliot channel.

From the round-robin structure of the myopic policy,ωk = p
(Jk)
01 , whereJk =

∑N−1
i=1 Lk−i +1.

Based on the monotonic increasing property of thej-step transition probabilityp(j)
01 (see Fig. 5),

we haveωk ≤ ωo, whereωo is the stationary distribution of the Gilbert-Elliot channel given in
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(2). Lk(ωo) thus stochastically dominatesLk(ωk), and the expectation of the former,Lk(ωo) =

1 + ωo

1−p11
, leads to the upper bound ofU given in (26).

Next, we prove the lower bound ofU by constructing a hypothetical system where the initial

belief value of the chosen channel in a TP is a lower bound of that in the real system. The average

TP length in this hypothetical system is thus smaller than that in the real system, leading to

a lower bound onU based on (7). Specifically, sinceωk = p
(Jk)
01 and Jk =

∑N−1
i=1 Lk−i + 1 ≥

N + Lk−1 − 1, we haveωk ≤ p
(N+Lk−1−1)
01 . We thus construct a hypothetical system given by a

first-order Markov chain{L′
k}

∞
k=1 with the following transition probabilityri,j.

ri,j =







1 − p
(N+i−1)
01 , i ≥ 1, j = 1

p
(N+i−1)
01 (p11)

j−2p10, i ≥ 1, j ≥ 2
. (29)

Lemma 3: The stationary distribution of the first order Markov chain{L′
k}

∞
k=1 is stochastically

dominated by the stationary distribution of{Lk}
∞
k=1.

Proof:

Let ω′
k denote the expected probability that the chosen channel is in state 1 in the first slot of

thek-th transmission period of{L′
k}

∞
k=1. Assume in thek-th transmission period, the distributions

of L′
k andLk both equal to the same distribution

−→
λ , which may or may not be the statrionary

distribution of{Lk}
∞
k=1 . Next we showωk+n ≥ ω′

k+n for any n ≥ 1 by induction.

Whenn = 1, we have

ωk+1 = Σ∞
l=1ELk−N+2,···,Lk−1

[p
1+Σk

i=k−N+2Li

01 |Lk = l]Pr(Lk = l)

≥ Σ∞
l=1ELk−N+2,···,Lk−1

[pN−1+Lk

01 |Lk = l]Pr(Lk = l)

= Σ∞
l=1p

N−1+l
01 λl

= ω′
k+1. (30)

Assumeωk+n ≥ ω′
k+n, then

ωk+n+1 = Σ∞
l=1ELk+n−N+2,···,Lk+n−1

[p
1+Σk+n

i=k+n−N+2Li

01 |Lk+n = l]Pr(Lk+n = l)

≥ Σ∞
l=1ELk+n−N+2,···,Lk+n−1

[p
N−1+Lk+n

01 |Lk+n = l]Pr(Lk+n = l)

= Σ∞
l=1p

N−1+l
01 Pr(Lk+n = l) (31)
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Sinceωk+n ≥ ω′
k+n, by (28), we have

Pr(Lk+n = l) ≤ Pr(L′
k+n = l), if l = 1;

Pr(Lk+n = l) ≥ Pr(L′
k+n = l), if l > 1. (32)

Since the largest number in the series{pN−1+l
01 }∞l=1 is the first one, by (32) and the fact that

Σ∞
l=1Pr(Lk+n = l) = Σ∞

l=1Pr(L′
k+n = l) = 1, we have

Σ∞
l=1p

N−1+l
01 Pr(Lk+n = l) ≥ Σ∞

l=1p
N−1+l
01 Pr(L′

k+n = l) = ω′
k+n+1 (33)

Combine (31) and (33), we haveωk+n+1 ≥ ω′
k+n+1.

By the above induction, we haveωk+n ≥ ω′
k+n for any n ≥ 1. So the stationary distribution

of the first order Markov chain{L′
k}

∞
k=1 is dominated by the stationary distribution of{Lk}

∞
k=1.

The first order Markov chain{L′
k}

∞
k=1 has the following transition matrixS = {sij}

∞
i,j=1







si1 = 1 − p
(N+i−1)
01 , i ≥ 1

sij = p
(N+i−1)
01 (p11)

j−2p10, i ≥ 1, j ≥ 2
. (34)

Let L′ denote the average length of a transmission period ofL′
k. Solving for the stationary

distribution of{L′
k}

∞
k=1 from S, we obtainL′, which leads to a lower bound onU according to

Lemma 3 and Lemma 1.

Case 2: p11 < p01

In this case, the larger the initial belief of the chosen channel in a given TP, the smaller the

average length of the TP. On the other hand, (7) shows thatU is inversely proportional to the

average TP length. Thus, similar to the case ofp11 ≥ p01, we will construct hypothetical systems

where the initial belief of the chosen channel in a TP is an upper bound or a lower bound of

that in the real system. The former leads to an upper bound onU , the latter, a lower bound on

U .

Consider first the upper bound. From the structure of the myopic policy, it is clear that when

Lk−1 is odd, in thek-th TP, the user will switch to the channel visited in the(k − 2)-th TP. As

a consequence, the initial beliefωk of the k-th TP is given byωk = p
(Lk−1+1)
11 . WhenLk−1 is
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even, we can show thatωk ≤ p
(Lk−1+4)
11 . This is because that forN ≥ 3 andLk−1 even, the user

cannot switch to a channel visitedLk−1 +2 slots ago, andp(j)
11 decreases withj for evenj’s and

p
(j)
11 > p

(i)
11 for any evenj and oddi (see Fig. 5). We thus construct a hypothetical system given

by the first-order Markov chain{L′
k}

∞
k=1 with the following transition probabilities.

ri,j =



























p
(i+1)
11 , if i is odd,j = 1

p
(i+1)
10 (p00)

j−2p01, if i is odd,j ≥ 2

p
(i+4)
11 , if i is even,j = 1

p
(i+4)
10 (p00)

j−2p01, if i is even,j ≥ 2

. (35)

Similar to the proof of Lemma 3, it can be shown that the stationary distribution of{L′
k}

∞
k=1 is

stochastically dominated by that of{Lk}
∞
k=1. The former leads to the upper bound ofU given

in (27).

We now consider the lower bound. Similarly,ωk = p
(Lk−1+1)
11 whenLk−1 is odd. WhenLk−1

is even, to find a lower bound onωk, we need to find the smallest oddj such that the last visit

to the channel chosen in thek-th TP isj slots ago. From the structure of the myopic policy, the

smallest feasible oddj is Lk−1+2N−3, which corresponds to the scenario where allN channels

are visited in turn from the(k − N + 1)-th TP to thek-th TP with Lk−N+1 = Lk−N+2 = · · · =

Lk−2 = 2. We thus haveωk ≥ p
(Lk−1+2N−3)
11 . We then construct a hypothetical system given by

the first-order Markov chain{L′
k}

∞
k=1 with the following transition probabilities.

ri,j =



























p
(i+1)
11 , if iis odd,j = 1

p
(i+1)
10 (p00)

j−2p01, if i is odd,j ≥ 2

p
(i+2N−3)
11 , if i is even,j = 1

p
(i+2N−3)
10 (p00)

j−2p01, if i is even,j ≥ 2

. (36)

The stationary distribution of this hypothetical system leads to the lower bound ofU given

in (27).

Monotonicity

The monotonicity statements can be shown by noticing that for both cases, the lower bound

increases withN , while the upper bound is not a function ofN .

Coroallary 1: For p11 > p01, the lower bound on throughputU converges to the constant

upper bound at geometrical rate(p11 − p01) asN increases; forp11 < p01, the lower bound on
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U converges to a constant at geometrical rate(p01 − p11)
2.

Proof:

Let x = |p11 − p01|. For p11 > p01, after some simplifications, the lower bound has the form

a + b/(xN + c), wherea, b, c (c 6= 0) are constants. The upper bound isa + b/c. We have
|a+b/(xN+c)−a−b/c|

xN → b/c2 asN → ∞. Thus the lower bound converges to the upper bound with

geometric ratex.

For p11 < p01, the lower bound has the formd + e/(x2N−1 + f), whered, e, f (f 6= 0) are

constants. It converges tod + e/f as N → ∞. We have |d+e/(x2N−1+f)−d−e/f |
x2N → e/(xf 2) as

N → ∞. Thus the lower bound converges with geometric ratex2.

Though it is difficult to get a closed-form throughput limit forN > 2, we can calculate the

throughput limit numerically by Theorem 1. We show an example of the throughput limit for

N > 2 andp11 ≥ p01 as follows.
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s
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01
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11
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The upper bound of the throughput limit
The lower bound of the throughput limit
The throughput limit

Fig. 6. The throughput limit forN > 2 andp11 ≥ p01.
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E. Link Throughput over A Finite Horizon

It is interesting to note that we can obtain a closed-form expression for the throughput during

a finite periodT under certain conditions.

Theorem 4: When p11 ≥ p01 and N ≥ T , the maximum expected total reward overT slots

when the initial beliefΩ(1) is given by the stationary distributionωo is a function ofT andωo:

V (ωo, T ) =
ωo(T − 2)

1 − p11 + ωo
+

ωo(ωo − p11)
3(1 − (p11 − ωo)

T−2)

(1 − p11 + ωo)2
+ ωo + p11ωo + (1− ωo)ωo (37)

Proof: From the structure of the myopic policy, if the user observes state1 from a channel,

it will stay on that channel. Otherwise, it will switch to a new channel. Clearly,V does not

depend onN since at mostT channels need to be considered duringT slots.

In the first slot, the user randomly chooses one channel and getsωo unit of reward. Then the

user will either stay or switch. This process is a Markov chain with states “stay” and “switch”

as shown below.

stay switch

1 − p11

1 − ωop11

ωo

Fig. 7. The Markov chain with states “stay” and “switch”.

If the user observes1 after the fist slot, it will stay and getp11 unit of reward. Otherwise it

will switch to a new channel and getωo unit of reward. SoV is determined by the distribution

of the states of the above two-state Markov chain.
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V (ωo, T ) = ΣT−1
M=1[ωo 1 − ωo]





p11 1 − p11

ωo 1 − ωo





M−1 



p11

ωo



 + ωo

= ΣT−2
M=1[ωo 1 − ωo]





p11 1 − p11

ωo 1 − ωo





M 



p11

ωo



 + ωo + p11ωo + (1 − ωo)ωo

= ΣT−2
M=1[ωo 1 − ωo]{

1

1 − p11 + ωo





ωo 1 − p11

ωo 1 − p11



 +
(p11 − ωo)

M

1 − p11 + ωo





1 − p11 p11 − 1

−ωo ωo



}





p11

ωo



 + ωo + p11ωo + (1 − ωo)ωo

=
ωo(T − 2)

1 − p11 + ωo
+

ωo(ωo − p11)
3(1 − (p11 − ωo)

T−2)

(1 − p11 + ωo)2
+ ωo + p11ωo + (1 − ωo)ωo

(38)

From the above, we immediately see the link throughput limitU as N → ∞ is given as

follows:

U = lim
T→∞

V (ωo, T )

T
=

ωo

1 − p11 + ωo
, (39)

which agrees with the upper bound given in Theorem 3.

F. Numerical Examples

In this section, we demonstrate the tightness of the bounds onU given in Sec. IV-D by

examining the relative differenced(N) between the upper and the lower bound, whered(N) is

defined as the difference of the lower and upper bound divided by the upper bound. In Fig. 8, we

plot d(N = 5) with respect to the upper bound forp11 ≥ p01. From Fig. 8 we observe that for

most values ofp11 andp01, d(N = 5) is below6%, demonstrating the tightness of the bounds

even for a small number of channels. Furthermore, Fig. 8 shows that the bounds are tighter for

largerp01. Similarly observations can be drawn from Fig. 9 for the case ofp11 < p01.
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Fig. 8. The relative differenced(N = 5) between the upper and the lower bound forp11 ≥ p01.
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Fig. 9. The relative differenced(N = 5) between the upper and the lower bound forp11 < p01.
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In Fig. 10 and 11 we examine the rate at which the lower bound approaches to the upper

bound asN increases. Specifically, we plot the ratio ofd(N = 10) to d(N = 3). We observe

that in both cases, the lower bound approaches to the upper bound quickly. While demonstrating

the usefulness of the bounds for smallN , this observation conveys a pessimistic message: the

optimal link throughput of a multi-channel opportunistic system with limited sensing quickly

saturates asN increases.
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Fig. 10. The rate at which the lower bound approaches to the upper bound asN increases (p11 ≥ p01).
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Fig. 11. The rate at which the lower bound approaches to the upper bound asN increases (p11 < p01).
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V. CONCLUSION AND FUTURE WORK

In this report, we have analyzed the optimal link throughput of multi-channel opportunistic

communication systems under an i.i.d. Gilbert-Elliot channel model. The obtained analytical

results allow us to systematically examine the impact of the number of channels and channel

dynamics (transition probabilities) on the system performance. Future work includes the gen-

eralization to cases with sensing errors and non-identical channels. The former can again be

addressed by exploiting the structure and optimality of the myopic policy in the presence of

sensing errors as established in [10].
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