HYCOM code development

Alan J. Wallcraft
Naval Research Laboratory

HYCOM NOPP GODAE Meeting

Oct 29, 2004
HYCOM code development

1. REPORT DATE
29 OCT 2004

2. REPORT TYPE

3. DATES COVERED
00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
HYCOM code development

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory, Stennis Space Center, MS, 39529

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
8th HYCOM NOPP GODAE Meeting, Oct. 27-29, 2004, RSMAS, Miami, FL

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
12

19a. NAME OF RESPONSIBLE PERSON
HYCOM 2.2 (I)

- First public release of HYCOM 2.2
 - Scheduled for December, 2004
- Maintain all features of HYCOM 2.1
 - Orthogonal curvilinear grids
 - Can emulate Z or Sigma or Sigma-Z models
 - Explicit support for 1-D and 2-D domains
 - KPP or Kraus-Turner or
 Mellor-Yamada 2.5 or Price-Weller-Pinkel
 - Rivers as bogused surface precipitation
 - Multiple tracers
 - Off-line one-way nesting
 - Scalability via OpenMP or MPI or both
 * Bit-for-bit multi-cpu reproducibility
- New diagnostics within HYCOM
 - Time-averaged fields (in archive files)
 - Drifters
HYCOM 2.2 (II)

- Alternative scalar advection techniques
 - Donor Cell, FCT (2nd and 4th order), MPDATA
- Vertical coordinate changes
 - Vertical remapping uses PLM for fixed coordinate layers
 - Thin deep iso-pycnal layers
 - Spatially varying iso-pycnal layer target densities
 - Stability from locally referenced potential density
- Atmospheric forcing changes
 - Option to input ustar fields
 - Option to relax to observed SST fields
 - Improved COARE 3.0 bulk exchange coefficients
 - Black-body correction to longwave flux
- Mixed layer changes
 - GISS mixed layer model
 - KPP bottom boundary layer
 - KPP tuning
 - Latitudinally dependent background diffusion
HYCOM 2.2 (III)

- Improved support for rivers
 - Still bogused surface precipitation
 - Better control of low salinity profiles
 - Option for mass (vs salinity) flux

- Nesting no longer requires co-located grids
 - General archive to archive horizontal interpolation

- Hybrid to fixed vertical grid remapper
 - Allows fixed-coordinate nests inside hybrid coordinate outer domains
 - HYCOM to (fixed-grid) HYCOM
 - HYCOM to NCOM

- Diagnostic fields to netCDF and other file formats
 - All x-y “hycomproc” fields
 - Layer space
 - Velocity interpolated to the p-grid
 - All 3-D archive fields interpolated to z-space
 - On p-grid, or
 - Sampled along arbitrary tracks
 - Forcing input fields
HYCOM CURVI-LINEAR GRIDS and NetCDF

- Most basin-scale cases use a Mercator grid
 - 1-D latitude and longitude axes
 - Handled well by many netCDF packages
- Global HYCOM’s Arctic patch grid is curvi-linear
- HYCOM netCDF use the CF-1.0 conventions, which support curvi-linear grids
 - If latitude and longitude are 2-D grids
 * 1-D axes are array indexes
 * Longitude and latitude arrays are also in the file and identified as alternative coordinates
- Most netCDF packages are not CF-1.0 aware
 - Can plot in “logical” (array) space
 - Interpolate to a 1-D latitude and longitude grid off-line
 * General archive to archive horizontal interpolation
- Archive to archive remapper can also be used for standard (non-native) grids
 - Mersea grid is uniform 1/8°
GoM NESTED TEST DOMAIN

• Same resolution nesting unexpectedly useful
 ○ No need to rerun large domain
 ○ Change atmospheric forcing (e.g. use MM5)
 ○ Change vertical structure
 ○ Tracer studies (e.g. add biology)
• 1/12°: Gulf of Mexico inside Atlantic
 ○ Change from 20m to 5m coastline
 ○ Run for Aug 1999 to equilibrate
 ○ Run Sep-Nov as standard test case
• Used to test advection schemes
MPDATA VS LEAPFROG-FCT (SSS)

layer=01 salinity Dec 01, 1999 00Z [02.8H]

MPDATA
cl 0.010 psu
31.20 to 36.42

LF-FCT2
cl 0.010 psu
31.19 to 36.42

layer=01 salinity Dec 01, 1999 00Z [03.1H]
CANDIDATE FEATURES FOR HYCOM 2.3

- Stable-code vs new features
 - Released code-base has to be tested and stable
 - New features can be a significant improvement
 - Will add interim releases to web page
 - * Features may be removed in next released code
- Fully region-independent
 - Compile once, run on any region and any number of processors
 - Needed for full ESMF compliance
- Improve split-explicit time scheme
- Tidal forcing
- Diurnal heat flux cycle
- Equation of state that is quadratic in salinity
- Even better support for rivers
- Wind drag coefficient based on model SST
- Initial support for ESMF
HYCOM AND ESMF

- Earth System Modeling Framework
 http://www.esmf.ucar.edu/
 - Superstructure couples components
 - Air/Ocean/Ice/Land
 - Asynchronous I/O component
 - Not yet available via ESMF
 - Infrastructure provides data structures and utilities for building scalable models
- Add a superstructure “cap” to HYCOM
 - Simplifies coupled systems
 - HYCOM coupled to LANL CICE sea-ice
 - Convert atmospheric field processing and the energy-loan ice model into ESMF components
 - Use ESMF for I/O
- This initial ESMF support will probably be optional
- ESMF may be required to run HYCOM at some point
 - Harder to get started with HYCOM
 - Will provide many new capabilities
HYCOM AND HOME

- Hybrid Ocean Modeling Environment (HOME)
 - Not one model, but an environment
 - Unify existing isopycnal/hybrid ocean models into a single code base
 - Still an unfunded proposal
- There will be a migration path from HYCOM to HOME
 - Re-implement HYCOM in HOME
 - HYCOM with ESMF will simplify the migration
- HOME “best practices” studies may find better alternatives to HYCOM algorithms
 - Exact mass conservation
 - Better free surface formulation
 - Improved time stepping
- Some of these may be back ported to HYCOM
- At some point “HYCOM in HOME” will become the only supported HYCOM
 - Might be very different to HYCOM 2.X
 - Might not even be called HYCOM