Award Number: W81XWH-10-1-0721

TITLE: Harnessing GPR17 Biology for Treating Demyelinating Disease

PRINCIPAL INVESTIGATOR: Nitin Karandikar, M.D., Ph.D.

CONTRACTING ORGANIZATION: University of Texas Southwestern Medical Center at Dallas
Dallas, TX 75390

REPORT DATE: Annual

TYPE OF REPORT: October 2011

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Harnessing GPR17 Biology for Treating Demyelinating Disease

6. AUTHOR(S)
NITIN KARANDIKAR, M.D., Ph.D.
VENKATESH KASHI, Ph.D.
E-Mail: nitin.karandikar@utsouthwestern.edu

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Texas Southwestern Medical Center at Dallas
Dallas, TX 75390

14. ABSTRACT
The overarching hypothesis of this project is that GPR17 signaling results in blockade of remyelination in neuroinflammatory lesions. We thus predict that GPR17 could serve as an important target for promoting remyelination in these lesions. The specific aims of this study are: (1) To delineate the role of GPR17 in murine models of demyelinating diseases; and (2) To test the therapeutic potential for GPR17 agonists and antagonists in two models of multiple sclerosis. Our studies conducted during the first year of the project demonstrate that GPR17-deficient mice developed less severe disease and recovered faster from paralysis. Moreover, these mice showed reduced CNS-targeted pathogenic immune responses. These results provide us a strong basis to pursue drug-based treatment for this disease during the next year of the project [as outlined in the original proposal and SOW].

15. SUBJECT TERMS
EAE, GPR17, remyelination

16. SECURITY CLASSIFICATION OF:
a. REPORT U
b. ABSTRACT U
c. THIS PAGE U

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES 7

19a. NAME OF RESPONSIBLE PERSON
USAMRMC

19b. TELEPHONE NUMBER (include area code)
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>6</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>6</td>
</tr>
<tr>
<td>Conclusion</td>
<td>7</td>
</tr>
<tr>
<td>References</td>
<td>7</td>
</tr>
<tr>
<td>Appendices</td>
<td>N/A</td>
</tr>
</tbody>
</table>
INTRODUCTION

Multiple sclerosis (MS) is an inflammatory, demyelinating disorder of the central nervous system (CNS) affecting over 400,000 individuals in the US. Although the etiology of the disease is unknown, it is believed to be an autoimmune disorder with an involvement of T-cell due to the characteristic pathology, T-cells in the CNS and modulation of clinical disease by immunotherapeutic agents (1). However, it is increasingly becoming clear that in addition to immunomodulation, therapeutic approaches aimed at promoting remyelination is essential for better management of the disease (2). Olig1, a bHLH transcription factor, promotes oligodendrocyte maturation and is required for myelin repair (3, 4). We have shown that one of the genes regulated by Olig1 is G-protein coupled receptor 17 (GPR17). GPR17 opposes the action of Olig1 thereby negatively regulating the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (5). The signaling pathways involving GPR17 which culminates in the prevention of OPCs is not well understood. In our attempt to understand these pathways, we have observed that GPR17 expression is restricted to oligodendrocyte lineage cells and is down regulated during myelination and adulthood. Using transgenic mice, we also observed that sustained expression of GPR17 causes myelination defects whereas knockout of GPR17 leads to early onset of myelination during development. Interestingly, we observed that GPR17 is upregulated in the inflammatory demyelinating lesions in experimental autoimmune encephalomyelitis (EAE) a mouse model of MS. Further analysis revealed that GPR17 is upregulated in MS plaques as compared to the white matter from non-neurological donor samples and normal appearing white matter from MS donors. These data suggest that GPR17 regulates the transition from immature to myelinating oligodendrocytes and hence may serve as a potential therapeutic target for CNS myelin repair. This study is mainly aimed at understanding biology of GPR17 in MS with an emphasis on developing novel combination therapeutic approaches for MS.

BODY

This is a two-year study focused on the following two aims:

1. To delineate the role of GPR17 in murine models of demyelinating diseases.
2. To test the therapeutic potential for GPR17 agonists and antagonists in two models of MS.

As outlined in the statement of work (SOW), Dr. Karandikar’s laboratory is responsible for experiments addressing the EAE model of MS. We now outline our research findings according to the tasks outlined in the SOW.

Task 1. Test the prediction that loss of GPR17 will diminish demyelinating pathology.

Study EAE in WT and GPR17-KO mice

To evaluate EAE in GPR17-KO mice we obtained breeding mice (4 generations backcrossed to C57BL/6) from Dr. Richard Lu’s laboratory and initiated generation of GPR17-KO mice. The breeding strategy involved breeding GPR17+/− males with GPR17+/- females. Mice were routinely genotyped, using primers shown in Figure 1.
Once mice were obtained, we initiated the studies of EAE in WT and GPR17-KO mice. For this, we induced active EAE by immunizing GPR17-KO mice and WT-C57BL/6J mice with myelin oligodendrocyte glycoprotein (MOG) derived peptide-MOG₃₅₋₅₅. We observed a significant difference in the disease severity between the two groups with GPR17-KO mice demonstrating lower disease grades (Figure 2). Interestingly, these mice also showed faster and enhanced recovery from the paralysis. These data suggest demonstrate an important role for GPR17 in EAE pathogenesis, supporting our underlying hypothesis.

![Figure 1. Genotyping of GPR17 KO mice.](image)

Figure 1. Genotyping of GPR17 KO mice. [A] Sequence of primers used to genotype GPR17 KO mice. [B] 10 µl from the 25 µl PCR reactions was run on a 1% agarose gel. +/+ sequence is identified by the presence of a 310 bp band where as a 380 bp band corresponds to -/-.. Presence of both these bands represent +/- genotype. The low molecular weight bands are primer dimers.

The reduced disease severity and greater recovery in GPR17-KO mice can be due to either increased remyelination or decrease in immune response against CNS-antigens. To address if the immune response is affected in GPR17-KO mice, we evaluated the T-cell response to MOG35-55 in vitro using a Carboxyfluorescein succinimidyl ester (CFSE)-based lymphocyte proliferation assay. Spleen cells from both the groups were isolated and stained with CFSE as previously described (6). Cells were then cultured in the presence of MOG₃₅₋₅₅ for 5 days and the CFSE-dilution was monitored by flow cytometry on BD-LSR II flow cytometer.
We observed a decreased proliferation of CD4+ T-cells from GPR17-KO mice when compared to WT mice (Fig 3). This can be attributed to the reduced disease severity or can be a direct effect on the CD4+ T-cell functioning. Since CD4+ T-cells are the main auto aggressors in EAE, a suboptimal CD4+ T-cell response may prove to be beneficial in disease management. There was no significant difference observed in the proliferation of CD8+ T-cells. We are presently evaluating the effect of GPR17-deletion on immune responses by addressing T-cell functioning in terms of proliferation, cytokine production and disease induction.

Figure 3. CFSE-based lymphoproliferation assay. Spleens from MOG35-55 immunized GPR17-/- and WT were harvested and cells were harvested and stained with CFSE. Subsequently, 1x10⁶ cells were added to FACS tubes and MOG35-55 was added at various concentrations. Staphylococcal enterotoxin B (SEB) was added at a concentration of 1 µg/ml as positive control for proliferation and OVA323-339 peptide was used as peptide control. The cells were cultured in a CO₂ incubator for 5 days following which they were surface stained for CD4, CD8 and TCRvβ. CFSE-dilution was monitored by flow cytometry and the data was analyzed using FlowJo software. Live cells were gated on the basis of forward and side scatter profile following which T-cells were gated based on TCRvβ expression. X-axis corresponds to CFSE intensity while Y-axis represents CD8. The upper panel corresponds to proliferation of T-cells isolated from WT mice and lowers one to GPR17-/- cells. The red arrows indicate the percent proliferation of CD4+ T-cells in response to MOG35-55.

Task 2. Test therapeutic potential for GPR17 antagonists.
Based on the results from Task 1, we have now obtained GPR17 agonist and antagonist drugs and are in the process of working out dose ranges, preparation details, etc. We anticipate starting these treatment experiments in the next month or two.

KEY RESEARCH ACCOMPLISHMENTS
- Evaluated EAE in GPR17-KO mice in comparison to WT-mice and observed a lower disease severity in GPR17-KO mice. This establishes a role of GPR17 in EAE pathogenesis/recovery.
- Demonstrated that CD4+ T-cells from GPR17-KO respond less efficiently to MOG35-55.

REPORTABLE OUTCOMES
None thus far. We anticipate multiple submissions [scientific reports and grants] during the next year of the project.
CONCLUSION

Our initial EAE studies carried out in GPR17-KO mice have demonstrated that GPR17 plays an important role in EAE pathology. In addition to a possible role in remyelination as seen by a lower disease severity (Fig 2), deletion of GPR17 also appeared to dampen the autoreactive CD4+ T-cell responses (Fig 3). These data have encouraged us to pursue our study with the initial goal of developing a novel combination therapy.

REFERENCES