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Abstract

We analyze a periodically inspected system with hidden failures in which the

rate of wear is modulated by a continuous-time Markov chain and additional

damage is induced by a Poisson shock process. We derive explicitly the system’s

lifetime distribution and mean time to failure, as well as the limiting average

availability. The main results are illustrated through two numerical examples.
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1. Introduction

In this paper, we consider reliability and availability measures for a single-unit

system that suffers degradation due to its operating environment and the impact of

shocks of random magnitude occurring at random time intervals. The system is said

to experience a soft failure when its cumulative level of degradation exceeds a fixed

threshold value that may be considered, for example, as the component’s nominal
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service life. However, it is possible that failures remain hidden until a routine (planned)

inspection of the unit reveals the failure. Using a periodic inspection policy, if the unit is

found to have suffered an intolerable level of degradation, it is instantaneously replaced

with a new and identical unit. On the other hand, if the level of degradation observed

upon inspection is acceptable (i.e., below the specified threshold value), no action is

taken until the subsequent scheduled inspection. One example of a system maintained

using this type of inspection policy is that of tool wear in manufacturing environments.

Though the equipment may be operational, its cutting tool may have suffered sufficient

degradation to render it ineffective in achieving engineering specifications. However,

its condition may not be known until an actual measurement of the accumulated

degradation is obtained. Hidden failures are also prevalent in the antennas of a satellite

tracking station. In such systems the stations, situated in remote locations around the

globe, may be difficult to access and inspect. Hence, periodic inspection policies are

needed to ensure proper communication links with on-orbit satellites for such critical

functions as surveillance, communications, navigation, and warning.

The impact of a random environment on reliability and availability measures has

been examined extensively in the applied probability literature. Models including

degradation due only to wear or only to random shocks are especially prevalent. The

seminal work of Esary, et al. [3] has been extended in numerous directions by several

authors. For instance, Çinlar [2] generalized most of the models of [3] by demonstrating

that the joint process of the unit’s wear level and the state of its ambient environment

may be considered as a Markov-additive process and gave several such examples. The

first example considered the case when the random environment is a general Markov

process with a finite state space and the wear was assumed to increase as a Lévy

process. Additionally, random shocks were assumed to occur only at environment

transition epochs. The second example (see [2], pp. 201-202) is similar to the problem

discussed here where the cumulative wear is a continuous additive functional of the

operating environment, and the first time to failure is a type of first passage time

for the degradation process. Though R̊ade [10], Shanthikumar and Sumita [11], and

Nakagawa [9] provide extensions of [3] they did not incorporate the effect of the unit’s

operating environment on reliability measures. Igaki et al. [4], Skoilakis [12], and

Kharoufeh [5] present degradation models that explicitly incorporate the influence of
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the unit’s operating environment but do not consider the maintenance of such systems.

More recently, other researchers have placed an emphasis on studying maintained

systems. For example, Klutke et al. [7] examined the availability of an inspected

system whose inter-inspection times and wear rates are random. Subsequently, Klutke

and Yang [8] derived an availability result for a system subject to constant degradation,

shocks, and a deterministic inspection policy. In a model similar to the one presented

in [5] and in this paper, Kiessler et al. [6] studied the limiting average availability of a

system for which the wear rate depends on a continuous-time Markov chain (CTMC).

Their model considers an i.i.d. sequence of nominal lifetimes that determine the failure

criterion as opposed to the deterministic threshold value we consider. However, unlike

our model, [6] does not explicitly provide reliability measures and does not include the

degradation due to random shocks.

This paper extends the results of [5] and [6] by providing both reliability and

availability measures for a system subject to Markovian wear and degradation due

to random shocks. Additionally, we demonstrate that the results may be implemented

numerically in a straightforward manner by employing standard Laplace-transform

inversion algorithms. We specifically provide, in closed-form, the Laplace-Stieltjes

transform of the unconditional and conditional lifetime distribution functions (d.f.)

as well as the unconditional and conditional mean system lifetime. Using our main

results, and exploiting the Markov-regenerative nature of the system, we compute the

limiting average availability of the system under a periodic inspection policy using the

results of [6]. Moreover, we illustrate the computational ease with which the results

may be obtained numerically through two example problems.

The remainder of the paper is organized as follows. In section 2, we provide the

formal mathematical model description and notation used throughout the paper. In

section 3, we analyze the model and explicitly derive the lifetime d.f.s and the mean

lifetimes as Laplace-Stieltjes transforms. In section 4, we provide all the components

needed to compute the limiting average availability of the system while section 5

provides two illustrative numerical examples.
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2. Mathematical Model

In this section, we describe the mathematical model and notation for the maintained

system with hidden failures. A single-unit system is placed into service at time zero

in perfect working order. The system accumulates degradation until a deterministic

degradation threshold value x is exceeded, at which time the system is said to be failed.

We denote the random time to achieve the threshold by Tx. The degradation incurred

by the system is attributed to environment-induced wear, as well as shocks that occur

at random time intervals. The wear- and shock-inducing mechanisms are assumed to

behave independently of one another. We further describe the stochastic evolution

of the system in what follows. All random variables are assumed to be defined on a

complete probability space (Ω,A,P).

The random environment is characterized by an irreducible continuous-time Markov

chain Z ≡ {Zt : t ≥ 0} on a finite state space S ≡ {1, 2, . . . , l} with infinitesimal gener-

ator matrix Q, transition probability functions πi,j(t), i, j ∈ S and initial distribution

(row) vector α. Whenever Zt = i, the system accumulates wear at a rate r(i), r(i) > 0

for i = 1, 2, . . . , l. Define RD ≡ diag(r(1), r(2), . . . , r(l)), the l × l diagonal matrix

containing the state-dependent wear rates. The total accumulated wear up to time t,

denoted Wt, is

Wt =
∫ t

0

r(Zu)du. (1)

The cumulative stochastic process W ≡ {Wt : t ≥ 0}, commonly known as a state-

dependent wear process, has been studied extensively in the literature (cf. [3], [2], [5])

independent of a shock-inducing mechanism.

In addition to environment-induced wear, the system is damaged by shocks occurring

at random time intervals. The damage caused by an individual shock is assumed to

be relatively small; however, the cumulative effect of small shocks may be significant

as in the case of fatigue deterioration resulting from mechanical vibrations. Denote

by Nt the number of shocks occurring up to time t. The corresponding counting

process {Nt : t ≥ 0} is assumed to be a temporally homogeneous Poisson process with

rate parameter λ. The damage caused by the nth shock is a (nonnegative) random

variable Yn and {Yn}∞n=1 is an i.i.d. sequence with non-defective distribution function

FY (y) ≡ P{Y ≤ y}. The total cumulative damage attributed to shocks up to time t is
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the random variable,

βt =
Nt∑

n=0

Yn. (2)

Therefore, the total degradation accrued by the system up to time t is the sum of

degradation due to wear and that due to shocks given by

Xt = Wt + βt, t ≥ 0. (3)

The monotonicity of X ≡ {Xt : t ≥ 0} and positivity of the degradation rates,

r(1), r(2), . . . , r(l), ensure the equivalence of events {Xt ≤ x} and {Tx > t}. Thus, the

system’s random lifetime is given by

Tx = inf{t > 0 : Xt ≥ x}, (4)

or the first time the degradation process X crosses level x. Let G(x, t) ≡ P{Tx ≤ t}
denote the unconditional distribution function (d.f.) of the unit’s lifetime and let its

first moment be denoted by E[Tx]. Note that (4) implies

G(x, t) = 1− P{Xt ≤ x}.

In the remainder of this paper, we shall adopt the following notation. We let Ei[·] =

E[·|Z0 = i] and Pi[·] = P[·|Z0 = i]. Thus, the conditional distribution of the (first)

lifetime is given by

Gi(x, t) = 1− Pi{Xt ≤ x}.

The unconditional (conditional) mean (first) lifetime shall be denoted by E[Tx] (Ei[Tx]).

For the purpose of computing the limiting average availability of the maintained system,

we obtain each of these quantities in the form of Laplace-Stieltjes transforms in section

3.

3. Lifetime Distribution and Mean Lifetime

In this section, we provide analytical expressions for the system’s lifetime distribu-

tion function and the mean system lifetime in the form of Laplace-Stieltjes transforms

(LSTs). To that end, we introduce the following definitions and notation. The

complement of the lifetime distribution is

R(x, t) ≡ G(x, t) = P{Xt ≤ x}. (5)



6 Kharoufeh, et al.

where (5) holds due to the dual relationship Tx = inf{t > 0 : Xt ≥ x}. Define the joint

probability distribution

Ri,j(x, t) = P{Xt ≤ x,Zt = j|Z0 = i}, i, j ∈ S, (6)

Our first main result characterizes the joint distribution of the process (X ,Z).

Theorem 1. The distribution function Ri,j(x, t), i, j ∈ S satisfies the partial differ-

ential equation

∂Ri,j(x, t)
∂t

+
∂Ri,j(x, t)

∂x
r(j) = λ {[Ri,j(·, t) ∗ FY ] (x)−Ri,j(x, t)}+

l∑

k=1

qk,jRi,k(x, t)

(7)

for x > 0, t ≥ 0 where (∗) denotes the convolution operator.

Proof. We begin by considering only the environment-induced wear of the system

and subsequently incorporate shocks. To that end, set Vi,j(x, t) ≡ P{Wt ≤ x,Zt =

j|Z0 = i} and let ε > 0 denote a small time increment. Because Z possesses the

Markov property, is temporally homogeneous, and is independent of the degradation

process X , we may write (see [5])

Vi,j(x, t + ε) =
l∑

k=1

P{Wt+ε ≤ x,Zt+ε = j|Zt = k, Z0 = i}P{Zt = k}

=
l∑

k=1

P{Zt+ε = j|Zt = k}P{Wt+ε ≤ x,Zt = k|Z0 = i}

=
l∑

k=1

πk,j(ε)Vi,k(x− r(k)ε, t). (8)

Next we incorporate the impact of Poisson shocks occurring at homogeneous rate

λ. The probability mass function (p.m.f.) of the number of shocks occurring up to

time ε is pn(ε) ≡ P{Nε = n}, n ≥ 0. The magnitude of cumulative damage caused by

n-independent shocks is given by

βn =
n∑

i=1

Yi. (9)

Since shock magnitudes form an i.i.d. sequence with distribution function FY , we note

that

P{βn ≤ y} ≡ F
(n)
Y (y),
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where F
(n)
Y denotes the n-fold convolution of FY . Conditioning on the number of shocks

in the interval (t, t + ε) and the magnitude of damage due to those shocks, equation

(8) may be replaced by

Ri,j(x, t + ε) =
l∑

k=1

∞∑
n=0

∫ ∞

0

πk,j(ε)Ri,k(x− r(k)ε− y, t)pn(ε)F (n)
Y (dy). (10)

Substituting the appropriate expressions for p0(ε) and p1(ε) in (10) and noting that,

for ε small, P{Nε = n} = o(ε), n ≥ 2, we may write

Ri,j(x, t + ε) =
l∑

k=1

πk,j(ε)×
(

Ri,k(x− r(k)ε, t)(1− λε) + λε

∫ ∞

0

Ri,k(x− r(k)ε− y, t)FY (dy)
)

+ o(ε). (11)

The transition probability functions for the Z process, πi,j(ε), i, j ∈ S, can be written

as

πi,j(ε) = δi,j + εqi,j + o(ε) (12)

where δi,j assumes the value 1 when i = j and the value 0 when i 6= j. Substituting

(12) into (11) and simplifying gives

Ri,j(x, t + ε) = (1− λε)Ri,j(x− r(j)ε, t) + ε(1− λε)
l∑

k=1

qk,jRi,k(x− r(k)ε, t)

+ λε

∫ ∞

0

Ri,j(x− r(j)ε− y, t)FY (dy)

+ λε2
l∑

k

qk,j

∫ ∞

0

Ri,k(x− r(k)ε− y, t)FY (dy) + o(ε). (13)

Rearranging and simplifying the terms of (13), dividing through by the time increment

ε, and allowing ε → 0, shows that

∂Ri,j(x, t)
∂t

+
∂Ri,j(x, t)

∂x
r(j) =

− λRi,j(x, t) +
l∑

k=1

qk,jRi,k(x, t) + λ

∫ ∞

0

Ri,j(x− y, t)FY (dy) (14)

where the right-most term of (14) is the convolution of distributions Ri,j and FY .

We next set out to solve the partial differential equations of (7) by the method of

Laplace transforms. To that end, define the l × l matrix R(x, t) = [Rij(x, t)]. Using
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matrix notation, (7) may be written as

∂R(x, t)
∂t

+
∂R(x, t)

∂x
RD = λ {[R(·, t) ∗ FY ] (x)−R(x, t)}+ R(x, t)Q (15)

where [R(·, t) ∗ FY ] (x) denotes the convolution of each element of R(x, t) with FY . We

next provide a Laplace-Stieltjes transform (LST) solution with respect to the spatial

variable x for the partial differential equation (15). Define the matrix LST of R(x, t)

with respect to x as

R̃(u, t) =
∫ ∞

0

e−uxR(dx, t) (16)

and the l × l diagonal matrix F̃D(u) with each diagonal element identically equal to

F̃Y (u) =
∫ ∞

0

e−uyFY (dy), (17)

the LST of FY with respect to y.

Theorem 2. The Laplace-Stieltjes transform of the matrix R(x, t) with respect to the

spatial variable x is

R̃(u, t) = exp
[(

Q + λ(F̃D(u)− I)− uRD

)
t
]
. (18)

Proof. Taking the Laplace-Stieltjes transform of both sides of (15) with respect to

x yields the first order, ordinary differential equation (ODE) in t,

dR̃(u, t)
dt

+ R̃(u, t)
(
uRD + λI−Q− λF̃D(u)

)
= 0. (19)

The general solution of the ordinary differential equation is obtained via the use of an

integrating factor

R̃(u, t) exp
[(

uRD + λI−Q− λF̃D(u)
)

t
]

= ψ,

where ψ is a matrix of constants of integration. The final result is obtained by applying

the initial condition R̃(u, 0) = I and rearranging terms.

The initial probability vector of the environment process Z is α = [αi] where αi ≡
P{Z0 = i}, i ∈ S. Let e denote a column vector of ones and denote by ei a column

vector whose ith element is unity and all other elements are zero. An explicit expression

for the unconditional d.f. of the system’s lifetime is

G(x, t) ≡ P{Tx ≤ t} = 1−αR(x, t)e (20)
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and the conditional distribution is

Gi(x, t) ≡ Pi{Tx ≤ t} = 1− eT
i R(x, t)e (21)

where eT
i denotes the transpose of ei.

Define the Laplace-Stieltjes transforms of G(x, t) and Gi(x, t) with respect to x as

G̃(u, t) =
∫ ∞

0

e−uxG(dx, t) (22)

and

G̃i(u, t) =
∫ ∞

0

e−uxGi(dx, t), (23)

respectively.

Theorem 3. The Laplace-Stieltjes transform of the unconditional and conditional first

lifetime distributions, G(x, t) and Gi(x, t), with respect to x are, respectively,

G̃(u, t) = 1−α exp
(
(Q + λ(F̃D(u)− I)− uRD)t

)
e (24)

and

G̃i(u, t) = 1− eT
i exp

(
(Q + λ(F̃D(u)− I)− uRD)t

)
e, (25)

with Re(u) > 0.

Next we examine the unconditional (conditional) mean system lifetime, E[Tx] (Ei[Tx])

for a single-unit system subject to Markovian wear and a Poisson shock process. The

LSTs of E[Tx] and Ei[Tx], with respect to x, are respectively,

Ẽ[Tu] =
∫ ∞

0

e−uxdxE[Tx]

and

Ẽi[Tu] =
∫ ∞

0

e−uxdxEi[Tx],

which are obtained via Theorem 4.

Theorem 4. The Laplace-Stieltjes transform of the unconditional mean lifetime with

respect to x is

Ẽ[Tu] = α
(
uRD −Q− λ(F̃D(u)− I)

)−1

e, (26)
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and the conditional mean lifetime is

Ẽi[Tu] = eT
i

(
uRD −Q− λ(F̃D(u)− I)

)−1

e, (27)

with Re(u) > 0.

Proof. By (24), the d.f. of the system lifetime is

G̃(u, t) = 1−α exp
[(

Q + λ(F̃D(u)− I)− uRD

)
t
]
e.

For brevity, substitute A = Q+λ(F̃D(u)−I)−uRD to obtain the LST of G̃(u, t) with

respect to t as

G̃(u, s) =
∫ ∞

0

e−stG̃(u, dt)

= 1−αA(sI−A)−1e. (28)

In the usual way, the mean system lifetime is obtained by evaluating at s = 0 the first

partial derivative of G̃(u, s) with respect to s. That is

Ẽ[Tu] = − ∂G̃(u, s)
∂s

∣∣∣∣∣
s=0

= −α(−A)−1e

= α(uRD −Q− λ(F̃D(u)− I))−1e.

The conditional mean lifetime is obtained analogously by simply replacing G̃(u, t) by

G̃i(u, t).

4. Limiting Average Availability

In this section, we study the asymptotic behavior of the average availability of

the maintained system with hidden failures. The main result for the limiting average

availability (Theorem 5) is contained in Kiessler et al. [6]; however, we review this result

within the framework of our model which differs from that of [6] in a few important

ways. In our model, a failure occurs when the cumulative degradation (due to wear

and shocks) reaches or exceeds a deterministic threshold. The model in [6] does not

consider shocks. Moreover, the numerical approach we use for computing the limiting

average availability is significantly simpler. Specifically, we apply the Laplace-Stieltjes
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transforms of section 3 and numerical inversion to simplify the computation of the

required components.

The system is inspected periodically at times in the set I = {kτ : k = 1, 2, . . .} for

some τ > 0. If upon inspection the system is found to be failed (i.e., the cumulative

degradation of the system is at least as large as the tolerable level x), then it is

instantaneously replaced with a new and identical unit; however, if the system is found

to be non-failed, then no action is taken. Failures occurring between inspection epochs

cannot be detected nor repaired; thus, failures remain hidden until the next inspection

epoch, and the process X remains at the failed level until the subsequent inspection

epoch. We further assume that inspections correctly diagnose the level of degradation.

Define Ψ ≡ {ψ(t) : t ≥ 0}, the right-continuous stochastic process describing the

system state by

ψ(t) = 1(Xt < x),

where 1(E) denotes the indicator function for event E. As defined in [6], the system’s

limiting average availability is given by

Ā = lim
t→∞

t−1

∫ t

0

E[ψ(w)]dw. (29)

Let Ln denote the lifetime of the nth system and let Rn denote the nth replacement

epoch (with R0 ≡ 0). We further define ξn = ZRn , the state of the environment at the

time of the nth replacement, and Fn, the nth failure epoch. The process {ξn : n ≥ 0} is

an irreducible discrete-time Markov chain with one-step transition probability matrix

P and stationary distribution p = [pi], i = 1, 2, . . . , l. It is important to note that, by

its nature, Ψ ≡ {ψ(t) : t ≥ 0} is not regenerative with respect to the sequence of failure

or replacement epochs. This is due to the fact that successive unit lifetimes do not

form an i.i.d. sequence of random variables unless the successive units are placed into

service in identical environment states. Kiessler, et al. [6] showed that the bivariate

process, {(ξn, Rn) : n ≥ 0}, is a Markov renewal process and that {ψ(t) : t ≥ 0} is

Markov-regenerative with respect to {(ξn, Rn) : n ≥ 0}. Consequently, the limiting

average availability is obtained by Theorem 5 (see [6], p. 704).

Theorem 5. The limiting average availability is given by

Ā = lim
t→∞

t−1

∫ t

0

E[ψ(w)]dw =
∑l

i=1 piEi[F1]∑l
i=1 piEi[R1]

. (30)
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In order to compute the limiting average availability, we will obtain the transition

probability matrix P as the limit of the semi-Markov kernel of the process {(ξn, Rn) :

n ≥ 0}. Subsequently, we obtain the stationary distribution p. Additionally, we

require the conditional expectations Ei[R1] and Ei[F1]. Fortunately, the Laplace-

Stieltjes transform of Ei[F1] may be obtained by (27), and the conditional distribution

of F1 is given by (25). Thus, our next objective is to provide an expression for Ei[R1].

However, we first need to establish that F1 is a bounded random variable. Let us

re-order the wear rates so that

r1 < r2 < · · · < rl.

That is, r1 corresponds to the minimum attainable wear rate. The following lemma

holds for both the conditional and unconditional first unit lifetimes.

Lemma 1. The random variable F1 is bounded above by xr−1
1 .

Proof. Let D ≡ {r(i) : i = 1, 2, . . . , l} and let r ≡ (r1, r2, . . . , rl)T denote the column

vector of ordered wear rates. Further define the set

A ≡ {a ∈ R1×l
+ : ae = xr−1

1 }.

We first note that

inf{ar + b : a ∈ A, b ≥ 0} ≤ x (31)

since for a = xr−1
1 e1 and b = 0, ar + b = x. Moreover,

inf{ar + b : a ∈ A, b ≥ 0} = inf{ar : a ∈ A}
≥ inf{a(r1e) : a ∈ A}
= x. (32)

By (31) and (32) we see that

x = min{ar + b : a ∈ A, b ≥ 0}. (33)

Let ω ∈ Ω, and define the quantity

wn(ω) ≡
∫ x/r1

0

1(r(Zt(ω)) = rn)dt.
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Summing over all possible environment states, we see that

l∑
n=1

wn(ω) =
l∑

n=1

∫ x/r1

0

1(r(Zt(ω)) = rn)dt

=
∫ x/r1

0

l∑
n=1

1(r(Zt(ω)) = rn)dt

=
∫ x/r1

0

1(r(Zt(ω)) ∈ D)dt

=
∫ x/r1

0

dt

= xr−1
1 ,

since r(Zt(ω)) ∈ D for almost every t ≥ 0. It follows that the row vector w(ω) ≡
(w1(ω), . . . , wl(ω)) ∈ A.

Recall that the total damage due to shocks on the interval [0, x/r1) is given by

βx/r1(ω). Using equation (3), we may write

Xx/r1(ω) = Wx/r1(ω) + βx/r1(ω)

=
∫ x/r1

0

r(Zt(ω))dt + βx/r1(ω)

=
∫ x/r1

0

l∑
n=1

rn1(r(Zt(ω) = rn))dt + βx/r1(ω)

=
l∑

n=1

∫ x/r1

0

rn1(r(Zt(ω) = rn))dt + βx/r1(ω)

=
l∑

n=1

wn(ω)rn + βx/r1(ω)

= w(ω)r + βx/r1(ω).

By (33) we may conclude that

x = min{Xx/r1(ω) : ω ∈ Ω}.

Since Xx/r1(ω) ≥ x, it is clear that

|F1(ω)| = F1(ω) = inf{t > 0 : Xt(ω) ≥ x} ≤ xr−1
1 ,

i.e., the non-negative random variable F1 is bounded above by xr−1
1 .
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Lemma 1 implies that Gi(x, t) = 1 for all t ≥ xr−1
1 . Equipped with this result, we are

now prepared to establish the mean of the first replacement epoch and, subsequently,

the limiting average availability.

Lemma 2. The conditional expectation of the first replacement epoch is given by

Ei[R1] = τ

(
γ −

γ−1∑
n=0

Gi(x, nτ)

)
(34)

where γ ≡ min{n ≥ 1 : nτ ≥ xr−1
1 } and r1 ≡ min{r(i) : i = 1, 2, . . . , l}.

Proof. The first replacement time R1 depends explicitly on F1 by

R1 = inf{w ∈ I : w > F1}.

By construction, F1 corresponds to the lifetime of the first unit, and as such, has the

(conditional) distribution function Gi(x, t), i ∈ S. By conditioning on F1, we obtain

Ei[R1] =
∫ ∞

0

Ei[R1|F1 = t]Gi(x, dt). (35)

Because a failure remains hidden until the first inspection following the failure, the

integrand of (35) is

Ei[R1|F1 = t] =





τ, 0 ≤ t < τ

2τ, τ ≤ t < 2τ
...

nτ, (n− 1)τ ≤ t < nτ
...

. (36)

Substituting (36) into (35), we may write

Ei[R1] = τ

∫ τ

0

Gi(x, dt) + 2τ

∫ 2τ

τ

Gi(x, dt) + 3τ

∫ 3τ

2τ

Gi(x, dt) + · · · ,

= −τ
∞∑

n=0

Gi(x, nτ). (37)

By applying Lemma 1 it can be shown that the infinite series, −∑
n Gi(x, nτ), is

convergent with sum

∞∑
n=0

−Gi(x, nτ) = γ −
γ−1∑
n=0

Gi(x, nτ), (38)
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where γ = min{n ≥ 1 : nτ ≥ xr−1
1 }. Therefore,

Ei[R1] = τ

(
γ −

γ−1∑
n=0

Gi(x, nτ)

)
. (39)

Finally, we turn our attention to the transition probability matrix, P , for the

discrete-time Markov chain {ξn : n ≥ 0}. Before deriving an expression for the

elements of P , we need to establish the conditional distribution of R1 given the initial

environment state.

Lemma 3. Assuming the initial environment state is i ∈ S, the probability mass

function of R1 is given by

Pi{R1 = nτ} = ∆i(x, nτ), n ≥ 1 (40)

where ∆i(x, nτ) ≡ Gi(x, nτ)−Gi(x, (n− 1)τ) for i ∈ S and n ≥ 1.

Proof. Recall that R1 = inf{w ∈ I : w > F1}. Thus, we obtain the probability

distribution of R1 by conditioning on the first failure epoch given the initial state of

Z. For n ≥ 1,

Pi{R1 = nτ} =
∫ ∞

0

Pi{R1 = nτ |F1 = t}Gi(x, dt)

=
∫ ∞

0

1(t ∈ [(n− 1)τ, nτ ])Gi(x, dt)

=
∫ nτ

(n−1)τ

Gi(x, dt)

= Gi(x, nτ)−Gi(x, (n− 1)τ).

Finally, we obtain the one-step transition probability matrix for {ξn : n ≥ 0} by

computing the limit of the semi-Markov kernel matrix of the Markov renewal process

{(ξn, Rn) : n ≥ 0}.

Theorem 6. The (i, k)th element of the transition probability matrix P = [pi,k], i, k ∈
S, is given by

pi,k =
γ∑

n=1

πi,k(nτ)∆i(x, nτ), (41)

where ∆i(x, nτ) is obtained by

∆i(x, nτ) = L−1{u−1[G̃i(u, nτ)− G̃i(u, (n− 1)τ)]}, (42)
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L−1 denotes the inverse Laplace transform operator, and the integer γ is as defined in

Lemma 2.

Proof. Let Ki,k(t) ≡ P{ξ1 = k,R1 ≤ t|ξ0 = i} denote the (i, k)th element of the

semi-Markov kernel, K(t), of the Markov renewal process {(ξn, Rn) : n ≥ 0}. Let us

further define

K̃i,k(s) = Ei[e−sR1 · 1(ZR1 = k)]

with Re(s) > 0. By conditioning on R1, we may write,

Ei[e−sR1 · 1(ZR1 = k)] =
∞∑

n=1

Ei[e−sR1 · 1(ZR1 = k)|R1 = nτ ]Pi{R1 = nτ}

=
∞∑

n=1

e−snτEi[1(Znτ = k)]∆i(x, nτ)

=
∞∑

n=1

e−snτPi{Znτ = k}∆i(x, nτ)

=
∞∑

n=1

e−snτπi,k(nτ)∆i(x, nτ). (43)

By the final value theorem of Laplace transforms, we may obtain pi,k as

pi,k = lim
t→∞

Ki,k(t)

= lim
s→0

K̃i,k(s)

= lim
s→0

∞∑
n=1

e−snτπi,k(nτ)∆i(x, nτ).

Recall from Lemma 1 that ∆i(x, nτ) = 0 for all n ≥ γ + 1, and so we have

pi,k = lim
s→0

∞∑
n=1

e−snτπi,k(nτ)∆i(x, nτ)

= lim
s→0

γ∑
n=1

e−snτπi,k(nτ)∆i(x, nτ)

=
γ∑

n=1

lim
s→0

e−snτπi,k(nτ)∆i(x, nτ)

=
γ∑

n=1

πi,k(nτ)∆i(x, nτ).

Comparing equation (41) with Corollary 1 of [6], p. 708, we note that our expression

requires the evaluation of only a finite sum and (numerical) Laplace transform inversion
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to obtain ∆i(x, nτ), Ei[F1], and Ei[R1]. Fortunately, numerical inversion algorithms

abound for this task, and the truncation point γ is well defined by the parameters τ

and r1. By contrast, the results of [6] require evaluation of an infinite Fourier series to

compute pi,k and the conditional expectations.

5. Numerical Examples

In this section, we illustrate the computation of the limiting average availability by

means of two examples. For both examples, we compute the conditional expectations,

Ei[F1] and Ei[R1], the matrix P , the stationary distribution p, and the limiting average

availability, Ā. The results were obtained via numerical Laplace-transform inversion

using the robust technique of Abate and Whitt [1]. The algorithm was coded and

executed in the Matlabr computing environment. In each of the two cases, Z is an

irreducible continuous-time Markov chain on finite state space S with generator matrix

Q.

Example 1: l = 2

The first case is a simple environment which toggles between two distinct states

(S = {1, 2}) according to its generator matrix

Q =


 −25/3 25/3

25/3 −25/3


 .

The diagonal matrix of state-dependent wear rates is

RD = diag (13/12, 1/4) ,

while the Laplace-Stieltjes transform of the shock-magnitude distribution function is

F̃Y (u) =
4.0

4.0 + u
.

Shocks occur according to a Poisson process with rate parameter λ = 0.50. The

threshold degradation level for failure is x = 1.0 units of degradation. Inspections

occur every τ = 0.10 time units. Applying equations (27) and (34), we compute

E1[F1] = 1.2976

E2[F1] = 1.3609
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and

E1[R1] = 1.3475

E2[R1] = 1.4109.

Selecting the truncation point γ by Theorem 6, the transition probability matrix is

P =


 0.5002 0.4998

0.4998 0.5002




with the obvious stationary distribution

p =
(

0.500 0.500
)

.

Subsequently, the limiting average availability is computed as

Ā =
∑2

i=1 piEi[F1]∑2
i=1 piEi[R1]

= 0.96378.

Example 2: l = 5

In this case, the environment process is a five-state, continuous-time Markov chain

with state space S = {1, 2, 3, 4, 5}. The generator matrix for the process is

Q =




−0.500 0.125 0.125 0.125 0.125

0.400 −2.00 0.400 0.600 0.600

0.025 0.025 −0.100 0.025 0.025

0.050 0.050 0.050 −0.200 0.050

1.500 1.000 1.000 1.500 −5.000




.

The diagonal matrix of state-dependent wear rates is

RD = diag (1.0, 2.0, 3.0, 4.0, 10.0) ,

while the Laplace-Stieltjes transform of the shock-magnitude distribution function is

F̃Y (u) =
(

0.20
0.20 + u

)8

.

Shocks occur according to a Poisson process with parameter λ = 0.25. The threshold

degradation level for failure of the system is x =100 units of degradation. Inspections
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occur every τ = 5.00 time units. Applying (41) gives

P =




0.1393 0.0300 0.4810 0.3368 0.0129

0.1262 0.0291 0.4868 0.3454 0.0126

0.1045 0.0258 0.6115 0.2471 0.0112

0.1255 0.0301 0.4181 0.4133 0.0130

0.1268 0.0291 0.4876 0.3439 0.0126




.

Table 1 summarizes the stationary probabilities and the conditional expectations for

this case.

Table 1: Stationary probabilities and conditional means (Ex. 2).

Measure i = 1 i = 2 i = 3 i = 4 i = 5

pi 0.1160 0.0277 0.5308 0.3135 0.0120

Ei[R1] 11.6861 11.4400 11.4752 11.2014 11.3457

Ei[F1] 9.1931 8.9485 8.9836 8.7116 8.8542

From these values, we compute the limiting average availability

Ā =
∑5

i=1 piEi[F1]∑5
i=1 piEi[R1]

= 0.7817.
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