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Abstract—Waveform design and waveform scheduling are

addressed in the context of space time adaptive processing (STAP)

for radar. An air-borne radar with an array of sensors is

assumed, which interrogates ground based targets. The designed

waveform is assumed to be transmitted over one coherent

processing interval (CPI). The waveform design and waveform

scheduling problems are formulated with a cost function similar

to the Minimum Variance Distortionless Response (MVDR) cost

function as in classical radar STAP. Least-squared solutions for

the designed waveform are obtained. It is shown that both the

designed waveform and the scheduled waveforms will depend

on the spatial and Doppler responses of the desired target; in

particular, its spatial and temporal steering vectors. The focus of

this paper will be the performance of the designed and scheduled

waveforms for unknown correlation matrices but estimated from

the training data, and will be addressed via simulations.

I. INTRODUCTION

The objective of this paper is to address waveform design
and waveform scheduling via space time adaptive processing
(STAP) in radar [1]–[5]. An air-borne radar is assumed with
an array of sensor elements observing a moving target on
the ground. We will assume that the waveform design and
scheduling are performed over one CPI rather than on an
individual pulse repetition interval (PRI).

Traditional STAP involves multidimensional adaptive filter-
ing which combines signals from several antenna elements
and from multiple waveform repetitions to suppresses clutter,
interference and noise [2] in both space and time. Although
detection is not the focus here, it is well known that STAP
improves detection of targets in both mainlobe and sidelobe
clutter and in jamming interference environments [1]–[4].

To facilitate waveform design and scheduling, we develop a
STAP model considering the fast time samples along with the
slow time processing. This is different from traditional STAP
which generally considers the data after matched filtering [1],
[2]. Nonetheless STAP research efforts have been proposed
which consider inclusion of fast time samples in space time
processing, see for example [1], [6], [7] and references therein.
It is shown that by spatio-temporal processing prior to matched
filtering, the spatio-temporal steering vector is also a function
of the waveform transmitted. The minimum variance distor-
tionless response (MVDR) optimization problem [8] for STAP
seeks to minimize the undesired response from noise, clutter
and interference while simultaneously preserving the target
response [1]–[4].

In line with traditional STAP, we formulate both the wave-
form design, and the waveform scheduling problem as an
MVDR type optimization. The noise, clutter, and interference
are modeled stochastically and are assumed to be mutually
uncorrelated. Clutter is assumed from ground reflections and
hence is assumed to be persistent in most range gates. The
clutter correlation matrix is a function of the waveform, and
the correlation matrix of the combined noise, interference and
clutter is hence also a function of the waveform transmitted.
In this case, a closed form solution to the waveform design
problem is not tractable. For simplicity in the analysis, we
ignore the dependency of the waveform in the clutter cor-
relation matrix, and derive a suboptimal least square (LS)
solution. Not surprisingly then, it is then shown that both the
waveform design and scheduling criteria depend on the spatial
and temporal steering vectors of the desired target.

The paper is organized as follows: the model utilizing the
fast time as well as slow time is presented in Section II.
The waveform design and scheduling problems are formulated
in Section III, simulations are presented in Section IV. In
Section V, the conclusions are drawn based on the analysis
and simulations.

In practice, the designed and scheduled waveforms will
depend on the correlation matrices of noise, interference and
clutter which are unknown. The major focus of this paper is to
investigate the impact of using the estimated correlation matrix
from training data to examine the performance loss, and will
be addressed in the Section IV.

II. STAP MODEL

The radar consists of an air-borne linear array comprising
M sensor elements. Without loss of generality, assume that the
first sensor in the array is the phase center, and acts as both
a transmitter and receiver, the rest of the elements are purely
receivers. Further assume that the array is calibrated and each
element in the array has an identical antenna pattern. The first
sensor is located at xr 2 3 and the ground based point target
at xt 2 3. The radar transmits the burst of pulses:

u(t) =

LX

l=1

s(t � lTp) exp(j2⇡fo(t � lTp)), t 2 [0, T ) (1)
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where, fo is the carrier frequency, and Tp = 1/fp is the
inverse of the pulse repetition frequency, fp. The pulse width
is denoted as T = 1/B and is the inverse of the bandwidth,
B. Hence the coherent processing interval (CPI) consists of L

pulses, each of width equal to T . The geometry of the scene
is shown in Fig. 1, where ✓t and �t denote the azimuth and
elevation, both of which will be useful subsequently when
introducing the spatial steering vector. The radar and target
are both assumed to be moving.

To develop the model, we ignore the noise, clutter and
interference for the time being and assume a non-fluctuating
target. Then the desired target’s received signal for the l-th
pulse, and at the m-th sensor element is given by

sml(t) = ⇢ts(t� lTp�⌧m) exp(j2⇡(fo+fdm)(t� lTp�⌧m))

(2)
where the target’s observed Doppler shift is denoted as fdm,
and its complex back-scattering coefficient as ⇢t. Assume that
the array is along the local x axis as shown in Fig. 1. Then,
the coordinates of the m-th element is given by xt+md,d :=

[d, 0, 0]

T
, m = 0, 1, 2 . . . , M �1, where d is the inter-element

spacing. The delay ⌧m could be re-written as

⌧m = ||xr � xt||/c+ ||xr +md� xt||/c

=

||xr � xt||
c

+

||xr � xt||
c

s

1 +

||md||2
||xr � xt||2

+

2md

T
(xr � xt)

||xr � xt||2

(a)
⌘ ||xr � xt||

c
+

||xr � xt||
c

✓
1 +

md

T
(xr � xt)

||xr � xt||2

◆
(3)

= 2

||xr � xt||
c

+

md

T
(xr � xt)

c||xr � xt||
, (4)

where in approximation (a), the term / ||md||2 was ignored,
i.e. it is assumed that d/||xr�xt|| << 1, and then a binomial
approximation was employed. It is useful now to introduce the
azimuth and elevation angles, where, by geometric manipula-
tions, we have:

xr � xt

||xr � xt||
= [sin(�t) sin(✓t), sin(�t) cos(✓t), cos(�t)]

T
.

Using the above equation in (4), the delay ⌧m, m =

0, 1, . . . , M � 1 can be rewritten as

⌧m = 2

||xr � xt||
c

+

md sin(�t) sin(✓t)

c

. (5)

The Doppler shift, i.e. fdm is computed as

fdm = 2fo
(ẋr � ẋt)

T
(xr � xt)

c||xr � xt||
(6)

+ fo
mdT

c


ẋr � ẋt

||xr � xt||2
� (xr � xt)(ẋr � ẋt)

T
(xr � xt)

k|xr � xt||3

�

where ẋ(·) is the vector differential of x(·) w.r.t time. In
practice d is a fraction of the wavelength, and assuming that
d/||xr � xt|| << 1 we approximate the second term in (6)
as 0. The Doppler shift is no longer a function of the sensor

index, m, and is rewritten as

fdm = fd = 2fo
(ẋr � ẋt)

T
(xr � xt)

c||xr � xt||
(7)

Assumption A1: From here onwards, the standard narrow-
band assumption is invoked [1], i.e. the signal propagation time
across the array is assumed to be much smaller than the inverse
of the signal bandwidth. This then implies that s(t � 2||xr �
xt||/c�md sin(�t) sin(✓t)/c) ⇡ s(t� 2||xr �xt||/c). Using
this and substituting (5) and (7) in (2), and downconverting to
baseband we obtain,

sml(t) = ⇢ts(t � lTp � ⌧t)e
�j4⇡(f

o

+f
d

)⌧
t

e

�j2⇡
md sin(�

t

) sin(✓
t

)
�

o

⇥e

�j2⇡f
d

md sin(�
t

) sin(✓
t

)
c

e

j2⇡f
d

(t�lT
p

) (8)

where ⌧t = 2||xr�xt||/c and �o is the operating wavelength.
Some practical approximations can now be made on (8).

Assumption A2: For arguments sake let d = �o/p, where
p is an arbitrary positive integer (p = 2 is the critical spatial
Nyquist). Then,

exp(�j2⇡fd
md sin(�

t

) sin(✓
t

)
c ) = exp(�j2⇡mf

d

sin(�
t

) sin(✓
t

)
pf

o

) ⇡ 1

It is easily shown that this assumption is valid in most general
cases. However, this is invalidated for long array apertures
(M > 100), which in the first place could be impractical for
air-borne radar systems.

Assumption A3: We assume that the phase from the Doppler
is insignificant within the fast time, i.e. t. In other words,
we assume that exp(j2⇡fdt) ⇡ 1, t 2 [0, T ). For practical
Doppler shifts this is reasonable.

These assumptions are now enforced in (8), without explic-
itly stating them in the rest of the paper. Examples validating
A1-A3 are subsequently discussed in Section II-B.

A. Vector signal model

Let s(t) be sampled discretely resulting in N discrete time
samples. Consider for now the single range gate corresponding
to the time delay ⌧t. Then after a suitable alignment to a
common local time (or range) reference, (8) may be rewritten
in a vector defined as yl 2 NM , and given by

yl = ⇢ts ⌦ a(✓t, �t) exp(�j2⇡fdlTp) (9)
s := [s(0), s(1), . . . , s(N � 1)]

T 2 N

a(✓t, �t) := [1, e

�j2⇡#
, e

�j4⇡#
, . . . , e

�j2⇡(M�1)#
]

T 2 M

where # := d sin(✓t) sin(�t)/�o is defined as the spatial
frequency. Further it is noted that in (9), the constant phase
terms have been absorbed into ⇢t. Considering the L pulses
together, i.e. concatenating the desired target’s response for
the entire CPI in a tall vector y, is defined as

y 2 NML
= [y1

T
,y2

T
, . . . ,yT

L ]
T

y = ⇢ts ⌦ a(✓t, �t)⌦ v(fd) (10)

v(fd) := [1, e

�j2⇡f
d

T
p

, e

�j4⇡f
d

T
p

, . . . , e

�j2⇡f
d

(L�1)T
p

]

T

The vector y consists of both the spatial and the temporal
steering vectors as in classical STAP, as well as the waveform
dependency, via waveform vector s.



At the considered range gate, the measured snapshot vec-
tor consists of the target returns and the undesired returns,
i.e. clutter returns, interference and noise. The contaminated
snapshot at the considered range gate is then given by

ȳ =y + yi + yc + yn (11)
=y + yu

where yi,yc,yn are the contributions from the interference,
clutter and noise, respectively, and are assumed to be statis-
tically uncorrelated with one another. The contribution of the
undesired returns are treated in detail, starting with the noise
as it is the simplest.

Noise: The noise is assumed to be zero mean, identically
distributed across the sensors, across pulses, and in the fast
time samples. The correlation matrix of yn is denoted as
Rn 2 NML⇥NML. The simplest example is when the noise
is independent across the sensors, the pulses, and the fast
time samples, i.e. Rn / I, where I is the identity matrix
of appropriate dimensions.

Interference: The interference consists of jammers and
other intentional / un-intentional sources which may be ground
based, air-borne or both. Let us assume that there are K

interference sources. Further, since nothing is known about
the jammers waveform characteristics, the waveform itself
is assumed to be a stationary zero mean random process.
Consider the k-th interference source in the l-th PRI, and
at spatial co-ordinates (✓k, �k). Its corresponding snapshot
contribution is modeled as,

ykl = ↵kl ⌦ a(✓k, �k), k = 1, 2, . . . , K, l = 1, 2, . . . , L (12)

where ↵kl = [↵kl(0), ↵kl(1), . . . , ↵kl(N � 1)]

T 2 N is the
random discrete segment of the jammer waveform, as seen by
the radar in the l-th PRI. Stacking ykl for a fixed k as a tall
vector, we have

yk = ↵k ⌦ a(✓k, �k)

= [yT
k1,y

T
k2, . . . ,y

T
kL]

T 2 NML (13)
↵k : = [↵k1

T
,↵k2

T
, . . . ,↵kL

T
]

T 2 NL

Using the Kronecker mixed product property, (see for e.g. [9]),
the correlation matrix of yk is expressed as

{yky
H
k } = Rk

↵ ⌦ a(✓k, �k)a(✓k, �k)
H

where, {↵k↵k
H} := Rk

↵. For K mutually uncorrelated

interferers, the correlation matrix is Ri =

KP
k=1

{yky
H
k }, and

is simplified as

Ri =

KX

k=1

Rk
↵ ⌦ a(✓k, �k)a(✓k, �k)

H

=

KX

k=1

(INL ⌦ a(✓k, �k))R
k
↵(INL ⌦ a(✓k, �k)

H
)

= A(✓,�)R↵A(✓,�)

H (14)

where

R↵ := Diag{R1
↵,R2

↵, . . . ,RK
↵ } 2 NMLK⇥NMLK

A(✓,�) 2 NML⇥NLMK

: = [INL ⌦ a(✓1, �1), INL ⌦ a(✓2, �2), . . . , INL ⌦ a(✓K , �K)],

for INL the identity matrix of size NL ⇥ NL, and
Diag{·, ·, . . . , ·} the matrix diagonal operator which converts
the matrix arguments into a bigger diagonal matrix. For
example, Diag{A,B,C} =

h
A 0 0
0 B 0
0 0 C

i
.

Clutter: The ground is a major source of clutter in air-borne
radar applications and is persistent in all range gates upto the
gate corresponding to the platform horizon. Other sources of
clutter surely exist, such as buildings, trees, as well as other un-
interesting targets. We will ignore the other sources of clutter
and treat ground clutter stochastically.

Let us assume that there are Q clutter patches indexed
by parameter q. Assume that the q-th clutter patch is at
(✓q, �q), q = 1, 2 . . . , Q, with a corresponding co-ordinate
vector denoted as xq. Each of these clutter patches are
comprised of say P scatterers. Assuming that the scatterers
do not scintillate in the PRI’s, the radar return from the p-th
scatterer in the q-th clutter patch is given by

�pqs ⌦ a(✓q, �q)⌦ v(fcq)

where �pq is its random complex reflectivity, and fcq is
the Doppler shift observed from the q-th clutter patch. It is
implicitly assumed that the scatterers in a particular clutter
patch have identical Doppler as they are in the same range
gate. Furthermore, it is also implicitly assumed that due
to the far-field assumptions, the scatterers are in the same
azimuth resolution cell. In other words the spatial responses of
scatterers in the same clutter patch are identical to one another.
The Doppler fcq is given by,

fcq :=

2foẋ
T
r (xr � xq)

c||xr � xq||
. (15)

Since the clutter patch is stationary, the Doppler is purely from
the motion of the aircraft as seen in (15). The contribution
from the q-th clutter patch to the received signal is given by

yq =

PX

p=1

�pqs ⌦ a(✓q, �q)⌦ v(fcq), (16)

with corresponding correlation matrix

Rq
� := BqR

pq
� Bq

H (17)

where, Bq = [s ⌦ a(✓q, �q) ⌦ v(fcq), . . . , s ⌦ a(✓q, �q) ⌦
v(fcq)] 2 NML⇥P and Rpq

� is the correlation matrix
of the random vector, [�1q, �2q, . . . , �Pq]

T . Assuming that
a particular scatterer from one clutter patch is uncorrelated
to any other scatterer belonging to any other clutter patch,

we have the net contribution of clutter yc =

QP
q=1

yq , with



corresponding correlation matrix given by

Rc =

QX

q=1

Rq
� . (18)

B. Assumptions on the parameters

Assume fo = 10 GHz, B = 1/T = 50 MHz, M = 10,
✓t = 60

o
, �t = 40

o, that the radar platform has a velocity
vector given by ẋr = [100, 0, 0]

T m/s, likewise the target’s
velocity vector is ẋt = [60, 0, 0]

T miles per hour. Then the
propagation time across the array is 4.5e-10 assuming the inter
element spacing is �o/2, which is clearly much less than the
inverse of the bandwidth. Hence the narrowband assumption
i.e. A1 is satisfied. Using these values of the radar parameters,
we obtain the target Doppler, fd = 2.713 kHz. Substituting
these values, we find that A2 is also satisfied for p = 2, 3, . . ..
Next, we find that exp(j2⇡fdT ) = 1 + 0.0003j, clearly then
for t  1/B, assumption A3 is also satisfied.

III. WAVEFORM DESIGN AND WAVEFORM SCHEDULING

The radar return at the considered range gate is processed
by a filter characterized by a weight vector, w, whose output
is given by wH ȳ. The objective of STAP is to obtain the
desired w such that the power from the undesired response is
minimized, while leaving the target response as is. Since the
waveform s prominently figures in the steering vector, say for
example in (10), our objective is to both design the waveform
as well as obtain the desired weight vector, w. Mathematically,
we may formulate this problem as:

min

w,s
{|wHyu|2} (19)

s. t wH
(s ⌦ a(✓t, �t)⌦ v(fd)) = 1

Solving (19) jointly over the optimization variables proves
difficult. However, the method of concentration as applied
to maximum likelihood problems, proves useful. In other
words, solving the minimization problem w.r.t to w by initially
treating s as a constant, the solution to (19) is well known,
and expressed as

wo =

R�1
u (s ⌦ a(✓t, �t)⌦ v(fd))

(s ⌦ a(✓t, �t)⌦ v(fd))
HR�1

u (s ⌦ a(✓t, �t)⌦ v(fd))

(20)
where Ru = Ri + Rc + Rn. We further emphasize that the
the weight vector is an explicit function of the waveform.
Now substituting wo back into the cost function in (19), the
minimization is purely w.r.t s, with the constraint already being
satisfied 8s. In other words, the new minimization problem is
unconstrained, and cast as,

min

s

1

(s ⌦ a(✓t, �t)⌦ v(fd))
HR�1

u (s ⌦ a(✓t, �t)⌦ v(fd))

(21)

In the presence of clutter, which is assumed here, the correla-
tion matrix Ru is a function of s, although not explicitly stated
but which can be seen from say (16) and (17). In the absence of

clutter but presence of noise and interference, this is not true.
Solving (21) while enforcing the dependency of Ru on s is
intractable. Rather, a suboptimal solution ignores the implicit
dependency of Ru on s is advocated. Then, the solution to (21)
can be formulated as Rayleigh-Ritz optimization [9], resulting
in the solution:

s ⌦ a(✓t, �t)⌦ v(fd) = µmin(Ru) (22)

where µmin(Ru) is the eigenvector corresponding to the

minimum eigenvalue of Ru. This tensor equation implicitly
defines the optimal s; whether this equation may be met with
equality depends on the dimensions and values of a(✓t, �t),
v(fd), and Ru. In general the system is overdetermined and
we solve this equation approximately via least squares (LS)
[10], as described next.

A. Waveform design solution

Define � := a(✓t, �t)⌦ v(fd) = [�1, . . . , �ML]
T , likewise

define si := s(i) to simplify notation. Then, from (22), the
following NML equations are obtained:

si�j = µh, i = 1, 2, . . . , N, j = 1, 2, . . . , ML (23)
h = (i � 1)ML + j

where µh is the h-th element of vector µmin(Ru).
The system of equations in (23) may be written as a linear

matrix equation,

µmin(Ru) = Hs

H :=

2

66664

� 0 0 · · · 0
0 � 0 · · · 0

0 0 �
...

...
...

...
...

...
...

3

77775
2 NML⇥N (24)

where 0 is a column vector of dimension N , consisting of
all zeros. A LS solution is employed to solve (24), with the
corresponding cost function and solution readily given by

min

s
||µmin(Ru)� Hs||2 (25)

ŝ = (HHH)

�1HHµmin(Ru) (26)

where ŝ is the LS estimate of s. After some straightforward
matrix algebra, the solution to (25) is simplified further, i.e.

ŝi =
�Hµh

�H�
, i = 1, 2, . . . N (27)

µh = [µ(i�1)ML+1, µ(i�1)ML+2, . . . , µiML]
T 2 ML

It is readily seen that ŝi are solutions to the individual LS
optimization costs, min

s
i

||µh � si�||2. In other words, the LS
cost in (25) decouples into N separable LS costs. It is noted
that the waveform solutions are unconstrained, the solutions
will change when we put additional constraints, for example,
constant modulus, which is not the focus of this paper.

In practice it is noted that the matrix Ru is unknown
and must be estimated from the STAP data cube shown in
Fig. 2. Typically several range cells are used to estimate the
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Fig. 1. Radar scene considering the ground based target at azimuth (✓t),
elevation (�t). The (x, y, z) axis are local to the aircraft carrying the array.
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Fig. 2. STAP data cube before matched filtering or range compression,
depicting the considered range gate/cell and fast time slices (dashed lines).

undesired correlation matrix which are not in the immediate
vicinity of the range cell under consideration. This is done
to prevent self-nulling of the hypothesized target responses
from either the main lobe or via the sidelobe responses. If
ȳr 2 NML

, r = 1, 2, . . . , R denotes the radar returns from
R range gates consisting of only undesired returns (target free),
then the following sample matrix estimate of Ru is used:

R̂u =

RX

r=1

ȳrȳ
H
r /R (28)

Therefore to ensure invertibility in (21), R � NML is needed.
The effect of using (28) will have an impact on the designed
as well as scheduled waveforms, and is addressed in the
simulations section.

Waveform scheduling: When waveform scheduling rather
than design is desired, then (21) may be used directly by
minimizing over the waveform library given by the set S =

{s1, s2, . . . , sU}. For example, if a target of interest is being
tracked, then scheduling is envisioned by using the previously
obtained estimate of Ru from the prior CPI to schedule for
the future CPI’s. Typically CPI’s are in the order of milli-
seconds (or lower). Hence it may be reasonable to assume that
the correlation matrix of the undesired radar returns remain
approximately stationary for a few contiguous CPIs. It is
further noted that waveform design may aid in waveform
scheduling, i.e. the waveform library could be made dynamic
by incorporating some of the previously designed waveforms
into the waveform library, on-the-fly.

IV. SIMULATIONS

In practice, the designed and scheduled waveforms will
depend on the correlation matrices of noise, interference and
clutter which is unknown. The major focus of this paper is
to investigate the impact of using the estimated correlation
matrix from training data to examine the performance loss,
and is addressed via a numerical simulation.

The noise correlation matrix was assumed to be a scaled
identity matrix assuming an SNR of 20dB. The carrier fre-
quency was chosen to be 10GHz, and the radar bandwidth
was 50MHz. To reduce computation complexity in invert-
ing large matrices and their eigen-decompositions,we con-
sidered M = 5, L = 32, N = 5. The element spacing
i.e. d = �o/2. Two interference sources were considered at
(✓ = ⇡/3, � = 5⇡/2) and at (2⇡/3, 5⇡/2). Both these in-
terference sources had identical discrete correlation functions
given by 0.8

|n|
, n = 0, 1, 2, . . ., in other words comprising the

appropriate elements in matrices R1
↵ and R2

↵. The interference
correlation was constructed using (14). To simulate clutter
we considered two clutter patches, consisting of four scatters
each. To keep the analysis simple, we assumed that the clutter
scatters are uncorrelated in their respective patches as well
as across them. In other words, Rpq

� = I8(p, q). The two
clutter patches were assumed to be at angle co-ordinates given
by (✓ = ⇡/4, � = ⇡/4) and (2⇡/5, ⇡/4), respectively. The
velocity ẋr = [100, 0, 0]

T . The clutter Doppler can now
be computed from say (15), and the corresponding clutter
correlation matrix may be computed from (18).

The loss of performance can now be computed and is
defined as the ratio of the variance of the Capon using the
true correlation matrix to the ratio of the variance of the
capon using the estimated correlation matrix, see also [2]. To
estimate the correlation, we sampled a multivariate Gaussian
distribution using the true parameters, namely zero mean and
correlation given by Ru. Then the estimate used in (28) was
used. The results are shown in 3. It is seen that to be close
to the 3dB tolerance, we must have R � 2NML, to get in
the proximity of 1dB to the optimal performance we need
3NML  R  4NML, which may be prohibitive in certain
airborne applications.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Waveform design and waveform scheduling were addressed
for space time adaptive processing (STAP) in an airborne radar.
An linear array of radar sensors was assumed, interrogating
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Fig. 3. Loss of performance in dBs vs samples

ground based targets. The waveform design and waveform
scheduling problems were formulated with a cost function sim-
ilar to the MVDR cost function as in classical radar STAP. It
is shown analytically derived that both the designed waveform
and the scheduled waveforms will depend on the spatial and
Doppler responses of the desired target. A numerical result was
shown that demonstrates that when the covariance matrix of
the undesired responses are estimated, the loss of performance
is inversely proportional to the number of samples used in
estimation of the covariance matrix.

The analysis in this paper thus far ignored the signal
dependency of the clutter correlation matrix, resulting in the
well known Rayleigh-Ritz optimization problem leading to
the eigenvector solution. Future directions along this line
of research may include this signal dependency of clutter.
Further, possible investigative directions may also include
adding additional radar waveform specific constraints such
as peak sidelobe levels, constant modulus, Doppler tolerance
levels etc.. Nonetheless, it remains to be seen if such solutions
result in minimizing the MVDR variance to appreciably lower
levels than the suboptimal eigenvector solution.
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