Demonstration of the first 9.2 kV 4H-SiC bipolar junction transistor

J. Zhang, P. Alexandrov, T. Burke, and J. H. Zhao

Abstract — This paper reports the first demonstration of a 9.2kV 4H-SiC bipolar junction transistor (BJT) based on a 50 μm, 7x10^{14} cm^{-3} doped drift layer, achieving an emitter current density of 150A/cm^2 at V_{CEO}=5V. A much larger area BJT of identical wafer design with negligible current spreading effect would have an R_{SP,ON} equal to 49mΩ·cm^2 limited only by the specific resistance of the 50um drift layer. A DC common emitter current gain of 7 is achieved.

Index Terms: silicon carbide, bipolar junction transistor, high voltage.

Introduction: 4H-SiC is a very promising material for high power and high temperature semiconductor devices due to its high breakdown electric field, wide band gap and other superior properties. 4H-SiC BJTs are gaining lots of attention recently because they are free of gate oxide problems and can handle higher current with low forward voltage drop compared to SiC MOSFET [1-8]. Up to date, the reported high voltage 4H-SiC BJTs includes (i) a 1800V 4H-SiC BJT with a specific on-resistance (R_{SP,ON}) of 10.8 mΩ·cm^2 by using a drift layer of 20μm doped to 2.5x10^{15} cm^{-3} [4]; (ii) a 4H-SiC BJT with V_{CEO}>3200V by using a drift layer of 50μm doped to 8x10^{14} cm^{-3} [5]; (iii) a 1.3KV 4H-SiC BJT with an R_{SP,ON} of 8mΩ·cm^2 based on a 15μm, 4.4x10^{15} cm^{-3} drift layer[6]; (iv) a V_{CEO} > 1KV 4H-SiC BJT with an R_{SP,ON} of 17mΩ·cm^2 based on a 12μm, 6x10^{15} cm^{-3} doped drift layer [7]; and (v) a V_{CEO} > 1750V 4H-SiC BJT with an R_{SP,ON} of 8.4mΩ·cm^2 based on a 12μm, 8.5x10^{15} cm^{-3} doped drift layer [8]. This paper reports a
This paper reports the first demonstration of a 9.2kV 4H-SiC bipolar junction transistor (BJT) based on a 50 μm, 7x10¹⁴ cm⁻³ doped drift layer, achieving an emitter current density of 150A/cm² at VCEO=5V. A much larger area BJT of identical wafer design with negligible current spreading effect would have an RSP_ON equal to 49mΩ·cm² limited only by the specific resistance of the 50μm drift layer. A DC common emitter current gain of 7 is achieved.
4H-SiC BJT based on a 50μm, 7.0×10^{14} cm$^{-3}$ drift layer achieving a blocking voltage of $V_{ceo}=9,284$V, substantially higher than the previous record of 3,200V[5].

Device fabrication The fabricated 4H-SiC BJT has a simple circular shape with a radius of 300μm. A cross-sectional view of the BJT is shown in Fig.1. The Emitter mesa radius is 50μm. The base area is exposed by ICP etching through the top n-layer. The spacing between the emitter mesa edge and the base contact is 5μm. The detailed design dimensions, wafer doping concentrations and thicknesses are also shown in Fig.1. The 4H-SiC wafer was purchased from Cree Inc. The emitter epi-layer is 1.0μm thick, doped to $n \sim 1 \times 10^{20}$ cm$^{-3}$. The base epi-layer is 1.4μm thick, doped to 8.5×10^{17} cm$^{-3}$. The drift layer is 50μm thick, doped to $n=7.0 \times 10^{14}$ cm$^{-3}$. The device fabrication starts with emitter mesa etching by inductively-coupled plasma (ICP) using CF$_4$ and O$_2$ gas mixture, the etching depth is 1.5μm. Single-step junction termination extension (JTE) based on the p-type base epi-layer is formed by ICP etching to reduce edge field crowding [9]. The width of the JTE region is 150μm and the remaining p-type base epilayer thickness is 0.74μm in the JTE region. The isolation between each device is served by a mesa etching of ~1.2μm into the drift layer. The device surface is passivated by wet-oxidation at 1,100°C for 2 hours followed by a 1-hour Ar annealing at 1100°C, and a 3-hour wet-oxygen re-oxidation at 950°C. After the thermal oxidation, 500nm SiO$_2$ and 250nm Si$_3$N$_4$ were deposited by PECVD to seal the thermal oxide. The Ohmic contact windows were opened by ICP etching and wet etching. Ni was sputtered as the contact metal on both emitter and collector. P-type base Ohmic contact metals are 23nm Ni, 30nm AlTi(Ti: 3.5wt.%) and 225nm Ni sputtered sequentially on the base epi-layer($n=8.5 \times 10^{17}$ cm$^{-3}$). The sample was annealed at 1050°C for 5 minutes in Ar ambient using RTP-610 rapid thermal annealing (RTA) furnace. Measured from
the on-chip TLM patterns, the emitter n-type specific contact resistance and n+ emitter layer sheet resistance are $1.0 \times 10^{-5} \Omega \cdot \text{cm}^2$ and 65Ω, respectively, while the p-type specific contact resistance and p-type base sheet resistance are $1.5 \times 10^{-3} \Omega \cdot \text{cm}^2$ and 39.6KΩ, respectively. This sandwiched Ni/AlTi/Ni p-type SiC Ohmic contact scheme is selected because Ni and Si forms nickel silicide, hence more Si vacancies are available in 4H-SiC interface, Al atoms could diffuse more easily into 4H-SiC interface and becomes acceptors. The AlTi alloy with 3.5w.t.% Ti is to elevate the melting point beyond the annealing temperature for a better surface morphology and also to prevent the formation of un-reacted C atoms at the interface [10]. Top thick nickel mainly serves as a cap layer to protect the AlTi from oxidation during Ohmic contact annealing. This direct base Ohmic contact on epi-layer eliminates ion implantation and high temperature activation annealing process, hence the SiC surface has almost no introduced crystalline damages during the fabrication.

Characterization and discussion: Fig.2 shows the experimental DC I-V curves of a fabricated 4H-SiC BJT device at room temperature. At on state, the device has a common emitter current gain (I_c/I_b) of 7.0, and conducts a collector current of 11.8mA at a forward voltage of $V_{ce}=5V$ when I_b is 4mA. The device has an emitter area of $7.85 \times 10^{-5} \text{cm}^2$. Without including the current spreading effects, the BJT would have a specific on-resistance ($R_{SP,ON}$) of 33m$\Omega \cdot \text{cm}^2$. For a much larger area device of the same wafer design where current spreading at device edge can be neglected, $R_{SP,ON}$ would be equal to 49m$\Omega \cdot \text{cm}^2$ for a 50μm thick, $7.0 \times 10^{14} \text{cm}^{-3}$ doped drift layer without conductivity modulation. If conductivity modulation to the drift layer can be achieved, the BJT should show an even lower specific resistance.
The blocking characteristic of the device is also shown in Fig. 2. The open-base blocking voltage (BVceo) was measured up to 9,284V at a leakage current of 4.6μA in Fluorinert, which is close to the simulated BVceo of 9,040V by using the measured impact ionization coefficients in [11]. This blocking voltage is substantially higher than the highest blocking voltage of 3,200V reported for 4H-SiC BJTs [5].

Conclusions A record high 9.2kV 4H-SiC NPN BJT with a very low leakage current of 4.6 μA and a DC common emitter current gain of 7 has been demonstrated based on a 50μm, 7.0×10^{14} \text{cm}^{-3} doped drift layer. The BJT has a current density of 150A/cm² at Ib = 4mA and Vce= 5V when normalized to the emitter area, corresponding to a specific on-resistance of 33mΩ-cm² without considering current spreading effect. A much larger area BJT of identical wafer design with negligible current spreading effect would have an R_{SP,ON} equal to 49mΩ-cm² limited by the 50um drift layer specific resistance, assuming no conductivity modulation to the drift layer. If conductivity modulation can be achieved, the BJT should show an even lower specific resistance.

Acknowledgement: Authors at SiCLAB, Rutgers University acknowledge financial support by United Silicon Carbide, Inc. Authors at USCI acknowledge financial support provided by a TACOM SBIR program (Contract No. DAAE07-02-C-L050).
REFERENCES

[9] Li X., Tone K., Fursin L., Zhao J.H., Burke, T., Alexandrov, P., Pan M., and Weiner M.:

“Development of Ni/Al and Ni/Ti/Al ohmic contact materials for p-type 4H-SiC”, *Mat. Sci. and Engi.*, 2003, B98, pp286-293.

Authors’ Affiliations

J. Zhang and J. Zhao are with SiCLAB, Department of ECE, Rutgers University, 94 Brett Road, Piscataway, NJ 08854. P. Alexandrov is with United Silicon Carbide, Inc., New Brunswick Tech Center, 100 Jersey Ave, Bldg. A, New Brunswick, NJ 08901. T. Burke is with US Army TACOM, MS-121, Warren, MI 48397-5000. POC: E-Mail: jzhao@ece.rutgers.edu
FIGURE CAPTIONS

Fig. 1. Cross-sectional view of the 9.2KV 4H-SiC BJT.

Fig. 2. I-V characteristics of a fabricated 4H-SiC BJT.
Fig. 1
Fig. 2