1. REPORT DATE
MAR 2005

2. REPORT TYPE

3. DATES COVERED
00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
InAlAsSb/InGaSb double heterojunction bipolar transistor

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC, 20375

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

<table>
<thead>
<tr>
<th>Same as Report (SAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

18. NUMBER OF PAGES
2

19a. NAME OF RESPONSIBLE PERSON
InAlAsSb/InGaSb double heterojunction bipolar transistor

An npn double heterojunction bipolar transistor has been made using In0.27Ga0.73Sb for the base and two different InAl1-xAsxSb1-y layers almost independent of x and y [6]. Even higher performance is expected for similar alloys with a lattice constant near 6.3 Å as the InGaSb base would have an even narrower bandgap of ~0.3 eV. In related work, several groups have recently reported the type doping of 5–1018 cm–3 for 1–2 µm-thick Be-doped In0.5Ga0.5Sb layers in our laboratory. With this we project a sheet resistance of 325 Ω/square for a 40 nm-thick base which is small compared to the sheet resistances ~500–1000 Ω/square for the InGaAs and GaAs/AlSb used in DHBT’s lattice matched to InP. Low resistance ohmic contacts to p-type InGaSb can also be readily achieved [7].

Experimental details: The samples used in this work were grown by solid source molecular beam epitaxy with valved sources for As3 and Sb5. Te is used for the n-type dopant in the InAlAsSb alloys and Be is used for the p-type dopant in the InGaSb. A growth rate of one monolayer per second was used for each layer. The group III sources were calibrated using RHEED oscillations on test structures. Flux measurements were used to set the valves of the group V sources. Many test layers were prepared to determine the required group V fluxes and the optimum growth temperature [1].

The alloy composition and doping concentrations of the emitter-base-collector structure are illustrated in Fig. 1. As there are no commercially available substrates with a 6.2 Å lattice constant, GaSb with a 6.0954 Å lattice constant was used along with a 1.0 µm AlSb buffer layer (lattice constant of 6.135 Å) to help accommodate the lattice mismatch between the GaSb and DHBT material. The collector alloy composition was grown to a thickness of 1.2 µm to accommodate the remaining lattice mismatch in order to have a 6.2 Å lattice constant near the base. The bottom 0.2 µm of the collector layer was heavily doped to aid in obtaining a low resistance contact. A 100 nm-thick base with a p-type doping of 5 × 1018 cm–3 was chosen for this first device to minimise the possibility of Be segregation into the emitter layer. A relatively thick base has been used to minimise difficulties in etching through the emitter to the base. The emitter contains 250 nm of InAlAsSb/InGaSb DHBT (GaSb substrate and AlSb buffer not shown)

Fig. 1 Layer structure for 6.2 Å lattice constant InAlAsSb/InGaSb DHBT

Devices were fabricated using optical lithography and wet etching to define the mesa and ohmic contact areas. Defining the 2.8 × 20 µm emitter stripe required several steps of etching and testing to determine when the base layer had been reached. Thinner base layers will be used in the future now that processing techniques have been established. A Pd/Pt/Au unalloyed ohmic contact was used for the base and unalloyed Cr/Au was used to contact the emitter and collector.

Results: The common-emitter I-V curves for the DHBT shown in Fig. 2 indicate a DC current gain of 25. The maximum collector current, Ic, in Fig. 2 corresponds to a density of 1.8 × 109 A/cm2. The low collector-emitter offset voltage of 220 mV in Fig. 2 supports the possibility of low power dissipation. The Gummel plot presented in Fig. 3 demonstrates the small emitter-base voltages, VBE, required to have collector currents of 1.6 × 104 A/cm2. The difference between this DHBT and an InP DHBT with an In0.53Ga0.47As base can be seen by comparing the emitter-base voltages needed for a collector current density of 100 A/cm2. In Fig. 3, this corresponds to Ic = 5.5 × 107 A which occurs at VBE = 260 mV. This is smaller than the 500 mV needed for an InP DHBT with an In0.53Ga0.47As base [8].

Fig. 2 Common-emitter I-V data for DHBT with 2.8 × 20 µm emitter area

Fig. 3 Gummel plot for DHBT
Discussion: In summary, a DHBT made of InAlAsSb/InGaSb alloys has been developed. The results presented here illustrate a number of properties that indicate low power dissipation is possible. For a given current density the emitter-base voltage is about one half that required for an InP DHBT, and the collector-emitter offset voltage is a low 220 mV. The device presented here was designed using conservative rules to obtain a first device to act as a benchmark to judge future improvements. As mentioned above, it is possible to reduce the base sheet resistance by close to a factor of 6 by increasing the Be concentration. A substantial reduction in collector resistance can also be obtained by using an InAsSb subcollector layer. InAsSb layers with a 6.2 Å lattice constant with a mobility of 6000 cm²/Vs at a carrier concentration of 2 × 10¹⁸ cm⁻³ have already been grown in our laboratory. In addition the InAsSb alloy has a bandgap ~0.2 eV, which should result in much lower contact resistance to the collector. Grading the composition of the In₀.₇₃Al₀.₂₇Sb base is expected to enhance the operating frequency. The output power may be optimised for specific applications by adjusting the collector bandgap through choosing the appropriate composition for the InₓAl₁ₓ₋ₓAs₁₋ₓSb₁₋ₓ collector. Work is also under way to grow these layers on SI-GaAs substrates, which will allow high-frequency RF testing.

Acknowledgments: This work is supported by the Office of Naval Research and by the Defense Advanced Research Projects Agency.

© IEE 2005

Electronics Letters online no: 20058107
doi: 10.1049/el:20058107

(Naval Research Laboratory, Washington, DC 20375, USA)
E-mail: magno@bloch.nrl.navy.mil

References