THESIS

DRAFTSMANS DISPLAYS FOR CONTINGENCY TABLES
USING A FULL-SCREEN, SCROLLABLE APL2
SPREADSHEET INPUT/OUTPUT EDITOR WITH
APPLICATION TO THE PERSEREC DATABASE OF
SPECIAL BACKGROUND INVESTIGATION

by

Uwe H. Steinfeld

March 1990

Thesis Advisor: Peter A. W. Lewis

Approved for public release; distribution is unlimited.
DRAFTSMAN'S DISPLAYS FOR CONTINGENCY TABLES USING A FULL-SCREEN, SCROLLABLE APL2 SPREADSHEET INPUT/OUTPUT EDITOR WITH APPLICATION TO THE PERSEREC DATABASE OF SPECIAL BACKGROUND INVESTIGATION

A full-screen, scrollable spreadsheet-like editor written in the APL2 language is described for inputting, examining, and outputting data. Mixed numeric and character arrays can be read into or read out to formatted or comma delimited ASCII files. Alternatively a bulk mode input facility allows for rapid direct data entry, or data can be examined and edited cell-by-cell in the usual way. Columns, rows or blocks of data can be highlighted in a chosen color, shadowed, moved or copied. In addition APL functions entered on a command line can use the blocks as input or output. A facility for coding missing values is also provided. Output is obtained as a new spreadsheet, or equivalently as an APL2 matrix. In particular two-way crosstabulations of multiple columns are laid out in the spreadsheet like draftsmen's plots to facilitate investigation and explanation of multivariate categorical data. No numerical coding of the data is needed. Flexible printing of arrays is provided, as well as lexicographic sorting of rows.

A specific application of the techniques and the APL2 program is made to a database constructed with the author's assistance and maintained by the Defense Personnel Security Research and Education Center (PERSEREC), Monterey, California. This database is the basis of a large scale study of the Special Background Investigation. The study is designed to evaluate the productivity of investigative sources in developing the necessary information to determine eligibility for access to Sensitive Compartment Information.
Approved for public release; distribution is unlimited.

Draftsmans Displays for Contingency Tables Using
a Full-screen, Scrollable APL2 Spreadsheet Input/Output Editor
with Application to the
PERSEREC Database of Special Background Investigation

by

Uwe H. Steinfeld
Captain, Federal Republic of Germany Army
Diplom-Mathematiker, University of Bielefeld, FRG, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
March 1990

Author: ________________________________
Uwe H. Steinfeld

Approved by: __________________________
Peter A. W. Lewis, Thesis Advisor

Laura D. Johnson, Second Reader

Peter P. Purdue, Chairman
Department of Operations Research
ABSTRACT

A full-screen, scrollable spreadsheet-like editor written in the APL2 language is described for inputting, examining, and outputting data. Mixed numeric and character arrays can be read into or read out to formatted or comma delimited ASCII files. Alternatively a bulk mode input facility allows for rapid direct data entry, or data can be examined and edited cell-by-cell in the usual way. Columns, rows or blocks of data can be highlighted in a chosen color, shadowed, moved or copied. In addition APL functions entered on a command line can use the blocks as input or output. A facility for coding missing values is also provided. Output is obtained as a new spreadsheet, or equivalently as an APL2 matrix. In particular two-way cross-tabulations of multiple columns are laid out in the spreadsheet like draftsmen's plots to facilitate investigation and explanation of multivariate categorical data. No numerical coding of the data is needed. Flexible printing of arrays is provided, as well as lexicographic sorting of rows.

A specific application of the techniques and the APL2 program is made to a database constructed with the author's assistance and maintained by the Defense Personnel Security Research and Education Center (PERSEREC), Monterey, California. This database is the basis of a large scale study of the Special Background Investigation. The study is designed to evaluate the productivity of investigative sources in developing the necessary information to determine eligibility for access to Sensitive Compartment Information.
THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not have been exercised for all cases of interest. While every effort has been made, within the time available, to assure that the programs are free of computational and logical errors, they cannot be considered validated. Any application of these programs without additional verification is at the risk of the user.
TABLE OF CONTENTS

I. INTRODUCTION ... 1
 A. GENERAL OUTLINE ... 1
 B. PURPOSE OF THE THESIS 2
 1. Contribution to Increased Productivity 2
 2. Contribution to Analytical Methodology 2
 C. COMPUTATIONAL TOOLS 3

II. ANALYSIS OF CATEGORICAL DATA 5
 A. CODING TECHNIQUES ... 5
 B. FREQUENCY COUNTS .. 5
 C. CROSSTABULATION .. 6
 D. CONTINGENCY TABLE ANALYSIS 7
 1. The Chi-Square Test for Independence 7
 2. Residual Analysis 9
 E. AGGREGATION OF CATEGORIES 9
 F. DRAFTSMAN’S TABLES ... 10

III. CONSTRUCTION OF THE SBI DATABASE 12
 A. BACKGROUND .. 12
 B. DATABASE FORMAT ... 12

IV. ANALYSIS OF THE SBI DATABASE 14
 A. FREQUENCY COUNTS .. 14
 B. CONTINGENCY TABLES 15

V. CONCLUSIONS AND RECOMMENDATIONS 18
 A. RESULTS OF THE ANALYSIS 18
ACKNOWLEDGMENT

I would like to thank Dr. Al Blum of the IBM Research Labs for his help with questions on the APL2/32 interpreter.
I. INTRODUCTION

A. GENERAL OUTLINE

This thesis has two aspects. The first aspect is the writing of a full-screen, spreadsheet-like data editor written in the APL2 language to perform preliminary numerical analysis for categorical data. APL2 is the IBM Corporation's implementation of some modern APL concepts. The second aspect of the thesis is the application of this editor to a large database consisting mostly of character data.

Categorical (or categorized) data are data which are presented in the form of attributes falling into certain categories or classes. A categorized variable may simply be a convenient classification of a measurable variable into groups. On the other hand, it may not be expressible in terms of an underlying measurable variable at all. For example, we may classify people by (a) their sex, (b) their hair color, (c) their height; (c) is a categorization of a measurable variable, but (a) and (b) are not. Also the hair color may be expressed on an ordered scale from light to dark; this is not so for (a). (a) is referred to as an unordered classification and (b) as an ordered one [Ref. 1: p. 536]. An extreme case of an unordered classification would be simply a labelling of different samples.

To assist the statistician in examining a set of categorical data, an APL2 workspace, UEDIT, has been written to permit the analysis in a flexible and consistent way of all types of classification by means of recoding, sorting, frequency counting, crosstabulation and contingency table analysis. The use of this workspace and the computer system requirements are described in Appendix C.

The second aspect of this thesis is the specific application of the UEDIT workspace to a database consisting of character and numerical data. This database was constructed, with the author's assistance, and is maintained by Dr. Ralph Carney at the Defense Personnel Security Research and Education Center (PERSEREC) in Monterey, California. It is the basis of a large scale study designed to evaluate the productivity of investigation sources in developing the necessary information needed to determine eligibility for access to Sensitive Compartmented Information (SCI). At this time the database consists of 1173 issue cases.
where each case contains 64 fields of information; the total number of cases is projected to be 15,000.

B. PURPOSE OF THE THESIS

The purpose of this thesis is twofold: first, to make a contribution to increased productivity during personnel security investigations, and second, to make a contribution to analytical and computational methodology by bringing together in one package various statistical and computational techniques not available elsewhere.

1. Contribution to Increased Productivity

Special Background Investigation (SBI) is a main component in the process of determining the eligibility for access to Sensitive Compartmented Information. This investigation has to cover a long time in the life of the individual and is expensive. The DCI Personnel Security Working Group (PSWG) is examining the investigative requirements in a large scale study to make a 99% risk assessment on the length of coverage required and to evaluate the productivity, i.e., the importance and usefulness, of the information provided. The study will involve 15,000 issue cases in its final stage.

2. Contribution to Analytical Methodology

There is a great number of statistical software on the market today. The most popular programs, including STATGRAPHICS, SAS, SPSS/PC+ and MINITAB, are all adept at numerical methods. However no one program has a convenient method for tabulating frequency counts, crosstabulation, aggregation of classes of frequencies and recoding of character-based categorical data. The UEDIT APL2 workspace written for this thesis has these capabilities and allows the user to work in a consistent way with one spreadsheet-like matrix containing all the data.

Several functions of the UEDIT workspace are not found in other statistical packages. These functions include the ability to enter new data or change existing data manually in a bulk mode or to import data from formatted or comma delimited ASCII files or, with a separate utility function, data files created by STATGRAPHICS. Columns of data can be easily recoded to provide more meaningful labels. Major-to-minor (lexicographic) sorts can be performed on selected columns, conditional and unconditional frequency tabulations
and crosstabulations can be performed. During these tasks classes of a categorical variable can be aggregated (pooled) interactively. This is an important part of contingency table analysis, and no other statistical package provides the facility for doing this which is found in UEDIT. The contingency table analysis is performed automatically after each aggregation step. All output is obtained as a new spreadsheet, or equivalently as an APL2 matrix, which is overlaid over the original data and can be edited in the usual way.

C. COMPUTATIONAL TOOLS

The APL2 programming language was chosen for the software development because of its compact code and its ability to handle mixed data arrays, i.e., data in vector or matrix form where each element may be numeric or of character type. Subroutines that take many lines of code in languages like FORTRAN can usually be accomplished with a single line of APL2 code. It is also much easier, due to the organization of an APL2 workspace, to structure large programs by performing certain tasks within subfunctions which can be tested and debugged alone, without the need to recompile the complete program.

The APL2 interpreter used for this thesis is APL2/32 for the IBM PC (version 1.02) developed by IBM. This interpreter requires a personal computer based on the 80386 microprocessor and the 80387 mathematical coprocessor. Its primary advantage is the ability to use all available random access memory (RAM) without the 640 KB limitation imposed by DOS. However, UEDIT will also work under IBM's APL2/PC which runs on 8086 and 80286 computers. The package uses several Auxiliary Processors for file and full-screen display management and for printing. The use of STSC’s APL*PLUS II was considered but was rejected because of APL2’s more economic memory management, language compatibility to the mainframe version of APL2 and the availability of a graphics package, GRAFSTAT, for microcomputers in the near future.

1 For instance, the popular program STATGRAPHICS does not provide for aggregation in its contingency table routines. This gap was filled by Ian H. Keith with his APL*PLUS workspace ANALYZE. [Ref. 2]

2 The term “DOS” is used throughout this thesis as a synonym for both the Microsoft Disk Operating System (MS-DOS®) and the IBM Personal Computer Disk Operating System (PC-DOS®).
The UEDIT workspace does not require any additional software. However, the PC-version of GRAFSTAT which will be released in the near future will provide useful functions, especially for graphical analysis. A fundamental function to export data to GRAFSTAT is implemented into UEDIT. In the meanwhile, a statistical package written by Mr. Norman Thomson of the IBM Winchester Laboratories provides a flexible source of routines for use with UEDIT.

In a similar way an interface is provided to StatXact, a statistical software package for exact nonparametric inference from Cytel Software Corporation. This interface writes data columns to disk in a format which can be read by StatXact.

<table>
<thead>
<tr>
<th>Case</th>
<th>YoB</th>
<th>Gender</th>
<th>Marital</th>
<th>Education</th>
<th>Job</th>
<th>Empl</th>
<th>Recommend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10036</td>
<td>52</td>
<td>Female</td>
<td>Married</td>
<td>Some College</td>
<td>Techn</td>
<td>FedCiv</td>
</tr>
<tr>
<td>2</td>
<td>10038</td>
<td>59</td>
<td>Female</td>
<td>Single</td>
<td>Some College</td>
<td>Techn</td>
<td>FedCiv</td>
</tr>
<tr>
<td>3</td>
<td>10042</td>
<td>64</td>
<td>Male</td>
<td>Married</td>
<td>Some College</td>
<td>Techn</td>
<td>Mil</td>
</tr>
<tr>
<td>4</td>
<td>10045</td>
<td>65</td>
<td>Male</td>
<td>Single</td>
<td>Some College</td>
<td>Techn</td>
<td>Mil</td>
</tr>
<tr>
<td>5</td>
<td>10063</td>
<td>66</td>
<td>Male</td>
<td>Married</td>
<td>Some College</td>
<td>Techn</td>
<td>Mil</td>
</tr>
<tr>
<td>6</td>
<td>10071</td>
<td>57</td>
<td>Male</td>
<td>Married</td>
<td>Some College</td>
<td>Techn</td>
<td>Mil</td>
</tr>
<tr>
<td>7</td>
<td>10072</td>
<td>67</td>
<td>Male</td>
<td>Single</td>
<td>Some College</td>
<td>Techn</td>
<td>Mil</td>
</tr>
<tr>
<td>8</td>
<td>10073</td>
<td>64</td>
<td>Male</td>
<td>Single</td>
<td>Some College</td>
<td>Techn</td>
<td>Mil</td>
</tr>
<tr>
<td>9</td>
<td>10094</td>
<td>47</td>
<td>Male</td>
<td>Married</td>
<td>High School</td>
<td>Service</td>
<td>FedCiv</td>
</tr>
<tr>
<td>10</td>
<td>10105</td>
<td>68</td>
<td>Male</td>
<td>Single</td>
<td>High School</td>
<td>Techn</td>
<td>Mil</td>
</tr>
<tr>
<td>11</td>
<td>10107</td>
<td>62</td>
<td>Female</td>
<td>Married</td>
<td>Some College</td>
<td>Techn</td>
<td>Mil</td>
</tr>
<tr>
<td>12</td>
<td>10110</td>
<td>46</td>
<td>Female</td>
<td>Married</td>
<td>Coll Degree</td>
<td>Techn</td>
<td>FedCiv</td>
</tr>
<tr>
<td>13</td>
<td>10111</td>
<td>55</td>
<td>Female</td>
<td>Married</td>
<td>High School</td>
<td>Prof</td>
<td>FedCiv</td>
</tr>
<tr>
<td>14</td>
<td>10114</td>
<td>66</td>
<td>Female</td>
<td>Single</td>
<td>Some College</td>
<td>Prof</td>
<td>FedCiv</td>
</tr>
<tr>
<td>15</td>
<td>10120</td>
<td>65</td>
<td>Female</td>
<td>Married</td>
<td>Some College</td>
<td>Service</td>
<td>FedCiv</td>
</tr>
<tr>
<td>16</td>
<td>10121</td>
<td>66</td>
<td>Male</td>
<td>Single</td>
<td>Coll Degree</td>
<td>Prof</td>
<td>FedCiv</td>
</tr>
<tr>
<td>17</td>
<td>10121</td>
<td>39</td>
<td>Male</td>
<td>Married</td>
<td>Coll Degree</td>
<td>Techn</td>
<td>Mil</td>
</tr>
<tr>
<td>18</td>
<td>10123</td>
<td>63</td>
<td>Male</td>
<td>Single</td>
<td>Coll Degree</td>
<td>Service</td>
<td>FedCiv</td>
</tr>
<tr>
<td>19</td>
<td>10127</td>
<td>65</td>
<td>Male</td>
<td>Single</td>
<td>Coll Degree</td>
<td>Prof</td>
<td>FedCiv</td>
</tr>
<tr>
<td>N3</td>
<td>C6</td>
<td>C8</td>
<td>C12</td>
<td>C7</td>
<td>C6</td>
<td>C9</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Sample UEDIT Full-Screen Data Editor Display: It shows a part of the SBI database with row and column labels. The bottom four lines show the status line with name and size of the edited matrix, the message line where UEDIT displays its prompts and error messages, the user input line and the types and widths of the matrix columns.
II. ANALYSIS OF CATEGORICAL DATA

A. CODING TECHNIQUES

Categorized data may be represented in character or numerical form. Some statistical software packages require that the data to be analyzed have numerical form. Therefore certain attributes in a database have to be recoded by a numeral. For example, in a data column denoting the marital status of an individual, single may be coded as "1", married as "2", divorced as "3" and so on. The absence of an attribute ("unknown" value) could be coded as "0". Normally a character representation is preferred because very often the context cannot be inferred from the numerical representation alone without the help of an additional list explaining the various codes.

UEDIT does not require any numerical coding because each column of a database can contain character data of arbitrary width, or numerical data in fixed decimal, floating point or date representation. For example, the marital status in the SBI database is denoted by "Single", "Married", "Divorced", "Separated", "Widowed", or a blank field if the status is not known. This approach makes it easy to make accurate inferences and to avoid the confusion which might occur when handling large databases containing only numeric codes.

B. FREQUENCY COUNTS

Frequency counting is the determination of the unique elements of an attribute and the number of occurrences of each of those elements. The preferred method for computing the frequency counts is to sort the elements of a sample of size \(n \) numerically or lexicographically. Then the first element in the ordered list is used as a label and the list is searched until an element \(k \) is found which is not equal to element 1. Now there are \(k - 1 \) occurrences of element 1 and element \(k \) becomes the next unique element. This procedure is repeated until the list is exhausted. The result is a vector \(\{f_i, i = 1, \ldots, r\} \) of frequencies of \(r \) unique elements in the sample. A simple implementation in APL2 may look like

\[
I \gets (U \cdot U[sort ((\rho U), 1) \rho U \cdot ((A \cdot A) \cdot \rho A) / A]) \cdot A
\]

\[
F \gets (\rho U) \cdot 0
\]
which takes a vector \(A \) of character elements and creates a new vector \(U \) which consists of the unique elements of \(A \) and a numerical vector \(F \) which contains the number of occurrences of each element of \(U \). In line 1 \(\text{sort} \) is a subfunction which sorts the elements of \(U \) in any desired order (ascending or descending, case sensitive or case insensitive).

From these (absolute) frequencies \(f_i \), relative frequencies \(r_i = f_i/n \) and cumulative frequencies \(c_i = \sum_{j=1}^{i} f_j \) can easily be calculated by

\[
R = F / p F \\
C = + F
\]

All these values are automatically calculated by UEDIT whenever a frequency count is performed.

C. CROSSTABULATION

Crosstabulation is an extension of frequency counting to two-dimensional samples. Two categorized variables with equal number \(n \) of elements in a one-to-one correspondence are crossed-tabulated in the following way. Assuming they have \(r \) and \(c \) unique elements, respectively, then for each unique element \(i \) of the first variable a separate frequency count for the number of occurrences of each unique element \(j \) of the second variable is performed. This results in a matrix of observed frequencies

\[
\begin{array}{cccc}
 n_{11} & n_{12} & \ldots & n_{1c} \\
 n_{21} & n_{22} & \ldots & n_{2c} \\
 \vdots & \vdots & \ddots & \vdots \\
 n_{r1} & n_{22} & \ldots & n_{rc} \\
 n_1 & n_2 & \ldots & n_c \\
\end{array}
\]

which is also known as a contingency table.

The \(n_i = \sum_{j=1}^{c} n_{ij} \) are called row sums or row marginals, the \(n_j = \sum_{i=1}^{r} n_{ij} \) are called column sums or column marginals. They represent the frequency counts of both elements by itself, i.e., marginal totals. Again, \(n \) is the sample size.

A very efficient method to implement a crosstabulation into a computer program is the two-way plus reduction [Ref. 3: p. 97]. It replaces the indices \(i = 1, \ldots, r \) of the unique elements of the first variable by \(i' = c(i - 1) \) where \(c \) again is the number of
unique elements of the second variable. Then \(k = i' + j \) is unique for all \(i = 1, \ldots, r \) and \(j = 1, \ldots, c \), and a vector \(\{f'_k, k = 1, \ldots, rc\} \) can be constructed using a frequency tabulation as described before, which consists of the combined frequencies of both variables. By reshaping this vector into a \(r \times c \) matrix a contingency table is obtained to which a row of column marginals and a column of row marginals can be added.

D. CONTINGENCY TABLE ANALYSIS

Contingency table analysis is a statistical method to measure and test the interdependence of two categorized variables, or, as it is generally known, the problem of association. [Ref. 1: p. 536]

When observations are based on a nominal measurement scale, i.e., have no natural numeric value, distributional measures such as mean or variance are undefined. Association, i.e., dependence, of categorized variables cannot be measured by moments based on a joint probability distribution [Ref. 4: p. 14]. The method of contingency table analysis is very useful for the analysis of associations of categorized variables. It uses the contingency table created by a crosstabulation of two elements.

1. The Chi-Square Test for Independence

Let the observations of a random sample of size \(n \) be classified according to two criteria, so that each observation is associated with one of \(r \) classes of criterion 1 and one of \(c \) classes of criterion 2. Let \(n_{ij} \) be the number of observations associated with class \(i \) of criterion 1 and class \(j \) of criterion 2. Then the \(n_{ij} \) can be arranged in an \(r \times c \) contingency table as defined in section C.

The assumptions being made are

1. The sample of \(n \) observations is a random sample, i.e., each observation has the same probability as every other observation of being classified in row \(i \) and column \(j \), independently of the other observations.

2. Each observation may be classified into exactly one of \(r \) different categories according to one criterion and into exactly one of \(c \) different categories according to the second criterion. [Ref. 5: p. 155]

Then the null hypothesis can be stated as

\[H_0 : \] The event "an observation is in row \(i \)" is independent of the event "that same observation is in column \(j \)" for all \(i \) and \(j \).
against the alternative

$$H_1 : \text{There is lack of independence, i.e., an association exists between at least one column and one row.}$$

By the definition of independence of events, the hypotheses may be stated as follows

$$H_0 : \quad p_{ij} = p_i p_j \quad \text{for all } i, j$$

$$H_1 : \quad p_{ij} \neq p_i p_j \quad \text{for some } i, j$$

where $$p_{ij}$$ is the probability that an observation is in row $$i$$ and column $$j$$, and $$p_i$$ and $$p_j$$ are the marginal probabilities of observations in row $$i$$ and column $$j$$ respectively.

The most common test statistic for this hypothesis is given by

$$X^2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(n_{ij} - e_{ij})^2}{e_{ij}}$$

where $$n_{ij}$$ are the observed frequencies in row $$i$$ and column $$j$$ and the $$e_{ij}$$ denote the expected frequencies in row $$i$$ and column $$j$$ defined by

$$e_{ij} = \frac{n_i n_j}{n}$$

Here $$n_i$$ and $$n_j$$ are the row and column marginals, respectively, and $$n$$ the total number of observations.

As $$n \to \infty$$, $$X^2$$ is asymptotically distributed as a $$\chi^2$$ random variable with $$(r - 1)(c - 1)$$ degrees of freedom [Ref. 5: p. 156]. Hence the decision rule is to reject $$H_0$$ if $$X^2$$ exceeds the $$1 - \alpha$$ quantile of a $$\chi^2$$ random variable with $$(r - 1)(c - 1)$$ degrees of freedom where “$$\alpha$$ is the maximum probability of rejecting $$H_0$$ when $$H_0$$ is true” [Ref. 5: p. 79]. Equivalently the minimum probability of accepting $$H_0$$, making the correct decision, is $$1 - \alpha$$. The quantity $$\alpha$$ is usually called the level of significance.

The value $$\alpha = \hat{\alpha}$$ such that $$X^2$$ equals the $$1 - \hat{\alpha}$$ quantile of a $$\chi^2$$ distribution is called the critical value or $$p$$-value. That is, “$$\hat{\alpha}$$ is the smallest significance level at which the null hypothesis would be rejected for a given observation”. [Ref. 5: p. 81]

However it is important to keep in mind that $$X^2$$ is only a test value for the null hypothesis and not a measure of the degree of dependence or independence. Greater
values of X^2 do not necessarily imply greater dependence. For a discussion of an adequate measurement of the degree of dependence see Goodman and Kruskal [Ref. 6].

2. Residual Analysis

If the null hypothesis is rejected, i.e., if the test statistic X^2 exceeds the $1 - \alpha$ quantile of the corresponding χ^2 distribution the question arises which combinations of the two variable categories contribute to this decision. The *standardized residuals* of observed frequencies, defined by

$$z_{ij} = \frac{n_{ij} - e_{ij}}{\sqrt{e_{ij}}}$$

are useful in this regard as “large” values are an indicator of the degree of contribution. Note that X^2 is equal to the sum over all i and j of z_{ij}^2. [Ref. 7: p. 348] UEDIT uses the built-in shadowing capability to highlight two categories of extremely large residuals to help in their visual recognition.

E. AGGREGATION OF CATEGORIES

An area of ongoing research is the minimum expected frequency that should occur in a contingency table for the asymptotic distribution theory of the χ^2 test statistic to be valid. If the e_{ij} are “too small” then the test statistic X^2 is not well approximated by a χ^2 distribution. Cells with small expectation “are less informative than cells with expectation greater than, say, 3”. If $e_{ij} < 2$ “the lowest count of 0 is not improbably low, and the only way for the count to differ ‘significantly’ from e_{ij} is by being too high”. [Ref. 7: p. 291]

One common rule is that no cell should have an expected frequency less than 1 and no more than 1/5 of the cells should have an expectation less than 5. If χ^2 has only 1 degree of freedom, i.e., in a 2×2 table, no cell should have an expectation less than 5 and the total number of observations should be at least 30. [Ref. 8: p. 334]

Another rule uses the average expected frequencies rather than the minimum expectations. The average expected frequency \bar{E}, is defined as the ratio of the sample size to the number of cells, i.e.,

$$\bar{E} = \frac{n}{rc}$$
The recommendations are

1. If $\alpha = .05$ and cells are equiprobable, then $E \geq 1$.

2. If $\alpha = .01$ and cells are equiprobable, then $E \geq 2$.

3. If the cells are not equiprobable then average expectations should be doubled, i.e., $E \geq 2$ for $\alpha = .05$, and $E \geq 4$ for $\alpha = .01$. [Ref. 9: p. 758]

If these conditions are not met groups with low expectations should be aggregated (pooled) to raise the accuracy of the analysis if an aggregation is feasible. That is, rows or columns with similar context are merged to increase the cell expectation. In most cases aggregation will affect the critical level α and may even change the decision whether to reject or accept the null hypothesis. UEDIT leaves the judgment regarding the feasibility of an aggregation and the validity of the test to the user, but allows an aggregation of any classes of a variable and then performs the necessary recalculation automatically.3

F. DRAFTSMAN'S TABLES

Contingency tables as described before are also called two-way contingency tables where the term "two-way" refers to the number of dimensions of the table or equivalently to the number of variables crosstabulated. An extension may be made to increase the number of variables to three or more which leads to an n-way contingency table with n dimensions [Ref. 5: p. 165]. For example, in the SBI database one might be interested whether the variables GENDER, MARITAL and EDUCATION are independent. This would result in a contingency table with $r = 2$ rows, $c = 5$ columns and $b = 5$ blocks and a test statistic X^2 with a summation over all $r \times c \times b$ cells. X^2 is then tested for significance using the χ^2 distribution with $(r - 1)(c - 1)(b - 1)$ degrees of freedom.

However, with the number of dimensions the difficulty in visualizing the associations and interactions between variables will also increase. Therefore this method is not used very often and is currently not implemented in UEDIT.

A more useful approach is to crosstabulate the n variables of interest pairwise and arrange the $n(n - 1)/2$ contingency tables in a draftsman's table [Ref. 10: p. 136], an array

3 Exact tests are available in the StatXact package, but its import capability is limited to casefiles with a sample size of maximal 200 and to 2×2 contingency tables.
of tables arranged in the following order

\[\begin{array}{cccccc}
V_1 \text{ vs. } V_2 & V_1 \text{ vs. } V_3 & V_1 \text{ vs. } V_4 & \ldots & V_1 \text{ vs. } V_n \\
V_2 \text{ vs. } V_3 & V_2 \text{ vs. } V_4 & \ldots & V_2 \text{ vs. } V_n \\
V_3 \text{ vs. } V_4 & \ldots & V_3 \text{ vs. } V_n \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\
V_{n-1} \text{ vs. } V_n \\
\end{array}\]

where \(V_i \text{ vs. } V_j \) denotes the result of a crosstabulation of variables \(i \) and \(j \). Examples are given in Appendix D.
A. BACKGROUND

The Director of Central Intelligence (DCI) Personnel Security Working Group (PSWG) is examining the investigative requirements of the DCI Directive 1/14 with a large scale study of the Special Background Investigation (SBI). The study is designed to evaluate the productivity of investigative sources in developing the necessary information to determine eligibility for access to Sensitive Compartment Information (SCI). The objectives of the study are to:

1. Determine the productivity of sources of information in personnel security investigations.
2. Evaluate the length of coverage needed to determine with reasonable probability that an indication of significant adverse information will be developed.

It is recognized that when significant information is revealed, an inquiry is normally expanded to completely resolve an issue. The purpose of the present PSWG study is to determine which sources provide the first indication of a problem and the minimum period of coverage needed to reveal a problem.

B. DATABASE FORMAT

The data for the PSWG study is recorded by adjudicators on machine-scannable, case summary forms after an initial determination has been reached. These forms are then scanned, and the information is converted into SAS format and recorded on tape. To edit and work interactively with the data the tape contents are then dumped to a CMS file on the mainframe computer of the Naval Postgraduate School.

The original database presently consists of 861 records, one for each issue case. The data were collected during the first six months of 1989. Each record contains 166 fields of information pertaining to the particular issue case. The first 13 fields contain the case number and data common to each of up to three issues which are coded in the remaining 153 record fields. The record format is fixed but with variable field lengths.
This data file was then transferred to a PC and preprocessed with *KEDIT* and *Personal REXX* with the purpose of

1. Constructing new records consisting of the 13 common fields and one issue (51 fields) per record. The new database has now 1173 records for 861 individuals, with 64 fields each.

2. Reducing the amount of disk storage needed by converting the file format to "comma delimited", i.e., fields are no longer padded with blanks to preserve the fixed format but are delimited with commas only.

The file was then loaded into **UEDIT** and recoded using the recoding facility (Shift-F8) provided by the program. Because of the structure of the summary forms and the automatic scanning process all fields in the original database are numeric. In addition some of the fields were coded in binary form, i.e., in a sequence of ones (marked) and zeroes (unmarked), whereas most other fields were coded in decimal form, e.g., the field YEAR OF BIRTH. All categorical fields were recoded to obtain their original label, e.g., in the EDUCATION column

1 → Non-HS
2 → GED
3 → High school
4 → Some college
5 → College degree
6 → Post-graduate

Missing data (unknown values) were consistently coded as a blank field which is internally stored by **UEDIT** as -32768 for numeric columns as a default value.

To facilitate the analysis, two databases were generated consisting of the common data (861 records) and the issue data (1173 records), respectively, with the case numbers as identifier fields in both files.

The common data consist mostly of identification fields and demographic attributes. A preliminary analysis of these demographic variables is the objective of the following chapter.

KEDIT is a full-screen text editor, *Personal REXX* a computer language. Both are highly compatible to IBM’s *XEDIT* and *REXX* respectively which are available on the Naval Postgraduate School mainframe computer.
IV. ANALYSIS OF THE SBI DATABASE

Six demographic variables are included in the database of Security Background Investigation. These are

1. YEAR OF BIRTH
2. GENDER
3. MARITAL STATUS
4. EDUCATION (highest education level of the subject)
5. JOB CATEGORY which is described by
 (a) Professional — project managers, scientists, analysts, military officers, etc.
 (b) Technical — persons involved in the manufacture, operation or maintenance of equipment and military enlisted personnel
 (c) Clerical — persons involved in clerical duties
 (d) Service — charforce, security guards, etc.
6. TYPE OF EMPLOYEE (military, federal civilian or industrial contractor)

A. FREQUENCY COUNTS

The database of the demographic data presently consists of 861 individuals of whom 2/3 are male, 48% are single and 43% are married. 79% are between 18 and 40 years old. Nearly all have at least a high school degree. The complete results are tabulated in Appendix A.

The number of incomplete data, i.e., data that are coded as unknown, which usually causes problems for an accurate analysis is small and mostly negligible, as Table 1 shows.

<table>
<thead>
<tr>
<th>Category</th>
<th>Missing data</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENDER</td>
<td>0.2 %</td>
</tr>
<tr>
<td>YEAR OF BIRTH</td>
<td>0.1 %</td>
</tr>
<tr>
<td>MARITAL STATUS</td>
<td>1.0 %</td>
</tr>
<tr>
<td>EDUCATION</td>
<td>1.7 %</td>
</tr>
<tr>
<td>JOB CATEGORY</td>
<td>3.9 %</td>
</tr>
<tr>
<td>TYPE OF CATEGORY</td>
<td>0.5 %</td>
</tr>
</tbody>
</table>
B. CONTINGENCY TABLES

The columns of demographic data were pairwise crosstabulated using the "Draftsman's Display" option of UEDIT. The resulting contingency tables are listed in Appendix B. Note that the spreadsheet computer display has several advantages over the printed display: observed frequencies and residuals are displayed in different colors, significant residuals are highlighted which makes comparisons much easier.

All tables have \(\chi^2 \)-statistics between 29.6 and 530.5 with p-values less than 0.0011 contradicting the hypothesis of no association between these attributes. Of course, many of the associations found are obvious. For example, only few individuals of age 20 and less are married or have a Postgraduate degree. Only three subjects are widowed so that no significant statements for them can be made. The observations made are summarized below.

YEAR OF BIRTH vs. GENDER

The proportions of males and females in the database are maintained only in the range of ages 30–40. Below this range there are relatively more females, above this range more males.

YEAR OF BIRTH vs. MARITAL STATUS, EDUCATION and JOB CATEGORY

As mentioned before there is a strong tendency for younger individuals to still be single and have not yet finished their education. Therefore additional crosstabulations were done in which the year of birth was conditioned to those that lie in the range 20–59. These results were quite different and showed no strong associations between the categories.

<table>
<thead>
<tr>
<th>Year of Birth vs.</th>
<th>(\chi^2)</th>
<th>p-level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marital Status</td>
<td>51.06</td>
<td>.25</td>
</tr>
<tr>
<td>Education</td>
<td>46.18</td>
<td>.77</td>
</tr>
<tr>
<td>Job Category</td>
<td>33.09</td>
<td>.61</td>
</tr>
</tbody>
</table>

YEAR OF BIRTH vs. TYPE OF EMPLOYEE

The same restricted additional crosstabulation was performed for YEAR OF BIRTH and TYPE OF EMPLOYEE. This limited the amount of associations. The results
were $\chi^2 = 31.04$ and a p-level of .03. But a relatively large number of contractors in the range of age 55–65 remains noticeable.

MARITAL STATUS vs. GENDER

The number of married females in the database is relatively low, while there are more married men than the expectation under the assumption of independence.

MARITAL STATUS vs. JOB CATEGORY

This table mirrors the results of the crosstabulations of YEAR OF BIRTH vs. MARITAL STATUS and JOB CATEGORY. For example, singles are usually younger than married individuals and are more likely to fall into the job category Technical.

MARITAL STATUS vs. TYPE OF EMPLOYEE

The most noticeable positive relationship in the table is between contractors and married subjects, while there are relatively more single federal civilians and military personnel. Also the rate of divorced contractors and federal civilians is higher than the rate of military personnel.

EDUCATION vs. GENDER

Generally the education level of females tends to be lower than of males.

EDUCATION vs. MARITAL STATUS

Weak associations can be observed between many singles with high school degree and married subjects with postgraduate degree on one hand and few singles with postgraduate degree and married individuals with high school degree on the other hand.

EDUCATION vs. JOB CATEGORY

As expected there are strong association between these two categories depending on the prerequisites for the different job categories. This resulted in a χ^2-statistic of 442.5.

EDUCATION vs. TYPE OF EMPLOYEE

Generally the education level of contractors and federal civilians in the database is higher than that of military personnel. This may be because the age is correlated with both categories.
JOB CATEGORY vs. GENDER

A very large number of females is involved in clerical duties. This is already obvious by looking at the absolute numbers.

JOB CATEGORY vs. TYPE OF EMPLOYEE

Obviously most military personnel are in the job category Technical which involves all enlisted personnel, while federal civilians are mostly in the other three categories. The result was the highest χ^2 statistic of 530.5.

TYPE OF EMPLOYEE vs. GENDER

Most females are in the category Federal Civilian, while males are more associated with the other classes Contractor and Military.
V. CONCLUSIONS AND RECOMMENDATIONS

A. RESULTS OF THE ANALYSIS

The database of Security Background Investigation with its 861×64 fields could easily be handled with UEDIT. The ability to investigate character and numeric data in one matrix by scrolling across the worksheet was extremely useful in enabling the investigation to see characteristics of the data at a glance. Inconsistent coding schemes were spotted at once and recoding was a matter of seconds. The fear that the speed of the editing and the statistical functions would be unacceptable due to the interpretative character of the APL language was soon dismissed.

APL2's capability to handle nested vectors and matrices as a unit causes the loss in speed for editing the SBI database compared to a 150×10 matrix to be minimal, except for the time it takes to load a database into the system.

The preliminary analysis of the demographic data in the SBI database was eased by the fact that the percentage of missing data is low. This raised the statistical significance of the statements considerably. However, one has always to bear in mind that correlation does not imply causation. This was demonstrated when several strong associations lost their significance when the subjects under investigation were limited to age 30 and older.

B. RECOMMENDATIONS FOR FURTHER STUDIES

The frequency counting, crosstabulation and contingency table analysis should be repeated when the SBI database is complete. The methodology will remain appropriate. Because of the interrelatedness among all variables the analysis should involve n-way comparison. When GRAFSTAT/PC is released by IBM these investigations should be extended by graphical analysis to further improve the visual effect of the results.

The extra facilities offered by a second generation APL interpreter like APL2 make the APL language even more attractive for statistical analysis. The APL2 environment is ideal for collecting a flexible set of investigative tools. Therefore UEDIT has been designed to be open-ended. New functions can be added easily either by implementing them as an integral
part of the system—a template has been provided to achieve this task—or by copying them into the workspace in addition to UEDIT and activate them from UEDIT’s command line.

Possible enhancements in connection with this thesis may be:

1. Extending the analysis to n-way contingency tables to examine multi-way interactions between three or more variables.

2. Providing methods to measure the degree of dependence or independence in contingency tables.

3. Graphical methods for the analysis of contingency tables. This could be done by enhancing the interface to GRAFSTAT/PC after its release. The interface is presently kept very rudimentary as no exact specifications are yet available.
The following tables show the frequency tables for the demographic variables in the SBI database. Presently there are 861 cases in the database. Therefore these tabulations will change after all data have been collected. Unknown attributes are indicated by a dash.

The bar charts in the last table columns are presented in the way produced by UEDIT: If all absolute frequencies are smaller than 40 then all bar lengths (measured in display columns) are equal to those frequencies. Otherwise the longest bar is 40 columns long and the others have lengths proportional to it. The lengths are at least 1 unless there are no observations in a class.

YEAR OF BIRTH

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>−</td>
<td>1</td>
<td>.00</td>
<td>1</td>
</tr>
<tr>
<td>20–29</td>
<td>7</td>
<td>.01</td>
<td>8</td>
</tr>
<tr>
<td>30–34</td>
<td>26</td>
<td>.03</td>
<td>34</td>
</tr>
<tr>
<td>35–39</td>
<td>19</td>
<td>.02</td>
<td>53</td>
</tr>
<tr>
<td>40–44</td>
<td>46</td>
<td>.05</td>
<td>99</td>
</tr>
<tr>
<td>45–49</td>
<td>60</td>
<td>.07</td>
<td>159</td>
</tr>
<tr>
<td>50–54</td>
<td>85</td>
<td>.10</td>
<td>244</td>
</tr>
<tr>
<td>55–59</td>
<td>114</td>
<td>.13</td>
<td>358</td>
</tr>
<tr>
<td>60–64</td>
<td>189</td>
<td>.22</td>
<td>547</td>
</tr>
<tr>
<td>65–69</td>
<td>236</td>
<td>.27</td>
<td>783</td>
</tr>
<tr>
<td>70–72</td>
<td>78</td>
<td>.09</td>
<td>861</td>
</tr>
</tbody>
</table>
GENDER

<table>
<thead>
<tr>
<th></th>
<th>Freq</th>
<th>Rel.</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>2</td>
<td>.00</td>
<td>2</td>
</tr>
<tr>
<td>Female</td>
<td>298</td>
<td>.35</td>
<td>300</td>
</tr>
<tr>
<td>Male</td>
<td>561</td>
<td>.65</td>
<td>861</td>
</tr>
</tbody>
</table>

MARITAL STATUS

<table>
<thead>
<tr>
<th></th>
<th>Freq</th>
<th>Rel.</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>9</td>
<td>.01</td>
<td>9</td>
</tr>
<tr>
<td>Single</td>
<td>412</td>
<td>.48</td>
<td>421</td>
</tr>
<tr>
<td>Married</td>
<td>374</td>
<td>.43</td>
<td>795</td>
</tr>
<tr>
<td>Separated</td>
<td>12</td>
<td>.01</td>
<td>807</td>
</tr>
<tr>
<td>Divorced</td>
<td>51</td>
<td>.06</td>
<td>858</td>
</tr>
<tr>
<td>Widowed</td>
<td>3</td>
<td>.00</td>
<td>861</td>
</tr>
</tbody>
</table>

EDUCATION

<table>
<thead>
<tr>
<th></th>
<th>Freq</th>
<th>Rel.</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>15</td>
<td>.02</td>
<td>15</td>
</tr>
<tr>
<td>Non HS</td>
<td>8</td>
<td>.01</td>
<td>23</td>
</tr>
<tr>
<td>GED</td>
<td>8</td>
<td>.01</td>
<td>31</td>
</tr>
<tr>
<td>Highschool</td>
<td>261</td>
<td>.30</td>
<td>292</td>
</tr>
<tr>
<td>Some college</td>
<td>229</td>
<td>.27</td>
<td>521</td>
</tr>
<tr>
<td>College degree</td>
<td>239</td>
<td>.28</td>
<td>760</td>
</tr>
<tr>
<td>Post-graduate</td>
<td>101</td>
<td>.12</td>
<td>861</td>
</tr>
</tbody>
</table>
JOB CATEGORY

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>34</td>
<td>.04</td>
<td>34</td>
</tr>
<tr>
<td>Clerical</td>
<td>108</td>
<td>.13</td>
<td>142</td>
</tr>
<tr>
<td>Professional</td>
<td>340</td>
<td>.39</td>
<td>482</td>
</tr>
<tr>
<td>Service</td>
<td>69</td>
<td>.08</td>
<td>551</td>
</tr>
<tr>
<td>Technical</td>
<td>310</td>
<td>.36</td>
<td>861</td>
</tr>
</tbody>
</table>

TYPE OF EMPLOYEE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>4</td>
<td>.00</td>
<td>4</td>
</tr>
<tr>
<td>Contractor</td>
<td>168</td>
<td>.20</td>
<td>172</td>
</tr>
<tr>
<td>Federal Civilian</td>
<td>356</td>
<td>.41</td>
<td>528</td>
</tr>
<tr>
<td>Military</td>
<td>333</td>
<td>.39</td>
<td>861</td>
</tr>
</tbody>
</table>
APPENDIX B. SBI DATABASE CONTINGENCY TABLES

The following tables show the results of a pairwise crosstabulation of the demographic data in the SBI database. The 15 tables were created using the "Draftsman's Display" option of UEDIT. The first entry in each field shows the observed frequency, the second field shows the standard residual for each pair of attributes. The spreadsheet screen display of UEDIT shows observed frequencies and residuals in different colors, significant residuals are highlighted which makes comparisons much easier. Clearly this highlighting cannot be shown on a black and white page. However it is possible to display only the highlighted residuals by pressing (Shift-S) ("Shadow"). An example of this reduction of the YEAR OF BIRTH vs. GENDER crosstabulation is given below.
YEAR OF BIRTH - GENDER

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Male</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>.00</td>
<td>.00</td>
<td>1.00</td>
</tr>
<tr>
<td>-</td>
<td>-.05</td>
<td>-.59</td>
<td>.43</td>
</tr>
<tr>
<td>20-29</td>
<td>1.00</td>
<td>6.00</td>
<td>7.00</td>
</tr>
<tr>
<td>30-34</td>
<td>10.00</td>
<td>16.00</td>
<td>26.00</td>
</tr>
<tr>
<td>35-39</td>
<td>1.00</td>
<td>1.00</td>
<td>17.00</td>
</tr>
<tr>
<td>40-44</td>
<td>9.00</td>
<td>37.00</td>
<td>46.00</td>
</tr>
<tr>
<td>45-49</td>
<td>14.00</td>
<td>17.00</td>
<td>41.00</td>
</tr>
<tr>
<td>50-54</td>
<td>30.00</td>
<td>55.00</td>
<td>85.00</td>
</tr>
<tr>
<td>55-59</td>
<td>39.00</td>
<td>74.00</td>
<td>114.00</td>
</tr>
<tr>
<td>60-64</td>
<td>76.00</td>
<td>113.00</td>
<td>189.00</td>
</tr>
<tr>
<td>65-69</td>
<td>84.00</td>
<td>152.00</td>
<td>236.00</td>
</tr>
<tr>
<td>70-72</td>
<td>34.00</td>
<td>44.00</td>
<td>78.00</td>
</tr>
<tr>
<td>total</td>
<td>2.00</td>
<td>298.00</td>
<td>561.00</td>
</tr>
<tr>
<td>column %</td>
<td>.00</td>
<td>.35</td>
<td>.65</td>
</tr>
<tr>
<td>d.o.f.</td>
<td>20.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-sq</td>
<td>46.3417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>signif</td>
<td>.0007</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YEAR OF BIRTH - GENDER (shadowed)

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Male</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-.05</td>
<td>-.59</td>
<td>.43</td>
</tr>
<tr>
<td>20-29</td>
<td>-.13</td>
<td>-.91</td>
<td>.67</td>
</tr>
<tr>
<td>30-34</td>
<td>-.25</td>
<td>.33</td>
<td>-.23</td>
</tr>
<tr>
<td>35-39</td>
<td>4.55</td>
<td>-.217</td>
<td>1.31</td>
</tr>
<tr>
<td>40-44</td>
<td>-.33</td>
<td>-.73</td>
<td>1.28</td>
</tr>
<tr>
<td>45-49</td>
<td>-.44</td>
<td>.11</td>
<td>-.05</td>
</tr>
<tr>
<td>50-54</td>
<td>1.43</td>
<td>-.07</td>
<td>-.03</td>
</tr>
<tr>
<td>55-59</td>
<td>-.66</td>
<td>1.31</td>
<td>-.91</td>
</tr>
<tr>
<td>60-64</td>
<td>-.74</td>
<td>.26</td>
<td>-.14</td>
</tr>
<tr>
<td>65-69</td>
<td>-.43</td>
<td>1.35</td>
<td>-.96</td>
</tr>
<tr>
<td>column %</td>
<td>.00</td>
<td>.35</td>
<td>.65</td>
</tr>
<tr>
<td>YEAR OF BIRTH – MARITAL STATUS</td>
<td>Single</td>
<td>Married</td>
<td>Separated</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>20-29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55-59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65-69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d.o.f.</th>
<th>Chi-sq</th>
<th>signif</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.0000</td>
<td>384.9084</td>
<td>.0000</td>
</tr>
<tr>
<td>Year of Birth</td>
<td>-</td>
<td>Non HS</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.13</td>
</tr>
<tr>
<td>20-29</td>
<td></td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.35</td>
</tr>
<tr>
<td>30-34</td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.30</td>
</tr>
<tr>
<td>35-39</td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.90</td>
</tr>
<tr>
<td>40-44</td>
<td></td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.90</td>
</tr>
<tr>
<td>45-49</td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.93</td>
</tr>
<tr>
<td>50-54</td>
<td></td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.25</td>
</tr>
<tr>
<td>55-59</td>
<td></td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.72</td>
</tr>
<tr>
<td>60-64</td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.71</td>
</tr>
<tr>
<td>65-69</td>
<td></td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.03</td>
</tr>
<tr>
<td>70-72</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.31</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>15.00</td>
</tr>
<tr>
<td>column %</td>
<td></td>
<td>.02</td>
</tr>
<tr>
<td>d.o.f.</td>
<td></td>
<td>60.0000</td>
</tr>
<tr>
<td>Chi-sq</td>
<td></td>
<td>265.9455</td>
</tr>
<tr>
<td>signif</td>
<td></td>
<td>.0000</td>
</tr>
</tbody>
</table>
YEAR OF BIRTH - JOB CATEGORY

<table>
<thead>
<tr>
<th></th>
<th>Clerical</th>
<th>Profess.</th>
<th>Service</th>
<th>Technical</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>1.00</td>
</tr>
<tr>
<td>-</td>
<td>4.83</td>
<td>-.35</td>
<td>-.63</td>
<td>-.28</td>
<td>-.60</td>
</tr>
<tr>
<td>20-29</td>
<td>.00</td>
<td>.00</td>
<td>5.00</td>
<td>.00</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>-.53</td>
<td>-.94</td>
<td>1.34</td>
<td>-.75</td>
<td>-.33</td>
</tr>
<tr>
<td>30-34</td>
<td>2.00</td>
<td>3.00</td>
<td>10.00</td>
<td>4.00</td>
<td>7.00</td>
</tr>
<tr>
<td></td>
<td>.96</td>
<td>-.14</td>
<td>-.08</td>
<td>1.33</td>
<td>-.77</td>
</tr>
<tr>
<td>35-39</td>
<td>2.00</td>
<td>1.00</td>
<td>12.00</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>1.44</td>
<td>-.90</td>
<td>1.64</td>
<td>-.42</td>
<td>-.147</td>
</tr>
<tr>
<td>40-44</td>
<td>3.00</td>
<td>8.00</td>
<td>28.00</td>
<td>2.00</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>.88</td>
<td>.93</td>
<td>2.31</td>
<td>-.88</td>
<td>-.284</td>
</tr>
<tr>
<td>45-49</td>
<td>5.00</td>
<td>5.00</td>
<td>33.00</td>
<td>6.00</td>
<td>11.00</td>
</tr>
<tr>
<td></td>
<td>1.71</td>
<td>-.92</td>
<td>1.91</td>
<td>.54</td>
<td>-.174</td>
</tr>
<tr>
<td>50-54</td>
<td>2.00</td>
<td>13.00</td>
<td>43.00</td>
<td>6.00</td>
<td>21.00</td>
</tr>
<tr>
<td></td>
<td>-.74</td>
<td>.72</td>
<td>1.63</td>
<td>-.31</td>
<td>-.174</td>
</tr>
<tr>
<td>55-59</td>
<td>8.00</td>
<td>8.00</td>
<td>60.00</td>
<td>10.00</td>
<td>28.00</td>
</tr>
<tr>
<td></td>
<td>1.65</td>
<td>-.167</td>
<td>2.23</td>
<td>.29</td>
<td>-.204</td>
</tr>
<tr>
<td>60-64</td>
<td>7.00</td>
<td>32.00</td>
<td>76.00</td>
<td>17.00</td>
<td>57.00</td>
</tr>
<tr>
<td></td>
<td>-.17</td>
<td>1.70</td>
<td>.16</td>
<td>.48</td>
<td>-.134</td>
</tr>
<tr>
<td>65-69</td>
<td>3.00</td>
<td>26.00</td>
<td>66.00</td>
<td>16.00</td>
<td>125.00</td>
</tr>
<tr>
<td></td>
<td>-.207</td>
<td>-.66</td>
<td>-.282</td>
<td>-.67</td>
<td>4.34</td>
</tr>
<tr>
<td>70-72</td>
<td>1.00</td>
<td>12.00</td>
<td>7.00</td>
<td>7.00</td>
<td>51.00</td>
</tr>
<tr>
<td></td>
<td>-.119</td>
<td>.71</td>
<td>-.429</td>
<td>.30</td>
<td>4.32</td>
</tr>
<tr>
<td>total</td>
<td>34.00</td>
<td>108.00</td>
<td>340.00</td>
<td>69.00</td>
<td>310.00</td>
</tr>
<tr>
<td>column %</td>
<td>.04</td>
<td>.13</td>
<td>.39</td>
<td>.08</td>
<td>.36</td>
</tr>
</tbody>
</table>

d.o.f. 40.0000
Chi-sq 165.4638
signif .0000
YEAR OF BIRTH - EMPLOYEE TYPE

<table>
<thead>
<tr>
<th></th>
<th>Contractor</th>
<th>FedCivilian</th>
<th>Military</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>1.00</td>
</tr>
<tr>
<td>20-29</td>
<td>.00</td>
<td>5.00</td>
<td>2.00</td>
<td>7.00</td>
</tr>
<tr>
<td>30-34</td>
<td>.00</td>
<td>17.00</td>
<td>9.00</td>
<td>26.00</td>
</tr>
<tr>
<td>35-39</td>
<td>.00</td>
<td>9.00</td>
<td>7.00</td>
<td>19.00</td>
</tr>
<tr>
<td>40-44</td>
<td>.00</td>
<td>19.00</td>
<td>19.00</td>
<td>46.00</td>
</tr>
<tr>
<td>45-49</td>
<td>.00</td>
<td>19.00</td>
<td>22.00</td>
<td>60.00</td>
</tr>
<tr>
<td>50-54</td>
<td>.00</td>
<td>27.00</td>
<td>34.00</td>
<td>85.00</td>
</tr>
<tr>
<td>55-59</td>
<td>1.00</td>
<td>23.00</td>
<td>48.00</td>
<td>114.00</td>
</tr>
<tr>
<td>60-64</td>
<td>3.00</td>
<td>38.00</td>
<td>87.00</td>
<td>189.00</td>
</tr>
<tr>
<td>65-69</td>
<td>.00</td>
<td>9.00</td>
<td>109.00</td>
<td>236.00</td>
</tr>
<tr>
<td>70-72</td>
<td>.00</td>
<td>1.00</td>
<td>19.00</td>
<td>78.00</td>
</tr>
<tr>
<td>total</td>
<td>4.00</td>
<td>168.00</td>
<td>356.00</td>
<td>861.00</td>
</tr>
<tr>
<td>column %</td>
<td>.00</td>
<td>.20</td>
<td>.41</td>
<td>.39</td>
</tr>
</tbody>
</table>

d.o.f.	30.0000
Chi-sq	191.2516
signif	.0000
MARITAL STATUS - GENDER

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Male</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>.00</td>
<td>1.00</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>-.14</td>
<td>-1.20</td>
<td>.88</td>
</tr>
<tr>
<td>Married</td>
<td>.00</td>
<td>156.00</td>
<td>256.00</td>
</tr>
<tr>
<td></td>
<td>-.98</td>
<td>1.12</td>
<td>-.76</td>
</tr>
<tr>
<td>Separated</td>
<td>.14</td>
<td>-1.97</td>
<td>1.43</td>
</tr>
<tr>
<td>Divorced</td>
<td>.00</td>
<td>6.00</td>
<td>6.00</td>
</tr>
<tr>
<td></td>
<td>-.17</td>
<td>.91</td>
<td>-.65</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>25.00</td>
<td>25.00</td>
</tr>
<tr>
<td></td>
<td>2.56</td>
<td>1.75</td>
<td>-1.43</td>
</tr>
<tr>
<td>Widowed</td>
<td>.00</td>
<td>3.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>-.08</td>
<td>1.93</td>
<td>-1.40</td>
</tr>
<tr>
<td>Total</td>
<td>2.00</td>
<td>298.00</td>
<td>561.00</td>
</tr>
<tr>
<td>Column %</td>
<td></td>
<td>.00</td>
<td>.35</td>
</tr>
<tr>
<td>d.o.f.</td>
<td>10.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-sq</td>
<td>29.5805</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signif</td>
<td>.0010</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MARITAL STATUS - JOB CATEGORY

<table>
<thead>
<tr>
<th></th>
<th>Clerical</th>
<th>Profess.</th>
<th>Service</th>
<th>Technical</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td></td>
<td>.00</td>
<td>1.00</td>
<td>.00</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>3.00</td>
<td>-1.06</td>
<td>-1.35</td>
<td>- .85</td>
<td>.98</td>
</tr>
<tr>
<td>Married</td>
<td>10.00</td>
<td>47.00</td>
<td>152.00</td>
<td>33.00</td>
<td>170.00</td>
</tr>
<tr>
<td></td>
<td>-1.55</td>
<td>-.65</td>
<td>-.84</td>
<td>.00</td>
<td>1.78</td>
</tr>
<tr>
<td></td>
<td>20.00</td>
<td>43.00</td>
<td>170.00</td>
<td>27.00</td>
<td>114.00</td>
</tr>
<tr>
<td></td>
<td>1.36</td>
<td>-.57</td>
<td>1.84</td>
<td>-.54</td>
<td>-1.78</td>
</tr>
<tr>
<td>Separated</td>
<td>.00</td>
<td>2.00</td>
<td>2.00</td>
<td>3.00</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>-.69</td>
<td>.40</td>
<td>-1.26</td>
<td>2.08</td>
<td>.33</td>
</tr>
<tr>
<td>Divorced</td>
<td>1.00</td>
<td>14.00</td>
<td>15.00</td>
<td>6.00</td>
<td>15.00</td>
</tr>
<tr>
<td></td>
<td>-.71</td>
<td>3.01</td>
<td>-1.15</td>
<td>.95</td>
<td>-.78</td>
</tr>
<tr>
<td>Widowed</td>
<td>.00</td>
<td>2.00</td>
<td>.00</td>
<td>.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>-.34</td>
<td>2.65</td>
<td>-1.09</td>
<td>-.49</td>
<td>-.08</td>
</tr>
<tr>
<td>Total</td>
<td>34.00</td>
<td>108.00</td>
<td>340.00</td>
<td>69.00</td>
<td>310.00</td>
</tr>
<tr>
<td>Column %</td>
<td>.04</td>
<td>.13</td>
<td>.39</td>
<td>.08</td>
<td>.36</td>
</tr>
<tr>
<td>d.o.f.</td>
<td>20.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-sq</td>
<td>67.6096</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signif</td>
<td>.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MARITAL STATUS - EMPLOYEE TYPE

<table>
<thead>
<tr>
<th></th>
<th>Contractor</th>
<th>FedCivilian</th>
<th>Military</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>9.00</td>
</tr>
<tr>
<td>.20</td>
<td>-1.33</td>
<td>-1.93</td>
<td>2.96</td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>2.00</td>
<td>35.00</td>
<td>197.00</td>
<td>178.00</td>
</tr>
<tr>
<td>.06</td>
<td>-5.06</td>
<td>2.04</td>
<td>1.48</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>2.00</td>
<td>117.00</td>
<td>124.00</td>
<td>131.00</td>
</tr>
<tr>
<td>.20</td>
<td>5.15</td>
<td>-2.46</td>
<td>-1.13</td>
<td></td>
</tr>
<tr>
<td>Separated</td>
<td>.00</td>
<td>2.00</td>
<td>6.00</td>
<td>4.00</td>
</tr>
<tr>
<td>-.24</td>
<td>-.22</td>
<td>.47</td>
<td>-.30</td>
<td></td>
</tr>
<tr>
<td>Divorced</td>
<td>.00</td>
<td>14.00</td>
<td>27.00</td>
<td>10.00</td>
</tr>
<tr>
<td>-.49</td>
<td>1.28</td>
<td>1.29</td>
<td>-2.19</td>
<td></td>
</tr>
<tr>
<td>Widowed</td>
<td>.00</td>
<td>.00</td>
<td>2.00</td>
<td>1.00</td>
</tr>
<tr>
<td>-.12</td>
<td>-.77</td>
<td>.68</td>
<td>-.15</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>4.00</td>
<td>168.00</td>
<td>356.00</td>
<td>333.00</td>
</tr>
<tr>
<td>column %</td>
<td>.00</td>
<td>.20</td>
<td>.41</td>
<td>.39</td>
</tr>
</tbody>
</table>

Significance
- d.o.f.: 15.0000
- Chi-sq: 90.0469
- Signif: .0000

EDUCATION - GENDER

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Male</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>.00</td>
<td>2.00</td>
<td>13.00</td>
</tr>
<tr>
<td></td>
<td>-.19</td>
<td>-1.40</td>
<td>1.03</td>
</tr>
<tr>
<td>Non HS</td>
<td>.00</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>-.14</td>
<td>.74</td>
<td>-.53</td>
</tr>
<tr>
<td>GED</td>
<td>.00</td>
<td>3.00</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>-.14</td>
<td>.14</td>
<td>-.09</td>
</tr>
<tr>
<td>Highschool</td>
<td>.00</td>
<td>115.00</td>
<td>146.00</td>
</tr>
<tr>
<td></td>
<td>-.78</td>
<td>2.60</td>
<td>-1.84</td>
</tr>
<tr>
<td>Some College</td>
<td>1.00</td>
<td>85.00</td>
<td>143.00</td>
</tr>
<tr>
<td></td>
<td>.64</td>
<td>.64</td>
<td>-.51</td>
</tr>
<tr>
<td>CollDegree</td>
<td>.00</td>
<td>70.00</td>
<td>169.00</td>
</tr>
<tr>
<td></td>
<td>-.75</td>
<td>-1.40</td>
<td>1.06</td>
</tr>
<tr>
<td>PostGraduate</td>
<td>1.00</td>
<td>19.00</td>
<td>81.00</td>
</tr>
<tr>
<td></td>
<td>1.58</td>
<td>-2.70</td>
<td>1.87</td>
</tr>
<tr>
<td>total</td>
<td>2.00</td>
<td>298.00</td>
<td>561.00</td>
</tr>
<tr>
<td>column %</td>
<td>.00</td>
<td>.35</td>
<td>.65</td>
</tr>
</tbody>
</table>

Significance
- d.o.f.: 12.0000
- Chi-sq: 32.7184
- Signif: .0011

30
EDUCATION – MARITAL STATUS

<table>
<thead>
<tr>
<th></th>
<th>Single</th>
<th>Married</th>
<th>Separated</th>
<th>Divorced</th>
<th>Widowed</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non HS</td>
<td>4.00</td>
<td>1.00</td>
<td>8.00</td>
<td>.00</td>
<td>2.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>9.71</td>
<td>-2.31</td>
<td>.58</td>
<td>-.46</td>
<td>1.18</td>
<td>-.23</td>
</tr>
<tr>
<td>GED</td>
<td>.00</td>
<td>3.00</td>
<td>4.00</td>
<td>1.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>-.29</td>
<td>-.42</td>
<td>.28</td>
<td>2.66</td>
<td>-.69</td>
<td>-.17</td>
</tr>
<tr>
<td>Highschool</td>
<td>2.00</td>
<td>147.00</td>
<td>84.00</td>
<td>7.00</td>
<td>18.00</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>-.44</td>
<td>1.98</td>
<td>-2.76</td>
<td>1.76</td>
<td>.65</td>
<td>2.19</td>
</tr>
<tr>
<td>Some College</td>
<td>2.00</td>
<td>105.00</td>
<td>108.00</td>
<td>.00</td>
<td>14.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>-.25</td>
<td>-.44</td>
<td>.85</td>
<td>-1.79</td>
<td>.12</td>
<td>-.89</td>
</tr>
<tr>
<td>CollDegree</td>
<td>1.00</td>
<td>120.00</td>
<td>106.00</td>
<td>2.00</td>
<td>10.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>-.95</td>
<td>.53</td>
<td>.21</td>
<td>-.73</td>
<td>-1.10</td>
<td>-.91</td>
</tr>
<tr>
<td>PostGraduate</td>
<td>0.00</td>
<td>33.00</td>
<td>60.00</td>
<td>1.00</td>
<td>7.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>-1.03</td>
<td>-2.21</td>
<td>2.43</td>
<td>-.34</td>
<td>.42</td>
<td>-.59</td>
</tr>
<tr>
<td>total</td>
<td>9.00</td>
<td>412.00</td>
<td>374.00</td>
<td>12.00</td>
<td>51.00</td>
<td>3.00</td>
</tr>
<tr>
<td>column %</td>
<td>.01</td>
<td>.48</td>
<td>.43</td>
<td>.01</td>
<td>.06</td>
<td>.00</td>
</tr>
</tbody>
</table>

d.o.f. 30.0000
Chi-sq 158.6933
signif .0000
EDUCATION – JOB CATEGORY

<table>
<thead>
<tr>
<th></th>
<th>-</th>
<th>Clerical</th>
<th>Profess.</th>
<th>Service</th>
<th>Technical</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>4.00</td>
<td>0.00</td>
<td>4.00</td>
<td>0.00</td>
<td>7.00</td>
<td>15.00</td>
</tr>
<tr>
<td></td>
<td>4.43</td>
<td>-1.37</td>
<td>-.79</td>
<td>-1.10</td>
<td>.69</td>
<td>.02</td>
</tr>
<tr>
<td>Non HS</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>2.00</td>
<td>6.00</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>-.56</td>
<td>-1.00</td>
<td>-1.78</td>
<td>1.70</td>
<td>1.84</td>
<td>.01</td>
</tr>
<tr>
<td>GED</td>
<td>.00</td>
<td>1.00</td>
<td>.00</td>
<td>1.00</td>
<td>6.00</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>-.56</td>
<td>.00</td>
<td>-1.78</td>
<td>.45</td>
<td>1.84</td>
<td>.01</td>
</tr>
<tr>
<td>Highschool</td>
<td>8.00</td>
<td>49.00</td>
<td>16.00</td>
<td>33.00</td>
<td>155.00</td>
<td>261.00</td>
</tr>
<tr>
<td></td>
<td>-.72</td>
<td>2.84</td>
<td>-8.58</td>
<td>2.64</td>
<td>6.30</td>
<td>.30</td>
</tr>
<tr>
<td>Some College</td>
<td>8.00</td>
<td>44.00</td>
<td>51.00</td>
<td>19.00</td>
<td>107.00</td>
<td>229.00</td>
</tr>
<tr>
<td></td>
<td>-.35</td>
<td>2.85</td>
<td>-4.15</td>
<td>.15</td>
<td>.27</td>
<td>.27</td>
</tr>
<tr>
<td>CollDegree</td>
<td>9.00</td>
<td>12.00</td>
<td>179.00</td>
<td>12.00</td>
<td>27.00</td>
<td>239.00</td>
</tr>
<tr>
<td></td>
<td>-.14</td>
<td>-3.28</td>
<td>8.71</td>
<td>-1.63</td>
<td>-6.37</td>
<td>.28</td>
</tr>
<tr>
<td>PostGraduate</td>
<td>5.00</td>
<td>2.00</td>
<td>90.00</td>
<td>2.00</td>
<td>2.00</td>
<td>101.00</td>
</tr>
<tr>
<td></td>
<td>.51</td>
<td>-3.00</td>
<td>7.94</td>
<td>-2.14</td>
<td>-5.70</td>
<td>.12</td>
</tr>
<tr>
<td>total</td>
<td>34.00</td>
<td>108.00</td>
<td>340.00</td>
<td>69.00</td>
<td>310.00</td>
<td>861.00</td>
</tr>
<tr>
<td>column %</td>
<td>.04</td>
<td>.13</td>
<td>.39</td>
<td>.08</td>
<td>.36</td>
<td></td>
</tr>
</tbody>
</table>

d.o.f.	24.0000
Chi-sq	442.2512
signif	.0000

32
EDUCATION - EMPLOYEE TYPE

<table>
<thead>
<tr>
<th></th>
<th>Contractor</th>
<th>FedCivilian</th>
<th>Military</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.00</td>
<td>8.00</td>
<td>1.00</td>
<td>6.00</td>
</tr>
<tr>
<td></td>
<td>-.26</td>
<td>2.97</td>
<td>-2.09</td>
<td>.08</td>
</tr>
<tr>
<td>Non HS</td>
<td>.00</td>
<td>1.00</td>
<td>1.00</td>
<td>6.00</td>
</tr>
<tr>
<td></td>
<td>-.19</td>
<td>-.45</td>
<td>-1.27</td>
<td>1.65</td>
</tr>
<tr>
<td>GED</td>
<td>.00</td>
<td>.00</td>
<td>3.00</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>-.19</td>
<td>-1.25</td>
<td>-.17</td>
<td>1.08</td>
</tr>
<tr>
<td>Highschool</td>
<td>1.00</td>
<td>31.00</td>
<td>91.00</td>
<td>138.00</td>
</tr>
<tr>
<td></td>
<td>-.19</td>
<td>-2.79</td>
<td>-1.63</td>
<td>3.69</td>
</tr>
<tr>
<td>Some College</td>
<td>.00</td>
<td>36.00</td>
<td>95.00</td>
<td>98.00</td>
</tr>
<tr>
<td></td>
<td>-1.03</td>
<td>-1.30</td>
<td>.03</td>
<td>1.00</td>
</tr>
<tr>
<td>CollDegree</td>
<td>3.00</td>
<td>54.00</td>
<td>115.00</td>
<td>67.00</td>
</tr>
<tr>
<td></td>
<td>1.79</td>
<td>1.08</td>
<td>1.63</td>
<td>-2.65</td>
</tr>
<tr>
<td>PostGraduate</td>
<td>.00</td>
<td>38.00</td>
<td>50.00</td>
<td>13.00</td>
</tr>
<tr>
<td></td>
<td>-.69</td>
<td>4.12</td>
<td>1.27</td>
<td>-4.17</td>
</tr>
<tr>
<td>total</td>
<td>4.00</td>
<td>168.00</td>
<td>356.00</td>
<td>333.00</td>
</tr>
<tr>
<td>column %</td>
<td>.00</td>
<td>.20</td>
<td>.41</td>
<td>.39</td>
</tr>
<tr>
<td>d.o.f.</td>
<td>18.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-sq</td>
<td>98.9490</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>signif</td>
<td>.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

JOB CATEGORY - GENDER

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Male</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.00</td>
<td>8.00</td>
<td>26.00</td>
</tr>
<tr>
<td></td>
<td>-.28</td>
<td>-1.10</td>
<td>.82</td>
</tr>
<tr>
<td>Clerical</td>
<td>.00</td>
<td>95.00</td>
<td>13.00</td>
</tr>
<tr>
<td></td>
<td>-.50</td>
<td>9.42</td>
<td>-6.84</td>
</tr>
<tr>
<td>Professional</td>
<td>2.00</td>
<td>77.00</td>
<td>261.00</td>
</tr>
<tr>
<td></td>
<td>1.36</td>
<td>-3.75</td>
<td>2.65</td>
</tr>
<tr>
<td>Service</td>
<td>.00</td>
<td>22.00</td>
<td>47.00</td>
</tr>
<tr>
<td></td>
<td>-.40</td>
<td>-.39</td>
<td>.30</td>
</tr>
<tr>
<td>Technical</td>
<td>.00</td>
<td>96.00</td>
<td>214.00</td>
</tr>
<tr>
<td></td>
<td>-.85</td>
<td>-1.09</td>
<td>.85</td>
</tr>
<tr>
<td>total</td>
<td>2.00</td>
<td>298.00</td>
<td>561.00</td>
</tr>
<tr>
<td>column %</td>
<td>.00</td>
<td>.35</td>
<td>.65</td>
</tr>
<tr>
<td>d.o.f.</td>
<td>8.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-sq</td>
<td>163.7666</td>
<td></td>
<td></td>
</tr>
<tr>
<td>signif</td>
<td>.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
JOB CATEGORY - EMPLOYEE TYPE

<table>
<thead>
<tr>
<th></th>
<th>Contractor</th>
<th>FedCivilian</th>
<th>Military</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>1.00</td>
<td>24.00</td>
<td>4.00</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>2.12</td>
<td>6.74</td>
<td>-2.68</td>
<td>-2.25</td>
</tr>
<tr>
<td>Clerical</td>
<td>.00</td>
<td>4.00</td>
<td>103.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>-.71</td>
<td>-3.72</td>
<td>8.73</td>
<td>-6.31</td>
</tr>
<tr>
<td>Professional</td>
<td>2.00</td>
<td>96.00</td>
<td>172.00</td>
<td>70.00</td>
</tr>
<tr>
<td></td>
<td>.33</td>
<td>3.64</td>
<td>2.65</td>
<td>-5.36</td>
</tr>
<tr>
<td>Service</td>
<td>.00</td>
<td>5.00</td>
<td>57.00</td>
<td>7.00</td>
</tr>
<tr>
<td></td>
<td>-.57</td>
<td>-2.31</td>
<td>5.33</td>
<td>-3.81</td>
</tr>
<tr>
<td>Technical</td>
<td>1.00</td>
<td>39.00</td>
<td>20.00</td>
<td>250.00</td>
</tr>
<tr>
<td></td>
<td>-.37</td>
<td>-2.76</td>
<td>-9.55</td>
<td>11.88</td>
</tr>
<tr>
<td>total</td>
<td>4.00</td>
<td>168.00</td>
<td>356.00</td>
<td>333.00</td>
</tr>
<tr>
<td>column %</td>
<td>.00</td>
<td>.20</td>
<td>.41</td>
<td>.39</td>
</tr>
<tr>
<td>d.o.f.</td>
<td>12.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-sq</td>
<td>530.5306</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>signif</td>
<td>.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMPLOYEE TYPE - GENDER

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Male</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>.00</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>-.10</td>
<td>-.33</td>
<td>.24</td>
</tr>
<tr>
<td>Contractor</td>
<td>.00</td>
<td>28.00</td>
<td>140.00</td>
</tr>
<tr>
<td></td>
<td>-.62</td>
<td>-3.95</td>
<td>2.92</td>
</tr>
<tr>
<td>FedCivilian</td>
<td>2.00</td>
<td>181.00</td>
<td>173.00</td>
</tr>
<tr>
<td></td>
<td>1.29</td>
<td>5.21</td>
<td>-3.87</td>
</tr>
<tr>
<td>Military</td>
<td>.00</td>
<td>88.00</td>
<td>245.00</td>
</tr>
<tr>
<td></td>
<td>-.88</td>
<td>-2.54</td>
<td>1.90</td>
</tr>
<tr>
<td>total</td>
<td>2.00</td>
<td>298.00</td>
<td>561.00</td>
</tr>
<tr>
<td>column %</td>
<td>.00</td>
<td>.35</td>
<td>.65</td>
</tr>
<tr>
<td>d.o.f.</td>
<td>6.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-sq</td>
<td>79.3027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>signif</td>
<td>.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C. UEDIT USER’S MANUAL

A. SYSTEM REQUIREMENTS

UEEDIT is a workspace for IBM's APL2/PC which will run on any IBM-compatible microcomputer with at least 512 KB RAM. However, due to the memory limitations of DOS and the size of UEDIT a database should not contain more than approximately 1000 fields on a machine with full 640 KB RAM. The maximum which can be processed depends on the contents of the fields. Therefore it is recommended for moderately large or large databases that one run the program on an 80386/80387 computer under APL2/32. This APL2 interpreter utilizes all available memory in the machine up to 16 MB.

The program will operate with almost any monochrome or color video adapter with an appropriate monitor. UEDIT supports the EGA 43-line mode and the VGA 50-line mode. To print matrices a printer supported by APL2 is required. A special Auxiliary Processor (AP 81) which enhances the support of printers compatible with the Hewlett Packard LaserJet is provided with UEDIT, together with two soft fonts.

The program was written using version 1.02 of APL2/32 on an 80386 based computer with 4 MB of RAM, an EGA video adapter and monitor and a Hewlett Packard LaserJet II printer.

B. PROGRAM AVAILABILITY

A copy of this workspace is available from the author or Professor Peter A. W. Lewis at the address given in the Initial Distribution List. Please send a 5 1/4 inch or 3 1/2 inch IBM-compatible formatted disk.

C. GETTING STARTED

Before you start APL2 you should create a subdirectory to hold data files created by UEDIT, for example with the DOS command

MD C:\APL2\UEEDIT
This is not absolutely necessary as all files saved by UEDIT can be recognized by their file extension .UED. However, it is recommended that you keep the APL2 program files and the data files in separate directories.

Then start the APL2 interpreter with the Auxiliary Processors AP2 (Non-APL program interface), AP80 or AP81 (Printer control), AP124 (Full-screen display management), AP210 (DOS file management) and AP440 (Sound generator) and load UEDIT. You may use a batch file containing the commands

```
APL2FONT
APL232 AP2 AP81 AP124 AP210 AP440 )LOAD UEDIT
APL2FONT /T
```

where APL2FONT loads/unloads the APL2 video character set.

When you have loaded UEDIT for the first time you should inspect certain global variables which contain default values that may have to be configured for your needs. Do not forget to subsequently save the workspace with the)SAVE command to set the new defaults permanently. All of these variables can also be changed temporarily from inside the UEDIT environment. The following subsections describe the variables.

1. **PATH**

 The variable PATH contains the default directory path to UEDIT’s data directory. Use an assignment like

   ```
   PATH='C:\APL2\DATA\'
   ```

 to set the path to your needs. Note that the path assignment must be finished with a backslash. All spreadsheets created in UEDIT and saved with (F2) or (Shift-F2) (see page 43) will be saved in this directory with a file extension “.UED”.

2. **MISSAN**

 To display a “missing numeric value” (unknown attribute) as a blank field it is necessary to assign a special numeric value to the appropriate field which is unlikely to occur in a database. By default UEDIT uses -32768. To change this value assign a new value to MISSAN, e.g.,

   ```
   MISSAN=99999
   ```

 This can also be done with UEDIT’s function (Ctrl-F9) (see page 48).
3. **PRINT**

The variable `PRINT` is a 7-element vector containing default parameters for printouts of matrices. See page 54 for a detailed discussion of these values.

4. **DATE**

Dates are stored as number of days since February 29, 0000, and displayed in the form MM-DD-YYYY by default. The display order can be changed by changing the global variable `DATE` which contains a 3-element vector where YYYY corresponds to 1, MM to 2, DD to 3. Thus the default value of `DATE` is 2 3 1. To change to a European style date display DD-MM-YYY you would assign

```
DATE=3 2 1
```

D. **RUNNING UEDIT**

To edit an APL2 array `MATRIX` start your UEDIT session with the command

```
UEDIT 'MATRIX'
```

UEDIT then performs the following steps

1. If a file `MATRIX.UED` exists in the data directory UEDIT reads the matrix and its parameters from this file.
2. Otherwise, if an array `MATRIX` exists in the active workspace UEDIT starts the session with this matrix, creating new format and attribute parameters.
3. Otherwise UEDIT creates a new array `MATRIX` and prompts for a vector of column formats (see below).

You can start a program with

```
UEDIT ''
```

In this case the program goes immediately to the File Operations menu (see page 44) to allow the import of a comma delimited or formatted DOS file.
E. COLUMN FORMATS

The following codes are valid for defining new columns or changing column types.

- A Standard APL numeric format
- N\text{x} Numeric with \text{x} decimals
- E\text{x} Scientific format; the mantissa is displayed with \text{x} decimals
- C Character format
- D Date format

All column widths are set dynamically depending on the largest field in each column. Note also that the number of decimals is only significant for screen and printer output. Internally all numbers are stored at their full APL2 accuracy.

For example, to create a new matrix which will consist of the columns “Name”, “Day of Birth”, “Years of Service”, “Salaries” you would respond to the prompt for new column formats with

\text{C,D,A,N2}

Note that the elements are separated by commas.

UEDIT always displays the current formats below the matrix columns. An identifier C, N or D representing character, numeric or date data, respectively, is followed by the total column width. If a numeric column has a fixed decimal format, a period with the number of decimals is added. Thus for the example above the display may show

\text{C6 D8 N2 N7.2}

F. MOVING AROUND

When you edit a matrix for the first time the cursor will be located in the first field of the matrix, i.e., in the upper left corner. The cursor position is always one complete field indicated by an inverse video display. When you save your work the cursor position is also saved so that you can resume editing at the position where you stopped.

To move the cursor and the editor window around, several key combinations are available:

1. The cursor keys (←→↑↓) move the cursor one field into the appropriate direction as long as the matrix borders are not yet reached. If necessary the editor window will scroll into the opposite direction to show the new active field.
2. To scroll the matrix by one field within the editor window use (Ctrl-←) and (Ctrl-→) for horizontal moves or (Ctrl-PgUp) and (Ctrl-PgDn) for vertical moves.

3. To scroll the matrix up or down one full window at a time use the (PgUp) and (PgDn) keys. To scroll one window to the left and right use (Tab) and (Shift-Tab).

4. To position the cursor on the matrix edges press (Home) for the first and (End) for the last column, (Ctrl-Home) and (Ctrl-End) for the first and last row, respectively.

5. If you want to locate the cursor in a specific field hit (Ctrl-L). UEDIT will prompt you for the row and column number and position the cursor in that field scrolling the window if necessary.

Reminders of these key combinations are also available on UEDIT’s on-line help screens.

G. DATA INPUT AND MODIFICATION OF DATA USING APL2 COMMANDS

The default keyboard layout is “APL mode” which makes several ASCII characters unaccessible in the usual way. To switch the layout to the normal “ASCII mode” (typewriter keyboard) hit (Ctrl-Backspace) or (Alt-Backspace). These key combinations are toggles, i.e., they take you back and forth between the two modes every time you hit them.

When you want to enter a value for the active field, i.e., the field displayed in inverse video, just start typing. Any key which does not invoke a special editing function will be recognized as the first character of a new value for the active field. The “input line”, which is the third line from the bottom, is then activated — the color changes to high intensity — and it will accept further input until the (Enter) key is hit. The new value is written into the matrix, the display updated and the input line is closed.

If the active field has a numeric type you can input an expression which has a numeric scalar as its result. Elements of the current matrix can be accessed in this input in several ways: UEDIT works with a copy MAT of the original matrix. Thus any element of the current matrix can be used with MAT[i; j] where i and j are the row and column indices, respectively. A short-cut notation for the element at the cursor position is α. A synonym for a vector of all marked elements of the matrix is ω (see page 41). For example, to double the value of the active cell (in a numeric column, of course) you can type

\[2 \times \alpha \]
After the (Enter) key is hit the value in the cursor position is doubled. To add the elements of column 1 and assign the sum to the active field you would type

\[+\text{MAT}[;1]\]

followed by (Enter). For additional examples see the section on marking and highlighting of areas (page 41) and the description of function key (Ctrl-F4) (page 45).

To change a field hit (Enter). This will copy the field content to the activated input line and you can edit it by overwriting or inserting characters — use the (Ins) key to toggle between overwrite and insert mode.

Additional keystrokes recognized during the data input are:

(Home) which locates the cursor at the beginning of the input line,
(End) which locates the cursor at the end of the line and
(Escape) which cancels the input, i.e., terminates the input but leaves the field unchanged.

Many functions of UEDIT allow data vectors as input. To separate the elements of a vector you should for consistency always use commas, although very often blanks are also accepted as valid delimiters. If a vector element contains a comma itself enclose the element in double quotes (") if your keyboard layout is set to ASCII mode, or in diereses (”” if you are working in APL mode.

H. INPUT OF DATES

Dates are internally stored as number of days since February 29, 0000\(^5\). This allows computations to be performed on a matrix column defined as dates.

Valid date specifications in input mode are (assuming the default order of month-day-year as given by the variable \textsc{date})

- MM-DD-YYYY
- MM/DD/YYYY
- MM.DD.YYYY
- MM DD YYYY

\(^5\) This base was chosen because it makes the conversion between internal and display format easy and fast.
You can omit the year. In this case UEDIT will insert the current year which is taken from the DOS system date. If you enter the year with only two digits the current century will be inserted.

Every input is checked for validity. This means, invalid dates like 2-29-1990 or 00-00-1990 will be rejected, and you will be prompted for a correction.

I. MARKING AND HIGHLIGHTING OF MATRIX AREAS

Marking and highlighting of matrix cells are similar actions but with a different philosophy. While marking is used as a preparation for several editing functions, e.g., to copy, move, print or rotate matrix areas, highlighting is used to emphasize the contents of matrix fields. UEDIT will highlight matrix fields by itself during crosstabulations.

The term "marked area" (or "highlighted area") denotes the smallest submatrix of the original matrix where each row and each column contains at least one marked (highlighted field). That is, it is the original matrix with all rows and columns removed which have no marked or highlighted fields. Note that this area may contain fields which are not marked or highlighted.

1. Marking

To prepare certain fields for editing actions use the following key combinations.

The marking is indicated by a different background color and a blinking "M" in the upper left corner of the screen. This is useful as a reminder if the marked fields are scrolled off the screen.

Ctrl-F Mark a single field
Marks the field at the current cursor location. The function works as a toggle, i.e., you can hit (Ctrl-F) again to unmark the field. It also defines the first corner of a marked block (see the next item).

Ctrl-B Mark a block
Defines the second corner of a block to be marked. The first corner was fixed the last time (Ctrl-F) was hit. All fields within the rectangular area defined by the two opposite corners will be marked.

Ctrl-R Mark a row
Marks all fields in the row defined by the current cursor location.

Ctrl-C Mark a column
Marks all fields in the column defined by the current cursor location.
Ctrl-U Unmark
Removes all marking information from the matrix.

After you have marked one or more fields of the matrix you can use the symbol \(\omega \)
as a short-cut notation for a vector of these fields. This vector is built in row-major order.
That is, when you have marked the fields \(\text{MAT}[1;1], \text{MAT}[1;3], \text{MAT}[2;1] \) and \(\text{MAT}[2;2] \),
you have implicitly assigned
\[
\omega=\text{MAT}[1;1],\text{MAT}[1;3],\text{MAT}[2;1],\text{MAT}[2;2]
\]
For example, if these four fields contain numbers, you can add the first three elements,
divide the sum by the last field and assign the result to the active field by typing
\[
(+/3\omega)+\omega[4]
\]
as a new data input. More examples can be found in the description of function key
(Ctrl-F4) (page 45) and in Appendix D.

2. Highlighting

Six levels of highlighting are available, indicated by different high-intensity foreground colors and a blinking "H" in the upper left corner of the screen. The level of the normal display is 0. You can always change the levels by assigning a new level. The functions are similar to those used for marking and are defined as follows ("Sh" denotes the Shift key).

Sh-0...6 Highlight a single field
Highlights a single field in the matrix and assigns a (color) level of 0,\ldots,6 to the field. It also defines the first corner and the color level of a highlighted block. Highlighting to level 0 is the same as removing the highlight information. For consistency with the marking syntax (Sh-F) is available which will prompt you for a color level.

Sh-B Highlight a block
Fixes the second corner of a block and highlights this block in the color given by the first corner.

Sh-R Highlight a row
Highlights all fields in the row defined by the current cursor location. You will be prompted for the color level.

Sh-C Highlight a column
Highlights all fields in the column defined by the current cursor location. You will be prompted for the color level.
Sh-U Unhighlight
Removes all highlighting information from the matrix. To unhighlight only certain areas of the matrix use the functions above and assign color level 0.

Sh-S Shadowing
This option asks for a color level and then hides all rows and columns which contain only fields below that level. The newly created matrix (including the column and row labels) is overlaid over its “parent” matrix and can be edited in the same way. To return to the original matrix use “Quit” (F3) or “File” (F4) (see page 44). When you use (F4) all changes are entered into the parent matrix.

J. UEDIT FUNCTIONS

Once the session is started the whole range of UEDIT’s functions can be accessed using certain keys or key combinations. In the following descriptions a “S-” denotes the (Shift) key, “C-” the (Control) key, i.e., (S-F10) means to hold down the (Shift) key while pressing (F10).

F1 Help
This function displays three pages of on-line help. The pages contain short reminders of the definitions of all function keys and the description of the cursor movement keys. Use (PgDn) and (PgUp) to see all pages.

S-F1 Sort
Sorts the rows of the matrix simultaneously on any number of columns in major-minor order. The sorting on character columns is performed lexicographically and is case-insensitive, i.e., lower and upper case entries are equivalent. The normal sort order is ascending. To sort descending enter the column numbers with a negative sign. For example, when you enter the column numbers to sort on as

1, -5, 10

UEDIT first sorts on column 10 in ascending order, then in descending order on column 5, and finally on column 1 (the most significant) in ascending order. Another example is described in Appendix D. When you sort the rows of a frequency table the cumulative frequencies will be updated automatically.

C-F1 Refresh
If by some unexpected action the screen becomes fragmented use this function to restore the correct display of the worksheet.

F2 Save
Saves the edited matrix into a file of the same name (limited to the first eight characters) and the file extension .UED and places this file in the data directory as indicated by the global variable PATH. A copy of the matrix is kept as a global variable in the active workspace. Matrix attributes (column formats, highlighting and marking information) are also saved in this file. The editing session continues.
S-F2 Save As...
Performs the same action as the “Save” function (F2) but prompts for a new
matrix/file name. This action allows the user to save a matrix under different
names in several stages of the editing process. When the session continues the
newly assigned name is the default name.

C-F2 File Operations
This option displays a submenu of available functions to import or export files.
Note that the export operations do not save matrix attributes, e.g. marked areas.
Presently the following file formats are supported:

1. Read/Write formatted ASCII files — All fields in a data column have equal
 widths padded with blanks if necessary. UEDIT will prompt for the column
 widths before it reads such a file as there is no way to safely determine
 them. When it writes a formatted file adjacent columns will be separated
 by two blanks.

2. Read/Write comma separated files — The fields of a record are delimited
 by commas. Trailing blanks in a field are not necessary. A field which
 contains a comma must be enclosed in double quotes ("`). This format is
 supported by most commercial database and spreadsheet programs. It is
 also the fastest way to import a file into UEDIT. Note that STATGRAPHICS
 can only read comma separated files but not write to them.

3. Export to GRAFSTAT — As GRAFSTAT/PC has not yet been released
 by IBM only a basic export capability is provided presently. This will write
 a matrix column as a variable into the active workspace. The variable will
 be a vector if the column has numeric format, otherwise it will be a two-
 dimensional character matrix with one element per row. It can be used as
 an input to the user's own APL2 functions, unless the user wants to execute
 them on the command line (see below under (C-F4)).

4. Export to StatXact — This function writes one or more matrix columns to
 a DOS file which can be imported into StatXact. Line numbers are added
 automatically by UEDIT. Note that StatXact will accept only numeric data
 and its import capability is limited to samples of up to 200 records and and
 2 x 2 contingency tables.

F3 Quit
Exits the current editing session without saving the matrix. If the matrix has
been changed since the start of the session or the last “Save” (F2) or “Save As”
(S-F2) operation you will be prompted to confirm the termination.

S-F3 Put
Saves a marked area of the matrix (see page 41) including row and column labels
into a new APL2 matrix in the active workspace. This function will not write to
disk.
C-F3 Get
Inserts or overlays another APL2 matrix from the active workspace into the current edited matrix. UEDIT will ask whether to insert new rows or columns or to overlay an existing area of the matrix. If you choose to insert rows the shape of the added matrix will be adjusted, i.e., if the new matrix has less columns than the current matrix it will be padded with empty ("missing") columns, if it has more columns the excess columns will be truncated. The corresponding actions are taken when you choose to insert new columns. When you want to overlay the new matrix over the current one the position of the cursor determines the upper left corner of the overlay area. The same adjustments as for insertions are made if necessary.

F4 File
Saves the edited matrix into a file of the same name (limited to the first eight characters) and the file extension .UED and places this file in the data directory as indicated by the global variable PATH and terminates the editing session. Matrix attributes (column formats, highlighting and marking information) are also saved in this file. A copy of the matrix is held as a global variable in the active workspace.

S-F4 New Matrix
Starts a new editing session with a different matrix without leaving the UEDIT environment. This is the same as “Quit” (F3) and then typing UEDIT 'NEWMATRIX' in the APL2 environment.

C-F4 APL command
This function allows the user to submit any valid APL2 command. It is a simple way to implement additional functions into the UEDIT workspace. Elements of the current matrix can be accessed as described before: any element of the matrix can be used with MAT[i;j] where i and j are the row and column indices, respectively. A short-cut notation for the element at the cursor position is a. A synonym for a vector of all marked elements of the matrix in row-major order is w. For instance, assume you have marked a number of numeric fields anywhere in the matrix. To add these values and assign the sum to the field at the cursor position use the command
\[a \leftarrow +/w \]
To add 1 to each of the marked elements you may use
\[w \leftarrow w + 1 \]
You should not use functions which display a result on the screen as the location of the output is unpredictable and will be overwritten by UEDIT immediately. To display results which will not become elements of the matrix a utility function SHOW is included in the UEDIT workspace. To display the current value of the variable PATH simply type

SHOW PATH
and return to the editor session by hitting the (Return) key. If, for example, you want to add the first ten integers you can type

SHOW +/\x10

to see the result.
To display another matrix, say NEWMATRIX, on the screen you can give the command

USER 'NEWMATRIX'

This command calls UEDIT recursively and overlays NEWMATRIX over the existing matrix. Note that the name of the matrix must be enclosed within quotes. You can edit NEWMATRIX like any other matrix. When you terminate this session by hitting (F3) or (F4), UEDIT takes you back to the original matrix. As the number of possible commands is nearly unlimited, the only message in case of an error is that UEDIT will display the message “Invalid Input”. The command is displayed again on the input line with \alpha and \omega expanded to their actual meaning, and you have the chance to correct your input.
For additional examples see Appendix D.

F5 Statistical Functions
This option displays a submenu of the available statistical functions. These are described on page 49.

S-F5 Toggle Column Labels
Converts the first matrix row to column labels if no column labels exist. Otherwise it adds the existing column labels as a new first row to the matrix. When a new matrix is imported UEDIT guesses whether the first row and first column contain labels or not. If UEDIT’s assumption is wrong use this function or “Toggle Row Labels” (S-F6) to correct the mistake.

C-F5 Edit Column Labels
This function lets you edit existing column labels or create new labels if none exist. It works in bulk mode (see the next function) starting with the first column. When all desired changes are made you may stop by hitting the “Escape” key.

F6 Bulk mode
The bulk mode option allows the user to manually add or insert new rows or columns into the current matrix. UEDIT first prompts for row- or column-wise input. For row-wise input the following actions take place (the equivalent holds for column-wise input): A new row is inserted into the matrix before the current cursor position, the cursor is located in the first field of this row and a prompt is displayed to enter a value for this field. Each time you hit (Enter) the cursor changes to the next field to the right and again waits for input. If the row is filled a new row is created below the last one and the process starts over. Hit the (Escape) key to leave this mode.
Note that data which exceed the current column widths will appear truncated on the screen during the input. This improves the speed with which UEDIT can handle the input and stops the input flow from being interrupted. After
completion of the input the necessary column widths are recalculated and the display is updated.

S-F6 **Toggle Row Labels**
Converts the first matrix column to row labels if no row labels exist. Otherwise it adds the existing row labels as a new first column to the matrix. When a new matrix is imported UEDIT guesses whether the first column and first row contain labels or not. If UEDIT's assumption is wrong use this function or "Toggle column Labels" (S-F5) to correct the mistake.

F7 **Insert Row**
Inserts a new empty row before the current cursor location.

S-F7 **Insert Column**
Inserts one or more empty columns before the current cursor location. You will be prompted for the formats of the new column. See page 38 for a description of valid formats.

C-F7 **Change Column Format**
Lets you change the format of the column the cursor is currently located on. You will be prompted to specify the new format. See page 38 for a description of the format codes. Note that only valid changes will be accepted. For example, a numeric column can always be changed to character format, but a character-type column can only be converted to numbers if all fields can be interpreted as numbers.

F8 **Search**
This function searches for the next occurrence of a specified number or character string. Substrings (even in numbers) will be found too. The search, which is case-sensitive, is performed in row-major order starting at the current cursor position. The function does not "wrap around" the end of the matrix. Therefore, in order to locate all occurrences of the search object you should start in the upper left corner of the matrix.

S-F8 **Recode**
This function is especially useful when you have imported data from a system which can handle only numeric data, thus requiring that character type attributes are coded with numbers. With this function it is easy to recode such a matrix column to its original or any other desired attribute. UEDIT will display each distinct value of that column and prompt for a new attribute. If you want to change only a few values you can terminate this function with (Escape) after all necessary changes have been made.

C-F8 **Rotate**
To edit a matrix it may sometimes be easier to transpose the matrix, i.e., turn rows into columns and columns into rows, and in addition hide matrix areas you do not need. "Rotate" creates a new matrix containing the transpose of the original matrix if no area is marked or of a marked area of the matrix. The new matrix is overlaid over its "parent" matrix and can be edited in the same way.
To return to the original matrix use "Quit" (F3) or "File" (F4). With (F4) all changes are entered into the parent matrix.

F9 Copy
Copies a marked row or column block to a new position which is indicated by the current cursor position. Note that the block is inserted before the current row or column. Presently this function will only copy blocks which cover all rows or all columns. To copy smaller areas use the "Put/Get" combination (S-F3), (C-F3).

S-F9 Move
Moves a marked row or column block to a new position which is indicated by the current cursor position. This is essentially the same operation as "Copy" but the marked block will be deleted from its original position.

C-F9 Change "Missing Value"
This option provides an easy way to change the numeric "Missing Value", i.e., the code assigned to unknown numeric data. The display will be updated immediately after the change.

F10 Delete Row(s)
This function deletes marked rows or the current row if no rows are marked. You will be prompted for confirmation before any action takes place. If you have deleted rows by mistake you can still recover from that error if you have not saved the matrix since the deletion. Take the following steps to save as much of your work as possible:

1. Assuming you are editing the matrix MATRIX, choose function (C-F4) and issue the APL2 command
 HELPmatrix=matrix
 This will copy the original matrix which still contains the deleted rows to a new matrix.
2. "File" the current matrix with the (F4) function.
3. Now edit HELPmatrix and delete all rows except those you want to recover. "File" this matrix.
4. Restart your editor session of MATRIX, locate the cursor on the row where the deleted rows should be and insert HELPmatrix using the "Get" function (C-F3).

S-F10 Delete Column(s)
Deletes marked columns or the current column if no columns are marked. You will be prompted for confirmation before any action takes place. See the function (F10) for recommendations for error recovery.

C-F10 Printer Functions
Displays a submenu of available printer functions. See page 54 for a description.
K. STATISTICAL FUNCTIONS

Presently there are four statistical functions implemented into the menuing system of UEDIT. All operate on one or more columns of the currently edited matrix. Function key (F5) activates a submenu which lets you choose from the functions which are described in the following sections.

1. Frequency Counts with Conditionals

UEDIT prompts you for a column number on which to perform the frequency tabulation. If the column contains numeric data or dates you also have to specify three classification parameters: lower bound, upper bound and number of classes (see page 52 for details). To include only certain observations into the frequency count or to exclude certain observations you have the option of conditioning the tabulation on one or more matrix columns, including the one which is counted, as described on page 52. For example, you may want to exclude from the count the cells marked unknown.

The function then creates a new matrix overlaid over its parent in which each row contains the class label, absolute, relative and cumulative frequencies. The last matrix column displays a simple bar chart to visualize the frequencies. If all absolute frequencies are smaller than 40 then all bar lengths (measured in display columns) are equal to those frequencies. Otherwise the longest bar will be 40 columns long and the others have lengths proportional to it. The lengths are at least 1 unless there are no observations in a class.

You can edit the table like any other matrix. When you decide to sort the rows on a different criterion than the default lexicographical order the cumulative frequencies are recalculated automatically. To go back to the original table hit (F4) (File) to save the table to disk or (F3) (Quit) to exit without saving the table.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>2</td>
<td>.00</td>
<td>2</td>
</tr>
<tr>
<td>Female</td>
<td>298</td>
<td>.35</td>
<td>300</td>
</tr>
<tr>
<td>Male</td>
<td>561</td>
<td>.65</td>
<td>861</td>
</tr>
</tbody>
</table>

Figure 2. Sample frequency table created by UEDIT
2. Crosstabulation with Conditionals

This option allows the user to crosstabulate any two matrix columns. Thus you will have to specify two columns at UEDIT's prompt. The handling of numeric columns and the conditioning are the same as in the case of frequency counts.

Again UEDIT creates a new table which is overlaid over the original matrix. It contains the observed absolute frequencies and the standard residuals for each field of the table. The standard residuals are highlighted at color level 1. In addition, residuals whose absolute values are larger than 1.96 or 2.54 are highlighted to level 2 and level 3, respectively, for emphasis. Thus, to see only the standard residuals, you can use the Shadow function (Shift-S) to hide the other rows and columns.

Also displayed are the row and column marginals in absolute and relative numbers. Below the table the value of the χ^2 statistic, the p-value and the number of degrees of freedom are tabulated.

To return to the parent matrix hit (F3) or (F4) as always.

<table>
<thead>
<tr>
<th></th>
<th>-</th>
<th>Single</th>
<th>Married</th>
<th>Separated</th>
<th>Divorced</th>
<th>Widowed</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>.000</td>
<td>.000</td>
<td>1.000</td>
<td>.000</td>
<td>1.000</td>
<td>.000</td>
<td>2.000</td>
</tr>
<tr>
<td>-</td>
<td>-.145</td>
<td>-.978</td>
<td>.141</td>
<td>-.167</td>
<td>2.561</td>
<td>-.084</td>
<td>.002</td>
</tr>
<tr>
<td>Female</td>
<td>1.000</td>
<td>156.000</td>
<td>107.000</td>
<td>6.000</td>
<td>25.000</td>
<td>3.000</td>
<td>298.000</td>
</tr>
<tr>
<td>Female</td>
<td>-.198</td>
<td>1.122</td>
<td>-1.973</td>
<td>.906</td>
<td>1.749</td>
<td>1.925</td>
<td>.346</td>
</tr>
<tr>
<td>Male</td>
<td>8.000</td>
<td>256.000</td>
<td>266.000</td>
<td>6.000</td>
<td>25.000</td>
<td>.000</td>
<td>561.000</td>
</tr>
<tr>
<td>Male</td>
<td>.882</td>
<td>-.760</td>
<td>1.429</td>
<td>-.651</td>
<td>-1.428</td>
<td>-1.398</td>
<td>.652</td>
</tr>
<tr>
<td>total</td>
<td>9.000</td>
<td>412.000</td>
<td>374.000</td>
<td>12.000</td>
<td>51.000</td>
<td>3.000</td>
<td>861.000</td>
</tr>
<tr>
<td>column X</td>
<td>.015</td>
<td>.479</td>
<td>.434</td>
<td>.014</td>
<td>.069</td>
<td>.004</td>
<td></td>
</tr>
<tr>
<td>d.o.f.</td>
<td>10.000</td>
<td>29.581</td>
<td>.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-sq</td>
<td>29.581</td>
<td>.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Sample contingency table created by UEDIT
3. Draftsman's Display

This function creates 2-way contingency tables for several matrix columns which are laid out internally as

\[
\begin{align*}
V_1 & \text{ vs. } V_2 & V_1 & \text{ vs. } V_3 & V_1 & \text{ vs. } V_4 & \cdots & V_1 & \text{ vs. } V_n \\
V_2 & \text{ vs. } V_3 & V_2 & \text{ vs. } V_4 & V_2 & \text{ vs. } V_n \\
V_3 & \text{ vs. } V_4 & \cdots & V_3 & \text{ vs. } V_n \\
\vdots & & \vdots & & \vdots \\
V_{n-1} & \text{ vs. } V_n
\end{align*}
\]

where \(V_i \text{ vs. } V_j \) denotes the result of a crosstabulation of columns \(i \) and \(j \).

Each table is formatted as the single tables described in the previous subsection, and you can edit each table in any way. To switch to a different submatrix hold down the \((\text{Alt})\)-key and hit one of the cursor keys. Note that you must release \((\text{Alt})\) to start the scrolling.

UEDIT chooses a temporary name for each table, which is a composite of the corresponding column labels or column numbers if no labels exist. Recall, that the name of a matrix is always displayed in the bottom row of the screen.

4. Aggregation

To increase cell counts and cell expectations in contingency tables you can aggregate ("pool") matrix columns or rows. Simply enter the column or row numbers in response to UEDIT's prompt or answer "O" which returns you to the original contingency table. All necessary recalculation will be performed automatically. Note that when you want to aggregate rows, you have to enter the row numbers which are displayed in the left-most column of the display. It is not necessary that the columns or rows you aggregate are contiguous.

When you are in a draftsman's display the pooling takes place only in a particular table, i.e., the other tables are not changed and can be aggregated in a total different way.
5. Classification of Numeric Data

If you want to do frequency counts or crosstabulations on numeric columns or on columns formatted as dates UEDIT assumes that the values are from a continuous domain. You have to enter three classification parameters:

1. the lower limit \(L \) of the first class,
2. the upper limit \(U \) of the last class and
3. the number of classes \(n \) in which to group the data.

The classes then have equal lengths \(l = (U - L)/n \). Two additional classes are created to classify values below \(L \) and above \(U \). That means \(n + 2 \) classes are created

\[(-\infty, L_1), [L_1, U_1), \ldots, [L_n, U_n), [U_n, +\infty) \]

where \(U_i = L + i 	imes l \) for \(i = 1, \ldots, n \) and \(L_1 = L \), \(L_j = U_{j-1} \) for \(j = 2, \ldots, n \). The intervals are open to the right, except for the first interval.

If the data have only a few different values (e.g., re-coded character labels) it is suggested that the user converts this column to character data (Ctrl-F7) before starting the function to emphasize their "discrete" status.

6. Conditional Calculations

UEDIT allows frequency counts and crosstabulations to be conditioned on conditioning columns, i.e., to perform the calculations only for those rows that match specific criteria. These conditioning columns can be any matrix columns including the ones which are counted.

The input of conditioning columns is a two-step process: First you enter the column numbers and their logical relationship, then you enter the conditioning criteria for each of the columns successively. A complete example is given at the end of this section.

When UEDIT prompts for conditioning columns hit (Enter) if you want all rows to be included in the operation. Otherwise enter the conditioning columns in a logical expression. For example, to include only those rows in the calculation where both column 1 and column 2 match certain criteria enter

\[1A2 \]
After a syntax check you will be prompted for the criteria for each conditioning column (see below). Valid operators are

\[\land \lor \ast \lor \sim / () , \]

This makes a construction like

\[1 \land (2 \lor 3 \land 4) \lor / 5, 6, 7 \]

perfectly legal although it may make no statistical sense. The most frequent application will probably be to exclude all missing values from a crosstabulation where you would use the first example, \(1 \land 2\).

The conditioning criteria are inputted in the following way:

1. Character column
 Enter the criteria separated by commas. For example, to include only rows where the marital status is single or married type

 \[\text{Single}, \text{Married} \]

 The case of your input is significant as are leading blanks. If an entry contains a comma itself enclose it within double quotes ("") or dieresis ("") when your keyboard layout is set to APL.

 To exclude certain criteria type a tilde (~) in front of the values followed by a comma, i.e., to exclude rows with a marital status single or married the correct input is

 \[~, \text{Single}, \text{Married} \]

 If missing values are denoted by empty (blank) fields type

 \[~, \]

 to exclude them.

2. Numeric or date column
 The criteria have the form

 \[L_1, U_1, L_2, U_2, \ldots \]

 where \(L_i \) and \(U_i \) define a closed interval \([L_i, U_i]\) specifying the range of values to be included or excluded. For example,

 \[7, 10, 15, 20, 30, 30 \]

 includes only rows whose value in the conditioning column is in the range \([7, 10]\), \([15, 20]\) or is exactly \(30 = [30, 30]\). Overlapping ranges are allowed:

 \[12, 20, 10, 15 \]

 includes all rows with a value in the interval \([12, 20] \cup [10, 15] = [10, 20]\) in the calculation.
As in the case of character columns the tilde excludes certain ranges. To exclude rows with a date between February 1 and March 15, 1990 you have to type

~, 2-1-90, 3-15-90

You can omit the year in the input if you type this in 1990. When you want to include the missing values (MISS\&N) you can abbreviate this to

~,

To summarize, assume you want to crosstabulate columns 3 and 6 of a matrix but want to exclude the missing values in both columns. Then your answers to UEDIT's prompts would be:

- (Columns to crosstabulate:) 3, 6
- (Conditioning columns:) 3\&6
- (Criteria for column 3:) ~,
- (Criteria for column 6:) ~,

L. PRINTER FUNCTIONS

The (Ctrl-F10) key combination activates a submenu with several options. These are described in the following subsections. If you use a Hewlett Packard LaserJet II or compatible printer it is recommended that you call the Auxiliary Printer Processor AP81 on the DOS command line instead of the AP80 supplied by IBM. Note that you can always take a “snapshot” of the current screen without using the special printer functions by hitting (Shift-PrtScr).

F1 Print worksheet
Prints the complete matrix with page numbers and headings. Matrices which do not fit on a single page are split on several continuing pages. Columns are not broken over pages. The page numbering is done in the following layout:

```
  1.1  1.2  ...
  2.1  2.2  ...
  ...  ...  ...
```

You are given the option to repeat column and row labels on each page.

F2 Print mark area
Works in the same way as “Print worksheet” but prints only a marked area of the currently edited matrix (see page 41 for a description of “marked area”). This feature is very useful and gives the user great control over the printed output.
F3 Formfeed
Sends a formfeed to the printer, i.e., ejects a page.

F4 Initialize
This function initializes the printer. The only task presently is (in the case of the AP81) to download a portrait font AP100RFN.SFP and a landscape font AP100RFN.SFL to the memory of the laser printer. You can use any fonts provided they have these names (or are renamed to them) and reside in the default directory of the default disk. UEDIT displays a warning message if it cannot find one or both fonts but does not take any further action. You have to initialize the printer only once; the fonts remain in memory until you turn off the printer.

F5 Orientation
Switches between portrait mode (the default) and landscape orientation. The function also exchanges the value for textheight and textwidth against each other. The menu always shows the mode you switch to when you choose this option. I.e., when you read “portrait” on the menu screen you are currently in landscape mode.

F6 Left margin
Specifies the blank space (in printer columns) to the left of the printer matrix.

F7 Number of columns
Sets the number of columns to be printed per page. Note that this number specifies the actual printer positions, usually the number of characters. It is not related to the columns of the matrix.

F8 Top margin
Defines the number of blank lines above the page number, which is the first line printed.

F9 Lines per inch
Sets the vertical spacing of the printout. The most used values are 6 and 8 lines per inch. Depending on the size of the font and the size of the worksheet to be printed you may increase or decrease the value.

F10 Reset
This option resets all values set with functions (F5)-(F9) to their default values which are saved in the global variable PRINT.

The global variable PRINT is a 7-element vector containing the following default values
For example, to make landscape printing the default mode change PRINT by assigning

\[\text{PRINT[3]} \rightarrow 8.5 \ 11 \ 1 \]

From these parameters other necessary values can be calculated. The number of lines printed per page (textheight \(TH \)) is defined by

\[TH = \text{integer} \left(LPI \times \left(PH - \frac{TM}{LPI} - \frac{1}{2} \right) \right) \]

The “usable” textheight is \(TH \) minus 3 lines for the page number and the worksheet title minus 2 lines if column labels are printed.

To calculate horizontal margins in inches the “pitch” of the font must be known. The pitch is the number of characters per horizontal inch. Usual pitch values for dot matrix printers are 10 or 12. The laser printer fonts AP100RFN.SFP and AP100RFN.SFL both print 12 characters per inch. Then the left margin \(LMI \) and right margin \(RMI \) in inches are defined by

\[LMI = \frac{LM}{\text{pitch}} \]
\[RMI = PW - \frac{LM + NC}{\text{pitch}} \]

To obtain a left margin of \(l \) and a right margin of \(r \) inches set

\[LM = l \times \text{pitch} \]
\[NC = (PW - r) \times \text{pitch} - LM \]
M. CLEANING UP

When you finish your editing session you may want to save global variables you have created in a separate file or erase these objects to clean up the workspace before you start a new session. The function CLEAN helps you with these tasks. Simply type

CLEAN

on the APL2 command line. You have are given choices:

1. To erase all functions and variables which are part of the UEDIT system,
2. To erase all objects which are not part of the UEDIT system.

Respond by typing (1) or (2) followed by (Return) depending on your choice. Any other key combination will cancel the execution of this function.

If you want additional functions or variables to be recognized by the CLEAN function as an integral part of UEDIT, copy them into the workspace, give the commands

`A12=Dtb`c[2]`NL 2

and save the UEDIT workspace.
The following sample session tries to make the user more familiar with some of UEDIT's features. Professor User of the Naval Postgraduate School currently teaches a class with 18 students. The grading for the course is based on two examinations which determine 40% and 60% of the final grade, respectively. At the beginning of the quarter he has prepared a UEDIT matrix CLASS with the names of the students which he uses as row labels. After the first exam he enters the points for each student with UEDIT's bulk mode (F6). This allows him to enter the scores one after the other without looking up from his notes. The result after adding column labels with (Ctrl-F5) is a display as shown in Figure 4.

<table>
<thead>
<tr>
<th>Name</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen</td>
<td>78</td>
</tr>
<tr>
<td>Baker</td>
<td>73</td>
</tr>
<tr>
<td>Curtis</td>
<td>94</td>
</tr>
<tr>
<td>Dillon</td>
<td>74</td>
</tr>
<tr>
<td>Ellis</td>
<td>69</td>
</tr>
<tr>
<td>Field</td>
<td>71</td>
</tr>
<tr>
<td>Gould</td>
<td>54</td>
</tr>
<tr>
<td>Hayes</td>
<td>100</td>
</tr>
<tr>
<td>Jones</td>
<td>82</td>
</tr>
<tr>
<td>King</td>
<td>54</td>
</tr>
<tr>
<td>Lee</td>
<td>91</td>
</tr>
<tr>
<td>Miller</td>
<td>70</td>
</tr>
<tr>
<td>Norman</td>
<td>85</td>
</tr>
<tr>
<td>Owens</td>
<td>63</td>
</tr>
<tr>
<td>Peters</td>
<td>66</td>
</tr>
<tr>
<td>Riley</td>
<td>90</td>
</tr>
<tr>
<td>Smith</td>
<td>77</td>
</tr>
<tr>
<td>Thomas</td>
<td>72</td>
</tr>
</tbody>
</table>

Press Enter to change field values

Figure 4. UEDIT display after input of the results of the first exam
Professor User has a standard scheme to translate points, which always have 100 as a maximum, into grades:

<table>
<thead>
<tr>
<th>points</th>
<th>94–100</th>
<th>87–93</th>
<th>80–86</th>
<th>73–79</th>
<th>66–72</th>
<th>59–65</th>
<th>52–58</th>
</tr>
</thead>
<tbody>
<tr>
<td>grade</td>
<td>A</td>
<td>A−</td>
<td>B+</td>
<td>B</td>
<td>B−</td>
<td>C+</td>
<td>C</td>
</tr>
</tbody>
</table>

Therefore he has written a short APL2 function `GRADE` which allows him to do the conversion efficiently:

```apl
R←GRADE PT
R←('A' 'A-' 'B+' 'B' 'B-' 'C+' 'C')[(107-PT)÷7]
```

He is also interested in the ranking of the students. So he decides to add two columns to the matrix. He moves the cursor to the right of the "points" column, hits (S-F7) to insert columns and answers the prompt for column types with `C,A` because the grades have character type but the ranks are numbers. Both tasks take column 1 as input. So he marks column 1 by moving the cursor into it and hitting (Ctrl-C). This allows him to use `ω` as a short-cut notation for `MAT[;1]`. Then he uses UEDIT's feature to enter arbitrary APL2 commands ((Ctrl-F4)) twice and assigns, on the command line,

```
MAT[;2]←GRADE ω
MAT[;3]←△ω
```

This inserts the grades into column 2 and the ranks into column 3 as shown in Figure 5. He unmarks column 1 ((Ctrl-U)) and files the matrix with (F4).
<table>
<thead>
<tr>
<th>Name</th>
<th>pt.1</th>
<th>gr.1</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen</td>
<td>78</td>
<td>B</td>
<td>7</td>
</tr>
<tr>
<td>Baker</td>
<td>73</td>
<td>B</td>
<td>10</td>
</tr>
<tr>
<td>Curtis</td>
<td>94</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>Dillon</td>
<td>74</td>
<td>B</td>
<td>9</td>
</tr>
<tr>
<td>Ellis</td>
<td>69</td>
<td>B-</td>
<td>14</td>
</tr>
<tr>
<td>Field</td>
<td>71</td>
<td>B-</td>
<td>12</td>
</tr>
<tr>
<td>Gould</td>
<td>54</td>
<td>C</td>
<td>17</td>
</tr>
<tr>
<td>Hayes</td>
<td>100</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>Jones</td>
<td>82</td>
<td>B+</td>
<td>6</td>
</tr>
<tr>
<td>King</td>
<td>54</td>
<td>C</td>
<td>18</td>
</tr>
<tr>
<td>Lee</td>
<td>91</td>
<td>A-</td>
<td>3</td>
</tr>
<tr>
<td>Miller</td>
<td>70</td>
<td>B-</td>
<td>13</td>
</tr>
<tr>
<td>Norman</td>
<td>85</td>
<td>B+</td>
<td>5</td>
</tr>
<tr>
<td>Owens</td>
<td>63</td>
<td>C+</td>
<td>16</td>
</tr>
<tr>
<td>Peters</td>
<td>66</td>
<td>B-</td>
<td>15</td>
</tr>
<tr>
<td>Riley</td>
<td>90</td>
<td>A-</td>
<td>4</td>
</tr>
<tr>
<td>Smith</td>
<td>77</td>
<td>B</td>
<td>8</td>
</tr>
<tr>
<td>Thomas</td>
<td>72</td>
<td>B-</td>
<td>11</td>
</tr>
</tbody>
</table>

Figure 5. UEDIT display after adding grades and ranks
After the second examination, Professor User deletes the ranking column with function (S-F10). Again he uses the bulk mode to enter the points for the second exam and then converts them to grades with his GRADE function. He adds two more columns to the matrix, which will contain the course points and course grade, and fills these columns with the APL2 command

\[
\text{MAT}[;6]+\text{GRADE} \text{ MAT}[;5]+\text{MAT}[;1 \ 3]+.\times .4 \ .6
\]

This gives him the display of Figure 6.

<table>
<thead>
<tr>
<th>Name</th>
<th>pt.1</th>
<th>gr.1</th>
<th>pt.2</th>
<th>gr.2</th>
<th>points</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen</td>
<td>78</td>
<td>B</td>
<td>77</td>
<td>B</td>
<td>77.4</td>
<td>B</td>
</tr>
<tr>
<td>Baker</td>
<td>73</td>
<td>B</td>
<td>71</td>
<td>B-</td>
<td>71.8</td>
<td>B-</td>
</tr>
<tr>
<td>Curtis</td>
<td>94</td>
<td>A</td>
<td>98</td>
<td>A</td>
<td>96.4</td>
<td>A</td>
</tr>
<tr>
<td>Dillon</td>
<td>74</td>
<td>B</td>
<td>54</td>
<td>C</td>
<td>62.0</td>
<td>C+</td>
</tr>
<tr>
<td>Ellis</td>
<td>69</td>
<td>B-</td>
<td>79</td>
<td>B</td>
<td>75.0</td>
<td>B</td>
</tr>
<tr>
<td>Field</td>
<td>71</td>
<td>B-</td>
<td>74</td>
<td>B</td>
<td>72.8</td>
<td>B</td>
</tr>
<tr>
<td>Gould</td>
<td>54</td>
<td>C</td>
<td>55</td>
<td>C</td>
<td>54.6</td>
<td>C</td>
</tr>
<tr>
<td>Hayes</td>
<td>100</td>
<td>A</td>
<td>88</td>
<td>A-</td>
<td>92.8</td>
<td>A-</td>
</tr>
<tr>
<td>Jones</td>
<td>82</td>
<td>B+</td>
<td>89</td>
<td>A-</td>
<td>86.2</td>
<td>A-</td>
</tr>
<tr>
<td>King</td>
<td>54</td>
<td>C</td>
<td>62</td>
<td>C+</td>
<td>58.8</td>
<td>C+</td>
</tr>
<tr>
<td>Lee</td>
<td>91</td>
<td>A-</td>
<td>92</td>
<td>A-</td>
<td>91.6</td>
<td>A-</td>
</tr>
<tr>
<td>Miller</td>
<td>70</td>
<td>B-</td>
<td>81</td>
<td>B+</td>
<td>78.6</td>
<td>B</td>
</tr>
<tr>
<td>Norman</td>
<td>85</td>
<td>B+</td>
<td>78</td>
<td>B</td>
<td>80.8</td>
<td>B+</td>
</tr>
<tr>
<td>Owens</td>
<td>63</td>
<td>C+</td>
<td>70</td>
<td>B-</td>
<td>67.2</td>
<td>B-</td>
</tr>
<tr>
<td>Peters</td>
<td>66</td>
<td>B-</td>
<td>66</td>
<td>B-</td>
<td>66.0</td>
<td>B-</td>
</tr>
<tr>
<td>Riley</td>
<td>90</td>
<td>A-</td>
<td>92</td>
<td>A-</td>
<td>91.2</td>
<td>A-</td>
</tr>
<tr>
<td>Smith</td>
<td>77</td>
<td>B</td>
<td>83</td>
<td>B+</td>
<td>80.6</td>
<td>B+</td>
</tr>
<tr>
<td>Thomas</td>
<td>72</td>
<td>B-</td>
<td>80</td>
<td>B+</td>
<td>78.8</td>
<td>B</td>
</tr>
</tbody>
</table>

Figure 6. UEDIT display after calculating the final scores
To rank the students he chooses to sort the rows of the matrix according to the points of column 5. In the case of equal numbers he wants the points of the second examination (column 3) to be the criterion for a higher rank. Therefore he starts the sorting with \((S\cdot F1) \) and responds to UEDIT's prompt for column numbers
\[-5, -3\]

This will show him the students in descending order of their points, i.e., the best student's name is listed in the first row, as shown in Figure 7.

![Table](image)

<table>
<thead>
<tr>
<th>Name</th>
<th>pt.1</th>
<th>gr.1</th>
<th>pt.2</th>
<th>gr.2</th>
<th>points</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curtis</td>
<td>94</td>
<td>A</td>
<td>98</td>
<td>A</td>
<td>96.4</td>
<td>A</td>
</tr>
<tr>
<td>Hayes</td>
<td>100</td>
<td>A</td>
<td>88</td>
<td>A-</td>
<td>92.8</td>
<td>A-</td>
</tr>
<tr>
<td>Lee</td>
<td>91</td>
<td>A-</td>
<td>92</td>
<td>A-</td>
<td>91.6</td>
<td>A-</td>
</tr>
<tr>
<td>Riley</td>
<td>90</td>
<td>A-</td>
<td>92</td>
<td>A-</td>
<td>91.2</td>
<td>A-</td>
</tr>
<tr>
<td>Jones</td>
<td>82</td>
<td>B+</td>
<td>89</td>
<td>A-</td>
<td>86.2</td>
<td>A-</td>
</tr>
<tr>
<td>Norman</td>
<td>85</td>
<td>B+</td>
<td>78</td>
<td>B</td>
<td>80.8</td>
<td>B+</td>
</tr>
<tr>
<td>Smith</td>
<td>77</td>
<td>B</td>
<td>83</td>
<td>B+</td>
<td>80.6</td>
<td>B+</td>
</tr>
<tr>
<td>Allen</td>
<td>78</td>
<td>B</td>
<td>77</td>
<td>B</td>
<td>77.4</td>
<td>B</td>
</tr>
<tr>
<td>Thomas</td>
<td>72</td>
<td>B-</td>
<td>80</td>
<td>B+</td>
<td>76.8</td>
<td>B</td>
</tr>
<tr>
<td>Miller</td>
<td>70</td>
<td>B-</td>
<td>81</td>
<td>B+</td>
<td>76.6</td>
<td>B</td>
</tr>
<tr>
<td>Ellis</td>
<td>69</td>
<td>B-</td>
<td>79</td>
<td>B</td>
<td>75.0</td>
<td>B</td>
</tr>
<tr>
<td>Field</td>
<td>71</td>
<td>B-</td>
<td>74</td>
<td>B</td>
<td>72.8</td>
<td>B</td>
</tr>
<tr>
<td>Baker</td>
<td>73</td>
<td>B</td>
<td>71</td>
<td>B-</td>
<td>71.8</td>
<td>B-</td>
</tr>
<tr>
<td>Owens</td>
<td>63</td>
<td>C+</td>
<td>70</td>
<td>B-</td>
<td>67.2</td>
<td>B-</td>
</tr>
<tr>
<td>Peters</td>
<td>66</td>
<td>B-</td>
<td>66</td>
<td>B-</td>
<td>66.0</td>
<td>B-</td>
</tr>
<tr>
<td>Dillon</td>
<td>74</td>
<td>B</td>
<td>54</td>
<td>C</td>
<td>62.0</td>
<td>C+</td>
</tr>
<tr>
<td>King</td>
<td>54</td>
<td>C</td>
<td>62</td>
<td>C+</td>
<td>58.8</td>
<td>C+</td>
</tr>
<tr>
<td>Gould</td>
<td>54</td>
<td>C</td>
<td>55</td>
<td>C</td>
<td>54.6</td>
<td>C</td>
</tr>
</tbody>
</table>

Figure 7. UEDIT display after sorting on final scores
Professor User then decides to crosstabulate the grades of the two exams although he knows that this will not make much sense as there are only 18 students in his class. But he wants to become more familiar with UEDIT and uses every opportunity to gain experience with its features. So he hits (F5) to open the menu of statistical functions, chooses (F2) for crosstabulation and enters 2, 4 as the columns of interest. The result is a 7×7 contingency table, shown in Figure 8. Of course, most of the observed frequencies are 0. He decides to aggregate the scores into only three classes A, B and C by pooling (A, A-), (B, B+, B-) and (C, C+). He does this for the rows as well as for the columns of his matrix. Note that, when asked for row numbers to aggregate, he responds with "real" matrix rows, that is for example, rows 1 and 4 to pool grades A and A-. Figure 9 shows the resulting 3×3 contingency table.

![Contingency Table](image)

Figure 8. UEDIT display of the contingency table
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>4.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>2.74</td>
<td>-1.49</td>
<td>-.82</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1.00</td>
<td>9.00</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>-1.18</td>
<td>1.17</td>
<td>-.62</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>.00</td>
<td>1.00</td>
<td>2.00</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>-.91</td>
<td>-.52</td>
<td>2.12</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>total</td>
<td>5.00</td>
<td>10.00</td>
<td>3.00</td>
</tr>
<tr>
<td>11</td>
<td>column %</td>
<td>.28</td>
<td>.56</td>
<td>.17</td>
</tr>
<tr>
<td>12</td>
<td>d.o.f.</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Chi-sq</td>
<td>19.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>signif</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 9. UEDIT display of the contingency table after aggregation

N5.2 N5.2 N5.2 N5.2
After this excursion Professor User leaves the contingency table display by hitting (F3) which takes him back to the original matrix. He wants to know at least one statistical figure, the average scores of his students. He moves the cursor to column 5 and marks it with (Ctrl-C). Then he moves the cursor to the last line, i.e., to the line below the last score, types

\[(+/\omega)\div p\omega\]

and presses (Enter). Note that he does not have to hit (Enter) to start entering a new value for a field. As soon as he types the left parenthesis, the input line is activated with the parenthesis as first character.

He does the same calculations for columns 1 and 3 and formats these columns so that they are rounded to one decimal (Ctrl-F7). This gives him the display shown in Figure 10.

<table>
<thead>
<tr>
<th>Name</th>
<th>pt.1</th>
<th>gr.1</th>
<th>pt.2</th>
<th>gr.2</th>
<th>points</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Curtis</td>
<td>94.0</td>
<td>A</td>
<td>98.0</td>
<td>A</td>
<td>96.4</td>
<td>A</td>
</tr>
<tr>
<td>2 Hayes</td>
<td>100.0</td>
<td>A</td>
<td>88.0</td>
<td>A-</td>
<td>92.8</td>
<td>A-</td>
</tr>
<tr>
<td>3 Lee</td>
<td>91.0</td>
<td>A-</td>
<td>92.0</td>
<td>A-</td>
<td>91.6</td>
<td>A-</td>
</tr>
<tr>
<td>4 Riley</td>
<td>90.0</td>
<td>A-</td>
<td>92.0</td>
<td>A-</td>
<td>91.2</td>
<td>A-</td>
</tr>
<tr>
<td>5 Jones</td>
<td>82.0</td>
<td>B+</td>
<td>89.0</td>
<td>A-</td>
<td>86.2</td>
<td>A-</td>
</tr>
<tr>
<td>6 Norman</td>
<td>85.0</td>
<td>B+</td>
<td>78.0</td>
<td>B</td>
<td>80.8</td>
<td>B+</td>
</tr>
<tr>
<td>7 Smith</td>
<td>77.0</td>
<td>B</td>
<td>83.0</td>
<td>B+</td>
<td>80.6</td>
<td>B+</td>
</tr>
<tr>
<td>8 Allen</td>
<td>78.0</td>
<td>B</td>
<td>77.0</td>
<td>B</td>
<td>77.4</td>
<td>B</td>
</tr>
<tr>
<td>9 Thomas</td>
<td>72.0</td>
<td>B-</td>
<td>80.0</td>
<td>B+</td>
<td>76.8</td>
<td>B</td>
</tr>
<tr>
<td>10 Miller</td>
<td>70.0</td>
<td>B-</td>
<td>81.0</td>
<td>B+</td>
<td>76.6</td>
<td>B</td>
</tr>
<tr>
<td>11 Ellis</td>
<td>69.0</td>
<td>B-</td>
<td>79.0</td>
<td>B</td>
<td>75.0</td>
<td>B</td>
</tr>
<tr>
<td>12 Field</td>
<td>71.0</td>
<td>B-</td>
<td>74.0</td>
<td>B</td>
<td>72.8</td>
<td>B</td>
</tr>
<tr>
<td>13 Baker</td>
<td>73.0</td>
<td>B</td>
<td>71.0</td>
<td>B-</td>
<td>71.8</td>
<td>B-</td>
</tr>
<tr>
<td>14 Owens</td>
<td>63.0</td>
<td>C+</td>
<td>70.0</td>
<td>B-</td>
<td>67.2</td>
<td>B-</td>
</tr>
<tr>
<td>15 Peters</td>
<td>66.0</td>
<td>B-</td>
<td>66.0</td>
<td>B-</td>
<td>66.0</td>
<td>B-</td>
</tr>
<tr>
<td>16 Dillon</td>
<td>74.0</td>
<td>B</td>
<td>54.0</td>
<td>C</td>
<td>62.0</td>
<td>C+</td>
</tr>
<tr>
<td>17 King</td>
<td>54.0</td>
<td>C</td>
<td>62.0</td>
<td>C+</td>
<td>58.8</td>
<td>C+</td>
</tr>
<tr>
<td>18 Gould</td>
<td>54.0</td>
<td>C</td>
<td>55.0</td>
<td>C</td>
<td>54.6</td>
<td>C</td>
</tr>
<tr>
<td>19</td>
<td>75.7</td>
<td></td>
<td>77.2</td>
<td></td>
<td>76.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N5.1</td>
<td>C4</td>
<td>N5.1</td>
<td>C4</td>
<td>N6.1</td>
</tr>
</tbody>
</table>

Figure 10. UEDIT display after adding average scores
Finally, he wants to print out the scores. He first sorts the rows back to their original order, that is, in ascending order of their names. He does that by responding with a 1 to UEDIT's prompt for the column numbers. For the printout he is not interested in the letter grades of the two exams and wants to omit columns 2 and 4 from the output. Therefore he marks columns 1, 3, 5 and 6 using (Ctrl-C), opens the printer menu with (Ctrl-F10) and chooses option (F2) which will print out only the marked area, in this case the marked columns. The printed output would then look like the one shown in Figure 11.

<table>
<thead>
<tr>
<th>Name</th>
<th>pt.1</th>
<th>pt.2</th>
<th>points</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen</td>
<td>78.0</td>
<td>77.0</td>
<td>77.4</td>
<td>B</td>
</tr>
<tr>
<td>Baker</td>
<td>73.0</td>
<td>71.0</td>
<td>71.8</td>
<td>B-</td>
</tr>
<tr>
<td>Curtis</td>
<td>94.0</td>
<td>98.0</td>
<td>96.4</td>
<td>A</td>
</tr>
<tr>
<td>Dillon</td>
<td>74.0</td>
<td>54.0</td>
<td>62.0</td>
<td>C+</td>
</tr>
<tr>
<td>Ellis</td>
<td>69.0</td>
<td>79.0</td>
<td>75.0</td>
<td>B</td>
</tr>
<tr>
<td>Field</td>
<td>71.0</td>
<td>74.0</td>
<td>72.8</td>
<td>B</td>
</tr>
<tr>
<td>Gould</td>
<td>54.0</td>
<td>55.0</td>
<td>54.6</td>
<td>C</td>
</tr>
<tr>
<td>Hayes</td>
<td>100.0</td>
<td>88.0</td>
<td>92.8</td>
<td>A-</td>
</tr>
<tr>
<td>Jones</td>
<td>82.0</td>
<td>89.0</td>
<td>86.2</td>
<td>A-</td>
</tr>
<tr>
<td>King</td>
<td>54.0</td>
<td>62.0</td>
<td>58.8</td>
<td>C+</td>
</tr>
<tr>
<td>Lee</td>
<td>91.0</td>
<td>92.0</td>
<td>91.6</td>
<td>A-</td>
</tr>
<tr>
<td>Miller</td>
<td>70.0</td>
<td>81.0</td>
<td>76.6</td>
<td>B</td>
</tr>
<tr>
<td>Norman</td>
<td>85.0</td>
<td>78.0</td>
<td>80.8</td>
<td>B</td>
</tr>
<tr>
<td>Owens</td>
<td>63.0</td>
<td>70.0</td>
<td>67.2</td>
<td>B</td>
</tr>
<tr>
<td>Peters</td>
<td>66.0</td>
<td>66.0</td>
<td>66.0</td>
<td>B</td>
</tr>
<tr>
<td>Riley</td>
<td>90.0</td>
<td>92.0</td>
<td>91.2</td>
<td>A</td>
</tr>
<tr>
<td>Smith</td>
<td>77.0</td>
<td>83.0</td>
<td>80.6</td>
<td>B</td>
</tr>
<tr>
<td>Thomas</td>
<td>72.0</td>
<td>80.0</td>
<td>76.8</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>75.7</td>
<td>77.2</td>
<td>76.6</td>
<td></td>
</tr>
</tbody>
</table>

Figure 11. UEDIT printout of the final scores
APPENDIX E. UEDIT FUNCTION LISTING

The majority of functions of the UEDIT workspace (Version 1.0) were written by the author. Function listings under subsequent versions will differ. The version number appears in the lower left corner of the display. The functions CHISQ and GAUSS were originally written by Professor Harold J. Larson of the Naval Postgraduate School for the APL*PLUS system of STSC, Inc. They use fast, numerically stable algorithms and are extremely accurate. Necessary changes for the APL2 system were applied by the author. The functions \texttt{AfV}, \texttt{Help} and \texttt{Menu} are in a similar form part of the APL2/PC distribution, but were enhanced for the purposes of UEDIT.

The two functions \texttt{UEDIT} and \texttt{USER} are listed first as they are the most important parts of the workspace. All other functions are called from here. They are listed in alphabetical order.

[0] \texttt{UEDIT ORIG;IO;AC;ASR;ASC;Apvar;F;Cs;Ds;KEYB}
[1] \texttt{Main Program: initializes parameters, then calls USER, the dispatcher}
[2] \texttt{Assign undefined keys}
[3] \texttt{Initialize AP124, get screen size}
[4] \texttt{Define color settings}
[5] \texttt{Row 1: normal marked}
[6] \texttt{Row 2: color if active field / blinking}

67
Define standard fields

\[F_{\text{ASR-5}}, 1, \Delta C[1;16] \]

\[F_{\text{ASR-6}}, 5, 2, \Delta C[1;16] \]

\[F_{\text{ASR-3}}, 1, 1, \Delta SC, 2, \Delta C[1;17] \]

\[F_{\text{ASC}}, 1, \Delta SC, 2, \Delta C[1;19] \]

\[F_{\text{ASC}}, 1, 1, \Delta SC, 2, \Delta C[1;18] \]

\[F_{\text{ASR}}, 1, 1, \Delta SC, 2, \Delta C[1;1;8] \]

\[F_{\text{ASR}}, 1, 1, \Delta SC, 2, \Delta C[1;1;20] \]

\[F_{\text{ASR}}, 3, 6, \Delta C[2;20] \]

\[F_{\text{ASR}}, 1, 1, 1, 2, \Delta C[2;20] \]

\[F_{\text{ASR}}, 2, 6, 1, 1, 2, \Delta C[1;16] \]

\[F_{\text{ASR}}, 2, 6, 40, 13, 32, 2, \Delta C[1;20] \]

\[Cs=1,0\text{OpDs}=12, 6 \text{pF} \]

\[Cs=12, 0, \text{OpCs}=12, 0\text{OpDs}=6, 1, 1 \]

0WA=ResPrf

\[0\text{WA}=\text{USER ORIG} \]

0RC-USER ORIG; N; K; L;\text{DISP};\Delta L;\Delta SC; \Delta LS; \Delta MAT; \Delta MR; \Delta MC; \Delta AR; \Delta AC; \Delta RO; \Delta CO; \Delta OC; \Delta OR; \text{PRESS}; \Delta C; \Delta CT; \Delta DM; \Delta MP; \text{MSG}; \text{MSGO}; \text{CFLAG}; \text{CLR}; \text{CHR}; \Delta UL; \Delta UR; \Delta UC; \Delta WR; \Delta WC; \Delta MA; \Delta DA; \text{MARKC}; \text{MARKR}; \text{HIGHR}; \text{HIGHC}; \text{HIGHA}; \text{FindTxt}; \text{DISA}; \text{DISL}; \text{DIST}; \text{DISB} \]

RC: 1 - File, 0 - Quit or flag for draftsmen

RC-CFLAG=0

FindTxt'=1'

\[\Delta UR=' \]

\[Cs=1, 8, 0\text{OpDs}=3, 6, \Delta SC=6, \Delta SC=5, 2, \Delta C[1;1] \]

\[Cs=1, 9, 0\text{OpDs}=1, 1, 2, 5, 0, \Delta C[1;16] \]

\[\text{ORIG}'s'/='(Menu 2)40,NEW' \]

\[-(1+\text{NewMat ORIG})=0, \text{REFRESH}, \text{RESTART} \]

\[0\text{RC}=\text{CFLAG}=0 \]
Title ORIG

[[26] Scr1: DISP=MakeDisP ○ create edit window
[27] Scr2: DISA=MakeDisA ○ create edit attributes
[28]
[29] ⊳
[31] Cs=2,5,OpDs=MSG0
[32] Cs=4,1,OpDs=DIST ○ column labels
[33] Cs=4,3,OpDs=DISB ○ column formats
[34] Cs=4,2,OpDs=DISL,OpCs=7,2,0,OpDs=ΔC[1;16] ○ row labels
[35] Cs=7,8,OpDs=DISA ○ edit window attributes
[36] Cs=2,8,OpDs=DISP ○ edit window
[37] ShowCell ○ Highlight cell
[38] ○ Wait for and evaluate key strokes
[39] ○
[40] ○
[41] Key:-(p@ktyp)<PRESS>Δktyp<CHR>-2↑Ds,OpCs=-3,1>pANY
[42] -<PRESS>Δkey
[43] ○
[44] CF1:->REFRESH ○ Rebuild screen
[45] ○
[46] F1:->SCREEN,Help ○ Help
[47] ○
[48] F8:->(27=↑FindTxt→FindTxt Input 'Search for...'')pSCREEN ○ Search
[50] (K L)→ΔAR ΔAC
[51] F81:-(ΔMC>→L+1)pF83
[52] -<ΔMR<K=K+L=1>pF83
[53] F82:-(v/FindTxt@α(' ' 'FromDays')[1+ΔMP[3;L]],'MAT[K,L]')↓F81
[54] (ΔAR ΔAC)=K L
[55] ΔCO=ΔCF[(ΔHC2(+/ΔMP[1 2;ΔAC]])-ΔMP[1]];↓1
[56] -RESTART,ΔRO→ΔRO[ΔAR+ΔUR→ΔSR=4
[57] F83:→SCREEN,OpCs=11,1,OpCs=2,5,OpDs=' Not found: ',FindTxt
[58] ○
[59] CF9: Cs=2,6,OpDs=ΔK→MISSAN ○ Chg MISSAN
[60] -(27=↑N→1 Input 'Enter new MISSING VALUE code')pSCREEN
[61] '-<CF9' ▽EA 'MISSAN→N'
[62] MAT[(K=′MAT')/<ΔMP'],MAT]=MISSAN
[63] MAT=(ΔMR,ΔMC)pMAT
[64] ○-REFRESH
[65] CF9:→CF9,OpCs=11,1,OpCs=2,5,OpDs='MISSING VALUE must be numeric'
[66] ○
[67] CF4:→Command↓SCREEN,REFRESH ○ APL command
[68] ○
[69] F5:=(Menu l)↓SCREEN,RESTART ○ Statistics menu
[70] ○
[71] F7:→Scr1,InsRow ○ Insert row
[72] SF7:→InsCol↓SCREEN,Scr1 ○ Insert column
[73] ○
[74] F9:=(CopyMove i)↓SCREEN,Scr1 ○ Copy area
[75] SF9:=(CopyMove o)↓SCREEN,Scr1 ○ Move area
[76] ○
[77] F10:=(p@ktyp)→K←(ΔMR@ΔMC≥B)/ΔMR→/′F101,K=ΔAR′ ○ Delete rows
[78] -(GetYN 'Delete marked rows')↓SCREEN
[79] -F102,p@UL[1]=;''
[80] F101:=(GetYN 'Delete current row')↓SCREEN

69
[81] F102: \((1 + \Delta MR = k)\)' Scr0, DelRow K' 'SCREEN'
[82] α
[83] SF10: \((\Delta 0 = K - (\Lambda / A \Delta M = 8) / \Lambda A M) / -SF101, K - , \Delta AC'
[84] - (GetYN 'Delete marked columns') 'SCREEN
[85] α
[86] SF101: - (GetYN 'Delete current column') 'SCREEN
[87] SF102: \((1 + \Delta MC = k)\)' Scr0, DelCol K' 'SCREEN'
[88] α
[89] Sh1: - (High 1) 'SCREEN, Scr2
[90] Shb: - (High 2) 'SCREEN, Scr2
[91] Sh: - (High 3) 'SCREEN, Scr2
[92] Shc: - (High 4) 'SCREEN, Scr2
[93] Shu: - (High 5) 'SCREEN, Scr2
[94] Shs: - Shadow 'RESTART, REFRESH
[95] α
[96] CFl: Scr2, Mark 1
[97] CFl: Scr2, Mark 2
[98] CFl: Scr2, Mark 3
[99] CFl: Scr2, Mark 4
[100] CFl: Scr2, Mark 5
[101] CFl: Rotate 'RESTART, REFRESH
[102] α
[103] F2: - SCREEN, CFLAG = 0* Save Mat ORIG
[104] SF2: - SCREEN, CFLAG = 0* Save Mat '
[105] F3: - Quit 'SCREEN, RC = 0
[106] F4: - (RC = Save Mat ORIG) 'SCREEN, 0
[107] α
[108] CF2: - (Menu 2) 'Scr1, RESTART
[109] α
[110] CF10: - Scr1, Menu 3
[111] α
[112] CF3: - Get Block 'SCREEN, REFRESH
[113] α
[114] SF3: - (27 = 1*N-GetName '') 'SCREEN
[115] - (1 = K-CompBlock') 'SF32
[116] - 'SF31' \[EA 'AN', ' ' + CompBlock''
[117] - 'SCREEN
[118] SF31: SF3, OpCs=11,1,0,pCs=2,5,0pDs='Unable to save as ',N
[119] SF32: 'SCREEN, OpCs=11,1,0,pCs=2,5,0pDs='Nothing to save'
[120] α
[121] SF4: - (New Mat '') 'SCREEN, NEW, NEW
[122] α
[123] ANY: - (0 GetEntry \[AF 1*CHR] 'SCREEN, RESTART
[124] Ret: - (\(\Delta AR > \Delta MR \lor \Delta AC > \Delta MC\)) \(\Delta AR\)
[125] MTr=MAT[\(\Delta AR, \Delta AC\)
[126] α
[127] \(\Delta MP[3: \Delta AC = 2]/'N-, FromDays N'
[128] - (0 GetEntry \[N] 'SCREEN, RESTART
[129] α
[130] F6: - Scr1, Bulk
[131] α
[132] SF8: - Recode 'SCREEN, RESTART
[133] α
[134] CF7: - (ToggType \[AC]) 'SCREEN, RESTART
[135] α

70
[0] \textbf{X Ass Y}
[1] \textbf{a}
[2] \textbf{a} Emulate X \textasciitilde Y
[3] \textbf{a}
[4] \textbf{a} \textbf{HAT}[X[1];X[2]] \textasciitilde \textbf{Y}

[0] \textbf{RO-P BackLabel Mmat;R;C;SLR}
[1] \textbf{a}
[2] \textbf{a} Write submatrix \textbf{Mmat} back into \textbf{MAT}[R;C], \textbf{P=R;C; RC: always 1}
[3] \textbf{a} \textbf{First row/column may belong to label vectors}
[4] \textbf{a}
[5] \textbf{Cs=2,5,OpDs='} Working \ldots\textbf{',OpCs=7,5,OpDs=\textbf{DC}[2;18]}
[6] \textbf{SLR='}
[7] \textbf{(R C)-P}
[9] \textbf{(~(\textbf{\Delta UC=6} \textbf{OpA2}}}
[10] \textbf{(SLR \textbf{\&LS)=(11SLR)(11SLR})}
[14] \textbf{MAT[R;C]=Mmat}
[15] \textbf{RC=CFLAG-1}

[0] \textbf{RO-Bulk;S}
[1] \textbf{a}
[2] \textbf{a} Bulk entry mode. Enter new values into successive fields,
[3] \textbf{a} creating new rows/columns if necessary. RC dummy
[4] \textbf{a}
[5] \textbf{S=0}
[6] \textbf{Cs=11,1,OpCs=2,5,OpDs='Row- or columnwise (R/C) ?'}
[7] \textbf{~(\textbf{\text{	extbackslash /67 99 82 114#K=11Ds,OpCs=3,1})/\textbackslash LC}} \hspace{1cm} \textbf{a get answer}
[8] \textbf{~(67 99 82 114=K)/\textbackslash 21,\textbackslash 21,\textbackslash 11,\textbackslash 11}} \hspace{1cm} \textbf{a cols=\textbackslash 11, rows=\textbackslash 21}
[9] \textbf{a}
[10] \textbf{Rowwise}
[11] \textbf{a}
[12] \textbf{\Delta 11:RC=\textbackslash 1C=\textbackslash 1AC-InsRow} \hspace{1cm} \textbf{a Insert empty row, go to column 1}
[13] \textbf{\Delta 12:Cs=4,3,OpDs=\textbackslash 1S=\textbackslash 1B=\textbackslash 16=\textbackslash 1HorShift} \hspace{1cm} \textbf{a Adjust display}
[14] \textbf{\Delta 13:Cs=7,8,OpDs=\textbackslash 1S=\textbackslash 1A=\textbackslash 1S=\textbackslash 1A+MakeDisA}
[15] \textbf{Cs=2,8,OpDs=Disp-MakeDisP}
[16] \textbf{ShowCell}
[17] \textbf{~(GetEntry '})\textbackslash 214} \hspace{1cm} \textbf{a Get new value}
[18] \textbf{~(\textbf{\textbackslash 1M0=\textbackslash 1AC=\textbackslash 1AC+1})/'\textbackslash 111,\textbf{ARO=\textbackslash 1RO=\textbackslash 1RO[\textbackslash 1UR=\textbackslash 1SR-4]+\textbf{AR-\textbf{AR+1}}}} \hspace{1cm} \textbf{a New line}
[19] \textbf{~(\textbf{\textbackslash 1OC=\textbackslash 1CD=\textbackslash 1CD[\textbackslash 11=\textbackslash 1SC-\textbackslash 1UC\geq\textbackslash 1MP[1;\textbackslash 1AC+1]-\textbf{MP[1;]})\textbackslash 11)}\textbackslash 12,\textbackslash 13} \hspace{1cm} \textbf{a Next cell}
[20] \textbf{\Delta 14:=(\textbf{\textbackslash 1AC+1})'/\textbf{\textbackslash WA=DelRow AR'}} \hspace{1cm} \textbf{a Exit, delete row if empty}
[21] \textbf{~(\textbackslash 130}
[22] \textbf{a}
[23] \textbf{Columnwise}
[24] \textbf{a}
[25] \textbf{\Delta 20:Cs=2,8,OpDs=Disp-MakeDisP}
[26] \textbf{\Delta 21:=(\textbf{RO=\textbackslash 1InsCol})\textbackslash 25} \hspace{1cm} \textbf{a Insert empty col, go to row 1}
[27] \textbf{\Delta 26:AR=\textbackslash 1AR+S=1}
[28] \textbf{\Delta 22:Cs=4,2,OpDs=\textbackslash 1SL=\textbackslash 1VerShift} \hspace{1cm} \textbf{a Adjust display}
[29] \textbf{\Delta 23:Cs=7,8,OpDs=\textbackslash 1A=\textbackslash 1S=\textbackslash 1A+MakeDisA}
Q) (1. GetEntry '1') + Δ2
33) & (ΔMR < ΔAR = ΔAR + 1) / + Δ20, ΔAC = ΔAC + 1' "Get new value
34) - (ΔOR = ΔOR[1 - ΔWR - ΔAR]) + Δ22, Δ23 "New column
35) Δ24: * (ΔAR = 1) / □WA-DelCol ΔAC' "Next cell
36) - Δ30 "Exit, delete column if empty
37) Δ25: - S10
38) (ΔAR ΔAC) - (ΔAR ΔAC) - 1 "Next cell
39) "Update the matrix
40) Δ30: Refresh "Refresh
41) DISB-WorShift "WorShift

[0] U=D CHISQ X; S; U; C1; C2; C3; N; V "Original program by Prof. H. Larson; modified for APL2
[1] "12/3/86 Accurate and fast evaluation of the cdf for the Chi Square cdf,
[2] "at vector X, D df. For D = 1 or 2, the normal (GAUS) and exponential
[3] "distributions are used, respectively. For D>2 and odd, the Lau sum,
[4] "Applied Statistics, v29, 1980, p113, algorithm 147, is used, which ap-
[5] "pears to be the same as Abramowitz and Stegun, p941, 26.4.6. For D>2 and
[6] "even, Abramowitz & Stegun, p941, 26.4.5, is used selectively, depending
[7] "on D and /X; for certain combinations the Lau sum is again used.
[8] "on D and /X; for certain combinations the Lau sum is again used.
[9] "
[10] - (D=1 2)/Δ1, Δ2 "-(0=1 2)/Al,A2
[11] S= (X-D)+(2*D)*0.5 "S<-(X-D)-K2*D)*0.5
[12] U= (p,X) "Imp.JDpl
[13] C1=-(6.9*D+0.44) "Cl-(r6.9xD*0.44)
[14] C2=((/S)<=0)*(/(D<=70),D>70)/5 7 "C2«-((C/S)<0)x((D<70),D>70)/5 7
[15] C3=((/S)>0)*[/(D<=200),(D>200)]/2.5 3.3x≡D "C3-((r/S)>0)x[_((D<200),D>200)/2.5 3.3x≡D
[16] - (2|D)/Odd "-(2|D)/Odd
[17] -(N=C1+[((/S)*((C3+C2))<1+D+2)*V(D<=208))/Even "->(((tf-Cl+ |"(T/S)x(C3+C2))<-1+D-2)v(D>208))/£ven
[18] -0,pU=1-(-X+2)+(1/(X+2))o.*+.2*(D-2)+2+X/(p,X)o.*2*(D-2)+2 "-0,pU-l-(*-X-2)xl++/((,X)°.*x(D-2)-2)\((Pj
[19] Odd= N=C1+[(/S)*((C2+C3)) "Odd:N=C1+[(/S)*((C2+C3)
[20] V= -(*-X+2)x*/x\1,(X+2)° .+(D+2)+N[20 "V*(.*-X*2)**/*\l
[21] -0,pU-Vx((2*X+O1)*0.5)*x*/X° .+1+2x*(D-1)+2 "-0,pU-,Vxx/(X+2)° .+.2D+2
[22] Even: V= -(*-X+2)x*/x\1,(X+2)° .+(D+2)+N[20 "-0,pU-,Vxx/(X+2)° .+.2D+2
[23] "0,pU-,Vxx/(X+2)° .+.2D+2
[24] Δ1:=0,pU-=1+2*GAUSS X*0.5 "Δ1:=0,pU-=1+2*GAUSS X*0.5
[25] Δ2:=U-1-*X+2 "Δ2:=U-1-*X+2

[0] CLEAN "CLEAN
[1] "Cleanup workspace
[3] "
[4] "
[5] "1 Erase all functions and variables which ARE part of UEdit'
[6] "2 Erase all functions and variables which are NOT part of UEdit'
[7] "
[8] "Type anything else to abort'
[9] "
[10] "Your choice: ' "'-Δ3' □EA '-(1 2=Δ14[14]),1)/Δ1,Δ2,Δ3'
[12] "
[13] Δ₁₄:EX>Δnl₃
[14] -O,EX>Δnl₂
[15] a
[16] Δ₂₄:EX>ΔEx{(Dbc[c][2][NL 2]~Δn₁₂
[17] -O,EX(Dbc[c][2] [NL 3]~Δn₁₃
[18] a
[19] Δ₃₃:→' Aborted'

[0] CSVprep I;ROW;C
[1] a
[2] δ Create CSV vector from matrix/label vector HMAT[I;], enclose
[3] δ elements containing commas IN a, replace ' by ' - , and append
[4] δ vector as nested element to OUTMAT
[5] a
[7] ROW[(C=‘a’,’ROW[O-‘v’,”=ROW=HMAT[I;]/) nº='HMAT','a'
[8] ROW[‘=ROW’]/0=ROW=1c’,’‘=ROW]’=’
[9] OUTMAT-OUTMAT,§ROW

[0] ChgType COL;I;C
[1] a
[2] δ Try to make column label numeric, otherwise change matrix column
[4] a
[5] ‘ ’ δEA ‘-0,6LR[COL]=&COL>6LR’
[6] δWA=’C’ ToggType COL
[7] δ NoNum=NoNum, COL

[0] ClearUL
[1] a
[2] δ Display 'upper left screen corner'
[3] a
[4] Cs=1,10,OpDs=1,1,‘1+ΔUR,ΔUC),2,ΔC[1;16]
[5] Cs=4,10,OpDs=‘(ΔUC+4)p’,’)=ΔLS
[6] Cs=1,10,OpDs=1,1,1,3,2,ΔC[2;16]
[7] Cs=4,10,OpDs=ΔUL

[0] RC=Command;R;R1;C;CMD
[1] a
[2] a Enter and execute user's APL commands; RC: 1 - executed, 0 - escape
[3] a
[4] δ CMD=’
[6] CMD=CMD Input 'Enter APL commands (α = ’,ORIG,R’, ω = tagged area)'
[7] ±(27=1ηCMD)pRC-0
[8] a
[9] Cs=2,5,OpDs=’ Executing ...’,0pCs=7,5,OpDs=ΔC[2;18]
[10] CMD=(\CHMDi')/CMD a Drop leading blanks
[11] CMD=(αMAT,R)Replace CMD a Replace α
[12] -(‘ω’∈CMD)1Δ2 a Check for ω
[13] -(0=1ηpR-1+(pΔMA)T-1+(8≤,ΔMA)/sp,ΔMA)pΔE a area marked?
14: \(R = c^{-1}R_1c[1]R \)
15: \(CMD = CMD[1], (\omega(R > cMAT)) \) Replace \(1 \) CMD
16: \(\omega'(CMD[1])p \)
17: \(\omega \rightarrow \) Normal execution
18: Work around the missing 'selective assignment' feature
19: \(' - \Delta E' \) DGA 'CMD' \((1 + / CMD^+ -') \) CMD
20: \(' - \Delta E' \) DGA 'R1 Ass' CMD
21: \(CMD = (1 + / CMD^+ -') \) CMD
22: \(R1 Ass' CMD \)
23: \(\Delta 3 \)
24: Normal execution
25: \(\Delta 2: ' - \Delta E' \) DGA 'aCMD'
26: \(\Delta 2: aCMD \)
27: \(\Delta 3: -aOC-aOR+10, CFLAG - RC - 1 \)
28: \(\Delta 3: -aOC-aOR+10, CFLAG - RC - 1 \)
29: \(\Delta 3: -aOC-aOR+10, CFLAG - RC - 1 \)
30: \(\Delta E: -\Delta 1, 0pCs = 11, 1, 0pCs = 2, 5, 0pDs = ' \) Invalid command'
[16] (~FLAG)'/K-K[(tmpK)-9A]'
[18] ~FLAG)+11
[19] DELMA[A ;]=8 \Delta MA[A;]
[20] DDA[A ;]= (-1+2+ΔMP[2 ;])/ΔAF ΔC[1 ; 1+ΔMA[A;]]
[21] Δ11: ΔMR-tpK
[22] DISL-VerShift
[23] ~0, RO-CFLAG-1
[24] α
[25] Δ2: K= ((ΔAC-1)→ΔMC), C, (ΔAC-1)→ΔMC α Copy/move columns
[26] A*C (pC) x 2ΔAC
[27] (~FLAG) '/' K-K[(tmpK)-9A]'
[28] (MAT OM MA ΔLR)-(MAT[K])(OMA[K])(LR[K])
[29] (ΔDM OD DA CL ΔCT)-(ΔDM[R])(ODA[R])(CL[R])(ΔCT[R =GC^-K])
[30] ΔMP-ΔMP[K ;], 0,3,0,0,0
[31] ΔMP[1 ;]=0, Δ1+2+ΔMP[2 ;]
[32] +FLAG+Δ21
[33] ΔMA[A;]=8 \ΔMA[A;]
[34] DDA[;GC^-A]= (-2+ΔMP[2;A])/ΔAF ΔC[1;1+ΔMA[A;]]
[36] ΔCL[RO-CFLAG-1 ;]-ε(2+ΔMP[2 ;])→(Δ-MAC)
[37] DISB=HorShift

[0] RO-Cross; RCM; ORCH; COL; MSG; PAR; Ind1; Ind2; Uni1; Uni2; OUni1; OUni2; RII; RATT; ΔSP; WM; CM
[1] α
[2] α Crosstabulation of two matrix columns; RC: 1 - ok, 0 - escape
[3] α
[4] COL-'
[5] Δ1:-(27=11COL-COL Input 'Enter column numbers')pRO-0
[6] 'ΔE1' ΔE ' (2≠pCOL-ΔCOL)pΔE2' α must be numeric, 2 columns
[7] (ΔE/ΔCOL<ΔMC)ΔE3 α columns must exist
[8] α
[9] PAR-askΔpar"COL α Get column parameters
[10] α
[12] Δ2:- (27=11I-I Input 'conditioning columns ... ? (ENTER if none)')p0
[14] -(27=11RI-GetCond I)p0 α get condition vector
[15] -(1=1RI)pΔ2
[16] -(0= pCM-RI[MAT[]; COL])pΔE4 α extract matching elts
[17] α
[18] Δ3: Cs= 2,5,0pDx" α Crosstabulating '...', 0pCs=7,5,0pDx=ΔC[2;18]
[19] (Ind1 Uni1)-(COL[])(PAR[])MakeIndex CM[;1] α get index/label
[20] (Ind2 Uni2)-(COL[2])(PAR[2])MakeIndex CM[;2] α vectors
[21] RI-RI[ARI-Ind2+ (Ind1-1)xpl/ni2
[22] RCM -(pUni1), pUni2)pRI freqAcnt(pUni1)pUni2 α RCM - cross matrix
[23] α Save values for pooling
[24] ORCH=RCM
[25] OUni1=Uni1
[26] OUni2=Uni2
[27] α Create and edit cross mat
[28] Δ(MH- (getTitle COL[1]), ' ', (getTitle COL[2]), '-CtPrep RCM'
[29] ΔMA-USER MM

76
30
31
32
33
34
35
36
37

0.

31

32

33

34

35

36

37

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

4

5

6

7

8

9

10

11

12

Delete rows indexed by \(N \); RC dummy

- \(C = 2,5,0P^D = -' \) Working ...
- \(0P^D = 7,5,0P^D = 8C[2;18] \)

\[
\begin{align*}
\Delta & \Delta A \Delta D M N \text{MAT} = (\Delta L C) (\Delta A \Delta D M N) ((\Delta A \Delta D M N) ((\Delta A \Delta D M N) (\text{MAT} N \text{MAT} N))
\end{align*}
\]

- \(R C = -\Delta A \Delta A R \text{tp} N \)

-(DISL-VerShift)

-\(W \text{-DisCol}\ N \)

- \(0 \text{W-DisCol}\ N \)

- \(0 \text{Update width entry in parameter matrix AMP} \)

- \(W \text{-col width} \)

- \(0 \text{C,COL column number, converted column (global)} \)

- \(W \text{-col width} \)

- \(0 \text{Character column} \)

- \(\Delta A \text{-\text{col} \(-2 \text{,} 5 \text{,} 0 \text{pDs} \text{-}' \) \text{Crosstabulating} ...',0P^D = 7,5,0P^D = 8C[2;18] \)

- \(0 \text{Character column} \)

- \(0 \text{numeric column} \)

- \(\text{date column} \)

- \(0 \text{column width} \)

- \(\text{Colum moving} \)

- \(0 \text{Colum moving} \)

- \(0 \text{Convert matrix column to character type for display} \)

- \(0 \text{Crosstabulation of multiple matrix columns; RC: 1 - ok, 0 - escape} \)

- \(0 \text{Get classific. parameters} \)

- \(0 \text{Display tables, use Alt-Cursor for scrolling} \)

- (DISL-VerShift)

- (DISL-VerShift)
28 DFLAG-USER MM
29 LR[C1;C2]<-RCM
30 LU1[C1;C2]<-Uni1
31 LU2[C1;C2]<-Uni2
32 -(DFLAG=0 1 -1 2 -2)/0,ΔRi,ΔLe,ΔDo,ΔUp
33 ΔRi:Δ6,C2-TUT[C2+1
34 ΔLe:Δ6,C2=C1[C2-1
35 ΔDo:Δ6,C1+C2[C1+1
36 ΔUp:Δ6,C1-1[C1-1
37 ⊕ Error handling
38 ΔE1:ΔEO,MSG-'Input must be a numeric vector'
39 ΔE2:ΔEO,MSG-'Specify more than 2 columns, please'
40 ΔE3:ΔEO,MSG-'Non existing column number specified'
41 ΔEO:-Δ1,OpCs-11,1,OpCs-2,5,OpDs-MSG

[0] Z-Dtb X
[1] ⊕ Drop trailing blanks from an array X
[2] ⊕ Z-((-ppX)↑/(1/p2)↑Z-,1-(X=' ')1)↓X

[0] RC-EdLab;W;N
[1] ⊕ Edit column labels in bulk mode; RC dummy
[3] ⊕ Δ1:DISP-HorShift
[5] Cs=2,8,OpDs=DISP-MakeDisP
[6] N=ΔUC+ΔMP [1;ΔAC]-ΔMP [1;ΔCO]
[7] Cs=1,1,OpDs=1,1,2,(1+8SC-N)|ΔMP [2;ΔAC],2,ΔC[1;16]
[8] Cs=7,1,OpDs=ΔC[2;16]

[0] RO-FreqTab;CLR;COL;I;UNI;R;MSG;ELab;PAR;CUM;REL;ΔSP;RATT;FM;MM;RI
[1] ⊕ Frequency counts on a specified matrix column
[3] ⊕ (27=t1N-(5AC>5LR)Input 'Enter new label for column ',5AC)↓p2
[5] 5ΔLCL[2;5MP[1;5AC]+w]+(w=PlaceEntry ΔAC)↑N
[6] ΔW(2+5AC-5AC+1)/'→Δ1,ΔCD-ΔCO(ΔWC+(5MP[1 2;ΔAC])-ΔMP[1;])↑1'
[7] ΔAC-ΔAC-1
[8] Δ2:*ΔAC#1)\'CFLAG-1'

[0] RO-FreqTab;CLR;COL;I;UNI;R;MSG;ELab;PAR;CUM;REL;ΔSP;RATT;FM;MM;RI
[1] ⊕ Conditional freq tabs ?
11] I¬''
12] Δ1→(27=1tI-I Input 'conditioning columns ... ? (ENTER if none')p0
13] &((Is, ' ')→Δ2,OpI-MAT[][COL]') a Empty: no condition
14] →(27=1tRI-GetCond I)p0 a Get condition
15] →("(1=1tRI)p1
16] →(0=RI-MAT[][COL])pΔE1 a Extract matching elements
17] a
18] a Now I is the vector to perform the frequency count on
19] a PAR holds the classification parameters if I is numeric
20] a
22] (RI+)(COL PAR)MakeIndex I a create index vector and labels
23] CUM+\R+R[AR]freq≈ntpUNI a cumulative/distinct frequencies
24] REL R+R a relative frequencies
25] a
26] a Prepare matrix display FM, and call USER recursive
27] FM-1 5p(' ')('Freq')('Rel.')('Cum.')('')
28] FM-FM, [1][b(5,pR)pUNI,R,REL,CUM,(R×40≥[R]+[R]<40<[R]×40+[R])p-']'
31] RATT-(-1+pFM)p0
32] ΔSP-2 4p1,1,0,99,2,99,99
33] &MM-'FR',GetTitle COL),'-FM'
34] [WA USER MM
35] -O,RC-1
36] a
37] a Error handling
38] ΔE1→Δ1,OpCs=11,1,OpCs=2,5,OpDs='Nothing left to count !?!?'

[0] YMD-FromDays DAYS;D;M;Y;D1;Y1;I;W
[1] a
[2] a Convert days since 02/29/0000 to date array 'MM-DD-YYYY' or similar
[3] a format according to DATE; sets MISSB to ''
[4] a
[5] DAYS=W-(MISSB=N=DAYS)/upDAYS-, [DAYS]=1
[6] D1=DAYS-(365×Y)←(Y=[DAYS+365.2425])*+.4 100 400
[7] →(xpI-=(D1366)/xpD1)Δ1
[8] D1[I]-DAYS[I]-(365×Y1)←(Y1-Y[I]+Y[I]-1)+.4 100 400
[9] Δ1→(xpI-=(D150)/xpD1)Δ2
[10] D1[I]-DAYS[I]-(365×Y1)←(Y1-Y[I]+Y[I]-1)+.4 100 400
[12] D-D1-306 337 0 31 61 92 122 153 184 214 245 275][M]
[13] YMD-(-11ε((3,1,1)[DATE]p-'0'),x'6-'x((Y+M≤2),M,[1.5]D)[;DATE]
[14] YMD[W;]-''

[0] Z-GAUSS X;A;B;C;D
[1] a Orig. program by Prof. H. Larson; modified for APL2
[2] a Evaluates normal cdf at vector X. For |X<4, 26.2.11 in Abramovitz and
[3] a Stegun, p. 932, is used. For large X, the continued fraction in Wall,
[4] a p. 357, 92.11, is used at depth 16. Appears to give at least 13 signi-
[6] a
[7] -((p, A=(|X<4)/Z-X-2, X)=p, X)/1+LC
\[B - \frac{1}{pX} \]
\[\frac{1}{pX} = \frac{1}{pX} \]
\[A = -0.5 + \left((pA) \times 0.5 \right) x \left((pB) \times 0.5 \right) x \left((pC) \times 0.5 \right) x \]
\[\frac{1}{pX} = \frac{1}{pX} \]
\[BIG = C-16589790 56295540 52050600 19934640 3680160 341952 15232 256 \]
\[D = 2027025 32432400 75675600 60540480 21621600 3843840 349440 15360 256 \]
\[B = 1 - (B + 2 \times ((O2) \times B + 2) \times 0.5) \times \left((0.5, B + 2) \times 0.5 \right) \times \left((p, B, 8) \right) - \left((0.5, B + 2) \times 0.5 \right) \times \left((p, B, 9) \right) \]
\[Z[(|X < 4) / \times V] = A \]
\[Z[(|X > 4) / \times V] = B \]

[0] \(R = GC \)

[1] \(R = Amp[1; C] + \times 2 + Amp[2; C] \)

[0] \(RC = GSOut; FILE, COL \)

[1] \(RC = Amp[1; C] + \times 2 + Amp[2; C] \)

[0] \(RC = GetBlock; R; C; N; NMAT, K \)

[1] \(RC = Amp[1; C] + \times 2 + Amp[2; C] \)

[0] \(CMS = 11, 1, 0, pCs = 2, 5, 0pDs = 'No matrix found' \)

[0] \(CMS = 11, 1, 0, pCs = 2, 5, 0pDs = 'Name is already in use' \)

[0] \(CMS = 11, 1, 0, pCs = 2, 5, 0pDs = 'Insert Rows, Columns, Overlay (R/C/O) ?' \)

[0] \(CMS = 2, 5, 0pDs = 'Working ...', 0pCs = 7, 5, 0pDs = Amp[2; 18] \)

[0] \(CMS = 2, 5, 0pDs = 'Insert rows, a vector is considered a 1x(pV) matrix' \)
[16] \(\Delta 2: (R \cdot C) \cdot pN\text{MAT} \Rightarrow \sim (2t1, pN\text{MAT}) \cdot pN\text{MAT} \)
[17] \(\Delta A0=\Delta CD=1 \)
[18] \(\Delta(\Delta MC=\Delta C) \cdot t[2] N\text{MAT} \)
[19] \(\text{TryNum}''(0 \ast 3 \cdot \Delta H[3]) / \Delta C \)
[20] \(\Delta(\Delta MC=\Delta C) \cdot (N\text{MAT} \cdot (C \ast \Delta MC) \cdot t[2] N\text{MAT} \cdot 2, \Delta MP[3]) / (\sim \Delta MC \sim C) \)
[21] \(\Delta 3: \text{MAT} =((\Delta AR-1) \cdot t[1] \text{MAT}),(1) \cdot N\text{MAT},[1](\Delta AR-1) \cdot t[1] \Delta\text{MAT} \)
[22] \(\Delta M-((\Delta AR-1) \cdot t[1] \Delta M)+,[(1 \cdot \Delta MC) \cdot p0),(1)(\Delta AR-1) \cdot t[1] \Delta\text{MAT} \)
[23] \(\sim (\Delta UC=6) \cdot p0 \)
[24] \(\Delta LC=((\Delta AR-1) \cdot t[1] \Delta LC),(Rp''),(\Delta AR-1) \cdot t[1] \Delta LC \)
[25] \(-0 \)
[26] \(0 \)
[27] \(\Delta 6: (R \cdot C) \cdot pN\text{MAT} \Rightarrow (2t, pN\text{MAT}),1 \cdot pN\text{MAT} \)
[28] \(\Delta(\Delta MR=R) \Rightarrow \sim \Delta T, pN\text{MAT}+\Delta MR[1] \cdot N\text{MAT} \)
[29] \(\Delta(\Delta MR=R) \Rightarrow (\sim (\Delta MR-R), C) \cdot p(MISSAN,'',''),(2-\text{Num''N}\text{MAT}[R]),'\)
[30] \(\Delta 7: \text{MAT} =((\Delta AC-1) \cdot t[2] \text{MAT}),(2) \cdot N\text{MAT},[2](\Delta AC-1) \cdot t[2] \text{MAT} \)
[31] \(\Delta M-((\Delta AC-1) \cdot t[2] \Delta M)+,(2) \cdot (\sim \Delta MR, C) \cdot p0),(2)(\Delta AC-1) \cdot t[2] \Delta\text{MAT} \)
[32] \(\Delta MP-((\Delta AC-1) \cdot t[2] \Delta MP),(2)(\sim (C,5) \cdot p0,0,0,'C'),99),(2)(\Delta AC-1) \cdot t[2] \Delta MP \)
[33] \(\sim (\Delta UC=2) \cdot p0 \)
[34] \(\Delta LR=((\Delta AC-1) \cdot t[1] LR),(\sim (R \cdot C),),(\Delta AC-1) \cdot t[1] LR \)
[35] \(-0 \)
[36] \(0 \)
[37] \(\Delta 8: \Delta\text{MAT} \Rightarrow (\Delta AC-1) \cdot t[1] \Delta\text{MAT},(2) \cdot N\text{MAT} \}
[38] \(\Delta 0: (R \cdot C) \cdot pN\text{MAT} \Rightarrow (2t1, pN\text{MAT}),(1) \cdot pN\text{MAT} \)
[39] \(\Delta(\Delta MR=\Delta AR) \Rightarrow (N\text{MAT} \cdot \Delta MR[1]) \cdot N\text{MAT} \)
[40] \(\Delta(\Delta MR=\Delta AR) \Rightarrow (\sim (\Delta MR-R), C) \cdot p(MISSAN,'',''),(2-\text{Num''N}\text{MAT}[R]),'\)
[41] \(\Delta(\Delta MR=\Delta AR) \Rightarrow (\sim (\Delta MR-R), C) \cdot p(MISSAN,'',''),(2-\text{Num''N}\text{MAT}[R]),'\)
[42] \(\text{TryNum}''(\Delta AC-1) \cdot t[10] \cdot \Delta MR[3]) / ((\Delta AC-1) \cdot t[10] \cdot \Delta MR[3]) \cdot \Delta AC+C-1 \)
[43] \(\text{MAT} =((\Delta AC-1) \cdot t[10] \cdot \Delta MR[3]) / ((\Delta AC-1) \cdot t[10] \cdot \Delta MR[3]) \cdot \Delta AC+C-1 \)

[0] Col-GetColor
[1] \(\sim 0 \)
[2] \(0 \)
[3] \(\Delta 1: \text{Col}'' \) Input 'Enter color level (0 ... 6)'
[4] \(\Delta(2=11)\text{Col}'' / (\sim 0 \text{Col}'' = 0) \)
[5] \(\sim 0 \text{EA} \) NO ' (0 \# \text{ppCol} - \text{Col}) p\Delta E' \)
[6] \(\sim 0 \text{Col0} = 0,6) \cdot p0 \)
[7] \(0 \text{Col0} = 0,6) \cdot p0 \)
[8] \(0 \text{Col0} = 0,6) \cdot p0 \)
[9] \(\Delta 0: \Delta 1,0 \text{ppCs} = 11,1,0 \text{ppCs} = 2,5,0 \text{ppDs} = ' \text{Input must be } \in [0,6]' \)

[0] R-GetCond I; MSG; K; L; N; V
[1] \(\sim 0 \)
[2] \(0 \)
[3] \(\Delta 2: \text{Get color attribute for row or column}, \text{Col} = 0 \text{ if escape} \)
[4] \(\Delta(2=11)\text{Col}'' / (\sim 0 \text{Col}'' = 0) \)
[5] \(\sim 0 \text{EA} \) NO ' (0 \# \text{ppCol} - \text{Col}) p\Delta E' \)
[6] \(\sim 0 \text{Col0} = 0,6) \cdot p0 \)
[7] \(0 \text{Col0} = 0,6) \cdot p0 \)
[8] \(0 \text{Col0} = 0,6) \cdot p0 \)
[9] \(\Delta 0: \Delta 1,0 \text{ppCs} = 11,1,0 \text{ppCs} = 2,5,0 \text{ppDs} = ' \text{Input must be } \in [0,6]' \)

[0] R-GetCond I; MSG; K; L; N; V
[1] \(\sim 0 \)
[2] \(0 \)
[3] \(\Delta 2: \text{Get conditioning vector for FreqTabs, CrossTabs}, \text{i.e.,} \)
[4] \(\Delta(2=11)\text{Col}'' / (\sim 0 \text{Col}'' = 0) \)
[5] \(\sim 0 \text{EA} \) NO ' (0 \# \text{ppCol} - \text{Col}) p\Delta E' \)
[6] \(\sim 0 \text{Col0} = 0,6) \cdot p0 \)
[7] \(0 \text{Col0} = 0,6) \cdot p0 \)
[8] \(0 \text{Col0} = 0,6) \cdot p0 \)
[9] \(\Delta 0: \Delta 1,0 \text{ppCs} = 11,1,0 \text{ppCs} = 2,5,0 \text{ppDs} = ' \text{Input must be } \in [0,6]' \)

[0] R-GetCond I; MSG; K; L; N; V
[1] \(\sim 0 \)
[2] \(0 \)
[3] \(\Delta 2: \text{Get conditioning vector for FreqTabs, CrossTabs}, \text{i.e.,} \)
[4] \(\Delta(2=11)\text{Col}'' / (\sim 0 \text{Col}'' = 0) \)
[5] \(\sim 0 \text{EA} \) NO ' (0 \# \text{ppCol} - \text{Col}) p\Delta E' \)
[6] \(\sim 0 \text{Col0} = 0,6) \cdot p0 \)
[7] \(0 \text{Col0} = 0,6) \cdot p0 \)
[8] \(0 \text{Col0} = 0,6) \cdot p0 \)
[9] \(\Delta 0: \Delta 1,0 \text{ppCs} = 11,1,0 \text{ppCs} = 2,5,0 \text{ppDs} = ' \text{Input must be } \in [0,6]' \)
[13] \((\lambda/(K\epsilon\Delta MC)\Delta E2\)

[14] \(L[N/\text{sp}1]-'1'\)

[15] \(L+(\text{N}0,-'14)W)/L\)

[16] \('-(\Delta E1)\Delta EA-\((\lambda/0 \text{#}1\text{#}0)p\Delta E1'\)

[17] \(\alpha\)

[18] \((I \text{R})-1\text{ } 27\)

[19] \(\Delta 1:-((R=11^V-\text{GetCrit } K[I])p0\)

[20] \(L[Lr'1']-c'(',(V),')'\)

[21] \(-(pG)\geq I-I+1)p\Delta 1\)

[22] \(-0,R-\epsilon\Delta E\)

[23] \(\alpha\)

[24] \(\Delta E1:-\Delta E0,\text{MSG}='\text{Syntax error'}\)

[25] \(\Delta E2:MSG='\text{Invalid column numbers specified'}\)

[26] \(\Delta E0:Cs=11,1,0pCs=2,5,0pDs=\text{MSG}\)

[27] \(R=1\)

[0] \(R-\text{GetCrit } I;C;V;NOT;MSG\)

[1] \(\alpha\)

[2] \(\alpha\text{ Get conditioning criteria for column I}\)

[3] \(\alpha\ R-27=\text{Escape pressed, cancel operation}\)

[4] \(\alpha\text{ else boolean vector indicating matrix rows to choose}\)

[5] \(\alpha\)

[6] \('V'\)

[7] \(\Delta 1:-((R=27)=11^V-V) '\text{Input 'Enter conditional criteria for column '}\)'p0\)

[8] \(\Delta (V_m',')'-'0,R-\Delta HRp1'\)

[9] \(\text{Replace ' by }\alpha,\text{ parse vector, delete}\)

[10] \(V-Dtb''\text{Parse } V)'',''\)

[11] \(\alpha\)

[12] \(R-\Delta HRp\text{NOT}=0\)

[13] \(\Delta (V[1]=c,':')/-(0=pV-(\text{NOT}=11^V)p0'\)

[14] \(\alpha\)

[15] \(O=\text{MAT}[;1]\)

[16] \(-12=\text{AMP}[3;1])/\Delta 4,\Delta 3\)

[17] \(\alpha\)

[18] \(-0,R-\text{NOT}=\text{CE}\text{V}\)

[19] \(\alpha\)

[20] \(\Delta 3:-((v=0=V_{=\text{EToDays} } V)\Delta \Delta 5,\Delta E3\)

[21] \(\alpha\)

[22] \(\Delta 4:ax((,')=\text{EEV})'/-\Delta 5, V=2p\text{MISS}A'\)

[23] \('-(\Delta E1)\Delta EA 'V='\alpha'\text{V}'\)

[24] \(\Delta 5:-(2 lpV)p\Delta 2\)

[25] \(V-((0.5*pV),2)pV\)

[26] \(-0,R-\text{NOT}=\text{v\text{V}[;1]=0=V[;2]=0=0}\text{C}\text{V[;2]=0=0C}\)

[27] \(\alpha\)

[28] \(\Delta E1:-\Delta E0,\text{MSG}='\text{Limits must be numerical'}\)

[29] \(\Delta E2:-\Delta E0,\text{MSG}='\text{Invalid number of arguments'}\)

[30] \(\Delta E3:MSG='\text{Invalid date specified'}\)

[31] \(\Delta E0:-\Delta 1,0pCs=11,1,0pCs=2,5,0pDs=\text{MSG}\)

83
[0] RC-T GetEntry N;K;L;R
[1] a
[2] a Enter new value for active cell
[4] a 1 - bulk mode entry 1 - ok
[5] a
[6] Δ1:=(27=1?N=N Input 'Enter new value for active cell')pRC<0
[7] a
[8] N=('\alpha\mathcal{MAT'}[',('\&\Delta R)',',',('\&\Delta C)',',')]Replace N
[9] a replace α
[10] -(0=1+pR-1+(p\&\Delta MA)*1+(\&\Delta MA)/p,\&\Delta MA)p\Delta 2
[11] N=('\omega(\langle[c(1)]\rangle<\mathcal{MAT}'))Replace N
[12] a
[13] Δ2:=(\&\Delta R>\&\Delta M)/'\&\mathcal{W}A-\text{InsRow}'
[14] a add new row ?
[15] Δ4:=(N=,' ')/'-\&\Delta 6,\mathcal{MAT}[\&\Delta AR;\&\Delta AC]-\text{MISS}ΔN'
[16] a numeric input
[17] Δ5:=(N=,' ')/'-\&\Delta 6,\mathcal{MAT}[\&\Delta AR;\&\Delta AC]-\text{MISS}ΔN'
[18] a date input
[19] -(0=N-ToDays N)pAE
[20] Δ6:-A1
[21] a truncate
[22] Δ7:=(I-1)^T)pRC<0
[23] a if bulk
[24] -(PpP0,p\&E)
[25] a else
[26] Δ8:=(0,RC-\text{CFLAG}=1)
[27] a adjust
[28] ΔE:-A1,0pCs=11,1,0pCs=2,5,OpDs='Invalid input'
[29] a error

[0] RC-GetFieldType;TYP;DEC;I;T
[1] a
[2] a Get field types of a new matrix
[3] a RC: 1 - ok, 0 - escape
[4] a
[5] T-'
[6] Δ1:T- T Input 'Enter field types (C / D / Nx / Ex / A)'
[7] -(27=(I-1)^T)pRC<0
[8] a
[9] T-Parse T
[10] ΔM-At 0p0
[12] Δ2:=(ParseType I>T)+ΔE
[13] ΔM-At 0p0
[14] ΔM-At 0p0
[15] ΔM-At 0p0
[16] ΔE:-A1,0pCs=11,1,0pCs=2,5,OpDs='Invalid input'
[0] FILE-GetFileName FILE;EC
[1] "
[2] a Get File name for write operations, check for existing file
[3] "
[4] Δ1:≡shareΔE
[5] +(z7≡1†FILE-FILE Input 'Enter DOS file name')pΔ3
[6] +(0¬EC-Δopen FILE,'D')pΔ3
[7] Δclose
[8] +(GetYN 'File already exists, delete it')Δ1
[9] +ΔshareΔE
[10] +(0¬EC-Δdelete FILE)pΔ3
[12] ΔE:Cs-11,1,opCs-2,5,opDs- 'AP210 not active'
[14] Δ3:close

[0] NEW-GetInName
[1] "
[2] a Get name of new imported matrix
[3] "
[4] Δ1:≡(z7≡1†NEW-GetName '')p0
[5] Δ1:≡(z7¬NC NEW)/'-(GetYN NEW,' already exists; overwrite it')Δ1'
[6] 'Δ1,opCs-11,1,opCs-2,5,opDs- 'Invalid name' ΔE '¬NEW,'¬0''

[0] NAME-GetName NAME
[1] "
[2] a NAME='' get and check name of new APL matrix
[3] "
[4] Δ1:≡(z7≡1†NAME-NAME Input 'Enter name of the new APL matrix')p0
[5] Δ2:¬(3¬NC NAME)p0
[6] "
[7] Δ1:≡(z7¬NC NAME)NAME
[8] Δ1:≡(z7¬NC NAME)NAME Input 'Enter name of the new APL matrix'
[9] Δ2:¬(3¬NC NAME)p0
[10] "
[12] '¬Δ1,opCs-11,1,opCs-2,5,opDs-NAME,' is a function'

[0] R-GetTitle C:S
[1] "
[2] a Create title for submatrices
[3] "
[4] +(z7¬ΔLR[C])pΔ1
[5] R-(8pR)+R-ΔLR[C]
[6] +(z7¬ΔAF R[1])ES-(64+246),(96+269,182,247)Δ1
[7] +(z7¬ΔAF R[1])ES-(95,253,47+10)p0
[8] "
[9] Δ1:R-'C',pΔ1
[10] a check for a valid APL object name
[11] a use column number as name
Ask for confirmation with prompt text

RC: 1 - yes, 0 - no

display text

get answer Y/N

set return code

- (Un-)Highlight areas, (RC: 1-changed, 0-escape)

- a cursor on valid field?

- F: 1-field(short), 2-field, 3-block, 4-row, 5-column, 6-unhighlight

- a cursor on valid field?

- a field (short), 2-field, 3-block, 4-row, 5-column, 6-unhighlight

- a cursor on valid field?

- RC-High F;K;R;C

- Un-highlight
25] $\Delta DA = (-1+2+\Delta MP[2;]) / DA F \Delta C[1;1+\Delta MA]$

26] $\Delta UL[3] <- \to$

27] ClearUL

28] RC <- CFLAG + 1 \to HIGHR \to HIGHC - 0

[0] R \to HorShift

[1] \textcircled{a}

[2] \textcircled{a} Adjust column labels, field types/widths, sets DIST, returns DISB

[3] \textcircled{a}

[4] $Cs = 1,1,0pDs = 1,5UC,(\Delta UR-1),\Delta WC,2,\Delta C[1;16] \to$ re-define field

[5] $Cs = 4,1,0pDs = DIST-1,((\Delta UR-1),\Delta WC) \to \Delta MP[1;\Delta OC-\Delta CO] \downarrow [2] \Delta CL \to$ display labels

[6] $Cs = 4,3,0pDs = R \to \Delta SC((\Delta UC-1)p' \to),\Delta MP[1;\Delta CO] \downarrow \Delta CT \to$ display formats

[0] RC \to InCSV; F; IN; R; L; NEW

[1] \textcircled{a}

[2] \textcircled{a} Read comma delimited file (CSV format) into nested APL matrix

[3] \textcircled{a} Fields are expected to be enclosed in double quotes ("\textcircled{a}") if they

[4] \textcircled{a} contain commas. RC: 1 - ok, 0 - escape

[5] \textcircled{a}

[6] \textcircled{a} Quit $\to RC - 0 \to$ Current matrix changed since last save?

[7] F \to

[8] $\to (27 = 1T F = F) \text{ Input 'Enter CSV file name (with path if necessary)'}p0$

[9] $Cs = 2,5,0pDs - ' \to$ Reading 'F',...'p0, pCs = 7,5,0pDs = $\Delta C[2;18]

[10] $\to (0 = pp IN - 3F) p0, pCs = 7,5,0pDs = $\Delta C[1;18]

[11] $\to (27 = 1T NEW - GetInName)p0$

[12] $Cs = (R - 2),5,0pDs - ' \to$ Parsing line 1 of ',%L-pIN \to Parse file

[13] $\text{MAT} - (1, pMAT) pMAT - Parse IN[1] \to$ into nested

[14] $\Delta 3: Cs = 2,5,0pDs - ' \to$ Parsing line ',(XR),' of ',%L \to APL2 matrix

[15] $\to (L \geq R + 1)p \Delta 3, pMAT = MAT, [1] \text{ Parse } IN[R]$

[16] \textcircled{a}

[17] \textcircled{a} (ORIG - NEW),' - MAT \to Save matrix in ws

[18] RC \to 1 \to MakeParam \to Restart session

[19] CFLAG \to 0

[0] RC \to InDOS; F; LEN; INO; R; C; NEW

[1] \textcircled{a}

[2] \textcircled{a} Read DOS file into nested APL matrix

[3] \textcircled{a} RC: 1 - ok, 0 - escape

[4] \textcircled{a}

[5] \textcircled{a} Quit $\to RC - 0 \to$ Current matrix changed since last save?

[6] LEN \to

[7] $\to (27 = 1T F = F) \text{ Input 'Enter DOS file name (with path if necessary)'}p0$

[8] $Cs = 2,5,0pDs - ' \to$ Reading 'F',...'p0, pCs = 7,5,0pDs = $\Delta C[2;18]

[9] $\to (0 = pp IN - 3F) p0, pCs = 7,5,0pDs = $\Delta C[1;18]

[10] $\to (27 = 1T NEW - GetInName)p0$

[11] $\Delta 3: (27 = 1T LEN - LEN) \text{ Input 'Enter field lengths'}p0$

[12] $\text{\textcircled{a} E2} - \text{EA ' - (14pIN) <+/ LEN-\&LEN) \& E3'}$

[13] \textcircled{a}

[14] $\text{MAT - ((R-0) \& pINO = IN), 0) p0}$

[15] $\Delta 4: Cs = 2,5,0pDs - ' \to$ Parsing column ',(XR),' of ',%pLEN

[17] $\to ((pLEN) \geq C + 1)p \Delta 4, pINO = LEN[C] \& [2] \text{ INO}$
18] \(\Delta (\text{ORIG-NEW}), \text{"-MAT}" \)
[19] \(\Delta (\text{ORIG-NEW}), \text{"-MAT"} \)
[20] \(\text{RC} \rightarrow \text{MakeParam} \)
\(\text{Create matrix parameters} \)
[21] \(\text{CFLAG=0} \)
\(\text{Restart session} \)
[22] \a
[23] \a \text{Error handling} \)
[24] \(\Delta E2:=-\Delta 3, pC=11,1, opC=\text{2,5,0D}=\text{"Numeric data only, please"} \)
[25] \(\Delta E3:=-\Delta 3, pC=11,1, opC=\text{2,5,0D}=\text{"Error in field lengths"} \)

\[\text{RO-InitPrt;X;A} \]
\[\text{0} \]
\[\text{1} \]
\[\text{2} \]
\[\text{3} \]
\[\text{4} \]
\[\text{5} \]
\[\text{6} \]
\[\text{7} \]
\[\text{8} \]
\[\text{9} \]
\[\text{10} \]
\[\text{11} \]
\[\text{12} \]
\[\text{13} \]
\[\text{14} \]
\[\text{15} \]
\[\text{16} \]
\[\text{17} \]
\[\text{18} \]
\[\text{19} \]

\[\text{R-CLR Input MSG;C} \]
\[\text{0} \]
\[\text{1} \]
\[\text{2} \]
\[\text{3} \]
\[\text{4} \]
\[\text{5} \]
\[\text{6} \]
\[\text{7} \]
\[\text{8} \]
\[\text{9} \]
\[\text{10} \]
\[\text{11} \]
\[\text{12} \]
\[\text{13} \]
\[\text{14} \]
\[\text{15} \]
\[\text{16} \]
\[\text{17} \]
\[\text{18} \]
0. RC-InsCol; TYP; DEC; C; T; MF; I
1. Insert blank columns before the current column
2. RC: 1 - ok, 0 - escape
3. T-
4. Δ1: T-T Input 'Enter field types (C / D / Nx / Ex / A)'
5. -(27=(I-1)↑T)pRC-0
6. -(25ppT)pΔE1
7. Cs=2,5,0pDs=' Working ... ',OpCS=7,5,0pDs=AC[2;18]
8. T-Parse T
9. MF=5 Op=0
10. Δ2:-(ParserType I>T)↓ΔE1
11. MF-MF,[2]0,(3*DEC*DEC#99)*7*TYP=2),TYP,('CND')[TYP+1],DEC
12. -(OpT)≥I+1)pα2
13. T-tpT
14. ΔLR-((ΔAC-1)↑ΔLR),(Tp ' '),((ΔAC-1)↓ΔLR)
15. MAT=((ΔAC-1)↑[2]MAT),((ΔMR,T)p(' '),MISSAN,MISSAN)[MF[3;]+1],(ΔAC-1)
16. ↓[2]MAT
17. ΔMA-((ΔAC-1)↑[2]ΔMA),((ΔMR,T)p0),(ΔAC-1)↓[2]ΔMA
22. Ct)↑ΔCT
24. ΔMP[1;]¬0,¬II\2+ΔMP[2;]
25. ΔMC-ΔMC+T
26. ΔCL[RC-CFLAG-1;¬e(2+¬1+ΔMP[2;])↑"*"¬ΔMC
27. ¬0,DISB=HorShift
28. ΔE1-¬Δ1,OpCS=11,1,OpCS=2,5,0pDs='Invalid format'

0. RC-InsRow
1. Insert a blank row before the current row; RC: always 1
2. Cs=2,5,0pDs=' Working ... ',OpCS=7,5,0pDs=AC[2;18]
3. MAT=((ΔAR-1)↑[1]MAT),[1](' '),MISSAN,MISSAN)[1+¬1+ΔMP[3;],[1](ΔAR-1)
4. ↓[1]MAT
5. ΔDM-((ΔAR-1)↑[1]ΔDM),[1] ' '),[1](ΔAR-1)↓[1]ΔDM
6. ΔMA-((ΔAR-1)↑[1]ΔMA),[1],[1](ΔAR-1)↓[1]ΔMA
7. ΔDA-((ΔAR-1)↑[1]ΔDA),[1](ΔMF A[C[1;1]),[1](ΔAR-1)↓[1]ΔDA
8. ΔLO-((ΔAR-1)↑ΔLO),(' '),((ΔAR-1)↓ΔLO
9. DISL=VerShift
10. ΔMR-ΔMR+CFLAG-RC-1
11. 89
[0] RO-LeMarg;L;V
[1] a
[2] a Set left margin
[3] a
[5] Δ1:=(27=11L-Input 'Enter new left margin')pRO-0
[7] −0,Δmenu3[6;27+1]=°550°V
[8] a
[9] ΔEr:=Δ1,0pCs=11,1,0pCs=2,5,0pDs= 'Input must be numeric'

[0] RO-LinInch;L;V
[1] a
[2] a Set lines per inch
[3] a
[5] Δ1:=(27=11L-Input 'Enter lines per inch')pRO-0
[9] a
[10] ΔEr:=Δ1,0pCs=11,1,0pCs=2,5,0pDs= 'Input must be numeric'

[0] RO-Locate;R
[1] a
[2] a Position cursor at specific row and column
[3] a
[4] R·"'
[5] Δ1:=(27=11R=R Input 'Enter row,column')pRO-0
[6] 'ΔE1' ΔEA '-(2#pR=#R)pΔE2'
[7] ΔCD=-(1#AC=ΔUC≥20+(#/ΔMP(1:2;ΔAC-1;ΔMC[R[2]]))-ΔMP(1;])=V1
[8] ΔRO-1[|=5+#AR-1[ΔMR[R[1]]
[9] #Δ(CO#ΔC)'/DISB=HorShift'
[10] #Δ(RO#ΔR)'/DISL=VerShift'
[11] −0,RO-1
[12] a
[13] a Error handling
[14] ΔE1:=ΔEO,MSG='Input must be a numeric vector'
[15] ΔE2:MSG='Specify 2 columns, please'
[16] ΔEO:=Δ1,0pCs=11,1,0pCs=2,5,0pDs=MSG

[0] R-MakeDisA;C
[1] a
[2] a Build attribute matrix for display window
[3] a
[4] C−DAF[(ΔWR=ΔMR−R)=ΔWC=ΔMP(1;ΔMC+1]=C]+((R−ΔRO-1)=ΔMP(1;ΔCO)·ΔDA
[5] R−(ΔWR,ΔWC)pΔC[1;1]
R-MakeDisp

Cut window portion from display matrix

R-, (∆WR, ∆WC)†((∆RO-1), ∆MP[1; AC])†ADM

R-P MakeIndex A;W;C;D;I;U

Extract unique elements for FreqTab and CrossTab

I input vector A converted to indices

U unique elements, used as col/row labels

P[1] column number

P[2] 0 - A is a vector of character elements

else: classification data (L,U,classes) for numeric vector A

(C D)→P

Character vector

Else

I-1[(2+A(D[1])W-(D[2]-D[1])+D[3])÷D[3]+2

→(2=∆MP[3;C])p1

Numeric vector

Date vector

R=-(I U)

RO-MakeLabCol; C

Toggle 1st matrix column: column ← label; RC dummy

Cs=2,5,0Ps→' Working ...', OpDs=7,5,0Ps=AC[2;18]

→(UC=6)p1, CFLAG-RO-1

1st column ← label

(AU=6)p1, CFLAG-RO-1

label ← 1st column

(AMC=2, [3;1])÷MA' WAW-'' C'' ToggType 1'

(AU=1AI (MAT[1];1)[1]AIΛR)[1]AIΛR)

(AU=1AI (MAT[1];1)[1]AIΛR)[1]AIΛR)

(AU=1AI (MAT[1];1)[1]AIΛR)

(AU=1AI (MAT[1];1)[1]AIΛR)
(0×0 to 577×779)

A2:AMP[i;] - adjust column positions
ACL[l;]-€(2+"1†AMP[2;])t"(*)AMC
AVO-1+ASC-AVC
RC<-HakeLabRow;NoNum
P 1st matrix row •* column labels if no labels exist
Q 1st matrix row labels -» 1st matrix row otherwise; RC is dummy
Q column labels
Q 1st row - labels
NoNum<-xO
Cflgrype"(0#_UAMP[3;])AAMC
(HAT ^HA &DH)<-(*LR,[.l]HAT)(0,ll]*HA)(&CLl2;'i,[.l]*DH)
ADA-(0AF AC[1; 1]) , [1] ADA
ALR-AMCp' '
ACL[2;]-' '
i(0<pJVotfum)/'Cs«-ll,l,0pCs<-2,5,0pDs«-Columns' ;('NoNum)','' set to character type''
(AMR ALS ALC)-(AMR+1)(' ')(ALS,ALC)
-0,AWF-ASF-3+Ay«^AyR-3
label<- 1st row
Al:(ALR AMR)-(rMAT[l;])(AMR-1)
ACL[2;]-ADtf[l;]
(HAT AMA ADM ADA)«-H[l]'MAT AMA ADM ADA
(ALS ALC)-(1TALC)(UALC)
A(/R.-ASR-3+AyR-3
RO-MakeParam;I;COL;W;N;D;C
RC always 2
AMP[1;] screen column offset
AMP[2;] field (=column) lengths
AMP[3;] field types (0-character, 1-numeric, 2-date)
AMP[4;] field types (C-character, N-numeric, D-date)
AMP[5;] decimals for fixed-point numeric data, 99 otherwise
Cs=2,5,0pDs=' Creating parameters ...',0pCs=7,5,0pDs=ΔC[2;18]
ΔMA=‡('(pMAT)p0' 'RATT')[1+2=0NC 'RATT']
(ΔLC ΔLR ΔS ΔUR ΔUC RC)=((tpMAT)p' ')((14pMAT)p' ')(' '2 6 2
Check for column labels in 1st row
Check for row labels in 1st column
Δ1:-(v/(1=tpMAT),/"MAT[1;]e"N-c"'.0123456789E')pΔ1 " No column labels
ΔLC ΔLR ΔUR+(14ΔLC)(MAT[1;]3
(HAT AMA)=11[1]"MAT AMA
Check for row labels in 1st column
Δ1:-(v/(1=11pMAT),/"MAT[1;]e"N)pΔ2 " No row labels
ΔLO-MAT[1;] " Row labels exist
22) $i^{(1=\Delta LC)}/\Delta LC-c[2](((p\Delta LC),1)p\Delta LC),''''$
23) $\Delta UC-7+1+p\Delta LC$
24) $(\Delta LR \Delta LS)-(\Delta LR)(1+\Delta LR)$
25) $(\Delta MAT \Delta MA)-11[2]$MAT ΔMA
26) α
27) α Create parameters
28) $\Delta 2:(\Delta MR \Delta MC)\rightarrow p\Delta MAT$
29) $I-1+0p\Delta CL+2 \quad Op\Delta DM-(\Delta MR,0)p\Delta CT-t0$
30) $\Delta 3:+(\n0<\nT-ToDays''\nCOL-MAT[I];I])p\Delta S$
31) $'\Delta 4' \quad \text{EA} ' \COL-MAT[I]-\Delta MAT[I]'$
32) α
33) $\\COL[N-N-(\text{MISS}N=\text{COL})1/\text{p}COL]+O$
34) $\text{COL} \times (\Delta (\Delta MR,1)1 \text{p}COL$
35) $\\COL[N;]='$
36) $W-2+3[[(tp=\Delta LR[I])1'1tmCOL$
37) $\Delta MP-\Delta MP,[2](W-2),1,'N',99$
38) $'\Delta 7,-p\Delta DH-\Delta DH,[2]Wt,[2]COL$
39) α
40) $\Delta 4:W-2+3[[(tp=\Delta LR[I])']1'ep''\text{COL}$
41) $'\Delta 6,-p\Delta MP-\Delta MP,[2](W-2),0,'C',99$
42) α
43) $\Delta 5:MAT[I];I-N$
44) $\Delta MP-\Delta MP,[2](W-10),2,'D',99$
45) α
46) $\Delta 6: \Delta DM-\Delta DM,[2]Wt,[2](2t(p\text{COL}),1)p\text{COL} \rightarrow \text{COL}$
47) $\Delta 7: \Delta CL-\Delta CL,(2,W)p(W*1),Wt=\text{ΔLR}$
48) $\Delta CT-\Delta CT,Wt(\Delta MP;[3;I]),(W-2),>(\Delta MP[4;I]#99)/c\cdot',\text{tΔMP[4;I]}$
49) $-(\Delta MC=I+1)+1p\Delta 3$
50) α
51) $\Delta MP-(0,\quad2+\Delta MP[1;]),[1]\Delta MP,3,0,0,0$
52) SetPtr

[0] RC-Mark F;R;C
[1] α
[2] α (Un-)Mark areas, (RC: 1-dummy)
[3] α F: 1-field, 2-block, 3-row, 4-column, 5-unhighlight
[4] α 'mark field' toggles, block/row/column set marks
[5] α
[6] $'\alpha'(\text{MC} \Delta AR>\Delta MC \Delta MR)p\text{RC} \rightarrow 0$
[7] α Cursor on valid field?
[8] $\text{Cs}=2,5,0\text{OpD}+\text{'}\quad \text{Working ...'},\text{OpC}=7,5,0\text{OpD}=\text{AC}[2;18]$
[9] $\leftrightarrow F=\alpha 1,\alpha 2,\alpha 3,\alpha 4,\alpha 6$
[10] $\Delta 1: \Delta MA[\Delta AR;\Delta AC]-(8\times \Delta MA[\Delta AR;\Delta AC]<8)+8|\Delta MA[\Delta AR;\Delta AC]$
[11] α Mark field
[12] $\Delta DA[\Delta AR;GC \Delta AC]-(2+\Delta MP[2;\Delta AC])/\text{ΔAF} \Delta C[1;1+\Delta MA[\Delta AR;\Delta AC]]$
[13] α
[14] ClearUL
[15] α
[16] $\text{AF} \Delta AR \Delta AC$
[17] α
[18] $\Delta 3: \Delta 5,p(R\text{C})-(\text{MARKR}[\Delta AR]+0,1\text{MARKR}-\text{ΔAR})((\text{MARKC}[\Delta AC]+0,1)\text{MARKC}-\text{ΔAC})$
[19] α Mark row
[20] $\Delta 4: \Delta (R\text{C})-\Delta \Delta MR \Delta AC$
[21] α Mark column
[22] $\Delta DA[R;0G \Delta C]-8+8\Delta MA[R;C]$
[23] $\Delta DA[R;G]C]-8+(2+\Delta MP[2;\Delta C])/((p,R),p,C)p\Delta AF \Delta C[1;0+\Delta MA[R;C]]$
[22] △UL[1]=-'M'
[23] ClearUL
[24] ←0, CFLAG=1
[25] α
[26] △δ:△MA+8|△MA
[27] △ΔDA-(1+2△MP[2;])/△AF △C[1;1+△MA]
[28] △UL[1]=-' '
[29] ClearUL
[30] CFLAG=1+MARKR-MARKC=0

[0] RC-Menu NUM,△B;MSC
[1] α
[2] α Popup menu for additional functions
[4] α 2 File Operations 0 escape
[5] α 3 Printer
[6] α
[7] RC=0
[8] +(2=INC MSC-'△menu',*NUM)/△1
[9] ←0,OpCs=11,1,OpCs=2,5,OpDs='Menu not available'
[10] α Format menu field
[13] Ds-(31+(NUM=△menu0),'Esc:Quit'),',',(31p'-'),','
[14] Cs=2 12,OpDs-Ds-(,(10 31t△MSC),',',',(30p'),','
[15] α
[16] △2:=(△/27 1=△B=21△D,OpCs=3 1)p0 □ Escape pressed ?
[17] ←((△/2 59≤△B)△(△/2 68△B))△2
[18] +(0=INC 'DISA')△3
[19] Cs=7,8,OpDs-DISA
[20] Cs=2,8,OpDs-DISP
[21] α
[22] △3:△'RC='-△func[NUM;△B[2]-58]
[23] α Execute function

[0] RC-NewMat NAME
[1] α
[2] α (Create and) Initialize a new matrix
[4] α 1 - display not updated
[5] α 2 - display matrix is correct
[6] α
[7] ←Quit+RC=0
[8] CFLAG=0
[9] Cs=2,6,OpDs=''
[10] +(2=TRIG-GetName NAME)p0
[11] +(2=INC ORIG)p△1
[12] *(ReadMat ORIG)'/-'0,RC=-1'
[13] α
[14] +(GetFieldTpye)△0
[15] SetPtr
[16] ←0,RC=1
[17] α
[18] △1:=(2=INC 'DISP')p△2
[19] α Statistics recursion ?
Try to find file MAT-(.-211,l,pkORIG)p*~kORIG
Create parameters for a matrix
Recursion, matrix is ready

Test if array X is numeric; Z: 0 - no, 1 - yes

Set number of columns

Input 'Enter number of columns')pRC-0

Input must be numeric'

Convert numeric column to character; C global column number

Write current matrix to a CSV file; RC: always 0

Append labels

Prepare matrix as vector of vectors

Writing ',FILE,' ...',0pCs=7,5,0pDs-AC[2;18]

Writing FILE
[0] RC- OutDOS; FILE; N; C1; D1; OUTMAT
[1] a
[2] a Write current matrix to DOS file; RC: always 0
[3] a
[4] a
[5] i=(27=1tFILE-GetFileName FILE)pRC-0
[6] Cs=2,5,0pDs- ' Preparing ', FILE, ' ...
[7] OUTMAT- ADM
[8] *(AUR=3)'//OUTMAT-AC[2;1]OUTMAT'
[9] *(AUC=6)'//OUTMAT-((AUR=3)/ALS), @LC), '' '' '' ,OUTMAT'
[10] n=(""=N)/3pN-=OUTMAT)-'-
[11] Cs=2,5,0pDs- ' Writing ', FILE, ' ... ',0pCs+7,5,0pDs-AC[2;18]
[12] ^WA-<c[2]-1+<2>(pOUTMAT)pN=tv FILE
[13] Cs=7,5,0pDs-AC[1;18]

[0] R-Parse CSV; Q; DEL; N
[1] a
[2] a Convert a character vector into a nested vector
[3] a Commas are delimiters if not between double quotes
[4] a
[5] DEL[N]=N-(DEL=1)/A DEL- (~Q)/(CSV=' ,') A~2a1+
[6] R-Dtb"1"(DEL+1)< (~Q)/CSV

[0] W-PlaceEntry C; COL; DIF; KEEP
[1] a
[2] a Rewrite matrix column C into ADM, expand/reduce column width
[3] a Return: W new column width
[4] a
[5] Cs=2,5,0pDs- ' Updating display ... ',0pCs+7,5,0pDs-AC[2;18]
[6] i=(0=DIF-^W-DisCol)-2a+AMP[2;C]pa2
[7] KEEP=(1+r=ADM)p1
[8] *(DIF<0)'//A1,KEEP[(AMP[1;C]+W<-1)DIF]-0'
[9] KEEP[(AMP[1;C]+1)+DIF+1
[10] a
[12] AMP[1;C]-0,-1+\2+AMP[2;]
Play;A;SH

Sound if matrix is ready to edit; length depends on matrix size

A-440 ≡ SVO 'SH'

NOT SHARED''

SH- '04', (2×[0.003×ΔMCxΔMR)ρ 'C6D6'

Collapse specified rows/columns of a cross matrix

Return if no cross matrix exists

Collapse Rows or Columns; Original (R/C/D) ?'

α get answer

cols=0, rows=1, orig=2

Back to the original table

α return if no cross matrix exists

α must be numeric

α must exist

α must exist

α temporarily disable the Change flag

α temporally disable the Change flag

Refresh

97
CFLAG=C2
-0,RC-1

Error handling

\(\Delta E1: \Delta ED, MSG='Input must be a numeric vector'\)

\(\Delta E2: \Delta ED, MSG='Non existing column/row numbers specified'\)

\(\Delta E3: MSG='?? ??'\)

\(\Delta ED: \Delta A1, OpCs=1,1, OpCs=2,5, OpDs=MSG\)

RO-PortLand; P
Toggle printer portrait/landscape mode

\(P-\Delta p\)var[3]«~\(\Delta p\)var[3]

\(\Delta p\)menu[5]«-30 P Start ',((P+1)>'Landscape' 'Portrait'),' mode'

\(\Delta p\)var[1 2]>\(\Delta p\)var[2 1]

RC-0

RO-PrtMark; R; C; MP; OMAT; N; LC
Print marked area of a worksheet

RO-0

\(a((%0)\%R-((v/\Delta MA28)/z\Delta MR)/' \times 0, OMAT\times 111\)\) \(\times\) marked rows

\(C-(v/\Delta MA28)/z\Delta MC\) \(\times\) marked columns

RO-0

MP=\(\Delta MPL[2; C]\)
OMAT=\(\Delta DM[R; e GC'C]\)
\(\Delta U=3)'/' OMAT=\(((2+\Delta MP[2; C])(-3\Delta LR[C]),[1], OMAT\)
\(\Delta U>6)'/' OMAT=\(LC->((\Delta U=3)/\Delta LS), \Delta LC[R]),' ' ' ' ', ' ' , ' ', OMAT\)
\(N[1=' ' N)'/' p N, OMAT=+' ')

OMAT=(pOMAT)pN
\(\Delta U>6)'/' MP=\('-' p \)LC), MP'

RO-PrtMat OMAT

RO-PrtMat OMAT; HD; R; C; RL; CL; RC; LPP; CPP; P; PP; PA; PB; PAG; MMP; L
Print OMAT which is the complete worksheet or a marked block

RO-0

\(p(27=i H D=' ' Input 'Enter heading for each page')pRO-0\)

\(p(27=i R=' GetYN 'Row labels on each page')p0\)

\(p(27=i C=' GetYN 'Column labels on each page')p0\)

\(C=2,5,0 D s=\times \) Printing ..., 0pCs=7,5, 0pDs=\(\Delta C[2; 18]\)

LPP-LPP-3×C×2 \(\times\) Adjust for heading, labels

MP=MP+(('-1+pMP)p2),0 \(\times\) matrix field lengths

OMAT=\(\Delta 2[2], OMAT\) \(\times\) last 2 columns are blank

RL=((1+pOMAT),0)p ' \(\times\) init row labels
[16] CL-*(14pOMAT)p' '
[17] RC' '
[18] *R1@1
[21] MP-1MP
[22] @1:+CL@2
[23] CL-OMAT[1:]
[24] OMAT-11[1:]OMAT
[25] *R1@2
[26] RC-RL[1:]
[27] RL-11[1:]RL
[28] @
[29] Send printer setup codes
[30] @2:WA-@print([AF 27 38 108],(*pvar[3]),'O')
[31] @WA-@print([AF 27 40],(*105+pvar[3]),'X')
[32] @WA-@print([AF 27 38 97],(*pvar[4]),'L')
[33] @WA-@print([AF 27 38 108],(*pvar[6]),'E')
[34] @WA-@print([AF 27 38 108],(*pvar[7]),'D')
[35] @WA-@print([AF 27 38 107 48 71])
[36] @
[37] PB-0
[38] @3:PA-MMP[PP-+/CPP2MMP-+\MP]
[39] PA-0
[40] PB-PB+L-1
[41] @
[42] @4:PA-PA+1
[43] WA-@print((pvar[5]-pPAG)lHD),(*PA)'page ',(*PA),'.',(*PB),[AF 13 10 13 10
[44] C'/WA-@print(,[AF 13 10],RC,CL[vP],[AF 13 10]
[45] @
[46] @5:-((1tpOMAT)<L-L+1)pa@6,print([AF 13 10],RL[L;],OMAT[L;vP]
[47] -(0+LFP[L])pa@5
[48] @:ff
[49] @
[50] @6:OMAT-P!2OMAT
[51] CL-P!CL
[52] -(1pMMP-PPMP)pa@3,ff

[0] RC-PrtWKS;OMAT;MP;N;LC
[1] @
[2] Print complete worksheet
[3] @
[4] OMAT-@DM
[6] +(UC=6)'OMAT-(LC-(+(UR=3)/@LS),@LC),''''''OMAT'
[7] N[('''''=#N]/@pN-,OMAT)-''
[8] OMAT-(pOMAT)pN
[10] +(UC=6)'MP-(1tpLC),MP'
[11] @
[12] RC-PrtMat OMAT
[0] RC-Quit
[1] □
[2] □ Quit without saving changes ?
[3] □ RC: 1 - ok to quit (do not save) or no changes applied
[4] □ 0 - do not quit
[5] □
[6] RC-△(CFLAG+1)="1" 'GetYN ''Lose all changes''

[0] RC-ReadMat F;FF;Cz;Dz;EC;HM
[1] □
[3] □
[4] □ -Quit:RC-0 □ Current matrix changed since last save ?
[5] □
[6] □(~F="')/~△2.pFF-PATH,F,"'.UED,A''
[7] □△1:=~(27=1FF=F Input 'Enter matrix name')pRC-0
[8] □FF-PATH,((\F""')/F),"'.UED,A''
[9] □△2:~△share4△E2
[10] □(0+EC-△open FF)p0
[11] □
[12] □△3:Cs+2,5,0pDs=" Reading ',(~2+FF),'' ...'',0pCs=7,5,0pDs=△C[2;18]
[13] □(0+EC 0△HR)=readvp△E1
[14] □(0+EC 0△MC)=readvp△E1
[15] □△MA-MAT=(0,△MC)p0
[16] □△31:=(0+EC MM)=readvp△E1
[17] □MAT-MAT,[1]HM
[18] □(0+EC MM)=△readvp△E1
[19] □△(△HR-△HR-1)p△31,△MA-△MA,[1]HM
[20] □(0+EC 0△MP)=readvp△E1
[21] □(0+EC 0△LR)=readvp△E1
[22] □(0+EC 0△LC)=readvp△E1
[23] □(0+EC 0△LS)=readvp△E1
[24] □(0+EC F)=△readvp△E1
[25] □(EC0)p△E1
[26] □△Close
[27] □'△E1' □EA ' (△UC △UR △AR △AC △RO △CO △OR △OC MARKR MARKC HIGHR HIGHO -F' □△8R △W)=△SR-3+△UR)(1+△SC-△UC)
[29] □(MARKR>0)/'△UL[1]=''M'''
[31] □Cs=7,5,0pDs=△C[1;18]
[32] □-0,RC-1
[33] □
[34] □△E2:=0,pCs=11,1,0pCs=2,5,0pDs='AP210 not active'
[35] □△E1:△Close
[36] □-△1,pCs=11,1,0pCs=2,5,0pDs='AP210: ',△ap210[|EC;]
0 RC-Recode;UNI;VAL;D;I;COL
1 a
2 a Replace elements in current column by new ones of character type
3 a RC: 0 - no changes, 1 - screen update necessary
4 a
5 a Cs=2.5,OpDs=' Working ...',OpCs=7.5,OpDs=\Delta C[2;18]
6 a RC=0,OpD[UNI-,(\Delta\d D)=\gamma \d D)/D-Col+\d MAT[;\d AC]
7 a \Delta 1:=(27=1)VAL=VAL Input 'Enter new value for ',VAL-\d ,I=\d UNI)p\Delta 2
8 a +(1\\d -1-RC-0)p\Delta 1,pCOL[(D='UNI[2])\gamma \d D]=cVAL
9 a
10 a \Delta 2:<RC10
11 a MAT[;\d AC]=COL
12 a AMP[3 4 5;\d AC]=0,'C',99
13 a I-PlaceEntry \d AC
14 a CFLAG=1

0 Refresh;C;COL;LAB;W;N
1 a
2 a Generate screen display matrix, column labels, column types
3 a
4 a (\d MR \d MC)=pMAT
5 a C=11,p\d CL=2 0p\d DM=(\d MR,0)p\d CT=0
6 a \d 1=W-DisCol
7 a \d DM=\d DM,[2]WT[2]COL
8 a \d CL=\d CL,(2,2)p(WT=C),WT=\d LR[C]
9 a \d CT=\d CT,WT(,AMP[4;C]),(C=W-2),>(\d MP[5;C]#99)/'c',\d MP[5;C]
10 a +(\d M=C+1)+p\Delta 1
11 a \d MP[1;]=0,-1+\d MP[2;]
12 a \d DA=\d DA+(1\d 2+\d MP[2;])/\d AF \d AC[1;1+\d MA]

0 NVEC-SUB Replace OVEC
1 a
2 a Replace all 1\d SUB in OVEC by 1\d SUB giving NVEC
3 a
4 a OVEC[(OVEC=1\d SUB)/\d OVEC]=c1\d SUB
5 a NVEC=OVEC

0 RC-ResPrt
1 a
2 a Reset printer parameters and menu to default values (RC always 0)
3 a
4 a \d pvar=PRINT
5 a
6 a \d menu3[5;]=30' F5 Start ',((1\d pvar[3])='Landscape' 'Portrait'),' mode'
7 a \d menu3[6;27+\d 3]=550'\d pvar[4]
8 a \d menu3[7;27+\d 3]=550'\d pvar[5]
9 a \d menu3[8;27+\d 3]=550'\d pvar[6]
10 a \d menu3[9;27+\d 3]=550'\d pvar[7]
11 a RC=0

101
0 RC-Rotate; R; C; RATT
1 a
2 a Rotate matrix or marked area if anything marked
3 a RC: 1-changes, 0-no changes, set (with CFLAG) in BackLabel
4 a
5 Cs=2,5,0pDs=' Working ...',0pCs=7,5,0pDs=AC[2; 18]
6 %((R;RO=0)xR-(hMA=8)/w=MR)=' p(R C)=pMA' a Find row/col numbers
7 Cs-(hMA=8)/w=MC a of marked area
8 AI:(ROMAT RATT)="R AddLabel C a Create rotated submat
9 *(USER 'ROMAT')/'RC-(R C)BackLabel@ROMAT' a Implement changes

[0] SHOW V; ΔE
1 a
2 a Show the variable V in the APL2 environment, return to UEDIT
3 a by hitting return.
4 a
5 α(1=1>ΔE-DEC '[V')/3
6 V-((0=1>ΔE)'Could not execute'),(0+1>ΔE)'Successfully executed'
7 -(0+1>ΔE)/Δ1
8 3>ΔE,0pCfs=11 1
9 Δ1:0,0-SC[2], 'Press Enter to Proceed'

[0] RC-SXout; FILE; OUTMAT; COL; N
1 a
2 a Export matrix columns to StatXact; RC: always 0
3 a
4 a COL=''
5 Δ1:-(27=1+COL=COL Input 'Enter column numbers to export')pRC-O
6 α(COLs, '')/COL-τ5MC a must be numeric
7 '-ΔE1' DEA 'COL=αCOL' a columns must exist
8 -(A/COLε=1pMAT)1ΔE3
9 a
10 FILE=''
11 -(27=1+FILE=GetFileName FILE)pO
12 Cs=2,5,0pDs=' Preparing ',FILE,' ...'
13 OUTMAT-(h=MR)>MAT;5COL]
14 NC(='-=N)/=pN=OUTMAT)=''
15 OUTMAT-(pOUTMAT)pN
16 a
17 Cs=2,5,0pDs=' Writing ',FILE,' ...',0pCs=7,5,0pDs=AC[2; 18]
18 □W=(<[2]OUTMAT)Δf v FILE
19 -0
20 a Error handling
21 ΔE1-ΔEO, MSG='Input must be a numeric vector'
22 ΔE3: MSG='Non existing column number specified'
23 ΔEO: Δ1,0pCs=11,1,0pCs=2,5,0pDs=MSG

102
[0] RO-SaveMat F;FF;N;SV;EC
[1] 1
[2] 2 a Save matrix and its parameters; RC: 1 - ok, 0 - escape/error
[3]
[4] 4 RO-0
[5] 5 -((8<FF)v2=NC 'RATT')p$$\Delta$$1
[6] 6 *'(F=','')p$$\Delta$$1
[7] 7 FF=PATH,((\^\$F
'')/F),' .UED,A'
[8] 8 +$$\Delta$$share$$\Delta$$E2
[9] 9 EC-$$\Delta$$open FF
[10] 10 $$\Delta$$close
[11] 11 *(EC=0)/'(GetYN F," already exists, delete it")$$\Delta$$1'
[12] 12
[13] 13 a Title F
[14] 14
[15] 15 a Writing ',("-21FF'),...',OpCs=7,5,OpDs=\$C[2;18]
[16] 16
[17] 17 $$\Delta$$2:Cs=2,5,OpDs='
[18] 18 +$$\Delta$$share$$\Delta$$E2
[19] 19 +($$\wedge$$/0 2#EC-$$\Delta$$delete FF)p$$\Delta$$E1
[20] 20 +($$0$$EC-$$\Delta$$open FF)p$$\Delta$$E1
[21] 21 +($$0$$EC-$$\Delta$$writev $$\Delta$$MR)p$$\Delta$$E1
[22] 22 +($$0$$EC-$$\Delta$$writev $$\Delta$$MC)p$$\Delta$$E1, N-1
[23] 23 $$\Delta$$21:-($$0$$EC-$$\Delta$$writev MAT[N;])p$$\Delta$$E1
[24] 24 +($$0$$EC-$$\Delta$$writev $$\Delta$$MA[N;])p$$\Delta$$E1
[25] 25 +($$\Delta$$MR=2-N-N+1)p$$\Delta$$21
[26] 26 +($$0$$EC-$$\Delta$$writev $$\Delta$$MP)p$$\Delta$$E1
[27] 27 +($$0$$EC-$$\Delta$$writev $$\Delta$$LR)p$$\Delta$$E1
[28] 28 +($$0$$EC-$$\Delta$$writev $$\Delta$$LC)p$$\Delta$$E1
[29] 29 +($$0$$EC-$$\Delta$$writev $$\Delta$$LS)p$$\Delta$$E1
[30] 30 N-$$\Delta$$UC $$\wedge$$UR $$\wedge$$AC $$\wedge$$RD $$\wedge$$DO $$\wedge$$OR $$\wedge$$OC MARKR MARKC HIGHR HIGHC
[31] 31 +($$0$$EC-$$\Delta$$writev N)p$$\Delta$$E1
[32] 32 $$\Delta$$close
[33] 33 a
[34] 34 *(ORIG-F),'-CompMat MAT'
[35] 35 a
[36] 36 a Cs=7,5,OpDs-\$C[1;18]
[37] 37 a
[38] 38 a
[40] 40 $$\Delta$$E2:Cs=11,1,OpCs=2,5,OpDs='AP211 not active - saving to workspace only'

[0] SetPtr
[1] a
[2] 2 a Set pointers for a new matrix
[3] a
[4] $$\Delta$$AR-$$\Delta$$AC-$$\Delta$$RO-$$\Delta$$CO-1
[5] 5 a coord of cursor cell/upper left window cell
[6] $$\Delta$$MKRR-MARKC-HIGHR-HIGHC-0
[7] 7 a first corner of block to mark/highlight
[8] 8 a flags: screen update necessary
[9] 9 $$\wedge$$HR $$\wedge$$WC-($$\wedge$$SR+$$\wedge$$UR)(1+$$\wedge$$SC-$$\wedge$$UC)
[10] 10 a size of edit window
[11] 11 $$\wedge$$DA-('$$\wedge$$12+$$\wedge$$MP[2;])/$$\wedge$$AF $$\wedge$$C[1;1+$$\wedge$$MA]
[12] 12 a expanded color attributes
0) RC-Shadow; R; C; COLR; RATT; ΔSP
1) □
2) □ Shadow un-highlighted areas; RC: 1-done, 0-escape/no changes
3) □ Sets CFLAG in BackLabel if necessary
4) □
5) -(0=COLR-GetColor)pRC=0 □ Escape pressed
6) -(v/ΔMA≥COLR)/ΔMR)p0 □ Quit if no highlights
7) Cs=2,5,0pDs- Working ...',0pCs=7,5,0pDs=ΔC[2;18]
8) (SHMAT RATT)-R AddLabel C-(v/ΔMA≥COLR)/ΔMC □ Create submatrices
9) +USER 'SHMAT')/'RC-(R C)BackLabel SHMAT' □ Implement changes

0) ShowCell; C
1) □
2) □ Set color attributes of current cell to 'active'
3) □
4) Ds=(_UR+ΔAR=RD),ΔUC+ΔMP[1;ΔAC]=ΔMP[1;ΔOC]=ΔCO]
5) C=ΔC[2;1;4=(1+ΔAC)]AAMR)'0'
6) Cs=1,9,0pDs=Δs,1,((1+ΔSC-Δs[2])ΔMP[2;ΔAC]),0,C

0) RO-Sort; Label; VEC; MSG; S
1) □
2) □ Sort rows on different columns; RC: 1-sorted, 0-escape
3) □
4) VEC=11
5) Δ1: VEC-VEC Input 'Enter colx' s in major-minor order (>0 ² , <0 -)
6) -(27=11VEC)pRC=0
7) □
8) '¬ΔE1' □ EA 'VEC-ΔVEC'
9) -(a/(1VEC)∈ΔMC)1ΔE2 □ Column numbers must exist
10) □
11) Cs=2,5,0pDs- Sorting ...',0pCs=7,5,0pDs=ΔC[2;18]
12) Δ2: MAT sortsub ~11VEC
13) (MAT ΔMA ΔDM ΔDA ΔLC)-(MAT[S;])ΔMA[S;]ΔDM[S;]ΔDA[S;]ΔLC[S]
14) -(1≤pVEC=11VEC)pΔ2
15) □
16) -(3>pΔLR)pΔ3
17) -(ΔLR[3]=='Cum.')Δ3 □ special handling if within
18) VEC-(MAT,[3]*MISSΔN)/ΔMR □ freq tabs: recalculate
19) MAT[VEC;3]=-'MAT[VEC;1]
20) □WA-PlaceEntry 3
21) □
22) Δ3: DISL=VerShift
23) -0, CFLAG=RC=1
24) □
25) □ Error handling
26) ΔE1:-ΔE0, MSG= 'Input must be a numeric vector'
27) ΔE2: MSG= 'Non existing column numbers specified'
28) ΔE0:-Δ,0pCs=11,1,0pCs=2,5,0pDs=MSG

104
RO-StatParam

Generate matrix parameters for a new, overlay matrix; takes the information from ASP; RC: always 1

MAT=\$\text{ORIG}\\
(\$\text{MA} \& \text{LC} \& \text{LR} \& \text{LS} \& \text{UR} \& \text{RC})=(R\text{ATT})(1\text{MAT[1]})(1\text{MAT[1]})(' '3 1\\
(\$\text{MR} \& \text{MC})=p\text{MAT}=1 1\text{MAT}\\
\$\text{UC}=7+1\text{p}=\$\text{LC}\\
(\$\text{UL}[^3]_/0)='H''\\
\$\text{MP}=(5,1,\text{p}SP)p0\\
\$\text{MP}[3 5;]=\$\text{SP}\\
\$\text{MP}[4;]=\text{('CND')}[1+\text{p}\text{MP}[3;]]\\
\$\text{MP}=\$\text{MP},0,3,0,0,0\\
SetPtr

Title F;N;MSG

Create and display status line

W-0.5xASC-21+p MSG-F,' [' ,($\text{pMAT}) ,',x', (3-1$p\text{MAT}) ,',]'\\
Cs=4,4,0$pDs-'Edit 1.00',(W'T') ,',MSG,(W'T') ,',F1 - Help'

RC-ToDays D;DD;MM;YY

Validate Date D and convert to days since February 29, 0000

D: Character vector of input data 'MM DD YYyy' or different order depending on the global variable DATE

RC: MISS&N if D is blank
0 if D is invalid

days since Feb 29, 0000 otherwise

RC=0

D[[(D[='-../')/0$D-,D]'-','\\
'0' \$EA '-(pD-,&D)\in [2 3]0'\\
'0' \$EA '-(pD-&D)\in [2 3]0'\\
(YY MM DD)=D[DATE=?3]\\
YY-YY+((YY<100)+100*[TS[1] +100\\
(YY<100)52=12)*40\text{月} 来 \\)
(DD[=31 29 31 30 31 30 31 30 31 31 15 15 15 15 15 15 15 15 15 15 \text{ days/month}
(YY<400)+400YY)p0'

\$A/2 29=YY DD)'=(O\#4|YY)v(0=100|YY)v(0+400|YY)p0'

(YY<400)+400YY)p0'

YaY=YY+-1[(YY-YY-YY-Y)=.4 100 400

RC=ADD+(306 337 0 31 61 92 122 153 184 214 245 275)\text{[MM]}

105
RO-ToMarg;L;V
0
1
2
3
4
5
6
7
8
9
Δ1:=(27=11L-L Input 'Enter new top margin')pRC=O
'→ΔEr' □EA '→Δvar[6]-V=999[[(.2×Δvar[7])]||L'
→,Δmenu3[8;27++3]=-'550"V
→,Δ
ΔEr:=Δ1,0pCs=11,1,0pCs=2,5,0pDs='Input must be numeric'

RO-NT ToggType C;TYP;DEC;K;I
1
2
3
4
5
6
7
8
9
Δ1:=(27=11NT-NT Input 'Enter new format (C / D / Nx / Ex / A)')p0
Δ2:=→(ParseType NT)↓ΔE1
Δs=2,5,0pDs=' Converting ...',0pCs=7,5,0pDs=ΔC[2;18]
Δ3:=→(1+ΔMP[3;C],TYP)>0,Δ3,Δ4)(Δ5,Δ6,Δ8)(Δ7,Δ8,0)
Δ
Δ3:=K[I-((^"K="')/→pK-MAT][;C])→K,MISSΔN
Δ4:=→ΔE1' □EA '→Δ8,MAT[:;C]=a»K'
Δ5:=→(V/O=K→ToDays"MAT[:;C])pΔE1
Δ6:=→Δ8,MAT[:;C]=K
Δ8:=ΔMP[3 4 5;C]+TYP,('CND')[TYP+CFLAG-1],DEC
0,RC=O
ΔE1:=Δ1,0pCs=11,1,0pCs=2,5,0pDs='Invalid format'

TryNum I;N
1
2
3
4
5
6
7
N=1-ΔAC-1
" '□EA '→O, NMAT[:;N]=a"NMAT[:;N]'
□WA='C' ToggType I

106
[0] R-VAL frequent CLASS;A;B
[1] a
[2] a Counts occurrences of elements of CLASS in VAL. VAL must be
[3] a sorted (σ or τ) and must not contain elements not in CLASS.
[4] a
[5] R-CLASSp0
[6] R[A/VAL]={B-(ρB)p0,B-(A-(-1\downarrow VAL\#1\#VAL),1)/ηpVAL

[0] R-Z sortAsub COL;C;S
[1] a
[2] a Sort rows of matrix Z on column COL. Sort σ if COL>0, τ if COL<0.
[3] a The return vector R contains the index order of a sorted matrix Z,
[4] a the matrix itself is NOT sorted. The sorting is case insensitive,
[5] a i.e., lower and upper case characters are considered equal.
[6] a
[7] a

[0] close
[1] a Close file, retract Cz, Dz

[0] RO-\DELETE F
[1] a Delete file F
[2] RO-Cz
a RC: AP210 return code

[0] R-A ∆v B;I:O;Cz;Dz;E;F
[1] a
[3] a modified to speed up UEdit (original in IBM's FILES workspace)
[4] a
[5] a
[6] a

[0] Write
[1] a
[2] a
[3] a

[10] -(λ/0 2≠E-\DELETE B)pΔE2
[12] F-(B-O),2+]/EpA
[13] Δ1:-(BpA)p0
[14] Dz=((-\#E=O)\#E-B>Α),τTC[1 2]
[15] Cz=5,F
[16] +F:(0≠11E-Cz)pΔE2
[17] a
[18] a
[19] a Read
[20] a
[21] δ3 := (0#E Δropen B, 'D') p ΔE2
 ◦ Open file for read
[22] R−1
 ◦ Init result variable
[23] B−O×F−128
 ◦ Init counter × records, scan length
[24] Δ4: Cz−4
[25] Δ5 := ((−45 −44 = tE), 0#E−Cz)/Δ6, Δ7, ΔE2
[26] R−R, C−(−4 = E) ∧ 0) ∪ E−2 × Dz
 ◦ Read each record in turn
[27] −Δ4, B−B+1
[28] Δ6 := 0, p R−(-([A # 26] = tT−1 # R))∗ R
[29] Δ7 := (65400 = F)pΔE3
[30] −Δ5, Cz−4, B, F−65400|2 × F
 ◦ Double scan length
[31] ◦
[32] ΔE1 := 0, pCs−11, 1, 0Cs−2, 5, 0Ds−'AP210 not active'
[33] ΔE2 := 0, pCs−11, 1, 0Cs−2, 5, 0Ds−'AP210 error: ', Δap210[-1+1]
[34] ΔE3 := Cs−11, 1, 0Cs−2, 5, 0Ds−'Invalid file'

[0] RC−Δprint V; X
[1] ◦
[2] ◦ Send output stream to AP81
[3] ◦ RC: 0 − OK, 1 − AP81 missing
[4] ◦
[5] ◦WA−81 ◦SV0 'X'
[6] −(2#SV0 'X') p ΔErr
[7] X−s V
[8] ◦WA−SVR 'X'
[9] −RC−0
[10] ◦
[11] ΔErr := Cs−11, 1, 0Cs−2, 5, 0Ds−'AP81 is not active'
[12] RC−1

[0] Z−Δreadv; RC
[1] Cz−4
[2] (R(Cz−Cz)e−44 −46)/'EC−0'
 ◦ from variable
[3] Z−RC Dz
 ◦ length file

[0] RC−Δropen F
[1] Cz−'IR,' ,F
[2] RC−Cz
 ◦ Open file for Read Only
[3] RC−AP210 return code

[0] RC−Δshare
[1] RC−210 ◦SV0 'Cz' 'Dz'
 ◦ Share global variables Cz, Dz with AP210
[2] RC−2 ◦SV0 'Cz'
 ◦ RC: 1 − ok, 0 − error

[0] RO−Δwopen F
[1] Cz−'IW,' ,F
[2] RC−Cz
 ◦ Open file for Read/Write
[3] RC−AP210 return code

[0] RO−Δwritev A
[1] Cz−5, 0pDz−A
[2] RC−Cz
 ◦ Write record A to
[3] ◦ variable length file
LIST OF REFERENCES

BIBLIOGRAPHY

APL2 Programming: APL/2 for the IBM PC, International Business Machines Corporation, 1989

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Cameron Station
 Alexandria, Virginia 22304-6145

2. Library, Code 0142
 Naval Postgraduate School
 Monterey, California 93943-5002

3. Federal Republic of Germany
 Federal Department of Defense, P III 6
 c/o German Military Representative USA/Canada
 4000 Brandywine Street, N.W.
 Washington, District of Columbia 20016-1887

4. Professor Peter A. W. Lewis, Code 55Lw
 Naval Postgraduate School
 Monterey, California 93943-5000

5. Professor Laura D. Johnson, Code 55Jo
 Naval Postgraduate School
 Monterey, California 93943-5000

6. Professor Harold J. Larson, Code 55La
 Naval Postgraduate School
 Monterey, California 93943-5000

7. Professor Robert R. Read, Code 55Re
 Naval Postgraduate School
 Monterey, California 93943-5000

8. LCDR Al Callahan, Code 55Ca
 Naval Postgraduate School
 Monterey, California 93943-5000

9. Professor Toke Jayachandaran, Code 53Ja
 Naval Postgraduate School
 Monterey, California 93943-5000
10. Defense Personnel Security Research and Education Center
 (PERSEREC), Code 65
 Naval Postgraduate School
 Monterey, California 93943-5000

11. Dr. Ralph Carney
 PERSEREC, Code 65
 Naval Postgraduate School
 Monterey, California 93943-5000

12. Dr. Roger Denk
 PERSEREC, Code 65
 Naval Postgraduate School
 Monterey, California 93943-5000

13. Dr. Al Blum
 IBM Research Center
 P.O. Box 204
 Yorktown Heights, New York 10598

14. Dr. Peter Welch
 IBM Research Center
 P.O. Box 204
 Yorktown Heights, New York 10598

15. Dr. James Brown
 IBM Santa Theresa Labs, J98 B252
 555 Bailey Avenue
 San Jose, California 95141

16. Norman Thomson
 Mail Point 188
 IBM UK Labs Ltd.
 Hursley House, Hursley Park
 Winchester, Hampshire S021 2JN
 ENGLAND