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Introduction 
 

The Mdm2 protein plays essential roles in negatively regulating the p53 tumor 
suppressor protein. Mdm2 has been found to be upregulated in a significant number of 
breast cancers. The Mdm2 RING domain possesses a cryptic nucleolar localization signal 
sequence and a nucleotide-binding P-loop motif.  These two motifs are unique to the 
Mdm2 RING and are not present in the myriad other RING domains encoded in the 
human genome.  Nucleolar relocalization of Mdm2 causes p53 stabilization and 
activation, and nucleotide binding to the Mdm2 RING domain facilitates Mdm2 nucleolar 
localization.  

Mdm2 has been found to play an essential role in negatively regulating the p53. In 
turn, the p53 protein binds to the promoter of Mdm2 and activates Mdm2 transcription. 
The importance of Mdm2 in p53 down-regulation has also been shown by genetic 
analysis: loss of mdm2 in mice results in early embryonic lethality, but deletion of p53 
with mdm2 rescues the lethal phenotype. 

There is mounting evidence for a pro-oncogenic role for Mdm2 that is 
independent of p53 in both murine models and in human tumor cohort studies. Therefore 
the novel inhibitors that we plan to develop may have broader impact than activation of 
p53.  

The design of genetically-targeted anti-tumor agents is an important new strategy 
in cancer drug discovery.  However, it is often difficult to identify the specific proteins 
that should be targeted for maximal clinical benefit and to develop small molecules that 
target these proteins.  We have identified an opportunity to develop a potentially 
powerful new class of compounds targeted against breast cancers with a specific genetic 
modification. We propose to develop genetically targeted small molecules that will 
selectively eradicate breast cancer cells containing amplified or up-regulated Mdm2. 

 
 



 5 

Project Progress - Body 
 
 

Previously, we have cloned, bacterially expressed, and affinity purified GST-
fused Mdm2 wild-type RING domain as well as a C-terminally deleted Mdm2 RING 
domain protein that does not oligomerize in solution and exhibits dramatically increased 
solubility when compared to similarly expressed and purified wild-type Mdm2 RING. 
This protein is ideal for development of a high-throughput assay due to its high bacterial 
yield and excellent solubility. 

Finally, we have successfully characterized the ATP binding site of the Mdm2 
RING domain, identifying the ribose hydroxyls as well as the C6 amino group as being 
required for binding. We have also determined that the nucleotide binding site of Mdm2 
lies between residues 429-484, within the core Mdm2 RING domain, and determined that 
residues outside of the Mdm2 P-loop are involved in coordinating nucleotides. MdmX, a 
family member and binding partner of Mdm2, also has a homologous nucleotide binding 
site, making it another excellent target for a small molecule screen, as this protein is also 
involved in human tumorigenesis. Please see the attached manuscript in submission, 
“Deconstructing nucleotide binding activity of the Mdm2 RING domain, for details and 
figures.” 

8-azido ATP, an ATP analogs that binds to the Mdm2 RING domain with similar 
affinity as unlabled ATP in vitro (Figure 1,a), can be crosslinked to Mdm2 in a UV-
dependent manner. Mdm2 RING domain that is crosslinked to 8-azido ATP can no 
longer bind 32P γ ATP, suggesting that the crosslinked ATP is specifically occupying the 
correct ATP binding site of the protein (Figure 1,b). Additionally, Mdm2 RING that has 
been crosslinked to 8-azido ATP shows decreased ability to polymerize 32P-ubiquitin in 
vitro, suggesting that ATP binding directly inhibits the E3 ligase activity of Mdm2 RING 
(Figure 1,c). This data suggests that ATP-like compounds that bind selectively to the 
Mdm2 RING would be possibly inhibitors of E3 ligase activity. 

We have also made progress developing a high-throughput screen for compounds 
that bind to Mdm2. We first attempted to optimize a commercial FRET assay (Lance, 
Perkin Elmer) that would detect ATP binding to Mdm2 in a high-throughput compatible 
format (Figure 2,a). In this assay, biotinylated ATP, bound to a streptavidin molecule 
with a acceptor fluorophore binds to GST-Mdm2 that has been labaled with an anti-GST 
antibody tagged with the donor fluorophore. Fluoresence output is disrupted if a test 
compound displaces the biotinylated ATP from the Mdm2 binding site, signaling a 
compound that binds to Mdm2. We determined that biotinylated ATP binds to the Mdm2 
RING with similar affinity as unlabeled ATP (Figure 2,b) and that this binding is not 
disrupted in the presence of streptavidin-APC (Figure 2,c). However, we were unable to 
detect any fluorescence output with GST-Mdm2, although our positive and negative 
controls were successful (Figure 2,d). In order to optimize our reaction conditions, we 
directly biotinylated GST and GST-Mdm2 RING, confirming labeling using an anti-
biotin immunoblot (Figure 2,e). We were able to detect fluorescence output from 
biotinylated GST, but not GST-Mdm2 RING (Figure 2,f), suggesting that the Mdm2 
RING obscures the epitope of the fluorescently labeled anti-GST antibody. 

In an effort to find compounds that inhibit Mdm2 ligase activity, we have 
succeeded in developing a high throughput in vitro ubiquitination assay which makes use 
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of the Mdm2 RING domain’s ability to auto-ubiquitinate (Figure 3). The assay involves 
the reconstitution of the ubiquitination pathway using biotin-labeled ubiquitin. In the 
assay, E1 enzyme is used to activate the labeled substrate and transfer it to an ubiquitin 
carrier protein, UbcH5c. The substrate bound E2 is then used by GST-tagged Mdm2 
RING domain to auto-ubiquitinate. Detection of ubiquitined Mdm2 is done by 
transferring the reaction to a streptavidin-coated plate, washing and detecting bound 
Mdm2 by incubating with HRP-linked α-GST antibodies then detecting luminescence by 
adding ECL reagent.    

Also, as a new approach to find hit compounds, we have developed a virtual 
docking assay, which was made possible by the recent publication of the structure of the 
MDM-2 RING domain. This computational approach to drug discovery makes use of the 
existence of an available crystallographic or NMR structure of the target by docking 
small molecules into the ligand binding site of the protein. We used the monomeric form 
of the published RING domain structure (Kostic et al. 2006.) as a docking target. Based 
on previous mutational studies on the RING domain (Poyurovsky et al. 2003.) and 
molecular dynamics simulations we predicted the ATP binding site to be in an exposed 
surface with K454 of the RING domain coordinating the beta- and gamma-phosphates of 
ATP (Figure 4).  

For this study, we screened 239,199 compounds available from commercial 
vendors using FRED2.1 (Openeye Scientific) for docking and OMEGA 1.8 (Openeye 
Scientific) for conformer generation. Each compound was represented by 200 conformers 
in the screening dataset to properly explore conformational space when docking. The top 
scoring 500 compounds will be ordered and screened in an assay yet to be developed. 
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Key Research Accomplishments 
 
 

• Cloned, expressed, and purified GST-fused Mdm2 wild-type and C-terminally 
deleted RING domain protein 

 
• Tested all commercially available ATP analogs (including fluorescent analogs) 

for binding to Mdm2 
 
• Identified features of ATP required for binding to Mdm2 

 
• Localized Mdm2 nucleotide binding site to residues 429-484 within the RING 

domain 
 

• Determined that residues outside Mdm2 P-loop motif are involved in nucleotide 
coordination 

 
• Identified the Mdm2 homologue, MdmX, as having a homologous and specific 

adenine nucleotide binding site to Mdm2 
 

• Determined that crosslinking to 8-azido ATP inhibits ATP binding and E3 ligase 
activity 

 
• Developed high-throughput docking assay based on Mdm2-s RING domain 

structure  
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Reportable Outcomes 
 
Posters 
 
13th Annual p53 Workshop, May 20-24, 2006. Columbia University, New York, NY, 
USA. 
 
Deconstructing Nucleotide Binding Activity of the Mdm2 RING Domain 
 
Christina Priest, Masha Poyurovsky, Brent Stockwell and Carol Prives 
Department of Biological Sciences, Columbia University, New York, NY 10027 
 
 The RING domain of Mdm2 contains a conserved Walker A or P-loop motif 
characteristic of nucleotide binding proteins. As has been previously shown, Mdm2 
preferentially binds adenine base nucleotides and that such binding leads to a 
conformational change in the Mdm2 C-terminus. (Poyurovsky et al. Mol Cell. 12: 875-
87, 2003). Nucleotide binding defective Mdm2 mutants are impaired in p14/ARF-
independent nucleolar localization both in vivo and in vitro, and ATP-bound Mdm2 is 
preferentially localized to the nucleolus.  
 Here we present further biochemical analysis of the nucleotide-Mdm2 interaction.  
We confirmed the original ATP binding and specificity results using Isothermal Titration 
Calorimetry (ITC). Further investigation of the interaction using a series of ATP 
derivatives identified 2’ and 3’ hydroxyls of the ribose as well as the C6 amino group of 
the adenine base moiety as being essential for the interaction. These results further 
support our previous data on ATP specificity, as the C6 amino group is a unique feature 
of adenine. MdmX, an Mdm2 family protein with high sequence homology, similarly 
binds adenine nucleotides preferentially. In order to further elucidate the structural 
features of Mdm2 necessary for ATP interaction, we have created a series of substitution 
mutations in residues within the Mdm2 RING domain that were predicted to be involved 
in base recognition. We assayed the resulting mutant proteins for nucleotide binding, 
nucleotide specificity, and E3 ligase activity.  Our results highlight an intriguing 
separability between nucleotide binding and E3 functions of the Mdm2 RING domain, 
indicating that this domain may be involved in several unrelated biochemical processes. 
(Supported by DOD propoposal #BC044468) 
 
Journal Articles 
 
Priest, C., Prives, C., and Poyurovsky, M. V. (2010) Deconstructing nucleotide binding 
activity of the Mdm2 RING domain. Nucleic Acids Research. (provisionally accepted, 
please see attached .pdf) 
 
Abstract 

 Mdm2, a central negative regulator of the p53 tumor suppressor, possesses a 
Really Interesting New Gene (RING) domain within its C-terminus. In addition to E3 
ubiquitin ligase activity, the Mdm2 RING preferentially binds adenine base nucleotides, 
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and such binding leads to a conformational change in the Mdm2 C-terminus. Here we 
present further biochemical analysis of the nucleotide–Mdm2 interaction. We have found 
that MdmX, an Mdm2 family member with high sequence homology, binds adenine 
nucleotides with similar affinity and specificity as Mdm2, suggesting that residues 
involved in nucleotide binding may be conserved between the two proteins and ATP 
binding may have similar functional consequences for both Mdm family members. By 
generating and testing a series of proteins with deletions and substitution mutations 
within the Mdm2 RING, we mapped the specific adenine nucleotide binding region of 
Mdm2 to residues 429–484, encompassing the minimal RING domain. Using a series of 
ATP derivatives, we demonstrate that phosphate coordination by the Mdm2 P-loop 
contributes to, but is not primarily responsible for, ATP binding. Additionally, we have 
identified the 2’ and 3’ hydroxyls of the ribose and the C6 amino group of the adenine 
base moiety as being essential for binding. 
 
 
 
 
 
 
 
 
 
 
 
Conclusions 
 
In summary, although we do not have a high-throughput assay to find small molecule 
inhibitors of Mdm2, have made significant progress in determining the features of ATP 
required for interaction with Mdm2. We have also identified the area of the Mdm2 RING 
domain that contains a nucleotide binding site. Additionally, we have identified MdmX 
as another potential target for a nucleotide analog inhibitor. We have also developed and 
performed an in silico screen for small molecules that may bind to the nucleotide binding 
site of Mdm2. These studies may lead to the discovery of novel, selective Mdm2  and 
MdmX inhibitors that are effective treatments for breast cancers.  
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Appendix/Supporting Data 
 
(a)             (c) 
 
 
 
 
 
 
 
 
 
 
 
(b)            
 
 
 
 
 
 
 
 
 
 

 
 
                 
Figure 1. Crosslinking 8-azido ATP to the Mdm2 RING domain inhibits ATP 
binding and E3 ligase activity (a) 8-azido ATP binds Mdm2 with similar affinity as 
ATP. (b) Crosslinking to 8-azido ATP significantly reduces ATP binding by Mdm2. (c) 
Crosslinking to 8-azido ATP inhibits Mdm2 in vitro ubiquitin polymerization activity. 
All error bars represent the standard deviation of 2 replicates. 
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32P γATP Binding Competition
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Figure 2. Design and optimization of Lance TR-FRET assay. (a) Assay design and 
structure of biotin-labeled ATP. (b) Competition of unlabeled ATP and Biotin-11-ATP 
with 32P γ-ATP for binding to GST-Mdm2 ∆C7 RING. (c) Competition of Biotin-11-ATP 
with 32P γ-ATP for binding to GST-Mdm2 ∆C7 RING is unaltered in the presence of 
streptavidin-APC. (d) Lance FRET assay output in the presence of GST (negative 
control) or GST-Mdm2 ∆C7 RING. (e) α-biotin immunoblot after biotinylation of GST 
and GST-Mdm2 ∆C7 RING. (f) Lance FRET output in the presence of untreated or 
biotinylated GST or GST-Mdm2 ∆C7 RING. All error bars represent the standard 
deviation of two replicates. 
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Figure 3. Mdm2 auto-ubiquitination assay. The assay works with any of the UBCH5 
proteins, which are known to function with MDM2 (400-491)-GST.   However, UBCH7 
which has not been shown to function as an E2 with MDM2 does not work in this assay. 
Additionally the ubiquitination reaction was verified on a Western Blot analysis (data not 
shown).  This assay can be used to screen large numbers of small molecules in a 384-well 
high-throughput format to find MDM2 E3 ligase inhibitors.  

Ubiquitination Assay (ELISA)

0

100000

200000

300000

400000

500000

600000

700000

800000

MDM2-
GST and
UBCH5a

GST and
UBCH5a

MDM2-
GST and
UBCH5b

GST and
UBCH5b

MDM2-
GST and
UBCH5c

GST and
UBCH5c

MDM2-
GST and
UBCH7

GST and
UBCH7

empty

RL
U



 14 

 

 
 
Figure 4. Proposed binding site on Mdm2 RING domain, showing K454 coordinating 
phosphate groups of ATP. 
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ABSTRACT

Mdm2, a central negative regulator of the p53 tumor
suppressor, possesses a Really Interesting New
Gene (RING) domain within its C-terminus. In
addition to E3 ubiquitin ligase activity, the Mdm2
RING preferentially binds adenine base nucleotides,
and such binding leads to a conformational change
in the Mdm2 C-terminus. Here, we present further
biochemical analysis of the nucleotide–Mdm2 inter-
action. We have found that MdmX, an Mdm2 family
member with high sequence homology, binds
adenine nucleotides with similar affinity and speci-
ficity as Mdm2, suggesting that residues involved in
nucleotide binding may be conserved between the
two proteins and adenosine triphosphate (ATP)
binding may have similar functional consequences
for both Mdm family members. By generating and
testing a series of proteins with deletions and sub-
stitution mutations within the Mdm2 RING, we
mapped the specific adenine nucleotide binding
region of Mdm2 to residues 429–484, encompassing
the minimal RING domain. Using a series of ATP de-
rivatives, we demonstrate that phosphate coordin-
ation by the Mdm2 P-loop contributes to, but is not
primarily responsible for, ATP binding. Additionally,
we have identified the 20 and 30 hydroxyls of the
ribose and the C6 amino group of the adenine
base moiety as being essential for binding.

INTRODUCTION

Murine double-minute 2 (Mdm2) oncoprotein is a critical
negative regulator of the transcriptional activity and sta-
bility of the p53 tumor suppressor (1,2). As such, Mdm2
has been the focus of numerous and diverse studies aimed
at describing the structural and functional aspects of
Mdm2 as well as Mdm20s ability to interact with and
regulate p53 and other proteins (3,4).

Mdm2 possesses a number of functionally distinct
regions. The N-terminal p53-binding domain (amino
acids 26–108) is primarily responsible for inhibition of
p53 transcriptional activity (5,6). The central acidic
portion of Mdm2 (amino acids 230–274) is the site of
multiple posttranslational modifications and is essential
for p53 degradation (7,8). Mdm2 also has a zinc-finger
domain (amino acids 289–331) whose function has been
correlated with oncogenic properties of Mdm2 (9). At the
extreme C-terminus of Mdm2 (amino acids 437–491) is a
C2H2C4 RING domain (Figure 1A) (10). C2H2C4 refers
to the order of the cysteine and histidine residues that
coordinate two molecules of zinc in a characteristic
‘crossbrace’ fold necessary for structural integrity (11).
The RING domains of Mdm2 and its closely related
family member, MdmX, are highly conserved structurally
although only Mdm2 has demonstrable E3 ligase actvity
(12,13).
Like many other RING containing proteins, the Mdm2

E3 ubiquitin ligase stimulates the transfer of ubiquitin
from the E2 (ubiquitin conjugating enzyme) to target
proteins (14). Mdm2 itself, p53, and MdmX are among
the best-described targets of Mdm2 E3 activity (6,15,16).
MdmX is also able to bind to and transcriptionally inhibit
p53 and is an essential negative regulator of p53 activity
(17,18).
Some RING-containing proteins form higher order

oligomeric complexes that are hypothesized to act as
staging platforms for enhancement of biochemical reac-
tions (19,20). The formation of higher-order oligomers
by Mdm2 requires the extreme C-terminus and is neces-
sary for its ubiquitin ligase activity. Mdm2 is able to form
homo-oligomers with itself and hetero-oligomers with
MdmX (21–23). Consequently, the E3 activity of Mdm2
is altered by the composition of these complexes. Mdm2
homo-oligomers are thought to function primarily in
auto-ubiquitination of Mdm2, while the Mdm2/MdmX
complex seems to be the primary ligase for p53 (24–26).
In addition to mediating ubiquitin ligase activity and

oligomerization, the RING domain of Mdm2 contains
a functional albeit cryptic nucleolar localization signal

*To whom correspondence should be addressed. Tel: 212 854 2557; Fax: 212 865 8246; Email: clp3@columbia.edu

Published online 29 July 2010 Nucleic Acids Research, 2010, Vol. 38, No. 21 7587–7598
doi:10.1093/nar/gkq669

� The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



spanning residues 466–473 (Figure 1A) (27). This basic
patch is able to facilitate association of Mdm2 with the
nucleolus following some forms of DNA damage (27).
Perhaps related to Mdm20s ability to localize to the nucle-
olus is the fact that the RING of Mdm2 interacts with
RNA (28). Additionally, this domain is implicated in allo-
steric control of Mdm2 structure and function (29).
Adding further complexity, the Mdm2 RING domain

contains a Walker A or P-loop motif, characteristic of
ATP/GTP binding proteins (Figure 1A). P-loop residues
are involved in the coordination of the b- and
g-phosphates of nucleotides (30,31). A Walker A consen-
sus sequence is present in all Mdm2 orthologues as well as

MdmX. In a previous study, we determined that Mdm2 is
indeed able to bind nucleotides and that mutations of the
P-loop residues diminish nucleotide-binding activity (32).
Treatment of cells with actinomycin D induces nucleolar
localization of Mdm2, (33) and point mutations in the
P-loop lead to reduced nucleolar localization of Mdm2
following actinomycin D treatment (32). Thus, at least
one of the likely functions of ATP binding by Mdm2 is
the regulation of sub-nuclear compartmentalization. ATP
binding has also been linked to an activity of Mdm2 as a
molecular chaperone for p53 (34), as well as the ability of
Mdm2 to inhibit the DNA-binding activity of the E2F1
transcription factor (35). These studies suggest diverse

Figure 1. Mdm2 and MdmX bind ATP specifically. (A) Diagram of the Mdm2 RING domain. Zinc-coordinating residues (blue) are numbered, and
P-loop motif (pink), nucleolar localization motif (NoLS, purple), and region necessary for Mdm2/X oligomerization (green) are indicated.
(B) GST-Mdm2(400–491) protein binds ATP selectively. Following incubation of Mdm2 with ATP, increasing concentrations of the competitor
nucleotides (as indicated) were added to the reaction mixtures. The g-32P ATP-bound fraction was analyzed by liquid scintillation. (C) Mdm2–ATP
interaction characterized by isothermal titration calorimetry (ITC). Original raw data (upper panel), fit after integration (lower panel).
Two millimoles of ATP was titrated into 100 nM GST-Mdm2(400–491). The binding data was fitted to a single-site binding isotherm after sub-
tracting the heat of dilution generated by injecting ATP into buffer alone. The extracted Kd was &4.0 mM, (D) Binding of Mdm2 to GTP assessed by
ITC. ITC experiments performed as in (B), 100 nM GST-Mdm2(400–491) titrated with 2mM GTP. (E) GST-MdmX(403–490) protein binds ATP
selectively. Competition experiments were performed as in (A) with GST-MdmX(403–490) proteins and a titration of the indicated competitor
nucleotides.

7588 Nucleic Acids Research, 2010, Vol. 38, No. 21



roles for ATP in the activity of Mdm2 and provide the
basis for a more comprehensive investigation of
Mdm2-ATP interaction.

In this study, we interrogate the ATP binding features
of the Mdm2 RING domain, characterize the aspects of
the ATP molecule that are important for the interaction,
and narrow down the region of Mdm2 where ATP binding
occurs. We also show that, like Mdm2, MdmX is able to
bind adenine nucleotides preferentially, suggesting a
conserved functional role for ATP binding between the
Mdm2 and MdmX proteins.

MATERIALS AND METHODS

Protein purification

Glutathione S-Transferase (GST) fusion human Mdm2
RING and MdmX C-terminal domain constructs were
cloned unidirectionally into the pGEX4T1 vector. Point
mutant constructs were created using these GST fustion
constructs as a backbone using the Quickchange
Site-Directed Mutagenesis Kit (Stratagene) according to
manufacturer’s instructions. Constructs were expressed in
Escherichia coli BL21 cells. After induction at 25�C for
16 h with 0.1M IPTG, soluble proteins were extracted
by sonication in lysis buffer (50mM Tris–HCl pH 7.0,
300mM Li2SO4, 1% NP-40, 0.1% aprotinin, 1mM
DTT, 0.5mM PMSF). The soluble protein fraction,
isolated by ultracentrifugation for 1 h at 35 k r.p.m., was
incubated with glutathione-Sepharose beads at 4�C for
1 h, washed extensively with wash buffer (50mM Tris–
HCl pH 7.0, 500mM Li2SO4, 1mM DTT), and eluted
with reduced glutathione in elution buffer (50mM Tris–
HCl pH 7.5, 300mM NaCl, 1mM DTT, 15mM
glutathione).

PK-Ubiquitin, a His-tagged ubiquitin protein that
contains a Protein Kinase A site at the N-terminus, and
His-UbcH5 were prepared as previously described (21).

ATP filter binding and competition assays

Indicated amounts of purified proteins were incubated
with 5 mCi g-32P ATP (Perkin Elmer) and 300 pM un-
labeled ATP in 50 ml binding buffer (0.2mg/ml BSA,
0.5mM DTT, 7mM MgCl2, 15mM NaCl, 10mM Tris–
HCl, pH 7.0) or magnesium free buffer (20mM Tris–HCl,
250mM NaCl, 250mM L-arginine, 0.5mM TCEP, pH
7.0) with or without added magnesium (7mM MgCl2)
for 10min at room temperature. Reaction mixtures were
passed through 0.45-mm pore membranes (Whatman)
under vacuum and washed extensively with 25mM
HEPES buffer, pH 8.0. Filters were air-dried and radio-
activity measured by liquid scintillation. Data were
analyzed with Graphpad Prism software (version 4.0c).
Curves were fit using a sigmoidal dose-response equation
with variable slope [Y=Bottom+(Top-Bottom)/
(1+10 ((logEC50-X)*Hillslope))]. Error bars represent
the standard deviation of two replicates.

For ATP binding competition assays, purified proteins
(7 mg/reaction) were incubated with 5 mCi g-32P ATP and
300 pM unlabeled ATP in 45 ml binding buffer (0.2mg/ml
BSA, 0.5mM DTT, 7mM MgCl2, 15mM NaCl, 10mM

Tris–HCl, pH 7.0) for 10min at room temperature.
Increasing concentrations of unlabeled competitor nucleo-
tides were added and reaction mixtures were incubated an
additional 10min at room temperature. Reaction mixtures
were processed as described above. Data were analyzed
as described above and curves were fit with a one-site
competition equation [Y=Bottom+(Top-Bottom)/
(1+10 (X-logEC50)]. ATP, GTP, AMP, Ribavirin,
Nebularine, adenosine, adenine, 30 deoxyadenosine
(Cordycepin), 20deoxyATP and 20deoxyadenosine were
purchased from Sigma. Ara-A (Vidarabine), F-Ara-A
(Fludarabine), 8-Cl-ATP, and 8-amino-ATP were kind
gifts of Dr Varsha Ghandi.

Isothermal titration calorimetry

Isothermal calorimetry experiments were performed with
a Micro Calorimetry System (Microcal Inc.). 2mM ATP
and GTP in assay buffer (100mM Tris–HCl pH 7.0,
100mM NaCl, 10mM MgCl2, 2mM DTT) were injected
into 100 nM GST-Mdm2(400–491). Twenty injections
were performed. Reactions were normalized using buffer
alone titration data. Titration data were analyzed using
MicroCal Origin software, and the reported binding
constant was derived from four independent
measurements.

In vitro ubiquitination assay

[32P]-labeled PK-ubiquitin was prepared by incubating
50 mg of purified PK-ubiquitin in 50 ml labeling buffer
(20mM Tris–HCl, 12mM MgCl2, 2mM NaF, 50mM
NaCl, 25 mM ATP, 0.1mg/ml BSA) with 20 mCi g-32P
ATP and 500 ng purified PKA catalytic subunit b
(Sigma) for 1 h at 37�C. The kinase was then heat
inactivated for 5min at 65�C. To perform in vitro
ubiquitination reactions, 0.5–2 mg of purified
GST-Mdm2 proteins or GST were incubated with 150 ng
rabbit E1 (Boston Biochem), 50 ng E2 (His-UbcH5c),
Phosphatase Inhibitor Cocktail (Calbiochem) and 2 mg
[32P]-labeled PK-ubiquitin in 30 ml of reaction buffer
(50mM Tris–HCl, pH 7.5, 5mM MgCl2, 0.5mM DTT,
2mM ATP, 0.1mg/ml BSA) for 1 h at 37�C. Aliquots of
reactions were resolved using 8% SDS-PAGE and
analyzed by autoradiography.

RESULTS

Characterization of ATP binding by Mdm2 and MdmX

To begin our study of the Mdm2–nucleotide interaction,
we first confirmed the binding and specificity of Mdm2 for
ATP. To this end, we performed an in vitro competition
assay measuring the fraction of g-32P ATP bound to
GST-Mdm2(400–491) in the presence of increasing con-
centration of a nucleotide competitor. As all the proteins
in this study are fused to GST at the N-terminus, hereto
forth GST will be omitted. We assume that the affinity of
the competitor nucleotide for Mdm2 is directly propor-
tional to the extent of competition. Using this assay, we
determined that Mdm2(400–491) binds adenine nucleo-
tides preferentially with a dissociation constant (Kd)
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in the low micromolar range (Figure 1B). Furthermore,
when GTP was titrated into the binding reaction, we
observed a competition of at least two orders of magni-
tude weaker (in excess of 200 mM) than that detected in the
presence of ATP, confirming the ability of Mdm2 to dis-
criminate between the purine bases. Additional confirm-
ation of affinity and specificity was obtained from
isothermal titration calorimetry (ITC) experiments.
Titration of increasing amounts of ATP into purified
Mdm2(400–491) provided a Kd of 4 mM, a value consistent
with our competition experiment data (Figure 1C). ITC
also confirmed both adenine base specificity, as GTP
binding to Mdm2 was not detected in this assay, as well
as a lack of hydrolysis that we have previously reported
(Figure 1D) (32). These data also validate our competition
assays as an accurate measurement of affinity.
As MdmX has a highly homologous RING domain and

a P-loop motif, we also examined the ability of the MdmX
RING domain to coordinate nucleotides. Using the com-
petition assay described above, we found that MdmX
binds ATP with markedly greater affinity than GTP
(Figure 1E). Furthermore, both Mdm family members
bind ATP with a Kd in the low micromolar range.

ATP binding is structure dependent and magnesium
independent

Magnesium coordination is often a requirement for
P-loop containing proteins to interact with a nucleotide
(36,37). To establish the dependence on magnesium of
the Mdm2–ATP complex, we tested ATP binding of
Mdm2(400–484) in buffers varying in their magnesium
composition. The buffers used in this assay, except for
varying in their magnesium content, are identical to
those used to obtain the NMR solution structure of the
Mdm2 RING domain (10). Interestingly, we found that
Mdm2 is able to bind ATP both in the presence and
absence of magnesium (Figure 2A). The addition of mag-
nesium to the binding buffer somewhat stimulated the
Mdm2–ATP interaction; however, we also observed a
robust magnesium-independent ATP binding. Thus,
while it is likely that magnesium contributes to the most
optimal binding conditions, the magnesium-independent
binding of ATP by Mdm2 is notable, in light of the fact
that many P-loop-containing proteins require magnesium
(36,37).
We next tested the dependence of ATP binding on the

structural integrity of the Mdm2 RING domain. After
treatment of Mdm2(400–491) with three different
denaturing conditions, the protein was no longer able to
bind g-32P ATP (Figure 2B). Performing a similar experi-
ment with the RING domain of MdmX, we determined
that, likewise, ATP binding by MdmX occurred in a
structure-dependent manner (Figure 2C).

Mdm2-ATP interaction is specific and requires residues
outside the P-loop

ATP is highly negatively charged and the RING domain
of Mdm2 contains a cluster of basic amino acids
composing the nucleolar localization signal (Figure 1A)
(27). To rule out non-specific electrostatic interactions of

the phosphate groups of ATP with this region of the
protein, we tested a mutant Mdm2 in which the eight
basic residues of the nucleolar localization signal
(466–473) (Mdm2 NoLS) have been mutated to alanine.
Mutation of these residues neither decreased nucleotide
binding nor affected the specificity (Figure 3A), suggesting
that these residues are not involved in coordination of
nucleotide and excluding the contribution of non-specific
electrostatic interactions as a major component of the
overall binding.

As the Walker A sequence is involved specifically in the
coordination of the b- and g-phosphates of the bound nu-
cleotide (31) mutations of the conserved residues of the
P-loop motif should decrease the affinity for ATP. We pre-
viously reported that a lysine to alanine (K454A) substitu-
tion in the P-loop causes a reduction of Mdm2 RINGATP
binding (32). To expand on this observation we generated
an additional mutation of lysine 454 to aspartic acid
(K454D) and a similar substitution in the P-loop of
MdmX (R453D). Human MdmX has a conservative sub-
stitution of arginine for lysine in the P-loop, however this is
not the case for mouse MdmX. Consistent with previous
data, Mdm2(K454A) showed an impairment in ATP
binding. Both Mdm2(K454D) and MdmX(R453D) were
defective in binding ATP, albeit to a lesser extent than
the alanine substitution in the case of Mdm2 (Figure 3B
and C). Also consistent with previous data is the fact that
these mutant Mdm2 proteins plateau at a lower level of
bound ATP when compared to wild-type protein. Because
none of these P-loop mutants completely lost the ability to
bind ATP, it is highly likely that other residues outside the
P-loop region of the RING domain are also involved in
nucleotide binding.

We confirmed that more than P-loop mediated phos-
phate binding is required for the full extent of the inter-
action with nucleotide by showing that Mdm2 bound
AMP, although with reduced affinity. The apparent Kd

for AMP was �10-fold greater than that of ATP, confirm-
ing the contribution of the P-loop to the overall binding.
However, neither removal of the phosphates nor mutation
of the P-loop residues could disrupt the binding complete-
ly (Figure 3B–D). This, together with the fact that Mdm2
very efficiently discriminates between adenine and guanine
bases, a function independent of the P-loop, we conclude
that other regions within the RING domain are involved
in ATP binding.

Identification of the minimal region of Mdm2 required for
ATP binding

Having established that residues outside the P-loop are
involved in ATP binding by Mdm2, we set out to map
the location of the ATP binding site within the Mdm2
RING domain. This proved challenging, as the structural
integrity of the domain is dependent on eight widely
spaced zinc-coordinating residues, and thus the structure
of the RING will not tolerate significant deletions.

In a previous study, we established that deletion of the
last 7 amino acids of Mdm2 [Mdm2(�C7)] had no effect
on ATP binding, while completely disrupting RING
oligomerization (21). To extend these results, we generated
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two N-terminally deleted GST-Mdm2 RING proteins
Mdm2(415–491) and Mdm2(429–491). These proteins
bound ATP to the same extent as Mdm2(400–491)
in the in vitro competition assays (Figure 4A). We also
tested the integrity of the RING by comparing
the truncated proteins to Mdm2(400–491) in in vitro
ubiquitin polymerization reactions. Because enzymatic
activity of the truncated proteins did not differ from
Mdm2(400–491), we expect that these proteins are
properly folded (Supplementary Figure S1).
Additionally, we determined that both Mdm2(429–491)
and Mdm2(400–484) retained specificity for adenine, as
evidenced by the fact that their affinity for GTP is
200-fold reduced compared to that of ATP (Figure 4B
and C). From the above data, we conclude that ATP
binding region falls within amino acids 429–484
of Mdm2. We have made a number of targeted point
mutations within this region; however, all resulting
proteins retained both nucleotide binding and specificity
(Supplementary Figure S2). Due to the lack of difference
in activity and specificity we used Mdm2(400–484) in
all subsequent binding experiments in this study,
although some of the experiments were also reproduced
with Mdm2(400–491) (Supplementary Figure S3).

Removal of the C6 amino group of the adenine
base prevents binding to Mdm2 but modification
of C8 is tolerated

To further characterize Mdm2–nucleotide binding we
determined features of the ATP molecule that are either
required or dispensable for the interaction. In order to do
this, and to potentially elucidate the environment of the
ATP-binding pocket of Mdm2, we used a number of ad-
enosine analogs. We tested their ability to displace bound
g-32P ATP from Mdm2(400–484) in the in vitro competi-
tion assays as a measurement of affinity. ATP analogs
modified at the C8 position of the adenine base with
either a chlorine or an amine group bound with the
same affinity as unmodified ATP to Mdm2(400–484)
(Figure 5A and B). Based on these data, we concluded
this region of adenine is unlikely to be making contacts
with the RING.
Trying to address the rather remarkable difference in

binding between adenine and guanine base nucleotides,
we also looked at the ability of two other base-modified
ATP analogs to bind to Mdm2. We first examined
Ribavirin, a molecule used as an antiviral drug in
humans, which has a base consisting of a single
five-member ring attached to an amide group (38).

Figure 2. Binding of nucleotide by Mdm2 does not require magnesium but is structure-dependent. (A) Mdm2 binds ATP in the absence of mag-
nesium. Increasing amounts of GST-Mdm2(400–484) protein were incubated with ATP in binding buffer (7mM MgCl2, 15mM NaCl, pH 7.5),
magnesium-free buffer (20mM Tris–HCl, 250mM NaCl, 250mM L-arginine, 0.5mM TCEP, pH 7.0) or magnesium-free buffer with added mag-
nesium (7mM MgCl2). Complexes were filtered through nitrocellulose and counted by liquid scintillation. (B) Mdm2 fails to bind ATP following
denaturation. GST-Mdm2(400–491) (5 mg) was incubated with ATP in binding buffer or in the same buffer supplemented with indicated denaturing
treatments for 10min.Complexes were filtered through nitrocellulose and measured by liquid scintillation. (C) MdmX fails to bind ATP following
denaturation. ATP binding experiments were performed as in (B) using GST-MdmX(403–490) (5mg).
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Testing the affinity of this compound for Mdm2 allowed
us to determine the relative involvement of the two ring
portions of the adenine base, since Ribavirin lacks the
second, six-member ring of adenine. Ribavirin had a Kd

�20-fold greater than adenosine (Figure 5C), indicating a
requirement for the missing portion of the adenine base.
We also tested Nebularine, a toxic nucleoside initially
isolated from fungi, which contains an adenine-like base
that has both ring structures but lacks the C6 amine group
(39). This compound showed no binding to Mdm2
(400–484) in the concentration range up to 1mM, suggest-
ing that the C6 amino group is critical for interaction with
the Mdm2 RING (Figure 5D). Ribavirin may bind with
higher affinity than Nebularine because the amide group
of Ribavirin may substitute for the absent C6 amino
group. The requirement for the C6 amino group for
binding to Mdm2 is both consistent with and lends
further support to our data demonstrating that the
Mdm2 RING binds adenine nucleotides specifically.

The Mdm2 RING domain requires 20 and 30 ribose
hydroxyls for binding

Having addressed the features of the nucleotide base
required for interaction with Mdm2, we next wanted

to interrogate the contribution of the ribose to the
overall binding. To this end, we examined several ATP
analogs that contain a modified ribose in the competition
assay.

Adenosine, an analog of ATP lacking all phosphate
groups but which retains the ribose and the adenine base
bound Mdm2 with affinity approximately a factor of
10 less than ATP (Figure 6A). However, removal of the
ribose (leaving only the adenine base) decreased binding to
the Mdm2 RING by �1000-fold compared to ATP
(Figure 6B). Thus, the ribose part of the nucleotide is
essential for ATP–Mdm2 binding.

Exploring the contribution of the sugar hydroxyls, we
found that 30 deoxyadenosine bound Mdm2 very poorly
(Figure 6C) (this compound did not completely compete
off bound ATP within the concentrations used in this
assay so a Kd can not be accurately determined).
20 deoxyATP bound the Mdm2 RING 100-fold less well
than ATP and further removal of the phosphate groups
(20 deooxyadenosine) completely abrogated the binding
(Figure 6D and E). These data suggest that the ribose
portion of the nucleotide, specifically the 20 and
30 hydroxyl groups, are the primary energetic contributors
to the interaction with Mdm2.

Figure 3. ATP interaction is specific and requires residues outside the P-loop of Mdm2. (A) Multiple lysine substitution mutation does not effect
ATP binding. Competition assay was performed with indicated nucleotides using an Mdm2(410–491) protein that has eight lysines mutated to
alanine (8KA, Mdm2-NoLS). Mdm2-NoLS bound ATP with a Kd in the low micromolar range, and showed specificity for ATP over GTP.
(B) Mutation of P-loop lysine 454 disrupts Mdm2–ATP binding. Increasing amounts of wild-type GST-Mdm2(400–491) and mutant (K454A and
K454D) proteins were incubated with ATP in binding buffer. ATP binding was detected as in (2A). (C) P-loop mutation decreases ATP binding of
MdmX. Increasing amounts of wild-type GST-MdmX(403–490) and mutant (R453D) proteins were incubated with ATP in binding buffer.
ATP binding was detected as in (2A). (D) Removal of b- and g-phosphates of ATP reduces binding. Pre-formed Mdm2(400–484)–ATP complex
was incubated with increasing amounts of AMP as competitor. Competition assay was performed as in (1A).
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Figure 4. Shorter constructs of Mdm2 retain the ability to bind ATP. (A) N-terminally deleted Mdm2 constructs (415–491 or 429–491) bind ATP
similarly to Mdm2(400–491). Increasing amounts of GST-tagged Mdm2 proteins (as indicated) were incubated with ATP. Mdm2–ATP complexes
were measured as in (2A). (B and C) Shorter Mdm2 RING domain constructs retain specificity for ATP. (B) GST-Mdm2(429–491) and
(C) GST-Mdm2(400–484) were subjected to competition experiments with ATP and GTP as competitor nucleotides. Experiments were performed
as in (1A).

Figure 5. Mdm2 requires the adenine base for binding to ATP. (A–D) GST-Mdm2(400–484)–ATP complexes were subjected to competition by base
modified adenine nucleotide analogs [(A) 8-Cl-ATP, (B) 8-amino ATP, (C) Ribavirin, (D) Nebularine]. Competition assays were performed as in
(1A). Structures of competitor nucleotides are shown next to their respective binding curves.
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Mdm2 ATP binding requires cis-orientation of the
ribose hydroxyls

Based on the fact that ribose appeared to be essential for
binding to Mdm2, we tested the binding of an arabinose
(an identical monosaccaride to ribose except for a trans-
orientation of the 20 and 30 hydroxyl groups) containing
adenosine analog, Ara-A. This compound, also known as
Vidarabine, is used in humans as an anti-viral drug
(40–42). Ara-A bound to Mdm2(400–484) with signifi-
cantly lower affinity than adenosine (Figure 7A). The
Kd for this compound could not be accurately calculated
due to incomplete competition of ATP within the con-
centration range used in the experiment. We also
tested the binding of an analog of Ara-A in which the
C2 position is modified with a fluorine atom. This
compound, F-Ara-A or Fludarabine, is used as a
chemotherapeutic agent against hematologic

malignancies and functions by interfering with
ribonucleotide reductase and DNA polymerase (43–45).
Similarly to Ara-A, F-Ara-A did not bind to the Mdm2
RING within the concentrations tested in our assay
(Figure 7B). These data suggest that Mdm2–ATP inter-
action requires the cis-orientation of hydroxyl groups
found in ribose. We also observed that cis-orientation
of the sugar hydroxyls combined with modification of
the adenosine base is completely prohibitive of binding
to Mdm2 (Figure 7B).

Using the binding data from of our competition studies
with nucleotide analogues, we have constructed a map of
the features of the ATP molecule that are required for
interaction with Mdm2 (Figure 8). This map identifies
both molecular moieties that are required for interaction
with Mdm2 as well as modifications that interfere with
binding.

Figure 6. Mdm2 RING domain requires 20 and 30 ribose hydroxyls for binding. (A–E) GST-Mdm2(400–484)–ATP complexes were subjected
to competition by sugar-modified adenine nucleotide analogs [(A) Adenosine, (B) Adenine, (C) 30deoxyadenosine, (D) 20 deoxyATP,
(E) 20 deoxyadenosine]. Competition assays were performed as in (1A). Structures of competitor nucleotides are shown next to their respective
binding curves.
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DISCUSSION

Overall, our data describe the unique characteristics of
nucleotide binding by Mdm2 and MdmX. We have con-
firmed that the Mdm2 RING domain binds to adenine
nucleotides specifically. We showed that Mdm2 and
MdmX each contain a functional P-loop motif both by
mutagenesis of the P-loop lysine and via binding studies
with nucleotide analogues. Through the use of deletion
mutagenesis, we found that the ATP binding region lies
between residues 429–484 within the zinc-coordinating
region of the Mdm2 RING domain.

Our inability to identify residues outside the P-loop
involved in nucleotide binding could stem from the fact
that ATP interaction may involve the peptide backbone of
Mdm2. Several instances of at least a portion of the ATP

binding pocket involving the peptide backbone have been
described (46,47). Backbone interactions may be uniquely
required or might function in concert with a number of
R-groups in ATP coordination by Mdm2. Once identified,
such interactions could increase specificity of designed in-
hibitors of ATP binding (48).
While the phosphate groups of ATP contribute to

binding, the removal of the b- and g-phosphates only
reduced affinity by approximately a factor of 10. It has
been previously established that removal of the g phos-
phate of ATP has little effect on Mdm2 binding, as
ADP binds with similar affinity as ATP to the Mdm2
RING (32). This fact as well as the fact that the
addition of magnesium to the binding buffer only
modestly increases ATP binding by Mdm2 supports a

Figure 8. Features of ATP required for binding to Mdm2 RING domain. (A) Structure of ATP summarizing the relative requirements of its
structural features for binding to the Mdm2 RING domain. These requirements are represented by dissociation constants (Kd) of adenine nucleotide
analogs calculated from binding experiments shown above. Atoms of the adenine base are numbered for reference. (B) Table of Kd values for
nucleotide analogs binding to the Mdm2 RING domain calculated from binding experiments above. ND (not determined) indicates that a Kd was
not calculable from the measurements obtained from the competition assay. Standard error is indicated.

Figure 7. Mdm2 requires cis-orientation of 20 and 30 sugar hydroxyl for nucleotide binding. (A and B) GST-Mdm2(400–484)–ATP complexes were
subjected to competition by arabinose-containing ATP analogs. [(A) Ara-A, (B) F-Ara-A]. Competition assays were performed as in (1A). Structures
of competitor nucleotides are shown next to their respective binding curves.
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limited role for the P-loop residues in ATP binding. Our
study established that the largest contributors to the
binding are both of the ribose hydroxyls as well as the
amine group on the nucleotide base. Based on these
data, we conclude that residues outside of the
Mdm2P-loop are involved in the interaction with nucleo-
tide. Furthermore, the decrease in affinity following the
removal of the C6 amine group is consistent with Mdm2
binding adenine nucleotides specifically, showing a re-
quirement for adenine-specific aspects of ATP and an in-
tolerance for modifications of the ATP molecule that
make it more similar to GTP. Consistently, we observed
that the C8, but not the C2 carbon of the adenine base
might be modified without disruption of the binding.
We identified a striking requirement for cis-orientation

of the ribose hydroxyls for full Mdm2–nucleotide binding.
Adenosine and deoxyadenosine analogs that contain ara-
binose are well established as inhibitors of DNA synthesis
and repair enzymes and have been used as
chemotherapeutic agents (49–51). Although these
analogs have been shown to bind several
ATP-dependent enzymes, they will not bind efficiently to
Mdm2 or MdmX, presumably because of a more specific
binding pocket. Such specificity could aid in identification
of the residues involved as well as aid in design of poten-
tial inhibitors.
As mentioned above, Mdm2 shows a special specificity

for nucleotides, including specificity for aspects of the
sugar and base moieties of ATP that many other
nucleotide-binding proteins lack. For example, many
P-loop containing proteins are well-characterized
GTPases and can bind both ATP and GTP (31).
Extending this study will hopefully provide additional
insight into the ATP-regulated functions of the Mdm2
RING domain, which may be diverse and important
(29,35).
In our experiments, Mdm2 homolog MdmX also bound

ATP specifically and with the same affinity as Mdm2 and
mutation of the P-loop of MdmX disrupted but did not
abrogate ATP binding, suggesting a binding site that is
very similar to that contained within the Mdm2 RING.
Some but not all functions of Mdm2 are shared by
MdmX; our data indicate that ATP binding and its sub-
sequent effects on MdmX function may be related to that
of Mdm2.
Several studies have focused on the functional implica-

tions of the Mdm2–ATP interaction. Our original study of
ATP binding revealed that ATP-bound Mdm2 is prefer-
entially localized to the nucleolus (32). Nucleolar localiza-
tion of Mdm2 is one of the mechanisms by which Mdm2
function is downregulated following multiple forms of
DNA damage. This is particularly interesting in light of
emerging evidence for the role of Mdm2 in monitoring
ribosomal biogenesis. Mdm2 binds several ribosomal
proteins, including RPL5, RPL11, RPL23 and RPS7.
Binding to these proteins inhibits the ubiquitin ligase
function of Mdm2 and promotes stabilization and activa-
tion of p53. This provides a mechanism for signaling to
p53 after disruption of the nucleolus or protein synthesis
(52,53). Perhaps ATP-bound Mdm2 is more likely to
interact with the above-mentioned subset of ribosomal

proteins than the unbound form, establishing an addition-
al level of regulation. What is further intriguing is that
while ATP binding is conserved between Mdm2 and
MdmX, the later lacks an NoLS signal and thus it is
possible that ATP binding of MdmX could lead to differ-
ent changes in localization and have additional effects on
the activity of MdmX.

Mdm2 also possesses ATP-dependent chaperone
activity and can substitute for Hsp-90 in promoting
sequence specific binding of p53 at 37�C. In a manner
similar to other chaperones, Mdm2 binds partially
unfolded p53 and, upon ATP-binding, releases p53,
which then assumes the most energetically favorable con-
formation (34). In this light, our data may suggest that the
features of ATP that do not play a direct role in binding to
Mdm2 may actually be essential for the dissociation and
subsequent proper folding of p53 and for regulation of
transcriptional repression of p53. The ability of MdmX
to bind ATP is also interesting here, as one would
predict that both family members would have similar
chaperone activity toward p53.

Additionally, ATP binding has been implicated in allo-
steric regulation of the Mdm2 protein (29,34). In this
model, binding of different ligands (such as ATP or its
variants) to the RING domain of Mdm2 induces
long-range conformational changes in the N-terminal
hydrophobic pocket region of Mdm2, leading to alter-
ations in binding to p53 and other N-terminal interactors.
If independent structural domains of Mdm2 and, presum-
ably, MdmX are indeed allosterically connected, it would
seem likely that the features of the nucleotide bound to the
RING domain could modulate the range and amplitude of
the induced structural changes.

We have previously shown that the ability of Mdm2 to
bind ATP and its ability to ubiquitinate targets are separ-
able biochemical activities (32). Mdm2(�C7) is able to
bind nucleotide to the same extent as wild-type protein
but is not a competent E3 ligase as it is unable to oligo-
merize (21,22). Conversely, Mdm2 K454A is a good E3
ligase but a poor ATP binder. The notion that ATP
binding is a function unrelated to Mdm2 E3 activity is
further supported by our data that MdmX, which is not
a ubiquitin ligase, is also able to bind ATP (13). As more
evidence within the Mdm2 field accumulates to show that
Mdm2 and MdmX work as a complex to regulate their
major target, p53, it will be interesting to see how their
shared ability to bind nucleotide contributes to this
function. As binding to ATP causes a conformational
change in the Mdm2 RING domain (32), and the
Mdm2–X complex is formed by the interaction of these
domains (21–23), it is possible that ATP binding is
involved in the modulation of the formation of this
complex and the regulation of its activity.

Disruption of Mdm2 activity is one of several methods
currently being pursued as a mechanism of reactivation of
the tumor suppressor functions of p53 in malignancies
(16,54). The existence of a unique ATP binding pocket
in Mdm2 could provide a rare opportunity to design
small compounds that interact with and inhibit Mdm2
with high level of specificity in vivo. Such compounds
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may have therapeutic value and serve as invaluable inves-
tigative tool in the laboratory setting.
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