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Abstract

Coastal and estuarine environments experience large variability and rapid shifts in
pCO: levels. Elevated pCOq, or ocean acidification, often negatively affects early life
stages of calcifying marine invertebrates, including bivalves, but it is unclear which
developmental stage is most sensitive. [ hypothesized that initial calcification is a
critical stage during which high pCOz exposure has severe effects on larval growth
and development of bay scallop (Argopecten irradians). Using five experiments
varying the timing of exposure of embryonic and larval bay scallops to high CO2, this
thesis identifies two distinct stages of development during which exposure to high
CO2/low pH causes different effects on bay scallop larvae. I show that any exposure
to high CO: consistently reduces survival of bay scallop larvae. I also show that high
COz exposure during initial calcification (12-24 h post-fertilization) results in
significantly smaller shells, relative to ambient conditions, and this size decrease
persists through the first week of development. High COz exposure at 2-12 h post-
fertilization (pre-calcification), does not impact shell size, suggesting that the CO>
impact on size is a consequence of water chemistry during calcification. However,
high CO; exposure prior to shell formation (2-12 h post-fertilization) causes a high
incidence of larval shell deformity, regardless of CO2 conditions during initial
calcification. This impact does not occur in response to high CO2 exposure after the
2-12 h period. The observations of two critical stages in early development has
implications for both field and hatchery populations. If field populations were able
to time their spawning to occur during the night, larvae would undergo initial
calcification during the daytime, when CO; conditions are more favorable, resulting
in larger veliger larvae. Hatcheries could invest minimal resources to monitor and
modify water chemistry only during the first day of development to ensure larva are
exposed to favorable conditions during that critical period.
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Thesis Co-Advisor: Daniel C. McCorkle
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1.1 Ocean Acidification

Since the industrial revolution, the burning of fossil fuels, cement production,
and land-use changes have increased atmospheric concentrations of carbon dioxide
(CO2) from preindustrial levels of approximately 280 ppm to the approximately
390.5 ppm today (Conway and Tans 2012). The rate of this increase is an order of
magnitude higher than has occurred for millions of years (Doney and Schimel 2007).
Over time, much of this CO2 moves from the atmosphere into the ocean, where it
reduces seawater pH. Within the past decade, this process, known as ocean
acidification (OA), has gained recognition in part because it is likely to have an

impact on both calcifying and non-calcifying marine organisms.

1.2 Ocean Carbonate System
Once CO2 enters the ocean, its chemistry is governed by a series of chemical

reactions:
CO, g <> COypq+ Ho0 <> HyCO5 <> HCOZ +H' <> CO3™ +H' 1)
Dissolved CO2 reacts with water to form carbonic acid (H2CO3), which further

dissociates to form bicarbonate (HCO3) and carbonate (CO%‘) and two hydrogen

ions. These reactions are reversible and approach equilibrium rapidly (seconds to
minutes) in seawater (Zeebe and Wolf-Gladrow 2005). The sum of the
concentrations of dissolved CO», carbonic acid, bicarbonate, and carbonate ions
makes up the total dissolved inorganic carbon (DIC). At the pH of seawater (~8.1),

90 % of DIC is in the form of bicarbonate, 9 % is in the form of carbonate, and 1 % is

14



in the form of dissolved CO2. When CO; is added to the system, it increases the total
DIC as well as the concentration of hydrogen ions, which results in a decrease in pH.
As pH drops, it shifts the equilibrium between carbonate species, increasing
bicarbonate concentration and decreasing carbonate concentration (Stumm and
Morgan 1996).

The decrease in carbonate ion concentration has implications for
biocalcification because it reduces the saturation state of calcium carbonate.
Calcium carbonate dissolves to form carbonate and calcium ions in a dissolution

reaction governed by the solubility product Ksp:

CaCO, «—L—>C0% +Ca® (2)

Calcium carbonate formation and precipitation vary with calcium carbonate

saturation state (1), defined as:

2+ 2—
Q= [Ca ]observed[C03 ]observed (3)

Ksp

Saturation state depends on temperature, pressure, salinity, and the mineral phase
of calcium carbonate, with aragonite being more soluble than calcite. When (1 is
greater than 1, seawater is supersaturated and precipitation of calcium carbonate
and biocalcification is thermodynamically favorable. When  is less than 1,
seawater is undersaturated, or corrosive, and pure calcium carbonate and
unprotected shells will begin to dissolve. Calcium ion concentration is proportional
to salinity, so when salinity variations are small, such as in the open ocean, (1 is

largely determined by changes in carbonate ion concentration (Stumm and Morgan
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1996; Zeebe and Wolf-Gladrow 2005). When carbonate ion concentration decreases
as a result of decreasing pH, (1 also decreases. A drop in (1 can make calcification (or
shell-building) more difficult, or more energetically costly for calcifying marine

organisms (Orr et al. 2005; Gazeau et al. 2007; Waldbusser et al. 2011).

1.3 Coastal and Estuarine Acidification

The mechanisms by which increased pCO: affects pH and () are the same,
regardless of how the CO; enters the system. However, the processes by which CO>
enters the water differ between open ocean systems and coastal and estuarine
systems. In the open ocean, the majority of CO; enters the water from the
atmosphere through air-sea exchange. Coastal and estuarine environments, where
many commercially and economically important organisms live, experience larger
variability and more rapid shifts of pCO; levels than the open ocean (Cai and Wang
1998; Howarth et al. 2011; Hofmann et al. 2011). Carbonate chemistry fluctuates as
a result of both natural and anthropogenic processes on timescales ranging from
daily to seasonal (Melzner et al. 2012). During daytime, photosynthesis accounts for
a decrease in pCOz and an increase in dissolved oxygen (DO). At night,
photosynthesis ceases and respiration of autotrophs and heterotrophs alike results
in increased pCO; and a decrease in DO. This creates an approximately 24-h cycle of
higher pH during the daytime and lower pH at night. These cycles can be easily seen
in the data provided by the National Estuarine Research Reserve System’s

Centralized Data Management Office (NOAA 2012). For example, at Childs River in
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the Waquoit Bay National Estuarine Research Reserve, DO and pH are measured in
situ every 15 minutes throughout the year; in July 2008, DO and pH reached peak
values in the late afternoon/early evening (~3:00 - 6:00 pm) and minimum values
in the morning (~5:00 - 8:00 am; NOAA 2004). Seasonally, microbial respiration of
organic matter increases during summer months when the water temperature
increases. Along with seasonal stratification, this can lead to sub-surface areas of
increased CO; and decreased pH and DO (Dai et al. 2006; Diaz and Rosenberg 2008;
Howarth et al. 2011; Melzner et al. 2012). Eutrophication of coastal and estuarine
waters further expands the seasonal variability of dissolved CO2 in coastal and
estuarine systems by fueling massive algal blooms and therefore increasing the
amount of organic matter available for microbial respiration (Rabalais et al. 2002;
Galloway et al. 2008; Diaz and Rosenberg 2008; Cai et al. 2011).

In addition to the impacts of seasonal cycles and eutrophication on their
carbonate chemistry, coastal and estuarine environments are also affected by global
OA resulting in increased atmospheric CO; levels (Caldeira and Wickett 2003; Doney
etal. 2009; Feely et al. 2009). Coastal regions may be more vulnerable to OA than
open ocean regions because their buffering capacity is reduced relative to the open
ocean (Zeebe and Wolf-Gladrow 2005; Denman et al. 2007; Feely et al. 2009; Borges
and Gypens 2010; Cai et al. 2011; Melzner et al. 2012; Sunda and Cai 2012).
Therefore, it is possible that increases in COz could have a greater effect on pH in
coastal and estuarine systems than on open ocean systems (Cai et al. 2011; Melzner

etal. 2012).
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1.4 Exposure of Marine Larvae to Coastal and Estuarine Acidification

Early life stages of marine invertebrates are particularly vulnerable to a
variety of environmental conditions including both chemical and physical stressors
(Pechenik 1987), and their development is key for the successful recruitment, and
therefore survival, of the species (Cowen et al. 2000). There is increasing evidence
that early life stages of marine invertebrates, particularly of those that produce
calcareous skeletons or shells, are negatively affected by high CO2 conditions. Many
calcifying marine invertebrates, including bivalves, spawn during summer months
(Belding 1910; Costello and Henley 1971) when pCOz levels are at the highest and ()
is the lowest (Feely et al. 2010; Waldbusser et al. 2011; Melzner et al. 2012). As
atmospheric COz-driven OA and anthropogenic eutrophication increase, the
conditions experienced by coastal and estuarine bivalve larvae will become
increasingly unfavorable for shell growth and development. Additionally, all
bivalves, including those that produce calcite shells as adults, produce their larval
shells from aragonite, a more soluble form of calcium carbonate (Carriker and
Palmer 1979), which could increase the vulnerability of bivalve larvae to high CO>
conditions.

Some bivalve species appear to be more tolerant of OA conditions than
others (Miller et al. 2009), but negative effects of OA have been shown on all early
life stages of bivalves, including fertilization, larval development, and juvenile

development (Parker et al. 2009; Miller et al. 2009; Watson et al. 2009; Gazeau et al.
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2010; Parker et al. 2010; Waldbusser et al. 2011; Gazeau et al. 2011; Van Colen et al.
2012). The pH decrease since pre-industrial times may have already had an impact
on bivalve larvae, as both hard clam (Mercenaria mercenaria) and bay scallop
(Argopecten irradians) larvae experienced delayed metamorphosis when exposed to
present-day atmospheric COz conditions relative pre-industrial conditions (Talmage
and Gobler 2010). Exposure to high CO2/low pH water has been shown to decrease
survival, delay metamorphosis, and negatively affect growth of bivalve larvae
(Watson et al. 2009; Van Colen et al. 2012).

While the evidence is clear that larval bivalves are strongly impacted by high
COz conditions, it is not well understood how variable exposure to high CO>
conditions affects larval growth, development, and survival, nor at what stage is
such exposure most critical. Such questions have relevance to both natural ecology
and practical applications. In the field, larvae are exposed to variable CO; conditions
spatially as they are transported through estuaries and temporally on daily
timescales as described above. Also, larvae of many bivalve species are reared in
commercial hatcheries (Shumway and Parsons 2006), and hatcheries would benefit
from an understanding of which developmental stages are most vulnerable to high
COz conditions and how exposure at different stages may affect larval development

differently.

1.5 Thesis Goals
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[ conducted experiments to determine how exposure to high CO2 (~2200
ppm) during the earliest stages of embryonic and larval development affect bay
scallop (Argopecten irradians) larval growth, survival, and development. The
experiments were also designed to determine if there is a period of early
development in which exposure to high CO2 has critical, persistent impacts on later
development, and to identify the timing of that period as closely as possible.
Embryonic and larval bay scallops were exposed to high CO; conditions for variable
amounts of time at varying stages of their development. Each experiment included
initial and subsequent CO; exposures (i.e, a “switch” design, Fig. 1.1), with the timing
of the transition as the main difference among experiments. Most experiments
consisted of four experimental treatments with four different CO2 exposure regimes:
continuous exposure to ambient CO2 (ambient treatment), continuous exposure to
high CO; (high CO2 treatment), initial exposure to ambient CO; followed by exposure
to high COz (switch to high CO2 treatment), and initial exposure to high CO; followed
by exposure to ambient CO; (switch to ambient treatment). Four different
experiments were performed in which the switch occurred 2 h post-fertilization
(Fertilization Experiments 1 and 2), 12 h post-fertilization (12-h Switch
Experiment), 24 h post-fertilization (24-h Switch Experiment), or 3 d post-
fertilization (3-d Switch Experiment). The timings of these switches were chosen
based on the timing of events during early bay scallop larval development (Fig. 1.2).

Each chapter presents the results of 1 or 2 different experiments. In Chapter

2, the 3-d Switch Experiment shows that exposure to high CO2 during early larval
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development negatively impacts larval size and that switching the CO2 conditions
after the first three days of development does not affect larval size. In Chapter 3, the
results of Fertilization Experiments 1 and 2, indicate that exposure to high CO>
during fertilization affects survival, but not larval size. In Chapter 4, the results of
the 12- and 24-h Switch Experiments show that exposure to high CO; conditions
prior to calcification produces different effects on larval development than exposure
to high COz conditions during initial calcification.

The combined results of all the experiments show that any exposure to high
CO2 conditions consistently reduce survival of larval bay scallops. I also find that
exposure to high CO; during the onset of calcification (12-24 h post-fertilization)
negatively impacts larval size of bay scallops and that exposure to high CO; prior to
shell formation (2-12 h post-fertilization) causes a high incidence of larval shell
deformity, regardless of CO; conditions during initial calcification. These results
have both ecological and commercial implications. Based on daily fluctuations in
CO2 conditions, the timing of scallop spawning in the field could result in the larvae
being exposed to either favorable or unfavorable conditions during the critical 12-
24 h post-fertilization period. Additionally, based on my findings, hatcheries could
limit their monitoring and modification of water chemistry to during the first day of
development only. Because this first day of development is critical to larval size and
shell formation, but exposure to high CO2 after this period does not affect either
aspect, hatcheries would not need to invest resources into water chemistry

manipulation beyond the first day.
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Figure 1.1. Schematic of the experimental design used for all experiments
described in this thesis. Scallop larvae were initially exposed to either ambient or
high CO conditions for a period of time. Subsequently, half of the scallops exposed
to each CO; condition were switched to the other COz condition, resulting in four
treatment groups, each with a different CO2 exposure regime. The main difference
between the experiments is the age at which the switch in CO2 conditions occurred.
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Figure 1.2. Bay scallop life cycle showing the timing of the switch in each
experiment. Bay scallop adults live on the seafloor, but larvae spend their time in
the water column and are transported by tidal and wind-driven currents. During
the trochophore stage (~ 12 h post-fertilization), the larval shell starts formation
and calcification. By the time larvae are 1 d old, the shell is generally fully calcified.
When larvae are 2 d old, they have reached the D-stage, with a shell that looks like a
capital letter ‘D.” Atabout 10 d, the larvae develop a foot and are known as
pediveligers. They test substrates to find a location ideal for settling. Larvae
generally metamorphose to juveniles by the time they are 2 wk old. Juveniles may
live on a substrate such as eelgrass, but when they grow larger, they move to the
seafloor and live there for up to 2 yr, although the majority are harvested by
commercial fishermen when they are 1.5 yr old.
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2.1 Abstract

Ocean acidification, characterized by elevated pCO2 and the associated
decreases in seawater pH and calcium carbonate saturation state (1), has a variable
impact on the growth and survival of marine invertebrates. Larval stages are
thought to be particularly vulnerable to environmental stressors, and negative
impacts of ocean acidification have been seen on fertilization as well as on
embryonic, larval, and juvenile development and growth of bivalve molluscs. We
investigated the effects of high CO exposure (resulting in pH = 7.39, Qar = 0.74) on
the larvae of the bay scallop Argopecten irradians from 12 h to 7 d old, including a
switch from high CO2 to ambient CO; conditions (pH = 7.93, Qar = 2.26) after 3 d, to
assess the possibility of persistent effects of early exposure. The survival of larvae
in the high CO; treatment was consistently lower than the survival of larvae in
ambient conditions, and was already significantly lower at 1 d. Likewise, the shell
length of larvae in the high CO; treatment was significantly smaller than larvae in
the ambient conditions throughout the experiment and by 7 d, was reduced by 11.5
%. This study also demonstrates that the size effects of short-term exposure to high
CO; are still detectable after 7 d of larval development; the shells of larvae exposed
to high CO; for the first 3 d of development and subsequently exposed to ambient
CO2 were not significantly different in size at 3 and 7 d than the shells of larvae

exposed to high COz throughout the experiment.
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2.2 Introduction

Coastal marine invertebrates are exposed to dissolved carbon dioxide levels
that fluctuate on time scales ranging from daily to seasonal as a result of both
natural processes and human activities (Cai and Wang 1998; Howarth et al. 2011;
Hofmann et al. 2011). These aqueous CO levels are likely to increase (and pH to
drop) in the decades ahead as a consequence of ocean acidification (OA), the uptake
of anthropogenic CO2 by the ocean (Feely et al. 2004; Orr et al. 2005; Doney et al.
2009). Since pre-industrial times, increases in anthropogenic emissions of COz have
caused a decrease in surface ocean water pH of 0.1 units, and a decrease of another
0.2-0.3 units is projected by the end of this century (Orr et al. 2005; Feely et al.
2009). As seawater pH decreases, its calcium carbonate saturation state (1) also
decreases, and drops in (2 have the potential to make calcification (or shell-building)
more difficult, or more energetically costly for the organism (Orr et al. 2005; Gazeau
et al. 2007; Waldbusser et al. 2011).

While changes in surface ocean pH are happening on a global scale, the
processes affecting coastal and estuarine ocean pH are different and result in more
seasonably variable conditions than in the open ocean (Feely et al. 2010; Howarth et
al. 2011; Cai etal. 2011). Anthropogenic eutrophication is a major factor influencing
acidification of coastal and estuarine regions (Borges and Gypens 2010; Waldbusser
et al. 2011; Sunda and Cai 2012). Eutrophication results in algal blooms, which
eventually die, sink to the seafloor, and fuel microbial respiration (Rabalais et al.

2002; Diaz and Rosenberg 2008). This process is exacerbated during summer
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stratification events (Chou et al. 2009) and can produce low-pH seasonal bottom
waters that are undersaturated with respect to aragonite (Feely et al. 2010).
Because many coastal bivalve species spawn during summer months, the larvae are
exposed to such conditions. Furthermore, because the buffering capacity of
seawater is reduced as dissolved inorganic carbon (DIC) increases, it has been
suggested that eutrophication could increase the susceptibility of coastal waters to
ocean acidification (Cai etal. 2011). As atmospheric CO2-driven OA and
anthropogenic eutrophication increase, the conditions experienced by bivalve
larvae will become increasingly unfavorable for shell growth.

Marine invertebrate larvae are vulnerable to a variety of environmental
conditions including both chemical and physical stressors (Pechenik 1987). There
is mounting evidence for negative effects of OA on marine invertebrate larvae,
especially bivalve mollusc species that produce calcareous skeletons or shells. For
example, mussel and oyster larvae raised in water with pH ~7.4 were shown to have
delayed development to D-stage veligers compared to larvae raised in ambient pH
~8.1 (Kurihara et al. 2007; 2008). Talmage and Gobler (2010) showed that hard
clams (Mercenaria mercenaria) and, to a lesser extent, bay scallops (Argopecten
irradians) experienced delayed metamorphosis at present-day conditions compared
to pre-industrial conditions, suggesting that the 0.1 pH decrease in the last 150
years has already had an impact on bivalve species. OA has been shown to have a
negative impact on multiple early life stages of bivalves, including fertilization, D-

stage (early) development, later larval development, and juvenile development
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(Parker et al. 2009; Miller et al. 2009; Watson et al. 2009; Gazeau et al. 2010; Van
Colen et al. 2010; Parker et al. 2010; Waldbusser et al. 2011; Gazeau et al. 2011).
Some species appear to be more tolerant of OA conditions than others. For example,
two species of oysters displayed different trends when exposed to a range of pCO:
values resulting in an aragonite saturation state (Qaragonite) of 1.3 - 0.6 for ~30 days;
Crassostrea virginica had decreased shell area and decreased calcification with
decreasing Qar, but Crassostrea ariakensis showed no change in shell area or
calcification (Miller et al. 2009). Nonetheless, the majority of work has
demonstrated that young bivalves are negatively impacted by the high CO2/low pH
conditions resulting from ocean acidification. There is evidence that the earliest
larvae of some species are susceptible to OA (Kurihara et al. 2007; 2008; Van Colen
etal. 2012). Additionally, OA conditions have been shown to negatively affect the
survival of bay scallop larvae and the size of competent and post-metamorphic bay
scallops (Talmage and Gobler 2009; 2010; 2011).

Here, we address the impact of early exposure to elevated COz on the survival
and growth of bay scallop larvae. Bay scallops are ideal as a model organism for this
study because of their economic importance as a commercially harvested shellfish
and because of their relatively short larval duration (~2-3 weeks). We also
investigate whether transferring the larvae to ambient conditions can reverse the
effects of early high CO; exposure. Such a scenario is ecologically relevant in a
situation where larvae are spawned in an estuary with relatively high pCO2 and are

subsequently transported by currents or tides out of the estuary to sites with a
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lower pCO2, We exposed larvae to ambient (nominally 390 ppm CO2, pH = 7.93) and
high (nominally 2200 ppm COz, pH= 7.39) CO2 conditions for a total of 18 days. The
high CO; treatment produced a calcium carbonate saturation state that was
undersaturated with respect to aragonite. Such pCO2 values and associated
saturation states have been observed in summer months in a local estuary (Childs
River, Falmouth, MA, USA) where bivalve larvae are found (McCorkle et al. 2012). In
addition, we exposed a third group of larvae to high CO; conditions for three days
(through the larval D-stage), followed by exposure to ambient CO; conditions for 15
days. We show that larvae exposed continuously to high CO; have significantly
smaller shells at 1 d, relative to larvae exposed continuously to ambient COz and
that this difference in size persists throughout the first week of development. We
also show that a switch to ambient CO2 conditions after initial 3 d exposure to high

CO; does not affect larval shell size.

2.3 Methods

2.3.1 Adult Collection and Spawning

Adult A. irradians (subspecies irradians) individuals were collected during
spring and summer months from coastal waters around Mashpee, Massachusetts
and were held in submerged cages in Little River, an estuarine river near Waquoit
Bay, Massachusetts, until needed. Several days prior to spawning, the adults were

brought to Woods Hole Oceanographic Institution, where they were maintained in
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16 °C flowing seawater and fed daily with Instant Algae Shellfish Diet (Reed
Mariculture, Campbell, CA, USA).

Spawning was induced by placing the hermaphroditic adults in a 20 °C bath
with ambient CO> flowing seawater and gradually raising the temperature to a
maximum of 25 °C. When an individual spawned, it was moved to a beaker of 20 °C,
0.35 pm filtered seawater (FSW) and the spawned gametes were examined to
distinguish eggs from sperm. To prevent self-fertilization, the water in the beakers
was changed every 10-15 min. Eggs were rinsed through a 75 pm filter to remove
debris, collected on a 20 um filter, and subsequently pooled. Seawater with sperm
was rinsed through a 20 pum filter to remove debris and the sperm was pooled. Eggs
were collected from four individuals and sperm was collected from ten individuals.
If a scallop released both eggs and sperm, only the eggs were used. Sperm and eggs
were each pooled separately into about 1 L of seawater. About 1 ml of sperm was
added to the eggs and the embryos were left to develop in the beaker for 11 h, until

the larvae were at the swimming gastrula stage (Belding 1910).

2.3.2 Larval Culture

When the scallop larvae were 11 h post-fertilization, they were
homogeneously suspended in the beaker by gentle plunging with a graduated
cylinder (Helm and Bourne 2004) and 1 ml was removed to estimate their density.
Live larvae were counted at 100X magnification on a gridded slide in which each

grid square held 1 pl (Widman et al. 2001).
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Larvae were stocked at an initial density of 30 larvae ml-! and were
maintained in 800 ml of 0.35 um FSW in six 1-1 polyethylene cups per treatment,
which were previously conditioned in running seawater for at least four weeks.
Cultures were fed daily with laboratory-raised Isochrysis galbana (Tahitian strain, T-
iso) in the exponential phase of growth at a density of 37,500 cell ml-1. This ration
has been shown to produce good growth rates and survivorship of bay scallop
larvae (Widman et al. 2001). Culture water was changed every three days with pre-
COz equilibrated FSW. During water changes, each culture was gently poured
through a 20 pm sieve, which caught the larvae. The larvae were rinsed back into
the cup and the cup was filled to 800 ml. To maintain a stable temperature, all
culture cups were contained in a water bath controlled by an aquarium

chiller/heater (T = 22.5 £ 0.3 °C).

2.3.3 Manipulation of Water Chemistry

Water chemistry was manipulated by bubbling cultures with either
compressed air or a mixture of compressed air and pure CO2. The ambient
treatment was bubbled with compressed air produced by an oil-free, portable air
compressor (Porter Cable, Jackson, TN, USA). The high-CO> treatment was bubbled
with a compressed air/pure CO2 mixture precisely controlled using two mass flow
controllers (Aalborg, Orangeburg, NY, USA). To create the high CO; treatment, 8.1
ml min-! COz was mixed with 4.5 1 min-! compressed air. Each 800 ml culture cup

was bubbled at a rate of approximately 100 ml min-1.
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Filtered seawater was pre-CO; equilibrated by bubbling with the appropriate
air-COz mixture in 14-1 buckets for 24 h prior to filling the 11 culture cups. Each of
the ambient and high-CO; treatment replicate cups was bubbled with ambient CO-
compressed air or high COz-compressed air mixture, respectively, for the 18-d
duration of the experiment. The high CO; to ambient switch treatment (hereafter
referred to as the switch-to-ambient treatment) was bubbled with the high CO--
compressed air mixture for the first three days of the experiment, followed by

ambient CO2 compressed air for the remaining 15 d of the experiment.

2.3.4 Characterization of Water Chemistry

Prior to water changes, the carbonate chemistry of the pre-equilibrated
water in the 14-1 buckets was measured. To characterize the carbonate chemistry of
the water, pH, total alkalinity, salinity, and temperature were measured.
Spectrophotometric pH measurements were made with 2 mM m-Cresol purple
indicator dye to ensure high accuracy and precision using an Ocean Optics USB4000
Spectrometer with an LS-1 light source and a FIA-Z-SMA-PEEK 100 mm flow cell
(Ocean Optics, Dunedin, FL, USA), following the procedure described by Clayton and
Byrne (1993) and Dickson et al. (2007), and using the refit equation of Liu et al.
(2011). This method proved to have a precision of +0.002 pH units.

Samples for total alkalinity analysis were filtered to 0.45 pm, poisoned with
saturated mercuric chloride, and stored in sealed glass vials until analysis. Total

alkalinities were measured in duplicate via titration with 0.01 M HCl using a
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Metrohm Titrando 808 and 730 Sample Changer controlled by Tiamo software to
perform automated Gran titrations of 1 ml samples. Laboratory (or “in house”)
seawater standards were calibrated using seawater certified reference materials
(supplied by the laboratory of Andrew Dickson, Scripps Institution of
Oceanography) and were included in each run. Gran titrations had a precision of +
2 uEq kg

Salinity was determined using a Guildline model 8400B "Autosal" laboratory
salinometer (Guildline Instruments, Smith Falls, Ontario, Canada). The temperature
of the water bath was recorded every 10 min by a TidbiT v2 data logger (Onset
Computer Corporation, Pocasset, MA, USA) and was also recorded for each culture
cup at the time of pH measurements.

Based on the measured values of pH (seawater scale), total alkalinity,
temperature, and salinity, we used CO2SYS Software (Pierrot et al. 2006) to
calculate pCOz, Qaragonite, and total DIC using the first and second dissociation
constants (K; and Kz) of carbonic acid in seawater from Mehrbach et al. (1973), refit
by Dickson and Millero (1987).

The high-CO2 treatment produced carbonate chemistry conditions (Table
2.1) comparable to those seen in Waquoit Bay during summer months (McCorkle et

al. 2012) when many bivalve species, including bay scallops, spawn.

2.3.5 Microscopic Imaging and Shell Measurements
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At 1, 3,and 7 d, approximately 50 larvae from each culture were preserved in
95 % ethanol for subsequent microscopic imaging and shell measurement. At the
time of imaging, the preserved larvae were transferred to FSW and viewed at 200X
magnification under bright field transmitted light using a Nikon ECLIPSE 50i POL
microscope. Images were captured using a SPOT Insight™ Camera controlled by
SPOT Basic Software (Diagnostic Instruments, Inc., Sterling Heights, MI, USA). Using
the built-in measurement capabilities of the software program, shell length (the
longest dimension parallel to the hinge) was measured for at least 15 larvae from
each culture. Mean growth rate (um d-1) for each replicate was calculated as the

increase in mean shell length from 1 d to 7 d, divided by the number of days (6 d).

2.3.6 Survival Estimation

Percent survival was estimated at 1, 3, 7, and 18 d. By 18 d, less than 0.5 % of
larvae remained alive in any treatment, so both survival and shell size analyses
focused on 1, 3, and 7 d. On these days each culture was homogeneously suspended
by gently plunging with a graduated cylinder, and a known volume (13, 25, and 40
ml for 1, 3, and 7 d, respectively) was removed and concentrated by gently pouring
it through a 20 pm sieve. The volumes were chosen to yield a number of larvae
(100-200) that could be counted in approximately 30-45 min. All of the live larvae
in this volume were counted under a stereomicroscope at about 10X magnification.
The density of larvae in the removed volume was used to calculate the percent

survival based on the initial stocking density of 30 larvae ml-1. One replicate culture
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in the ambient treatment was discovered to have unreliable survival counts, as a
result of a mistake by the counter, so only data from the other five replicate cultures

were analyzed.

2.3.7 Statistical Analysis

All statistical analyses were performed using Systat® 13 Software (Systat
Software, Inc., Chicago, IL, USA). Percent survival data were arcsine-square root-
transformed prior to statistical analyses. Repeated measures ANOVA tests were run
to compare survival among the three treatments at 1, 3, and 7 d and to compare
shell length among the three treatments at 1, 3, and 7 d. One-way ANOVAs followed
by Tukey's Honestly Significant Difference tests were run to compare survival and
shell length among the three treatments at each time-point separately. A one-way

ANOVA was run to compare growth rates from day 1-7 among the three treatments.

2.4 Results

2.4.1 Shell Length

Larval development (Fig. 2.1) in all treatments progressed in a sequence
typical for this species as described by Belding (1910) and Widman et al. (2001). All
larvae were fully shelled at 1 d and were post-D-stage by 3 d. While fully shelled,

some 1 d larvae had velums that protruded from the shell (Fig. 2.1D, G); this
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occurred more frequently in larvae from the switch-to-ambient and high-CO>
treatments than in larvae from the ambient treatment.

Exposure to high CO; (Table 2.1) caused a significant reduction in shell
length (Fig. 2.2, Tables 2.2, 2.3) during the first week of development when
compared to exposure to ambient CO; (repeated measures ANOVA, Wilk’s Lambda =
0.033; F=19.47; df = 6, 26; p < 0.00001). This pattern was significant for each of
days 1, 3, and 7 (One-way ANOVA; Table 2.3). On day 1, after 12 h of exposure, the
mean shell lengths of all three treatments were significantly different from each
other (Fig. 2.2). The difference on day 1 between the switch-to-ambient and high-
CO; treatments was unexpected, as the larvae were in similar conditions prior to the
switch on day 3. On days 3 and 7, the mean shell lengths of larvae from the high-CO;
and switch-to-ambient treatments were no longer significantly different from each
other, despite having been in different conditions since day 3. The mean lengths of
shells from the high-CO; treatment were 84.1 %, 92.5 %, and 88.5 % of the mean
lengths of shells from the Ambient CO treatment on days 1, 3, and 7, respectively.
After day 1, mean shell growth rates (Table 2.2) integrated over following 6 days
were not significantly different among any treatments (one-way ANOVA, F = 0.50, df

=2,p=0.62).

2.4.2 Larval Survival
Survival of scallop larvae in the ambient treatment was consistently higher

than survival of scallop larvae in either the switch-to-ambient or high-CO>
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treatments (Fig. 2.3) during the first week of development. This overall effect on
survival was significant in a repeated measures ANOVA (Wilk’s Lambda = 0.38; F =
2.50; df = 6, 24; p = 0.05). However, when the effect was examined for individual
days, survival in the ambient treatment was significantly higher only on day 1
(Table 2.4, Fig. 2.3). Survival of larvae in the switch-to-ambient treatment was not
significantly different than in the other treatments at any time during the first week

of development.

2.5 Discussion

Early exposure (12-24 hours post-fertilization) to high CO significantly
reduced larval shell size (Fig. 2.2, Table 2.2) and survival (Fig. 2.3) relative to
ambient COz by the time the larvae were 1 d old. The initial reduction in size
relative to the ambient treatment was still evident after the first week of larval
development. This suggests that CO2 exposure during the first day is critical to shell
development. Growth rate from 1-7 d was not significantly affected by CO>
exposure, further indicating that growth during the first 24 h post-fertilization
determines shell size later in development - the larvae did not increase their growth
rate to compensate for initial slow growth. There is some evidence that bivalve
larvae use amorphous calcium carbonate (ACC) to produce the earliest stages of
their shell (Weiss et al. 2002). If this is true, then it may be a factor in explaining the
sensitivity of bay scallop larvae to high COz conditions during the first day of

development, as ACC is more soluble than aragonite and its formation would
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therefore be less thermodynamically favorable. This demonstration of a significant
and lasting CO; effect on shell size within the first day of larval development
suggests that other studies on bivalve larval development in which CO2 exposure
was initiated after the first day of larval development and initial calcification
(Talmage and Gobler 2009; Miller et al. 2009; Watson et al. 2009; Gazeau et al. 2010;
Talmage and Gobler 2010; Van Colen et al. 2012) may have underestimated the
magnitude of the effects of high CO; throughout larval development.

Exposure to high CO; caused a significant decrease, relative to ambient
conditions, in larval survival at 1 d post fertilization, and a consistent, but not
significant, decrease at 3 and 7 d post fertilization. Survival of < 20 % of individuals
on day 7 is low compared to other studies of this species (Talmage and Gobler 2009;
2010), probably due to a combination of not using antibiotics, and calculating
survival from initial counts at 12 h post-fertilization rather than 3 d. Mortality
during the first 3 d of larval development typically is high and can be variable
between culture vessels even when conditions are held constant (Widman, J.C. Jr.,
personal communication). In our study, survival was highly variable among
replicates within treatments and was likely influenced by factors other than
carbonate chemistry. This variability may contribute to unexplainable patterns in
survival such as the differences on day 1 between high-CO2 and switch-to-ambient
treatments, despite the similar conditions.

A size reduction in scallop larvae exposed to high CO2 may have indirect

effects on subsequent survival in the field. The age at which a scallop larva is
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competent to metamorphose is often affected by size (Sastry 1965). Small scallop
larvae may delay metamorphosis, increasing their time in the plankton and risk of
mortality from planktonic predators (Thorson 1950). Previous work has found that
exposure of bivalve larvae to high CO; treatments leads to delayed metamorphosis,
although it is not clear if small size was the cause of the delay (Talmage and Gobler
2009; 2011; Van Colen et al. 2012). In addition, if the smaller size of bay scallop
larvae exposed to high CO2 persisted through metamorphosis into adulthood, the
reproductive output of those individuals could be stunted simply because the size of
the gonad is proportional to the size of the scallop (Barber and Blake 2006).

The negative effect of high CO2 exposure on bay scallop larval size is
consistent with negative effects of high CO; exposure on the size of other larval
bivalves. The clam Macoma balthica has been shown to produce significantly
smaller larval shells at 3 d when exposed to seawater with a pH of 7.5 or 7.8 directly
after fertilization, compared to a control treatment with pH 8.1 (Van Colen et al.
2012). The same group also reported a similar trend in which M. balthica larvae
produced (non-significantly) smaller shells from day 5 to 19 when exposed to
lowered pH (Van Colen et al. 2012). Similarly, larvae of the blue mussel, Mytilus
edulis, had shells that, at 2 d, were 12.7 % smaller when raised in water with pH 7.6
compared to larvae grown in water with pH 8.1 (Gazeau et al. 2010). Larvae of the
oyster Saccostrea glomerata showed at 8 d a decrease in shell size of 6.3 % at pH 7.8
and 8.7 % at pH 7.6 relative to pH 8.1 (Watson et al. 2009). By documenting a size

effect in the early larval stage of bay scallops, we can better understand previously
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published observations of negative effects of high CO; exposure on shell size of 19-
20 d old competent scallops (Talmage and Gobler 2009; 2010; 2011). Our results
suggest that a decrease in size of competent larvae and set juveniles exposed to high
CO2 may be a lingering effect of compromised growth in early stages.

Acidification of coastal waters is affected by atmospheric CO; levels, but it is
also strongly impacted by eutrophication (Feely et al. 2010; Howarth et al. 2011; Cai
etal. 2011; Sunda and Cai 2012), mixing and circulation (Gilbert et al. 2010; Feely et
al. 2010), and input of fresh water (Cai et al. 2011; Sunda and Cai 2012). We
showed a CO; exposure effect on larval bay scallop growth, but we did not include
hypoxia as a treatment. Hypoxia typically co-occurs with high CO; (hypercapnia) as
a result of eutrophication in coastal and estuarine waters (Dai et al. 2006; Howarth
et al. 2011; Sunda and Cai 2012). Because hypoxia and hypercapnia act
synergistically on the responses of marine invertebrates found in such
environments (Widdicombe and Spicer 2008), it is possible that the interaction of
low oxygen and high CO will affect larval bay scallop development even more
strongly than high CO2 alone.

The larvae in both high-CO2 and ambient treatments maintained similar
growth rates from 1-7 d, but the negative effects on shell length of exposure to high
COz during the first 3 d of development were still present after a week of larval
development. This result suggests that there is a critical initial window in which
COz exposure is particularly damaging to scallop larvae. Larvae that spawn in

coastal and estuarine environments when pCO: is high may have smaller shells,
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even if they are transported within a few days to waters with lower COx.
Aquaculture facilities may need to monitor pCOz in the water used for rearing early

larvae to ensure that conditions do not impair growth.

2.6 Acknowledgements

We thank R. York for his assistance with collection and maintenance for adult
scallops in the field. We are grateful to R. Belastock, L. Schloer, R. Certner, and S.
Mills for their help with chemistry and survival analyses. S. Arellano and J. Wheeler

provided helpful suggestions with data processing and analyses.

2.7 References

Barber, B.]., and N. ]. Blake. 2006. Reproductive Physiology, p. 357-416. In S.E.
Shumway and G.]. Parsons [eds.], Scallops: Biology, Ecology, and Aquaculture.
Elsevier.

Belding, D. L. 1910. A report upon the scallop fishery of Massachusetts, including the
habits, life history of Pecten irradians, its rate of growth, and other facts of
economic value, Wright & Potter Printing Co., State Printers.

Borges, A. V., and N. Gypens. 2010. Carbonate chemistry in the coastal zone
responds more strongly to eutrophication than ocean acidification. Limnol
Oceanogr 55: 346-353.

Cai, W.-].,and Y. Wang. 1998. The chemistry, fluxes, and sources of carbon dioxide in
the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol
Oceanogr 43: 657-668.

Cai, W.-]., X. Hu, W.-]. Huang, M. C. Murrell, ]. C. Lehrter, S. E. Lohrenz, W.-C. Chou, W.
Zhai, ]. T. Hollibaugh, Y. Wang, P. Zhao, X. Guo, K. Gundersen, M. Dai, and G.-C.
Gong. 2011. Acidification of subsurface coastal waters enhanced by
eutrophication. Nat Geosci 4: 766-770.

Chou, W.-C,, G.-C. Gong, D. D. Sheu, S. Jan, C.-C. Hung, and C.-C. Chen. 2009.
Reconciling the paradox that the heterotrophic waters of the East China Sea
shelf act as a significant CO, sink during the summertime: Evidence and
implications. Geophys Res Lett 36: L15607.

Clayton, T. D., and R. H. Byrne. 1993. Spectrophotometric seawater pH

46



measurements: total hydrogen ion concentration scale calibration of m-cresol
purple and at-sea results. Deep Sea Res Part I Oceanogr Res Pap 40: 2115-2129.

Dai, M., X. Guo, W. Zhai, L. Yuan, B. Wang, L. Wang, P. Cai, T. Tang, and W.-]. Cai. 2006.
Oxygen depletion in the upper reach of the Pearl River estuary during a winter
drought. Mar Chem 102: 159-169.

Diaz, R.].,, and R. Rosenberg. 2008. Spreading dead zones and consequences for
marine ecosystems. Science 321: 926-929.

Dickson, A. G. 1990. Standard potential of the reaction: AgCl) + 1/2H;5) = Ag(s) +
HCl,q), and the standard acidity constant of the ion HSO," in synthetic sea water
from 273.15 to 318.15 K. ] Chem Thermodyn 22: 113-127.

Dickson, A. G., and F. ]. Millero. 1987. A comparison of the equilibrium constants for
the dissociation of carbonic acid in seawater media. Deep Sea Res Part I
Oceanogr Res Pap 34: 1733-1743.

Dickson, A. G., C. L. Sabine, and J. R. Christian. 2007. Determination of the pH of sea
water using the indicator dye m-cresol purple, p. 191. In A.G. Dickson, C.L.
Sabine, and J.R. Christian [eds.], Guide to Best Practices for Ocean CO,
Measurements. PICES Special Publication 3.

Doney, S. C., V.]. Fabry, R. A. Feely, and J. A. Kleypas. 2009. Ocean acidification: The
other CO, problem. Ann Rev Mar Sci 1: 169-192.

Feely, R. A, C. L. Sabine, K. Lee, W. Berelson, ]. Kleypas, V. J. Fabry, and F. ]. Millero.
2004. Impact of anthropogenic CO, on the CaCOj; system in the oceans. Science
305: 362-366.

Feely, R. A, S. C. Doney, and S. R. Cooley. 2009. Ocean acidification: Present
conditions and future changes in a high-CO, world. Oceanography 22: 36-47.

Feely, R. A, S. R. Alin, ]. Newton, C. L. Sabine, M. Warner, A. Devol, C. Krembs, and C.
Maloy. 2010. The combined effects of ocean acidification, mixing, and
respiration on pH and carbonate saturation in an urbanized estuary. Estuar
Coast Shelf Sci 88: 442-449.

Gazeauy, F,, C. Quiblier, J. M. Jansen, J.-P. Gattuso, ]. ]. Middelburg, and C. H. R. Heip.
2007. Impact of elevated CO; on shellfish calcification. Geophys Res Lett 34:
L07603.

Gazeauy, F,, ]. P. Gattuso, C. Dawber, A. E. Pronker, F. Peene, ]. Peene, C. H. R. Heip, and
J. J. Middelburg. 2010. Effect of ocean acidification on the early life stages of the
blue mussel Mytilus edulis. Biogeosciences 7: 2051-2060.

Gazeauy, F,, ].-P. Gattuso, M. Greaves, H. Elderfield, ]. Peene, C. H. R. Heip, and J. ].
Middelburg. 2011. Effect of carbonate chemistry alteration on the early
embryonic development of the Pacific oyster (Crassostrea gigas) ].M. Roberts
[ed.]. PLoS ONE 6: €23010.

Gilbert, D., N. N. Rabalais, R. ]. Diaz, and J. Zhang. 2010. Evidence for greater oxygen
decline rates in the coastal ocean than in the open ocean. Biogeosciences 7:
2283-2296.

Helm, M. M., and N. Bourne. 2004. Hatchery culture of bivalves: A practical manual,
A. Lovatelli [ed.]. Food and Agricultural Organization of the United Nations.

47



Hofmann, G. E,, J. E. Smith, K. S. Johnson, U. Send, L. A. Levin, F. Michelj, A. Paytan, N.
N. Price, B. Peterson, Y. Takeshita, P. G. Matson, E. D. Crook, K. ]. Kroeker, M. C.
Gambi, E. B. Rivest, C. A. Frieder, P. C. Yu, and T. R. Martz. 2011. High-frequency
dynamics of ocean pH: A multi-ecosystem comparison W.-C. Chin [ed.]. PLoS
ONE 6: e28983.

Howarth, R,, F. Chan, D.]. Conley, J. Garnier, S. C. Doney, R. Marino, and G. Billen.
2011. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate
estuaries and coastal marine ecosystems. Front Ecol Environ 9: 18-26.

Kurihara, H., S. Kato, and A. Ishimatsu. 2007. Effects of increased seawater pCO, on
early development of the oyster Crassostrea gigas. Aquat Biol 1: 91-98.

Kurihara, H., T. Asai, S. Kato, and A. Ishimatsu. 2008. Effects of elevated pCO; on
early development in the mussel Mytilus galloprovincialis. Aquat Biol 4: 225-
233.

Liu, X,, M. C. Patsavas, and R. H. Byrne. 2011. Purification and characterization of
meta-cresol purple for spectrophotometric seawater pH measurements. Envir
Sci Tech 45: 4862-4868.

McCorkle, D. C,, C. Weidman, and A. L. Cohen. 2012. Time series of pCO,, pH, and
aragonite saturation state in Waquoit Bay National Estuarine Research Reserve -
“estuarine acidification” and shellfish. Proceedings of the Ocean Sciences
Meeting. Salt Lake City, Utah.

Mehrbach, C., C. H. Culberson, J. E. Hawley, and R. M. Pytkowicz. 1973. Measurement
of the apparent dissociation constants of carbonic acid in seawater at
atmospheric pressure. Limnol Oceanogr 18: 897-907.

Miller, A. W., A. C. Reynolds, C. Sobrino, and G. F. Riedel. 2009. Shellfish face
uncertain future in high CO, world: influence of acidification on oyster larvae
calcification and growth in estuaries Z. Finkel [ed.]. PLoS ONE 4: e5661.

Orr, J. C, V.]. Fabry, O. Aumont, L. Bopp, S. C. Doney, R. A. Feely, A. Gnanadesikan, N.
Gruber, A. Ishida, F. Joos, R. M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P.
Monfray, A. Mouchet, R. G. Najjar, G.-K. Plattner, K. B. Rodgers, C. L. Sabine, J. L.
Sarmiento, R. Schlitzer, R. D. Slater, 1. ]. Totterdell, M.-F. Weirig, Y. Yamanaka,
and A. Yool. 2005. Anthropogenic ocean acidification over the twenty-first
century and its impact on calcifying organisms. Nature 437: 681-686.

Parker, L. M., P. M. Ross, and W. A. O'Connor. 2009. The effect of ocean acidification
and temperature on the fertilization and embryonic development of the Sydney
rock oyster Saccostea glomerata (Gould 1850). Glob Chang Biol 15: 2123-2136.

Parker, L. M., P. M. Ross, and W. A. O'Connor. 2010. Comparing the effect of elevated
pCO, and temperature on the fertilization and early development of two species
of oysters. Mar Biol 157: 2435-2452.

Pechenik, J. A. 1987. Environmental influences on larval survival and development,
p.-551-607. In A.C. Giese, ].S. Pearse, and V.B. Pearse [eds.], Reproduction of
Marine Invertebrates: General Aspects: Seeking Unity in Diversity. Blackwell
Scientific Publications.

Pierrot, D. W., E. Lewis, and D. Wallace. 2006. MS Excel program developed for CO,

48



system calculations. doi:10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a

Rabalais, N. N,, R. E. Turner, and W. ]J. Wiseman Jr. 2002. Gulf of Mexico hypoxia,
A KA. “The Dead Zone.” Annu Rev Ecol Syst 33: 235-263.

Sastry, A. N. 1965. The development and external morphology of pelagic larval and
post-larval stages of the bay scallop, Aequipecten irradians concentricus Say,
reared in the laboratory. Bull Mar Sci 15: 417-465.

Sunda, W. G., and W.-]. Cai. 2012. Eutrophication Induced CO,-acidification of
subsurface coastal waters: interactive effects of temperature, salinity, and
atmospheric pCO,. Envir Sci Tech, doi:10.1021/es300626f

Talmage, S. C., and C. J. Gobler. 2009. The effects of elevated carbon dioxide
concentrations on the metamorphosis, size, and survival of larval hard clams
(Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern
oysters (Crassostrea virginica). Limnol Oceanogr 54:2072-2080.

Talmage, S. C., and C. ]. Gobler. 2010. Effects of past, present, and future ocean
carbon dioxide concentrations on the growth and survival of larval shellfish.
Proc Nat Acad Sci USA 107: 17246-17251.

Talmage, S. C., and C. ]. Gobler. 2011. Effects of elevated temperature and carbon
dioxide on the growth and survival of larvae and juveniles of three species of
Northwest Atlantic bivalves B. Gratwicke [ed.]. PLoS ONE 6: e26941.

Thorson, G. 1950. Reproductive and larval ecology of marine bottom invertebrates.
Biol Rev 25: 1-45.

Van Colen, C,, E. Debusschere, U. Braeckman, D. Van Gansbeke, and M. Vincx. 2012.
The early life history of the clam Macoma balthica in a high CO, world P.
Callaerts [ed.]. PLoS ONE 7: e44655.

Van Colen, C, F. Montserrat, M. Vincx, P. M. ]. Herman, T. Ysebaert, and S. Degraer.
2010. Long-term divergent tidal flat benthic community recovery following
hypoxia-induced mortality. Mar Pollut Bull 60: 178-186.

Waldbusser, G. G., E. P. Voigt, H. Bergschneider, M. A. Green, and R. L. E. Newell. 2011.
Biocalcification in the Eastern Oyster (Crassostrea virginica) in relation to long-
term trends in Chesapeake Bay pH. Estuaries Coast 34: 221-231.

Watson, S.-A,, P. C. Southgate, P. A. Tyler, and L. S. Peck. 2009. Early larval
development of the Sydney rock oyster Saccostrea glomerata under near-future
predictions of CO,-driven ocean acidification. Journal of Shellfish Research 28:
431-437.

Weiss, I. M., N. Tuross, L. Addadi, and S. Weiner. 2002. Mollusc larval shell formation:
amorphous calcium carbonate is a precursor phase for aragonite. ] Exp Zool
293:478-491.

Widdicombe, S., and J. I. Spicer. 2008. Predicting the impact of ocean acidification on
benthic biodiversity: What can animal physiology tell us? | Exp Mar Bio Ecol
366: 187-197.

Widman, J. C,, Jr, ]. Choromanski, R. A. Robohm, S. Stiles, G. H. Wikfors, and A.
Calabrese. 2001. Manual for Hatchery Culture of the Bay Scallop, Argopecten
irradians irradians, Connecticut Sea Grant College Program & NOAA National

49



Marine Fisheries Service.

50



Table 2.1. Environmental parameters and
carbonate chemistry for the Ambient and High CO,
treatments during the experiment (mean + SD).
Calculated parameters were calculated from pH
and total alkalinity using CO2SYS software (Pierrot
et al. 2006) with K4, K, from Mehrbach et al. (1973)
refit by Dickson and Millero (1987), KHSO,4 from
Dickson (1990), and pH measured on the
seawater scale. (Ar = total alkalinity; [HCO3] =
bicarbonate ion concentration; [CO3”] = carbonate
ion concentration; [CO,] = dissolved carbon
dioxide concentration; DIC = dissolved inorganic
carbon; Qaragonite = a@ragonite saturation state.)

Ambient CO, High CO;

Measured parameters

Temperature (°C) 224 +0.3 225+0.2
Salinity 322+11 31.8%0.7
pH 7.93+0.01 7.39+0.03
At (UEq kg™) 2130 £68 2114 + 44
Calculated parameters
pCO; (patm) 509 + 13 1987 + 140
[HCO3] (umol kg™) 1779 +46 2000 + 44
[CO3T (umol kg™ 142 + 10 46 + 3
[CO,] (umol kg™ 16 + 1 61+ 4
DIC (umol kg™ 1937 +55 2107 + 47
_ Quragonite 2.26+0.14 0.74 +0.04
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Table 2.2. Mean (+ SD) size (um) at 1, 3, and 7 d and mean (+ SD) growth
rate (um d'1) from 1-7 d of Argopecten irradians larvae raised in three CO,
treatment regimes; n = 6.

Treatment Day 1 Day 3 Day 7 Growth Rate
Ambient 87404 96604 131.8+9.2 7415
Switch to Ambient  78.0+21 90.1+11 118.2+8.1 6.7+1.2
High CO, 735+19 894+26 116.7+6.5 72+1.0
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Table 2.3. One-way ANOVAs of mean shell length (um) of

Argopecten irradians larvae raised in three CO, treatment regimes
(ambient, switch-to-ambient, and high-CO,) at 1, 3, and 7 d; n = 6.

Source of Typelll Mean
Variation SS df Squares F-Ratio p-value
Day1 Treatment 610.774 2 305.387 114.244  <0.001
Error 40.097 15 2.673
Day3 Treatment 187.631 2 93.816  35.058 <0.001
Error 40.140 15 2.676
Day7 Treatment 823.314 2 411.657 6.382 0.010
Error 967.488 15 64.499
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Table 2.4. One-way ANOVAs of mean percent survival (arcsine-
square root-transformed) of Argopecten irradians larvae raised in
three CO, treatment regimes (ambient, switch-to-ambient, and
high-CO,) at 1, 3, and 7 d; n = 5 for ambient treatment, n = 6 for
switch-to-ambient and high-CO, treatments.

Source of Type Mean
Variation llSS df Squares F-Ratio p-value
Day 1 Treatment 0.040 2 0.020 3.731 0.050
Error 0.074 14 0.005
Day 3 Treatment 0.004 2 0.002 0.502 0.616
Error 0.056 14 0.004
Day7 Treatment 0.012 2 0.006 1.694 0.219
Error 0.051 14 0.004
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Figure 2.1. Larval morphology of bay scallops (Argopecten irradians) exposed to
varied pCO; conditions. Larvae were preserved in 95 % ethanol after incubation for
1d,3d, and 7 d in one of the three CO; treatment regimes (ambient, switch-to-
ambient, and high-COz). Larvae shown represent the mean shell length for each
treatment and age. The outline of each image corresponds to the CO; treatment the
larvae were experiencing at the time of preservation. Gray = ambient COq, black =
high CO;. Arrows indicate exposed velum. Images are all to the same scale; scale
bar =100 pm.
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Figure 2.2. Shell length of larval bay scallops (Argopecten irradians) during the first
week of larval development. Values are mean * SD of 6 replicate culture containers.
The dotted vertical line indicates the age at the time of inoculation (exposure to CO>
treatments); the dashed vertical line indicates the age at which CO2 conditions were
switched for the switch-to-ambient treatment. Different letters (A, B, C) denote
significant differences (p < 0.05) between treatments at a given age, as determined
in one-way ANOVA (Table 3), followed by Tukey’s HSD test.
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Figure 2.3. Survival of larval bay scallops (Argopecten irradians), expressed as the
percent of larvae surviving from the time of inoculation (age = 0.5 d), during the first
week of larval development. Values are mean * SD of n = 5 replicate culture
containers for the ambient treatment and n = 6 replicate culture containers for the
switch-to-ambient and high-CO; treatments. The dotted vertical line indicates the
age at the time of inoculation (exposure to CO; treatments); the dashed vertical line
indicates the age at which CO; conditions were switched for the switch-to-ambient
treatment. Letters denote significant differences (p < 0.05) between treatments at a
given age, as determined in one-way ANOVA (Table 4), followed by Tukey’s HSD
test; only the ambient and high-CO; treatments on day 1 are significantly different.
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Chapter 3

Elevated pCO: during fertilization of the bay scallop Argopecten
irradians reduces larval survival but not shell size

By Meredith M. White, Lauren S. Mullineaux, Daniel C. McCorkle, and Anne L. Cohen

In preparation
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3.1 Abstract

Ocean acidification (OA), characterized by elevated pCO2, generally has negative
effects on early life stages of invertebrates. However, it is unclear which stage might
be most sensitive to exposure to high COz condtions. We investigated the idea that
fertilization is a critical stage for the bay scallop Argopecten irradians during which
exposure to elevated pCO2 (resulting in pH = 7.28, Qar = 0.63) has severe and
persistent effects, relative to ambient CO; conditions (pH = 7.96, Qar = 2.52). We
investigated the effects of exposure to high COz on the A. irradians from fertilization
to 7 d old. To assess the possibility of persistent effects of fertilization-exposure,
further treatments included switches from high CO; to ambient CO2 and from
ambient CO; to high CO2 just after fertilization. Survival of larvae that had been
fertilized in high CO; conditions was significantly lower than the survival of larvae
fertilized in ambient conditions. In contrast, CO2 conditions during fertilization did
not affect larval shell size; rather larvae that developed post-fertilization in high CO>
had significantly smaller shells than larvae that developed post-fertilization in

ambient CO; regardless of in which conditions they were fertilized.
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3.2 Introduction

The ocean and the atmosphere naturally exchange great amounts of carbon
dioxide (COz), but as human activities, including as fossil fuel burning, increase the
atmospheric concentration of CO2, the ocean is forced to take up an increasing
amount of COz (Le Quéré et al. 2009). Once in the ocean, dissolved CO2 goes through
a series of reactions which release H* ions, decreasing the pH of the water through a
process known as ocean acidification (OA) (Feely et al. 2004; Orr et al. 2005; Doney
etal. 2009). In the past 200 years, increases in anthropogenic emissions of COz have
caused a decrease in surface ocean water pH of 0.1 units, and a decrease of another
0.2-0.3 units is projected by the end of this century as a result of increasing
atmospheric COz (Orr et al. 2005; Doney et al. 2009). In addition to lowering
seawater pH, OA also results in a decrease in calcium carbonate saturation state ({1),
which has the potential to make calcification (shell-building) more difficult, or more
energetically costly for calcifying organisms (Orr et al. 2005; Gazeau et al. 2007;
Waldbusser et al. 2011).

While OA is affecting the surface ocean through uptake of atmospheric CO>
on a global scale, the processes affecting pH and (1 in coastal and estuarine
environments are more complex and more extreme (Feely et al. 2010; Howarth et
al. 2011; Cai etal. 2011). Water chemistry in coastal and estuarine environments is
influenced by many factors including freshwater inputs, eutrophication, respiration,
and stratification (Borges and Gypens 2010; Waldbusser et al. 2011; Cai etal. 2011;

Melzner et al. 2012; Sunda and Cai 2012). For example, when algal blooms resulting
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from eutrophication die and sink to the seafloor, they fuel microbial respiration,
which releases CO2 (Rabalais et al. 2002; Diaz and Rosenberg 2008). Stratification
during summer months isolates the CO; released from microbial respiration (Chou
et al. 2009) and can result in bottom waters that are undersaturated with respect to
calcium carbonate (Feely et al. 2010). Models have shown that the carbonate
chemistry of coastal environments is more strongly influenced by eutrophication
than by atmospheric CO2-driven OA (Borges and Gypens 2010) and that at current
atmospheric CO? levels, seawater can easily become severely undersaturated ({1 <
0.3) during periods of eutrophication (Melzner et al. 2012).

Marine invertebrates living in coastal and estuarine environments are
exposed to dissolved carbon dioxide levels that fluctuate on time scales ranging
from daily to seasonal as a result of both natural processes and human activities (Cai
and Wang 1998; Howarth et al. 2011; Hofmann et al. 2011). Many coastal bivalve
species spawn during summer months, when Oz and CO2 conditions tend to be least
favorable as a result of stratified waters and increased microbial respiration. The
coinciding timing of unfavorable conditions and spawning is a serious issue for
marine invertebrates because early life stages are particularly vulnerable to both
chemical and physical environmental stressors (Pechenik 1987), including OA, but
are also key for successful recruitment and survival of the species (Cowen et al.
2000).

An increasing amount of work has shown negative effects of high CO>

conditions on early life stages of multiple species of marine invertebrates, especially

64



bivalve species that produce calcareous shells. Some bivalve species appear to be
more tolerant of high CO2 conditions than others (Miller et al. 2009), but various
work has shown negative effects of high COz on all early life stages of bivalves,
including fertilization, larval development, and juvenile development (Parker et al.
2009; Miller et al. 2009; Watson et al. 2009; Gazeau et al. 2010; Parker et al. 2010;
Waldbusser et al. 2011; Gazeau et al. 2011; Van Colen et al. 2012). For example,
Talmage and Gobler (2010) showed that hard clams (Mercenaria mercenaria) and
bay scallops (Argopecten irradians) experienced delayed metamorphosis at present-
day CO; conditions relative to pre-industrial conditions, suggesting that the pH
decrease since pre-industrial times has already had an impact on bivalve larvae.
Blue mussels (Mytilus edulis) were shown to have significantly smaller shells at 2 d
old when exposed to water with pH 7.6, relative to water with pH 8.1, and to have
significantly thinner shells at 15 d old when exposed to water with pH 7.8, relative
to water with pH 8.0 (Gazeau et al. 2010). In addition to developmental delays and
stunted growth, decreases in survival of larval bivalves have also been noted;
Watson et al. (2009) found that survival of oyster larvae (Saccostrea glomerata)
raised in pH 7.6 was reduced by 72 % relative to larvae raised in pH 8.1.

Most previous bivalve studies introduced larvae to high CO2 conditions after
embryonic development, or even after larval development, has begun, leaving open
the question of effects during fertilization. The few studies that have examined high
CO; effects during fertilization have produced mixed results. Both the Sydney rock

oyster (S. glomerata) and the Pacific oyster (Crassostrea gigas) had reduced
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fertilization success and impaired larval development when exposed to 1000 ppm
CO2 and suboptimal temperatures, relative to exposure to 375 ppm CO; at optimal
temperature (Parker et al. 2009; 2010). In contrast, Havenhand and Schlegel (2009)
found no significant difference in fertilization success in C. gigas at pH 8.15 and pH
7.8, nor did they find a difference in sperm mobility or swimming speed. A decrease
in fertilization success of the clam Macoma balthica was seen when gametes were
fertilized at pH ~7.5 and ~7.8, compared to pH 8.1 (Van Colen et al. 2012). Previous
studies have not examined how exposure to elevated CO during fertilization affects
bivalve larval survival and development beyond 3 days of age, nor have they
investigated whether negative effects are reversible.

In order to investigate these ideas, we designed a culturing experiment
where adults were induced to spawn in either ambient or high CO; conditions and
the resulting larvae were raised for one week. Additionally, half of the embryos
from each fertilization group had their CO; exposure switched 2 h post-fertilization
to determine whether any negative effects of high CO2 exposure during fertilization
could be reversed by subsequent ambient exposure. For the high CO; exposure, we
used 2200 ppm COz, resulting in pHseawater scale) = 7.28 and a calcium carbonate
saturation state that was undersaturated with respect to aragonite (Qaragonite). Such
pCO2 values and associated saturation states have been observed in summer months
in a local estuary (Childs River, Falmouth, MA, USA) where bivalve larvae are found
(McCorkle et al. 2012). The results of these culturing experiments showed that

exposure of bay scallop gametes to high CO; prior to and during fertilization
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reduced larval survival. In contrast, we found that high CO2 exposure during
fertilization did not affect larval shell size; rather high CO; exposure during intial

calcification (post-fertilization) determined larval shell size.

3.3 Methods

3.3.1 Manipulation of Water Chemistry

Water chemistry was manipulated as described in section 2.3.3 of Chapter 2.
The high CO2 treatment (~2200 ppm) produced carbonate chemistry conditions
(Table 3.1) comparable to those seen in Waquoit Bay during summer months

(McCorkle et al. 2012) when many bivalve species, including bay scallops, spawn.

3.3.2 Characterization of Water Chemistry

To characterize the carbonate chemistry of the treatment water, pH, total
alkalinity, salinity, and temperature were measured following the procedures
described in section 2.3.4 of Chapter 2. Briefly, pH was measured
spectrophotometrically following the procedure described by Clayton and Byrne
(1993) and Dickson et al. (2007), and using the refit equation of Liu et al. (2011).
Alkalinity was measured by Gran titration with 0.01 M HCl. Based on the measured
values of pH (seawater scale), total alkalinity, temperature, and salinity, CO2SYS

Software (Pierrot et al. 2006) was used to calculate pCO2, Qaragonite, and total DIC
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using the first and second dissociation constants (K: and Kz) of carbonic acid in
seawater from Mehrbach et al. (1973), refit by Dickson and Millero (1987).

In addition to the replicate culture cups with larvae, 2 cups, one for each CO-
level, were maintained without larvae or algae added to them to serve as abiotic
references for the chemistry characterization. The FSW in these cups was analyzed

for carbonate chemistry and changed every 2 d, as for the replicate culture cups.

3.3.3 Adult Collection

Adult A. irradians individuals were collected during winter and spring
months from coastal waters around Martha’s Vineyard and Woods Hole,
Massachusetts and were held in submerged cages in Little River, a estuarine river
near Waquoit Bay, Massachusetts until needed. Scallops were collected under a
research collection permit issued by the Commonwealth of Massachusetts
Department of Fish and Game, Division of Marine Fisheries. Several days prior to
spawning, the adults were brought to Woods Hole Oceanographic Institution, where
they were maintained in 16 °C flowing seawater and fed daily with Instant Algae

Shellfish Diet (Reed Mariculture, Campbell, CA, USA).

3.3.4 Control of Spawning Conditions
Spawning was induced by dividing the hermaphroditic adults between two
151, 20 °C static seawater baths and gradually raising the temperature of each bath

to a maximum of 25 °C. The CO2 level of each bath was controlled by bubbling the
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bath with a microbubbler air stone (RENA, Chalfont, PA, USA) at a rate of 1 1 min-!
with the appropriate air-CO2 mixture for 24 h prior to spawning. One bath was
bubbled with high CO2 and the other was bubbled with ambient CO;. Both baths
were covered with clear plastic wrap to help ensure CO2-equilibration, while
allowing observers to view the scallops in the baths. When an individual spawned,
it was moved to a 1 1 beaker of 20 °C FSW and the spawned gametes were examined
to distinguish eggs from sperm. These individual beakers were bubbled with the
appropriate (ambient or high) COz level at a rate of 100 ml min-! using a micropipet
tip inserted into an airline and were covered with clear plastic wrap to ensure CO2-
equilibration. To prevent self-fertilization, the water in the beakers was frequently
changed with pre-C0O2z-equilibrated FSW. Eggs were rinsed through a 75 um filter to
collect debris, collected on a 20 um filter, and subsequently pooled. Seawater with
sperm was rinsed through a 20 um filter to collect debris and the sperm was pooled.
Separate sets of filters were used for gametes spawned in ambient and high CO2 so
there was no cross-contamination. For gametes spawned in each CO> treatment,
sperm and eggs were each pooled separately into about 1 L of seawater, which was
bubbled at 100 ml min-! with the appropriate CO; level. About 1 ml of sperm
spawned in ambient CO; was added to the eggs spawned in ambient COz and the
embryos were left to develop in the beaker for 45 min, until the embryonic
development was at the polar body stage or first cleavage (Belding 1910). The eggs

spawned in high CO2 were simultaneously fertilized with 1 ml of sperm spawned in
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high CO; and left to develop for about 45 minutes. Each beaker of developing
embryos was bubbled with the appropriate COz level during this time.

This induction of spawning was performed two times, in late May 2012 and
late June 2012, resulting in two separate experiments, henceforth referred to as
Experiment 1 and Experiment 2. For Experiment 1, ambient CO2-spawned eggs
were collected from 2 individuals, although most of the eggs came from 1 of these
individuals, and ambient CO;z-spawned sperm was collected from 2 individuals.
High CO2-spawned eggs were collected from 1 individual and high CO2-spawned
sperm was collected from 1 individual. For Experiment 2, ambient COz-spawned
eggs were collected from 3 individuals and ambient CO2-spawned sperm was
collected from 3 individuals. High COz-spawned eggs were collected from 2
individuals and high COz-spawned sperm was collected from 5 individuals. Ideally
we would want at least 2 adults contributing each type of gamete to each treatment,
to identify an overall effect of high CO2 beyond any maternal effects, so the results of
Experiment 1 are interpreted cautiously. For both experiments, if a scallop released

both eggs and sperm, only the eggs were used.

3.3.5 Assessment of Fertilization Success and Embryo Density Estimation
When the scallop embryos were 45 min post-fertilization, they were

homogeneously suspended in the beaker by the up and down motion of a graduated

cylinder (Helm and Bourne 2004) and 1 ml was removed to assess fertilization

success and to estimate embryo density. Embryos were counted at 100X
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magnification on a gridded slide in which each grid square held 1 pl (Widman et al.
2001). An embryo was considered fertilized by evidence of a polar body or by
evidence of first or second cleavage (Belding 1910). The total number of embryos
seen and the total number of unfertilized embryos were counted. This count was
performed twice per experiment, once for embryos fertilized in ambient CO>
conditions and once for embryos fertilized in high CO2 conditions. These counts
were used to calculate the percent of embryos from each CO; treatment that were

successfully fertilized.

3.3.6 Larval Culture

When the embryos were about 2 h old, they were stocked at an initial density
of 30 embryos ml! and were maintained in 800 ml of 0.35 pm FSW in 1-1 covered
polyethylene cups, which were previously conditioned in running seawater for at
least four weeks. Filtered seawater was pre-CO; equilibrated by bubbling with the
appropriate air-CO2 mixture in covered 14-1 buckets for 24 h prior to filling the 800
ml culture cups. Embryos that had been fertilized in ambient CO; were stocked into
5 culture cups containing ambient CO; water and 5 cultures cups containing high
CO2 water. Embryos that had been fertilized in high CO; were stocked into 5
cultures cups containing ambient COz water and 5 culture cups containing high CO>
water. This resulted in four experimental treatments: ambient CO2-
fertilized/ambient CO2-grown (ambient treatment), high CO;-fertilized /high CO--

grown (high-CO2 treatment), ambient COz-fertilized /high CO2-grown (switch-to-
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high-CO; treatment), and high CO;-fertilized/ambient CO2-grown (switch-to-
ambient treatment). Each culture cup was bubbled with the appropriate air or CO»-
compressed air mixture for the 7-d duration of the experiment at a rate of
approximately 100 ml min-1.

Cultures were fed daily with laboratory-raised Isochrysis galbana (Tahitian
strain, T-iso) in the exponential phase of growth at a density of 37,500 cell ml-1. This
ration has been shown to produce good growth rates and survivorship of bay
scallop larvae (Widman et al. 2001). Culture water was changed every two days
with pre-CO2 equilibrated FSW from the 14 1 buckets. Prior to water changes, the
carbonate chemistry of the pre-equilibrated water in the 14 | buckets was measured
as described above. During water changes, each culture was gently poured through
a 20 pm sieve, which caught the larvae. The larvae were rinsed back into the cup
and the cup was filled to 800 ml. To maintain a stable temperature, all culture cups
were contained in a water bath controlled by an aquarium chiller/heater (T = 23.7

0.3 °C).

3.3.7 Microscopic Imaging and Shell Measurements

At 1, 3,and 7 d, approximately 75 larvae from each culture were preserved in
95 % ethanol for microscopic imaging and shell measurement. Imaging and shell
measurements were carried out as described in section 2.3.5 of Chapter 2.
Preliminary experiments showed that four replicates gave sufficient statistical

power to detect differences in mean larval size. A fifth culture cup was included in
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each treatment to ensure that if one culture crashed, four would remain available
for size measurements. Mean growth rate (um d-1) for each replicate was calculated
as the increase in mean shell length from 1 d to 7 d, divided by the number of days

(6 d).

3.3.8 Survival Estimation

Percent survival was estimated at 1, 3, and 7 d according to the method
described in section 2.3.6 of Chapter 2. Survival estimates from all five replicate
cultures were included in analyses to improve statistical power. Due to an error in
quantifying initial stocking densities during Experiment 2, survival estimates are

calculated only for Experiment 1.

3.3.9 Statistical Analysis

All statistical analyses were performed using Systat® 13 Software (Systat
Software, Inc., Chicago, IL, USA). Percent survival data were arcsine-square root-
transformed prior to statistical analyses. Repeated measures ANOVA tests were run
to compare survival and shell length (separately) among the four treatments at 1, 3,
and 7 d. One-way ANOVAs followed by Tukey's Highly Significant Difference tests
were run separately for each date to compare survival and shell length among the
four treatments. One-way ANOVAs were run separately for each experiment to

compare growth rates from days 1-7 among the four treatments.
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3.4 Results

3.4.1 Fertilization Success

The percent of eggs fertilized was reduced for gametes exposed to high CO>
relative to gametes exposed to ambient COz in both Experiment 1 and Experiment 2
In Experiment 1, the percent of eggs fertilized was 94.5 % and 74.5 % for gametes
exposed to ambient COz or high CO, respectively. In Experiment 2, the percent of
eggs fertilized was 98.2 % and 95.7 % for gametes exposed to ambient CO: or high
COg, respectively. Because these measurements were not replicated within either
experiment and because the extent of the difference in fertilization success was not

consistent between the two experiments, we interpret these results cautiously.

3.4.2 Shell Development and Length

Development through larval stages (Fig. 3.1) in all treatments progressed
typically for this species (Belding 1910; Widman et al. 2001). At 1 d, most larvae
were in the fully shelled veliger stage, while those larvae that were still in the
trochophore stage (not pictured) showed evidence of calcification, visualized as
birefringence under cross-polarized light. By day 3, all larvae were post-D-stage,
although some larvae had unequal-sized valves (for example, the 3 d switch-to-high-
COz larvain Fig. 3.1A). When larvae exhibited unequal-sized valves, the shell length
of the larger valve was measured. Nearly all larvae in the high CO2 and switch-to-

high-CO; treatments displayed a dark spot or line near the hinge under transmitted
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light (Fig. 3.1A, C) that was also evident under cross-polarized light (Fig. 3.1B, D).
Based on subsequent scanning electron microscopy visualization of a subset of
larvae from each treatment from Experiment 1, it was determined that this dark
spot or line was an indicator of a dorso-ventrally oriented abnormal indentation of
the larval shell located near the hinge. Scanning electron micrographs are
presented in Fig. 4.3 in Chapter 4. This abnormal indentation was rarely seen on
larvae from the ambient and switch-to-ambient treatments, although the frequency
of occurrence was not quantified.

The COz conditions experienced during fertilization did not have an impact
on larval growth or size (Fig. 3.2, Table 3.2). However, exposure to high CO>
conditions during subsequent larval development (starting ~2 h post-fertilization)
caused a decrease in shell size relative to exposure to ambient CO; conditions,
regardless of COz exposure during fertilization (Experiment 1: repeated measures
ANOVA, Wilk’s Lambda = 0.0117, F= 14.187,df = 9, 24, p < 0.00001; Experiment 2:
repeated measures ANOVA, Wilk’s Lambda = 0.0052, F=20.888,df=9,24,p< 0
.00001). This decrease in shell size was seen consistently throughout the 7 d
duration of both Experiment 1 and Experiment 2. For Experiment 1, the mean shell
lengths of larvae from the ambient and switch-to-ambient treatments were
significantly larger than the shell lengths of larvae from the switch-to-high COz and
high-CO; treatments at 1 and 3 d (Fig. 3.2A, Tables 3.2, 3.3). At 7 d, the mean shell
lengths of larvae from the ambient treatment were significantly larger than the shell

lengths of larvae from the high-CO; treatment. For Experiment 3.2, the mean shell
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lengths of larvae from the ambient and switch-to-ambient treatments remained
significantly larger than the shell lengths of larvae from the switch-to-high-CO2 and
high-CO; treatments throughout the entire experiment (Fig. 3.2B, Tables 3.2, 3.3).

At 1 and 3 d, larvae from the high-CO; treatment were significantly larger than
larvae from the switch-to-high-CO2 treatment; this difference in size was no longer
significant by day 7 (Fig. 3.2B). No significant difference was seen in mean shell
growth rates (Table 3.2) integrated over days 1-7 (Experiment 1: one-way ANOVA, F

=0.97,df = 3, p = 0.44; Experiment 2: one-way ANOVA, F=1.97,df=3,p=0.17).

3.4.3 Larval Survival

Exposure to high CO; during fertilization resulted in consistently lower larval
survival from day 1-7, relative to exposure to ambient CO; during fertilization (Fig.
3.3, Table 3.4). This difference was significant on days 1 and 3, and on day 7,
survival in the continuous ambient treatment was significantly higher than survival
in all other treatments (Fig. 3.3). Additionally, within each fertilization group
(ambient or high COz) survival was lower in those treatments where larvae
subsequently developed in high CO2. On day 1, survival was significantly lower in
the high-CO; treatment, relative to the switch-to-ambient treatment and in the
switch-to-high-CO; treatment, relative to the ambient treatment. This significant
decrease in survival persisted through days 3 and 7 with regard to the switch-to-

high-CO; and ambient treatments.
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3.5 Discussion

In both Experiments 1 and 2, fertilization success was reduced when gametes
were exposed to high CO; conditions prior to and during fertilization. However, the
extent to which fertilization success was reduced was not consistent between
experiments. This variable fertilization success could be due to variable gamete
quality (Havenhand and Schlegel 2009), but is also commonly a result of variable
compatibilities between male and female gametes (Styan et al. 2008). A reduction in
fertilization success as a result of exposure to high CO; has previously been
documented in the clam M. balthica (Van Colen et al. 2012) and the oysters S.
glomerata and C. gigas (Parker et al. 2009; Parker et al. 2010). In contrast, other
groups have not observed a COz exposure-induced reduction in fertilization success
of C. gigas (Kurihara et al. 2007; Havenhand and Schlegel 2009), perhaps due to
intraspecific differences among oyster populations. Because the fertilization
success measurements in the current experiments were not replicated, they cannot
be attributed definitively to differences in CO2 exposure.

Exposure of gametes to high CO2 conditions prior to and during fertilization
did not negatively impact subsequent larval development and growth. Instead,
larval development and growth were influenced by CO; conditions experienced
during larval development (e.g., after 2 h post-fertilization), with larvae in both the
switch-to-high-CO2 and high-CO; treatments having significantly smaller shells than

larvae in both the ambient and switch-to-ambient treatments (Fig. 3.2). This
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significant effect was seen in both Experiment 1 and Experiment 2 for days 1 and 3
and in Experiment 2 on day 7.

Impacts of exposure to high CO; during larval development (starting at 2 h
post-fertilization) on larval shell size were evident starting when larvae were just
24 h old in both experiments. While the size differences persisted throughout the
experiment, growth rates from day 1-7 were not significantly different among any
treatments in either experiment, indicating that the size differences at the end of the
first week of larval development were a function of differences that appeared within
the first day of larval development. Similar to the size results from the 3-d Switch
Experiment (Chapter 2), it appears that growth during the first day of larval
development, when the larvae are initiating calcification and building their first
shell (Belding 1910; Widman et al. 2001), is critical in determining the size that
larvae ultimately reach within the first week of development. Calcium carbonate
crystals cause cross-polarized light to birefringe (Weiss et al. 2002), which can be
used as a qualitative indication of calcification. The shells of 1 d old larvae from the
ambient and switch-to-ambient treatments show stronger birefringence than those
of 1 d old larvae from the switch-to-high-CO; and high-CO; treatments (Fig. 3.1B, D).
This indicates more calcification of the 1 d old larval shell when larvae were
exposed to ambient COx.

While high CO2 exposure during fertilization did not impact larval shell size,
it did affect larval survival. In Experiment 1, survival was significantly reduced

when gametes were fertilized in high CO2 (switch-to-ambient and high-CO>
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treatments) compared with survival of gametes that were fertilized under ambient
CO2 (ambient and switch-to-ambient treatments). This difference was seen as early
as day 1 and lasted through day 3. On day 7, survival in the ambient treatment was
significantly higher than survival in all other treatments. Within a fertilization
group (high or ambient COz), exposure to high CO2 during larval development
reduced survival of larvae, compared to those exposed to ambient CO2 during larval
development. This suggests that unlike growth, larval survival is influenced by CO;

exposure during both fertilization and larval development.

However, an alternative explanation for the trend seen in larval survival is
that the effects are maternal effects as opposed to treatment effects. Because the
majority of eggs fertilized in ambient CO2 came from one scallop, and all of the eggs
fertilized in high CO; came from one (different) scallop, a difference in gamete
quality could have a marked effect on larval survival (Barber and Blake 2006).
While we were unable to estimate survival in Experiment 2, we feel that the strong
replication of size trends between the two experiments when different parent
scallops were used is an indication that the observed effects were treatment effects,
not maternal effects.

As previously pointed out in Chapter 2, a decrease in the size of scallop larvae
exposed to high CO2 may have indirect effects on subsequent survival in the field,
due to delayed metamorphosis and therefore, increased vulnerability to predation

(Thorson 1950; Sastry 1965). Additionally, if the smaller larvae resulted in smaller
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adults, reproductive output of those individuals could be stunted simply because the
size of the mature gonad is proportional to the size of the adult scallop (Barber and
Blake 2006). A factor that could further indirectly impact survival is the abnormal
shell curvature seen near the hinge of shells of larvae reared in high CO: (Fig. 3.1A,
C). The bivalve hinge allows the larval shell to open and close, facilitating the intake
of food particles and release of waste (Cragg 2006). An abnormality in the hinge
region of the shell could prevent larvae from properly obtaining the food particles
necessary for survival.

Our observation of a negative effect of high CO; during fertilization on larval
shell size is consistent with other studies of bivalves (Fig. 3.4), although the
sensitivity of the response varied by species. The magnitude of this CO: effect on
early larvae of the Pacific oyster (C. gigas, Kurihara et al. 2007) was similar to that
observed in our experiments. The effect on mussel larvae (M. galloprovincialis,
Kurihara et al. 2008), however was slightly greater; the early mussel veliger larvae
exposed to high CO2 were smaller relative to ambient conditions than early bay
scallop and oyster larvae (Fig. 3.4). The difference in sensitivity among species was
relatively small and the same negative size trend with increasing CO; was seen in all
three of these species, each of which represents a different order of bivalve. This
indicates that a decrease in larval shell size could be a consistent response to
exposure to high CO2/low Qaragonite during fertilization and early larval development

across bivalve orders.
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Kurihara et al. (2007) also found that C. gigas larvae in the high CO>
treatment had abnormally formed shells, similar to the abnormally indented A.
irradians shells described here. If similar processes affect oyster larvae, it is likely
that these effects are a result of exposure to high CO; during early larval
development, not of exposure during fertilization. Interestingly, this shell
abnormality was not reported for M. galloprovincialis larvae (Kurihara et al. 2008),
indicating that mussel shell development may not be affected by early exposure to
high CO; in the same way that bay scallop and Pacific oyster shell development is
affected.

[t is important to remember that OA is concurrently taking place with
warming temperatures and there is evidence that these stressors may act
synergistically. Parker etal. (2010) found that with the oyster S. glomerata,
exposure to high CO; and suboptimal temperature had lethal effects on larval
development only when the larvae resulted from gametes fertilized in high CO>
treatments, indicating that the high CO; fertilization had a lasting effect on larval
development when combined with another stressor.

Bay scallops living in coastal and estuarine environments will face
increasingly unfavorable conditions in coming years as atmospheric CO2-induced
OA exacerbates already-high pCO2 conditions in these locales. While larval
development appears to be affected most strongly by CO; conditions experienced
after fertilization has taken place, larval survival is impacted when gametes are

exposed to high CO during fertilization. Larvae that were spawned in regions of
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high CO2 may be at an ecological disadvantage to those spawned in more exposed
regions with lower CO2 conditions. Hatchery managers may want to carefully
control the COz conditions in which adult scallops spawn and larvae develop in

order to ensure survival and successful development of larvae.
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Table 3.2. Mean (+ SD) size (um) at 1, 3, and 7 d and mean (+ SD)
growth rate (um d'1) from 1-7 d of Argopecten irradians larvae raised in
four CO, treatment regimes; n = 4 replicate culture containers with
measurements made on at least 15 larvae from each.

Growth
Treatment Day 1 Day 3 Day 7 Rate
Experiment 1
Ambient 91.8+27 1058+4.0 136.7+71 75+16
Switch to High CO, 70.2+1.9 89.2+1.8 123.0+6.6 88+1.3
Switch to Ambient 874+13 1022+05 1323+7.8 75114
High CO, 67.9+3.8 83.0+45 119.7+52 86114
Experiment 2
Ambient 875+21 101.3+13 1323+11 75+0.2
Switch to High CO, 65.7 +2.3 76.0+28 104.3+75 64114
Switch to Ambient 879+16 103.7+41 123.8+4.0 6.0+0.9
High CO, 73.5+1.1 86.5+2.0 1125+31 651205
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Table 3.3. One-way ANOVAs of mean shell length (um) of Argopecten
irradians larvae from Experiments 1 and 2 raised in four CO, treatment
regimes (Ambient/Ambient CO,, Ambient/High CO,, High/Ambient CO,, and
High/High COy) at1,3,and 7d; n = 4.

Mean
Source of Type lll Square
Variation S§S df s F-Ratio p-value
Experiment 1
Day 1 Treatment 173469 3 578.23 85.97 <0.001
Error 80.71 12 6.73
Day 3 Treatment 1392.15 3 464.05 46.69 <0.001
Error 119.27 12 9.94
Day 7 Treatment 75242 3 250.81 5.49 0.013
Error 548.23 12 45.69
Experiment 2
Day 1 Treatment 1437.10 3 479.03 143.06 <0.001
Error 40.18 12 3.35
Day 3 Treatment 2035.41 3 678.47 88.87 <0.001
Error 91.61 12 7.63
Day 7 Treatment  1822.33 3 607.44 29.13 <0.001
Error 250.25 12 20.85
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Table 3.4. One-way ANOVAs of mean percent survival (arcsine-
square root-transformed) of Argopecten irradians larvae from
Experiment 1 raised in four CO, treatment regimes
(Ambient/Ambient CO,, Ambient/High CO,, High/Ambient CO,,
and High/High CO,) at1,3,and 7d; n=5.

Source of Type Mean
Variation 1lISS df Squares F-Ratio p-value
Day1  Treatment 0.84 3 028 122.78  <0.001
Error 0.04 16 0.00
Day3 Treatment 1.04 3 0.35 73.31  <0.001
Error 0.08 16 0.00
Day7 Treatment 0.50 3 0.17 33.74  <0.001
Error 0.08 16 0.00
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Figure 3.1. Larval morphology of bay scallops (Argopecten irradians) exposed to
varied pCO; conditions from Experiment 1 (A-B) and Experiment 2 (C-D), viewed
under both transmitted light (A, C) and cross-polarized light (B, D). Larvae were
preserved in 95 % ethanol after incubation for 1, 3, or 7 d in one of the four CO>
treatment regimes (ambient, switch-to-high-COz, switch-to-ambient, and high-CO2).
Larvae shown represent the mean shell length for each treatment and age. Arrows
indicate the dark spot on the larval shell that represents a shell abnormality. Images
are all to the same scale; scale bar = 100 um.
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Figure 3.2. Shell length of larval bay scallops (Argopecten irradians) from
Experiment 1 (A) and Experiment 2 (B) during the first week of larval development.
Values are mean * SD of 4 replicate culture containers. The dashed vertical line at t
= 2 h indicates the age at the time of inoculation into culture cups, which was also
the age at which COz conditions were switched for the two switch treatments.
Different letters (A, B, C) denote significant differences (p < 0.05) between
treatments at a given age, as determined in one-way ANOVA (Table 3), followed by
Tukey’s HSD test.
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Figure 3.3. Survival of larval bay scallops (Argopecten irradians) from Experiment
1, expressed as the percent of larvae surviving from the time of inoculation (age = 2
h), during the first week of larval development. Values are mean + SD ofn=5
replicate culture containers. The dashed vertical line at t = 2 h indicates the age at
the time of inoculation into culture cups, which was also the age at which CO>
conditions were switched for the two switch treatments. Letters denote significant

differences (p < 0.05) between treatments at a given age, as determined in one-way
ANOVA (Table 4), followed by Tukey’s HSD test.
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Figure 3.4. Shell length of early veliger larvae of three bivalve species, expressed as
% of ambient shell length, where ‘ambient’ refers to the experimental treatment
with water pCO; closest to the current atmospheric pCO; value. Data for bay
scallops (Argopecten irradians) are calculated from those data presented in this
thesis chapter; data for the mussel Mytilus galloprovincialis are calculated from
Kurihara et al. (2008); data for the oyster Crassostrea gigas are calculated from
Kurihara et al. (2007). In all cases, gametes were exposed to treatment conditions
(ambient or low Qaragonite) during fertilization and embryos and larvae were
maintained in their respective Qaragonite conditions for the duration of the experiment
with no switch in conditions (i.e., only the continuous ambient and high-CO;
treatments from the bay scallop fertilization experiments described in this thesis
chapter are shown).
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Isolating critical high pCO2 exposure windows for
larval bay scallops (Argopecten irradians)
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4.1 Abstract

Ocean acidification, characterized by elevated pCO: has variable effects on
marine invertebrates. Coastal and estuarine environments, where many
commercially and economically important organisms live, experience larger
variability and rapid shifts of pCO2 levels than the open ocean. Increases in pCO>
have been shown to have negative effects on growth and development in the early
life stages of calcifying marine invertebrates such as bivalves, but it is not clear
which developmental stage might be most sensitive. We investigate the idea that
initial calcification is a critical stage during which exposure to high pCO; will have
severe and persistent effects on larval growth and development of the bay scallop
Argopecten irradians. In a set of experiments varying the timing of exposure of
embryonic and larval bay scallops to high CO; (resulting in pH = 7.3, Qar = .65),
exposure to high CO; during initial calcification (12-24 h post-fertilization) results in
significantly smaller shells, relative to ambient conditions (pH = 7.96, Q.- = 2.60),
and this decrease in size persists through the first week of larval development.
However, exposure to high CO; at 2-12 h post-fertilization (prior to calcification)
does not impact shell size. This suggests that the CO; impact on size is a direct
consequence of water chemistry during calcification, not a consequence of earlier
exposure. Initial exposure to high CO2 (2-12 h post-fertilization) causes an
abnormal indentation in shells of some larvae, even if they are exposed to ambient
conditions during initial calcification. This impact does not occur in response to CO>

exposure after the 2-12 h period of pre-calcification development.

92



4.2 Introduction

Coastal and estuarine systems, and the organisms living therein, are subject
to fluctuating physical and chemical conditions, including aqueous carbonate
chemistry (Cai and Wang 1998; Howarth et al. 2011; Hofmann et al. 2011).
Carbonate chemistry fluctuates as a result of both natural and anthropogenic
processes on timescales ranging from daily to seasonal (Melzner et al. 2012). For
instance, phytoplankton photosynthesize during daylight hours, drawing down CO;
and releasing 02, while during the night, autotrophs and heterotrophs respire,
drawing down O and releasing CO2. As a result of this COz uptake and release, pH
typically rises during the day and falls at night. On seasonal scales, increased
temperature during summer months leads to increased microbial respiration of
organic matter, and seasonal stratification can produce sub-surface regions of 02
depletion, CO: elevation, and pH drop (Dai et al. 2006; Diaz and Rosenberg 2008;
Howarth et al. 2011; Melzner et al. 2012). Coastal and estuarine environments are
further affected by a reduction in pH caused by increased atmospheric CO> levels
resulting from fossil fuel burning (Caldeira and Wickett 2003; Doney et al. 2009;
Feely et al. 2009). Ocean acidification (OA), affects coastal and open oceans alike,
but coastal regions may be more vulnerable due to their relatively low buffering
capacity (Zeebe and Wolf-Gladrow 2005; Borges and Gypens 2010; Cai etal. 2011;

Melzner et al. 2012; Sunda and Cai 2012)
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relative to the open ocean. Therefore, OA is likely to decrease pH levels of coastal
and estuarine systems to a greater extent than for open ocean systems (Cai et al.
2011; Melzner et al. 2012).

An important consequence of increased CO; in seawater is a decrease in the
calcium carbonate saturation state (1) (Doney et al. 2009). This drop in 2 can make
calcification (shell-building) more difficult, or more energetically costly, for marine
organisms (Orr et al. 2005; Gazeau et al. 2007; Waldbusser et al. 2011). Also, many
calcifying marine invertebrates, including bivalves, spawn during summer months
(Belding 1910; Costello and Henley 1971) when pCOz levels are at the highest and ()
is the lowest in temperate systems (Feely et al. 2010; Waldbusser et al. 2011;
Melzner et al. 2012).

Recent evidence suggests that early life stages of marine invertebrates,
particularly of bivalve molluscs, which produce calcareous shells, are negatively
affected by high CO2 conditions. Negative effects of OA have been shown on all early
life stages of bivalves, including fertilization, D-stage (early) development, later
larval development, and juvenile development (Parker et al. 2009; Miller et al. 2009;
Watson et al. 2009; Gazeau et al. 2010; Parker et al. 2010; Waldbusser et al. 2011;
Gazeau et al. 2011; Van Colen et al. 2012), although some bivalve species appear to
be more tolerant to OA conditions than others (Miller et al. 2009). The bay scallop
(Argopecten irradians) larvae experienced delayed metamorphosis when exposed to
pH 8.04 relative pH 7.80 (Talmage and Gobler 2010). Exposure to low pH water

decreases survival of some bivalve larvae; for instance, survival of the Sydney rock
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oyster (Saccostrea glomerata) exposed to water with pH 7.6 was reduced by 72 %
relative to larvae exposed to water with pH 8.1 (Watson et al. 2009). Growth effects
are also apparent in larvae of the clam Macoma balthica, which grew more slowly
when exposed to water with pH 7.8 or 7.5, relative to pH 8.1 (control) from age 3 d
to 19 d (Van Colen et al. 2012). Most studies have exposed larvae to treatments only
once they were 1-3 d old, but exposure to low pH during the first day of
development, when many bivalve larvae experience the onset of calcification, has an
important impact on larval growth.

It is clear that larval bivalves are strongly impacted by high CO2 conditions,
but it is not well understood how variable exposure to high CO2 conditions affects
larval growth, development, and survival, nor at what developmental stage is high
CO2 exposure most critical. Such questions have relevance to both natural ecology
and practical applications. In the field, larvae are exposed to variable CO; conditions
spatially as they are transported through estuaries and temporally as a result of
daily fluctuations in photosynthesis and respiration. Many bivalve species are good
candidates for aquaculture, often reared as larvae in commercial hatcheries
(Shumway and Parsons 2006). Hatcheries would benefit from an understanding of
which developmental stages are most vulnerable to high CO; conditions and how
exposure at different stages may affect larval development.

Here, we address the impact of exposure to variable CO; conditions during
early larval development on the survival and growth of bay scallop larvae, and

identify the stages of early development that are most sensitive to exposure to high
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CO2. The bay scallop is an ideal model organism for this study because of their
economic importance as a commercially harvested shellfish. Bay scallops embryos
become trochophore larvae when they are about 12 h old and calcification initiates
soon thereafter (Belding 1910; Waller 1976; Bellolio et al. 1993). By the time larvae
are 24 h old, the shell is typically fully formed and they are considered early D-stage
veligers (Belding 1910; Waller 1976; Bellolio et al. 1993). Previous work (Chapter 2
of this thesis) showed that 3-d exposure to high CO; caused bay scallop larvae to
have significantly smaller shells than those exposed to ambient CO; and this size
difference persisted after larvae were transferred to ambient CO; conditions.
Perhaps more importantly, the difference in shell size was seen by the time larvae
were 24 h old, which could indicate that the initial calcification period (12-24 h
post-fertilization) is particularly sensitive to high CO2 exposure.

The results of the two experiments described in this thesis chapter show
that exposure to high CO; during initial calcification (12-24 h post-fertilization)
significantly reduces bay scallop larval shell size and that this size difference
persists throughout the first week of development. We also show that exposure of
larval bay scallops to high CO2 prior to shell formation (2-12 h post-fertilization)
causes an increase in the occurance of abnormally developed larval shells.
Combined, these results isolate two distinct developmental stages in which

exposure to high COz causes different effects on bay scallop larvae.

4.3 Methods
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4.3.1 Adult Collection and Spawning

Adult A. irradians individuals were collected during winter and spring
months from coastal waters around Martha’s Vineyard and Woods Hole,
Massachusetts and were held in submerged cages in Little River, an estuarine river
near Waquoit Bay, Massachusetts until needed. Scallops were collected under a
research collection permit issued by the Commonwealth of Massachusetts
Department of Fish and Game, Division of Marine Fisheries. Several days prior to
spawning, the adults were brought to Woods Hole Oceanographic Institution, where
they were maintained in 16 °C flowing seawater and fed daily with Instant Algae
Shellfish Diet (Reed Mariculture, Campbell, CA, USA).

Spawning was induced following the method described in section 2.3.1 of
Chapter 2. This spawning procedure was performed for two separate experiments,
which will be referred to as the 24-h Switch Experiment and the 12-h Switch
Experiment (described in more detail below). For the 24-h Switch Experiment, eggs
were collected from 3 individuals and sperm was collected from 4 individuals. For
the 12-h Switch Experiment, eggs were collected 5 individuals and sperm was
collected from a 5 individuals. In both experiments, if a scallop released both eggs
and sperm, only the eggs were used.

When the scallop embryos were 45 min post-fertilization, they were
suspended in the beaker by the up and down motion of a graduated cylinder (Helm

and Bourne 2004) and 1 ml was removed to assess fertilization success and to
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estimate embryo density. Embryos were counted at 100X magnification on a
gridded slide in which each grid square held 1 pl (Widman et al. 2001). An embryo
was considered fertilized by evidence of a polar body or first or second cleavage
(Belding 1910). The total number of embryos seen and the total number of
unfertilized embryos were counted. This count was performed once for the 24-h
Switch Experiment and twice for the 12-h Switch Experiment. The counts were
used to calculate the density of the embryo suspension in order to calculate the

volume with which to inoculate each replicate culture container.

4.3.2 Larval Culture

When the embryos were about 2 h old, they were stocked at an initial density
of 30 embryos ml! and were maintained in 800 ml of FSW in 1-I covered
polyethylene cups, which had been previously conditioned in running seawater for
at least four weeks. Filtered seawater was COz-equilibrated by bubbling with the
appropriate air-CO2 mixture in covered 14-1 buckets for 24 h prior to filling the
culture cups. Each experiment consisted of four experimental treatments:
continuous exposure to ambient CO2 (ambient treatment), continuous exposure to
high COz (high-CO2 treatment), initial exposure to ambient CO; followed by
exposure to high CO; (switch-to-high-CO; treatment), and initial exposure to high
CO: followed by exposure to ambient CO; (switch-to-ambient treatment). The two
experiments were differentiated by the timing, at 12 or 24 hr, of the change in CO>

conditions in the switch treatments. Scallop larvae begin to calcify between 12 and
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24 hours (Belding 1910; Waller 1976; Bellolio et al. 1993; Widman et al. 2001), so in
the 24-h Switch Experiment, larvae initiated calcification prior to the switch,
whereas in the 12-h Switch Experiment, the switch occurred prior to the onset of
calcification. Each culture cup was bubbled at a rate of approximately 100 ml min-1.
Cultures were fed daily with laboratory-raised Isochrysis galbana (Tahitian
strain, T-iso) in the exponential phase of growth at a density of 37,500 cell ml-1. This
ration has been shown to produce good growth rates and survivorship of bay
scallop larvae (Widman et al. 2001). Culture water was changed every two days
with COz-equilibrated FSW from the 14 | buckets. Prior to water changes, the
carbonate chemistry of the pre-equilibrated water in the 14-1 buckets and of each
replicate culture cup was measured as described below. During water changes, each
culture was gently poured through a 20 pm sieve, which caught the larvae. The
larvae were rinsed back into the cup and the cup was filled to 800 ml. To maintain a
stable temperature, all culture cups were contained in a water bath controlled by an
aquarium chiller/heater (T = 23.7 + 0.5 and 24.2 + 0.2 °C for the 24-h Switch and 12-
h Switch Experiments, respectively). In addition to five replicate culture cups per
treatment, 2 cups, one for each CO; level, were maintained without larvae or algae
added to them to serve as abiological references for the chemistry characterization.
The FSW in these cups was analyzed for carbonate chemistry and changed every 2 d,

just as the replicate culture cups were.

4.3.3 Manipulation of Water Chemistry
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Water chemistry was manipulated as described in section 2.3.3 of Chapter 2.
For the high CO; exposure, we used 2200 ppm COz, resulting in pH = 7.28 and a
calcium carbonate saturation state that was undersaturated with respect to
aragonite (Table 4.1). Such pCO: values and associated saturation states have been
observed in summer months in a local estuary (Childs River, Falmouth, MA, USA)

where bivalve larvae are found (McCorkle et al. 2012).

4.3.4 Characterization of Water Chemistry

To characterize the carbonate chemistry of the treatment water, pH, total
alkalinity, salinity, and temperature were measured following the procedures
described in section 2.3.4 of Chapter 2. Briefly, pH was measured
spectrophotometrically following the procedure described by Clayton and Byrne
(1993) and Dickson et al. (2007), and using the refit equation of Liu et al. (2011).
Alkalinity was measured by Gran titration with 0.01 M HCl. Based on the measured
values of pH (seawater scale), total alkalinity, temperature, and salinity, we used
CO2SYS Software (Pierrot et al. 2006) to calculate pCOz, Qaragonite, and total DIC using
the first and second dissociation constants (Ki and Kz) of carbonic acid in seawater
from Mehrbach et al. (1973), refit by Dickson and Millero (1987).

In addition to the replicate culture cups with larvae, 2 cups, one for each CO;
level, were maintained without larvae or algae added to them to serve as abiotic
references for the chemistry characterization. The FSW in these cups was analyzed

for carbonate chemistry and changed every 2 d, as for the replicate culture cups.
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4.3.5 Light Microscopic Imaging and Shell Measurements

At 1, 3,and 7 d, approximately 50-75 larvae from each culture were
preserved in 95 % ethanol for microscopic imaging and shell measurement.
Imaging and shell measurements were carried out as described in section 2.3.5 of
Chapter 2. Preliminary experiments showed that four replicates gave sufficient
statistical power to detect differences in mean larval size. A fifth culture cup was
included for each treatment to ensure that if one culture crashed, four would remain
available for size measurements. Mean growth rate (um d-1) for each replicate was
calculated as the increase in mean shell length from 1 d to 7 d, divided by the

number of days (6 d).

4.3.6 Scanning Electron Microscopy

Upon visualization of larvae through transmitted and polarized light
microscopy, a shell abnormality near the hinge was frequently observed in larvae in
the high COz and switch to ambient treatments. The frequency of occurrence of this
shell abnormality was quantified for all four treatments of each experiment, based
on the light microscopy images of ~15 larvae taken from four replicate cultures.
However, visualization of larvae through light microscopy was insufficient to
identify the nature of the shell abnormality, so a subset of larvae from one replicate
of each treatment from the 24-h Switch Experiment were mounted on stubs for

scanning electron microscopy (SEM). Approximately 12 larvae from each treatment

101



(1, 3, and 7 d) were mounted on stubs using double-sided carbon tape and
subsequently coated with 5 nm gold using a Leica EM MED020 vacuum coating
system. Digital SEM images of the larvave were obtained with a Zeiss NTS
Supra40VP electron microscope at 500X magnification using a voltage of 12 kV and

an HKL Premium electron backscatter diffraction (EBSD) system.

4.3.7 Survival Estimation
Percent survival was estimated at 1, 3, and 7 d according to the method
described in section 2.3.6 of Chapter 2. Survival estimates from all five replicate

cultures were included in analyses to improve statistical power.

4.3.8 Statistical Analysis

All statistical analyses were performed using Systat® 13 Software (Systat
Software, Inc., Chicago, IL, USA). Percent survival data and percent abnormal shell
data were arcsine-square root-transformed prior to statistical analyses. Repeated
measures ANOVA tests were run to compare survival and shell length among the
four treatments at 1, 3, and 7 d. One-way ANOVAs followed by Tukey's Highly
Significant Difference tests were run separately for each date to compare survival
and shell length among the four treatments. One-way ANOVAs were run separately

for each experiment to compare growth rate among the four treatments.

4.4 Results
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4.4.1 Shell Size and Growth

Progression through larval stages (Fig. 4.1) in all treatments was typical for
this species (Belding 1910; Widman et al. 2001) in both the 24-h and 12-h Switch
Experiments. In the 24-h Switch Experiment, most larvae were in the fully shelled
veliger stage at 1 d, while those larvae that were still in the trochophore stage (not
pictured) showed evidence of calcification, visualized as birefringence under cross-
polarized light. In the 12-h Switch Experiment, all larvae were fully shelled veligers
at 1 d. In both experiments, by day 3, all larvae were post-D-stage.

Exposure to high CO; conditions during the initial calcification (12-24 h post
fertilization) caused a significant decrease in shell size relative to exposure to
ambient CO; conditions by the time the larvae were 1 d old in both the 12-h and 24-
h Switch Experiments (i.e., size in high-CO2 < size in ambient treatments; Fig. 4.2,
Tables 4.2, 4.3). This difference in size persisted throughout the first week of larval
development in both experiments (24-h Switch Experiment: repeated measures
ANOVA, Wilk’s Lambda = 0.056, F= 6.141, df = 9, 24, p < 0.001; 12-h Switch
Experiment: repeated measures ANOVA, Wilk’s Lambda = 0.005, F = 20.362, df =9,
24,p < 0.001).

In the 24-h Switch Experiment, at 1 and 3 d, the larvae that were initially
exposed to high CO2 through the onset of calcification (both the switch-to-ambient
and high-CO; treatments) were not significantly different in size from each other,

but were significantly smaller than larvae that were initially exposed to ambient CO-
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(both the ambient and switch-to-high-CO; treatments, Fig. 4.2A). By day 7, this
pattern remained, but was no longer significant; only the larvae in the switch-to-
high-CO; treatment were significantly larger than those in the switch-to-ambient
treatment. In the 12-h Switch Experiment, it was not the initial CO2 exposure (2-12
h) that impacted shell size, but rather the CO; exposure during the onset of
calcification (12-24 h), which occurred after the switch in CO2 conditions had been
carried out (Fig. 4.2B, Tables 4.2, 4.3). Throughout the 7 d duration of the
experiment, the shells of larvae exposed to ambient CO; during initial calcification
(the ambient and switch-to-ambient treatments) were significantly larger than the
shells of larvae exposed to high CO2 during initial calcification (the high-COz and
switch-to-high-CO; treatments). There was no significant difference in mean
growth rates from 1-7 d (Table 4.2) among the four treatments in either the 24-h
Switch Experiment or the 12-h Switch Experiment (24-h: one-way ANOVA, F =

2.500, df = 3, p = 0.109; 12-h: one-way ANOVA, F = 1.517, df = 3, p = 0.260).

4.4.2 Shell Development and Structure

Transmitted and cross-polarized light images of larvae in the switch-to-
ambient and the high-CO; treatments of both Experiments showed an abnormality
in the shell development near the hinge at 1, 3, and 7 d (Fig. 4.1). This abnormality
appeared in transmitted light images as a dark spot or line near the hinge of the
larvae (Fig. 4.1A, C) and in cross-polarized light as a bright spot or line near the

hinge of the larvae (Fig. 4.1B, D). SEM visualization of a subset of larvae from the
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24-h Switch Experiment (Fig. 4.3) showed this to be an dorso-ventrally oriented,
abnormal indentation of the shell near the hinge (Fig 4.3H-L).

Pre-calcification exposure to high COz (2-12 h post-fertilization, i.e., the
switch-to-ambient and high-CO; treatments) caused a significantly larger
percentage of larvae to show this abnormality relative to larvae with initial (2-12 h)
exposure to ambient COz in both experiments (Fig. 4.4, Table 4.4). This trend was
significant throughout the 7 d duration of both experiments (24-h: repeated
measures ANOVA, Wilk’s Lambda = 0.016, F=11.981,df =9, 24, p < 0.001; 12-h:
repeated measures ANOVA, Wilk’s Lambda = 0.012, F=13.717,df =9, 24, p <0.001).
The abnormal shell indentation was produced by pre-calcification exposure to high
COz in contrast to the decrease in shell size, which was produced by high CO;
exposure during initial calcification.

SEM visualization of larvae from the 24-h Switch Experiment also showed
dissolution of the prodissoconch I of 100 % and 50 % of 7 d larvae imaged from the
switch-to-high-COz and high-CO; treatments, respectively, (Fig. 4.3F, L). No
evidence of dissolution was seen on larvae in either the ambient or switch-to-
ambient treatments, nor on the prodissoconch II of any larvae. Shells were
visualized from only one replicate of each treatment, so no statistical analyses were

performed on prevalence of shell dissolution.

4.4.3 Larval Survival
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In both experiments, larvae continuously exposed to ambient CO> (the
ambient treatment) consistently had higher survival than larvae in all the other
treatments (Fig. 4.5). Overall mean survival varied significantly among treatments
in both experiments (24-h, repeated measures ANOVA, Wilk’s Lambda = 0.212, F =
3.395,df =9, 34, p = 0.004; 12-h, repeated measures ANOVA, Wilk’s Lambda = 0.256,
F=2.853,df =3, 34, p=0.013). In the 24-h Switch Experiment, survival was highly
variable among replicates within treatments at 1 and 3 d, resulting in no significant
difference among treatments on those days. On day 7, survival was low in all
replicates, but was significantly higher in the ambient treatment than in the switch-
to-ambient and the high-CO; treatments (Fig. 4.5A). In the 12-h Switch Experiment,
survival was significantly different among treatments at 1, 3, and 7 d (Fig. 4.5B), and
was consistently higher in the treatments initially exposed to ambient CO2 than in

the treatments initially exposed to high CO-.

4.5 Discussion

Exposure to high CO; during initial calcification (12-24 h post fertilization)
caused a significant decrease in shell size relative to ambient CO2 exposure. This
effect became apparent when the larvae were just 1 d old. Larvae that were held
continuously in high COz and those switched into high CO; prior to calcification both
showed a decrease in size. Larvae that had been exposed to high CO, but returned
to ambient conditions before calcification, did not show a decrease in shell size. The

decrease in shell size persisted throughout the first week of development in both
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experiments. However, growth rates from days 1-7 were not different among
treatments in either experiment, indicating growth rate was only affected by
exposure to high CO; during the first day of development. The size difference seen
on day 1 persisted throughout the first week simply because larvae in all treatments
grew at the same rate after the first day. This demonstration of a significant and
persistent CO; effect on shell size within the first day of larval development suggests
that other studies on bivalve larval development in which CO2 exposure was
initiated only after initial calcification may have underestimated the magnitude of
the effects of high CO; throughout larval development (Talmage and Gobler 2009;
Miller et al. 2009; Watson et al. 2009; Gazeau et al. 2010; Talmage and Gobler 2010;
Van Colen et al. 2012).

The size results from the 12- and 24-h Switch Experiments are
complementary with the size results from the two Fertilization Experiments and the
3-d Switch Experiment. Together, the data from all four experiments show that it is
exposure to high COz during the onset of calcification that determines the larval
shell size (Fig. 4.6). When the switch in conditions occurred prior to the onset of
calcification (the 12-h Switch and Fertilization Experiments), shell size reflected the
final CO2 exposure conditions; when the switch in conditions occurred after the
onset of calcification (the 24-h and 3-d Switch Experiments), shell size reflected the
initial CO2 exposure conditions.

There are several possible explanations for why bay scallop larvae appear to

be particularly sensitive to high CO; exposure during initial calcification. Bay
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scallops’ mouths and digestive systems develop during their first 24 h (Belding
1910; Widman et al. 2001; Cragg 2006), which means until these are fully formed
and they can feed on phytoplankton, bay scallops rely on maternally invested
energy from the yolk of the egg (Le Pennec et al. 1998; Caers et al. 1999). While the
quality of food on which adults feed can significantly effect larval survival and
growth (Le Pennec et al. 1998; Caers et al. 1999), in these experiments, embryos
were pooled and divided evenly among treatments, so any maternal effect on
development should be equal across treatments. During the first day of growth,
larvae experience a negative energy balance as they deplete maternally-invested
reserves to fuel embryogenesis (Lu and Blake 1999). Calcification under decreased
Q (in these experiments, undersaturated () is less thermodynamically favorable and
more energetically costly (Orr et al. 2005; Kleypas et al. 2006). The additional
energy required to build their shell in low () waters may limit the maximum size of
bay scallop shells when larvae are faced with the finite energy reserves of the yolk,
resulting in smaller shells than those of their conspecifics calcifying in ambient Q
waters. Additionally, the idea that bivalve larvae use amorphous calcium carbonate
(ACC) to produce the earliest stages of their shell (Weiss et al. 2002) may help to
explain the sensitivity of bay scallop larvae to high CO; conditions during initial
calcification, as ACC is more soluble than aragonite and its formation would
therefore be even less thermodynamically favorable.

Once the larvae were able to consume microalgae to increase their energy

reserves, exposure to high COz did not depress growth rate. This indicates that the
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ration used in these experiments provides larvae with sufficient food to overcome
the energetic demands of calcifying under decreased Q1. This is not surprising, as the
ration was chosen because it has been shown to produce high growth rates in bay
scallop larvae (Widman et al. 2001), specifically in order to ensure food limitation
was not a factor in these experiments. Because the data suggest energetic
limitations to growth within the first day of development, it would be useful to
design experiments with varied food rations to produce food-limited and food-
replete conditions, in order to see if such limitations could exist once larvae enter
the planktotrophic stage.

In contrast to the timing of CO; exposure during initial calcification affecting
larval shell size, exposure to high CO2 during embryogenesis and the earliest larval
development (prior to shell formation, 2-12 h) resulted in deformed larval shells
with an abnormal indentation near the hinge (Figs. 4.3H-L, 4.4). A similar abnormal
development as a result of high-CO; exposure has been documented once before, in
2 d old Pacific oyster (Crassostrea gigas) larvae exposed to water with pH 7.4 since
fertilization (Kurihara et al. 2007). Light microscopy images of the oyster larvae
show a dark spot near the hinge, similar to the those seen in the present study in the
switch to ambient and the high-CO; treatments (Fig. 4.1A, C), but Kurihara et al.
(2007) did not further investigate the abnormality with SEM visualization. Because
this abnormal indentation occurs as a result of early exposure to high CO2, groups
who exposed bivalve larvae to high CO2 conditions after the start of shell formation

would not have observed this effect. When bay scallop embryos were exposed to
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high COz conditions until 2 h post-fertilization, followed by exposure to ambient
conditions, larvae did not show the abnormal shell indentation (Chapter 3, Fig. 3.1),
indicating that the critical exposure period for bay scallops is somewhere between 2
and 12 h post-fertilization.

At 12 h old, bay scallop larvae are generally in the late gastrula/early
trochophore stage, and shell formation begins soon thereafter (Belding 1910; Sastry
1965). Shell formation begins with shell field invagination on the dorsal surface of
the trochophore (Bellolio et al. 1993; Casse et al. 1998; Cragg 2006), with the shell
gland located within. The earliest stage of the shell, secreted by the shell gland, is a
saddle-shaped organic pellicle layer, which is not calcified yet and is essentially
periostracum (Bellolio et al. 1993). The first calcified shell is called the
prodissoconch I and includes a central round area with pits and radial striations,
called a ‘punctate-stellate pattern’ (Carriker and Palmer 1979). This region overlies
the embryonic shell gland and represents the initial mineralization of the organic
pellicle (Carriker and Palmer 1979). The abnormal indentation appears in close
proximity to the punctate-stellate region (Fig. 4.3), but based on the timing of CO>
exposure that produced the abnormal indentation (2-12 h post-fertilization), its
formation must be initiated before calcification and even before shell formation
begins with the organic pellicle layer. Additionally, the abnormal indentation lies in
close proximity to the location of attachment of velar-retractor muscles to the
interior of the shell (Elston 1980; Cragg 2006), but these muscles are not in place

until the veliger stage, which again occurs after the initiation of the indentation. A
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possible explanation for the observation that exposure to high CO; before the start
of shell formation affects later shell development is that the cells involved in
calcification are disrupted by exposure to low pH early in development. In
echinoderm larvae, the primary mesenchymal cells ultimately responsible for the
formation of the larval skeleton begin migration to their final location during the
blastula stage (Decker 1988). If a similar process occurs in bivalve larvae, it could
be that exposure to high CO; during the blastula stage (~9 h post-fertilization;
Belding 1910) disrupts the function of the cells that ultimately form the shell field
and shell gland. In this case, it is likely that decreased pH, not decreased Qaragonite iS
responsible for the effect because calcification has not yet started at this stage in
development.

Even without knowing the mechanisms by which the indentation is formed,
its presence is likely to be important to larval well-being. The bivalve hinge allows
the larval shell to open and close, allowing the velum to protrude, which enables the
larva to swim and facilitates the intake of food particles and release of waste (Cragg
2006). An abnormality in the hinge region of the shell could prevent larvae from
properly obtaining the food particles necessary for survival. While we did not see a
reduced growth rate in either the switch to ambient or the high CO; treatments that
might have been indicative of an inability to collect food, it is possible that when
food is available at a lower ration than used here, an inability to collect food might
be apparent. Additionally, there was a slight decline in the proportion of larvae in

the switch-to-ambient and the high-CO; treatments with the indentation as the
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larvae aged (Fig. 4.4), which could be an indication that larvae with the indentation
have greater mortality than those without.

Larvae with prolonged exposure to high CO; conditions (the switch-to-high-
COz and the high-CO; treatments) exhibited shell dissolution of the prodissoconch I
at 7 d, visible through SEM imaging (Fig. 4.3F, L). Because the high CO2 conditions
used in these experiments produced seawater undersaturated with respect to
aragonite (Qaragonite = 0.63-0.76), unprotected shell is expected to dissolve. However,
it should be noted that half of the larvae high-CO; treatment visualized by SEM did
not show evidence of shell dissolution at 7 d, indicating that the periostracum may
offer some form of protection to the shell from corrosive water. Dissolution was
seen only in the prodissoconch I, which suggests that dissolution requires several
days of exposure to undersaturated seawater before it is apparent through SEM
visualization. Nonetheless, a bay scallop larva’s shell is its primary defense against
predators (Purcell et al. 1991; Cragg 2006) and degradation of the shell could make
a larva more vulnerable to predation.

Direct effects of early high CO2 exposure on bay scallop larval survival in the
12- and 24-h Switch Experiments are less clear than the effects of high CO; exposure
on size, largely due to overall high mortality as well as high variability in survival
among replicates within treatments. In the 12-h Switch Experiment, it is apparent
that early exposure to high CO2 negatively affected survival throughout the first
week of larval development. In short-lived species such as bay scallops, survival of

each larval cohort is critical to the continued survival of the adult population.
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A relatively small difference in the timing of exposure to high CO; caused
distinctly different effects on larval bay scallops, highlighting the need for a deeper
understanding of the mechanisms by which CO; affects larval bivalve development.
During the first 24 hours of development, prior to the onset of feeding, the energetic
cost of calcification limited shell growth, but it is not known how changes in food
availability during planktotrophic stages of development could impact growth in
later larval development. Pre-calcification exposure to high CO; did not affect larval
size, but it had a marked impact on shell structure for reasons that are still unclear.
Studies of OA impacts on bivalves that focus on the earliest hours of larval
development are essential, if we are to understand how early exposure to high CO>
will affect individuals and populations.

The finding of two distinct developmental periods in which exposure to high
CO: affects bay scallop larvae in different ways has both ecological and commercial
implications. Coastal and estuarine systems where scallops live experience diurnal
variability with respect to COz/pH conditions, with more favorable low CO2/high pH
conditions during the day and less favorable high CO2/low pH conditions during the
nighttime. Based on the findings of the 12- and 24-h Switch Experiments, there are
two distinct ~12 h periods within the first day of development that affect scallop
size and development. The diurnal variability in the field means that field-spawned
embryos and larvae must experience unfavorable high CO2 conditions for one of
these developmental periods. In both the 12- and 24-h Switch Experiments, the

shell deformity resulting from exposure to high CO; from 2-12 h post-fertilization
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did not appear to affect larval growth or survival, so this negative effect of early high
COz exposure appears to be less significant than smaller shell size, which can have
indirect effects on survival. Therefore, embryos spawned in the evening would
experience most favorable CO; conditions when they are 12-24 h old, which would
be advantageous for their shell growth. Additionally, the evidence that the critical
periods of high CO; exposure are during the first day of development means that
commercial hatcheries should aim to provide scallop larvae with optimal CO>
conditions during that time. After the first day, exposure to high CO; does not have
a major impact on larval size or shell formation, so hatcheries could limit their
resource investment in monitoring and modifying water chemistry beyond the first

day of development.
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Table 4.2. Mean (£ SD) size (um) at 1, 3, and 7 d and mean (+ SD)
growth rate (um d'1) from 1-7 d of Argopecten irradians larvae raised in
four CO, treatment regimes; n = 4 replicate culture containers with
measurements made on at least 15 larvae from each.

Growth
Treatment Day 1 Day 3 Day 7 Rate
24-h Switch Experiment
Ambient 86.1+3.6 955+24 1231+52 6.2+09
Switch to High CO, 88.2+44 95.0+3.7 1274+55 65+1.0
Switch to Ambient 71.1+£3.2 811+24 1129+57 7.0+£09
High CO, 71.2+1.2 822+46 1178+3.0 78106
12-h Switch Experiment
Ambient 89.3+1.3 999+04 1399157 84111
Switch to High CO, 75.8+0.7 93.6+0.8 1248+06 8.2+0.1
Switch to Ambient 874+20 100.2+05 1327+24 7606
High CO, 73.7+1.0 90.0+3.1 1194+24 76105
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Table 4.3. One-way ANOVAs of mean shell length (um) of Argopecten
irradians larvae from the 24-h and 12-h Switch Experiments raised in
four CO;, treatment regimes (ambient, switch to high CO,, switch to
ambient, and high CO,) at1,3,and 7 d; n=4.

Source of Type llI Mean
Variation SS df Squares F-Ratio p-value

24-h Switch Experiment
Day 1 Treatment 1032425 3 344142  31.384 <0.001

Error 131.585 12 10.965

Day 3 Treatment 745645 3 248.548 24.494 <0.001
Error 138.645 12 11.564

Day 7 Treatment 479.765 3 159.922 6.499 0.007
Error 295.305 12 24.609

12-h Switch Experiment
Day 1 Treatment 749.287 3 249.762 139.581 <0.001

Error 21.473 12 1.789

Day 3 Treatment 298.633 3 99.544  36.105 <0.001
Error 33.085 12 2.757

Day 7 Treatment 966.292 3 322.097 28.979 <0.001
Error 133.378 12 11.115
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Table 4.4. One-way ANOVAs of proportion (arcsine-square root-
transformed) of Argopecten irradians larvae with abnormally curved
shells from the 24-h and 12-h Switch Experiments at 1, 3, and 7 d.
Larvae were raised in four CO, treatment regimes (ambient, switch
to high CO,, switch to ambient, and high CO,); n = 4.

Source of Type Mean
Variation lISS df Squares F-Ratio p-value

24-h Switch Experiment
Day 1 Treatment 4605 3 1.535 38.583  <0.001

Error 0.477 12 0.040

Day 3 Treatment 3.721 3 1.240 27.199 <0.001
Error 0.547 12 0.046

Day 7 Treatment 3117 3 1.039 119.923 <0.001
Error 0.104 12 0.009

12-h Switch Experiment
Day 1 Treatment 3.244 3 1.081 58.991 <0.001

Error 0.220 12 0.018

Day 3 Treatment 3.238 3 1.079 34.806 <0.001
Error 0.372 12 0.031

Day 7 Treatment 3.741 3 1.247 134.067 <0.001
Error 0.112 12 0.009
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Table 4.5. One-way ANOVAs of mean percent survival (arcsine-
square root-transformed) of Argopecten irradians larvae from the
24-h and 12-h Switch Experiments at 1,3, and 7 d. Larvae were
raised in four CO, treatment regimes (ambient, switch to high CO,,

switch to ambient, and high CO,); n = 5.

Source of Type Mean
Variation lISS df Squares

F-Ratio p-value

24-h Switch Experiment
Day 1 Treatment 0.033 3 0.011

Error 0.212 16 0.013
Day 3 Treatment 0.010 3 0.003
Error 0.032 16 0.002
Day 7 Treatment 0.011 3 0.004
Error 0.005 16 0.000

12-h Switch Experiment
Day 1 Treatment 0.027 3 0.009

Error 0.024 16 0.002
Day 3 Treatment 0.030 3 0.010
Error 0.040 16 0.002
Day 7 Treatment 0.039 3 0.013
Error 0.021 16 0.001

0.825

1.645

12.719

5.987

4.032

9.984

0.499

0.218

<0.001

0.006

0.026

<0.001
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Figure 4.1. Larval morphology of bay scallops (Argopecten irradians) exposed to
varied pCO; conditions from the 24-h Switch Experiment (A-B) and the 12-h Switch
Experiment (C-D), viewed under both transmitted light (A, C) and cross-polarized
light (B, D). Larvae were preserved in 95 % ethanol after incubation for 1, 3, or 7 d
in one of the four CO; treatment regimes (ambient, switch-to-high-CO2, switch-to-
ambient, and high-C0Oz). Larvae shown represent the mean shell length for each
treatment and age. Arrows indicate the dark or light spot on the larval shell that
represents a shell abnormality when visualized through transmitted or cross-
polarized light, respectively. Images are all to the same scale; scale bar = 100 pm.
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Figure 4.2. Shell length of larval bay scallops (Argopecten irradians) from the 24-h
Switch Experiment (A) and 12-h Switch Experiment (B) during the first week of
larval development. Values are mean * SD of 4 replicate culture containers. The
dotted vertical line indicates the age at the time of inoculation into culture cups; the
dashed vertical line indicates the age at which COz conditions were switched for the
switch treatments. Different letters (A, B, C) denote significant differences (p <
0.05) between treatments at a given age, as determined in one-way ANOVA (Table
3), followed by Tukey’s HSD test.
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Figure 4.3. SEM images of larval shell morphology of bay scallops (Argopecten
irradians) exposed to varied pCO2z conditions from the 24-h Switch Experiment.
Larvae shown represent the typical shell appearance for each treatment and age,
but do not represent mean shell size. Black arrows point out abnormal indentations
(i) near the hinges of larvae in the switch to ambient (G-I) and high CO2 (J-L)
treatments. White arrows point out dissolution (d) of the prodissoconch I on larvae
in the switch to high COz and high CO; treatments at 7 d (F, L). Images are all to the
same scale; scale bar = 100 um.
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Figure 4.4. Percentage of larval bay scallops (Argopecten irradians) from the 24-h
Switch Experiment (A) and 12-h Switch Experiment (B) exhibiting abnormal
curvature of the shell near the hinge. Values are mean * SD of 4 replicate culture
containers. Different letters (A, B) denote significant differences (p < 0.05) between
treatments at a given age, as determined in one-way ANOVA (Table 4), followed by
Tukey’s HSD test.
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Figure 4.5. Survival of larval bay scallops (Argopecten irradians) from the 24-h
Switch Experiment (A) and 12-h Switch Experiment (B), expressed as the percent of
larvae surviving from the time of inoculation (age = 2 h), during the first week of
larval development Values are mean * SD of 5 replicate culture containers. The
dotted vertical line indicates the age at the time of inoculation into culture cups; the
dashed vertical line indicates the age at which CO2 conditions were switched for the
switch treatments. Different letters (A, B, C) denote significant differences (p <
0.05) between treatments at a given age, as determined in one-way ANOVA (Table
5), followed by Tukey’s HSD test.
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Figure 4.6. Mean shell length expressed as percentage of ambient for 3 d old larval
bay scallops (Argopecten irradians) from five separate experiments differing in the
timing of the CO2 exposure switch. Letters above bars denote significant differences
(p < 0.05) between treatments within a given experiment, as determined by one-
way ANOVA, followed by Tukey’s HSD test. High CO2 exposure during the initial
calcification period (12-24 h post-fertilization) reduces shell size, relative to
ambient exposure. The trend presented here was also apparent on days 1 and 7 of
all experiments.
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Chapter 5

Conclusions

137



5.1 Overall Impacts of Early Exposure to High CO:

[ determined the stage(s) at which larval bivalves are most susceptible to
damage by elevated CO; using a ‘switch’ approach, by which bay scallop larvae were
exposed to ambient or high CO; conditions for brief periods of time. This approach
allowed me to target the high CO2 exposure to isolated stages of embryonic and
larval development in order to identify critical developmental stages. Exposure to
high COz during initial calcification (12-24 h post-fertilization) significantly reduces
shell size of larval bay scallops at 1 d, and this reduction in size is evident
throughout the first week of development. Exposure to high CO2 prior to shell
formation and initial calcification (2-12 h post-fertilization) results in abnormally
formed larval shells with an abnormal indentation in a dorso-ventral orientation
(perpendicular to the hinge) close to the hinge. These two effects seem to be
independent: exposure in the 12-24 hour window does not cause shell deformities,
and exposure during the 2-12 hour window does not impact shell size. Finally,
larvae exposed to high CO2 for any amount of time had consistently higher mortality
than those exposed continuously to ambient CO2, though in these experiments the
differences were not always statistically significant.

While studies to date have almost without exception shown negative effects
of high COz on larval and juvenile bivalves, it was unclear which early
developmental stages are particularly vulnerable to high CO2 and which stages,
when exposed to high CO2, have critical impacts on later development. Knowing this

timing is important because allows us to better understand how scallops developing
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in the wild will respond to changing CO2 condtions and it also has implications for
hatchery production. Furthermore, the stage-specific responses of young bay
scallop to high CO2 conditions could be used to construct a matrix population model
to project how bay scallop populations will be affected by changing CO2 conditions.
[ found that exposure to high CO: at distinctly different stages of development
produces different effects (size and development) on larval bay scallops, and in
particular on the earliest developmental stages, which have frequently been

overlooked by previous studies.

5.2 Impacts of High COz on Shell Growth and Size

The switch experiments demonstrate that exposure to high COz during the
period of initial calcification (12-24 h post-fertilization) is critical to larvae bay
scallop size. Larvae exposed to high CO2 during this 12-24 h period were
significantly smaller, even at 1 d old, than larvae exposed to ambient CO; during
initial calcification. When larvae were switched from high to ambient CO; prior to
the onset of calcification (i.e. in the Fertilization and 12-h Switch Experiments), they
were not significantly different in size at 1 d from larvae raised in ambient CO; for
the first day, supporting the conclusion that it is not simply early exposure to high
COg, but specifically exposure during the onset of calcification that impacts larval
size.

While the effects of high CO; exposure on larval size were persistent

throughout the first week of larval development, growth rate was only affected by
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high CO2 during the first day of development. The size difference persists only
because once smaller, the larvae exposed to high CO during calcification remained
smaller, because they were growing at the same rate as larvae in the ambient pCO>
treatment. [ hypothesize that the difference in growth rate during the 12-24 hour
calcification period reflects an energy constraint on larval growth. Bay scallops
cannot feed during the first day and rely on maternally-invested energy reserves
from the egg yolk (Le Pennec et al. 1998; Lu and Blake 1999; Widman et al. 2001;
Cragg 2006). It appears that this reserve is not sufficient to meet the increased
energetic demands of calcifying under high CO2, low Q. conditions, resulting in
smaller shells when the larvae are 1 d old. After the larvae have developed mouths
and become planktotrophic, by roughly 1 d old, there was no longer an effect of high
COz exposure on growth rate. This indicates that the ration used in these
experiments (37,500 cells/mL) provides sufficient energy for larvae exposed to high
CO2 to grow at the same rate as larvae exposed to ambient CO2. Melzner et al.
(2011) found that shell maintenance of adult blue mussels (Mytilus edulis) is closely
coupled to the energy budget; mussels on low food rations at both ambient and high
COz levels experienced internal shell dissolution. Additionally, work on corals has
shown that when nutrients or food are replete, coral calcification rates under high
CO2 more closely approach calcification rates under ambient CO2 than they do when
nutrients or food are limited or withheld entirely (Langdon and Atkinson 2005;
Cohen and Holcomb 2009; Ries et al. 2009; Holcomb et al. 2010). My experiments

represent food-replete conditions; in order to more fully understand the role of food
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availability on larval bivalve growth, it will be important to design experiments with
varying rations of food under different CO: levels.

In food-limited situations (like most natural environments), it is likely that
scallop growth will continue to be affected by elevated COz beyond the first day of
development. Evidence for this can be seen in studies by Talmage and Gobler
(2010; 2011). They found that the lipid indices of 20 d juvenile bay scallops were
significantly reduced with increasing pCO2. They hypothesized that this trend was a
result of inability to feed due to malformed hinges. [ would propose an alternative
hypothesis: that larvae are depleting lipid (energy) reserves to metabolically
compensate for the higher energetic demands of calcifying shell under high COz, low
Qar conditions. The ration used by Talmage and Gobler was approximately half the
ration than used in the present experiments and could also account for the
decreased growth rate they observed in later development, a high CO; response that
was not apparent in the results of any of my experiments. Furthermore, scallop
larvae rely on the energy reserves they have accumulated during their
planktotrophic phase while they undergo metamorphosis and are unable to collect
food particles for a period of time (Whyte et al. 1992; Soudant et al. 1998; Lu and
Blake 1999; Cragg 2006). The lower lipid indices that Talmage and Gobler (2010)
observed in bay scallops exposed to high CO2 might help explain the sudden
mortality occurring around the age of metamorphosis, mortality that was higher for
scallops exposed to high CO; than those exposed to ambient or pre-industrial CO>

levels.
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5.3 Impacts of High COz on Shell Development and Morphology

The critical exposure window for larval shell deformity is the period between
2-12 h post-fertilization. Larvae exposed to high CO2, and thus also to low pH,
during this period, which is prior to shell formation and the onset of calcification,
exhibited a high prevalence of an abnormal indentation near the hinge, with the
deformity being noted in high frequency on all days that the larvae were examined
(1, 3,and 7 d). When larvae were exposed to high CO> conditions after this period
(all treatments in the 3-d Switch Experiment and the switch-to-high-CO> treatment
in the 12-h and 24-h Switch Experiments), there was little or no evidence of the
deformity. This indicates that exposure to high CO2 or low pH within the first 12 h
post-fertilization leads to deformity in the shell that is formed later. In the
replicated Fertilization Experiments (Chapter 3), embryos that were exposed to
high CO; only until they were 2 h old, followed by exposure to ambient conditions
did not show the abnormal indentation, supporting the conclusion that the critical
period of high CO; exposure begins after the larvae are 2 h old.

This early CO; exposure effect has been reported in one other bivalve
species, the Pacific oyster (Crassostrea gigas, (Kurihara et al. 2007). This group
exposed the larvae to high CO2 (~2200 ppm), starting prior to fertilization and light
micrographs of the oyster larvae show a dark spot near the hinge, similar to the
those seen in the present study. However, other studies have also exposed oyster

(Saccostrea glomerata and C. gigas) embryos to high CO conditions during this
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critical period, but have not noted deformities similar to the one found here (Parker
et al. 2009; 2010). An explanation for this could be that COz levels used by Parker et
al. (2009; 2010) were around 1000 ppm, much lower than the CO> level used in the
current experiments and by Kurihara et al. (2007). Perhaps there is a critical pCO>
level at which exposure during early development produces an abnormally indented
larval bivalve shell.

Prior to calcification, shell development begins with an organic protein-
matrix stage similar in composition to the periostracum (Hodgson and Burke 1988;
Bellolio et al. 1993; Casse et al. 1998; Cragg 2006), even the organic part of shell
development initiates when the larvae are more than 12 h old. The primary
mesenchymal cells involved in the calcification of the larval sea urchin skeleton
begin movement to their final location during the blastula stage (Decker 1988). Ifa
similar process occurs in bivalve larvae, it is possible that the function of the cells
ultimately responsible for calcification could be disrupted by exposure to high
CO2/low pH prior to the start of shell formation, during the blastula stage (~9 h
post-fertilization; Belding 1910). An understanding of the mechanisms of this effect
would broaden understandings of the effects of ocean acidification (OA), high CO2
and low pH, on marine invertebrates. Since to date, much OA research has focused
calcification-related impacts, while this impact occurs prior to calcification.

A bivalve larva use the cilia on its velum to collect food particles and
transport them to its mouth (Cragg 2006). In order for the velum to protrude

properly, the hinge must be functional and allow the larval shell to open and close.
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An abnormality in the hinge region of the shell could impair a larva’s ability to
obtain food and increase its risk of starvation. While there is no direct evidence for
feeding impairment, it is possible that when food is limited, as in the wild, a hinge
deformity might impair both growth and survival. Furthermore, a veliger larva’s
shell provides its most important protection from predators (Purcell et al. 1991;
Carriker 1996), and any aspect which reduces the shell’s integrity could cause the
larva to be more susceptible to predation, which could also have indirect effects on
survival.

Another OA effect that could impact shell integrity is dissolution of shells that
experience prolonged exposure to high CO;. Larvae exposed to high CO: for at least
6 d started to show dissolution of the prodissoconch I at 7 d. Because the high CO>
treatment produced water undersaturated with respect to aragonite (Qaragonite ~
0.65), it is not surprising that the shell dissolved. This degradation of the shell
during prolonged exposure to high CO2 may increase the vulnerability of bay scallop
larvae to predation. Because higher CO; levels are more prevalent in estuarine
environments, scallops developing in exposed coastal areas may be at an advantage

over those developing in more isolated bays.

5.4 Impacts of High CO2 on Survival
The survival of bay scallop larvae exposed continuously to ambient CO; was
consistently greater than that of larvae with any exposure to high CO,. While

consistent, this effect was not always significant, most likely because survival was
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highly variable among replicates within treatments. With more replicate cultures
for each treatment, it is possible that the survival effect would have been more
pronounced.

The experiment in which the effect of CO2 exposure was most obvious was
the Fertilization 1 Experiment. While there may have been confounding maternal
effects between the ambient and high CO; fertilization groups, it is clear that CO>
exposure post-fertilization had a significant negative impact on survival at 1 d of
larvae from the same mother. For those fertilized in ambient CO, this impact
persisted at 3 and 7 d as well. Aside from having the most significant treatment
effect on survival, the Fertilization 1 Experiment also had the highest survival at 1 d,
at 47 % for those fertilized and raised in ambient CO2. It is possible that for various
reasons, the scallops providing eggs for this experiment had produced eggs with
superior nutritional quality than those providing eggs for other experiments.
Bivalve larvae’s survival can be highly dependent on the quality of the maternally-
invested energy reserves of the egg (Le Pennec et al. 1998; Lu and Blake 1999;
Widman et al. 2001; Cragg 2006). The CO: effect in this experiment may be more
pronounced than in other experiments because the larvae were initially the best
provisioned, and there was therefore more of a range of mortality that could be
experienced by larvae in high CO; treatments.

Exposure to high CO; generally reduced larval survival of bay scallops, but

the five experiments did not highlight an obvious period in which exposure to high
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COz is critical to larval survival. Itis possible that mortality effects of COz exposure

would have been more apparent in a food-limited situation.

5.5 Sensitivity of Different Life Stages to High CO2: A Comparison of Multiple
Studies

Whether investigations focus on effects of high CO2 exposure on bivalve
larval or adult life stages, researchers tend to measure similar parameters, most
often including survival and growth. However, these parameters have different
implications depending on which life stage they are applied to. For example,
reduced shell growth of adults may affect an individual’s reproductive output
because gonad size is proportional to scallop shell size (Barber and Blake 2006), but
it is unlikely to affect that individual’s survival. In contrast, reduced shell growth of
larvae can lead to delayed metamorphosis, increasing the chances of predation
while the larvae are planktonic (Thorson 1950; Sastry 1965). In this case, smaller
size affects the individual’s survival, and, potentially, the reproductive output if the
smaller size persists into adulthood. Reduced shell thickness as a result of exposure
to high COz would likely have similar effects on both larvae and adults, as both
would become more vulnerable to predation.

Because of these nuances, it is difficult to make comparisons regarding
sensitivity of different life stages to high CO2 conditions. Such comparisons are
further complicated because to date, work on different life stages has been carried

out by different research groups, using different CO; levels and different culturing
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methodologies. Additionally, many factors aside from CO; conditions affect survival,
including (but not limited to) food ration and use of antibiotics in culturing.
Nonetheless, I quantitatively compared shell growth (Fig. 5.1) and survival (Fig. 5.2)
of bay scallop larvae, juveniles, and adults, using data generated by the 12- and 24-h
Switch Experiments from Chapter 4 of this thesis as well as by Talmage and Gobler

(2009; 2010) and (Ries et al. 2009).

5.5.1 Shell Growth of Different Life Stages in Response to High CO:

Each group used a different measurement of shell growth: this thesis
research investigated early larval growth in terms of shell length, Talmage and
Gobler (2009, 2010) investigated juvenile growth in terms of both shell length and
thickness, and Ries et al. (2009) investigated net calcification rate of adult bay
scallops. These three different shell growth measurements show that bay scallop
shell growth is negatively affected by exposure to high CO2 conditions at all life
stages (Fig. 5.1). However, it appears that the impact of high CO2 exposure on larval
shell length is not as strong as the impact of high CO2 exposure on juvenile shell
length and thickness or adult net calcification rate (Fig. 5.1). Shell length of 7 d
larvae exposed to high CO: is larger, relative to 7 d ambient shell length, than shell
length of 19 or 20 d larvae exposed to high CO2, relative to 19 or 20 d ambient shell
length (Talmage and Gobler 2009, 2010).

[t is not entirely clear if this is an effect of the length of CO2 exposure or of

different culturing techniques, since different lab groups produced the two data sets.
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The results of the 12- and 24-h Switch Experiments from Chapter 4 showed that
larval shell size is determined by CO2 conditions experienced during the onset of
calcification and that high CO; exposure beyond that time period does not
significantly affect growth rate. That indicates that simply a longer exposure to high
CO2 would not increase the difference in shell size between larvae and juveniles
exposed to high COz and those exposed to ambient CO2. However, a major caveat of
that conclusion is that it is only valid for the food ration used in these experiments.
Talmage and Gobler fed their scallop larvae and juveniles nearly half the ration used
in the 12- and 24-h Switch Experiments described in Chapter 4, which makes it
entirely possible that growth rate could be depressed for larvae and juveniles
exposed to high COz beyond the 12-24 h post-fertilization period of initial
calcification. Therefore, while the synthesis results (Fig. 5.1) indicate that larvae are
less sensitive to high CO; than juveniles and adults, it could be argued that the
apparent tolerance of larvae to high CO; conditions is a result of the higher rations
the larvae were provided with, not a difference in sensitivity of larvae versus
juveniles.

The three different measurements of shell growth used by different groups
on post-metamorphic life stages of scallops (Fig. 5.1) show a nearly consistent
negative shell growth trend with decreasing saturation state. Excluding the shell
length data from 7 d larvae, and the shell length of 19 d juveniles exposed to the
mid-() level, the remaining data from two different lab groups, representing three

different types of measurements fall on a neat trend line. This indicates that
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exposure to high CO; conditions negatively impacts shell growth, regardless of how
it is measured. As discussed above, the implications of a decrease in shell diameter
vary for different life stages, while a decrease in shell thickness makes any life stage
more vulnerable to predation. To date, the response of bay scallop shell thickness to
high CO; exposure has been measured only for juveniles (Talmage and Gobler
2010). Further investigations of shell thickness at different life stages would better

our understanding of sensitivity of different life stages of bay scallops to high CO,.

5.5.2 Survival of Different Life Stages in Response to High CO:

In an attempt to identify differences in vulnerability to high CO2 conditions
across different life stages, survival of bay scallops from four different life stages
were quantitatively compared (Fig. 5.2). From the work of Ries et al. (2009),
exposure of adult bay scallops to a range of high CO2 conditions for 60 d did not
affect their survival. These adults were field-collected, so their CO2 exposure earlier
in life is not known, and percent survival of these adults was based on a small
number of individuals (6 adults were initially exposed to each CO condition).
Nonetheless, the two highest CO; (and therefore lowest Qcalcite) treatments had
higher survival relative to the ambient CO; treatment, indicating that exposure of
adults to high CO2 does not negatively impact bay scallop survival.

In contrast, survival of bay scallops that were introduced to COz treatments
at a young age (2 h to several days post-fertilization) showed decreasing survival

with decreasing saturation state (Fig. 5.2). This pattern is seen from 7 d larvae to 38
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d juveniles. Itis likely that Talmage and Gobler’s use of antibiotics increased the
survival of larvae and juveniles in all treatments, relative to the survival rates seen
in the 12- and 24-h Switch Experiments. This difference in culturing technique
makes direct comparisons between lab group experiments difficult. However,
comparing the results of young scallop survival from the 12- and 24-h Switch
Experiments in Chapter 4, as well as from the work of Talmage and Gobler, to the
results of adult scallop survival from (Ries et al. 2009), it seems that young scallops
are more vulnerable to mortality from exposure to high CO than are adult scallops.
The quantitative comparison of life stage-specific responses indicates that
survival of early life stages is more sensitive to high CO2, while all life stages show
sensitivity with respect to shell growth. In order to translate these findings into
population-level conclusions, it will be helpful to construct a matrix population
model using empirically determined stage-specific responses to increasing CO: as
parameters. Such work would allow for an understanding of how the relative
contributions of direct and indirect effects on survival and reproductive output

ultimately influence bay scallop population structure.

5.6 Broader Implications

The results of this thesis have both ecological and commercial implications.
Coastal and estuarine regions where adult bay scallops and other bivalves live
experience diurnal cycles with respect to carbonate chemistry, including pH and CO>

(Melzner et al. 2012; NOAA 2012). These diurnal cycles are exacerbated during
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summer months due to increased stratification and respiration of organic matter
(Dai et al. 2006; Diaz and Rosenberg 2008; Howarth et al. 2011) and it is during this
time when bay scallops spawn (Belding 1910). In a 24 h period, there are about 12
h of relatively favorable low CO2/high pH conditions and 12 h of unfavorable high
COz/low pH conditions. The favorable conditions generally occur in the daytime
and unfavorable conditions generally occur at night (NOAA 2012). Therefore, the
timing of natural spawning could play a big role in the CO; conditions experienced
by scallop embryos and larvae.

If a population of adults were to spawn in the morning, the embryos would
be exposed to favorable CO2 conditions for the first ~12 hours of development,
followed by exposure to unfavorable conditions when they are ~12-24 h post-
fertilization. In contrast, embryos produced from an evening spawning event would
be exposed to unfavorable conditions initially, followed by favorable conditions
when they are going through shell formation and calcification. I would argue that it
could be more advantageous for larvae to be exposed to favorable CO; conditions
during initial shell formation and calcification (i.e. if the adults spawned in the
evening) because this timing of exposure produces smaller shells, which can lead to
indirect effects on survival. Unfortunately, little is know about the timing of bay
scallop spawning in the field, other than it can be triggered by an increase in
temperature, or by the presence of conspecific sperm (Belding 1910). Since
increased temperature can be a spawning cue, it may be that spawning during the

daytime is more likely than spawning at night, which would put larvae at a
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disadvantage in terms of CO2 exposure during the critical calcification period 12-24
h post-fertilization.

From a commercial viewpoint, many ‘wild’ bay scallop populations around
Cape Cod and the Islands are supplemented with juveniles, or spat, raised in
hatcheries. My work has shown that when larvae are exposed to ambient CO>
during the first 24 h of development, subsequent exposure to high COz does not
negatively impact survival or size. This implies that hatcheries could monitor and
modify water chemistry to provide bay scallop embryos and larvae with favorable
COz conditions during the first day of development only. This would minimize the
resources and effort of water chemistry manipulation, rather than maintaining

favorable conditions throughout the larval and juvenile development.

5.7 Final Conclusions

[ have identified two distinct stages of development during which exposure
to high COz impacts bay scallop larvae,. These two effects, shell size and abnormal
shell development, are distinct and are likely produced by different mechanisms. It
is probable that the smaller shells are produced when larvae are exposed to high
CO2 during initial calcification because the maternally-invested energy reserves are
insufficient to meet the energetic demands of calcifying in a high CO2, low Qararagonite
environment. It is possible that the shell abnormality is a result of a high COz/low
pH disturbance of the initial organic matrix shell field formation that impacts later

calcification of the shell field. These experiments provide the first evidence that
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initial calcification is a critical developmental stage with respect to high CO-
exposure, and they also provide the first evidence that exposure to high CO; before

calcification has occurred can have latent impacts on shell development.
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Figure 5.1. Various measurements of shell growth of the bay scallop Argopecten
irradians exposed to a range of pCOz conditions resulting in varied Qaragonite,
expressed as % of ambient survival where ‘ambient’ refers to the experimental
treatment with water pCO; closest to the current atmospheric pCO; value. Data for
7 d veliger larval shell length are calculated from those data presented in this thesis
chapter, where embryos were exposed to treatment conditions from 2 h post-
fertilization until 7 d. Data for 19 and 20 d juveniles are calculated from Talmage
and Gobler (2009 and 2010, respectively) where larvae were exposed to treatment
conditions starting at several d post-fertilization and lasting for the duration of the
experiment. Data for shell thickness of 52 d juveniles are calculated from Talmage
and Gobler (2010). Data for adult scallops are from Ries et al. (2009) and represent
net calcification of adults (of unknown age) over a 60 d period of exposure to one of
several pCO2 conditions. In all cases, scallops were maintained in their respective
Qaragonite conditions for the duration of each experiment with no switch in conditions
(i.e., only the continuous ambient and high-CO; treatments from the larval
experiments described in this thesis chapter are shown).
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Figure 5.2. Survival of the bay scallop Argopecten irradians exposed to a range of
pCO2 conditions resulting in varied Qaragonite, €Xpressed as % of ambient survival
where ‘ambient’ refers to the experimental treatment with water pCO> closest to the
current atmospheric pCO2 value. Data for 7 d veliger larvae are calculated from
those data presented in Chapter 4 of this thesis, where embryos were exposed to
treatment conditions from 2 h post-fertilization until 7 d. Data for 12 and 38 d
larvae and juveniles are calculated from Talmage and Gobler (2009; 2010), where
larvae were exposed to treatment conditions from several d post-fertilization until
19 d (Talmage and Gobler 2009) or 38 d (Talmage and Gobler 2010). At 12 d old,
the surviving young scallops were a mix of larvae and metamorphosed juveniles.
Data for adult scallops are from Ries et al. (2009) and represent survival of adults
(of unknown age) exposed to one of several pCO; conditions over a period of 60 d.
Scallops were maintained in their respective Qaragonite conditions for the duration of
each experiment with no switch in conditions (i.e., only the continuous ambient and
high-CO; treatments from the larval experiments described in this thesis chapter are
shown).

159






50272-101

REPORT DOCUMENTATION 1. REPORT NO. 2. 3. Recipient's Accession No.
PAGE MIT/WHOI 2013-09
4. Title and Subtitle 5. Report Date
February 2013

Growth and Development of Larval Bay Scallops (Argopecten irradians) in Response to

Early Exposure to High CO,

7. Author(s) 8. Performing Organization Rept. No.

Meredith Megan White

9. Performing Organization Name and Address 10. Project/Task/Work Unit No.
MIT/WHOI 2013-09
MIT/WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering 11. Contract(C) or Grant(G) No.
() OCE-0326734
NAIT0OAR4170083
(G)
12. Sponsoring Organization Name and Address 13. Type of Report & Period Covered
National Science Foundation Ph.D. Thesis

National Oceanic and Atmospheric Administration
WHOI Academic Programs Office

14,

15. Supplementary Notes
This thesis should be cited as: Meredith Megan White, 2013. Growth and Development of Larval Bay Scallops (Argopecten

irradians) in Response to Early Exposure to High CO,. Ph.D. Thesis. MIT/WHOI, 2013-09.

16. Abstract (Limit: 200 words)
Coastal and estuarine environments experience large variability and rapid shifts in pCO, levels. Elevated pCO,, or ocean
acidification, often negatively affects early life stages of calcifying marine invertebrates, including bivalves, but it is
unclear which developmental stage is most sensitive. [ hypothesized that initial calcification is a critical stage during
which high pCO, exposure has severe effects on larval growth and development of bay scallops (47gopecten irradians).
Using five experiments varying the timing of exposure of embryonic and larval bay scallops to high CO,, this thesis
identifies two distinct stages of development during which exposure to high CO,/low pH causes different effects on
scallop larvae. I show that high CO, exposure during initial calcification (12-24 h post-fertilization) results in significantly
smaller shells, relative to ambient conditions, and this size decrease persists through the first week of development. High
CO, exposure prior to calcification does not impact shell size, suggesting that CO2 effects on size are a consequence of
water chemistry during calcification. However, high CO, exposure 2-12 h post-fertilization causes an increased incidence
of larval shell deformity, regardless of CO, conditions during initial calcification. This impact does not occur in response
to high CO, exposure after the 2-12 h period.

17. Document Analysis  a. Descriptors
ocean acidification

climate change
hypercapnia

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statement 19. Security Class (This Report) 21. No. of Pages
L. e . 15
Approved for publication; distribution unlimited. UNCLASSIFIED °
20. Security Class (This Page) 22. Price
(See ANSI-Z39.18) See Instructions on Reverse OPTIONAL FORM 272 (4-77)

(Formerly NTIS-35)
Department of Commerce



	130103_Abstract
	130103_Chapter 1
	130103_Chapter 2
	130103_Chapter 3
	130103_04_Fertilization Manuscript_6
	130103_04_Fertilization Manuscript_6.2
	130103_04_Fertilization Manuscript_6.3

	130103_Chapter 4
	130103_Chapter 4
	130103_Chapter 4.2
	130103_Chapter 4.3

	130103_Chapter 5
	Blank Page

