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Abstract-We develop a novel network protection scheme that 
provides guarantees on the time a flow has full connectivity, and 
guarantees a quantifiable minimum grade of servke during • 
downtime. In particular, a Bow can be below tbe full demand 
for at most a maximum fraction of time; aDd then, it must still 
support at least a fraction q of the full demand. This is in contrast 
to current protection schemes that otTer either full protection or 
availability-guarantees with no connectivity during the downtime. 
We develop algorithms for the single and multiple commodity 
cases for general networks, and show that significant capacity 
savings can be achieved as compared to full protection. For 
eJWllple, if. roonection is allowed to drop to 50% of its bandwidth 
for lout of every 20 failures, then a 24% reduction in spare 
capacity can be achieved over traditional full protection schemes. 
For the case of q = 0, which is the standard protection constraint, 
an optimal pseudo-polynomial timed algorithm is presented. 

I. INTRODUCTION 

As data rates continue to rise, a network failure can cause 
catastrophic service disruptions. To protect against such fail­
wes. networks typically use full protection schemes. which usu­
ally double the cost of resources needed to route a connection. 
An alternative approach to minimize the impact of a failure is to 
provide a guarantee on the maximum time a connection can be 
disrupted. This is koown as an "availability guarantee". and it is 
a bound on the fraction of time or probability that a connection 
can be disrupted. However. these disruptions (downtimes) may 
be unacceptably long; thus. many service providers opt for 
the more resource intensive full protection. In this paper, we 
propose a novel protection scbeme with multiple availability 
guarantees. In addition to the traditional availability guaranteed 
protection. which allows a complete disruption of flow during a 
downtime. we guarantee partial connectivity at all times. Thus. 
our approach is a hybrid between the traditional availability 
guaranteed and full protection schemes. 

Full protection scbemes have been studied extensively [1-
7]. The most conunon scheme in backbone networks today is 
1 + 1 guaranteed path protection [8]. which provides an edge­
disjoint backup path for each working path. resulting in 100% 
service restoration after any single link failure. There has also 
been a growing body of literature for backup provisioning to 

This work was supported by NSF grants CNS-0626781 and CNS-0830961, 
by DTRA grants HDTRAl·07- I-0004 and HDTRA-09-1-OOS, and by the 
Department of the Air Force under Air Force contract #FA8721-OS-C-0002. 
OpiniOIl8. interpretations. conclusions and recommendatioD5 are those of tbe 
author and arc not necessarily endorsed by the United States Government. 

meet availability guarantees [~17]. In all of these. primary and 
backup flows are allocated such that the connection is disrupted 
for at most a specified fraction of time or probability. During 
these down-states. the service is completely disrupted. 

In this paper. we consider an alternate fonn of availability 
guaranteed protection. where a fraction of a demand is guar­
anteed during the downtime. In particular. a flow is guaranteed 
to be at least a fraction q of the full demand at all times. and 
it falls below its full demand for at most a specified downtime. 
Our novel approach is a fonn of providing "partial protection". 

The partial protection framework was first developed in [18]. 
More recently. [19] and [20] developed a ''theory'' of partial 
protection for both single and multi-conunodity settings such 
that after any single link failure. the flow can drop to the partial 
protection requirement. In [19. 20]. a fraction q of the demand 
is guaranteed to remain available between the source and 
destination after any failure. where q is between 0 and 1. When 
q is equal to 1. the service will have no disruptions after any 
failure. and when q is O. there will be no flow between the two 
nodes during the down state. In this paper. we consider meeting 
partial protection requirements with availability guarantees; i.e. 
the flow can drop below its full demand for at most a specified 
downtime. Similar to [12-16]. we assume the probability of 
simultaneous link failures to be negligible and only consider 
single-link failures. 

The novel contributions of this paper include a framework 
for Multiple Availability Guaranteed Protection (MAGP) for 
both the single and multiple conunodity settings. In particular. 
the multiple availability guarantees are maintaining the full 
demand for at least a guaranteed fraction of time. and a 
guaranteed partial flow during the downtime. Algorithms are 
developed for both. with sharing of backup resources possible 
in the case of multiple conunodities. For a single conunodity 
with q = O. which has a single availability guarantee and 
is similar to previous works, we develop an optimal pseudo­
polynomial algorithm. We also demonstrate that for a single 
conunodity with q > O. finding a feasible solution to the 
multiple availability guaranteed protection problem is strongly 
NP·hard, meaning that there exists no f-approximation, nor 
pseudo-polynomial optimal. algorithm. 

This paper is outlined as follows. In Section II. the model for 
MAGP is described. In Section III. MAGP is shown to be NP­
Hard. and the minimum-cost solution to MAGP is fonoulated 



as an MILP. In Section N, an optimal pseudo-polynomial 
algorithm for q = 0 is described, and the case when q > 0 
is shown to be strongly NP-Hard. In Section V, MAGP is 
extended to multiple commodities. 

n. MULTIPLE AVAILABILITY GUARANTEED PROTECTION 

In this paper, routing strategies are developed and analyzed 
to minintize the total cost and capacity allocation required to 
satisfy each demand's guaranteed protection and availability 
requirements. A demand needs to be routed from its source 
s to destination t such that upon a link failure, and for at 
most some specified downtime, at least a fraction q of that 
demand is guaranteed to remain. To simplify the analysis, we 
use a "snapshot" model: we consider the network after a failure 
has occurred. Let Pi; be the conditional probability that edge 
{i, j} failed given a network failure has occurred. For simplicity 
of exposition, instead of a maximum downtime, we consider 
the Maximum Failure Probability (MFP), denoted as P. The 
!low can be below the full demand, and at least a fraction 
q of the demand, with at most probability P. The maximum 
failure probability can be related to the maximum downtime by 
accounting for expected time between failures and mean time 
to repair. 

We assume that the graph G, with a set of vertices V, edges 
E, and probabilities p, is at least two-connected. Since we 
consider only single link failures, failures are disjoint events, 
which gives E{i';)EE Pi; = I. Similar to previous works (see 
references in Section I), the primary !low is restricted to a 
single path. After the failure of a link, a network management 
algorithm reroutes the traffic along the allocated protection 
paths. Without loss of generality, for the remainder of this paper 
we assume unit demands. 

Consider the network in Fig. I, with link failure probabilities 
and flow allocations as labeled. Suppose we want to route a 
unit demand from s to t with P = i and partial protection 
requirement q. In [19), a simple partial protection scheme called 
1 + q protection was developed, which routes the primary 
demand on one path and the partial protection requirement onto 
another edge-disjoint path; after any failure in the primary, the 
partial protection requirement is met. This is shown in Fig. la 
with the solid line carrying the primary !low of 1 and the dotted 
line carrying the protection flow of q. However, there exists 
no individual path from 8 to t that has a failure probability 
lower than ~. Using the 1 + q protection scheme, two edges 
have an allocation of q, and the user will have a partial !low 
with probability !. This failure probabilitiy is greater than the 
maximum allowed of ~ . A naive alternative would be to simply 
allocate another path for protection, which would be identical 
to the 1 + 1 full protection scheme (shown in Fig. Ib); 4 units 
of capacity are needed and the user will face no downtime, 
which meets all requirements. 

If the primary and backup flows are not restricted to single 
paths. a more resource efficient allocation can be possible. 
Consider keeping the primary flow on the same bottom two 
edges as before, but instead of allocating an end-to-end backup 
path along the top two edges, we allocate ~ unit flow to protect 
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Fig. 1: Comparison of MAGP and traditional protection schemes 
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against the failure of {8, V} and one unit to protect against the 
failure of {v, t} (shown in Fig. Ie). Now, if either of the {v , t} 
edges fail, one unit of !low will still remain from s to t. By fully 
protecting the primary {v, t} edge, there is zero probability that 
its failure will cause the demand to drop to its partial !low, and 
the total failure probability of this allocation is ~, which meets 
the MFP requirement. This routing only needs 3.5 units of 
capacity, as opposed to the 4 units that full protection requires. 

III. MINIMUM-COST MULTIPLE AVAILABILlTY 

GUARANTEED PROTECTION 

This section investigates minimurn-cost allocations for mul­
tiple availability guaranteed protection. We assume that each 
edge {i, j} has an associated cost Ci;' We stall with a negative 
result regarding the complexity of the multiple availability 
guaranteed protection problem. 

Theorem 1_ Minimum-cost Multiple Availability Guaranteed 
Protection is NP-Hard. 

Proof: To demonstrate NP-Hardness of MAGP, a reduc­
tion from the I~ kuapsack problem [21) is perfOffiled. See 
Appendix A for proof. • 

Since the minimum-cost solution to MAGP is NP-hard, we 
fOffilulate the optimal solution as an MILP. The objective of the 
MILP is to find a minimum-cost routing to meet a demand's 
partial protection and availability requirements. In particular, 
for a cOImection request between two nodes s and t, the flow 
can drop to a fraction q of the demand with at most probability 
P . Again, we are using the snapshot model, and the set of link 
failure probabilities P are conditional given a network failure 



has occurred. The mixed integer linear program to solve for the 
optimal routing strategy is given below. 

A. Mixed Integer Linear Program to Meet Multiple Availability 
Guaranteed Protection 

The following values are given: 
• G = (V, E, C,"P) is the graph with its set of vertices, 

edges, costs, and edge failure probabilities 
• q is the fraction of the demand between 8 and t that must 

be supported on the event of a link failure 
• C;j is the cost of link {i, j} 
• Pij is the probability that link {i, j} has failed given a 

network failure has occurred 
• P is the maximum probability that the service is below its 

full demand 
The MILP solves for the following variables: 

• Xij is primary flow on link {i,j}, Xij E {a, I} 
· I~l is the protection flow on link {i,j} after the failure 

of link {k,l}, I~l ~ a 
• y~ is the. spare capacity on link {i, j} for failure of link 

{k, I}, y;;\ ~ a 
• Zk! is 1 if the failure of link {k, I} causes the flow to drop 

below the primary demand to the partial protection flow, 
a otherwise 

• 8ij is total spare allocation on link {i,j}, 8ij ~ a 
The objective is to: 

II Minimize the cost of allocation over all links: 

min 2: Cij(Xi j+Sij) 

{ i ,j}EE 

Subject to the following constraints: 

(I) 

• Flow conservation constraints for primary flow: route 
primary traffic to meet demand. 

if i = s 

L Xij - L Xji = -1 
{

I 
if i = t , \/i E V 

D.W. {i,j)EE {j,ijEE a 
(2) 

• Probability constraint: the probability of the set of edges 
that causes the flow to drop below 1 cannot exceed P. With 
a single-link failure model, failures are disjoint events and 
these probabilities become additive. 

L Pk! Zkl ::; P 
{k,I}EE 

(3) 

• Flow conservation constraints for partial service: if the 
failure of link {k, I} allows the flow to drop below 1, route 
q from 8 to t; otherwsie, keep the full primary demand of 
1. Let Fkl be the expression (1 - Zkt) + qZkl· 

{ i ,j}EE 
{i,j},,{k,I} 

I ii 
kl 

{ 

Fkl 

LIt: = -Fk! 

{i,i}EE a 
{i,i},,{k,I} 

if i = s 

ifi=t, 

D.W. 

\/i E V, \/{k, I} E E (4) 

3 

Capacity allocation: primary and spare capacity assigned 
on link {i, j} meets protection requirements after the 
failure of link {k, I}. 

'v'{i,j}EE 
V{k,I}EE (5) 

A minimum-cost solution will provide an edge allocation 
such the flow between 8 and t can drop to a fraction q of the 
demand with at most probability P. 

B. Comparison to Full Protection 

Multiple availability guaranteed protection is compared to 
the 1 + 1 full protection scheme via a simulation using the 
NSFNET topology (Fig. 2) with 100 random unit demands. The 
protection requirement q is set to ! for all demands. While we 
mainly focus in this paper on the case where the primary flow is 
restricted to a single path, we also consider for this simulation 
allowing the primary flow to be bifurcated. Bifurcating the flow 
distributes the risk by lowering the loss of primary flow after 
any edge failure, which lowers the total allocation needed to 
meet requirements. This is accomplished by relaxing the integer 
constraint on the primary flow variables in the MILP. 

The availability constraint P is varied from a to 0.3 by 0.05 
increments. All link costs are set to I, and the probability 
of failure for any link is proportional to its length, which is 
reasonable since a longer fiber will have a higher likely hood 
of being accidently cut. Routing solutions for MAGP were 
determined using CPLEX. The shortest pair of disjoint paths 
were used for the 1 + 1 protection [22]. 

2 12 

1 

7 

Fig. 2: 14 Node NSFNET backbone network 

The average cost to route the demand and protection capacity 
using the different routing strategies are plotted in Fig. 3 as a 
function of the maximum failure probability P. The shortest 
path routing without protection considerations is used as a lower 
bound for the allocation cost. The cost of providing protection 
with parameters q and P is the difference between the cost of 
the respective protection strategies and the shortest path routing. 

First, we note that allowing the primary flow to bifurcate 
allows requirements to met using a lower cost allocation. This 
is because splitting the primary flow distributes the risk so that 
upon an edge failure, less primary flow is disrupted. This will 
then necessitate less protection resources. If the flow is allowed 
to drop to ! for lout of 20 failures (5% of the time), then a 
savings of 24% in protection capacity is realized for the case 
with bifurcation, and 17% without bifurcation. As the flow is 
allowed to drop more often to its partial protection requirement 
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after a failure, then the savings increase. For lout of 10 failures 
(P = 0.1), a savings of 45% and 30% is seen for MAGP with 
and without bifurcation, respectively. For lout of 5 failures 
(P = 0.2), the savings are 65% and 49%. Further increases in 
P cause only small additional saving; hence, we stopped our 
simulations at P = 0.3. 

IV. OPTIMAL SOLUTION AND ALGORITHMS 

When q = 0, we have a single availability guarantee and our 
problem is to find a path to carry the primary flow, and paths to 
protect segments of that primary flow, such that the connection 
is disrupted with probability at most P. This is similar to 
the problem examined in previous works (see references in 
Section l). A primary path is identified such that segments of 
it are protected in a way that after a link failure, the flow 
drops to 0 with probability at most P. In this section, we 
consider the single commodity setting, and present a pseudo­
polynomial algorithm for finding the minimum-cost solution 
fur protection with availability guarantees when q = O. To the 
best of our knowledge, this is the first such algorithm. This 
section is outlined as follows. First, we consider trying to meet 
availability requirements without the use of protection capacity. 
Next, we attempt to meet requirements by protecting segments 
of the primary, and present an optimal pseudo-polynomial 
algorithm for MAGP when q = O. Then, we examine the case 
when q > 0, and show that a similar problem is strongly NP­
Hard, which means that there exists no pseudo-polynomial or 
<-approximation algorithm. Finally, we present a heuristic for 
solving the q > 0 case. 

A. Meeting Availability Requirements Without Spare Allocation 

We begin by trying to find the lowest-cost path between 
s and t such that no protection is required. In other words, 
finding the lowest-cost path such that the sum of all the failure 
probabilities in that path are less than P. The MILl' for this 
problem is as follows, with notation and variables the same 
as in Section m-A,. We assume that all inputs are rational, 
which is a reasonable assumption for failure probabilities in a 
network. 

s.t. L Xi j 
{i,j}eE 

min L CijXij 

{i,j}EE 

L Xj i = { 
{j,i}eE 

1 

-1 

o 

4 

(6) 

if i = s 

ifi =t,\liE V 

O.w. 
(7) 

L PijXij:; P (8) 
{i,j}EE 

Xij E {O, I}, \I{i,j} E E (9) 

We recognize this problem to be the constrained shortest 
path problem (CSP) [23], which is NP-hard. Instead of the 
failure probabilities being between 0 and 1, we multiply P 
and all Pij, \I{i,j} E E, by the smallest factor F that makes 
all the values integer. A dynantic program exists that finds 
the minimum-cost solution in pseudo-polynomial time, with a 
running time of O(n2PF), where n is the number of nodes 
in the network; we note that the P F factor is what makes this 
running time pseudo-polynomial. For simplicity, we return to 
using the notation P and Pij, but for the remainder of this 
section they are assumed to be integer. The Bellman equation 
for this problem was first given in [24] and is presented in 
Equation 10. 

h(P) = min (h(P - I), i'~~P (Ji (W - Pij) + G;j)), 

\lj E V - s, P = 1, ... ,P (10) 

The recursion finds the minimum-cost constrained path from 
the source s to any node j, and for every probability of failure 
P :; P, by taking the minimum-cost of either: (1) an existing 
path to j with a lower failure probability or (2) a path that 
is composed of adding edge {i, j} to a path from s to some 
node i that has a total failure probability of at most (P - Pij). 

Once all probabilities P from I to P have been recursed, the 
shortest constrained path from s to t with a maximum failure 
probability of P can be found by looking up the value ft(P). 
This dynamic program can be recognized as a combination of 
the recursion in the Bellman-Ford shortest path algorithm [23] 
and the dynamic program to solve the 1-0 knapsack problem 
[21]. 

B. Meeting Availability Requirements With Spare Allocation 

In general, a path may not exist from source to destination 
that can meet the availability requirement, nor if one exists, that 
it is of lowest cost. We next consider the case where certain 
segments of the primary path will be protected such that the 
entire end-ta-end path meets availability guarantees. A routing 
that meets these guarantees will be a concatenation of protected 
and unprotected segments. Consider the routing in Fig. 4, which 
is an optimal allocation in some network for a unit demand 
between v, to V6 when P = 0.2. The probabilities of link 
failure are as labeled, and all lines represent a nnit flow. 
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Fig. 4: Routing to meet P = 0,2 with q = 0 from til to Vs 

The primary segments between node pairs (v" v.) and 
(vs,vs) are unprotected, and their total probability of failure 
must be at most the maximum failure probability of P = 0.2. 
The primary segments between node pairs (VI, v,) and (V4' v,) 
are completely protected, and after a failure of either of these 
primary segments, one unit of flow still remains; they contribute 
a total failure probability of zero to the routing. We could, in 
fact, treat each of the protected segments between (V" v.) and 
(vs, vs) as a single edge, with this edge having a probability of 
zero and a total cost equal to the cost of all the edges used in 
that segment's primary and protection path. Label the cost and 
probability of the new edge formed from a protected segment 
between nodes i and j as C;; and p,; = 0, respectively. We 
next show that the lowest cost allocation for a segment to have 
a probability of failure of 0 is the cost of the minimum-cost 
pair of msjoint paths between i and j. 

Lemma 1. In a network where V., > 0, V{k, I} E E, 
the minimum-cost allocation between nodes i and j with a 
m<D:imum failure probability of 0 is the minimum-coS! pair of 
disjoint paths. 

Proof: Since every edge has a non-zero probability of 
failure, after any edge failure in the primary path,l unit of 
flow must remain between the source and destination. No edge 
will have an allocation greater than I because the primary flow 
will have 1 unit, and exactly 1 unit will need to be restored 
after any primary failure. An equivalent problem is to find the 
minimum-cost allocation to route 2 units between i and j in 
a network where every edge has a maximum capacity of I. 
This is a minimum-cost flow problem (23), whose solution has 
integer flows when given integer inputs. Since every edge has a 
capacity of I, there will be two mstinct edge-disjoint flows of 1 
unit each. Clearly, these flows are routed on the rninimum-cost 
pair of msjoint paths. • 

Using Lemma 1, we can transform every possible protected 
segment in any graph to a single edge with a failure proba­
bility of 0 and cost equivalent to the minimum-cost pair of 
disjoint paths between the two nodes. We denote the cost and 
probability of the minimum-cost pair of msjoint paths between 
nodes i and j as c,; and p,; = 0, respectively. We note that the 
restriction in Lemma 1 of all edges having non-zero probability 
is not required. Assume some optimal solution includes nodes u 
and v, and requires a zero failure probability segment between 
them. Also assume there exists an edge {k , I} in the network 
with V., = O. TWo options that give a zero probability routing 
between u and v include the pair of disjoint paths between 
them, or the pair of msjoint paths between u and k, edge {k, I}, 
and the pair of msjoint paths between I and v. Any algorithm 
proposed must be able to capture these possibilities, as well as 
any others that include possible combinations with zero failure 
probability edges. 

, 

Our proposed algorithm is as follows. First find the 
minimum-cost pair of disjoint paths between each pair of nodes; 
there are O(n') such pairs. Augment the original graph with an 
edge between every node pair (i, j) that has cost C;; and failure 
probability p,; = O. Finally, run the constrained shortest path 
algorithm on the transformed graph. We call this algorithm the 
Segment Protected Availability Guaranteed Algorithm (SPAG). 

Theorem 2. SPAG will return a minimum-cost routing, and has 
a running time of O(n4 Iog(n) + n' Pl. 

Proof: An optimal solution wiJI consist of protected and 
unprotected segments. With the above graph augmentation, 
running the constrained shortest path dynamic program wiJI 
then find the minimum-cost solution. For the running time, 
the O(n'log(n)) component comes from O(n') iterations 
of the shortest pair of msjoint paths algorithm, which takes 
O(n'log(n)) time per iteration [22). The recursion for the 
constrained shortest path problem runs in O(n' P) time. 

• 
C. Meeting Availability Requirements with q > 0 

Next we consider q > 0: after an edge failure in the 
primary path. the flow either remains at one or, with at most 
a probability of P, drops to q. An optimal allocation wiJI 
consist of alternating fully-protected and q-protected segments; 
a sample solution is shown in Fig. 5 with the dotted line heing 
the q flow. It was shown in Lemma 1 that a fully-protected 
segment will be the minimum-cost pair of msjoint paths. For 
the q = 0 case, an unprotected segment between some pair of 
nodes i and j was the shortest constrained path, for which a 
pseudo-polynomial timed algorithm exists. 

P1J =.05 PM - .05 
l~~"'''''''''''-'''' 11, 
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Fig. 5: Routing to meet P = 0.2 and q > 0 from v, to 116 

For a q-protected segment, we need to find the shortest 
pair of msjoint paths between i and j such that one of them 
is constrained. We call this problem the Singly Constrained 
Shortest Pair of Disjoint Paths (SCSPD). There has been work 
trying to find the shortest pair of msjoint paths such that each 
path is constrained by the same parameter (25). The authors 
found that this doubly constrained problem, while NP-Hard, 
has an ,-approximation algorithm. Their problem is mstinct 
from ours in that we only require one path of the two to 
be constrained. Clearly, a solution to the doubly constrained 
problem is a feasible solution to the singly constrained one, 
but it is not necessarily optimal, and a lack of a solution to 
the former does not imply the non-existence of a solution to 
the latter. In fact, we show that wben the constraint is relaxed 
for one of the paths, simply finding a feasible solution to the 
SCSPD problem becomes strongly NP-complete, which means 
that a solution cannot be f-approximated, nor can there be any 
pseudo-polynomial algorithm for optimality [21]. 



Theorem 3. Finding a feasible solution to SCSPD is strongly 
NP-Complete. 

Proof: To demonstrate strong NP-completeness of SCSPD, 
a reduction from the 3SAT problem [26] is perfonned. See 
Appendix B for proof. • 

Because of the strong NP-completeness in finding a feasible 
solution to SCSPD, the dynamic programnting approach used 
to solve for q = 0 will not work when q > O. We conjecture 
that multiple availability guaranteed protection when q > 0 
is in fact also strongly NP-hard. Therefore, this necessitates 
the creation of a heuristic to solve the problem. We propose 
augmenting the algorithm for the q = 0 case: after we solve 
optimally for q = 0, find the shortest disjoint path for the 
unprotected segments and allocate a flow of q to them. We 
call this algorithm the Segment Protected Multiple Availability 
Guaranteed Algorithm (SPMAG). 

V. MULTI-COMMODITY MULTIPLE AVAILABILITY 

GUARANTEED PROTECTION 

In this section, we extend multiple availability guaran­
teed protection framework to the multi-commodity setting. 
As opposed to the single-commodity version of the problem, 
when possible, backup resources are shared between demands, 
lowering the total capacity needed to meet protection and 
availability requirements. Multi-<:ommodity partial protection 
without availability guarantees was explored in [20]. 

v, 

v, 

(a) Vl to V2 without sharing (b) Protection with backup sharing 

Fig. 6: No sharing vs. sharing with q = ~ and P = 1 

To demonstrate how protection sharing can reduce the total 
capacity needed, consider the example in Fig. 6, with five single 
hop demands: (V"V2), (V2,V3), (V3,V4), (V4,V,), and (v"v,), 
each with a partial protection requirement of q = ! and a 
maximum failure probability of P = 1. The ntinimum-cost 
solution for each demand individually is to bifurcate its flow 
with ! flow on each direction of the ring. Each demand will 
require 2.5 units of allocation [19]. The routing for v, to V2 is 
shown in Fig. 6a, and the routing for the others is not shown but 
sintilar. No spare allocation is used and a total of 12.5 units is 
required to meet primary and protection requirements. Notice 
that with a single-link failure model, disjoint primary paths 
will never fail simultaneously; hence, they can share protection 
resources. Consider routing each primary demand so that each 
demand is edge-disjoint from the other, as done in Fig. 6b. 
Since they will never fail simultaneously, spare capacity of ! 

• 
units can be allocated onto each edge of the network in the 
opposite direction. All the demands can share these protection 
resources since after any single link failure, and all demands 
will have their protection requirements met. The total capacity 
allocated to meet partial protection requirements has decreased 
to 7.5 units: I unit of primary flow for each demand with 2.5 
units of shared protection capacity. 

As demonstrated in Theonn I, multiple availability guaran­
teed protection for a single commodity is NP-Hard, so clearly 
the shared case is also NP-Hard. In addition, it was shown in 
[2] that the shared path protection problem without availabil­
ity guarantees is NP-complete when primary and protection 
Hows are each restricted to a single path. Because of this, 
we fonnulate a ntixed integer linear program to optimally 
solve the multi-commodity MAGP problem. The MILP is a 
straightforward combination of the MILP in Section III-A and 
the linear program presented in [20]; it is not presented in this 
paper for brevity. Instead, we focus our attention to a heuristic 
to efficiently solve the multi-commodity MAGP problem with 
protection sharing. 

We consider the dynamic routing model, where demands 
arrive one-at-a-time to the network, which is similar to protec­
tion models for both with and without availability guarantees 
[2, 10, 14, 20]. A connection arrives at node s to be routed to 
node t having a demand of dst , a partial protection requirement 
of q", a maximum failure probability of P", and a hold time 
of tst. Connections are serviced in the order of their arrival, and 
once a connection is routed, it can no longer be changed. We 
assume a ntinimally two-connected graph G = (V, E, C, Pl. 

In [20], an algorithm for shared backup provisioning with 
partial protection and no availability guarantees was developed 
using conflict sets. To determine whether protection resources 
can be shared. we use a conflict set to identify the amount 
of backup resources that are used on a given edge to protect 
the failure of another edge [2, 3]. Define the variable h7' to 
be the number of units of capacity used on edge {i, j~ to 
protect against the failure of edge {k, I}. The maximum number 
of units allocated on edge {i, j} to protect against any edge 
failure is the total spare allocation on {i,j}. In Fig. 7, two 
demands with q' = 1 and q2 = ! are routed; for now, assume 
no availability guarantees. Both demands use edge {i, j} for 
protection with I unit being needed after the failure of {k, I} 
and ! unit being needed after the failure of {m, n}. The contlict 
set for this example is hfJ = 1 and hrr = ~. 

Fig. 7: Example of a conflict set with partial protection 

Now, consider a new demand with q3 = ~. If this demand 
were to have its primary flow routed on edge {k, I} and use 
{i, j} for protection, h7J will increase by ! unit. Since the 



amount of spare allocation on an edge is the maximum capacity 
needed to protect against any edge failure, the total allocation 
will increase by t. Alternatively, if the demand were to use 
{m,n} instead of {k,l}, piT will increase by ~, and the 
maximum number of units needed to protect against any edge 
failure will still only be 1. No additional resources are required 
for protection on {i, j} under this routing scenatio. 

More generally, we define hijaz to be the maximum alloca­
tion needed on {i, j} to protect against any edge failure, and 
we define S to be the edges in the primary path. If hf] < h~=, 
a new demand that uses edge {k,l} can share h'IJ°X - hf; of 
protection resources on edge {i, j}. Denote bij,kl as the cost for 
demand (8, t) to use edge {i,j} to protect against the failure 
of edge {k, I}. Consider an incoming connection (s, t) with 
protection requirement q,t that has edge {k, I} in its primary 
path and uses edge {i, j} for protection. Recall that Ci; is the 
cost of edge {i, j} in the original network. If hf] +q,t ~ h"iax , 

then blj,kl = O. Otherwise, bij,kl = l;j[qst - (hijaz - hi})]' 
We note that this value is never greater than Cijqst, because 
otherwise hfJ > hijaz. The final cost to use edge {i, j} for 
protection is the maximum cost to protect any edge {k, I} in 
the primary using {i, j}: max{k,I}ES bIJ,k,' Let B(S, q) be the 
set of network costs associated for some demand with primary 
path S and protection requirement q. 

Now, we consider meeting probabilistic availability guar­
antees. Given some primary path between s and t, certain 
segments will be fully-protected, and others will be partially 
protected with a flow of q. For each edge in the primary path, 
the cost of using edge {i, j} for backup is calculated usiog 
conflict sets for both I or q units of protection. For a primary 
path with a set of edges S, B(S, 1) is the cost of backup edges 
for for fully protecting any edge, and B(S, q) for partially 
protecting an edge with a flow of q. 

Next, we calculate the cost of protecting each possible seg­
ment of the primary path with either full or partial protection; 
if there are r nodes io the primary path, then there are r(r;l) 

segments contained within that path. We construct a new graph 
Gif with two edges between every pair of nodes {i, j} in the 
primary path: one that has cost ct; to fully protect that segment, 
having failure probability pi; = 0, and the other having cost c~ 
to partially protect that segment, having failure probability Pi; 
equal to that of the primary path segment i .... j. We then find 
the shortest constrained path in GS; from s to t with a maximum 
failure probability of p,t. That path will be the backup, and 
all partial protection and availability requirements will be met. 

Since single-commodity multiple availability guaranteed pro­
tection is NP-Hard, and so is jointly optimiziog the primary 
and protection path with backup shating, we choose a simple 
strategy of using the shortest path for the primary. s,t will be 
the set of edges in the shortest path between 8 and t. We then 
follow the procedure discussed above to find the lowest-cost 
shared backup to meet protection and availability requirements. 
This algorithm is called Dynamic Multiple Availability Guar­
anteed Segment Protection (DMAGSP) and a partially solved 
example is shown in Fig. 8. The primary path in Fig. 8 is 
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VI - V2 - V3 - V4, with failure probabilities as labeled. Between 
every pair of nodes (i, j) of the primary path, we construct two 
arcs: one that fully protects against a failure in that segment, 
having probability of failure pi; = 0, and one that q-protects 
that segment, with probability of failure pi; equal to the sum 
of the edges' failure probabilities io that segment. In Fig. 8a, 
the cost of backup edges for full and partial protection have 
already been calculated using conflict sets. The arcs above the 
primary path are the lowest-cost full protection paths for each 
segment of the primary, and the arcs below the path are the 
lowest-cost partial protection paths. 
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(a) AU possible protection paths 

P,~ ~ 0.1 + 0.1 ~ 0.2 

(b) Final path chosen for backup 

Fig. 8: Example of algorithm with P = 0.2 

The protection paths found by the algorithm, without the 
primary edges, form the new graph Gif. Next, we run the 
constrained shortest path algorithm on Gst with a maximum 
failure probability of P, which returns the final backup path. 
The backup path for this example with P = 0.2 (shown in 
Fig. 8b) meets all protection and availability requirements when 
combined with the primary path found previously. 

We ran a simulation on the NSFNET, similar to that of 
Section ill-B, with demands arriving dynamically and serviced 
one-at-a-time in the order of their arrival. The protection re­
quirement q for each demand is a truncated normal distribution 
with mean of q = ~ and standard deviation u = ~. The 
maximum failure probability P is a truncated normal distributed 
with a standard deviation a = 0.025; the mean of P is vatied 
between 0 and 0.2. We compare optimal multiple availability 
guaranteed protection with and without shating, DMAGSP, and 
I + I protection with sharing. 

The peak costs to route the demand and protection capacity 
are plorted in Fig. 9 as a function of the expected value 
of P. Again, the shortest path routing without protection 
considerations is used as a lower bound for the allocation cost. 
Dynamically routed multiple availability guaranteed protection 
with backup sharing achieves an average reduction in excess 
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Fig. 9: Peak capacity cost vs. MFP with q = ~ 

resources of 42% over 1 + 1 protection with backup sharing. and 
51 % over MAGP without backup sharing. The most noticeable 
result is that the algorithm in fact performs better than the 
greedy optimal solution with dynamic arrivals. This can be 
explained by observing that the algorithm takes the simple 
strategy of the shortest path as the primary for each connection. 
as opposed to the jointly optimized primary and backup route. 
which may take a longer primary path to take advantage of 
backup sharing. The longer path makes it potentially more 
difficult for future demands to find disjoint primary routes. 
lowering their ability to share protection resources. A similar 
result was also observed in [20] for partial protection without 
availability guarantees. 

VI. CONCLUSION 

In this paper. we introduce the multiple availability guar· 
anteed protection problem (MAGP). We demonstrated the 
problem to be NP·hard and developed an MILP to find the 
minimum·cost solution. If the demand is allowed to drop to 
50% of its flow for only lout of every 20 failures. a 24% 
reduction in excess resources can be realized over the traditional 
1 + 1 full protection scheme. Next. we presented the first optimal 
pseudo-polynomial timed algorithm for q = O. For q > O. we 
showed that finding a feasible solution is strongly NP-complete. 
and we developed a time-efficient heuristic (MAGSP) to find 
a solution. We then extended MAGP to the multi-commodity 
setting. where backup resource sharing is utilized to lower 
the total capacity needed to meet protection and availability 
requirements. We developed an algorithm (DMAGSP) that 
actually performs better than the "optimal" MAGP routing 
for dynamic arrivals. which jointly optimizes the primary and 
backup paths for each incoming demand. 

ApPENDIX 

A. Proof of NP·Hardness for Multiple Availability Guaranteed 
Protection 

To demonstrate NP·Hardness of multiple availability guaran­
teed protection. the 1-0 knapsack problem [21] will be reduced 
to MAGP. The knapsack problem is find the maximum value 
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subset of k items, with the ith item having cost Ci and weight 
P,. such that the maximum weight P of the knapsack is not 
exceeded. Consider the network shown in Fig. 10 with link 
costs and probabilities denoted by C; and p, respectively. We 
wish to find a minimum-cost routing for a unit demand from s 
to t with a maximum failure probability P and partial protection 
requirement q = O. After any link failure. the network will 
either maintain its full flow of 1 unit. or have no flow with a 
probability of at most P. 

c, 
• • ~t 
~ 

p, 

Fig. 10: Sample network for MAGP NP-Hardness proof 

There are k distinct link groups. where each of the two links 
in any group have the same probability of failure and cost. 
Primary flow has to be allocated onto at least one of these links. 
otherwise the primary demand cannot be met. If the network 
maintains full connectivity after a primary failure in the kt" 

link grouP. then each link in that group will have an allocation 
of 1 unit. If there is no flow after a link failure. then only one 
link has an allocation of 1. and the other O. So. every link 
group has at least one link with a flow of 1. which is a fixed 
cost regardless of protection allocation. 

To find the lowest cost protection allocation to meet avail­
ability guarantees, we find the lowest cost combination of the 
remaining links after the primary flow is allocated such that 
the sum of the failure probabilities for the links that have no 
allocation are less than P: min I::~l c,(1 - z,). subject to 
I::~l P,Zi ~ p. with z, E {0.1} 'Ii E 1 •...• k. The objective 
can be rewritten to maximize the cost of the links that do not 
have allocation: min I::~l c,(1 - z;) = max I::~l C;Zi. We 
now recognize this to be the NP-hard 1-0 knapsack problem 
with a maximum weight of p. and cost and weight of the it" 
item being the cost and probability. respectively. of each pair 
of links in the it" link group. If there existed a polynomial 
time solution to MAGP, then there would exist one for the 1-0 
kuapsack problem. Therefore. MAGP is at least as hard as the 
1-0 kuapsack problem. 

B. Proof of Strong NP-Completeness for Singly Constrained 
Shortest Pair of Disjoint Paths 

To prove that finding a feasible solution to Singly Con­
strained Shortest Pair of Disjoint Paths is strongly NP-complete. 
we borrow a reduction that demonstrates the NP-completeness 
of a different. but similar, problem [26] and adapt it to the 
SCSPD problem. The authors of [26] attempt to find the "min­
min" disjoint pair of paths. which is defined as the minimum­
cost pair of disjoint paths that contains. over all sets of possible 
disjoint paths, the minimum-cost shorter path. To demonstrate 
this problem has no approximation algorithm (and is therefore 
strongly NP-complete) they construct a mapping of the 38AT 
problem to a graph where a solution to their problem will 
simultaneously solve the 38 AT problem. A solution to 38 AT 



detennines if there exists a I/O assignment to the variables that 
will make a specific boolean expression true [21]. 

~®'~. t, ___ . ___ " __ ... ........ .:.. . : . ~ .. ., X 

,. 
, , 

G @ @ @ 0 @ @ 0 
Fig. II: Sample network to solve an instance of 3S AT from (26] 

The graph in Fig. II is a sample network corresponding to 
the instance of the 38AT problem of (Xl VX2 VX3) 1\ (Xl VXa V 
X.) 1\ (X2 V X3 V x.) 1\ (x, V X3 V x.) [26]. With minimum rc­
explaination of their reduction (see their work for more details), 
a generalized version of their result is: if two disjoint paths can 
be found between s and t such that one of them uses only the 
dotted lines, then that solution is also a solution to the 38 AT 
problem (see [26) for the proof). They demonstrate that one of 
the two disjoint paths will have to pass through nodes X" X2, 

X3, and X •• If it passes through the top lobe leaving node Xi, 

then Xi is true, and false if it passes through the bottom lobe. 
To demonstrate strong NP-<:ompleteness, one needs to show 

the problem remains NP-complete even after the value of all 
inputs to the system have been bounded by some polynomial 
[21). Assume there exists D dotted edges and L solid edges in 
the 38 AT reduced graph. Since we can assign parameters of 
our choosing to the edges, we assign a cost of 0 for the dotted 
edges and a cost of I to the solid edges. We cboose the failure 
probability of each dotted edge to be 1j and the probability of 
each solid edge to be 'La, such that a :<; 'La ~ a :<; l~L' 
Additionally, we choose a maxinlum probability of failure P 
such that", :<; P < 1 La. L and D are polynomial bounded by 
the number of inputs from the 38 AT problem, and '" can be 
chosen to be polynomial bounded; so all inputs to the system 
are bounded. Since using any solid edge will make that path 
violate the maximum failure probability P, the only feasible 
solution to SCSPD on this network is for the constrained path to 
use only dotted edges. But if such a solution could be found, it 
would solve the 38AT problem, which is NP-Hard. Therefore, 
the decision problem of finding if a feasible solution exists to 
SCSPD is strongly NP-complete. 
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