Factors Influencing the Acoustic Behavior and Nearshore Residence of the Gray Whale (*Eschrichtius robustus*) Along their Migration Route

Timothy J. Cowles  
College of Oceanic and Atmospheric Sciences  
104 Oceanography Admin Bldg  
Oregon State University  
Corvallis, OR 97331-5503  
phone: (541) 737-3966    fax: (541) 737-2064    email: tjc@coas.oregonstate.edu  
also at  
Consortium for Ocean Leadership  
1201 New York Ave NW, Suite 400  
Washington, DC 20005  
phone: (202) 787-1640    fax: (202) 332-8887    email: tcowles@oceanleadership.org

Kelly Benoit-Bird  
College of Oceanic and Atmospheric Sciences  
104 Oceanography Admin Bldg  
Oregon State University  
Corvallis, OR 97331-5503  
phone: (541) 737-2063    fax: (541) 737-2064    email: kbenoit@coas.oregonstate.edu

David Mellinger  
Cooperative Inst. for Marine Resources Studies  
Oregon State University (OSU)  
2030 SE Marine Science Dr.  
Newport, OR  97365  
phone: (541) 867-0372    fax: (541) 867-3907    email: david.mellinger@oregonstate.edu

Award #: N00014-09-1-0475

LONG-TERM GOALS

Our long-term goal is to quantify the acoustic behavior of gray whales in the coastal waters of the Northeast Pacific Ocean and to characterize the link between coastal residency patterns of these migratory mammals and the distribution of hyperbenthic swarms of their primary prey (mysids).

OBJECTIVES

Several years of observations off the Oregon coast have revealed considerable interannual variability in the residence patterns of gray whales as well as in foraging behavior (Newell and Cowles 2006). For example, during the summer of 2005, the resident gray whale population had 50% fewer individuals than the previous three summers, and those 2005 residents displayed many fewer characteristic feeding
Factors Influencing the Acoustic Behavior and Nearshore Residence of the Gray Whale (Eschrichtius robustus) Along their Migration Route

College of Oceanic and Atmospheric Sciences 104 Oceanography Admin Bldg Oregon State University Corvallis, OR 97331-5503

Approved for public release, distribution unlimited

The security classification of this document is unclassified.
behaviors than residents in other summers. This variability in residency and foraging was likely due to changes in the distribution and abundance of swarms of benthic mysids, the gray whale’s preferred prey in this region. We have observed that the resident gray whales repeatedly forage on discrete hyperbenthic mysid swarms throughout the spring and summer months (late April – late September). As described in Newell and Cowles (2006), these discrete concentrated swarms can be found along the 10-15 m isobath off the central Oregon coast, and interannual variability in swarm thickness and extent appears to be associated with the timing and intensity of coastal upwelling. In early summer 2005, mysid swarms were less than 1 m thick, approximately 20-30% as thick as in 2003 and 2004, likely limited by the late onset of coastal upwelling and local production (Pierce et al. 2006). These observations strongly support the hypothesis that the ecological link between ocean conditions and mysid swarm dynamics affects the spatial and temporal distribution of both migrating and resident gray whales in the eastern North Pacific. We will quantify this link between ocean conditions, mysid swarms, and gray whales through a pilot project that will assess the frequency and duration of nearshore residence and the acoustic and foraging behavior of E. robustus along the Oregon coast, as well as the distributional dynamics of the mysid prey.

The project objectives are to:

- characterize the spatial limits for passive acoustics to identify and locate gray whales during their residency (and foraging) along the central Oregon coast;
- determine what aspects of mysid swarm dimensions and concentration can be characterized with active acoustic moorings and localized surveys with small boats;
- document the time scales of variability in mysid swarm characteristics that influence the foraging time scales of the gray whales.

**APPROACH**

We used a focused, month-long observational program during July and August of 2010 that used a variety of observational approaches, linking time series from moored passive and active devices with spatial surveys of prey availability. In addition, during the coming months, we will be incorporating local and regional observations of ocean properties from complementary programs (PISCO, CMOP, OrCOOS) along with visual surveys of resident gray whales that were conducted during surveys of mysid swarms. The results of our pilot project will provide a rigorous test for the application of passive and active acoustics to localize marine mammals in relation to their prey fields, and could lead to longer-term deployments that would enhance our understanding of gray whale responses to the nearshore environment.

The month-long observational program was based on an array of sensors installed in shallow water over the Oregon continental shelf. Moored passive acoustic sensors documented the patterns of distribution of the resident gray whales. Moored active acoustics with temperature sensors were used within regions of dense hyperbenthic swarms of mysids (the primary prey for the resident gray whales) to document a continuous record of variability in mysid concentrations. We used a small boat with active acoustics and ADCP to conduct frequent spatial surveys of the dimensions and variability in the hyperbenthic mysid swarms.
WORK COMPLETED

For a period of 5 weeks in July and August of 2010, 3 upward looking moored echosounders were deployed in conjunction with an array of passive acoustic sensors. Two of the echosounders sampled at 420 kHz while the center instrument sampled at 200, 420, and 730 kHz. All echosounders operated at a 1 Hz sampling rate with a vertical resolution of 5 cm. Periodically throughout the mooring period, sampling was also conducted from a research vessel with 5 echosounder frequencies (70, 120, 200, 333, 710 kHz) to reveal the abundance, distribution, and size of mysids. Acoustic sampling was complemented by vertically integrated net tows and video camera and CTD profiles. All acoustic, video, and net data have been analyzed. Data synthesis is ongoing. To date, one presentation and published abstract (Kaltenberg et al 2011) has resulted from this work. Two peer-reviewed publications are currently in preparation.

RESULTS

A small subset of data collected with the shipboard echosounders is shown in Figure 1. Mysids were highly aggregated in dense bottom-associated features that often covered more than half of the water column vertically and sometimes reached all the way to the surface. These aggregations were found between 10 m of water where sampling began and 20 m where they abruptly ended. Net tows revealed that the size of mysids in these aggregations ranged from 1 to 3 cm with some aggregations containing a range of size classes while others were monospecific with respect to size.

We obtained bottom temperature records at the three active acoustic moorings (8.25 inches above the bottom, approximately 10m water depth), and have derived the surface wave elevation from the bottom pressure record recorded by the Nortek AquaDopp Profiler hourly (burst sampling, 512 samples per burst, 2 Hz). Waves were derived from the bottom pressure record using linear wave theory. The bottom temperature record revealed strong upwelling characteristics at beginning of the deployment with intervals of warming and subsequent cooling during the month-long deployment. It is interesting to note that the mysid swarm locations were subject to 1-2°C temperature variations within a tidal cycle at the 10m isobath.

Obtaining both density and individual size information from acoustic data of densely aggregated organisms poses a challenge in hydroacoustic surveys. In this study, simultaneous acoustic, net, and video sampling was conducted on dense mysid aggregations in coastal waters off Oregon, USA to study the role of intra-patch dynamics of mysid zooplankton in acoustic surveys. The distorted wave Born Approximation (DWBA) scattering model was applied to calculate density, and multi-frequency differencing and Moran’s I statistic were used to obtain the relative position and degree of clustering among multiple size classes within aggregations. Data revealed considerable sub-meter scale clustering of similar individuals within mixed-sized and mixed-species mysid aggregations. There was a negative linear relationship between mysid length and Moran’s I, indicating smaller mysids cluster together more than larger ones. Data suggested a net avoidance behavior disproportional to mysid size distribution, with avoidance occurring by the largest mysids. Intra-patch clustering of heterogeneously sized individuals has the potential to influence density calculations obtained through standard acoustic surveys (Figure 2).
IMPACT/APPLICATION

We anticipate that this work will illustrate the need to characterize ocean conditions and prey distribution patterns in order to fully understand the acoustic and foraging behavior of marine mammals.

RELATED PROJECTS

ONR grant N00014-08-1-1082, “Automatic Detection of Beaked Whales from Acoustic Seagliders”, includes the development of methods for automatically detecting odontocete clicks. Although odontocetes are not part of this gray whale project, the passive acoustic sensors record all ambient sound, and thus may provide incidental information about the occurrence and population density of the lower-frequency odontocetes present, including killer whales (Orcinus orca) and sperm whales (Physeter macrocephalus).

REFERENCES


PUBLICATIONS


Kaltenberg AM, Benoit-Bird KJ (in review) Intra-patch size clustering in mysid aggregations revealed through multi-frequency acoustics, ICES Journal of Marine Science

Kaltenberg, AM, Benoit-Bird KJ (in review) Behavioral dynamics of shallow water mysid swarms. Marine Ecology Progress Series

HONORS/AWARDS/PRIZES

Kelly Benoit-Bird, Oregon State University
2007 Kavli Frontiers Fellow, National Academy of Sciences
2008 Ocean Sciences Early Career Award, American Geophysical Union
2009 R. Bruce Lindsay Award, Acoustical Society of America
2010 MacArthur Fellowship, John D. and Catherine T. MacArthur Foundation
2011 Ocean Sciences Meeting Plenary Speaker
2012 PopTech Science Fellow
2012 Oregon State University Promising Scholar
**Amanda Kaltenberg**, the post-doctoral researcher on this project is now a Post-Doctoral Fellow at Duke University working with Doug Nowacek and Andy Read

![Figure 1](image_url)

**Figure 1.** Acoustic backscatter from shipboard echosounders at five-frequencies show the highly aggregated distribution of mysids and the abrupt end of these aggregations at water depths of around 20 m. The frequency response can be used to estimate the size class of mysids throughout the aggregation.
Figure 2. A) Original 333 kHz echogram collected during one net tow sample (Sample 15, median length 4.72 mm). B) Mysid layers were selected by applying a data mask to mysid regions. C) A virtual echogram created by calculating the frequency differences showing the distribution of 4 size groups within the patch. D) Local Moran’s I calculated from the virtual echogram in C.