LONG TERM GOALS

Time and space dependent radiance distributions at the sea surface are a function of the shape of the incident distribution on the surface, modification by the sea surface itself from topography and transmission characteristics, and alteration by the Inherent Optical Properties (IOPs) of the surface ocean. Our long term goal is to understand this last controlling factor. With a knowledge of the IOPs, radiance fields can be directly computed from the incident field using the equation of radiative transfer, now embedded in commercially available code.

With the state of current technology and methodologies, the primary obstacles in understanding subsurface IOPs and their high-frequency dynamics are a lack of 1) volume scattering instrumentation, 2) comprehensive inversion models linking the IOPs with the ambient particle fields including bubbles (models which in many cases will require input dependent on 1), and 3) suitably stable, non-intrusive platforms to sample the subsurface ocean. The first two challenges are addressed in this project.

OBJECTIVES

Through RaDyO support we have developed, tested, and deployed a new 17 angle volume scattering function device called the MASCOT. Over 3 million VSFs have now been collected throughout the world’s oceans. We have also developed a basis vector least-squares minimization inversion model to retrieve size distributions with associated bulk refractive index of particle subcomponents, including bubbles, minerals, organic water-filled particles, and coated particles. Our objective in ongoing work is to use our extensive data set of polarized and unpolarized angular scattering functions to develop a better understanding of the composition and dynamics of particle fields and how they may in turn affect optical and acoustical energy propagation in near-surface waters, including the surf zone.

APPROACH

MASCOT (Multi-Angle SCattering Optical Tool) has a 30 mW 658 nm laser diode source expanded with a Gallilean 2X beam expander to an approximately 3 mm X 8 mm elliptical shape. A wedge depolarizer is used to provide the unpolarized light needed for VSF determinations. Seventeen independent silicon diode detectors spaced in a semicircle 10 cm around the sample volume measure...
1. REPORT DATE
2012

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
VSF Measurements and Inversion for RaDyO

5a. CONTRACT NUMBER
-

5b. GRANT NUMBER
-

5c. PROGRAM ELEMENT NUMBER
-

5d. PROJECT NUMBER
-

5e. TASK NUMBER
-

5f. WORK UNIT NUMBER
-

6. AUTHOR(S)
-

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Research WET Labs, Inc. 70 Dean Knauss Dr Narragansett, RI 02882

8. PERFORMING ORGANIZATION REPORT NUMBER
-

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
-

10. SPONSOR/MONITOR’S ACRONYM(S)
-

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
-

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
-

15. SUBJECT TERMS
-

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
SAR

18. NUMBER OF PAGES
17

19a. NAME OF RESPONSIBLE PERSON
-

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
volume scattering from 10° to 170° at 10° intervals. The total pathlength for all scattering measurements is 20 cm. Independent detectors allow resolution of the VSF without any moving parts and time-consuming scanning. Additionally, each detector can be optimized for its specific dynamic range. Detector field-of-views (FOVs) range from 0.8° to 5° for the different detectors, with the narrowest FOVs associated with the detectors measuring scattering in the forward direction. Using proprietary electronics, a 20 Hz sampling rate for all channels has been achieved while maintaining a worst case signal:noise of 300:1. Relatively fast sampling rates are important in resolving VSFs in the highly dynamic subsurface.

Polarized VSFs were successfully collected with the addition of a filter mount placed in front of the source beam. A linear polarizer was used to obtain scattering from a vertically and horizontally polarized source (in terms of the Mueller scattering matrix elements, (S11+S12)/2 and (S11-S12)/2 are measured, so that S11 and S12 may be derived). Adding polarized scattering increases the amount of information on particle characteristics we are collecting, and is expected to improve our ability to discriminate different particle types (both the number of subpopulations and the accuracy of individual determinations). The degree of linear polarization (S12/S11) is most dependent on the degree of sphericity, particle size, and refractive index.

For VSF inversion modeling, we (Twardowski et al. 2012) have extended the capabilities of existing models (Twardowski et al. 2001; Twardowski and Zaneveld, 2004; Zhang et al. 2005, 2011) by incorporating input from new VSF measurements and by adding bubble particle populations (clean and coated) in the models. Candidate phase functions for particle subpopulations are fit to measured VSFs using a least-squares minimization matrix inversion procedure. These phase functions can be obtained theoretically using Mie theory, DDA, or IGOM techniques, or experimentally in controlled conditions. George Kattawar’s group has recently provided DDA-IGOM phase function determinations for asymmetric polyhedrons we are using in inversions. Current work aims to extend the inversions to measurements of linearly polarized scattering.

Deployments for RaDyO have taken place in collaboration with other RaDyO investigators off Scripps Pier, in Santa Barbara Channel, and off Hawaii. For these RaDyO deployments, we have also intermittently integrated a bubble acoustic resonator developed by Svein Vagle, David Farmer, and Helen Czerski. For the Scripps Pier experiment, measurements were made throughout the surfzone. For subsequent field work in SBC and Hawaii, the sensor package was deployed off the R/V Kilo Moana.

WORK COMPLETED

In the past year under partial or complete support from this contract, 16 papers were submitted for peer-review publication, 14 which are currently in print. These papers are the last 16 papers in the PUBLICATIONS section and are highlighted in **bold**.

Recent work continues the assessment of relationships between measurements of polarized volume scattering functions and particle fields for the RaDyO data and other data sets. Two papers are in preparation for this work with two presentations of these results at the Ocean Optics Conference, October 2012. Analysis also continues on evaluating the role of surfactants in stabilizing bubble populations and the cross-validation of 3 different techniques for quantifying bubble size distributions: VSF inversion, acoustic resonator inversion, and in-situ holography. A paper is in preparation, led by
RESULTS

In situ measurement of the degree of linear polarization (DOLP, equivalent to S12/S11 from the Mueller matrix for a randomly oriented particle field) from 10 to 170 degrees has now been completed in approximately 12 disparate oceanic sites around the world. Sample DOLP data from a profile collected in Santa Barbara Channel are provided in Fig. 1. Despite the widespread use of polarized laser sources across a diversity of Navy applications, this comprises the first comprehensive data set ever assembled for studying scattering by linear polarized light in the world’s oceans. We have also computed DOLP for polydisperse populations of homogeneous spherical particles computed using Lorenz-Mie theory and for nonspherical asymmetric polyhedra particles (mineral-mimicking) with phase functions computed from DDA and IGOM (sample results shown in Figs. 2-4). Comparison of the in situ data and theoretical results show that Lorenz-Mie theory is inadequate for describing the linear polarization characteristics of oceanic particles, except for bubbles and spherical droplets from emulsions such as oil dispersed in seawater. Scattering functions from asymmetric polyhedra, however, can in many cases effectively reproduce variability in the DOLP observed experimentally. General observations for oceanic polydispersions include: 1) increasing nonsphericity lowers DOLP and shifts the DOLP peak to larger angles; 2) increasing refractive index lowers DOLP, particularly for populations with relatively flat size distributions; and 3) as size distributions become increasingly flat, the DOLP decreases and the maximum shifts to larger angles.

Because nominally spherical particles exhibit strong specificity in VSF shape, with a mid-angle enhancement around 60 to 80 degrees, bubbles and emulsified fluids may be resolved within complex oceanic particle mixtures at volume concentrations at the part per billion level, equivalent to only several 10 µm bubbles or droplets per mL. The DOLP of bubble populations is also unique among all other particle types, as there is effectively no polarization of the scattered beam between 0 deg and the critical angle around 80 deg. This is due to total internal reflection of scattered light off the bubble surface within the water medium, which is not a polarization-specific phenomenon. Optical scattering is currently the only method capable of resolving bubbles and emulsified oil particles less than about 20 µm (where the highest concentrations are observed). A sample plot of a transition from background particle DOLP to a bubble dominated DOLP is provided in Fig. 5.

With the Czerski-Vagle-Farmer RaDyO team, we have collected a rich data set of concurrent optical-acoustical measurements that are being used to resolve and validate bubble size distributions down to micron sizes. Results suggest an inflection in bubble size distributions in the 20-40 µm range, which may be the region of delineation between persistent, surfactant stabilized small bubbles and more ephemeral large bubbles subject to rapid buoyant uplift. In data collected in the propeller wash from a passing 40 ft boat with outboard motor, bubbles as large as 50 µm were observed for over 1 hour (Fig. 6). Bubbles in this data set were not only resolved with optical scattering and acoustics but with in-situ holography, which additionally resolved turbulence dissipation using particle interference velocimetry.

We have recently also assessed the potential effects of particle orientation on the VSF including its polarization elements in natural waters. In virtually all measurements and models we are aware of, the VSF is assumed to have no dependency on the direction of illumination or the azimuthal plane of scattered radiance. For this assumption to be true, all particles suspended in the water column must be
randomly oriented. From simple physics of hydrodynamic flows for the nonspherical particles that comprise virtually all the particles in the ocean, this is not a reasonable assumption. Furthermore, direct evidence from the field, both in volume scattering data (S_{13}/S_{11} analyses) and holographic imaging, is confirming ubiquitous preferential particle alignment in coastal waters, particularly within density gradients (Talapatra et al., in press). Consequently, it appears that our understanding of the geometry-dependent VSF, and thus transmission through coastal waters, may be significantly biased.

IMPACT/APPLICATIONS

Progress and results represent important steps toward the development and vetting of a multi-angle, in-water VSF device. Knowledge of the Inherent Optical Properties including the VSF can be used to predict and optimize the performance of a host of Naval operations that rely on divers, cameras, laser imaging systems, and active and passive remote sensing systems. These include mine countermeasures, harbor security operations, debris field mapping, anti-submarine warfare, and search and salvage operations. Particles found in the near-surface such as bubbles also impact acoustical transmission. It should be noted that our results represent the first comprehensive data set ever recorded for the VSF in the oceans, and the first measurements of polarized scattering elements *in situ* for undisturbed particle fields.

TRANSITIONS

We expect that our efforts in developing an in-water VSF device and associated inversion techniques to better understand particle dynamics in natural waters will lead to transition as better predictive operational tools for the fleet and the oceanographic research community in the future.

RELATED PROJECTS

This effort is related to ongoing efforts by the PI to develop optical sensors and associated inversion techniques to improve our understanding of the oceanic environment. Current ongoing related projects include:

- developing and testing a sensor system for rapid but high quality assessment of environmental optical conditions to complement, guide, and predict performance of shallow water EO remote sensing for mine countermeasures (ONR LGO, Twardowski);
- investigating the underlying controls of biological camouflage responses in dynamic underwater optical environments (MURI collaboration, Twardowski; URI PIs J. Sullivan and B. Seibel; project lead PI M. Cummings);
- developing improved remote sensing water quality algorithms for coastal waters (NASA, Twardowski; project lead PI Z-P. Lee);
- developing a microscopic holographic camera to image undisturbed, optically relevant particles (NOPP, project lead PI J. Sullivan); and
- developing a surfzone drifter measuring optical attenuation and scattering (ONR SBIR, Twardowski).
Figure 1. (A) Vertical profile of the VSF resolved from 10 to 170° in 10° increments collected in Santa Barbara Channel. (B) The linear degree of polarization (-S12/S11) as a function of depth and angle, showing a maximum around 0.9 at the very surface, with a steady decrease with depth. The deep scattering maximum exhibited much lower polarization, as low as 0.6 around 90 m. (C) Overlays of –S12/S11 plotted for 3 depths regions, labeled in B. This is the first time these measurements have been made in-situ.
Figure 2. Degree of linear polarization (-S12/S11 from the Mueller scattering matrix) computed for polydispersions of homogeneous spheres (left column) and asymmetric polyhedra (nonspherical, mineral-mimicking particles; right column). The 2D pseudo-color plots are the same data as plotted above. Polydispersion size distributions follow a power law (i.e., Junge-type distribution), with slope varying between 2-4. The black line in the lower left plot corresponds with the angle at which DOLP is at a maximum. Imaginary part of the refractive index was set at 0.002, with the real part, np = 1.02.
Figure 3. Same as in Fig. 2, with real refractive index, $n_p = 1.10$.
Figure 4. Same as in Fig. 2, with real refractive index, $n_p = 1.20$.
Figure 5. Degree of linear polarization (-S12/S11 from the Mueller scattering matrix) measured in the NY bight under breaking wave conditions (blue, red, green, and black traces), along with DOLP computed from Mie theory for various lognormally distributed populations of bubbles with relative refractive index of 0.75. A transition is observed between the background with little influence from bubbles (blue trace) to a particle population dominated by bubbles that matches Mie theory computations exceedingly well (black trace). In complex oceanic particle populations, the DOLP for bubbles is completely unique.
Figure 6. Bubbles resolved in a boat’s propeller wash with an acoustic resonator (Czerski, Vagle), a holographic imaging system (Talapatra, Katz, Twardowski, Sullivan), and inversion of the volume scattering function. Inset in the upper right shows the ship tract over time. Bubbles persisted for over 1 hour in surface waters after the boat passed, indicating stabilization by organic surfactants.
PUBLICATIONS

Bell, J., M. Twardowski, C. Moore, and A. Barnard. 2008. Comprehensive optical merge processing and acquisition software system (COMPASS) for comprehensive user correction of WET Labs absorption and attenuation data. *Proceedings of Ocean Optics XIX*, October 6-9, Barga, Italy.

HONORS/AWARDS/PRIZES

WET Labs Postdoctoral Fellowship, 1998.

Early Career Faculty Award, Office of International Research and Development, Oregon State University, 2000.

ASEE Visiting Faculty Fellowship, Naval Research Labs, Stennis Space Center (R. Arnone, A. Weidemann) and Washington, D.C., (Curt Davis), 2000.

Adjunct Professor, University of Rhode Island, 2003.

Adjunct Professor, University of Connecticut, 2005.

NATO Visiting Researcher Fellowship, Naval Underwater Research Centre, La Spezia, Italy, 2010.