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Comparison Between Self-Guided Langevin Dynamics
and Molecular Dynamics Simulations for Structure
Refinement of Protein Loop Conformations

Mark A. Olson,*[a] Sidhartha Chaudhury,[b] and Michael S. Lee[a,c]

This article presents a comparative analysis of two replica-

exchange simulation methods for the structure refinement of

protein loop conformations, starting from low-resolution

predictions. The methods are self-guided Langevin dynamics

(SGLD) and molecular dynamics (MD) with a Nosé–Hoover

thermostat. We investigated a small dataset of 8- and 12-

residue loops, with the shorter loops placed initially from a

coarse-grained lattice model and the longer loops from an

enumeration assembly method (the Loopy program). The

CHARMM22 þ CMAP force field with a generalized Born

implicit solvent model (molecular-surface parameterized

GBSW2) was used to explore conformational space. We also

assessed two empirical scoring methods to detect nativelike

conformations from decoys: the all-atom distance-scaled ideal-

gas reference state (DFIRE-AA) statistical potential and the

Rosetta energy function. Among the eight-residue loop

targets, SGLD out performed MD in all cases, with a median of

0.48 Å reduction in global root-mean-square deviation (RMSD)

of the loop backbone coordinates from the native structure.

Among the more challenging 12-residue loop targets, SGLD

improved the prediction accuracy over MD by a median of

1.31 Å, representing a substantial improvement. The overall

median RMSD for SGLD simulations of 12-residue loops was

0.91 Å, yielding refinement of a median 2.70 Å from initial

loop placement. Results from DFIRE-AA and the Rosetta model

applied to rescoring conformations failed to improve the

overall detection calculated from the CHARMM force field. We

illustrate the advantage of SGLD over the MD simulation

model by presenting potential-energy landscapes for several

loop predictions. Our results demonstrate that SGLD

significantly outperforms traditional MD in the generation and

populating of nativelike loop conformations and that the

CHARMM force field performs comparably to other empirical

force fields in identifying these conformations from the

resulting ensembles. Published 2011 Wiley Periodicals, Inc.†
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Introduction

Refinement of comparative protein structures is of significant in-

terest given the rapid decoding of new sequences from large-

scale genomic efforts and the desire to model three-dimen-

sional protein structures to accurate resolution. Notable exam-

ples of computational refinement of protein models include the

work of Levitt and coworkers,[1–3] the work of the Baker lab[4–6]

and Zhu et al.,[7] the work from the Skolnick group,[8,9] Jacobson

and coworkers,[10] and Chen and Brooks,[11] among others that

participated in recent Critical Assessment of Protein Structure

Prediction meetings.[12] An integral component of structure

refinement is the modeling of protein loops. One of the more

exigent issues is how to improve the conformational sampling

of all-atom simulation methods to ‘‘funnel’’ structures to the

native loop basin on a vast energy landscape starting from low-

resolution model predictions. A second issue is the develop-

ment of scoring functions to detect the native conformation

among a large set of loop decoys.

Molecular dynamics (MD) simulations for conformational sam-

pling have often been employed for final-stage refinement of a

predicted structure with promising results.[2,11–13] The most sig-

nificant challenge to MD-based structure refinement is that the

energy landscape of protein conformational space contains

many potential-energy barriers that present kinetic traps to find-

ing the native basin. One method designed to address this is

temperature-based replica exchange (T-ReX),[14] which uses

multiple parallel simulations at a range of temperatures to over-

come local minima and promote large conformational excur-

sions along the potential-energy surface. Although T-Rex is fre-

quently used with MD simulations and has enjoyed some

success in structure refinement, it is often insufficient, particu-

larly when refining longer loops or more complex systems. An

alternative to MD, yet relatively untested method for improving
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sampling is based on self-guided Langevin dynamics (SGLD)

simulations.[15] The SGLD method differs from the standard Lan-

gevin equation by an introduction of ad hoc guiding force. This

force term is calculated as a local average of the friction forces

during a SGLD simulation and is thought to accelerate low-fre-

quency modes that hinder transitions across high potential-

energy barriers. Wu and Brooks demonstrated through several

model systems that the SGLD simulation method can provide

enhanced conformational sampling of an energy surface with-

out significant alteration in conformational distribution.[15]

In this work, we seek to combine SGLD with T-ReX for the

structure refinement of loops. Our goal is not to provide an ex-

haustive benchmarking of the SGLD/T-ReX method, but rather

to contrast its performance with that of the more conventional

MD/T-ReX simulations using a small dataset of loop targets.

This dataset contains eight-residue loops, which are relatively

tractable refinement problem for a number of loop modeling

algorithms, and longer 12-residue loops, which are almost uni-

versally challenging for structure prediction and refinement.[16]

In addition to exploring the SGLD method, we also revisit the

problem of detection of nativelike structures among decoys[17]

by evaluating three scoring methods. The first is based on the

force field and generalized Born implicit solvent model used to

generate the loop conformations. The second approach is

rescoring the conformations by the all-atom distance-scaled

ideal-gas reference state (DFIRE-AA) statistical potential func-

tion.[18] The third approach is the Rosetta all-atom energy func-

tion.[19] In our study, side chains in the loop stem are modeled

to be flexible during the simulations and thus replicate the inex-

act local environments found in real-world refinement of com-

parative protein models. Using the Rosetta method, we examine

the possible benefit of repacking all side chains and their energy

optimization. Motivation for applying the latter scoring method

is the observation from previous studies that all-atom stimula-

tions typically generate nativelike backbone conformations, yet

placement of the side chains from thermal sampling often leads

to a poorly defined energy funnel to the native basin.[20]

Computational Methods

Simulation models

As detailed by Wu and Brooks,[15] the scheme of self-guided

simulations is to enhance conformational sampling by incorpo-

rating information extracted from the trajectory during the

simulation. The information is typically a local property ave-

raged over the adjoining protein conformational space near

the current conformation of the simulation trajectory. An ear-

lier development of this idea is self-guided MD simulations,[21]

where time-averaged forces are applied as a guiding term. For

the SGLD, time-averaged momentum is applied and has the

effect of accelerating low-frequency modes. The equation of

motion for an SGLD simulation is

_pi ¼ fi � cipi þ Ri þ kgi; (1)

where _pi is the rate of change of the momentum of particle i,

fi is the force acting on the particle, ci is the friction constant,

Ri denotes the random force, and gi is a memory function,

which is scaled by guiding factor k. The memory function gi is

defined by the moving average of the momentum seen by

the system over an interval of time, L:

gi ¼ pih iL; (2)

where h���iL denotes a local average. The time interval is fur-

ther defined as L ¼ tL/dt, where tL is the local averaging time

and dt the time step along the simulation trajectory. Equation

(2) indicates that the guiding force is a local average of the

friction force and should increase the chances of sampling the

native or lowest energy topology of a protein by preferentially

increasing the speed of the slowest conformational motions.

However, as noted by Wu and Brooks, the SGLD equation of

motion is fundamentally approximate. This approximate nature

was investigated in a recent study of the SGLD method used

to model protein folding–unfolding transitions and it was

observed that the main drawback of incorporating the ad hoc

force term is possible distortion of the free-energy surface

applied to the calculation of thermodynamic observables.[22]

Here, we investigate the applicability of the SGLD method to

model conformational changes that are inherently much

smaller than protein folding and whether the method can do

so without incurring significant distortions in the distribution

of potential energies.

Our SGLD model simulations were carried out using the

CHARMM22 force field with the CMAP backbone dihedral

cross-term extension.[23,24] The friction constant c was set to 1

ps�1 for all heavy atoms, the guiding factor k set to a value of

1, and the averaging time tL was set to 1 ps. Selection of these

values was taken from our previous study of the SGLD

model.[22] For comparison purposes, MD simulations were

applied using a Nosé–Hoover thermostat with a temperature

coupling constant of 50 kcal s�2. An integration time step of 2

fs was used for all simulations. Nonbonded interaction cutoff

parameters for electrostatics and vdW terms were set at a ra-

dius of 22 Å with a 2-Å potential switching function. Covalent

bonds between the heavy atoms and hydrogens were con-

strained by the SHAKE algorithm.[25] For modeling the protein

stem outside of the loop segment and to prevent unfolding at

higher temperatures, Ca and Cb atom coordinates were teth-

ered to their initial crystallographic positions with a force con-

stant of 1.0 kcal (mol�1 Å�2).

To model electrostatic solvent effects, we used the molecu-

lar-surface-based generalized Born switching-window (GBSW2)

solvent model.[26] This implicit solvent model was parameter-

ized to fit the Lee–Richards molecular-surface Poisson results

and requires model parameters to be set to values of w ¼ 0.2

Å, a0 ¼ 1.2045, and a1 ¼ 0.1866. The hydrophobic cavitation

energy term was approximated by a linear product of the sol-

vent-exposed surface area of the solute and a phenomenologi-

cal surface tension coefficient set to 30 cal (mol�1 Å�2).

The application of the GBSW2 model is in contrast to the ear-

lier calculations where the GBMV2 implicit solvent model was

used.[20] This revision in our simulation approach has several

potential advantages. It has been shown by Chocholoušová

Olson, Chaudhury, and Lee
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and Feig[26] that GBSW2 exhibits good agreement with Poisson

calculated solvent energies and, because of the existence of

fewer higher frequency components in the GBSW2 model as

compared with GBMV2, the protein–solvent dielectric transition

is less abrupt. The advantage of improved smoothness of the

dielectric boundary should allow greater excursions on rugged

conformational energy landscapes by increasing transmission

probabilities across high potential-energy barriers. In addition,

more stringent energy conservation should be obtained by

GBSW2 using the Nosé–Hoover and Langevin thermostats, and

subsequently yield improvement in sampling convergence.[26]

As a practical note, GBSW2 is more computationally efficient

than GBMV2 due to the calculational scheme of determining

the Born radii. Despite these advantages, one possible short-

coming of GBSW2 compared with GBMV2 is the introduction of

artifacts in conformational landscapes computed for thermody-

namic protein folding.[27] While this disadvantage may have an

effect in some cases of structure refinement, where large

perturbations are required of the nature of unfolding–folding

transitions, it is most probably negligible for modeling medium

size loops.

Replica-exchange simulations were performed using the

MMTSB[28] utilities and programming libraries for implementing

the CHARMM simulation program (version c33b2).[29] Simula-

tions were carried out over a total of 4-ns simulation time for

each replica, generating a final culled population of 64,000 loop

conformations for each loop target using 16 replicas with the

temperature range of 298–400 K. Frequency of replica

exchanges was set to every 1 ps of simulation. The starting

input structures for the protein targets into the T-ReX simula-

tions were obtained from two different methods. For modeling

eight-residue loops, the starting structures were generated

from a low-resolution cubic lattice model and details of the sim-

ulation protocol are given in earlier work.[20] Initial placement

of 12-residue loop coordinates is based on predictions using

the enumeration scheme of the Loopy program developed by

the Honig lab.[30] The top-scoring structure from Loopy is used

as input to SGLD and MD simulations to search conformational

space of locating more optimal loop conformations. Our test

set consists of five 8-residue loops and six 12-residue loops

taken from a diverse set of protein structures.[16,30]

Scoring of protein structures

Three different scoring functions were applied to select the

‘‘best’’ loop conformation from the ensemble of conformers

generated by the simulation models. The first is identical to

the force field (CHARMM22 þ CMAP with the GBSW2 model)

used to generate the loop decoys. Here, we define the scoring

function as

G ¼ Uint þ Gsolv � kBT lnM; (3)

where each loop conformation is evaluated as the sum of the

internal potential energy, Uint, and the GBSW2 solvent energy,

Gsolv, plus a term that accounts for the multiplicity of confor-

mations,[20] M, for a cluster of loop structures at absolute tem-

perature T, and where kB is the Boltzmann constant. Culled

conformations from the T-ReX simulations were clustered on

the basis of pairwise backbone root-mean-square deviation

(RMSD) distances (described below). A hierarchical clustering

scheme was applied that includes an agglomerative approach

with automatic stopping criteria. Specific details of our cluster-

ing approximation are given in previous work.[20]

In addition to culling structures at the specific temperature

of 298 K from T-ReX for direct scoring using eq. (3), we used

the weighted histogram analysis method (WHAM)[31] to calcu-

late the probability density of conformational states as a func-

tion of the total conformation energy (Uint þ Gsolv) and RMSD

from the X-ray crystallographic structure. In our WHAM calcula-

tions, conformations from all 16 replicas were applied and we

report free energies calculated for T ¼ 298 K.

The second energy scoring function is the DFIRE-AA statisti-

cal potential[18] and is defined as

EDFIREði; j; rÞ ¼ �kBT ln
Nobsði; j; rÞ

r
rcut

� �a
Dr
Drcut

Nobsði; j; rcutÞ

2
64

3
75; (4)

where i and j are non-hydrogen atom types, r is a pairwise dis-

tance, rcut is the cutoff beyond which pairwise interactions are

neglected, Dr is the histogram bin size, Nobs is a cumulative his-

togram of the observed occurrence of pairs as a function of the

pairwise distance, and a is set to 1.61 based on an empirical

analysis of hard-sphere protein-like spatial distributions. The his-

tograms Nobs in this work were obtained from previous analysis

of a culled set of 1836 Protein Data Bank (PDB) structures which

had better than 1.8-Å resolution and were less than 30% homol-

ogous to each other.[17] We deviated from the original DFIRE

protocol by assigning Dr ¼ 0.5 Å at all distances and having r

range from 0.25 to 14.75 Å, such that rcut ¼ 15 Å.

The third scoring approach is application of the Rosetta

energy function. The challenge in using the Rosetta energy

function to score loop decoys selected from a 298-K ensemble

generated from the CHARMM22 þ CMAP/GBSW2 force field is

that they are suboptimal structures under the Rosetta energy

function. Our general approach is twofold: first, to improve

suboptimal structures in CHARMM-generated in Rosetta by

allowing limited sampling to identify a local minimum in the

Rosetta energy landscape near a given decoy structure; sec-

ond, to modify the Rosetta energy function to accommodate

suboptimal structural features that cannot be improved by the

limited sampling. Toward these ends, we developed a simple

protocol using Rosetta v3.1[19] that optimizes hydrogen place-

ment, packs side chains, and minimizes and calculates the

energy under a modified Rosetta energy function.

For each decoy, the following protocol was followed. First,

we used Rosetta to replace hydrogen atoms using standard

bond geometry derived from the CHARMM19 force field.[32]

We then used the Rosetta fixed-backbone packing applica-

tion[33] to optimize the decoy side-chain conformations under

the Rosetta energy function using the backbone-dependant

rotamer library developed by Dunbrack and Cohen[34] that was

expanded to include rotamers at 61 standard deviation from

the standard v values at v1 and v2,
[35] as well as extra rotamers

Loop Refinement by SGLD and MD Simulations
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at v3 and v4.
[36] The initial decoy side-chain conformations

were also added to the library. Following packing, the struc-

ture was energy minimized along backbone and side-chain

torsion angles using a gradient-based single-line minimization

scheme and scored under the Rosetta energy function, using

the scoring application in Rosetta v3.1.

The Rosetta energy function, ERosetta, consists of a linear com-

bination of energy terms that represent van der Waals interac-

tions, residue–residue interactions, solvation, hydrogen-bonding,

and side-chain and backbone conformational energies:

ERosetta ¼ 0:8ELJattr þ 0:44ELJrep þ 0:49Epair þ 0:65Esolv

þ 0:58EHB-shortðbb-bbÞ þ 1:17EHB-longðbb-bbÞ þ 1:17EHBðbb-scÞ
þ EHBðsc-scÞ þ 0:56Erotðaa;u;wÞ þ 0:2Eu;wðaaÞ þ Eaaðu;wÞ; ð5Þ

where van der Waals interactions are represented by the

attractive and repulsive parts of a modified 12-6 Lennard–

Jones potential (ELJattr, ELJrep). Residue–residue interactions are

modeled using a residue pairwise potential (Epair) derived from

PDB statistics. Solvation is modeled using the Lazaridis–Karplus

implicit solvation model (Esolv).
[37] Hydrogen-bonding is mod-

eled using an orientation-dependent potential parameterized

from quantum mechanics calculations[38] and PDB statistics[39]

for short-range (bond length < 2.6 Å) and long-range (bond

length > 2.6 Å) backbone–backbone hydrogen bonds (EHB-

short(bb–bb), EHB-long(bb–bb)), backbone–side-chain hydrogen

bonds (EHB(bb–sc)), and side-chain–side-chain hydrogen

bonds (EHB(sc-sc)).
[40] Side-chain and backbone conformational

energies are represented by statistical potentials derived

from amino-acid and backbone-dependent rotamer proba-

bilities (Erot(aa,u,w)), amino-acid-dependent u/w angle proba-

bilities (Eu,w(aa)), and u/w angle-dependent amino-acid

probabilities (Eaa(u,w)), derived from PDB statistics.[35,36,40]

Weights of the individual terms in eq. (5) were obtained

from an updated and modified version of score12, the weight-

set originally used for all-atom structural refinement.[5]

Compared with the standard score12 weight-set,[19] we

removed the ‘‘pro_close’’ and ‘‘omega’’ energy terms, which are

statistical potentials reflecting proline-ring strain energy and

backbone x torsional energy. Near-native structures generated

under the CHARMM force field showed high energies along

these statistical energy terms compared with crystal structures,

which significantly impeded decoy discrimination.

Table 1. Structure refinement of loop conformations using replica-exchange MD and SGLD simulations

Model

Starting loop

RMSD

% Loops sampled

RMSD < 2 Å

Lowest sampled

RMSD

Force-field

detection RMSD

DFIRE-AA

scoring RMSD

Rosetta scoring

RMSD

8-Residue loops

1lit:82–89 2.21

MD 24 0.87 1.92 2.23 5.03

SGLD 67 1.19 1.44 2.18 1.48

1plc:6–13 4.58

MD 18 0.56 7.30 7.92 7.07

SGLD 68 0.44 0.66 0.79 0.52

1awd:56–63 3.61

MD 99 0.27 0.79 0.52 0.61

SGLD 100 0.26 0.68 0.63 0.45

1hfc:119–126 3.09

MD 99 0.33 1.01 0.61 0.73

SGLD 95 0.35 0.80 0.96 0.87

1rro:18–25 2.31

MD 84 0.44 1.39 0.81 0.78

SGLD 82 0.46 0.63 1.12 0.85

12-Residue loops

1bkf:9–20 2.70

MD 21 1.37 2.43 2.46 1.98

SGLD 34 0.37 0.88 2.45 2.16

1ayh:21–32 4.30

MD 0 1.91 4.55 4.35 2.74

SGLD 6 1.22 2.64 1.27 2.63

1cex:23–34 1.50

MD 100 0.38 0.82 0.68 0.59

SGLD 100 0.40 0.62 0.61 0.63

1akz:181–192 2.20

MD <1 1.89 3.12 2.93 1.99

SGLD 0 2.24 3.83 2.97 2.68

153l:98–109 2.80

MD 84 1.08 1.66 1.83 1.81

SGLD 89 0.36 0.86 1.96 1.33

1arb:74–85 2.70

MD 25 1.17 2.00 1.99 2.14

SGLD 88 0.61 0.93 0.67 0.85

All RMSD values are in units of Angstrom.

Olson, Chaudhury, and Lee

Journal of Computational Chemistry4 http://wileyonlinelibrary.com/jcc



Evaluation metrics

Both clustering and structure prediction evaluation used the global

RMSD of loop backbone atoms between a decoy and a reference

structure. This was calculated by superpositioning the backbone

atoms of the loop stem residues, defined as residues flanking the

loop, of the decoy with that of the reference structure, and then cal-

culating the RMSD between the backbone atoms of the loop resi-

dues with those of the reference structure. For hierarchical clustering,

the reference structure was another decoy; for evaluating structure

predictions, the reference structural was the crystal structure.

Results and Discussion

Table 1 summarizes the simulation results for structure refinement

of 8- and 12-residue loops using the two simulation models. All

computed RMSD values are for global displacements of the loop

backbone coordinates between a predicted structure and the X-

ray crystallographic structure. Culled conformations were

extracted at a temperature of 298 K and were clustered on the ba-

sis of pairwise RMSD distances using a hierarchical clustering

scheme.[20,28] Selection of the eight-residue loop targets for assess-

ing the model calculations was taken from previous work,[20] which

demonstrated the challenge of all-atom simulations to efficiently

populate native basins using the CHARMM22 force field.

Our calculations for the loop targets show the SGLD simula-

tion model to produce more accurate structure refinement

than the MD model. For the eight-residue loops, the sampled

lowest RMSD conformations calculated by SGLD and MD

simulations are roughly comparable in finding nativelike

basins; however, SGLD generally performs better in clustering

conformers to yield low-RMSD predictions. For the task of

Figure 1. Conformational energy landscape for eight-residue loop target 1plc:6-13 starting from an initial placement of 4.58 Å from the native. a) WHAM

profile evaluated at temperature 298 K (red color represents high population density and blue denotes low density). b) WHAM profile for MD simulation.

c) DFIRE-AA rescoring of SGLD generated conformations. d) DFIRE-AA rescoring of MD generated conformations. e) Rosetta rescoring of SGLD generated

conformations. f ) Rosetta rescoring of MD generated conformations.

Loop Refinement by SGLD and MD Simulations
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detecting nativelike structures, SGLD produces an average RMSD

of 0.84 Å across the five targets in the eight-residue loop dataset

and MD yields a statistical average RMSD of 2.48 Å, while previ-

ously MD using GBMV2 showed 2.56 Å.[20] The GBSW2 provided

a better model for populating basins below 2 Å than GBMV2,

but both GB models produced largely similar results of detection.

To illustrate the distinction between SGLD and MD for a

loop target where the conventional sampling method strug-

gles, Figure 1 shows two-dimensional probability density con-

tour maps of the potential energy versus RMSD at 298 K for

protein with PDB ID: 1plc. We define the potential energy as

the CHARMM22 þ CMAP energy plus the GBSW2 solvent

energy. The key observation of the SGLD model is the sharp

and narrow cluster of conformers that funnels toward the

native basin, yielding structure refinement of an initial 4.6-Å

backbone RMSD to a final 0.7-Å conformation. The corre-

sponding MD-computed landscape is strongly bifurcated

between near-native (�2.5-Å RMSD) and non-native loops

(�6–8 Å), with the non-native basin showing greater popula-

tion density. The comparison between the two models sug-

gests that the guiding force term in SGLD provided an exter-

nal boost with the net effect of accelerating transitions across

a topological barrier at roughly 1.7 Å, whereas traditional MD

seems to be locally trapped in less-accurate neighboring

basins. Because the potential-energy function is identical for

MD and SGLD, the difference in the results of Figure 1 reflects

differences in sampling convergence of the two simulation

models. Theoretically, executing the MD simulation much lon-

ger will eventually produce results similar to SGLD, and thus

the latter approach would appear to exhibit a distinct advant-

age. Below, we highlight individual targets that are representa-

tive of the overall results.

Figure 2. Conformational energy landscape for 12-residue loop target 1bkf:9-20 starting from an initial placement of 2.70 Å from the native. a) WHAM pro-

file evaluated at temperature 298 K for SGLD simulation. Color spectrum similar to that listed in Figure 1. b) WHAM profile for MD simulation. c) DFIRE-AA

rescoring of SGLD. d) DFIRE-AA rescoring of MD. e) Rosetta rescoring of SGLD. f ) Rosetta rescoring of MD.

Olson, Chaudhury, and Lee
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For rescoring by the empirical potentials of the lowest tem-

perature replica client conformations generated for eight-resi-

due loop targets, DFIRE-AA yields a statistical average/median

RMSD of 1.41/0.63 Å for SGLD and 2.42/0.81 Å for MD. Rosetta

produces similar results of 0.83/0.85 Å for SGLD and 2.01/0.78

Å for MD. Figure 1 illustrates DFIRE-AA and Rosetta evaluations

of the SGLD and MD models for target 1plc.

Given the promising outcome of refining the eight-residue

loops using SGLD simulations, we next evaluate this model for

the more difficult 12-residue loops. This small dataset was

selected from an earlier reported study of modeling loops

using the Protein Local Optimization Program (PLOP).[41] A

summary of the results in Table 1 for the 12-residue loop tar-

gets shows for SGLD a statistical average/median sampled low-

est RMSD basin to be 0.87/0.51 Å and detection to a RMSD of

1.63/0.91 Å. The corresponding MD model results are 1.30/1.27

Å and 2.43/2.22 Å, respectively. For comparison purposes, the

average and median starting structure predicted from Loopy is

2.70 Å and the reported PLOP predictions are 2.95/2.99 Å,

where in both cases the protein stem of the loop region was

modeled as rigid.[30,41] It should be noted that the PLOP

method has undergone recent improvements in conforma-

tional sampling and detection accuracy applied to different

loop target datasets.[41–43] Results for DFIRE-AA are the mean/

median values of 1.66/1.62 Å for SGLD and 2.37/2.23 Å for MD,

and for Rosetta, the corresponding values are 1.71/1.75 Å for

SGLD and 1.88/1.98 Å for MD.

To further demonstrate the comparison between SGLD and

MD simulations, we show in Figures 2 and 3 the probability

density distribution profiles for loop targets 1bkf and 1ayh.

Figure 3. Conformational energy landscape for 12-residue loop target 1ayh:21-32 starting from an initial placement of 4.30 Å from the native. a) WHAM

profile evaluated at temperature 298 K for SGLD simulation. Color spectrum similar to that listed in Figure 1. b) WHAM profile for MD simulation. c) DFIRE-

AA rescoring of SGLD. d) DFIRE-AA rescoring of MD. e) Rosetta rescoring of SGLD. f ) Rosetta rescoring of MD.
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The outcome from these two loops provides a range of results

probably to be observed from modeling a much larger dataset

of targets. For 1bkf, the profile computed by MD simulation

shows at 2.5–2.8 Å RMSD a large conformational free-energy

surface that encompasses the starting structure predicted by

Loopy. Budding from this basin is a less-populated cluster near

2 Å. The SGLD simulation produced a similar large basin at

2.6-Å RMSD, yet a nativelike basin emerged near a RMSD value

of 1 Å. This result illustrates the enhanced sampling provided

by the SGLD model, whereas the MD simulation is principally

confined to exploring local regions around the starting loop

conformation. Rescoring the conformations by DFIRE-AA show

some funnel-like behavior; however, the basin at roughly 2.5 Å

is scored too favorably.

In a similar fashion, calculations for 1ayh show the conven-

tional MD method confined mostly to the starting loop confor-

mation at �4.5-Å RMSD with some excursions to lower and

higher RMSD basins. Unlike the MD model, the SGLD simula-

tions traversed a potential-energy barrier at a RMSD of �2 Å.

Although both models failed to yield high-resolution refine-

ment, the SGLD model produced an energy landscape that is

highlighted by diffusive sampling across multiple major basins.

Rescoring the 298 K conformations by DFIRE-AA yields a RMSD

funnel for the SGLD model and provides detection to 1.27 Å,

whereas rescoring the MD conformers favors the starting ba-

sin. On the other hand, Rosetta fails to create funnel shapes

for both simulation models and detection is greater than 2 Å.

It is worth noting the energy differences between scoring

the X-ray crystallographic structure and the lowest energy con-

former for the three scoring approaches. For the comparison,

the X-ray structure was subjected to energy minimization

using the CHARMM22/GBSW2 force field and then scored for

all loop targets. With one exception, alternative conformations

generated by the simulations proved to be more favorable

when scored by the CHARMM22/GBSW2 model than their cor-

responding energy-minimized X-ray structures. By contrast,

both DFIRE-AA and Rosetta favored the X-ray structures.

Although this result is not entirely surprising given the signifi-

cant parameterization of the empirical models using PDB

structures, it does reflect a mismatch of resolution between

empirical and physics-based scoring methods. Conformations

generated by the simulations were culled from a nonadiabatic

excursion of the energy surface and their geometries probably

deviate from ideal distributions that empirical functions are

parameterized against. Contributing to this is possible artifacts

due to the implicit solvent model and having a fixed-charge

model rather than a flexible-charge model.[44] It is disappoint-

ing that for low-RMSD backbone structures (<2 Å) a sharp

energy funnel was not created by an approach of repacking

the side chains from Rosetta. This result may be attributed, in

part, to the resolution of the rotamer library and the lack of

energy minimization to effectively redistribute the population

landscape.

We conclude that while our benchmark of loop targets is lim-

ited, the trend is clear that SGLD provides more accurate struc-

ture refinement than traditional MD and achieves a median 1.3-

Å resolution increase in the backbone conformation of a starting

structure 2.7-Å RMSD from the crystallographic coordinate place-

ment. Given the approximate nature of the guiding force in the

SGLD equation of motion and its possible failing of producing a

rigorous canonical ensemble,[27] one may have a priori antici-

pated some corruption in the conformational energy distribution

in comparison with the MD model using a Nosé–Hoover ther-

mostat. Instead, we found the potential energies from WHAM to

be comparable between the two simulation models. Neverthe-

less, Wu and Brooks have very recently reported a computa-

tional strategy to convert a self-guided ensemble to a canonical

ensemble, using a reweighting technique.[45] Application of their

formulism to complex protein systems await further testing. In

this work, the subset of targets with similar outcome provides

well-sampled conformational systems where the two sampling

methods are proven to converge and thus help validate the

SGLD method. Where SGLD excels is enhanced sampling effi-

ciency for loop targets where MD simulations become kinetically

trapped. Combining with T-Rex, SGLD offers a better choice for

structure refinement of low-resolution models. We also observed

no significant advantage to rescoring conformations from the

simulations by empirical all-atom energy functions.
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