LONG-TERM GOALS

The scientific focus of this project is to improve our understanding of near-bed suspended sediment concentration (i.e., “reference concentration or \(C_{\text{ref}} \)) in the coastal environment. Models of sediment transport require parameterization of \(C_{\text{ref}} \) in terms of hydrodynamical and sedimentological measures. We will evaluate the accuracy and suitability of existing expressions for \(C_{\text{ref}} \), and based on our field results, provide an improved expression for this important parameter.

This work is undertaken as part of the ONR-sponsored Mine Burial Research Program. It is closely linked to the work of other investigators who are collaborating to understand the oceanographic and seafloor processes that affect bottom mines. The principal goal of this research is to develop specification of the near-bed reference concentration in terms of other parameters that is tested and supported by high-quality field measurements in the shallow-water marine environment.

OBJECTIVES

- Evaluate existing formulations for reference concentration \(C_{\text{ref}} \) and their applicability for sediment transport modeling.

- Obtain high-quality field measurements of important parameters that contribute to better understanding of \(C_{\text{ref}} \). These include detailed near-bed measurements of wave parameters, velocity profiles, suspended sediment concentrations and size distributions, bed morphology, and particle settling velocities.

- Determine relationships between bottom velocities and stresses in shallow-water marine environments and near-bottom suspended sediment concentrations.

- Develop an accurate expression for \(C_{\text{ref}} \).

APPROACH

Our approach is to carry out a carefully designed field experiment to obtain data that can be used to investigate \(C_{\text{ref}} \). The study site was seaward of the main pier in Santa Cruz harbor, Monterey Bay, CA, and was selected because of the likelihood for energetic wave conditions, the presence of a well-sorted sandy bed, and relatively simple logistics. Data that were collected included time-series wave measurements, near-bottom velocity profiles, suspended sediment concentrations and sizes close to the
The scientific focus of this project is to improve our understanding of near-bed suspended sediment concentration (i.e., reference concentration or Cref) in the coastal environment. Models of sediment transport require parameterization of Cref in terms of hydrodynamical and sedimentological measures. We will evaluate the accuracy and suitability of existing expressions for Cref, and based on our field results, provide an improved expression for this important parameter.
seabed, bottom sediment sizes, and bed morphology. This research is undertaken in collaboration with
Dr. Yogi Agrawal, Sequoia Scientific Inc., and Dr. Peter Thorne, Proudman Oceanographic
Laboratory, England. The field experiment occurred over several weeks during March, 2003.

Our results are useful for modeling by other investigators in the Mine Burial Program who are carrying
out dynamical sediment transport studies at other locations (shallow water sites on the shelf off west
Florida and Martha’s Vineyard, MA).

WORK COMPLETED

We conducted a pilot experiment off the main pier at Santa Cruz, CA in December, 2001. This
experiment provided testing of new equipment and trials of sampling techniques. Excellent data on
currents and waves were gathered using a Pulse-Coherent Acoustic Doppler Profiler (PC-ADP,
SonTek) and single-point 3-axis Acoustic Doppler Velocimeter (ADV, SonTek), as well as sonar
imagery of the seafloor using a sector-scanning sonar and a narrow-beam high-resolution bathymetric
profiler (both instruments from Imagenex Inc.). The sonars resolved small-scale bedforms and small
bathymetric changes at repeated intervals. The PC-ADP and sonars were cabled to a recording station
on the pier.

The major field experiment was carried out off the main pier at Santa Cruz, CA in March, 2003. A
variety of instruments was mounted on two tripod frames and deployed in about 10 m mean water
depth off the seaward end of the pier using a crane truck. The tripods and instrumentation were
described in our FY 2004 ONR Annual Report. The two tripods were at the same depth, but were
separated spatially by about 9 m. Based on diver observations and analysis of surface sediment
textures, the surface characteristics at the two tripod sites were generally similar except for patchiness
in the bottom sediment types.

RESULTS

Some of the data that were collected with the tripod instrumentation were shown and described in last
year’s annual report for this project. We were fortunate to capture the effects of a moderate storm that
passed through the region on 15-16 March 2003. The storm was a typical late winter event for this area
characterized by southerly winds of 20-30 knots that persisted for about 2 days. The measurements
indicate that the hourly-averaged currents (non-tidal) reached about 40 cm/s at 1 m above the bed
during the storm (Figure 1). Local significant wave heights (Hs) were about 1.5 – 2.0 m; peak spectral
wave periods (Tp) were about 12-15 s. Significant bottom wave velocities (Ub) were as high as 100
cm/s during peak storm conditions on March 14-15 (Figure 1).
We applied the wave, current, and bottom sediment size data to a 1-D bottom boundary layer model to calculate bottom shear velocity, $u_{*\text{bed}}$, and sediment concentrations $C_{2\text{cm}}$ at 2 cm above the bottom. The results are shown in Figure 2. During the peak storm period on 14-15 March $u_{*\text{bed}}$ values were quite large, reaching 6 cm/s. The threshold bed shear velocity needed to resuspend the local mean grain size (\sim0.02 cm) was estimated at 1.5 cm/s. Considerable resuspension and transport occurred during the storm (when $u_{*\text{bed}} >>$ 1.5 cm/s).

C_{ref} calculated from the 1-D bottom boundary layer model exceeded 7 kg/m3 at the height of the storm (Figure 2). We will compare these estimates of C_{ref} with the values obtained form the ABS, and with other estimates calculated from different models. These will be reported in the next Annual Report and journal publication.

Figure 1. Bottom current speed (blue) and significant bottom wave speed (green) measured with the PC-ADP.
Figure 2. Bottom bed friction velocities (blue) and C_{ref} determined from combined wave-current bottom boundary layer model (Wiberg, et al., 1994). Input data for model was obtained with instrumented tripod.

Up to now our results indicate the following preliminary interpretations.

1. Estimates of the empirical proportionality factor γ_0 that relates C_0 to bed stress are in the range 10^{-3} to 10^{-4} except for low values of excess shear stress ($S < 0.03$). This result agrees with recent choices for γ_0 used by Wiberg, et al (1994) and others.

2. Reference concentrations at 1 cm above the bed (determined from the ABS concentration profiles) were in generally good agreement with the model of C_{ref} that uses the product of Shields and Rouse Numbers (Lee, et al, 2003). Predictions were improved when a correction for ripple roughness was applied to the Shields Number (as proposed earlier by Nielsen, 1986).

3. The cube of Shields Number (adjusted for ripple roughness) over predicted C_{ref} (from ABS) at 1 cm above the bed (Nielsen, 1986). Shields Number squared gave better agreement.
We have continued to analyze the acoustically determined values of C_{ref}, and are hoping to account for effects of suspended sediment grain size variations as determined by MSCAT and LISST. A manuscript that addresses the estimates of C_{ref} from the ABS and LISST has been submitted for publication in an IEEE special volume (Thorne, et al, submitted).

IMPACT/APPLICATIONS

The results from our experiments will make important contributions to ongoing modeling efforts in the Mine Burial Program, and to subsequent sediment transport modeling research. We have obtained an excellent data set to investigate the formulation of C_{ref}, and will be able to test models of this important sediment dynamics parameter. Most sediment transport models that have been developed for shallow ocean conditions require specification of the relationships between bottom stresses or shears to concentrations of suspended sediment near the bed. The existing formulations have not been tested and validated under combined wave-current flow conditions above a rough bed. This work will improve this aspect of our understanding and improve modeling of sediment transport.

TRANSITIONS

This work is part of the larger ONR Mine Burial Program efforts. It will be directly integrated into the overall understanding of how bottom mines react to physical processes in shallow water, including scour around mines, mine burial, and mine reorientation and movement. This work will also improve the accuracy of numerical sediment transport models.

RELATED PROJECTS

Collaborative projects are: (1) P.D. Thorne -- Utilization of acoustics for monitoring local and nearfield mine burial processes: Proof-of-concept; ONR Award Number: N00014-01-1-0549; and (2) Y. Agrawal -- Reference Concentration for Shelf Sediment Transport Models; ONR Award Number: N00014-99-C-0448.

REFERENCES

