LONG-TERM GOALS

The primary long-term goals of this work are to facilitate interactions between the academic community and researchers supporting the operating fleet, to accelerate ongoing research, and to enhance the educational value of my teaching of undergraduate and graduate students.

OBJECTIVES

The general long-term research objective for this work is to advance understanding and predictive capabilities in three areas:

1) upper ocean physical, bio-optical, and biogeochemical responses to intense wind events including hurricanes and typhoons,

2) coastal optics, physical thermodynamics and dynamics, turbulence, internal gravity waves, sediment transport, and harmful algal blooms, and

3) the physical, bio-optical, and biogeochemical dynamics of ocean mesoscale eddies.

The overall educational objective is to contribute to the development of students, especially those who will seek careers in the ocean sciences.

An overall transitional objective is to stimulate new interactions among ocean scientists.

APPROACH

The approach for achieving the research goals is to utilize and build upon ongoing interdisciplinary research in the areas of coastal optics and physics, upper ocean response to hurricanes, and mesoscale eddies. Both field and modeling efforts are involved in these activities. One of the key efforts centers upon the ONR Radiance in a Dynamic Ocean (RaDyO) program described below. Other work utilizes data sets previously collected off Bermuda and Hawaii, which are also discussed below.
The Secretary of the Navy/Chief of Naval Operations Chair in Oceanographic Sciences

Department of Geography, University of California at Santa Barbara
Santa Barbara, CA 93106

Approved for public release, distribution unlimited

The original document contains color images.
WORK COMPLETED

I am the lead PI for the ONR-sponsored Radiance in a Dynamic Ocean (RaDyO) program (Figure 1). A primary goal of RaDyO is to develop models capable of predicting the relationships among several optical properties and environmental factors as well as enabling improved models for imaging applications. In this work, we are studying the propagation of light across the air-sea interface and into and exiting the surface and upper ocean boundary layers. The first field experiment (benign sea-state conditions) was conducted in the Santa Barbara Channel in September 2008 and the second field experiment (high sea-state conditions) off Hawaii is presently underway (August-September 2009). I have led both field efforts and coordinated the organization of data, special sessions at meetings, and editing a special journal publications (JGR) for the project. A comprehensive website for RaDyO (www.opl.ucsb.edu/radyo/) has been developed and expanded. Graduate student Francesco Nencioli contributed to the RaDyO experiment by collecting optical and physical data from R/P FLIP in the Santa Barbara Channel. Graduate student Jen Sirak, collected data from R/V Kilo Moana for RaDyO during the Hawaii experiment. RaDyO results will be valuable for fleet operations involving visibility and imagery aspects. Results from these experiments are described in a paper (Dickey et al., 2012) that was recently published as the introductory/overview paper for a Special Section of the Journal of Geophysical Research. This paper was honored as a Spotlight Paper in EOS recently. I am a co-author of two other papers that have been published in this Special Section. In addition, we published a paper based largely on RaDyO research in Physics Today (Dickey et al., 2011).

Figure 1. Platforms used for the RaDyO Santa Barbara Channel experiment, August 2008.

Mesoscale eddies and their roles in biogeochemical cycling have been studied with my graduate student, Francesco Nencioli through Chair funding, collaborators, and other members of my group. This research involves data sets collected off Hawaii during the NSF E-FLUX experiment. Again, interdisciplinary modeling of these eddies is a major thrust of the research. Papers written on biogeochemical cycling are listed below (i.e., see Dong et al., 2009; Honda et al., 2009; Lomas et al.,
2009, Nencioli et al., 2009a,b). This research is of interest to naval operations in the presence of mesoscale features in the ocean.

I have continued my leadership in optimizing interdisciplinary observing systems, which bear on naval applications. Papers in this area (see below) include Dickey et al. (2008, 2009, 2011) and Dickey (2009).

Educational efforts have included the mentoring of two graduate students, Francesco Nencioli and Jen Sirak. In addition, I continue to teach a large introductory oceanography class (200 students) and bring my research activities and experiences into the classroom.

IMPACT/APPLICATIONS

We anticipate several impacts. In particular, RaDyO entails the examination of spectral time-dependent oceanic radiance distributions in relation to dynamic surface boundary layer (SBL) processes, construction of a radiance-based SBL model, validation of the model with field observations, and investigation of the feasibility of inverting the model to yield SBL light conditions. These activities bear on understanding and predicting impacts of SBL processes and ocean biogeochemistry and ecology on the underwater light field, imaging, and thus operational problems involving naval operations. The feasibility of obtaining ocean surface estimates using underwater camera data will be explored. The work in the areas of upper ocean responses to hurricanes and mesoscale eddies will be valuable for improving predictive models of fundamental oceanographic processes and are of naval interest.

TRANSITIONS

We anticipate that major transitions will develop in the form of testing and commercialization of new sensors by RaDyO collaborators (e.g., MASCOT). We expect that the RaDyO project will accelerate interdisciplinary ocean measurement technology capabilities by 1) increasing the variety of optical variables which can be measured autonomously, 2) improving the robustness and reliability of interdisciplinary sampling systems, and developing more accurate predictive models of the optical and physical environment of the ocean. In terms of the mesoscale eddy work, transitioning of observational methodologies and predictive model parameterizations is an expected outcome.

RELATED PROJECTS

There are several projects that took place in the Santa Barbara Channel during RaDyO that relate to the RaDyO program. Spatial surface current data (using CODAR) were collected by Libe Washburn’s UCSB group (http://www.ices.ucsb.edu/iog/realtime/index.php ) and are useful for characterizing major current features and passages of sub-mesoscale features and eddies; ship-based bio-optical data collected by the Plumes and Blooms Program (Dave Siegel, lead-PI; http://www.ices.ucsb.edu/PnB/PnB.html ) facilitate interpretation of the RaDyO bio-optical data; surface hydrocarbon slicks and slick dynamics are being investigated (Ira Leifer and Jordan Clark, PIs; http://www.bubbleology.com/ ); and ship-based data collected by the Santa Barbara Channel Long-Term Ecological Research (LTER; Dan Reed, lead-PI; with focus on land-ocean margin; http://sbc.lternet.edu/ ) program. Mark Moline of Cal Poly collected physical and optical data in
conjunction with the Santa Barbara Channel RaDyO field experiment and is now collecting data during the RaDyO Hawaii experiment. Satellite sea surface temperature and ocean color data were collected by our group, and Ben Holt (Jet Propulsion Laboratory, JPL) has collecting synthetic aperture radar (SAR) data. These remote sensing data sets along with others provide spatial context. By combining and synthesizing these data sets with ours, we will be able to describe and quantify the three-dimensional evolution of several key water quality parameters on time scales of a day to the interannual. Modelers working with us on these data sets include Charles Jones (UCSB), Leila Carvalho (UCSB), Charles Dong (UCLA), and Yi Chao (JPL).

PUBLICATIONS


HONORS/AWARDS/PRIZES