Optical Constituents Along A River Mouth and Inlet: Variability and Signature in Remotely Sensed Reflectance

Emmanuel Boss
School of Marine Sciences
5706 Aubert Hall
University Of Maine
Orono, Maine, USA 04469-5706
phone: (207) 581-4378 fax: (207) 581-4388 email: emmanuel.boss@maine.edu
http://misclab.umeoce.maine.edu/index.php

Grant Number: N000141210106

In collaboration with:
Paul S. Hill
Department of Oceanography
Dalhousie University
Halifax, Nova Scotia, CANADA B3H 4J1
phone: (902) 494-2266 fax: (902) 494-3877 email: paul.hill@dal.ca

Brent Law and Timothy G. Milligan
Fisheries and Oceans Canada
Bedford Institute of Oceanography
1 Challenger Drive
Dartmouth, Nova Scotia, CANADA B2Y 4A2
phone: (902) 426-3273 fax: (902) 426-6695 email: milligant@mar.dfo-mpo.gc.ca

GOALS

The goals of this proposal are:

1. Measure the variability of optical properties in-space along a river mouth/inlet and observe the variability in time at a single position over a tidal cycle.
2. Relate this variability to the concentration and dynamics of dissolved and particulate materials, including variability in the particulate size distribution.
3. Relate the optical properties to the ocean reflectance so that algorithms to invert surface color to in-water constituents can be tested and improved.
4. TITLE AND SUBTITLE
Optical Constituents Along A River Mouth and Inlet: Variability and Signature in Remotely Sensed Reflectance

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
School of Marine Sciences 5706 Aubert Hall University Of Maine Orono, Maine, USA 04469-5706

13. SUPPLEMENTARY NOTES
The original document contains color images.

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT SAR

18. NUMBER OF PAGES 3
APPROACH

Our approach consisted of conducting physical and optical measurements from a small, fast and easy to handle vessel which could supply necessary power. In addition we deployed a satlantic HTSRB measuring upwelling radiance and irradiance and downwelling irradiance.

WORK COMPLETED

We conducted 5 days of sampling of which the last three days with the IOP package at the New River Inlet using two profiling packages, one containing a LISST and a camera and the other containing a CTD, an ac-9, a BB-9, a turbidity sensor, and a CDOM fluorometer (the IOP package). Additionally we deployed a radiometer buoy so that we can relate our result to hyperspectral remote sensing reflectance.

Measurements were done as follows: In days 1 and 2 samples were collected at different locations along the river. In day 3 we anchored the R/V and performed profiles ~once every half an hour at one location. In Day 4 we followed a dye patch as it was advecting with the tide. Finally in day 5 we sampled out at sea and in the Inlet to characterize the end members of the inlet (see Fig. 1 for station locations).

Data from the IOP package were processed and will posted, within the coming week, on the WWW at http://misclab.umeoce.maine.edu/data.php.

RESULTS

We are in the analysis phase and have no results, other than the data collection, to report as of yet.

IMPACT/APPLICATIONS

This proposal seeks to improve our ability to assess and predict the distribution of optical properties in the coastal region. Such information is needed to assess underwater visibility of relevance to both diving operations and underwater communication.

RELATED PROJECTS

Instruments used in this work have been purchased through a DURIP grant (N000141010776 to E. Boss)

Data set collected regarding optical properties of suspended particles will supplement the one collected during OASIS (N000141010508).
Figure 1. Map of station where we sampled. 5/9/12-blue squares, 5/10/12-red circles, 5/11/12-large black circle (time series), 5/12/12-green circle, 5/13/12-yellow square