Silicon-Containing Polymers and Composites

Authors: Joseph M. Mabry

Performing Organization:
Air Force Research Laboratory (AFMC)
AFRL/RZSM
9 Antares Road
Edwards AFB CA 93524-7401

Funding Agency:
Air Force Research Laboratory (AFMC)
AFRL/RZ
5 Pollux Drive
Edwards AFB CA 93524-7048

Availability:
Distribution A: Approved for public release; distribution unlimited. PA# 12226.

Abstract:
Many hydrophobic surfaces exist in nature, but there is no naturally occurring oleophobic surface. There is plenty of academic and commercial interest in the development of oleophobic surfaces. The focus is on commercially available textiles. This presentation shows that fluoroPOSS are superhydrophobic. FluoroPOSS polymer composite surfaces can be superhydrophobic and superoleophobic. Superhydrophilic and superoleophobic surfaces have been developed. Such surfaces are ideal for the separation of both free-oil and oil-water emulsions. These membranes, for the first time, allow continuous-flow oil-water emulsion separation. Functionality will allow the covalent attachment of these low energy materials to substrates of choice.

Security Classification:
- **a. Report:** Unclassified
- **b. Abstract:** Unclassified
- **c. This Page:** Unclassified

<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YYYY)</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED (From - To)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-03-2012</td>
<td>Briefing Charts</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon-Containing Polymers and Composites</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>23030521</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Research Laboratory (AFMC)</td>
<td></td>
</tr>
<tr>
<td>AFRL/RZSM</td>
<td></td>
</tr>
<tr>
<td>9 Antares Road</td>
<td></td>
</tr>
<tr>
<td>Edwards AFB CA 93524-7401</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR'S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Research Laboratory (AFMC)</td>
<td></td>
</tr>
<tr>
<td>AFRL/RZ</td>
<td></td>
</tr>
<tr>
<td>5 Pollux Drive</td>
<td></td>
</tr>
<tr>
<td>Edwards AFB CA 93524-7048</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION / AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution A: Approved for public release; distribution unlimited. PA# 12226.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many hydrophobic surfaces exist in nature, but there is no naturally occurring oleophobic surface. There is plenty of academic and commercial interest in the development of oleophobic surfaces. The focus is on commercially available textiles. This presentation shows that fluoroPOSS are superhydrophobic. FluoroPOSS polymer composite surfaces can be superhydrophobic and superoleophobic. Superhydrophilic and superoleophobic surfaces have been developed. Such surfaces are ideal for the separation of both free-oil and oil-water emulsions. These membranes, for the first time, allow continuous-flow oil-water emulsion separation. Functionality will allow the covalent attachment of these low energy materials to substrates of choice.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
<th>19b. TELEPHONE NUMBER (include area code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
<td>c. THIS PAGE</td>
<td>SAR</td>
<td>N/A</td>
</tr>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
<td>39</td>
<td></td>
</tr>
</tbody>
</table>
Silicon-Containing Polymers and Composites

Silicones and Silicone-Modified Materials
ACS National Meeting
28 March 2012

Joseph M. Mabry
Air Force Research Laboratory
Propulsion Materials & Applications
joseph.mabry@edwards.af.mil
(661) 275-5857

Distribution Statement A: Approved for public release; distribution unlimited.
Motivation

• Many hydrophobic surfaces exist in nature but there is no naturally occurring oleophobic surface

• Plenty of academic and commercial interest in the development of oleophobic surfaces

• Focus on commercially available textiles
Non-wetting surfaces

Contact angles with water:

- Superhydrophilic: \(\theta \sim 0^\circ \)
- Hydrophilic: \(0^\circ < \theta < 90^\circ \)
- Hydrophobic: \(\theta > 90^\circ \)
- Superhydrophobic: \(\theta^* > 150^\circ \)

Similarly, superoleophobic surfaces display contact angle \(\theta^* > 150^\circ \) with oils or alkanes.
Nanocomposite Materials

Silicon-containing compounds

- POSS
- Nanosilicas
- Layered silicates
- Linear silicates
Fluorinated POSS Synthesis

\[R_f\text{SiX}_3 \xrightarrow{\text{OH}^-/\text{H}_2\text{O}} \text{solvent} \]

\[R_f = -\text{CH}_2\text{CH}_2(\text{CF}_2)_n\text{CF}_3 \]

\[n = 0, 3, 5, 7 \]

Angew Chem (2008)

DISTRIBUTION A. Approved for public release; distribution unlimited.
Hydrophobic Materials

- Spin-cast surface of Fluorodecyl POSS
- ~4 μm rms roughness by AFM
- 154° Water contact angle

Angew Chem (2008)
Low Surface Energy Materials

\[\gamma_c = 5.5 \text{ mN/m} \text{ by Zisman analysis} \]

\[R = -\text{CH}_2\text{CH}_2(\text{CF}_2)_7\text{CF}_3 \]

Similarly, GG analysis results in surface energy calculation of: \(\gamma_c = 8 \text{ mN/m} \)

Contacting liquids:
- hexadecane (\(\gamma_N = 27.5 \text{ mN/m} \)), dodecane (25.3), decane (23.8), octane (21.6), heptane (20.1), and pentane (15.5)

ACS AMI (2010)

DISTRIBUTION A. Approved for public release; distribution unlimited.
Water/Oil Repellant Nanocomposites

88° 128°

40° increase in water contact angle!

10% POSS

Polychlorotrifluoroethylene (PCTFE)

PCTFE with 10% Fluorodecyl₁₈T₈

Increase in hexadecane contact angle less than desired
Water, $\gamma_{LV} = 72.1$ mN/m

Hexadecane, $\gamma_{LV} = 27.5$ mN/m

On most surfaces, $\theta_{oil} < \theta_{water}$. This is because the surface tension (γ_{lv}) of water is significantly higher than that for oils.
Electrospun Surfaces

- ‘Beads on a string’ morphology, with high roughness and porosity
- A single step process - surface turns superhydrophobic for all POSS concentrations > 10 wt%

Science (2007)

DISTRIBUTION A. Approved for public release; distribution unlimited.
Effect of Surface Texture

Each surface is composed of PMMA+POSS – 44 wt% blend; contact angle for hexadecane on corresponding spincoated surfaces = $q_{\text{adv}} = q_{\text{rec}} = 79^\circ$.

Beads

Beads + Strings

Strings

Superoleophobic!

Hexadecane

$*_{\text{adv}} = 156^\circ$

$*_{\text{rec}} = 150^\circ$

Water contact angles

$*_{\text{adv}} = *_{\text{rec}} = 165^\circ$

Hexadecane

$*_{\text{adv}} = 153^\circ$

$*_{\text{rec}} = 141^\circ$

Hexadecane

$*_{\text{adv}} = 147^\circ$

$*_{\text{rec}} = 120^\circ$

$*_{\text{adv}} = *_{\text{rec}} = 163^\circ$

$*_{\text{adv}} = *_{\text{rec}} = 162^\circ$

Comparison with Lotus Leaf

Coat with electrospun fibers

44 wt% POSS

Water

Hexadecane

DISTRIBUTION A. Approved for public release; distribution unlimited.
Critical role of re-entrant texture ($\psi < 90^\circ$)

$\theta < 90^\circ$; $\psi < 90^\circ$

It is possible to support a composite interface even if $\theta < 90^\circ$

Re-entrant curvature : $180^\circ > \theta > 0^\circ$

Lotus Leaf

Cylinders / Fibers

Designing Omniphobic Surfaces

• Constructing super-repellent surfaces
 – Three key ingredients

 - Surface Chemistry (θ_e)
 - Roughness (r)
 - Surface Geometry (ψ)

PMMA + 44 wt% POSS electrospun coating (beads on a string) morphology

Science (2007)

DISTRIBUTION A. Approved for public release; distribution unlimited.
The Dip-Coating Process

Hexadecane ($\gamma_v = 27.5 \text{ mN/m}$) on an as-received commercial polyester fabric

Hold for 1-5 min

Solution of fluorodecyl POSS in Asahiklin (30 mg/ml)

Dip

Dry (heat in oven at 60°C for 20 minutes)

Before

After dip-coating with a solution of fluorodecyl POSS

Adv Mater (2008)

DISTRIBUTION A. Approved for public release; distribution unlimited.
Dip-Coated Polyester Fabric

Before coating

After coating with fluorodecyl POSS in Asahiklin (30 mg/ml)

γₐ = 22.7 mN/m γₐ = 27.5 mN/m γₐ = 50.8 mN/m γₐ = 72 mN/m

Methanol Hexadecane Methylene Iodide Water

DISTRIBUTION A. Approved for public release; distribution unlimited.
Dip-coating process for conformal coating of textured surfaces

Before Dip-coating

Anticon 100 polyester fabric

Hexadecane

50:50 mixture, total solids = 10 mg/ml

Dip in Asahiklin solution for 5 minutes

Air dry to remove solvent

Heat treat at 60 °C for 30 minutes

R_f = -CH_2-CH_2-(CF_2)_7-CF_3
Fluorodecyl POSS
γ_{sv} ≈ 8 mN/m

Tecnoflon® (BR9151)
Fluoro-elastomer from Solvay-Solexis
γ_{sv} ≈ 18 mN/m

EDAXS spectrum for fluorine
At low POSS concentrations many surfaces are both superhydrophobic and superoleophilic ($\theta_{alkane} \approx 0^\circ$). Thus, these porous surfaces form ideal membranes for separating mixtures / dispersions of alkanes (oils) and water.

But...water is more dense than hydrocarbons!

Science (2007)

DISTRIBUTION A. Approved for public release; distribution unlimited.
Hydrophilic Membranes

A and B. Neat x-PEGDA dip-coated stainless steel mesh 100 and polyester fabric C. An apparatus with a mesh 100 coated with neat x-PEGDA Both water and rapeseed oil permeate through.

Manuscript in preparation

DISTRIBUTION A. Approved for public release; distribution unlimited.
PEGDA + Fluorodecyl POSS

- Can hydrogen bond with water
- Photo-crosslinkable
- AFM Phase images of spin-coated PEGDA + POSS films
- Fluorodecyl POSS molecules preferentially segregate to the air interface and crystallize.

Fluorodecyl POSS

\[R_f = -\text{CH}_2\text{-CH}_2\text{-}(\text{CF}_2)_7\text{-CF}_3 \]

Pure PEGDA

10% POSS

20% POSS Under water

20% POSS

\[\gamma_{sv} \approx 8 \text{ mN/m} \]

DISTRIBUTION A. Approved for public release; distribution unlimited.
Surfaces with inherent re-entrant curvature dip-coated with PEGDA + POSS blends

PEGDA surface reconfiguration leads to superhydrophilic behavior.

Manuscript in preparation
Free Oil – Water separation

Stainless steel mesh coated with PEGDA + 20 wt% fluorodecyl POSS.

DISTRIBUTION A. Approved for public release; distribution unlimited.
A simple, scalable, gravity-based system for the separation of both oil-in-water and water-in-oil emulsions. This is one of the first gravity-based systems to achieve such high emulsion separation efficiencies.

Manuscript in preparation

DISTRIBUTION A. Approved for public release; distribution unlimited.
Oil-Water Emulsion Separation

Our system: PEGDA + 20% FPOSS

Flux (L/hr·m²)

Cycles

Manuscript in preparation

DISTRIBUTION A. Approved for public release; distribution unlimited.
Separation Efficiency

- 99% Oil
- 78% Oil
- 0.1% Oil

- Feed
- Permeate
- Retentate

Manuscript in preparation

DISTRIBUTION A. Approved for public release; distribution unlimited.
Incompletely condensed silsesquioxane synthesis yields a disilanol capable of functionalization with dichlorosilanes.*
X-Ray Crystal Structure of Disilanol

- Crystal structure is dimeric via intra- and intermolecular hydrogen bonding between silanols.
- M_r, monoclinic, space group $P2(1)/c$, $a=11.84(10)$ Å, $b=57.11(6)$ Å, $c=19.06(2)$ Å, $\alpha = 90.00^\circ$, $\beta = 92.21(10)$ $^\circ$, $\gamma = 90.00^\circ$, $V = 12878(2)$ Å3

DISTRIBUTION A. Approved for public release; distribution unlimited.
Edge Capping Reactions

\[R = \text{CH}_2\text{CH}_2(\text{CF}_2)_7\text{CF}_3 \]
\[R_1 = \text{CH}_3 \]
\[R_2 = \text{CH}_2\text{CH}_2\text{CH}_2\text{OC(O)CHCH}_2 \]

- Edge capping reactions typically have 40-70% yield
- Main side product is starting material (recycled)
- Disilanol can revert back to closed cage during reaction
- Reactions take 5-10 minutes

Macromer/RBM = 4178 g/mol

DISTRIBUTION A. Approved for public release; distribution unlimited.
Edge Capping Reactions

\[\text{R} = \text{CH}_2\text{CH}_2(\text{CF}_2)_7\text{CF}_3 \]
\[\text{R}_1 = \text{CH}_3 \]
\[\text{R}_2 = \text{CH}_2\text{CH}_2\text{CH}_2\text{OC(O)CHCH}_2 \]

- Typically 40-70% yield
- Main side product is starting material (recycled), formed during base addition
- Disilanol can revert back to closed cage during reaction
- Reactions take 5-10 minutes
- Si ratio (1:2:2:4)
- **New Si peak!**
1H NMR Characterization of Compounds

19F NMR taken in diethyl ether. 1H NMR taken in C$_6$F$_6$/CDCl$_3$ mixture.

DISTRIBUTION A. Approved for public release; distribution unlimited.
F-POSS Structures Synthesized

\[R = \text{CH}_2\text{CH}_2(\text{CF}_2)_7\text{CF}_3 \]

-29.5 ppm

-17.8 ppm

-32.1 ppm

-17.8 ppm

-45.5 ppm

-17.1 ppm

-17.9 ppm

\textit{DISTRIBUTION A. Approved for public release; distribution unlimited.}
Initial Copolymerizations

\[
\text{MMA} \quad \text{(MW = 100 g/mol)}
\]

\[
\text{MMA-F-POSS} \quad \text{(MW = 4179 g/mol)}
\]

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Weight (g)</th>
<th>Weight (MMA)</th>
<th>Weight (MMA-F-POSS)</th>
<th>Monomer (mmol)</th>
<th>Mol Ratio (MMA:MMA-F-POSS)</th>
<th>Initiator (mol %)</th>
<th>Conversion (%)</th>
<th>Weight (%) FPOSS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.085</td>
<td>1.31</td>
<td>6.3</td>
<td>MMA (mmol)</td>
<td>MMA-F-POSS (mmol)</td>
<td>0.5</td>
<td>42</td>
<td>2.74</td>
</tr>
<tr>
<td>2</td>
<td>0.362</td>
<td>1.31</td>
<td>21.6</td>
<td>MMA (mmol)</td>
<td>MMA-F-POSS (mmol)</td>
<td>0.2</td>
<td>71</td>
<td>14.4</td>
</tr>
<tr>
<td>3</td>
<td>0.50</td>
<td>3.50</td>
<td>12.5</td>
<td>MMA (mmol)</td>
<td>MMA-F-POSS (mmol)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.00</td>
<td>3.00</td>
<td>25.0</td>
<td>MMA (mmol)</td>
<td>MMA-F-POSS (mmol)</td>
<td>1</td>
<td>62.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>2.00</td>
<td>50.0</td>
<td>MMA (mmol)</td>
<td>MMA-F-POSS (mmol)</td>
<td>0.2</td>
<td></td>
<td>92.5</td>
</tr>
</tbody>
</table>

*Weight (%) of F-POSS was calculated from elemental analysis of Fluorine content in the final polymer.

DISTRIBUTION A. Approved for public release; distribution unlimited.
Summary

- FluoroPOSS are superhydrophobic
- FluoroPOSS polymer composite surfaces can be superhydrophobic and superoleophobic
- Superhydrophilic and superoleophobic surfaces have been developed
- Such surfaces are ideal for the separation of both free-oil and oil-water emulsions
- These membranes, for the first time, allow continuous-flow oil-water emulsion separation
- Functionality will allow the covalent attachment of these low energy materials to substrates of choice
Acknowledgements

Profs. Gareth McKinley & Bob Cohen
Superoleophobic Surfaces

Professor Anish Tuteja
Oil/Water Separation Membranes

Polymer Working Group
Fluorinated POSS

Financial Support

Air Force Office of Scientific Research

Air Force Research Laboratory, Propulsion Directorate

DISTRIBUTION A. Approved for public release; distribution unlimited.
Polymer Working Group

The Polymer Working Group at Edwards Air Force Base:

Ms. Dana Pinson
Dr. Sean Ramirez
Mr. Pat Ruth
Dr. Tim Haddad
Ms. Vandana Vij
Dr. Greg Yandek

Dr. Andy Guenthner
Mr. Brian Moore
Dr. Joe Mabry
Mr. Kevin Lamison
Dr. Josiah Reams

Financial Support:
Air Force Office of Scientific Research
Air Force Research Laboratory, Propulsion Directorate

DISTRIBUTION A. Approved for public release; distribution unlimited.
<table>
<thead>
<tr>
<th>Who</th>
<th>What</th>
<th>When</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe Mabry</td>
<td>Si Polymers & Composites</td>
<td>8:30</td>
</tr>
<tr>
<td>Andy Guenthner</td>
<td>Silicon Cyanate Esters</td>
<td>9:20</td>
</tr>
<tr>
<td>Sean Ramirez</td>
<td>F-POSS Disilanol</td>
<td>10:30</td>
</tr>
<tr>
<td>Anish Tuteja</td>
<td>Oil/water separation</td>
<td>10:55</td>
</tr>
<tr>
<td>Greg Yandek</td>
<td>Architecture effects on POSS</td>
<td>1:30</td>
</tr>
</tbody>
</table>
PWG Posters

<table>
<thead>
<tr>
<th>Who</th>
<th>What</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andy Guenthner</td>
<td>Solubility Parameters</td>
</tr>
<tr>
<td>Tim Haddad</td>
<td>POSS Dianilines</td>
</tr>
<tr>
<td>Brian Moore</td>
<td>Architecture effects on solubility properties</td>
</tr>
<tr>
<td>Dana Pinson</td>
<td>Si-containing imide oligomers</td>
</tr>
<tr>
<td>Patrick Ruth</td>
<td>Silica-Reinforced Fluoropolymers</td>
</tr>
<tr>
<td>Kevin Lamison</td>
<td>Separation Membrane Breakthrough Pressure</td>
</tr>
<tr>
<td>Vandana Vij</td>
<td>Fluorinated silane modified perfluorooctynes</td>
</tr>
<tr>
<td>Yvonne Diaz</td>
<td>Incompletely-Condensed Fluorinated POSS</td>
</tr>
</tbody>
</table>

DISTRIBUTION A. Approved for public release; distribution unlimited.
QUESTIONS?

U.S. AIR FORCE