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1.0 SUMMARY 
Experimental, theoretical and numerical investigations of quantum computation using photon-
based qubits (Quantum Bits) were conducted to explore the Cluster State (or one-way) Quantum 
Computing paradigm. This report describes research on a unique type II SPDC (Spontaneous 
Parametric Down Conversion) source (“Schioedtei”) design that can generate up to six pairs of 
entangled photons per pass through the type II crystal assembly. This source is currently being 
used as the entangled photon source to create photon-based qubit cluster states. Under this 
project we developed a new detector design architecture that turns the single photon detector into 
a number-resolving detector by means of a novel three-dimensional architecture that utilizes 
spatial multiplexing. We have studied the CNOT gate, as an archetypical quantum linear optical 
gate, and found several interesting features in the both the ideal and the realistic case of 
implementation with imperfect (non-unit) fidelity.  We have conducted a theoretical investigation 
of the limitations of quantum correlations under the physically imposed constraint of no-
signaling (i.e. no faster than light communication). Finally, we discuss our ongoing work of 
quantum algorithm development utilizing the measurement-based quantum computation 
approach, and compare and contrast it with the standard quantum circuit model approach in the 
case of an unstructured search. 

2.0 INTRODUCTION 
Under this AFRL/RI in-house project we continued research and development of a novel multi-
qubit entangled photon source, begun under the AFRL/RI in-house project “Quantum 
Information Science (QIS),” (AFRL-RI-RS-TR-2012-073), and begun investigations into the 
measurement-based cluster state quantum computation paradigm utilizing photon-based qubits. 
These investigations included: (i) the development and characterization of a new multipli-
entangled photon source that increased the usable number of photon pairs by a factor of six over 
conventional entangled photon sources, (ii) design of multi-layer superconducting number-
resolving photon detector, (iii) a theoretical and experimental investigation into the requirements 
of imperfect (non-unit fidelity) two-qubit linear optical photonic gates, and (iv) a theoretical 
investigation of entanglement and nonlocality addressing the issue of why nature does not take 
advantage of the algebraically allowed maximum correlations amongst collections of qubits. In 
addition, this report discusses upgrades to our in-house AFRL/RI Quantum Computing 
Laboratory under the current project and our thrust to transition our development of quantum 
gates/circuits in bulk optics to an on chip integrated waveguide implementation. Finally, this 
report briefly discusses research we initiated, and is currently ongoing, in the area of cluster state 
quantum algorithm development. 

Cluster State Quantum Computation Background 
In the standard Quantum Circuit Model (QCM) paradigm, quantum computations are executed 
by successive unitary operations acting upon an initial quantum state composed of many qubits. 
These unitary operators create entanglement amongst the qubits through quantum interference. 
Entanglement is a uniquely non-classical property of quantum mechanical systems in which the 
correlations between sub-systems can be stronger than that allowed by classical (conventional) 
computing systems. Recently a new alternative paradigm for quantum computation has emerged 
called One-way Quantum Computation (OWQC) [Ruassendorf01]. In the one-way quantum 
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computer, information is processed by sequences of single-qubit measurements. These 
measurements are performed on a universal resource state—the 2D-cluster state—which does 
not depend on the algorithm to be implemented. The new approach to quantum computation goes 
by the collective name measurement-based quantum computation (MBQC) [Briegel09]. The 
appeal of MBQC is that deterministic quantum computation is possible based on (i) the 
preparation of an initial entangled cluster state, followed by (ii) a temporally ordered pattern of 
single qubit measurements and feed-forward operations which depend on the outcome of the 
previously measured qubits [Raussendorf01]. Our interests in OWQC is in the utilization of 
photon-based cluster states as gates and circuits for quantum computation (see [Vallone08], and 
references therein).  It has been claimed that the use of cluster states can substantially reduce the 
resource overhead in the standard QCM to photon-based quantum computation. 

In the OWQC approach a quantum computation proceeds as follows:  (i) A classical input is 
provided which specifies the data and the program. (ii) A 2D-cluster state of sufficiently large 
size is prepared. The cluster state serves as the resource for the computation. (iii) A sequence of 
adaptive one-qubit measurements is implemented on certain qubits in the cluster. In each step of 
the computation the measurement bases depend on the specific program under execution and on 
the outcomes of previous measurements. A simple classical computer is used to compute which 
measurement directions have to be chosen in every step. (iv) After the measurements the state of 
the system has the product form out

α αξ ψ , where α indexes the collection of measurement 

outcomes of the different branches of the computation. The states out
αψ  in all branches are equal 

to the desired output state up to a local (Pauli) operation. The measured qubits are in a product 
state αξ which also depends on the measurement outcomes. The OWQC is computationally 
universal, i.e. even though the results of the measurements in every step of the computation are 
random, any quantum computation can deterministically be realized. Notice that the temporal 
ordering of the measurements plays an important role and has been formalized as a feed-forward 
procedure [Raussendorf01]. 
 
In realistic physical systems decoherence tends to make quantum systems behave more 
classically. One could therefore expect that decoherence would threaten any computational 
advantage possessed by a quantum computer. However, the effects of decoherence can be 
counteracted by quantum error correction [Shor96]. In fact, arbitrarily large quantum 
computations can be performed with arbitrary accuracy provided the error level of the 
elementary components of the quantum computer is below a certain threshold. This important 
result is called the threshold theorem of quantum computation [Aliferis06]. 
 
Fault-tolerant schemes for OWQC using photons have recently been developed [Dawson06, 
Varnava06]. The dominant sources of error in this setting are photon loss and gate inaccuracies. 
The constraint of short-range interaction and arrangement of qubits in a 2D lattice—a 
characteristic feature of the initial one-way quantum computer—is not relevant for photons. In 
[Dawson06] both photon loss and gate inaccuracies were taken into account yielding a trade-off 
curve between the two respective thresholds.  Fault-tolerant optical computation is possible for a 
gate error rate of 10-4 and photon loss rate of 3x10-3. In [Varnava06] the stability against the main 
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error source of photon loss was discussed. With non-unit efficiencies ηS and ηD of photon 
creation and detection being the only imperfections, the very high threshold of ηSηD > 2/3 was 
established. Further, encoding a collection of physical qubits within the 2D cluster state offers a 
means of topological error protection for the logical qubit. Topologically protected quantum gate 
operations are performed by measuring some regions of qubits in the Z-basis, which effectively 
removes the qubits from the state. The remaining cluster, whose qubits are measured in the X - 
and X ±Y - bases, thereby attains a non-trivial topology in which fault-tolerant quantum gates 
can be encoded. A topological method of fault-tolerance for OWQC can then be achieved 
[Raussendorf07].  
 
Experimental Research: 
Photons are particularly desirable for quantum information processing tasks since they are 
relatively free from environmental decoherence. Hence, they are also essential for any long 
distance conveyance of quantum information, and do not require cryogenic cooling. Entangled 
photon sources with the highest mode quality are based on spontaneous parametric down 
conversion (SPDC).  This is a process where laser pump photons are converted into ‘signal’ and 
‘idler’ entangled pairs in nonlinear (NL) crystals. SPDC in nonlinear crystals has provided the 
optical sources for groundbreaking foundational and applications work in quantum optics (QO) 
for the last two decades [O’Brien07].  

SPDC is an inherently inefficient process, and work based on it is generally limited by the net 
signal level or the number of photons that can be entangled in given applications. Photon yield is 
related to laser power, which cannot be increased beyond the level where higher order NL 
contributions (multi-photon events) yield errors in quantum processing applications. This point 
has now been reached in applications that require independent sources of entangled qubits. The 
work begun under the in-house Quantum Information Science project focused on (i) developing 
a 6-qubit capable photon-based quantum information testbed and (ii) initial development of new 
sources of entangled photons that greatly increase process efficiency, without increasing laser 
power, in a regime where high detection quantum efficiency is available - a highly desirable goal 
not previously accomplished in the scientific community to date. This latter direction of research 
was continued and expanded upon in the current in-house project Cluster State Quantum 
Computing. 

Number resolving photon counting at the single photon level, i.e. distinguishing 1, 2 or 3 photons 
is an important experimental ability. While experiments can be performed without number 
resolving detectors such as the APD (Avalanche Photo Diode) we are currently using, a 
significant number of interesting experiments require the number resolving ability.  Therefore we 
considered a known single photon detector (click or no-click) and have developed a new detector 
design architecture that turns the single photon detector into a number-resolving detector.  This is 
done through spatial multiplexing. The architecture we have developed allows for higher density 
of detection elements and larger number of detector elements then the current state of the art.  
This leads to faster repetition times, and most importantly, superior number resolution.   
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Theory/Numerical Research: 
The creation of single photons is most often performed by non-linear processes such as SPDC. 
However to create cluster states from these resource photons requires linear optics, such as the 
CNOT or CZ gates.  Numerous implementation methods have been suggested for these gates in 
theory, but in practice any implementation will be imperfect.  Therefore it is important to be able 
to characterize and optimize imperfect, i.e. fidelity less than 1, linear optical gates and state 
transformations. We have studied the CNOT gate, as an archetypical linear optical gate and 
found several interesting features in the both the ideal case and the realistic case of imperfect 
fidelity.  In particular we find that the success rate can be increased as the fidelity decreases.  
This trade off in fidelity for success opens several interesting possibilities in the field of linear 
optics.  We also found that the CNOT gate has a high degree of symmetry that simplifies its 
physical implementation in both cases and proposed a practical experiment to test our theories. 
Such studies can and have been carried over to other gates and state transformation with relative 
ease. 
 
The ultimate goal of MBQC is to execute quantum algorithms with a speedup over their 
corresponding classical algorithm counterparts. Under this project we began an investigation of 
Grover’s search algorithm (GSA) on an unsorted list of elements in the MBQC paradigm, and its 
comparison/contrast with the usual QCM approach. GSA serves as an important prototypical 
benchmark for many numerical simulations of quantum algorithms [Grover97, Walther05].  Our 
preliminary results (which are currently being written up for journal submission) indicate that the 
MBQC implementation of Grover’s algorithm is faster than even Grover’s quantum algorithm 
(with its quadratic speedup over a brute force search). 
 
In brief, Grover’s oracle-based unstructured search algorithm is often stated as “given a phone 
number in a directory, find the associated name.” More formally, the problem can be stated as 
“given as input a unitary black box Uf for computing an unknown function f:{0,1}n →{0,1}find 
x=x0 an element of {0,1}n such that f(x0) =1, (and zero otherwise).”  The crucial role of the 
externally supplied oracle Uf (whose inner workings are unknown to the user) is to change the 
sign of the solution 0x , while leaving all other states unaltered. Thus, Uf depends on the desired 
solution x0. Under the previous in-house QIS project, we developed/simulated an amplitude 
amplification algorithm in which the user encodes the directory (e.g. names and telephone 
numbers) into an entangled database state, which at a later time can be queried on one supplied 
component entry (e.g. a given phone number t0) to find the other associated unknown component 
(e.g. name x0). For N=2n names x with N associated phone numbers t , performing amplitude 
amplification on a subspace of size N of the total space of size N2 produces the desired state 

0 0x t in √N steps. 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES   

3.1. Multipli-entangled photons from a spontaneous parametric down-conversion source 
Photon based quantum computation, with single or entangled photons, is a heavily researched 
area.  This is in part due to many desirable properties of photons such as (i) room temperature 
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operation, (ii) immunity from the environment and (iii) superior mode quality. Spontaneous 
parametric down conversion has proven to be the most reliable method of generating entangled 
photon pairs. Type I sources spontaneously convert one linearly polarized parent photon into two 
daughters, each having a polarization orthogonal to the parent. The spontaneous nature of 
parametric down conversion produces a ring pattern where each diametric photon pair shares the 
same parent photon. The type I process produces two photons of the same polarization which are 
path entangled. That is, detecting a photon (signal) in path A implies that its sister (idler) can be 
found in the diametrically opposite spot [Dragoman01]. This implies that in the polarization 
basis a mixed state |𝐻⟩1|𝐻⟩2 or |𝑉⟩1|𝑉⟩2 will be produced. Many experiments that require photon 
pairs, but not entangled pairs, use the output of a type I crystal as input to a more sophisticated 
experiment. Type I crystals are inherently birefringent, but the walk-off associated with these 
crystals is mitigated by the fact that the down converted photons are the same polarization; the 
delays that the signal and idler photons experience are the same. Type I sources have been used 
for many years in harmonic generation (SHG, THG) systems as frequency converters.  

Kwiat first described a feasible source for SPDC-generated entangled pairs using type I β-BBO 
[Kwiat99] (beta-Barium borate, BaB2O4). This consisted of a stacked pair of type I crystals 
rotated 90° relative to each other (Figure 1). This allows for the generation of two orthogonally 
polarized cones that overlap in space. Each crystal can only be excited by a certain linear 
polarization. The stack must be pumped by a beam made up of components that excite each 
crystal equally. That is, if the stack consists of an optic axis that is vertical in the first crystal, and 
horizontal in the second, the pump beam polarization must be oriented at 45°. The resulting 
superposition state is |𝐻⟩1|𝐻⟩2 ± eiθ |𝑉⟩1|𝑉⟩2. It is important to note that there is a temporal delay 
associated with the down converted states due to the crystal’s birefringence. Compensation 
depends on the wave packet of the pump photon.  

 

Figure 1. Kwiat’s type I pair. Each crystal will spontaneously down convert a linearly polarized photon 
pair orthogonal to its pump photon. When specifically oriented, these down converted rings can overlap 
and create a polarization entangled pair.  

Type II sources [Kwiat95] down convert a linearly polarized parent photon into two orthogonally 
polarized daughters making them particularly interesting because the crystal is birefringent. One 
daughter photon will walk off faster than the other and lead to a noticeable spatial separation, and 
thus there are two intersecting cones (Figure 2). The walk off of type II crystals limits the length 
of the crystal because the extraordinary index of refraction will quickly bend light out of the 
crystal. Indistinguishable photons are produced in the intersections of the two cones. These two 
points form a superposition state of polarization (|𝐻⟩1|𝑉⟩2 ± eiθ |𝑉⟩1|𝐻⟩2) and have been 
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exhaustively studied and used as inputs to more complex photonic systems. Figure 3 shows the 
evolution of the rings of entangled photons produced from SPDC crystals under type I and II 
phase matching conditions. 

 

Figure 2. Standard type II down conversion. A linear pump beam spontaneously down converts to two 
photons, one of which has the same polarization as the pump. The other is orthogonal. The familiar 
double ring pattern is a product of the crystal’s birefringence.  

.  

Figure 3: Imaging of the down-converted light for three different configurations. First row: type-I 
SPDC as a function of the tilt of one crystal. Second row: type-I SPDC rings of different diameters 
as a function of the polarization of the pump beam (horizontal on the left and vertical on the right). 
Third row: type-II SPDC rings as a function of the tilt of the crystal. All cases involve the CW 
pump laser beam. 

In a similar fashion to Kwiat’s type I stack, Bitton et al. [Bitton01] described a type II stack 
comprised of two crystals rotated 180° relative to each other (Figure 4). This allows the linear 
pump scheme to remain unchanged and yields one set of rings from either crystal. The set of 
rings entirely overlap each other and thus can yield an entangled photon pair of the same state as 
standard type II. Addressing the compensation is a necessary requirement with any birefringent 
crystals. A standard type II stacked configuration allows for greater pair production and more 
useable detection area. In this source as well as a type I stack, the fundamental size of the 
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collection apertures become the limiting factor in the number of entangled pairs that can be 
collected. 

 

Figure 4. Type II crystal assembly as described by [Bittion01]. The second crystal is rotated 180° relative 
to the first, resulting in two overlapping sets of cones with orthogonal polarization. 

U’ren et al. [U’ren06] described a type II crystal assembly (Figure 5a) that is designed for group 
velocity matching (GVM) of the pump and signal/idler wave packets, thereby removing any 
spectral distinguishability of the down converted photons. The assembly consists of a successive 
stack of nonlinear crystals (β-BBO, BiBO (Bismuth Borate, BiB3O6)) separated by a thin layer of 
compensating crystal (calcite (CaCO3), α-BBO). This slowly compensates different components 
(pump and down converted wave packets) such that by the end of the stack there is no spectral 
walk off. The need to spectrally filter post down conversion is mitigated by the symmetry of their 
joint spectral function (Figure 5b). Removing this requirement typically increases the useable 
count rate and overall efficiency.  

 

 

 

 

 

 

Figure 5. (a) Type II custom assembly showing alternating layers of β-BBO (red) and calcite (blue). (b) 
Joint spectral function of down converted wavepacket. This implies a maximally separable state. 

Type I and II crystals are still governed by their spontaneous nature, and this becomes 
problematic when large numbers of entangled photons are required. In a typical configuration for 
the generation of greater than four photons a cascaded apparatus is used. For this setup either 
multiple crystals are used in succession, or multiple passes through a single crystal (Figure 6). 
This implies an overall increase in footprint size. Hyper-entanglement has been considered to 
mitigate the spontaneous nature of down conversion by adding entanglement various degrees of 

 

 
 

νs 

νi 
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freedom, not just polarization [Ceccarelli09]. While this is effective it requires larger physical 
hardware requirements and more complicated analysis processes.  

 

Figure 6. Cascaded and multi-pass crystal configurations for the generation of cluster states [Lu07]. 

In recent years there has been a paradigm shift in quantum computation with the need to migrate 
toward schemes that require only single qubit measurements. One-way quantum computation 
(cluster state) has facilitated this shift. Cluster state computation allows a predetermined 
sequence of single qubit measurements to determine the algorithm being evaluated [Walther05]. 
This protocol requires a highly entangled cluster state [Raussendorf01] generated from a 
resource of qubits. Such a cluster state can be constructed by preparing each of the qubits into a 
state, | +⟩ = 1

√2
(|0⟩ +|1⟩), and applying controlled-phase gates to link the required qubits. 

Computation proceeds with a sequence of single qubit measurements whose results will 
classically feed forward to control the basis required for future measurements [Nielson05]. 
Cluster state computation allows for a practical resource reduction in qubits and hardware 
compared to other quantum computing methods. That being said, the fundamental requirement 
for larger numbers of qubits still exists.  The source we have developed produces larger qubits 
numbers than that of a typical type II SPDC source. 

SPDC custom crystal assembly 
 
Our custom two-crystal assembly (designated as “Schioedtei” henceforth) design consists of a 
pair of type II non-collinear phase-matched SPDC crystals cut for degenerate down-conversion 
whose optic axes are rotated orthogonal with respect to one another. The pair of crystals is 
optically contacted with one another and a dual band (405/810 nm) anti-reflection coating 
applied to the two exterior faces of the assembly. Any type II material can be used to create an 
equivalent device.  Our particular version that will be discussed here was constructed from two 
8x8x2 mm type II beta-Barium borate (β-BBO, BaB2O4) crystals phase matched (at angles of 
theta = 41.9°, phi = 30°) for 810 nm spontaneous parametric down-conversion. 

Exciting Schioedtei with an incident 45° polarized pump beam produces one pair of rings from 
each of the type II crystals. Each pair of rings is orthogonal to the other resulting in 12 
intersection points (or simply “points”) where indistinguishable photons are produced.  Referring 
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to Figure 7, the indicated points marked 5, 6 (Bell pair #1 from crystal #1) and 7, 8 (Bell pair #2 
from crystal #2) are the typical Bell states, |𝜓⟩5,6(7,8) = 1

√2
 (|𝐻𝑉⟩5,6(7,8) ± 𝑒𝑖𝜑|𝑉𝐻⟩5,6(7,8)). The 

 

Figure 7. Type-II SPDC Schioedtei source. See text for discussion of the intersection 
points of the overlapping rings. 

points indicated by 1, 2, 3, 4 are the product of two bell states, |𝜓⟩1,2,3,4 = 1
2
 (|𝐻𝑉⟩1,4 ± 

𝑒−𝑖𝜑|𝑉𝐻⟩1,4) (|𝐻𝑉⟩2,3 ± 𝑒−𝑖𝜑|𝑉𝐻⟩2,3), produced from photons from both crystal 1 and 2 
concurrently.  Points 9, 11 and 10, 12 are |𝑉𝑉⟩9,11 and |𝐻𝐻⟩10,12 states produced from photons 
from crystal 1 and 2 concurrently.  Further analysis and experimental results of Schioedtei are 
covered in section 4.1. 

3.2 A multi-layer three dimensional superconducting nanowire photon detector 
Construction of photon-counting devices with high counting efficiency, high number resolution 
and short reset times, is highly desirable for a wide array of applications, such as quantum key 
distribution [Xu08], quantum communication [O’Brein09], quantum computing [Knill01], 
[Uskov10], [Knill02] among others [Hadfield09], [Smith11]. Here we describe and perform 
some simple analyses of a proposed detector design that uses multiple short sections of 
superconducting nanowires to construct a new superconducting nanowire single photon detector 
(SNSPD). We refer to these short sections of nanowire as pixels and arrange them in a two 
dimensional grid in analogy with a standard CCD camera. We will discuss the potential 
advantages of such a system and the difficulties of the design.  

When an incident photon strikes a Niobium nitride (NbN) nanowire, or other superconducting 
material such as NbTiN or a-WxSi1-x developed recently at NIST, it creates a resistive hot spot 
[Nam11]. This hot spot causes the current in the superconductor to deflect around the spot, thus 
increasing the current density in the wire. This increased current density leads to an increase in 
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the temperature of a small section of the wire. If the nanowire is held just below the critical 
current for superconduction, then the increase in heat will break the superconducting condition 
and the resistance of the wire will spike upward for a short time. This resistance spike creates a 
measurable current in the external resistance load and a photon is counted. 

Present superconducting nanowire systems, such as NbN, have reasonably good counting 
efficiency [Dauler10], [Marsili11], by which we mean the probability of an incident photon 
being detected is over 25%. However, a significant problem exists with the number resolution, 
relaxation time, and fill factors [Gurevich87], [Dauler10], [Marsili11]. A detector consisting of a 
single wire can be made to cover a significant detection area by creating a meander. Usually this 
means folding the nanowire back and forth across the desired area of approximately 10 µm x 10 
µm [Dauler10], [Marsili11]. This however is not a number resolving detector. All that the 
detector can feel is the loss of the superconducting condition somewhere in the nanowire. Should 
two photons strike the wire simultaneously in two different locations the current drop is very 
similar. One suggested solution to this lack of number resolving capability is to increase the 
number of wires in the meander. This has been done experimentally by Dauler et al [Dauler10]. 
While this approach improves on the single wire meander it still consists of long wires each of 
which occupies a significant portion of the active detection area (i.e. each nanowire in a 4 
nanowire meander takes approximately 25% of the active area). In order to have a high 
probability of correctly detecting n number of photons one would need significantly more than n 
wires. 

We proposed a detector design using short sections of wire, which we will refer to as pixels, that 
are arranged in a 2D grid to create the detection area. Such a design would use a large number of 
pixels thus giving high number resolution and the small size of the pixels gives short relaxation 
times. We call this configuration a multi-layer superconducting number-resolving photon 
detector. A significant problem with creating a two dimensional array of nanowire pixels is the 
question of how to attach the leads to each pixel, as the leads are of a similar size as the pixels 
themselves. One could simply move the pixels farther and farther apart to fit in all the necessary 
connections but this is impractical as the space between pixels does not detect photons and the 
device’s overall efficiency would decrease below useful levels. Ideally the pixels will be packed 
as closely as possible, while still avoiding cross talk. This will maximize the so called fill factor, 
the ratio of the photon sensitive area to the non-sensitive area within the “active” area of the 
detector. We therefore propose moving away from the two dimensional approaches used to date  
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Figure 8. A single superconducting nanowire “pixel” bridge. 
 
 
and instead suggest a multilayer, three dimensional architecture. In this scheme the non-
superconducting leads are allowed to pass under the active detector pixels. To create this effect 
we shape the pixels like small bridges as seen in Figure 8. This shape was chosen because of its 
relatively simple design and in order to maximize the fill factor. 
 
This creates a three layer design, with the bottom layer containing the leads, an insulating middle 
layer, and the active detection layer on top. We now show a bird’s eye view (plan view) of the 
final device with all three layers aligned on top of each other, Figure 9. The black arrows show 
the movement of the current throughout the device.  
 
 
 

 
 

Figure 9. Plan view of final device with all three layers aligned on top of each other. 



Approved for Public Release; Distribution Unlimited.  
12 

 

 
The current enters the detector in the bottom layer (red) through the shared input lead (center of 
figure). Current then moves up through the middle layer connections, called “posts" (green), to 
the top/detection layer. Once in the top layer it moves along the surface of the bridge (purple). 
This is the area in which an incident photon will form a resistance blockage. The current then 
moves back down to the bottom layer and is channeled out of the device by the output leads 
(red). Note that the leads (red) pass under the pixel bridges, between the posts and that the 
input/output leads are all on the same layer. The external detection electronics would then be 
similar industry standards.  As a final aside each pixel can be wired as a completely independent 
circuit, but the number of leads will increase and counting simultaneous events between elements 
can become difficult. 
 
3.3 Theory/experimental requirements of imperfect two-qubit linear optical photonic gates 
Knill, Laflamme, and Milburn (KLM) significantly advanced the prospect of single-photon 
quantum computing in their seminal paper [Knill01], in which they overcame the need for 
nonlinear interactions by using the inherent nonlinearity of photon measurements. In this 
scheme, the computational system is combined with ancillary modes, and the gate operation is 
performed on the enlarged state space. The ancilla modes are measured with photon-number-
resolving detectors, such as those described above leaving the computational modes undisturbed 
and in the desired output state provided the measurement is successful. In our previous work 
[Uskov10, Uskov09, Smith11], we have shown that a combination of analytical and numerical 
techniques may be used to design optimal linear optical transformations implementing two- and 
three-qubit entangling gates. Here we show results for non-ideal gates and suggest an experiment 
to test them.  

The probabilistic nature of quantum measurement implies a trade-off between the success rate of 
the operation (the probability of obtaining the desired measurement outcome for the ancillary 
modes) and the fidelity (the overlap between the actual and desired states of the computational 
system when the ancilla measurement is successful). Previously, solutions were obtained that 
have the maximum possible ancilla measurement success probability given the constraint of 
perfect fidelity for a specified transformation [Uskov10, Uskov09]. In practical implementations, 
however, the goal of perfect fidelity may not always be desirable or even attainable. We have 
therefore generalized our previous techniques to the case of imperfect fidelity, and investigated 
the above-mentioned trade-off between the fidelity and success of the linear optical 
transformations. It was found that for sufficiently small deviations from perfect fidelity, a single 
optimization parameter determines the relationship between fidelity and optimal success rate 
[Smith11]. 

The input state to the experiment |Ψcomp>x|Ψancilla> is a product of the computational state 
containing Mc photons in Nc modes, and an ancilla state containing Ma photons in Na modes. 
The Nc computational modes are those on which the actual gate is intended to act. Assuming 
dual-rail encoding, each qubit is represented by one and only one photon in two computational 
modes, so we have Mc = Nc=2. The ancilla state may in general be separable, entangled, or a 
maximally entangled or ebit state carrying spatially distributed entanglement [Wilde09], though 
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here we propose using only a product state of single-photon and zero-photon ancillas, which are 
relatively simple to produce in an experimental setting. 

The linear optical device transforms the creation operator 𝑎𝑖
(𝑖𝑛)†

 associated with each input mode 
i to a sum of creation operators ∑𝑗𝑈𝑖,𝑗𝑎𝑗

(𝑜𝑢𝑡)†.  Here U, which contains all physical properties of 
the device, is an N x N matrix, where N = Nc + Na is the total number of modes. The total input 
state may be written as a superposition of Fock states |𝛹 >= |𝑛1,𝑛12, … , 𝑛𝑁 >, where ni is the 
occupation number of the i-th input mode, and ∑𝑛𝑖 = 𝑀𝑐 + 𝑀𝑎 = 𝑀 is the total number of 
photons. The input state is transformed as 

 |𝛹𝑜𝑢𝑡 > = 𝛺|𝛹𝑜𝑢𝑡 >= ∏ 1
�𝑛𝑖!

𝑁
𝑖=1 �∑ 𝑈𝑖,𝑗𝑁

𝑗=𝑖 𝑎𝑗
(𝑜𝑢𝑡)†�

𝑛𝑖
. (1)  

We note that Ω is a multivariate polynomial of degree M in the elements 𝑈𝑖,𝑗. Once the 
transformation is complete, a measurement is applied to the Na ancillary modes. In the case of a 
number-resolving photon-counting measurement,⟨𝛹𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑| = �𝐾𝑁𝑐+1,𝐾𝑁𝑐+2, … ,𝐾𝑁|, where Ki 
is the number of photons measured in the i-th mode of the ancilla. The resulting transformation 
of the computational state is a contraction quantum map �𝛹𝑖𝑛

𝑐𝑜𝑚𝑝� = 𝐴�𝛹𝑖𝑛
𝑐𝑜𝑚𝑝�/�𝐴|𝛹𝑖𝑛

𝑐𝑜𝑚𝑝�� 
[Kraus83], where A = A(U) is defined by, 

 𝐴�𝛹𝑖𝑛
𝑐𝑜𝑚𝑝� = �𝐾𝑁𝑐+1,𝐾𝑁𝑐+2, … ,𝐾𝑁�𝛺�𝛹𝑖𝑛�. (2)  

The linear operator A, which maps computational input states to computational output states, 
contains all the information of relevance to the transformation. We define the fidelity as the 
probability that the desired target gate ATar has been faithfully implemented on the computational 
modes given a successful measurement of the ancilla modes: 

 𝐹(𝐴) =
�𝑇𝑇(𝐴†𝐴𝑇𝑎𝑟)�

2

2𝑀𝑐𝑇𝑇(𝐴†𝐴)
, (3)  

since Tr (ATar†ATar)=2M
c for a properly normalized target gate. As we are interested in deviations 

from perfect fidelity, we define 𝛿 =1-F as our main parameter [Smith11]. 

We define the success rate of the ancilla measurement to be given by an average over all 
computational input states, 

 𝑆(𝐴) =
𝑇𝑇(𝐴†𝐴𝑇𝑎𝑟)
2𝑀𝑐‖𝑈‖2𝑀

, (4)  

for general complex U. Note that U need not be unitary, as any matrix can be made unitary via 
the unitary dilation technique by adding vacuum modes [Knill02, uskov09]. We also note that 
the Hilbert-Schmidt norm ⟨𝐴|𝐴⟩ = 𝑇𝑇 (𝐴†𝐴)/2𝑀𝑐  , used in our definition of S, is bounded above 
by the square of the operator norm,  ‖𝐴‖2 = (‖𝐴‖𝑚𝑎𝑥)2 = 𝑀𝑎𝑥��𝛹𝑖𝑛

𝑐𝑜𝑚𝑝�𝐴𝑇𝑎𝑟†𝐴�𝛹𝑖𝑛
𝑐𝑜𝑚𝑝�� and 

below by (‖𝐴‖𝑚𝑖𝑛)2 = 𝑀𝑖𝑛��𝛹𝑖𝑛
𝑐𝑜𝑚𝑝�𝐴𝑇𝑎𝑟†𝐴�𝛹𝑖𝑛

𝑐𝑜𝑚𝑝�� where the maximum and minimum are 
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taken over the set of properly normalized input states. In the limit F ⟶1, ‖𝐴‖𝑚𝑎𝑥/‖𝐴‖𝑚𝑖𝑛⟶1, 
and all definitions of the success rate coincide. 

3.4 Nonlocality, entanglement witnesses and supra-correlations 
While entanglement is believed to underlie the power of quantum computation and 
communication, it is not generally well understood for multipartite systems. Recently, it has been 
appreciated that there exists proper no-signaling probability distributions derivable from 
operators that do not represent valid quantum states.  Such systems exhibit supra-correlations 
that are stronger than allowed by quantum mechanics, but less than the algebraically allowed 
maximum in Bell-inequalities (in the bipartite case). Some of these probability distributions are 
derivable from an entanglement witness W, which is a non-positive Hermitian operator 
constructed such that its expectation value with a separable quantum state (positive density 
matrix) ρsep is non-negative (so that Tr[W ρ]< 0 indicates entanglement in quantum state ρ). In 
the bipartite case, it is known that by a modification of the local no-signaling measurements by 
spacelike separated parties A and B, the supra-correlations exhibited by any W can be modeled as 
derivable from a physically realizable quantum state ρ. However, this result does not generalize 
to the n-partite case for n>2. Supra-correlations can also be exhibited in 2- and 3-qubit systems 
by explicitly constructing “states” O (not necessarily positive quantum states) that exhibit PR 
correlations for a fixed, but arbitrary number, of measurements available to each party. In this 
area of research we examined the structure of “states” that exhibit supra-correlations. In addition, 
we examined the affect upon the distribution of the correlations amongst the parties involved 
when constraints of positivity and purity are imposed. We investigated circumstances in which 
such “states” do and do not represent valid quantum states. 
 
Physics imposes limits on the correlations that can be observed by distant (i.e. spacelike 
separated) parties.  In particular, special relativity (SR) implies the principle of no-signaling 
(NS), that is, correlations cannot lead to any sort of instantaneous communication between 
spacelike separated observers.  Quantum correlations may be stronger than classical, and their 
violation of Bell inequalities (BI) [Bell64] suggests that quantum mechanics (QM) cannot be 
regarded as a local realism theory. Tsirelson [Tsirelson80] showed that there is an upper bound 
to the violation of BI, which implies that the amount of non-locality allowed by QM is limited. 
Popescu and Rohrlich (PR) showed [Popescu94] that there exists a broad class of no-signaling 
theories which allow stronger-than-quantum or supra-quantum correlations. PR developed a 
valid joint probability distribution whose violations of the BI lie above those of physical 
quantum correlations and below the allowed algebraic maximum of the BI (the latter are called 
PR-Boxes). Thus, the principle of NS imposed by SR does not single out QM from these other 
post-quantum NS theories [Masanes06] (PQNS). 
 
These PQNS have much in common with QM such as no-cloning, information-disturbance 
tradeoffs, security for key distribution, and others. Recently, van Dam [van Dam05] showed that 
PR-Boxes make communication complexity trivial, which is not the case within QM. Other 
researchers have shown that PQNS theories would lead to implausible simplification of 
distributed computational tasks (see [Pawlowski09] and references therein). It is now widely 
believed that theories in which communication/computational complexity is trivial are very 
unlikely to exist. It is therefore important to understand the structure of the PQNS and ultimately 
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to find physical and informational principles that rule them out. In this area of research we took 
steps in that direction by investigating the structure of PR correlations by forming operators 
which reproduce these PR probability distributions. We investigated circumstances in which they 
do and do not represent valid quantum states. 

Bell Inequalities (BI) 
Nonlocality is expressed by means of violations of Bell inequalities1 (BI) which set upper bounds 
for classical correlations arising from local-realistic theories. For bipartite systems, the most well 
know BI is the Clauser-Horne-Shimony-Holt (CHSH) inequality7 defined as follows. Consider a 
bipartite system A⊗B, for Alice and Bob, each possessing measurement directions A,B =A and 
C,D =B taking measurement values  a,b,c,d ={± 1}. We define the correlation E(AC) between 
A=A and C=B as 
 

 , { 1}
( ) ( , | , )

( , | , ) ( , | , ) ( , | , ) ( , | , )
a c

E AC AC a c P a c A C

P A C P A C P A C P A C
= ±

≡ =

= + + + − − − + − − − +

∑
 (5) 

In (5), we define P(a,c|A,C) as the joint probability that given the (input) measurement directions 
A for Alice and C for Bob, Alice obtains the (output) measurement result a and Bob obtains the 
value b, subject to the normalization condition 

, { 1}
( , | , ) 1, , .

a c
P a c A C A C

= ±
= ∀∑  Finally, we define the 

following CHSH correlation parameter S by 
 
 ( ) ( ) ( ) ( ).S E AC E BC E BD E AD≡ + + −  (6) 

S has been cleverly constructed as the expectation value of the quantity Arg≡A(C-D) + B(C+D).  
If A,B,C,D are classical random variables taking values ± 1 then it can be readily seen that if (i) 
C=D, then |Arg| = |B(2C)| = 2 and if (ii) C=-D, |Arg| = |A(2D)| = 2. Thus, for classical correlation 
we have the CHSH inequality 
  
 CHSH inequality:  | ( ) ( ) ( ) ( ) | 2ClS E AC E BC E BD E AD S= + + − ≤ =  (7) 

(where the subscript “Cl” denotes “classical”).  For a large class of measurement directions (but 
not all), quantum states can violate the CHSH inequality (i.e. |S|>2) up to a maximum value 
shown by Tsirelson [Tsirelson80] to be SQ = 2√2.  Here, a quantum state is defined as a positive 
(i.e. non-negative eigenvalues) Hermitian matrix with unit trace denoted by the symbol ρ. The 
archetypical example is the singlet (Bell) state  
 
 ( ) ( )singlet 2 01 10 2ρ = ↑↓ − ↓↑ ≡ −  (8) 

with measurement directions in the x-y plane: ˆ ˆ ˆ ˆ ˆ ˆ, , ( ) 2 , ( ) 2A x B y C x y D x y= = = + = − that saturates 
the Tsirelson bound with S= -SQ = -2√2. This is a manifestation of the stronger than classical 
correlations that can be exhibited by quantum states. (Note: quantum states with measurement 
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directions such that the CHSH inequality is satisfied, i.e. S≤2, are not distinguishable from 
classical states by the correlation parameter S). 
 
It is instructive to note that the CHSH inequality in (7) can be derived [Schumacher91] as a 
statement of a classical quadrilateral inequality for the correlation metric 

( ) 1 ( ) ( , | , ) ( , | , ) 0.AC E AC P A C P A C∆ = − = + − + − + ≥ Substituting this expression into (7) yields 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2AC BC BD AD S E AC E BC E BD E ADD + D + D ≥ D ⇒ ≡ + + − ≤ + (see Figure 10). Thus, the  

 

 
Figure 10. CHSH inequality derived as a violation of the classical quadrilateral inequality. 

 
violation of the CHSH inequality by quantum states can be interpreted as a violation of the 
classical quadrilateral inequality which, for certian measurement directions, yields the distance 
Δ(AD) via the direct path A-D to be smaller than the sum of the distances around the indirect 
path A-C-B-D. 
 
Returning to the CHSH inequality (7), one notes that it is bounded by the algebraic maximum |S| 
≤ SAM=4. This follows from the fact that the correlations E are bounded by |E|≤1. This latter 
result can be inferred by writing E = P++ + P-- - (P+- + P-+) = 2(P++ + P--)-1 = 1-2(P+- + P-+), 
where = P++ + P-- + P+- + P-+ =1 has been used. Using the fact that 0≤ P++ + P-- ≤1 and 0≤ P+- 
+ P-+ ≤1 in the previous two expressions for E, yields the desired bound |E|≤1. Therefore, if the 
first three correlations in (7) take the value ±1 and the last correlation takes the value 1 , we 
obtain S=±4. The implication of this observation is that the regime 2√2 ≤ S ≤ 4 represents supra-
correlations that are stronger than quantum, yet are unphysical by Tsirelson’s bound, i.e. cannot 
be realized by any physical quantum state. The salient question to study is what ‘natural’ 
principles determine the exclusion of such supra-correlations. As a first hypothesis, one might 
surmise that the principle of no-signaling from special relativity (i.e. that information cannot be 
instantaneously broadcast between spacelike separated observers) might exclude supra-
correlations. Surprisingly, this is not the case. In 1994, Popescu and Rohrlich (PR) [Popescu94] 
were able to construct a valid joint probability distribution between a pair of spacelike separated 
observers that (i) satisfies the non-signaling principle, and (ii) yields the algebraic maximum 
correlations allowed by the CHSH inequality. Here the adjective ‘valid’ implies that the joint 
probability distribution, and all its derived marginal probability distributions, obtain values 
between 0 and 1, and satisfy the appropriated normalization requirements (i.e. the joint and all 
marginal probability distributions summed over all outcomes for any measurement settings 
yields unity).  These correlations are now called PR correlations, which we describe in the next 
section. 
 



Approved for Public Release; Distribution Unlimited.  
17 

 

No Signaling (NS) Theories and PR Correlations 
We wish to consider correlations between n spacelike separated parties (observers) A1,…,An, who 
can perform m possible measurements x1,…,xn (xi={0,1,…,m-1), with r possible outcomes 
a1,…,an (ai={0,1,…,r-1)  The observed correlations will be described by the joint probability 
distribution 1 2 1( , , , | , , )n nP a a a x x2 2 giving the probability that the parties obtain the measurement 
values (outputs) a1,…,an when their local measurement apparatuses (inputs) are set to x1,…,xn. 
The joint probability distribution is constrained only by the conditions 

1 2 10 ( , , , | , , ) 1n nP a a a x x≤ ≤2 2  and the normalization condition 
1, ,

1 2 1( , , , | , , ) 1
n

n na a
P a a a x x =∑

2

2 2 for 

all measurement settings x1,…,xn. 
 
Imposing the no-signaling (NS) constraint, i.e. adherence to the requirement from special 
relativity that spacelike separated measurements should not influence each other due to the finite 
speed of light (communication), requires that the marginal probability distributions satisfy the 
additional condition 
 
 

1

1 2 1 1 1 1 2 1
, , {0,1}

No Signaling: ( , , , | , , ) ( , , | , , ) ( , , , | , , ).
k n

k n n n k k
a a

P a a a x x P a a x x P a a a x x
+ ∈

≡ =∑
2

2 2 2 2 2 2 (9) 

Here, the first equality in (9) formally defines the marginal probability distribution describing the 
measurement outcomes of the first k parties, when the last n-k outcomes are un-observed and 
hence summed over. Note, this marginal probability distribution 1 2 1( , , , | , , )k nP a a a x x2 2 formally 
depends on all n measurement settings. The last equality in (9) imposes the NS constraint 
requiring that the marginal probability depends only upon the k measurement settings of the 
parties participating in the joint measurement (and not on the remaining n-k measurement setting 
of the unobserved outcomes).  
 
As first pointed out by Pospescu and Rohrlich [Popescu94], the NS constraint (9) by itself does 
not single out classical and quantum theories, i.e. |S| ≤ SQ. PR proposed the following joint 
probability distribution for two parties (Alice and Bob) with two measurement settings (inputs) 
x,y ={0,1}, and two measurement outcomes (outputs) a,b ={0,1} given by 
 

 
1/ 2 if 

PR Box: ( , | , ) .
0 otherwise

a b x y
P a b x y

⊕ = ⋅
= 


 (10) 

By considering all possible inputs and outputs, it is straightforward to show that PR correlations 
of (10) satisfy all the requirements for a NS theory as follows: normalization (total probability)  
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⋅ ⋅

= + + +
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= ∀

∑
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and the NS constraint 
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⋅ ⋅
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With the PR Box define above in (10) we can compute correlations as 

 0, 1,

( , | , ) (0,0 | , ) (1,1| , ) (0,1| , ) (1,0 | , ) ,
0 1

(1/ 2 1/ 2) (1/ 2 1/ 2) ,

1 if 0, i.e.( , ) {(0,0), (0,1), (1,0)},  
1 if 1, i.e.( , ) (1,1),

x y x y

E a b x y P x y P x y P x y P x y
a b a b

x y x y
x y x y

δ δ⋅ ⋅

= + − −

⊕ = ⊕ =
= + − +

+ ⋅ = ∈
= − ⋅ = =

))))))))( ))))))))(

 (13) 

where we have used 
, { 1}

( , | , ) , ( , | , ),
a b

E a b x y a b P a b x y
′ ′∈ ±

′ ′= ∑ where 1 2 ( 1 2 )a a b b′ ′= − = −  associates the 

measurement values ( ) { 1, 1}a b′ ′ ∈ + − with the measurement value labels (bits) ( ) {0,1},a b ∈  
respectively. Therefore, in Figure 10, assigning Alice’s measurement directions A,B =A the bit 
labels xA=1 and xB=0, and Bob’s measurement directions C,D =B the bit labels yC=0 and yD=1, 
and using (6) yields the algebraic maximum SM=4 of the CHSH inequality, as illustrated in 
Figure 11. 
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Figure 11. PR Box with joint probability distribution achieving the algebraic maximum 
SM=4 of the CHSH inequality. 

 
Since  SM=4>SQ=2√2, no quantum (i.e. physically realizable) state can reproduce the above PR 
probability (10). However, the following “state” [Acin10] O α α+ + − −

+ −= Φ Φ + Φ Φ with 
(1 2) 2α± = ± and Bell states ( 00 11 ) 2 ,±Φ = ±  yields the PR probability (10) through the usual 

trace rule ( , | , ) [ ]x y
PR a bP a b x y Tr O M M= ⊗  with 2 1{ , } { , }A Bx x

a aM M σ σ=  and { , }C Dx x
b bM M 1 2{( ) 2 ,σ σ= +  

1 2( ) 2}σ σ− , where {1,2,3}{ }i iσ ∈ are the usual Pauli matrices. Note that the form of the joint 
measurement between Alice and Bob written as a pure tensor product of local observables

,x y
a bM M⊗ ensures the locality of the spacelike separated measurements, which cannot increase 

entanglement between the parties. A measurement involving the sum of pure tensor products, 
such as x y x y

a b a bM M M M′ ′⊗ + ⊗ which might possibly create entanglement, would involve non-local 
measurements between the parties, which could only be physically realized if the parties were 
brought together.  The important point is that O does not represent a physical quantum state since 
it is non-positive, i.e. it possesses the negative eigenvalue (1 2) 2α− = − . Henceforth, we shall 
refer to non-positive, unit trace Hermitian operators O capable of producing NS probability 
distributions as “states,” and reserve the specific term “quantum state” or “q-state” for the 
physically realizable positive, unit trace Hermitian operators denoted as ρ≥0, (i.e. density 
matrix). 
 
Following Acin et al. [Acin10] we desired to investigate all sets of n-party spacelike correlations 
in terms of local quantum observables (measurements) 1

1non-sig
n

n

xx
a aM M M= ⊗ ⊗ that ensure NS. 

These correlations can be written in the form 
 
 1

11 1( , , | , , ) [ ].n

n

xx
O O n n a aP P a a x x Tr O M M≡ = ⊗ ⊗    (14) 

Without loss of generality, we can take the local measurement operators x x
a a x

M a a= Π = to be 
the projection operators onto “spin-component” a in the “direction” x. Requiring that proper 
probabilities be derived from all local quantum measurements imposes the condition that O be 
positive on all product states. This implies that O=W is an entanglement witness (EW, see 
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[Guhne09])  with the property , , , , 0.Wα β α β ≥   Here some definition are helpful. A q-state 

is separable (contains only classical correlations) if it is of the form 1 2 NAA Asep
i i i ii

pρ ρ ρ ρ= ⊗ ⊗ ⊗∑ 

where each 1A
iρ is a local density matrix and 1.ii

p =∑ (If a q-state is not separable, it is entangled).  

Each local density matrix has a (non-unique) ensemble decomposition kA k k k
i ij ij ijj

pρ ψ ψ=∑ where 

1.k
i jj

p =∑  The requirement that W is positive on all product states , , , , 0Wα β α β ≥  ensures 

that [ ] 0sepTr Wr ≥ from the form of ρsep. A q-state ρ such that [ ] 0Tr Wr < is then entangled (since it 
is not separable), and W is said to “witness” (or exhibit) the entanglement of ρ. Note that W is in 
general a non-positive Hermitian operator. In the context of (10), we now consider O→W as a 
state (not necessarily a q-state) from which to derive NS correlations through the joint 
probability distributions 

 1

11 1( , , | , , ) [ ] 0.n

n

xx
W N n a aP P a a x x Tr W M M≡ = ⊗ ⊗ ≥    (15) 

The correlations (4) are termed Gleason correlations by Acin et al. [Acin10].  

The subtle distinction between (14) and (15) is that the latter produces positive probabilities for 
all local NS measurements, while the former may produce non-negative probabilities on only a 
subset of NS measurements. This distinction is important since it has been shown [Guhne09, 
Barnum10] that for bipartite systems n=2, any Gleason correlation 

1 2

1 21 2 1 2( , | , ) [ ] 0x x
a aP a a x x Tr W M M= ⊗ ≥ can be converted to a probability distribution derived from a q-

state 
PB PB PBρ Φ = Φ Φ with modified measurements 1 2 1 2( , | , )P a a x x 1 2

1 2
[ ]x x

a aTr W M M= ⊗

1 2

1 2
[ ] 0.

PB

x x
a aTr M Mr Φ= ⊗ ≥  Here PBΦ is any pure bipartite state (not necessarily maximally 

entangled).  The proof relies on the explicit use of the Choi-Jamiolkowski isomorphism (CJI) 
[Guhne09, Barnum10, Vedral97] which allows any bipartite (n=2) witness W to be written as 

( 2) ( )( ),
PB

nW I ρ=
Φ≡ ⊗Λ where Λ is a positive trace preserving map. In the above, 2 2

2 2

* ( )x x
a aM M= Λ

where Λ* is the adjoint of the map Λ, i.e. *Tr[A ( )]=Tr[ ( ) ].B A BΛ Λ  The proof then follows directly as 

 
*

( , | , ) [ ] [( )( ) ]

= [ ( )( ) ] [ ( ) ] [ )],
BP

BP BP BP

x y x y
W a b a b

x y x y x y
a b a b a b

P a b x y Tr W M M Tr I M M

Tr M M I Tr M M Tr M M

r

rrr 
Φ

Φ Φ Φ

= ⊗ = ⊗Λ ⊗

⊗ ⊗Λ = ⊗Λ = ⊗
 (16) 

where the second equality uses the CJI, the third equality uses the cyclic property of the trace, 
the fourth inequality utilizes I ⊗Λ acting to the left on the tensor product measurements x y

a bM M⊗

thereby introducing the adjoint  Λ* operation and the modified local measurement operation
2 2

2 2

* ( )x x
a aM M= Λ in the last equality.  Acin et al. [Acin10] point out that the CJI decomposition 
( 2) ( )( )

PB

NW I ρ=
Φ≡ ⊗Λ in general fails for n>2 (which they demonstrate by a specific example). 

Thus, the Gleason correlations (4) are strictly larger (|S| >SQ) than quantum correlations for n>2 
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(and equivalent only for n≤2). The state O α α+ + − −
+ −= Φ Φ + Φ Φ used in the example of PR 

correlations in the discussion after Figure 11 is not an EW since it can produce negative 
probabilities for measurements other than those considered (it would be an EW if it produced 
positive probabilities for all measurement choices). Acin et al. [Acin10] classify the distributions 

1 1( , , | , , )n nP a a x x  as (i) No-Signaling if and only if P can be written in the form of (14), (ii) 
Quantum whenever O is positive (O≥0), and (iii) Local if and only if O corresponds to a 
separable quantum state. In the following, we investigate the NS correlations of (10) and the 
conditions for which they become either Gleason, or Quantum correlations. 

4.0 RESULTS AND DISCUSSION 

4.1 Multipli-entangled photons from a spontaneous parametric down-conversion source 
Experimental analysis and testing apparatuses for Schioedtei are very similar to that for any 
SPDC source.  With the more complex ring pattern generated though there are modifications one 
must do to the standard detection scheme.  The experimental configuration for Schioedtei is 
shown in Figure 12.  The testbed consists of a violet (405 nm) femtosecond pulsed pump source 
(Millenia PRO 15sJ > Tsunami 3960-15HP > Inspire Blue FM) with an average power of ~1.4 
W, ~100 femtosecond pulses and a repetition rate of 80 MHz. The 405 nm pulses first pass 
through a ~12.5 mm quartz pre-compensator and a half-wave plate set to 22.5° to rotate the input 
linear polarization to the required 45° for equal excitation of the crystals before entering 
Schioedtei. Proper alignment of the crystal was accomplished with live images from a cooled 
CCD camera (Princeton Instruments Pixis 1024BR). The photons were collected in free space 
collimators located 1.5 meters behind Schioedtei. This distance is the minimum amount required 
to obtain the useable spatial separation required for detector access to the middle blue diamond 
of intersection points (5, 6, 7, and 8).  The post-compensating crystals, inserted in the down-
converted photon paths, are 8x8x1 mm type II phase matched β-BBO (at angles of θ = 41.9° and 
φ = 30°) as Schioedtei’s orientation is non-collinear and there is no interaction between the pump 
and the compensators.  These compensators could not be used for compensation of a collinear 
configuration as they were phase matched for SPDC at 810 nm when exposed to a 405 nm 
excitation beam.  Photon collection was accomplished via fiber coupled collimators immediately 



Approved for Public Release; Distribution Unlimited.  
22 

 

 

Figure 12. Experimental testbed to analyze the Schioedtei source. 

followed by 2 nm bandpass filters.  The output of the bandpass filter was routed directly into 
fiber-coupled single photon counting avalanche photodiodes (APDs) (Perkin Elmer SPCM-
AQ4C). Coincidence detection was accomplished by a four channel coincidence counting 
module (CCM) [Branning11].  

 

 

 

 

 

 

 

 

 

 

Figure 13. False color CCD images of custom crystal assembly (1 sec exposure). A,B are the type II non-
collinear outputs from each individual crystal. C is the combined output from the crystal stack. 

A trio of false color CCD camera images of Schioedtei output is shown in Figure 13.  The twelve 
overlap regions are clearly visible and the spatial symmetry of the output should be clearly noted.  
The orientation of the crystal assembly gives an approximate Gaussian profile on spots 5,6,7,8 
and a slightly elongated profile for spots 1,2,3,4,9,10,11,12. The alignment image in Figure 13 is 
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utilized for aligning the proper orientation of the rings while a back propagated beam shown in 
Figure 14 aligns the collimators to the intersection points. 

 

Figure 14. Alignment image of the Schioedtei crystal stack. 

As stated, Schioedtei was constructed from β-BBO though any type II material can be used.  
Materials such as BiBO (Bismuth Borate, BiB3O6) have been shown to have a higher photon 
generation rate than β-BBO [Rangarajan09] and this will be the next step for Schioedtei. 
Secondly, increasing the useable photon count rate in Schioedtei can be accomplished by 
factoring the GVM phase matching constraint [U’Ren06] into the crystal construction. A GVM-
matched configuration [Fanto10] is possible by alternating reduced thickness Schioedtei and α-
BBO layers. α-BBO can be used as a compensator since there is no second order nonlinear effect 
in α-BBO crystal due to the centric symmetry in its crystal structure. Such a GVM source would 
provide the same up to six spatially separate entangled pairs as Schioedtei, while alleviating the 
need for spectral filtering of the photons. An increase in useable signal rates of 10x over a typical 
type II source is realizable with GVM matching.      

Schioedtei source uses and applications 

Another applicable area of extreme interest is in the generation of photon-based cluster states.  
Cluster states play a central role in the measurement-based one-way quantum computation 
approach [Walther05, Raussendorf01]. In this scheme, the entanglement resource is provided in 
advance through an initial, highly entangled multi-qubit cluster state and is consumed during the 
quantum computation by means of single-particle projective measurements. The feedforward 
nature of the one-way computation scheme renders the quantum computation deterministic, and 
removes much of the massive overhead that arises from the error encoding used in the standard 
quantum circuit computation model [O’Brien07].  Figure 15 illustrates a scheme for utilizing the 
output of Schioedtei to generate a four photon cluster state, |𝐶⟩4 [Schmid07].  This particular 
example employs the spots 1,2,3,4 and requires insertion of two half-wave plates, a SWAP gate 
and a controlled-phase (CPhase) gate.  This scheme could be expanded to include the other eight 
spots to generate even larger cluster states.   Such experiments are currently being explored in-
house. 

More complex cluster states can be constructed from Schioedtei with additional hardware. This 
includes, but is not limited to, the construction of box cluster states [Prevedel07, Walther05].  In 
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fact Schioedtei is capable of producing two 4-qubit box states simultaneously by using eight of 
the spots: 1,2,3,4 and 5,6,7,8.  As the states Schioedtei outputs at these two sets of spots are 
different, 

 

|𝐶⟩4 = 1
2
 (|𝐻𝐻𝐻𝐻⟩1,2,3,4 + |𝐻𝐻𝐻𝐻⟩1,2,3,4 + |𝑉𝑉𝑉𝑉⟩1,2,3,4 - |𝑉𝑉𝑉𝑉⟩1,2,3,4) 

Figure 15. Experimental setup for 4-qubit cluster state generation utilizing Schioedtei. 

slightly different preparation methods are required for the two boxes, as shown in Figure 16. 
After the preparation is complete the two box states are completely equivalent.  With additional 
preparation and resource photons these states can be used as the building blocks of larger states 
such as the 6-qubit butterfly network [Ma10, Soeda10].    

 

|𝜓⟩BOX = Swap2,3 H1H2H3H4 CZ2,4 Swap2,4 X3X4|𝜓⟩1,2,3,4 

|𝜓⟩BOX = Swap6,7 H5H6H7H8  CZ6,8|𝜓⟩5,6,7,8 

Figure 16. Experimental construction of a 4-qubit box cluster state utilizing Schioedtei. 

An advantage of the Schioedtei configuration is the diversity of states that it is capable of 
generating.  Schioedtei allows for the direct generation of the (unnormalized) state |𝐻𝐻⟩ ± 
𝑒𝑖𝜑|𝑉𝑉⟩ along with the generation of the state |𝐻𝐻⟩ ± 𝑒𝑖𝜑|𝑉𝑉⟩ with the addition of a half-wave 
plate.  In addition, separable states such as |𝐻𝐻⟩ ± 𝑒𝑖𝜑|𝑉𝑉⟩ or |𝐻𝐻⟩ ± 𝑒𝑖𝜑|𝐻𝐻⟩ can also be 
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directly generated with clever combinations of the twelve output intersections and proper 
compensation. 

4.2 A multi-layer three dimensional superconducting nanowire photon detector 
General amplitude amplification 
We now take a closer look at the minimum three layers needed to create the device, shown in 
Figure 17. The bottom layer  17a, consists of non-superconducting leads (red)placed on an  
 

 
Figure 17 A plain view of the three layers in the multilayer design. 

 
insulating substrate (gray), such as R-plane sapphire, MgO or Si. Note that there is no complete 
circuit on this level, so the current will be forced to move up to the next level. The optimal 
minimal spacing will depend on the insulating ability of the substrate to prevent leakage and  
crosstalk, mainly between the input and output channels but also with the superconducting 
nanowires passing above. Over the bottom layer will be a second layer of deposited substrate 
17b. This layer will then have vias, i.e. holes (green), which pass completely through it (gray) at 
predetermined locations so as to hit the input/output leads in the bottom layer. These vias are 
filled with superconducting material (in practice it may be advantageous to use non-
superconducting material here, if the pixels are long enough to avoid the latching condition) thus 
completing the middle layer of the device. Alignment will be a very important, but not 
insurmountable issue, as these structures are on the scale of approximately 100 nm in width and 
current alignment techniques can achieve results on the order of 1 nm [Anderson04]. Finally the 
detection layer Figure 17c, will be deposited on top of the middle layer. Alignment of the 
superconducting bridges with the vertical “posts” in the middle layer will be important for the 
overall detection efficiency [Kerman07]. 
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The device will have significantly higher number resolution, while maintaining a useful 
detection area. It has several parameters which can control the reset time to avoid latching while 
still minimizing the rest time. An array of pixels of arbitrary number, size and shape is possible. 
Most of the detector will remain active after a single photon is absorbed as opposed to small 
number or single meander detectors which are effectively blinded by a single photon. The active 
area of the detector can be tuned by changing the number or the shapes of the pixels. These 
advantages are compelling theoretical evidence for the construction and testing of multi-layer 
superconducting number-resolving photon detectors. 

 Figure 18 A toy model of a multi-layer SNSPD. 
 
Figure 18 shows a toy model of a working multi-layer SNSPD.  For clarity only the super-cooled 
part of the chip is shown.  The dark green substrate and red leads are similar to the grey substrate 
and red leads in Figure 17a.   The blue vertical posts are shown in a semi-transparent middle 
layer similar to Figure 17b for clarity.  The blue superconducting pixels on the surface are 
similar to Figure 17c. The development of this design has resulted in two patents filled by the 
AFRL JAG officer with the U.S. patent office. 

 
4.3 Laboratory upgrade and ongoing research in integrated waveguide quantum circuits 
The Quantum Information Science Laboratory originally located in lab 18 in Bldg. 104 was 
relocated to a larger facility in Bldg. 3 Suite I5.  The transition to the new facility allowed for the 
addition of 2 more optical tables, multiple work benches and equipment storage cabinets.  The 
facility is partitioned in two separate work areas defined by laser curtains allowing separate 
experiments to be conducted concurrently with lasers of class 4 or lower. During this period the 
Ti:Sapphire laser was upgraded from a femtosecond 1.5 W system to a femto/picosecond 3.5-4 
W system. Additionally installed were both femtosecond and picosecond second harmonic 
generation units (SHG) were added to the system to generate powers greater than 1 W in the 
blue/violet regime. These additions completed the upgrade to the entangled photon generation 
testbed. 
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Further effort has been placed to reduce the footprint size of quantum gates/circuits built from 
bulk optical components. This added research focuses on the use of integrated optical 
waveguides to construct the quantum gates/circuits.  The direction of the research exploits two 
arenas: (i) world class domestic researchers at Rome Research Site and WPAFB along with 
universities such as Columbia, MIT and RIT, and (ii) and world class international researchers 
through EOARD at universities such as Bristol, Oxford and Vienna. Expanding the ongoing 
research in optical waveguides was a necessary step and made possible in-house with the 
acquisition of an optical wafer probe station.  The probe station along with multiple table top 
probe stations will be utilized for the testing and integration of quantum photonic integrated 
circuits (QPIC). The entangled photons generated by the existing generation testbed are routed 
into the QPICs to validate the chips functionality. The acquisition of a second Ti:Sapphire laser 
and optical parametric oscillator (OPO) expanded the testbed’s available wavelength range from 
the original span of 600-1000 nm to a span of 340-2500 nm. The OPO greatly increases the 
diversity of materials that the QPICs can be constructed from.  The upgraded components have 
arrived and the full testbed is under construction.   

4.4 Theory/experimental requirements of imperfect two-qubit linear optical photonic gates 
The optimization method we have developed maximizes the success probability S for a given 
target transformation ATar, for given ancilla resources, and for a given fidelity level F≤1. This is 
mathematically equivalent to unconstrained maximization of the function S+F/𝜖 in the space of 
all matrices U, where 1/𝜖 is a Lagrange multiplier. Here 𝜖⟶0+ corresponds to maximizing the 
success probability while requiring perfect fidelity (F = 1). As 𝜖 is increased, the maximum of S 
+ F/𝜖 yields linear optics transformations that maximize the success S as a function of the fidelity 
F. Given one transformation U that (locally or globally) maximizes success S for a given fidelity 
F, 𝜖 may be continuously varied to obtain a one-parameter family of optimal transformations, 
tracing out a curve in success-fidelity space. Note that in general the members of these families 
need not be all unitary, however for some gates of interest, including the CZ gate, all members of 
the family are unitary. Figure 20 shows optimal results for the CZ gate. Here each point 
corresponds to a unique unitary mode transformation U. As previously reported we find an 
interesting feature of these unitary matrices. The optimal solution with fidelity F = 1 was found 
by Knill to have a surprising form [Knill02], which we have dubbed the “Knill Form" 
[Uskov09], where one mode of each qubit is non-interacting, e.g., in the CZ case U acts as the 
identity on modes 1 and 3 (or equivalently 1&4, 2&3, or 2&4). This form has been found to hold 
for the CZ gate and for the TS Toffoli Sign gate (CNOT and Toffoli respectively are equivalent 
to these up to local rotations). 
 
We now propose an experiment that will test the results shown in Figure 19. Reck et al. have 
shown that any discrete N x N unitary transformation U can be implemented as a multi-port 
device consisting only of variable transmittance beamsplitters and phase shifters [Reck94]. Their 
method is a decomposition in which each unitary matrix element below the diagonal is 
transformed into zero by a 2 x 2 rotation matrix embedded in an N x N matrix which is otherwise 
equal to the identity. For example, the 2 x 2 rotation acting on modes N and N-1, which 
eliminates the element UN,N-1, takes the form TN,N-1shown in Figure 19. 
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Figure 19. Rotation matrix for modes N -1 and N. 

 
The method is recursive and requires one iteration for each pair of modes. Finally, we obtain 
𝑈(𝑁)𝑇𝑁,𝑁−1𝑇𝑁,𝑁−2 …𝑇2,1𝐷 = 𝐼 where D is a diagonal matrix of phases. The desired 
transformation U is then decomposable as 𝑈(𝑁) = 𝐷−1𝑇2,1

−1𝑇3,1
−1 …𝑇𝑁,𝑁−1

−1 . Physically, each NxN 
transformation 𝑇𝑖,𝑗−1 is implemented as a variable transmittance beamsplitter with a phase plate on 
one input mode, while D-1 corresponds physically to a phase shift on each output mode 
[Reck94]. Thus a generic two-qubit operation, which needs at least N = 7 modes (Nc = 4 
computational modes and Na = 3 ancillas) requires a minimum of 21 beamsplitters and 28 phase 
shifters. A controlled unitary gate (N = Nc+Na = 4+2 = 6) requires at least 15 beamsplitters and 
21 phase shifters. If unitary dilation is required (as is often the case) the number of optical 
elements increases rapidly. However our experiment does not require unitary dilation and 
furthermore as noted by Reck et al., if an element of the unitary matrix is already zero, then no 
transformation is required. The element is skipped. 

 

 
Figure 20. Improved success rates for compromised 𝛿. 

 
Here we return to the “Knill Form," where in the case of CZ we find that nine of the elements 
below the diagonal are already zero. Therefore the unitary transform can be implemented with 
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only six beamsplitters and ten phase shifters. We can perform this decomposition for each data 
point in Figure 20, and find the rotation angles ωi,j and phases ϕi,j in each case. Surprisingly we 
find numerically that all of the phase shifts, ϕi,j , are constant along the entire length of the curve 
in Figure 20. Therefore only the six beamsplitter rotation angles ωi,j  out of a total of 36 possible 
variables need to be modified to vary , making the experiment much more physically realizable. 
To be specific, the transformation only requires beamsplitters acting on the following mode 
pairs: (i; j) = (6; 5); (6; 4); (6; 2); (5; 4); (5; 2); (4; 2). Figure 21 shows that the six beamsplitter 
rotation angles change smoothly with 𝛿. Implementing such rotations and constant phase shifters 
will recreate the unitary matrices from Figure 20.  

 
Figure 21. Beamspliter transitivities 

 
This system lends itself to being implemented with 2 x 2 Mach-Zehnder interferometers (MZI) in 
place of standard beamsplitters. The transmittance of the MZI is controlled dynamically by 
adjusting the phase difference, without having to alter the physical system. These interferometers 
have already been put on optical chips by Thompson et al. [Sohma94] among others. Indeed, 
significantly larger electro-optical matrix switches have been proposed and built for broadband 
optical communication networks [Sohma94, Drever83]. Figure 22 shows a multi-port device that 
mixes seven input/output modes (thin lines) using 2 x 2 variable transmittance beamsplitters 
(rectangles), each of which has a phase shifter on one of its input modes (ellipses). An additional 
phase shifter is placed on each device output mode. The thick line is a simple mirror. J. L. 
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O'Brien recently proposed a similar 7 x 7 single-chip MZI-based device made from lithium 
niobate waveguides [Sohma94]. The intended purpose of this chip was to be able to perform any 
two-qubit unitary operation, i.e. any transformation in SU(4). However, such a device would also 
be capable of performing the experiment described above. 
 

 

 

Figure 22. General multiport device schematic. 

4.5 Nonlocality, entanglement witnesses and supra-correlations 
No Signaling (NS) Correlations: 2-Qubits  

Following Acin et al. [Acin10] we define an n-partite probability distribution 1 1( , , | , , )n nP a a x x

as being NS if and only if there exists local quantum measurements i

i

x
aM and a Hermitian operator 

O of unit trace such that (3) holds. It is important to note that O need not produce positive 
probabilities for other measurements outside this set. Acin et al. [Acin10] give a prescription for 
the formal construction of O given the set of measurements i

i

x
aM . In the following we present an 

explicit construction for O for the case of n=2 qubits (r=2 outputs, i.e. a,b = {0,1}) and arbitrary 
number m of measurement inputs (x,y = {0,1,…,m-1}). Later, we extend this to the case of n=3 
for qubits. 
 
As stated in Section 3.4, without loss of generality we can take the local Hermitian measurement 
operators to be the projection operators onto “spin-component” a in the “direction” x, 

.x x
a a x

M a a= Π =  For each x, the completeness of the measurement operators give 1

0

r x
a r ra

M I−

×=
≡∑

where r rI I× ≡ is the r r× identity matrix. This allows us to write the a=r-1 measurement operator 
as 2

1 0
.rx x

a r r r aa
M I M−

= − × =
≡ −∑  One defines the (tilde) Hermitian matrices x

aM dual to x
aM through the 

inner product , ,[ ] .x x
a a x x a aTr M M δ δ′

′ ′ ′=  For the bipartite case n=2, with in general m measurement 
settings with r measurement outcomes, one has 
 

 
2 1 2 1 2 1

, 0 , 0 0 0 0
( , | , ) ( | ) ( | ) ,

r m r m r m
x y x y
a b a b

a b x y a x b y
O P a b x y M M P a x M I P b y I M I I

− − − − − −

= = = = =

= ⊗ + ⊗ + ⊗ + ⊗∑ ∑ ∑∑ ∑∑        (17) 
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where I is the tilde matrix dual to the r r× identity matrix I, with the additional orthogonality 
conditions defined by [ ] [ ] 1,Tr I I Tr I= =  [ ] 0,x

aTr M I = and [ ] [ ] 0.x x
a aTr I M Tr M′ ′
′ ′= =   The conditions  

 
 

Figure 23. PR Box shared between Alice and Bob. 
 

ensure that O is Hermitian, Tr[O]=1 and probabilities are given by the trace formulas 
( , | , ) [ ]x y

a bP a b x y Tr OM M= ⊗ , ( | ) [ ]x
aP a x Tr O M I= ⊗ and ( | )P b y =  [ ]y

bTr O I M⊗ . This is illustrated in 
Figure 23 where Alice and Bob share PR correlations by means of, what are termed in the 
literature, a pair of PR boxes (or NS {non-signaling} boxes). 

In the following we specialize to the case of qubits (r=2, a,b = {0,1}) with arbitrary number m of 
measurement inputs (x,y = {0,1,…,m-1}) . In this case the measurement operators 0

x
aM = are given 

as projection operators for “spin-up” along the directions xx m→
 on the Bloch sphere. The 0

x
aM =

are just density matrices on the Bloch sphere written as 

 0 0 0 1 2( ), (sin cos ,sin cos ,cos )

1,  (density matrix on Bloch Sphere),

x
a x x x x x x x xx

x

M I m m m

m

s θ φ θ φ θ= = = + ⋅ =

≤

  

  (18) 

where 1 2 3( , , )σ σ σ σ=
 is the vector of single qubit Pauli matrices. Although not required for the 

case of qubits, the projection onto “spin-down” along x is given by
1 01 1 1 2( ) ,x x

a x ax
M I m I Mσ= == = − ⋅ = −

  with I the 2 2× identity matrix. Equation (17) now simplifies 
to the form 

 
1 1 1

0 0 0 0
, 0 0 0

( 0, 0 | , ) ( 0 | ) ( 0 | ) .
m m m

x y x y

x y x y
O P a b x y M M P a x M I P b y I M I I

− − −

= = =

= = = ⊗ + = ⊗ + = ⊗ + ⊗∑ ∑ ∑        (19) 

We simplify the notation by defining { }0, ; 0, , 1x
aI M x m= = − { }1 0 1 0 1,{ } { , , , }iM I M M M M− ≥ −≡ ≡ =    

{ 1, 0}{ }iMα = − ≥=  (a set of m+1 linear independent matrices) with duals { }{ 1, 0} 1 0 1{ } , ,jM M I M Mβ = − ≥ −≡ ≡     
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satisfying the trace orthogonality conditions ,Tr[ ]= ,M Mα β α βδ  and similarly for 

{ }0 { 1, 0},{ } { }.y
j jI M Nβ≥ = − ≥→ We therefore write (19) as 

 
1 1 1

0,0 0, ,0
,

, 0 0 0
,

m m m

i j i j i i j j
i j i j

O P M N P M I P I N I I
− − −

• •

= = =

= ⊗ + ⊗ + ⊗ + ⊗∑ ∑ ∑         (20) 

using the abbreviations 0,0
, ( 0, 0 | , )i jP P a b x i y j= = = = = , 0, ( 0 | )iP P a x i• = = = and ,0 ( 0 | ).jP P b y j• = = =

For the measurement matrices 1 2 2 0,  and 1 2( ), 1,i i iM I I M I m mσ− × ≥= ≡ = + ⋅ ≤
   the dual matrices are 

given explicitly by 1 ,0
1 2( ) 1 2( ),  and where , 1,i i i i j i j ii

M I I m I m M m m m mσ σ σ d− ≥
≡ = − ⋅ ≡ − ⋅ = ⋅ ⋅ = ≥∑           

    

with the orthogonality relations [ ] 1, [ ] 0, [ ] 0,and [ ] .j i i j ijTr I Tr M Tr M I Tr M M d= = = =    Using the 
relationship [ ] [ ] [ ]Tr X Y Tr X Tr Y⊗ =  it is straightforward to verify that Tr[O]=1 and, for example, 

0,0
, [ ]i j i jP Tr O M N= ⊗ which picks out the term i jM N⊗   in (20). Other probabilities are obtained for 

example as 0,1
, [ ( )] [ ] [ ]i j i j i i jP Tr O M I N Tr O M I Tr O M N= ⊗ − = ⊗ − ⊗ 0, 0,0

,i i jP P•= − 0, 0,0
, ,{0,1}

b
i j i jb

P P
=

= −∑
0,1
, ( 0, 1 | , ).i jP P a b x i y j= = = = = =  Substituting the explicit expressions for the dual matrices into (20) 

yields the general expression for O in terms of products of Pauli matrices 

 

1
0,0 0, ,0
,

, 0

1 1
0, ,0

0 0

1 (4 2( ) 1) ( ) ( )
4

(2 1) ( ) (2 1) ( )

[

].

m

i j i j i j
i j

m m

i i j j
i j

O P P P m n

P m I P I n I I

σ σ

σ σ

−
• •

=

− −
• •

= =

= − + + ⋅ ⊗ ⋅

+ − ⋅ ⊗ + − ⊗ ⋅ + ⊗

∑

∑ ∑

   

 

   

 

 (21) 

Specializing to the PR correlations in (10) given by ( , | , )P a b x i y j= = , mod 21/ 2 a b i jd ⊕ ⋅=

0,0
, 0, mod 21/ 2i j i jP d ⋅⇒ = with marginals 0, ,0 1 / 2 , ,i jP P i j• •= = ∀ yields the expression for the NSPR operator 

 
2 2 1 2 2 1

0,1,2, 0,1,2, 0,1,2, 0,1,2,

1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
4

where , , , .

[ ],PR e e e o o e o o

e i o i e j o j
i i j j

O m n m n m n m n I I

m m m m n n n n

σ σ σ σ σ σ σ σ

+ +
= = = =

= ⋅ ⊗ ⋅ + ⋅ ⊗ ⋅ + ⋅ ⊗ ⋅ − ⋅ ⊗ ⋅ + ⊗

= = = =∑ ∑ ∑ ∑
2 2 2 2

               

       
       

       

(22) 

In (22) the subscripts {e,o} denote {even,odd}for the summation over even and odd dual 
measurement vectors. Note that in (22) the “single-σ” terms i Iσ ⊗ and jI σ⊗  (representing 
measurements by Alice or Bob alone, respectively) have dropped out since the marginal 
distributions P(a|x)=P(b|y)=1/2 are independent of a,b,x,y. This leaves only the solely two-party 
correlation terms i jσ σ⊗ and the maximally mixed term ( ) 4.I I⊗  For the bipartite case n=2 often 
considered in the literature for two qubits, each with two measurement directions 0 1{ , }x m m∈

  for 
Alice and 0 1{ , }y n n=

  for Bob (i.e. a,b,x,y = {0,1}) we obtain the simplified form 
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 0 0 0 1 1 0 1 1
1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
4

[ ].PRO m n m n m n m n I Iσ σ σ σ σ σ σ σ′ = ⋅ ⊗ ⋅ + ⋅ ⊗ ⋅ + ⋅ ⊗ ⋅ − ⋅ ⊗ ⋅ + ⊗
               

       
(23) 

Using the procedure for calculating probabilities discussed after equation (4) , the following 
probabilities can be computed from  

 

0 1 0 1 0 1 0 1 0 1

0 0 0 0 0

1 1 1 1 1

( 0, 0 | , ), ( 1, 1 | , ), ( 0, 1 | , ), ( 1, 0 | ,

1 2 1 2 1 2 1 2 0 0 0 0 1 1
, , , ,

1 2 0 1 2 0 0 1 2 0 1 2 1 1

i j i j i j iP a b x m y n P a b m n P a b m n P a b m n

n n n n n n n n n n
m m m m m
m m m m m

= = = = = = = = = =

         
         −         

       

         

    

    

), ( , )

0, 1,

1 2 1 2for ( , ) {(0,0),(0,1),(1,0)}, for ( , ) {(1,1)}.

j i jE m n

a b a b
P Px y x y

⊕ = ⊕ =

⇒ = ⇒ =∈ ∈

  (24) 

Here, the correlations in (8) are computed as (see (5)) 

 , {0,1}( , ) ( 0, 0 | , ) ( 1, 1 | , ) ( 0, 1 | , ) ( 1, 0 | , ),i j i j i j i j i ji jE m n P a b x m y n P a b m n P a b m n P a b m n∈ = = = = = + = = − = = − = =
          (25) 

with corresponding S parameter (see (5)) 

 0 0 0 1 1 0 1 1( , ) ( , ) ( , ) ( , ) 4 ,AMS E m n E m n E m n E m n S= + + − = =
           (26) 

achieving the algebraic maximum value 4.AMS =  

For the case of two qubits with m=3 measurement vectors 0 1 3{ , , }x m m m∈
   for Alice and 0 1 2{ , , }y n n n=

  

for Bob (i.e. a,b = {0,1}, with x,y = {0,1,2}) we obtain from (22) the probabilities and 
correlations 

 

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 0 0 0 0 0 0 1 1 1
1 2 0 1 2 , 1 2 0 1 2 , 0 1 / 2 0 , 0 1 2 0 , 1 1 1
1 2 1 2 1 2 1 2 1 2 1 2 0 0 0 0 0 0 1 1 1

n n n n n n n n n n n n n n n
m m m m m
m m m m m
m m m m m

        
        −       
              

              

    

    

    

( 0, 0 | , ), ( 1, 1 | , ), ( 0, 0 | , ), ( 1, 0 | , ), ( , )

0, 1,

1 2 1 2for ( , ) {( , ),( , ),( , )}, for ( , ) {( , )}.

i j i j i j i j i jP a b x m y n P a b m n P a b m n P a b m n E m n

a b a b
P Px y e e e o o e x y o o

= = = = = = = = = =

⊕ = ⊕ =

⇒ = ⇒ =


 
 
  

∈ ∈

         

(27) 

In (27) e = {0,2} denotes even indices of the measurement directions while o = {1} denotes odd 
indices. We achieve the algebraic maximum for the S parameter, generalizing (26)  defined as  

 0( , ) ( , ) ( , ) ( , ) 4 .e e e o e o o AMS E m n E m n E m n E m n S= + + − = =
         (28) 
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Note that the dimension of the measurement vectors im is set by the dimension 2 1D d= − of the 
Hilbert space of the observer, which simply states that any ( 1) ( 1)D D+ × + matrix can be written in 
term of the ( 1) ( 1)D D+ × + identity matrix and the D generators of su(d). For qubits, D=3 and the 
three generators of su(2) are the usual Pauli matrices .σ  For a given set of m measurement 3-
vectors { }im (vectors in the Bloch sphere, | | 1im ≤

 ) one needs to solve for the correspond dual 
measurement vectors { }jm


satisfying , .i j i jm m δ⋅ =

 


We write these equations as the matrix equation 

3 3m m m m× × ×=M M I  where the ith row (i = {0,1,…,m-1}) of  (the known coefficient matrix) 3m×M is ,im

and the jth column of (unknowns) 3 m×M is .jm


By linear algebra, there exists a right inverse of 

3m×M via 1( )T T
Right Inv

−=M M M M  (if 1( )T −M M exists) if the columns of 3m×M span mR , which can only 
occur for m≤D=3. The systems of equations is under-determined and there exists at least one 
solution (typically and infinite number due to undetermined free parameters). This is the 
situation for probabilities and correlations shown in (24) and (27) for the case m=2 and m=3 
measurement vectors, respectively.  For the m>D=3, there exists at most one, unique solution (if 
any). This is the least squares (LS) solution using the pseudo-inverse 3m×M  given by 

1( )T T
LS

−=M M M M (if 1( )T −M M exits). In general, the LS solution has non-zero residual errors given 
by 3 (3 )= ,m LS m m m× × ×−Err M M I  corresponding to joint probabilities that may be negative for some 
measurements but still satisfy the (total probability) normalization condition 

,
( , | , ) 1, , .

a b
P a b x y x y= ∀∑  Nonetheless, it is instructive to perform numerical searches in the case 

of m>3 of random measurement vectors to seek solutions which yield all joint probabilities in the 
range 0≤P(a,b|x,y)≤1, for all pairs of measurement vectors ,i jm n  for Alice and Bob that still yield 
supra-correlations, i.e. 0 < S-SQ ≤ 4-2√2 = 1.172. 

For the case m=4, a particular solution is shown in (29) that yields S-SQ = 0.102 (for brevity, we 
only show ( 0, 0 | , )i jP a b x m y n= = = =

  and the correlations ( , )).i jE m n   In general, the even/odd structure of 
the correlations ( , )i jE m n   

 

0 1 2 3 0 1 2 3

0 0

1 1

2 2

3 3

0.237 0.395 0.072 0.406 0.052 0.581 0.710 0.623
0.162 0.018 0.381 0.004 0.350 0.927 0.522 0.982
0.469 0.449 0.341 0.457 0.875 0.796 0.36
0.249 0.038 0.481 0.0 4

,

2

n n n n n n n n
m m
m m
m m
m m

− −
− − −

 
 
 
 
 
 

       

 

 

 

 

( 0, 0 | , ), ( , )

5 0.829
0.004 0.847 0.923 0.905

i j i jP a b x m y n E m n= = = =

 
 
 
 


− − −
   

 (29) 

exhibited in the cases m≤3 ((24) and (27)) is destroyed, yet they still produce supra-correlations 
S-SQ ≥0. For each value of m in Figure 24 (left) we searched 105 random trials of the 
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measurement vectors , {0,1, , 1}{ , }i j i j mm n ∈ −

  and plot the value of S-SQ for the first solution encountered 
in which (i) we find proper joint probability distributions 0 ( , | , ) 1i jP a b x m y n≤ = = ≤

  for all 
measurement vectors, and (ii) which produce supra-correlations, S-SQ ≥0. In Figure 24 (middle), 
we plot the minimum 

 

     
 
Figure 24.  Numerical simulations for m={2,3,4,…,12}measurement vectors.  

 
eigenvalue λmin of the matrix O in (22). The negative value of λmin indicates that O is not realized 
by a proper quantum state (i.e. a positive, Hermitian operator, ρ≥0). The rightmost plot in Figure 
24 is the iteration number at which the first set of measurement vectors was found which 
produced supra-correlations. For the values of 13 ≤ m ≤ 20 numerically explored, no supra-
correlations solutions were found within 105 trials (the plot indicates that it becomes 
exponentially hard to find such a solution). 
 

No Signaling (NS) Correlations: 3-Qubits  
The bipartite results of the previous section for n=2-qubits are straightforwardly extended to the 
tripartite case of n=3-qubits with similar implications.  Here the generalization of the bipartite 
CHSH nonlocality parameter S is given by the Svetlichny [Svetlichny87] inequality (SI) relating 
correlations E(a,b,c|x,y,c) between three spacelike separated parties A, B, C 
 

 
( , , | 0,0,0) ( , , | 0,1,0) ( , , |1,0,0) ( , , |1,1,0)
( , , | 0,0,1) ( , , | 0,1,1) ( , , |1,0,1) ( , , |1,1,1).

S E a b c E a b c E a b c E a b c
E a b c E a b c E a b c E a b c

≡ + + −
+ − − −

 (30) 

The SI has the bounds (i) 4CS S≤ = for classical correlations, (ii) 4 2QS S≤ = for quantum 
correlations, with (iii) the algebraic upper bound given by 8,AMS S≤ = achieved when the 
correlations in (14) take the values E=1 if they are preceded by a plus sign, and E=-1 if they are 
preceded by a minus sign. The generalization of the PR correlations of (30) is given by 
[Xiang11] 
 

 
1/ 4 if 

TPR Box: ( , , | , , ) ,
0 otherwise

a b c x y y z x z
P a b c x y z

⊕ ⊕ = ⋅ ⊕ ⋅ ⊕ ⋅
= 


 (31) 
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often referred to as a tripartite PR (TPR) box. The marginal distributions of (15) are again 
isotropic and satisfy the NS constraint, i.e. P(a,b|x,y,z) = P(a,b|x,y)=1/4 for all a,b,x,y,z and 
P(a,|x,y)=P(a|x)=1/2 for all a,x,y, and similarly for all other marginal probability distributions. 

For the case of n=3 qubits (r=2 output measurement values) a,b,c ={0,1), with m possible 
measurement vectors for each observer,  x,y,z ={0,1,…,m-1) we again find that only the highest 
(three party) correlations term and the maximally mixed term are non-zero in the expression for 
OTPR 

 

{ }

{ }

1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
8

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

[

],

where

TPR e e e o o e o o e

o o o e e o e e o

O m n m n m n m n r

m n m n m n m n r I I I

σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ

= ⋅ ⊗ ⋅ + ⋅ ⊗ ⋅ + ⋅ ⊗ ⋅ − ⋅ ⊗ ⋅ ⊗ ⋅

− ⋅ ⊗ ⋅ + ⋅ ⊗ ⋅ + ⋅ ⊗ ⋅ − ⋅ ⊗ ⋅ ⊗ ⋅ + ⊗ ⊗

                 

       
                 

       

2 2 1
0,1,2, 0,1,2,

, , { , , }.e i o i
i i

q q q m n rq q +
= =

= = =∑ ∑
2 2

     

   

 

 

(32) 

The regular, even/odd (mod 2) structure of OTPR in (32) reflects the non-zero structure of the TRP 
probabilities in (31), and can be seen as an additional single qubit generalization of OPR in (22). 
That is, the 2-qubit term in the first curly brackets in (32) 
{( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}e e e o o e o om n m n m n m nσ σ σ σ σ σ σ σ⋅ ⊗ ⋅ + ⋅ ⊗ ⋅ + ⋅ ⊗ ⋅ − ⋅ ⊗ ⋅
               

       
tensor-producted with the 

remaining “even” qubit term ( )er σ⋅ 


, is precisely two-party correlation term that appears in OPR 

in (22). Similarly, the term in the second curly bracket in (32) {( ) ( ) ( ) ( )o o o em n m nσ σ σ σ⋅ ⊗ ⋅ + ⋅ ⊗ ⋅
       

   
 

( ) ( ) ( ) ( )}e o e em n m nσ σ σ σ+ ⋅ ⊗ ⋅ − ⋅ ⊗ ⋅
       

   
tensor-producted with the remaining “odd” qubit term ( )or σ⋅ 


(with the accompanying minus sign) is just the bit flip (e↔o) of the previous two-party 
correlation term. Again, we can achieve the algebraic maximum SAM=8 when each party has (for 
the case of qubits) at most m=3 measurement vectors (for exactly the same linear algebraic 
reason for the n=2 bipartite case). Further, as in the bipartite case, we can find particular NS 
supra-correlation solutions 0<S-SQ≤4-2√2 for m>3, but which become increasingly hard to find 
the larger the value of m.  

4.6 Ongoing cluster state algorithm research 
As part of our theoretical research goals for this project, we have been investigating quantum 
algorithm development in the cluster state paradigm. In almost every implementation of quantum 
computing one of the first algorithms that people have developed and tested is an unstructured 
quantum search algorithm.  In the photonic circuit model of quantum computing [DiVincenzo00] 
this algorithm is structurally very similar to that first proposed by Grover and as such is called 
Grover's algorithm [Grover97].  Since the development of MBQC, and particularly in the 
photonic implementation of MBQC, also called the cluster state model, parallels have been 
drawn between the photonic circuit model and MBQC model.  This includes comparing the 
circuit model of Grover's algorithm to a cluster state model of a four element quantum search 
[Walther05].  Given the difficulty of creating large cluster states this four element search is the 
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largest that has been performed to date.  The, 2n=22=4 element search requires n2=22=4 qubits 
arranged in a square or ``box" cluster state [Walther05]. The next larger 23=8 element search 
requires a significantly more difficult to produce 3 x 3 square cluster state and so on. 

Using the 4-qubit box state, as illustrated in Figure 25, the measurement based quantum search 
appears to be very similar to that of Grover. The input state is similar, the desired output state is  

 

Figure 25. Square cluster states (a) (n=2) 4-element “box,” (b) (n=3) 9-element. 
 

similar, the number of iterations is the same and the oracle's tagging operation appears similar.  
This has led many people to call the MBQC quantum search, Grover's algorithm [Grover97].  
However, there is often a small caveat that is overlooked.  As Zeilinger et al. wrote “Remarkably, 
the inversion-about-the-mean process is `hard-wired' into the structure of the cluster state and is 
automatically implemented” [Walther05]. We found this automatic implementation of an 
inversion about a mean, or equivalently amplitude amplification (when combined with tagging), 
to be an imprecise claim and as such have investigated the measurement based quantum search 
algorithm numerically for larger systems.  We have found that a significant number of non-trivial 
differences exist between the standard description of Grover's algorithm and its implementation 
in the circuit model and the MBQC search algorithm for larger systems.  This leads us to 
question whether the MBQC search algorithm is some variant of Grover's algorithm, or rather a 
different search algorithm all together. 

Two cluster-states able to perform an unsorted search for a) the (n=2) 22=4 element search on 
|𝛹𝑏𝑜𝑥⟩ and b) the (n=3) 23=8 element search on |𝐶9⟩ are shown in Figure 25.  Each circle is a 
single qubit initialized in the |+⟩ state.  The solid lines connecting the circles indicate the action 
of a CZ gate between these qubits, i.e. entanglement between the qubits. Logical qubits are 
arranged in rows of the grid, initially: (1,3) and (2,4) for |𝛹𝑏𝑜𝑥⟩, and (1,4,7), (2,5,8), and (3,6,9) 
for |𝐶9⟩. Figure 25(a) shows the trivial MBQC measurements using one application of an iterator 
I1 (large red dashes acting on columns of qubits) on the 4-qubit box state. Figure 25(b) Shows the 
two iterations for the eight element search I1, I2. All of the measurements in an iterator Ij can be 
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implemented simultaneously. The outcomes of each Ij determine the basis of the next iteration 
Ij+1. (Equivalently Ij determines the Pauli correction factors that can be applied latter in post-
processing).  The output state (small green dashes) holds the logical state at the end of the 
algorithm. The effective logical qubits after the first iteration  I1  are (3) and (4) (the output 
states) for  |𝛹𝑏𝑜𝑥⟩, and (4,7), (5,8), and (6,9) for |𝐶9⟩. 

 
 

Figure 26. Measurement patterns and resulting output for 8-element MBQC search. 
 

Here we pause to note something rather undesirable. If we consider the measurement of the 
vertical columns to be a “step” in the iteration (i.e. 1,2,3 or 4,5,6 from Figure 25(b)), then the 
MBQC algorithm does not have a fixed, constant iterator. The iterator will in general vary 
between steps and it is neither sequential nor random as can be seen from the first column of 
Figure 26. The various iterators must be carefully chosen by the oracle at each step. This appears 
very different from Grover's iterator. In Grover's algorithm the iterator is chosen by the oracle at 
the start of the calculation and then remains a constant regardless of the number of iteration 
steps. Figure 26 shows measurement settings for the 6-qubit measurements that result in each of 
the eight possible outputs of the MBQC search. Note the output state is corrected for overall 
phase, so the tags are not unique. In addition, all measurements presented are presumed to have 
given the “correct” output (i.e. only entries in section 1 of |𝛹𝑜𝑢𝑡⟩ are populated), thus negating 
the need for trivial feed forward corrections typical in MBQC. We have found a way of 
modifying the MBQC search algorithm such that the iterator is a constant not only between 
steps, but is also constant for any desired output. This work an ongoing project for FY13, and the 
research results are being written up for submission to Physical Review A. 

5.0 CONCLUSIONS 
Multipli-entangled photons from a spontaneous parametric down-conversion source  
This report describes research on the Schioedtei source, a unique type II SPDC source design for 
which additional in-depth information can be obtained through our previously published papers 
[Fanto11, Peters12].  Schioedtei generates up to six pairs of entangled photons per pass through 
the type II crystal assembly.  This configuration surpasses the typical single entangled pair 
generated per pass found in standard type II SPDC sources. Concurrently Schioedtei generates a 
variety of states atypical of being produced from a single photon source.  Useable photon 
generation rates (two and four photon) have been observed, thus showing its feasibility as a 



Approved for Public Release; Distribution Unlimited.  
39 

 

direct generation source of entangled photons for quantum optics/entanglement experiments.  
The six pairs of photons produced are directly applicable to the generation of linear, box, 
butterfly and a multitude of other cluster states.  The utility of the Schioedtei source is (i) its 
reduced experimental footprint compared to standard multi-crystal/multi-pass experiments, (ii) it 
generates a variety of entangled/separable states, and (iii) generated states are amenable towards 
cluster state generation. Furthermore, the generated photons from Schioedtei are the input states 
for our bulk optical gates and QPICs.   
 
A multi-layer three dimensional superconducting nanowire photon detector  
The multilayer superconducting number-resolving photon detector represents a significant 
improvement on current single layer meander devices. The device will have significantly higher 
number resolution, while maintaining a useful detection area. It has several parameters which 
can control the reset time to avoid latching while still minimizing the rest time. An array of 
pixels of arbitrary number, size and shape is possible. The active area of the detector can be 
tuned by changing the number or the shapes of the pixels. The fill factor of the detector should 
be at least equal to that of current nanowire meanders and given the potential reduction of the 
current crowding effect significantly higher. As a final note we will point out that the multi-layer 
superconducting number-resolving photon detector can also give a rough spatial distribution of 
the incident photons. These advantages are compelling evidence for the construction and testing 
of multi-layer superconducting number-resolving photon detectors. 
 
Theory/experimental requirements of imperfect two-qubit linear optical photonic gates 
We have shown the theoretical basis and interest for this experiment. At this time it is the only 
apparent means of experimentally confirming the numerical data presented above, which 
quantifies the trade-off between fidelity and success, for the CZ or CNOT gate. The experimental 
setup may naturally be extended to explore the behavior of other quantum gates of interest. The 
components needed for the execution of the experiment are well within the means of many 
experimental groups. The main stumbling block is the expense of purchasing number-resolving 
detectors. However, any group already possessing these detectors should be able to implement 
this scheme with relative ease. 
 
Nonlocality, entanglement witnesses and supra-correlations  
In this area of research we have examined the structure of supra-correlations that are stronger 
than quantum and hence not realizable by a physical (positive) quantum state ρ≥0. The supra-
correlations are intriguing because they arise from valid probability distributions, first put forth 
by Popescu and Rohrlich (PR), that satisfy the no-signaling principle of special relativity as well 
as all the usual normalization condition on the joint and marginal distributions. Thus, the fact that 
nature is not able to realize these supra-correlations points to hidden structure underlying how 
quantum correlations can be distributed amongst spacelike separated parties. Our work has 
examined the structure and distribution of PR correlations in 2- and 3-qubit systems by explicitly 
constructing “states” (not necessarily positive quantum states) that exhibit supra-correlations for 
a fixed, but arbitrary number, of measurements available to each party. We have shown that the 
PR correlations involve only solely n-party correlations amongst the n observers. We have 
extended this study to include n-party correlations that capture the essential features of the PR 
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correlations and do not rely on predetermined measurements between the n participants. 
Additionally, by constructing constraints based on the positivity and purity of an arbitrary n-qubit 
state we have shown the “unreasonableness” of the PR correlations in that they encode more 
correlations than are physically allowed by nature [see details in Alsing12].  In future work we 
will couple this approach of studying how correlations are distributed amongst the n parties to 
the study of quantum entanglement. The study of entanglement [Horodecki09] is an important, 
but difficult field, only well understood for the case of two qubits (both pure and mixed), and to a 
lesser degree, for pure 3-qubit systems. A fruitful area to investigate next are pure 3-qubit 
systems, where a generalized (though non-unique) Schmidt decomposition holds [Acin00]. We 
purport that an examination of the distribution of correlations, bounded by physically imposed 
constraints on e.g. positivity and purity, coupled with the description of entanglement in terms of 
the tangle, as initiated in this work, can shed further light on the classification of pure tripartite 
systems. 
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7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

2D  2 Dimensional 

3D  3 Dimensional 

α-BBO  Alpha barium borate 

AFRL  Air Force Research laboratory  

APD  Avalanche photodiode 

a-WxSi1-x  Amorphous Tungsten Silicon 

ß-BBO  Beta barium borate 

BiBO  Bismuth borate 

BI  Bell Inequality 

CCD  Charged coupled device 

CCM  Coincidence counting module 

CHSH  Clauser-Horne-Shimony-Holt 

CJI  Choi-Jamiolkowski isomorphism 

CNOT  Controlled NOT (gate) 

CW  Continuous wave 

CZ  Controlled Z (gate) 

fs  femtosecond 

GVM  Group velocity matching 

HP  High power 

JAG  Judge Advocate General 

LS  Least squares 

MBQC  Measurement based quantum computing 

MgO  Magnesium Oxide 

MHz  megahertz 

mm  millimeter 
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NbN   Niobium Nitride 

NbTiN           Niobium Titanium Nitride 

NIST  National Institute for Standards and Technology 

nm  nanometer  

NS  No-signaling 

OPO   Optical Parametric Oscillator 

PQNS  Post Quantum No-signaling 

PR   Popescu-Rohrlich 

QM  Quantum Mechanics 

QIS  Quantum Information Science 

QPIC  Quantum Photonic Integrated Circuit 

SHG  Second harmonic generation 

Si   Silicon 

Si-APD  Silicon avalanche photodiode 

SI  Svetlichny Inequality 

SNSPD Superconducting Nanowire Single Photon Detector 

SPCM  Single photon counting module 

SPDC   Spontaneous parametric downconversion 

SR   Special Relativity 

THG  Third harmonic generation 

TPR  Tripartite Popescu-Rohrlich 

UV  Ultraviolet 
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