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1.0  SUMMARY 

The objective of this effort is to facilitate reliable assessment of the durability and damage 
tolerance of composite aircraft in accordance with the strategic needs of the Air Force.  This 
report outlines three critical tasks concerned with the development and implementation of an 
advanced and novel modeling framework for predicting damage accumulation in composite 
structures subjected to monotonic and fatigue loadings. The modeling framework accounts for the 
physical mechanisms of composite failure, fatigue failure in particular, and has been validated 
based on experimental findings. The paragraphs below describe each task and provide a guide to 
the detailed information presented in this report. 

In Task 1, a reduced order computational homogenization method to accurately capture the 
physics of failure in heterogeneous materials is developed (Section 3.2). This multiscale method 
provides a computationally efficient modeling framework for predicting failure of composite 
materials by directly accounting for damage accumulation in the constituent phases and in the 
interface between constituents. An example problem is included to demonstrate the capabilities of 
this technique in the context of particle reinforced composites. 

In Task 2, a new multiple spatio-temporal scale modeling technique for damage 
accumulation in composites subjected to cyclic loading (Section 3.3) is developed. In addition to 
capturing the multiple spatial scale effects addressed in Section 3.2, this model addresses the scale 
disparity between the characteristic time of a single loading cycle and the total lifetime of a 
composite structure. The presented model offers accurate life prediction while only requiring the 
explicit simulation of a small subset of loading cycles over a the life of a structure. 

Task 3 consisted of validation of the model predictions against experimental data and 
gaining an understanding of the evolution of damage processes in carbon fiber reinforced 
polymers (CFRP) under monotonic and cyclic loadings (Section 4). The experiments explored 
failure mechanisms using nondestructive damage inspection techniques and provided 
experimental data for both calibration of all model parameters and validation of the calibrated 
model response. The combined experimental and computational study illuminated the modes and 
progression of failure in monotonically and cyclically loaded CFRP composites. 
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2.0  INTRODUCTION 
 

There is little disagreement that modeling failure in brittle composites is of great 
importance to fully realizing the potential gains such materials offer. Brittle composites, such as 
carbon fiber reinforced polymers, often possess beneficial properties including a high strength to 
weight ratio and high fatigue durability. These properties lend to the usage of composites in 
modern, high-performance structures. However, without a capability to model and predict failure, 
large factors of safety must be incorporated into designs preventing optimum utilization of these 
materials. This leads to a high demand for a failure modeling capability especially within the 
aerospace industry where performance gains are paramount.  

The creation of a predictive failure model for composite structures presents several 
challenges. First, a wide variety of failure mechanisms can occur within the microstructure of a 
composite material. These include diffuse microcracking within the matrix, fiber/matrix 
debonding, delamination, fiber kinking, fiber buckling, and fiber fracture. This multiplicity of 
failure mechanisms interact contributing to the ultimate global failure of a composite structure. 
Second, a size disparity exists between the size scale of constituent materials where failure initiates 
and grows and the total size of the composite structure. The small scale geometry of the 
intermingled constituent materials cannot be resolved for an entire composite structure as this 
would require excessive amounts of computer memory and computational power. A predictive 
model for failure in composite structures must address each of these challenging aspects. 

One of the main foci of this report is predictive modeling of composite materials when 
subjected to fatigue loading. Composites are well-known to have high fatigue durability, but they 
do fail in fatigue. As such, designers must account for fatigue failure which can be both sudden and 
catastrophic. A predictive model for fatigue failures may aid designers to realize the full 
performance potential offered by composites. Modeling fatigue failure in composites comes with 
an additional challenge. Much like the previously discussed spatial scale disparity, the duration of 
a single loading cycle is often significantly shorter than the total lifetime of a composite structure. 
If millions of loading cycles are required to induce global failure, explicitly modeling each cycle of 
loading would be computationally intractable. To model fatigue failure in composites, the 
computational modeling community must treat the temporal scale disparity alongside the other 
challenges of composite failure modeling mentioned above. 

The field of multiscale modeling addresses each of the stated challenges including both the 
multiplicity of failure modes and the scale disparities in space and time. Multiscale modeling takes 
as its aim the development of methodologies that link phenomena occurring at different scales. 
The previously discussed scale disparity between a composite structure and the small scale 
interplay of the composite's constituents provides an example of a problem with multiple spatial 
scales. An effective multiscale method for modeling failure in composites should link the global 
structural response to the multiplicity of microscale composite failure mechanisms in a 
computationally tractable manner. If fatigue failure is considered, the scale disparity between a 
single loading cycle and the lifetime of a structure provides an example of a problem with multiple 
temporal scales. A tractable multiscale model for fatigue failure in composites must allow 
prediction of a composite structure's fatigue life without requiring the resolution of millions of 
loading cycles. If such a multiscale approach can be developed, multiscale modeling provides a 
promising research path directly attacking the most difficult aspects of modeling failure in 
composites. 
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This report presents multiple spatial and temporal scale methodologies that address the 
problem of modeling failure in composites subjected monotonic and fatigue loadings. The spatial 
and temporal multiscale methodologies are designed to operate simultaneously. Within the 
multiple spatial scale methodology, various failure modes can be naturally incorporated including 
fiber failure, fiber/matrix debonding, matrix cracking, and delamination. To obtain computational 
tractability, a spatial order reduction and an adaptive time stepping technique are devised. These 
reductions introduce some error, but high computational efficiency is gained while still 
maintaining the important features of the problem. These new multiscale methodologies attempt to 
directly address the challenges of modeling failure in brittle composites. 

The remainder of this report is organized as follows: Section 3 presents the methods 
developed in pursuit of our goals along with assumptions and experimental procedures. Section 4 
presents the results and discussion of an intensive computational and experimental study 
conducted on the CFRP composite, IM7/977-3. The study was conducted to better understand 
damage growth in composites subjected to monotonic and fatigue loadings and to validate the 
proposed modeling techniques. Section 5 presents the conclusions of this work.  
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3.0  METHODS, ASSUMPTIONS, PROCEDURES 

This section presents all of the experimental procedures and numerical methods used to 
produce the results and discussion of Section 4. We state all assumptions alongside each of these 
procedures and methods. In this work, our aim is to produce accurate and computationally efficient 
multiscale models for damage accumulation in CFRP composites undergoing both monotonic and 
fatigue loadings. A multiple spatio-temporal modeling framework has been developed in 
accordance with this aim and will be presented in this section. In addition, an extensive 
experimental program was undertaken to both validate the modeling framework and to 
experimentally ascertain the nature of damage growth in composites using non-destructive testing. 
Section 3.1 states the experimental procedures employed in the experimental program. Section 3.2 
presents a multiple spatial scale technique for modeling damage growth in monotonically loaded 
composites. In Section 3.3, we extend the method of Section 3.2 by incorporating multiple 
temporal scales allowing efficient modeling of damage growth in composites subjected to fatigue 
loadings. Both Sections 3.2 and 3.3 provide verification studies for the developed techniques. 
 
3.1  Experimental Procedures 
 

A series of monotonic and fatigue tension tests were conducted on the graphite fiber 
reinforced epoxy, IM7/977-3. In-situ acoustic emission monitoring was conducted in order to 
characterize damage propagation with increasing load. X-ray radiography and X-ray computed 
tomography were used periodically to visually inspect the type, location, and extent of internal 
damage. 

 
3.1.1  Material Fabrication 

 
Quasi-isotropic panels were hand laid from unidirectional preimpregnated IM7/977-3 

graphite epoxy. They were cured in an autoclave at a temperature of C177  and a pressure of 689 
kPa. After cure, the panels were cut into multiple test specimens with nominal dimensions of 25.4 
mm x 2 mm x 254 mm. The specimens consisted of 16 plies with s245,90]45,0,[   layup. The 

mean and standard deviation of the fiber volume fraction were determined to be 66.6% and 2.5%, 
respectively, by acid digestion testing. 

 
3.1.2  Testing 

 
Two sets of monotonic tension tests were conducted on an MTS universal testing machine 

according to ASTM D3039 [3]. The first set was conducted at a constant displacement rate of 1.27 
mm/min to obtain the average mechanical properties of 0  and 90  unidirectional composite 
specimens. The second set of tests was conducted on a quasi-isotropic specimen in order to 
thoroughly characterize the quantity and location of damage progression as a function of load. The 
specimen was instrumented with one 25 mm extensometer and two piezoelectric acoustic emission 
sensors. The specimen was loaded and unloaded six times (at 300 MPa, 400 MPa, 620 MPa, 710 
MPa, 845 MPa and failure) such that each loading was higher in magnitude than the previous 
loadings. Non-destructive imaging was used to evaluate the damage accumulation after each 
loading. The final loading caused complete failure of the specimen. A low displacement rate of 
0.127 mm/min was used to better capture acoustic emission events as a function of time. 
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Tension tests with fatigue loading were conducted on an MTS universal testing machine 
according to ASTM D3479 [4]. The tests were conducted on three quasi-isotropic specimens in 
order to thoroughly characterize the quantity and location of damage progression as a function of 
the number of loading cycles. The tests were conducted at a loading frequency of 5 Hz, an r-ratio 
of 0.1, and a maximum stress amplitude of 143 MPa. 143 MPa is 18% of the maximum strength 
(795 MPa) of an independently tested quasi-isotropic specimen. 

 
3.1.3  Acoustic Emission 

 
Acoustic emission (AE) testing was used to detect failure events within the composite 

material. In-situ AE activity was recorded on a Micro-II Digital AE System produced by Physical 
Acoustics Corporation. When a material experiences local failure, it releases strain energy which 
produces a stress wave in the specimen. The AE system detects this acoustic energy and records it 
as a hit. Prior to testing, an AE calibration study was performed to define the appropriate signal 
conditioning parameters. It was found that an amplitude threshold of 48 dB enabled the detection 
of all valid material failure events without recording ambient noise. As recommended by the 
equipment manufacturer, the AE timing parameters used for this study were Peak Definition Time 
= 400 s , Hit Definition Time = 800 s , Hit Lockout Time = 200 s , and Maximum Duration 
= 100 ms. 

 
3.1.4  X-ray Radiography 

 
The monotonically loaded quasi-isotropic specimen was loaded to ultimate failure in 

increments. Once each load level was achieved, the specimen was unloaded and examined using a 
160 kV Philips X-ray system (0.4 mm focal spot) and General Electric CR Tower Computed 
Radiography system using IPS imaging plates and 50 micron sampling. The imaging parameters 
were 26 kV, 3 mA, and 30 s, with a source-to-detector distance of 48 inches. Prior to X-ray 
examination, the edges of the specimen were exposed to zinc iodide, an opaque penetrant, which 
was absorbed into all cracks and voids adjacent to the specimen edge. The optimum view of 
damage was achieved using the General Electric Rhythm image processing software where a level 
III contrast enhancement filter was applied to each X-ray image using noise reduction and latitude 
correction. 

X-ray radiography was also used to evaluate the state of damage accumulation for the 
fatigue loadings at 1500, 25000, 50000, and 100000 loading cycles. Once the chosen number of 
loading cycles was reached, the specimen was removed from the tensile testing machine and 
examined using the Philips X-ray system with the previously described procedures and settings. 

 
3.1.5  X-ray Computed Tomography 

 
For the monotonically loaded specimens, once the planar X-ray showed a significant 

amount of damage, the specimen was also examined using an X-Tek HMX160 CT system. The 
main components included an X-ray source, a rotation stage on which the sample was fixed, and an 
X-ray detector. The maximum resolution, at highest magnification, was approximately 5 m . A 
Molybdenum target was used. The source voltage and the source current were 90 kV and 90 A , 
respectively. The specimen was clamped vertically approximately 33 cm from the X-ray source. 
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The sample translates and rotates over 360  with a step size of 0.5 . Averages of eight projection 
images (1024 x 1024 pixels) were collected at each position. The raw image data was 
reconstructed using CT Pro software. A three dimensional structure of the damaged specimen was 
visualized in order to evaluate the damage through the thickness of the specimen using 3D surface 
rendering techniques. 

Acoustic emission testing (AE), X-ray radiography, and X-ray computed tomography 
(CT), are instrumental in characterizing some aspects of damage progression and model 
validation. AE uses piezoelectric sensors to passively detect acoustic signals emitted by the 
material during damage propagation [48, 33]. The most advantageous characteristic of AE is that 
the sensors detect damage during testing in a range that cannot be distinguished by typical 
instrumentation such as load cells, strain gauges, and displacement transducers. X-ray radiography 
is a common NDI method, in which a two dimensional image is recorded on an imaging plate as 
energy is passed through a stationary material [55, 60]. In-plane delaminations can be easily 
detected due to the variation of X-ray absorption between the material and the void. The difficulty 
with X-ray radiography is the inability to characterize damage as a function of specimen thickness. 
X-ray computed tomography provides an ultra-high resolution three dimensional image through 
the thickness of a material [56]. As X-ray CT equipment has become more readily available, this 
technique is being used for nondestructive evaluation of composites [53]. The primary advantage 
of X-ray CT for composite materials is that delaminations, transverse matrix cracks, and fiber 
fracture can all be adequately characterized [18, 58]. 
 
3.2  Symmetric Reduced Order Computational Homogenization 

    
Mathematical homogenization theory provides a rigorous mathematical framework for 

modeling the response of heterogeneous materials. The mathematical theory was formalized in the 
seminal works of Babuska [6], Bensoussan [10], Sanchez-Palencia [51] and Suquet [57], among 
others. Since the development of the computational framework for the mathematical 
homogenization theory by Guedes and Kikuchi [32], numerous models based on the 
computational homogenization method (CHM) have been proposed to predict the elastic and 
inelastic response of heterogeneous materials including material failure. 

The distinct feature of the computational homogenization method in modeling the response 
of heterogeneous materials is in the evaluation of the constitutive response at a material point of a 
macroscopic (homogenized) medium. In CHM, the constitutive response of the equivalent 
homogeneous medium is evaluated by solving a microscale boundary value problem defined on a 
representative volume element (RVE) of the heterogeneous microstructure. This approach 
decouples the effect of the microstructural topology from the material behavior of the 
microconstituents, as well as the conditions along the microconstituent interfaces. CHM simplifies 
the constitutive modeling process since the response of the microconstituents tend to be simpler to 
model, compared to phenomenological modeling of the combined microstructure-material 
behavior effects. In the case of modeling the failure of heterogeneous materials, a number of 
outstanding computational issues remain, including selection of the boundary conditions for the 
RVE problem in the presence of defects [62, 21], evolution of the RVE domain upon defect 
formation, size scale effects [27], and spurious mesh dependency [9], among others. 

One additional major challenge associated with the computational homogenization method 
is the computational cost associated with solving nonlinear RVE problems to evaluate the 
constitutive response of the macroscopic problem. This problem is alleviated by one or a 
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combination of two approaches. The first is the brute-force parallelization of the multiscale 
problem, in which, the RVE problem evaluations are distributed to a large number of compute 
nodes and evaluated in parallel [20]. The second approach is reduced-order evaluation of the RVE 
problem. Fast Fourier transform [39], proper orthogonal decomposition [63], spectral method [1], 
boundary element method [30], network approximation method [11], and transformation field 
analysis (TFA) [19, 7], and other TFA-based computational methods [24, 15, 38] have been 
effective in evaluating the inelastic response at the RVE level in a computationally efficient 
manner. In a recent study, eigendeformation-based homogenization method (EHM) was proposed 
[45] to efficiently evaluate the RVE level response using a meso-mechanical model. This method 
is derived based on a generalization of the transformation field analysis. By this approach, it is 
possible to account for the interfacial debonding effects, in addition to nonlinear and failure 
processes within the constituent materials of the heterogeneous microstructure. 

This section provides a model reduction methodology for efficient evaluation of the 
microscale boundary value problems of the computational homogenization method. The presented 
approach addresses three of the main shortcomings of the TFA-based model reduction methods 
with the following novel contributions: 

  
1. A new methodology for the determination of the order of the reduced model is presented: 

The accuracy and efficiency of the reduced models clearly depend on their order and ability 
to represent the failure modes within the microstructure. A reduced-order model 
development strategy is devised to identify the model order and the associated coarse 
graining at the microscale for accurate and efficient representation of the failure modes.  
 

2. The proposed reduced order model leads to a symmetric formulation: In the presence of 
interfacial debonding, previous eigendeformation-based homogenization formulations lack 
symmetry, which increases computational cost.  
 

3. The proposed formulation eliminates the spurious residual stress effect upon failure due to 
the coarse representation of the inelastic fields. Some of the transformation field analysis 
based reduced order models (e.g., [24, 45]) lead to spurious residual stress fields upon 
failure in the microscale. The spurious residual stress fields pollute the macroscale problem 
by affecting local stress redistributions.  
 

The proposed reduced order methodology is implemented to model the failure response of brittle 
composite systems, in which the failure is characterized by matrix microcracking, delamination 
and debonding. 

The remainder of this section is organized as follows: The statement of the multiscale 
problem and the associated macroscopic and microscopic boundary value problems are presented 
in Section 3.2.1. In Section 3.2.2, formulation of the symmetric reduced order model for the 
microscale problem is provided. The computational algorithms employed to evaluate the nonlinear 
reduced order model are discussed in Section 3.3.3. Section 3.3.4 provides small scale and large 
scale numerical verification examples conducted on a fiber reinforced matrix composite. 
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3.2.1  Problem Setting 
  
In this section, we present a summary of the microscopic and macroscopic boundary value 

problems associated with the two-scale asymptotic homogenization method for failure response of 
a heterogeneous body. The details of two-scale asymptotic homogenization in the presence of 
inelastic effects are reported in the literature (see e.g., Refs. [61]). 

The problem setting and the multiscale heterogeneous body is illustrated in Fig. 1. The 
heterogeneous domain, denoted by  , is parameterized by the macroscopic coordinate vector, x. 
  is composed of the repetition of a small representative volume element,  , which is 
parameterized by the microscopic coordinate vector, y . The size scale ratio,  , between the 
characteristic lengths of the representative volume element,  , and the macroscopic body,   is 
assumed to be very small, such that a first order asymptotic decomposition of the displacement 
field is sufficient to accurately capture the response of the material. The response fields are 
assumed to be periodic about the representative volume element. The periodicity condition states 
that the value of the response fields are the same at the opposing faces of a parallelepiped RVE 
domain. 

 

    

Figure 1. Macro- and Microscopic Scales 

   

The following notation is employed throughout the section, unless otherwise noted: 
Subscript roman indices denote 1, 2, or 3. Einstein summation convention is adopted for repeated 
indices. Subscripts ix  and iy  following a comma denote differentiation with respect to the 

macroscopic and microscopic coordinate vectors, respectively. Differentiation within parentheses 
denotes symmetric differentiation with respect to the indices. Bold characters denote tensor 
notation. Macaulay brackets denote averaging over the RVE:  
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 yd)(
||

1
= 


   (1) 

 where, ||  is the volume of the RVE. 
The displacement field of the heterogeneous body is expressed using a two-scale 

asymptotic expansion:  
      tututu iii ,,,=,, 1 yxxyx   (2) 

 in which, u  is the macroscopic displacement field, and; 1u  is the variation of the displacement 
field within the RVE. 

 
Microscale Problem 

 
In the presence of failure processes, 1u  is described by the microscopic equilibrium 

equation defined over the RVE (i.e., y )  

                  
           0=,,,,,

,

1
,

jy
kllykklijkl ttutL yxyxxy    (3) 

 in which, L  is the fourth order tensor of elastic moduli, taken to be symmetric and strongly 

elliptic, ux
s=  the macroscopic strain tensor; ),()()(

jxi
s x  denotes the symmetric gradient 

operation with respect to macroscopic coordinates; and   damage induced inelastic strains. In 
this work, the damage induced inelastic strains are modeled using a scalar continuous damage 
mechanics model:  

      ttt ijphij ,,,,=,, yxyxyx   (4) 

in which, [0,1)ph  is a history dependent variable, which represents damage within the 

microconstituents, and   is the strain tensor. Using the scaling relations provided by the 
asymptotic decompositions with multiple spatial scales:  

      tutt
jyiijij ,,,=,, 1

,
yxxyx






  (5) 

Along the microconstituent interfaces, debonding is considered based on 
traction-separation laws given as ( Sy )  

            0,,0;,,,,1,,  ttkttt NNN
int

N yxyxyyxyx   (6) 

             0=,,,,,,1,, ttkttt NNN
int

N yxyxyyxyx   (7) 

         tktt TT
int

T ,,,,1=,, yxyyxyxt   (8) 

in which, [0,1)int  is a history dependent variable, which represents damage along the 

interface; Nt  and N  are the components of the traction and displacement jump normal to the 
interface, respectively;  yNk  and  yTk  the initial interface stiffness in the normal and 

tangential directions, respectively, and; Tt , T  the tangential components of the traction and 
displacement jump along the interface, respectively. The traction and displacement jump 
components are expressed in terms of the local coordinate system formed by the normal and 
tangential directions at the interface point. 

The microscale problem, which is a nonlinear boundary value problem is solved to 
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evaluate the microscale displacement field 1u  by imposing periodic boundary conditions along 
the exterior boundaries of the RVE while restricting the rigid body motion. The microscale 
boundary value problem is quasi-static as indicated by the lack of inertial terms in the governing 
equations. The present formulation is limited to the cases for which the characteristic size of the 
RVE is small compared to the length of the deformation and stress waves. 

 
Macroscale Problem 

 
The macroscopic displacement field is described by the macroscopic momentum balance 

equation defined over  :  

        tuttbt iijxij ,,=,,, xxxx    (9) 

in which, double dot over a field denotes twice differentiation in time;   denotes the 
macroscopic stress tensor, evaluated by volume averaging of the stresses over the domain of the 
RVE  

   ijij t  =,x  (10) 

The stress field is expressed as:  
           ttutLt kllykklijklij ,,,,,=,, 1

),( yxyxxyyx    (11) 

b  and   denote the RVE-average body force/unit volume and the RVE-average density, 
respectively:  

    =;=, ii btb x  (12) 

 
The boundary and initial conditions of the macroscale initial-boundary value problem are 

defined as  
                            0=;;ˆ=, tutu ii xxx  (13) 

                     0=;;ˆ=, tvtu ii xxx  (14) 

                      o0,;;,=, tttutu uii xxx


 (15) 

                      o0,;;,=, ttttnt tijij xxx


  (16) 

in which, û , u


 are prescribed initial and boundary displacements, respectively; v̂  prescribed 
initial velocity, and; t


 prescribed boundary traction. The prescribed initial and boundary 

conditions are assumed to be constant with respect to the microscopic coordinate vector y . 
 

3.2.2  Reduced Order Modeling of the Microscale Problem 
  
The macroscale problem defined in Section 3.2.1 is coupled with the microscale problem 

defined in the same section through the macroscopic constitutive relationship (Eqs. 10 and 11). 
The evaluation of the macroscopic stress at each macroscopic material point requires the solution 
of the microscopic RVE problem associated with that material point. When the finite element 
method is employed to evaluate the macroscale problem, a nonlinear microscale problem must be 
evaluated to update the stress at each integration point for each increment and iteration of every 
time step of the loading history. This is a tremendous computational burden. In this section, a 
novel reduced order model is derived to efficiently compute the microscopic response. To this 
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extent, the microscale displacement field is decomposed into linear and damage induced 
components:  

        tutHtu iklikli ,,~,=,,1 yxxyyx   (17) 

in which, H  is the third order elastic influence function obtained by substituting Eq. 17 into Eq. 3 
and solving the microscale problem in the absence of all inelastic processes (i.e., 0== intph  ). 

u~  is the displacement field induced by the damage processes within the microconstituents and the 
interface:  

           yyxyyyyxyyyx ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,=,,~ dthdthtu m
int
imSkl

ph
ikli   


 (18) 

in which phh  and inth  are the phase damage and interface damage induced influence functions. 
phh  and inth  are the particular solutions to the RVE problems obtained by substituting Eq. 17 

into Eq. 3 and solving the microscale problem in the presence of phase damage (i.e.,  ) and 
interface damage (i.e.,  ), respectively. The governing equations and the discrete approximations 
of the elastic and damage induced influence functions are provided in Ref. [45] and will not be 
discussed herein. In this section, we concentrate on the new model reduction methodology based 
on the microscopic displacement field decomposition provided in Eqs. 17 and 18. 

Substituting Eq. 17 into Eq. 3, premultiplying the resulting equation with phh , and 
integrating over the domain of the RVE yields:  

               0=,,,,~,ˆ,
,

yyxyxxyyyy dtttALh
jymnmnklmnklijmn

ph
ipq    (19) 

in which, uy
~=~ s ; GIA =  is the fourth order elastic strain concentration tensor; I  the 

fourth order identity tensor, and; HG y
s= , the elastic polarization tensor. The use of Eq. 19 

secures a symmetric formulation as subsequently derived. This is in contrast with the previous 
eigendeformation-based reduced order models, which are non-symmetric [45]. Integrating by 
parts, applying divergence theorem and employing the perodicity of the response fields over the 
domain of the RVE yields:  

              0=,,,,~,ˆ, yyxyxxyyyy dtttALg mnmnklmnklijmn
ph
ijpq    (20) 

where, phsph hg y=  is the fourth order phase damage polarization tensor. 

A second set of equilibrium equations are obtained by premultiplying the microscale 
equilibrium equation (Eq. 3) with inth , and following a similar procedure as described above:  

               ttdtttALg pmnmnklmnklijmn
int
ijp ,ˆ,=,,,,~,ˆ, yxyyxyxxyyyy    (21) 

in which, intsint hg y=  is the third order interface damage polarization tensor. Substituting Eq. 4 

into Eqs. 20 and 21 yields:  

 
      
       0=,,~,

ˆ,,,1

yyxxy

yyyyx

dttA

Lgt

mnklmnkl

ijmn
ph
ijqrph





  (22) 

  
      

        ttdttA

Lgt

pmnklmnkl

ijmn
int
ijpph

,ˆ,=,,~,

ˆ,,,1

yxyyxxy

yyyyx







 (23) 

We introduce the following discretizations for damage fields ph  and int , and the 

damage induced fields,   and   using mesomechanical shape functions  
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                          tNt ijphph

n

ijph ,,=,,,
1=

xyyx 



   (24) 

                         tNt iintint

m

iint ,ˆ,=,,ˆ,
1=

xyyx 



   (25) 

in which, n,1,2,=   and m,1,2,=  ; n  and m  denote the level of discretization within 

the phases and along the interface, respectively. ̂  denotes the displacement jump vector in the 

local coordinate system (i.e.,       TTN   =ˆ ). The phase,  
phN , and interface,  

intN , shape 

functions have compact support within subdomains of the phases and the interface  
                     )()( ;0=  yy ifN ph  (26) 

                    SSSifNint  )()( ;0=  yy  (27) 

Employing Eqs. 24 and 25, ~ is expressed in terms of the damage induced strain and 
displacement jump coefficients:  

              tRtPt pijpklijklij ,ˆ~
,

~
=,,~ xyxyyx 







    (28) 

in which, the coefficient tensors P
~

 and R
~

 are:  

                             yyyyy


dNgP ph
ph
ijklijkl




 ,=
~

  (29) 

                               yyeyyyy


dNgR qint
int
ijqSijp ˆ,=

~ 


   (30) 

where qê  denotes the transformation vector between the global and local coordinate systems 

along the interface. 
Substituting Eqs. 24 and 25 into Eq. 22, premultiplying the resulting equation with 

  ŷ
phN , and integrating over the domain of the RVE yields ( n,1,2,=  ):  

 
      

       
        0=,,~,

~
,1

1=

yyxxy

yyyx

dttA

LPNt

mnklmnkl

ijmnijqrphph

n



 



 





  (31) 

 Similarly, substituting Eqs. 24 and 25 into Eq. 23, premultiplying the resulting equation with 
  ŷ
intN  and integrating over the domain of the RVE yields ( m,1,2,=  ):  

 
      

        
           ttdttA

LRNt

pmnklmnkl

ijmnijpphph

n

,ˆ=,,~,

~
,1

1=

xyyxxy

yyyx











 





  (32) 

 Substituting Eq. 28 into Eqs. 31 and 32 results in  

 

              

      0=,ˆ

,,,1

1=

1=1=


































tJ

tFtCt

pijp

m

klijkl

n

klijklph

n

x

xxx














 (33) 
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              

         tttM

tJtDt

pppq

m

klklp

n

klpklph

,ˆ=,ˆ

,,,1

1=

1=

xx

xxx
















































 (34) 

where,  

             
 

          yyyyy dNALPC phmnklqrmnqrijijkl




   ~
=  (35) 

             
 

          yyyyy dNALRD phmnklijmnijppkl




   ~
=  (36) 

             
 

            yyyyy dNPLPF phmnklqrmnqrijijkl




   ~~
=  (37) 

             
 

            yyyyy dNRLPJ phmnpqrmnqrijijp




   ~~
=  (38) 

             
 

            yyyyy dNRLRM phmnqijmnijppq




   ~~
=  (39) 

in which,  C ,  D ,  F ,  J  and  M  are coefficient tensors. The interface traction 

coefficient,  t̂  is:  

     
     yyxyx dttNtt iintSi ,,ˆ=,ˆ 


   (40) 

The relationship between the interface traction and the displacement jump is nonlinear. It 
is, therefore, not possible to derive explicit expressions for the relationship between the traction 
and displacement jump coefficients. In this section, the relationship between the pointwise 
tractions and displacement jumps are adopted to represent the relationship between the traction 
and displacement jump coefficients. This approach has also been employed in a number of 
previous investigations (e.g., [38]). The unilateral contact and adhesion conditions are expressed 
as  

    0, tN x  (41) 

                 0,,1,  tkttt N
Nint

N xxx    (42) 

                  0=,,,1, ttkttt NN
Nint

N xxxx    (43) 

 The tangential adhesion condition is also written in a similar form as  

             0=,,1, tkttt T
Tint

T xxx 



   (44) 

Similar to the interface traction-separation conditions, the nonlinear evolution of the phase 
and interface damage coefficients,   ph  and  int , are expressed in terms of the field coefficients:  

               aijijphphaijijphph qq ,,=,,=   (45) 

                int
aiiintint

int
aiiintint qtqt ,,=,,=   (46) 

in which, q  and intq  are state variables defining the evolution of the phase and interface damage 
variables, respectively, and;  

                   yyxyxyyxyx dtNtdtNt intSph ,,=,;,,=, )(
)(

)(
)(  








 (47) 

Equilibrium equations (Eqs. 33 and 34), in addition to the interface conditions provided by 
Eqs 41-44, and the evolution equations for the phase and interface damage coefficients form the 
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reduced order model. The reduced order model is solved to obtain the unknown coefficients )(  

and )(ˆ  . 

The macroscopic stress tensor is expressed in terms of )( , )(ˆ  , and the macroscopic 
strain tensor by substituting Eq. 17 and 18 into Eq. 11 and using Eqs. 24 and 25 to obtain  

                    







 


 tRtPtLtt pijpklijklklijklphij ,ˆ,,,1=, xxxxx 







  (48) 

 where, the coefficient tensors  L ,  P  and  R  are expressed as  

               
        yyyy dALNL mnklijmnphijkl

)(

||

1
= 



 
 (49) 

               
          yyyy dPLNP mnklijmnphijkl

 ~

||

1
= )(



 
 (50) 

               
          yyyy dRLNR mnpijmnphijp

 ~

||

1
= )(



 
 (51) 

 
3.2.3  Computational Aspects 

  
The implementation of the proposed reduced-order multiscale model is conducted in two 

stages. The preprocessing stage consists of determining the model order, partitioning of the RVE 
based upon the model order, and computing the coefficient tensors associated with the reduced 
order model. The macroscopic analysis stage consists of evaluating the macroscale problem 
described in Section 3.2.1 using a numerical method. In this study, the macroscopic analyses are 
conducted using the finite element method. The commercially available finite element analysis 
program, Abaqus, is employed. Reduced order multiscale models and direct numerical simulations 
for the verification of the proposed approach are conducted using the user supplied subroutine 
capabilities. The remainder of this section discusses a novel strategy for selection of the model 
order and partitioning of the RVE domain, as well as the numerical evaluation of the reduced order 
model. 

 
Reduced-Order Model Development Strategy 

 
The proper partitioning of the RVE domain is critical to the efficiency and the accuracy of 

the proposed reduced order modeling approach. The partitioning of the RVE consists of the 
selection of the number of phase ( n ) and interface ( m ) partitions, as well as the domain of each 
phase ( )( ) and interface ( )(S ) partition. Theoretically, as the number of partitions, n  and m , 
increase, the accuracy of the reduced model increases at the expense of additional computational 
cost. The accuracy of the reduced order model is also strongly affected by the selection of the 
partition domains, )(  and )(S  for a given number of phase and interface partitions. Previous 
and current investigations found significant variability in the performance of a reduced order 
model based on the partitioning strategy. It is possible to adaptively select the order of the 
reduced-order model based on a-priori error measures associated with the state of the failure 
processes during the macroscopic simulations. Such a dynamic partitioning strategy was proposed 
in Ref. [45]. The dynamic strategy resembles h -version adaptive finite element modeling with 
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goal oriented mesh adaptivity [42], or multilevel-multiscale modeling, in which the heterogeneity 
within the process zones are adaptively resolved [28]. The dynamic partitioning strategy, while 
rigorous, comes with a significant increase in computational cost. The additional computational 
cost is due to error assessment and recomputation of the coefficient tensors during the macroscopic 
analysis. 

 

 

Figure 2. The Partitioning and Model Reduction Strategy  

   

In this section, a novel static partitioning strategy is presented, in which, the RVE domain 
partitions and the model order is identified prior to the macroscopic analysis. The present approach 
provides a model selection strategy capable of accounting for the failure modes within the 
microstructure using a small number of domain partitions. The model selection strategy consists of 
identification of the failure paths within the microstructure when subjected to a number of loading 
modes, and partitioning the domain of the RVE as well as the interfaces by selecting each failure 
path as a partition. The failure paths within the microstructure are identified by conducting detailed 
RVE-level simulations. The RVE is subjected to uniform macroscopic strain modes (e.g., uniaxial 
tensile or compression and shear). Figure 2 illustrates the identification of the failure paths in a 2-D 
particle reinforced matrix under uniform macroscopic axial and shear strains. The failure path due 
to each loading condition is marked as an individual partition as shown in Fig. 2. RVE-level 
simulations were conducted by applying Dirichlet conditions along the boundaries when 
determining the failure paths. This, along with the unstructured finite element mesh leads to 
unsymmetric failure paths despite symmetry in the RVE geometry. Periodic boundary conditions 
are maintained along the RVE boundaries in the multiscale model. 

The failure paths associated with different loading modes intersect each other as 
demonstrated in Fig. 2. Hence, the phase partitions are allowed to overlap. The phase shape 
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functions, are selected to accommodate such an overlap. Let the domain of the RVE be partitioned 
into n  possibly intersecting subdomains, denoted by )( , n,1,2,=  . The union of the 
subdomains spans the domain of the RVE:  

 )(

1=





 
n

 (52) 

The intersection between two partitions are denoted as )()()(   . A material point 
within the RVE may lie in all n  partitions or less. The intersections between multiple partitions 
are defined by repetitive Greek superscripts:  )()()()(   . The shape functions 
for the reduced order model, )(

phN , are chosen as:  

  




 

elsewhere0

if
1

=
)(

)(


 i
ph iN yy  (53) 

in which, ni ,1,2,=  , and;  

                         )(

1=

)()(
1 \ 



  
n

 (54) 

                       







 )(

1=

)(

1=

)(
2 \ 







 
nn

 (55) 

The expressions for 
n 3  are derived analogously. The shape functions defined in Eq. 53 

allow the possibility of intersecting shape functions, and satisfy the partition of unity property:  

    yy 1;=)(

1=




ph

n

N  (56) 

The interface shape functions are continuous across the partitions to satisfy the continuity 
of tractions and displacement jumps across the interface partitions. Consider the partitioning of the 
interface S  into m  overlapping subdomains  S . The interface shape function,  

intN , is a 

linear combinations of standard finite element shape functions corresponding to the nodes along 
the interface partition,  S  [45]  

   
 

  SNN a

Sa




yyy ;=int


  (57) 

in which, aN  is the standard finite element shape function associated with the microscopic finite 

element mesh node a . 
 

Numerical Evaluation of the Reduced-Order Model 
 
The evaluation of the reduced order model for the microscale problem constitutes the 

macroscopic stress update at a macroscopic point. The reduced order model is evaluated using the 
active set strategy to account for the contact conditions at the interfaces. 

 Given: At a macroscopic material point x  and at time t , the equilibrium state defined by 

the macroscopic strain tensor t ; the inelastic strain and displacement jump coefficients, )(t  

and )(ˆ t , respectively, where n,1,2,=   and m,1,2,=  ; state variables )(qt  and 



 
Approved for public release; distribution unlimited 

 

17

)(
intt q , which define the evolution of the phase and interface damage state, )( pht  and )(intt , 

respectively; as well as the change in the macroscopic strain state,   (taking an assumed strain 
approach in the numerical evaluation of the macroscopic boundary value problem).  

 Compute: The current values (at time: tt  ) of the inelastic strain and displacement 

coefficients, )(  and )(ˆ  , respectively; the current damage state, )( ph  and )(int ; state 

variables, )(q  and )(
intq  and the macroscopic stress,  . 

In this section, we will employ vector notation using the classical index contractions (e.g., 
   ijklIJ LL )=L ). A left subscript t  indicates the value of the function at time t . A left 

superscript denotes iteration count. The eigendeformation vector is defined as:  

         Tmn  ˆ,...,ˆ,,...,= 11d  (58) 
The active set is defined as the set of all interface partitions in which normal displacement jump 
coefficients are zero:  

     0=;1,...,|=  NmA  (59) 
We define the discrete system of nonlinear equations,  , based on reduced order model as:  

      )()()( ,=   phintph fdKd   (60) 

in which,  

         



 KKK t ph

n

intintph   1=,
1=

)()()(  (61) 

and,  

  
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111111
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ˆˆ

ˆˆ=  (62) 

 K  are symmetric matrices since      TGG =ˆ ,      TFF =  and      THH = . t
tracK  

is defined as  

  
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 (63) 

The symmetry of K  leads to this formulation being denoted as a symmetric formulation. The 
solution of 0=  is evaluated by symmetric nonlinear solvers rather than unsymmetric ones as 
has been the case in previous formulations. f  is defined as  

       



 ff ph

n

ph   1=
1=

)(  (64) 
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and,  

            Tmn  DDCCf ,...,,,...,= 11  (65) 
 

In the case of tensile loading throughout the interface, the active set is empty ( =A ), 
  0=d  solves the reduced order model. When A  a reduced system of equations is 

defined:  
   AAAA fdKd  =  (66) 

in which, Ad  and Af  is constructed by removing each row which corresponds to )(N  for each 

partition   in A , from d  and f , respectively. AK  is constructed by removing each row and 

column, which corresponds to )(N  for each partition   in A , from K . The rows removed 

from Eq. 60 form:  
  

AAAA
fdKd  =  (67) 

The reduced order model is evaluated by ensuring   0=dA  and   0 d
A

 are satisfied. The 

latter condition is necessary to ensure negative tractions upon compressive loading along the 
interfaces. The computational algorithm to evaluate the reduced order problem based on the active 
set strategy is provided in Box 2. The algorithm is initiated by setting the working set, which 
approximates the active set at ( tt  ), to the active set at time t , as well as setting the 
eigendeformation vector to dt  (Step 1). Within each iteration k , the test eigendeformation 

vector, d̂k  is evaluated by a standard nonlinear root finding algorithm, such as Newton-Raphson 
or quasi-Newton methods (Step 2a). In this section, a quasi-Newton SR1 method [41] is employed 
to compute the roots of 

Wk . In this method, a symmetric-rank-one matrix is added to an 

approximation of the Jacobian of 
Wk  at each iteration of the nonlinear solver. In practice, this 

update has been shown to provide very good approximations of the Jacobian resulting in 
superlinear convergence. The advantages of quasi-Newton methods are that they do not require an 
explicit formula for the Jacobian and that the update can be performed on the inverse Jacobian 
alleviating the need to solve a linear system of equations at each iteration. In this paper, the 
algorithm is initialized with a finite difference approximation to the Jacobian. If the computed 
normal displacement jump coefficients violate the impenetrability condition (Steps 2b-c), the 
partition with the most severe violation is added to the working set. 

   
The active set algorithm for evaluation of the reduced order model with unilateral contact 
constraints: 

      
1.  Initialize the algorithm by setting the initial guess for the eigendeformation vector and for the 

active set:  
                             AW ttk =;=1;= 10 dd  

in which, Wk  denotes the working set. The working set is an approximation to the active 
set at iteration k .  
 

2.  Loop over the iterations k :   
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(a) Compute d̂k  by evaluating   0=d̂
Wk  using a standard nonlinear root finding 

algorithm.  
(b) Loop over each interface partition,  , which is not in the working set 
 (i.e., Wk ):   
 

i. If the impenetrability condition at partition   is violated (i.e., 0<ˆ )( N
k ), 

compute the step size 1<<0 )(  for each interface partition violating the 
impenetrability condition as:  

 
)(1)(

)(1
)(

ˆ
=









N
k

N
k

N
k






 

 
(c) If the step size is reduced (i.e.,   )( ):   
 

i. Compute  )(argmin=    

ii. Update the working set:   WW kk =1   
iii. 1 kk   

iv.     dddd 11ˆ=   kkkk    
v. Return to the beginning of the iteration loop  
  

(d) Check if the unilateral conditions are violated in any partition within the working set: 
(i.e., If any component of   0<d

Wk )   

 
i. Compute  

Wkargmin=   

ii. Update the working set:   WW kk =1 ,  
iii. 1 kk   

iv. dd ˆ=kk   
v. Return to the beginning of the iteration loop  

  
(e) Update the eigendeformation vector: dd k=   
 
(f) Update the active set: WA k=   
 
(g) Exit the algorithm  
 

End iteration loop  
     
 When the computed normal displacement jump coefficients do not violate the 

impenetrability condition, the unilateral contact constraints are checked within the active set. If the 
unilateral contact conditions are violated (i.e., if the computed interface traction coefficients are 
positive at partitions within the working set), the partition with the most severe violation (largest 
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positive interface traction coefficient) is removed from the active set (Step 2d). When the 
unilateral contact constraints are satisfied, the active set, the eigendeformation vector, the 
associated internal state variables, and damage variables are updated (Steps 2e-g). 

 
Two-Order Reduced Modeling 

 
Reduced-order models fail to accurately capture the post-failure response of the 

representative volume element. The failure is defined as the loss of load carrying capacity along at 
least one loading direction. For instance, full damage within any one of the failure paths along with 
interface debonding in the RVE illustrated in Fig. 2 cause failure along the associated load 
direction. The reduced order models exhibit spurious residual stiffness upon failure, which 
prohibits proper redistribution of the stresses at the macroscopic scale. While increasing the model 
order diminishes the spurious residual stiffness, this approach increases the computational cost. 

We propose a two-order modeling scheme to eliminate the residual-stress fields upon 
failure without significantly compromising the computational efficiency. In this approach, the 
stresses are computed based on a high order model, whereas the damage coefficients are evaluated 
using the low-order reduced-order model described in Section 3.2.2. The stress-update procedure 
for the two-order reduced model is as follows: 

  
1.  Evaluate the eigendeformation vector, lowd , and damage coefficients, )( ph ; 

lown,1,2,=   and )(int ; lowm,1,2,=   for the low-order model using the 

numerical procedure described previously in this section. lown  and lowm  are the orders 

for the low-order model selected by the reduced-order model development strategy 
described in Section 3.2.2.  

2.  Map the damage coefficients of the low-order model onto the high-order model 
partitions. The mapping of the damage coefficients onto the high-order model partitions 
is trivial when the high-order model is constructed by hierarchical subpartitioning of the 
low-order model. In this study, each finite element within the RVE domain constitutes a 
partition for the high-order model.  

3.  Evaluate the eigendeformation vector, highd , for the high order model by solving the 

linear system:  
 highhighhigh fKd 1=   (68) 

4.  Compute macroscopic stress (Eq. 48), using the eigendeformation vector of the 
high-order model.  

 
 

3.2.4  Numerical Verification 
  
The capabilities of the proposed reduced order modeling methodology are verified against 

direct finite element simulations. The verification study consists of (1) analysis of an RVE 
response and assessment of the reduced order model predictions, and (2) a three-point bending 
problem to assess the capabilities of the reduced order model in capturing the overall failure 
response of macroscopic structures. 
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RVE Analysis 
 
The multiscale methodology described in the previous sections is applied to develop a 

meso-mechanical model for a 2-D composite matrix with a circular inclusion. Figure 2 illustrates 
the geometry of the microstructure. The evolution of damage within the matrix and along the 
interface is modeled based on continuous damage mechanics models proposed in [45] for brittle 
composite constituents. The reinforcement is assumed to behave elastically within the range of 
applied loads. 

The capabilities of the proposed multiscale model in capturing the failure modes for a 
range of loading conditions are verified by comparing the model simulations to direct numerical 
simulation of the representative volume element. The finite element mesh employed in these 
simulations is shown in Fig. 2. The characteristic material length scale associated with the matrix 
constituent is assumed to be 1/8  of the RVE size. The finite element mesh of the RVE is designed 
to have an average size of 1/8  of the RVE length scale to avoid numerical errors associated with 
mesh-sensitivity. The multiscale model is developed based on the reduced order model 
development strategy described in Section 3.2.2. The reduced order model is developed using the 
biaxial tension, uniaxial tension and shear loading modes. The partitioning of the reduced order 
model is shown in Fig. 2. The matrix phase and the interface are modeled using 6 and 4 partitions, 
respectively. This model is referred to as SBU-4-6 in the remainder of this section. 

The performance of model SBU-4-6 is compared to the results of the direct numerical 
simulations for the biaxial, uniaxial and shear loading cases. The force displacement diagrams in 
addition to the damage evolution in the interface and phase partitions are shown in Figs. 3-5. In 
biaxial loading, the failure along the interface is uniform and precedes the failure within the matrix 
phase. Upon interface debonding, the failure within the matrix propagates in the vertical and 
lateral directions. The evolution of damage within the matrix partitions and the interface clearly 
show that the failure modes are accurately captured by SBU-4-6. A similar trend is observed in 
model predictions when subjected to uniaxial (Fig. 5) and shear (Fig. 4) loading conditions. The 
failure mechanisms are captured with good accuracy when compared to the reference direct 
numerical simulations of the RVE. 

 
Figure 3. Stress-strain Response and Damage Evolution within the RVE when Subjected to 

Uniform Biaxial Loading 
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Figure 4. Stress-strain Response and Damage Evolution within the RVE for Shear Loading 

 

 

Figure 5. Stress-strain Response and Damage Evolution within the RVE when Subjected to 
Uniaxial Tensile Loading in the Lateral Direction 

 

 Figure 6 illustrates the capability of the proposed reduced-order model in eliminating the 
spurious residual stresses in the post-failure regime. The spurious residual stresses present due to 
the modeling errors associated with reduction of the model order typically pollute the post-failure 
stress fields in the macroscopic analyses, since this effect partially constrains stress redistribution. 
Figure 6 compares the predictions of the proposed model along with the predictions of an 
eigendeformation-based homogenization model (EHM (0+1) point model) proposed in Ref. [45] 
along with the direct numerical simulations when subjected to uniform biaxial tension. The 
matrix-reinforcement interface is assumed to remain continuously bonded throughout the 
simulation. A 1-partition reduced order model, SBU-0-1, is adopted. The predictions of the EHM 
(0+1) point model clearly demonstrate a residual strength upon failure of the matrix partition, 
while SBU-0-1 eliminates the spurious residual stresses. 
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Figure 6. Stress-strain Response when Subjected to Uniform Biaxial Tensile Loading 
 

 The values of the model parameters used in the reduced order model are different than 
those of the direct numerical simulations. The objective of the proposed reduced order model is to 
capture the failure mechanisms within the heterogeneous material in a computationally efficient 
and accurate manner. The simulations conducted in this section demonstrate that the main failure 
mechanisms are captured with reasonable accuracy with the reduced order model. The model 
parameters for the reduced order model are computed by minimizing the discrepancy between the 
ultimate strength predicted by the proposed reduced order model and the direct numerical 
simulations in a least square sense. From the validation perspective, the reduced order model can 
be adopted to predict the response of heterogeneous systems by calibrating the material parameters 
of the damage models directly, based on experimental observations. A general discussion and 
methodologies for calibration and validation procedures for multiscale models are discussed in 
Ref. [46]. 

 
Crack Propagation in a Beam Subjected to Three-Point Bending 

 
We consider a three-point bending of a cracked composite plate. The predictions of the 

SBU-4-6 model are compared to a fine scale finite element model, which consists of 256 RVEs 
described in previously in this section. The macroscale mesh for the multiscale model consists of 
256 4-noded quadrilaterals. The volume fraction of the circular inclusions is 30%. The circular 
inclusions are assumed to be isotropic and linear elastic with 200=E GPa and 0.3= . Damage 
processes are considered within the central third, and the matrix material is assumed to be linear 
elastic in the remainder of the plate. The elastic properties of the matrix material are 60=E GPa 
and 0.3= . The initial vertical matrix crack is assumed to extend 1/8th of the plate width. 

Figures 7a and 7b illustrate the propagation of the initial matrix crack and damage within 
the matrix as predicted by the direct numerical simulation and the SBU-4-6 model. In these 
simulations, the interface between the matrix and the inclusions are assumed to remain fully 
bonded for the duration of the loading. The propagation of the initial crack is arrested 
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approximately halfway through the plate thickness when shear cracks develop at the edges of the 
applied loading. Figure 7a shows the damage state within the third phase partition depicted in Fig. 
2b. A comparison of the reaction force-applied displacement curves of the numerical simulation 
and the proposed multiscale model is shown in Fig. 8. The reduced-order model slightly 
over-predicts the strength of the composite plate. The errors associated with the SBU-4-6 are due 
to the blunting of the response fields across the failure paths within the microstructure by the 
model-reduction methodology. SBU-4-6 successfully captures the propagation and arrest of the 
initial crack and subsequent shear crack formation with reasonable accuracy. 

 

 

Figure 7. Damage Profile of the 3-point Bending Beam Specimen at the Onset of Shear 
Fracture in the Absence of Interface Debonding Effects: (a) The Prediction of the SBU-4-6 

Model; (b) Damage Distribution Predicted by the Direct Numerical Simulation 
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Figure 8. Comparison of the Load-deflection Curve between the Multiscale SBU-4-6 Model 
and the Direct Numerical Simulation in the Absence of Interface Debonding Effects 

 

Figures 10a and 10b show the failure of the three-point bending plate in the presence of 
interface effects. The direct numerical simulation with the fine mesh shows that the path of crack 
propagation is significantly altered when the inclusion-matrix debonding is considered. The path 
of crack propagation displays a more jagged pattern with interaction between the matrix and 
interface cracks. Figure 10a displays the state of interface damage across the macroscale. The 
extent of interface damage is predicted by the SBU-4-6 model with reasonable accuracy. The 
comparison of the applied force-deflection curve predicted with the proposed multiscale model 
and the direct numerical simulations is shown in Fig. 9. The degradation effect of interface 
debonding on the overall performance of the plate is predicted by the proposed multiscale model 
with good accuracy. 
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Figure 9: Comparison of the Load-deflection Curve between the Multiscale SBU-4-6 Model 
and the Direct Numerical Simulation in the Presence of Interface Debonding Effects 
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Figure 10. The Deformed Configuration of the 3-point Bending Beam Specimen in the 
Presence of Interface Debonding Effects: (a) The Prediction of the SBU-4-6 Model; (b) 

Crack Profile Predicted by the Direct Numerical Simulation 
   
It is important to ascertain the reduced order model’s computational performance, but one 

should note that a running time comparison between the reduced order model and the direct 
numerical simulation depends highly on the specific features of the problem. In this case, the direct 
numerical simulation had a mesh containing approximately 90,000 elements. With this 
configuration, the direct numerical simulation ran over several hours in comparison to the 
SBU-4-6 model which ran in several minutes. If the RVEs had more complex geometry requiring 
higher mesh density, the direct numerical simulation would have had many more elements and 
thus a slower running time. However, if the same number of failure paths were used in 
constructing a reduced-order model for the more complex microstructural geometry, the running 
time of the reduced order model would remain more or less the same. In general, increasing the 
number of elements required in meshing a single RVE increases the relative performance of the 
reduced order model. Though even here, with such a simple RVE, the performance was increased 
by an order of magnitude.  

   
3.3  Multiple Spatio-Temporal Scale Modeling Of Composites Subjected To Cyclic Loading 

    
A plethora of experimental investigations in the past few decades have shed light into the 

failure mechanisms in fiber reinforced composites subjected to cyclic loading (e.g., [16, 31], 
among many others). From the modeling perspective, continuum damage mechanics and fracture 
mechanics models are typically employed to describe failure under cyclic loading. Fracture 
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mechanics based approaches rely on incorporation of distinct cracks at the scale of the structure 
[40], at the scale of the constituents [49], or both [9]. A fracture mechanics based crack 
propagation criteria (e.g., Paris law) and a numerical methodology for crack propagation such as 
mesh refinement [34], virtual crack closure [36], cohesive zone [37], or the extended finite element 
method [35] are employed to describe fracture events within the composite material. In the 
continuum damage mechanics approach, failure is described as the initiation and growth of diffuse 
damage (e.g., microcrack density) typically represented using internal state variables. The 
evolution of diffuse damage as a function of loading history is modeled within the nonlinear, 
path-dependent constitutive modeling context by employing micromechanically-informed 
damage evolution models such as the critical element model [50, 59] and others [2, 52, 54]. 

Modeling complex failure mechanisms and their interactions in composite structures 
subjected to cyclic loading is a multiscale problem in space and time. Multiple spatial scales exist 
since many failure mechanisms initiate and grow at the scale of the composite constituents defined 
by the representative volume of the composite, whereas the overall failure is assessed at the scale 
of the structure or structural component. Multiple temporal scales exist because of the disparity 
between the characteristic loading period, which may be on the order of seconds, and the overall 
life of the structure which may be on the order of years. The computational homogenization 
method [32, 61] based on mathematical homogenization theory [6, 10, 51, 57] is a powerful 
multiscale modeling approach, which has been applied to nonlinear solid mechanics problems 
involving multiple spatial scales including the failure of composite materials. 

Straightforward application of the computational homogenization-based modeling to 
evaluate the cyclic response of composite structures is prohibitive due to the tremendous 
computational cost associated with solving a two-scale nonlinear problem in space for large 
number of time steps necessary to evaluate life under cyclic loading. This difficulty is addressed 
using two approaches: (a) by introducing reduced order (meso-mechanical) models that can 
represent the small-scale response at a fraction of the cost without significantly compromising the 
solution accuracy; and, (b) by introducing cycle-stepping methodologies that eliminate the need to 
resolve each load cycle throughout the life of the structure or structural component. Reduced-order 
models based on transformation field analysis [19], proper orthogonal decomposition [63], 
eigenstrains [23], and others [1, 29, 39] have brought significant progress to reduced-order 
modeling in the presence of multiple spatial scales. The previous section along with the recent 
work of Oskay and coworkers [45, 17] propose a reduced order computational homogenization 
framework based on the eigendeformation idea which provides (a) the ability to model multiple 
failure mechanisms at the microstructure including matrix and fiber cracking, and interfacial 
debonding; and, (b) a hierarchy of reduced order models that can be adapted to meet accuracy 
needs. The tyranny of temporal scales is addressed by employing cycle-jump technique [47] or 
computational homogenization-based temporal multiscale modeling [43, 44, 22] that has been 
employed in the context of single spatial scale continuum damage mechanics and 
damage-plasticity models. More recently, Fish and coworkers applied cycle-jump techniques to 
investigate the fatigue life of composites [25, 26]. Despite progress, computational multiple 
spatio-temporal scale modeling for accurate, efficient and reliable prediction of failure in 
composite structures subjected to cyclic loading conditions remains to be a challenge. 

In this section, a new multiple spatio-temporal scale model for prediction of cyclic failure 
in composite materials is presented. The capabilities of the proposed model are demonstrated 
using a suite of experiments conducted on graphite fiber reinforced epoxy composites. The 
proposed model is devised using the computational homogenization theory with multiple spatial 
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and temporal scales. The idea of almost periodicity of the response fields at the temporal scales 
[43] is employed to account for the presence of irreversible damage fields that violate the 
commonly assumed periodicity conditions of the response fields. The proposed model employs a 
reduced order modeling approach at the spatial domain using the eigendeformation based 
homogenization with symmetric coefficients, and an adaptive time stepping strategy based on the 
modified multistep method to efficiently evaluate the response of a structural component by 
resolving only a fraction of the total number of cycles to failure. The proposed multiscale model is 
calibrated based on a suite of experiments conducted on graphite fiber reinforced epoxy 
(IM7/977-3) composite specimens under monotonic and cyclic loads, and validated against an 
independent set of experiments. The novel contributions found in this section are two-fold: To the 
best of the authors’ knowledge, this is the first attempt to concurrently employ computational 
homogenization method with multiple temporal and spatial scales for failure modeling of 
heterogeneous materials subjected to cyclic loading. The second-order adaptive time stepping 
methodology proposed for adaptive error control in time provides improvements in accuracy 
compared to the first order time stepping approaches commonly employed in the context of cycle 
jump and temporal homogenization. 

The remainder of this section is organized as follows: Section 3.3.1 describes the multiple 
spatio-temporal problem setting. In Section 3.3.2, the computational approach used modeling 
cyclic failure behavior of composites is formulated. Section 3.3.3 and 3.3.4 provide the 
implementation details and the verification of the proposed modeling approach, respectively. 
Section 3.3.5 describes the experiments for calibration and validation of the computational 
approach, the calibration procedure of the material parameters based on the experimental data, and 
the validation of the model. 

 
3.3.1  Problem Statement 

 
Figure 11. Multiple Spatial and Temporal Scales 

   

We consider the progressive failure of a composite structure subjected to cyclic loading 
conditions. Let dR  be the domain of a heterogeneous body, where 1,2=d  or 3  denotes 
the number of space dimensions.   is composed of the repetition of a small periodic 
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representative volume element (RVE), dR , composed of two or more distinct constituent 
materials as illustrated in Fig. 11. The governing equations describing the failure of the 
heterogeneous body are defined as ( x  and ][0, ftt ):  

     0=, xbx   t  (69) 

                ttttt ,,:=,:,1=, xxxLxxLxx     (70) 

    tt s ,=, xux    (71) 

      sx ,,=, ft  (72) 

where, u  denotes displacement field;   the Cauchy stress;   the total strain; 
[0,1)  the scalar damage variable;   =  the inelastic strain tensor; b  the body 

force; and L  the tensor of elastic moduli obeying the conditions of symmetry and positivity. The 
evolution of   is typically nonlinear and history-dependent, and is provided in the functional 
form as a function of strain, stress and additional state variables, s . A superposed dot denotes 
the material time derivative; x  the position vector parameterizing the domain of the structure; t  
the time coordinate; and, )( , )(  and )( s  the divergence, gradient and symmetric 
gradient operators, respectively. The boundary conditions prescribed on the body consist of slowly 
varying and oscillating components as illustrated in Fig. 11.  

                    o0,;;,ˆ=, tttt ui xxuxu   (73) 

                  o0,;;,ˆ= ttt t  xxtn   (74) 

where, û  and t̂  are the prescribed displacements and tractions on the boundaries u  and t , 

respectively ( tu  =  and  =tu ); and, n  is the unit normal to t . The period of 

oscillations is taken to be slow enough that inertial forces are insignificant and the response 
remains quasi-static. The superscripts   and   indicate that the response fields fluctuate in 
space and time, respectively. Double superscript indicates a response field that fluctuates in both 
time and space. The spatial fluctuations arise due to the fluctuating material properties within the 
RVE, whereas temporal fluctuations are due to the fast oscillatory component of the loading. The 
fluctuating spatio-temporal response is represented by introducing microscopic and 
microchronological scales parameterized by /= xy  and  /= t , respectively; and, 1<0 =  
and 1<0 =  are scaling parameters. The original response fields that fluctuate in space and time 
are expressed as:  

    )(,),(,=, ttt  xyxx  (75) 
where,   denotes an arbitrary response field. The macroscopic spatial derivatives of a response 
field are obtained through the chain rule:  

      yxyxx yx ,
1

,= 


   (76) 

in which, )(x  and )(y  are gradient operators with respect to macroscopic and microscopic 

coordinates, respectively. All response fields are assumed to be locally periodic with respect to the 
microscopic coordinates within the RVE throughout the deformation process: 
   ykyxyx ˆ,=,  , where, ŷ  denotes the periods of the microstructure; and k  is a dd   

diagonal matrix with integer components. We consider the following spatial homogenization 
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operator:  

 y
y

d 


||

1
=  (77) 

where, ||  denotes the volume of the RVE. 
The macrochronological derivative of a response field is expressed using the chain rule as:  

        


 
 ,

1
,=,= ,, tttt t   (78) 

where, a comma followed by a subscript variable t  and   denotes the partial time derivative 
with respect to the macrochronological and microchronological coordinates, respectively. In 
contrast to spatial variability, local periodicity is not a valid assumption for the response fields that 
vary in time. This is due to the presence of irreversible mechanisms associated with damage 
accumulation during a load cycle. The response fields are therefore assumed to be almost periodic, 
which implies that at neighboring points in a temporal domain homologous by the load period, the 
change in the value of a response function is small but does not vanish [44, 22]. Let:  

 






dt ),,,(

1
= 0

0
0

yx  (79) 

denote the temporal averaging operator; and, 0  denote the period of scaled cyclic load (

][0, 0  ). In the rate form, the almost periodic temporal homogenization operator is [43]:  

 )()(
~

=)()(
~

,, ttt aptt  M  (80) 

which satisfies the weak convergence property with respect to an arbitrary homogenization 

operator, )(
~
 ; and,   /= , ap . Following the ideas of spatial homogenization theory, the 

natural choice for the temporal homogenization operator is the temporal averaging operator 
provided in Eq. 79. From the computational perspective, it is more convenient to choose a 

fixed-point operator that has the distributive property (i.e.,  ~~=
~

=  ) as evidenced by 

the ensuing formulation. In this study, ,0),,(=),,(
~

tt yxyx   is adopted. 
 

3.3.2  Computational Model 
 
This section describes the multiscale spatio-temporal modeling approach to evaluate the 

failure response of heterogeneous bodies subjected to cyclic loading governed by Eqs. 69-74. The 
eigendeformation-based homogenization method with symmetric coefficients [17] is employed to 
address the multiple spatial scales, whereas temporal homogenization with almost periodic fields 
is employed to efficiently predict the life of a structure without resorting to full cycle-by-cycle 
analysis. The cyclic damage evolution law employed to idealize the failure response of composite 
constituents is presented. 

 
Multiple Scale Model 

 
We start by expressing the displacement field of the heterogeneous body using a two-scale 

asymptotic expansion:  
       ,,,,,=,,, 1 ttt yxuxuyxu   (81) 
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in which, u  and u  are the macroscopic and microscopic displacement fields, respectively. The 
governing equations are decomposed into macroscopic and microscopic problems through 
asymptotic analysis of the governing equations, which consists of substituting Eq. 81 into Eqs. 
69-74, and collecting the same order terms of the resulting decompositions. The two leading order 
equilibrium equations are:  

                      0=,,,:)( 1  tO yxy   (82) 

            0=,,,,,,,:(1) 1 yxbyxyx yx   ttO  (83) 

where, )(x  and )(y  are divergence operators with respect to macroscopic and 

microscopic spatial coordinates, respectively; and, the body forces are assumed to remain constant 
in time for simplicity. The first and second order stress fields are:  

                ,,,)(,,:,,,1=,,, 1 tttt s yxuxyLyxyx y  (84) 

                ,,,)(:,,,1=,,, 11 ttt s yxuyLyxyx x  (85) 

in which, )( s
x  and )( s

y  are symmetric gradient operators with respect to the macroscopic and 

microscopic spatial coordinates, respectively; and, )(= ux
s  is the macroscopic strain tensor. 

Applying Eq. 78 to the damage evolution equations and collecting the same order terms 
yield:  

                        s,,=:)( 0
,

1   fO   (86) 

                         s,,=:(1) 1
,  fO t  (87) 

where, the evolution functions 0f  and 1f  are derived based on the prescribed evolution law f. 
The boundary data applied to the heterogeneous body is composed of a slowly varying and 

a periodic oscillatory component:  
       ,ˆ,ˆ=,ˆ 10 xuxuxu tt  (88) 

       ,ˆ,ˆ=,ˆ 10 xtxtxt tt  (89) 
Applying spatial averaging (Eq. 77) to the (1)O  equilibrium equation (Eq. 83), exploiting 

the local periodicity of the stress fields in space, and applying the almost periodic temporal 
homogenization operator yields the macroscale equilibrium equation. The resulting equilibrium 
equation along with the spatio-temporally homogenized first order stress field, and the boundary 
conditions provide the macrochronological-macroscopic boundary value problem. 

  Macrochronological - Macroscopic Problem: Given: average body force, b , 

boundary data 0û  and 0t̂ , and the solution of the macrochronological-microscopic problem; Find 
the macroscopic displacement field, u

~
, such that ( ][0, ftt ):   

      x0xbxx ;=,
~

t  (90) 

          xuyLx
yy ;)~(

~
:~1=,

~ 1st   (91) 

 ut xxuu );,(ˆ=
~ 0  (92) 

 ttt  xxtnx );,(ˆ=),(
~ 0  (93) 

Applying the temporal homogenization operator to the )( 1O  equilibrium equations (Eq. 82) 
along with the constitutive equation for the leading order stress (Eq. 84), and employing periodic 
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boundary conditions for the microscale displacement field, the macrochronological-microscopic 
boundary value problem is obtained. 

  Macrochronological-Microscopic Problem: At a fixed macroscale material point 

x


; Given: macroscale strain, ~, and the tensor of elastic moduli, L ; Find the displacement 
field, 1~u , such that:   

          y0uyL yy ;=)~(
~

:~1 1s  (94) 

     yxsx );,(~,~,~=),(~ 1 tft ap

  (95) 

 yu periodicon1~  (96) 
The macro- and microscopic problems associated with the fast time scale at a fixed slow time 
coordinate, t , are obtained based on similar algebra, but without applying the temporal 
homogenization operator to the governing equations and considering the damage evolution 
equation with respect to the fast time scale (i.e., Eq. 86). The resulting microchronological - 
macroscopic and microchronological - microscopic problems are stated as follows: 

  Microchronological - Macroscopic Problem: At a fixed macrochronological time 
][0, ftt 


, Given: average body force, b , boundary data, û  and t̂ , and the solution of the 

microchronological-microscopic problem; Find the macroscopic displacement field, u , such that 
( ][0, 0  ):   

      x0xbxx ;=,,  t


 (97) 

        xuyL
yy ;)(:1= 1s  (98) 

 ut xxuu );,,(ˆ= 


 (99) 

 tt  xxtn );,,(ˆ= 


 (100) 

  Microchronological-Microscopic Problem: At a fixed macroscale material point 
x


 and a fixed macrochronological time ][0, ftt 


; Given: macroscopic strain,  , and the 

tensor of elastic moduli, L ; Find the microscopic displacement field, 1u , such that:    
          y0uyL yy ;=)(:1 1s  (101) 

     ysyx ;,,=),,,( 0
, ft


 (102) 

 yu periodicon1  (103) 
The macrochronological and microchronological problems are coupled through the almost 
periodic rate operator that defines the evolution of the temporally homogenized response fields 
(i.e., Eq. 95). Therefore, the evolution of the macrochronological fields at each 
macrochronological time coordinate requires the solution of the microchronological problem 
associated with that time coordinate. The macroscale problems at the macrochronological and 
microchronological time scales are coupled with the respective microscale problems through the 
constitutive relationship (Eq. 98). The evaluation of the macroscopic stress at each macroscopic 
material point requires the solution of the microscopic RVE problem associated with that material 
point. When the finite element method is employed to evaluate the macroscale problem, a 
nonlinear microscale problem must be evaluated to update the stress at each integration point for 
each increment and iteration of every time step of the loading history. This is a significant 
computational burden. 
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Reduced Order Spatial Homogenization 
  
We employ the eigendeformation-based reduced order homogenization method with 

symmetric coefficients (sEHM) to reduce the computational cost associated with evaluating the 
coupled nonlinear micro- and macroscopic problems. sEHM is introduced in Section 2 and a brief 
summary is provided herein. The premise of sEHM is to devise a low-cost approximation to the 
nonlinear microscale boundary value problem defined over the representative volume elements 
based on the idea of precomputing certain microstructural information (e.g., concentration tensors, 
localization operators, influence functions) through linear elastic simulations prior to the analysis 
of the macroscale structure. 

The microscale displacement field is expressed as:  

           yyxyyhxyHyxu ˆ,,ˆ,:ˆ,,,:=,,,1 dttt    (104) 

in which, H  is the elastic influence function (a third-order tensor) obtained by substituting Eq. 
104 into the microscale problem, and evaluating the microscale problem in the absence of damage; 
and h  is the phase damage induced influence function provided by the particular solutions to the 
RVE problems obtained by substituting Eq. 104 into the microscale problem, and solving the 
microscale problem in the presence of phase damage (i.e.,  ). The governing equations and the 
discrete approximations of the elastic and phase damage induced influence functions are provided 
in Ref. [45]. Meso-mechanical shape functions are employed to discretize damage and damage 
induced inelastic strain fields:  

             



,,,=,,,
1=

tNt
n

xyyx   (105) 

in which,  N  are the phase shape functions. We consider a partitioning of the RVE domain into 

n  non-overlapping subdomains, )( , such that   =)()(    if  . The phase shape 
functions are taken to be piecewise constant functions forming a partition of unity within the RVE:  

   


 

elsewhere

if
N ph

0

1
=

)(
 y

y  (106) 

and,    and    are damage variable and inelastic strains averaged over the partition, )( . 
Substituting Eqs. 104-106 into the microscale problem (Eqs. 3.1), and considering variational 
arguments (see Ref. [17]), the governing equation of the microscale problem is reduced to the 
following algebraic form:  

   n
nn

,1,2,==:ˆ:ˆ1 )()(

1=

)()(

1=

 



 




















 


 0BA  (107) 

in which, )(ˆ A  and )(ˆ B  are coefficient tensors computed as a function of the influence 

functions, H  and h  as well as the elastic properties, L . The expressions for )(ˆ A  and )(ˆ B  

are found in Eqs. 35 and 37 where   
ijklijkl C=)ˆ( )(A  and   

ijklijkl F=)ˆ( )(B  in this case. The 

macroscopic stress tensor is expressed in terms of the partition average damage variable and 
inelastic strains as:  
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in which, )(L  and )( P  are coefficient tensors whose expressions are found in Eqs. 49-50. The 
macrochronological counterparts of the reduced order microscopic equilibrium and macroscopic 
stress are obtained by applying the almost periodic temporal homogenization operator to Eqs. 107 
and 108. 
 
Cyclic Damage Model 
 

 
Figure 12. Effect of the Cyclic Damage Sensitivity Parameter, p , on the Cyclic Stress-strain 

Relationship 
 

Continuum damage mechanics (CDM) is employed to describe the evolution of damage 
within a phase partition (i.e., )( ). In contrast to monotonic CDM models, the evolution law is 
allowed to accumulate damage at subcritical loading levels to permit sensitivity to cyclic loading. 
Such a model previously employed in Refs. [25, 43], is adopted in this study:  
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where, p  is the cyclic damage sensitivity parameter; 


  denotes MacCauley brackets;   the 

damage evolution law under monotonically increasing loads; and )(  the damage equivalent 
strain:  

 )()()()( ::
2

1
=   L  (110) 

in which, )(L  is the tensor of elastic moduli of the constituent occupying )( ; and, )(  is the 
average strain within partition,  . The damage evolution under monotonic conditions is idealized 
based on a smooth evolution law:  

      
 )(

)()()()(
)(

arctan
2

arctanarctan
=









b

bba




  (111) 

where, )(a  and )(b  are material parameters associated with the constituent occupying domain 
)( . 

The cyclic damage sensitivity parameter, p , which controls the rate of damage 
accumulation with respect to a load cycle as illustrated in Fig. 12, is taken to be of the form:  
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)( )(=   cccp   (112) 
)(

0
c , )(

1
c , and )(

2
c  are parameters that account for the sensitivity of fatigue strength to the 

maximum applied loading. A quadratic form is chosen to model the fatigue behavior observed in 
the experiments. )(

max
  is the maximum value of the damage equivalent strain during the history of 

the material point as defined below.  
  tTTt

T
0|)(max=)( )()(

max
   (113) 

Applying the chain rule in the time domain (Eq. 78) to the damage evolution equation (Eq. 
109), collecting the terms based on the order of the temporal scaling parameter,  , and applying 
the temporal homogenization operator to the (1)O  equation yields:  

 
 




><== )(
,)(

)(
0)(

,





 




d

d
gf p  (114) 

 
 




>~<~

~
==~ )(

,)(

)(
1)(

,





 


 t

p
t d

d
gf  (115) 

Microchronological Problem: Given: Coefficient tensors, )(L , )( P , )(ˆ A  and 
)(ˆ B ; average body force, b , boundary data û  and t̂  Find: at a fixed macrochronological time 

][0, ftt 


 the macroscopic displacement field, u , which satisfies ( ][0, 0  ):  
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3.3.3  Computational Implementation 

  
The microchronological- and macrochronological-reduced order multiscopic problems are 

described in the previous section. Given the coupling terms, the micro- and macrochronological 
problems are evaluated using the nonlinear finite element method. A commercial finite element 
software (Abaqus) along with the user material subroutine utility (UMAT) is employed to solve 
these problems. In this section, we focus on the implementation details of the coupling between the 
micro- and macrochronological problems. The proposed solution strategy is implemented with an 
adaptive macrochronological time stepping methodology.   

The macrochronological system of equations for evaluation of a macroscale time step. 

Macrochronological Problem: Given: coefficient tensors, )(L , )( P , )(ˆ A  and )(ˆ B ; 
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average body force, b , boundary data, 0û  and 0t̂ ; the almost periodic damage function, ap . 

Find: the displacement field, u
~

, which satisfies ( ][0, ftt ):  
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The overall solution strategy for the evaluation of the coupled multiscale system is 
illustrated in Fig. 13. Consider a discretization of the macrochronological time domain, 
 fkiii tttttt =,,,,,0,= 110    in which it  denotes the thi  macrochronological time step:  

 fj

i

j
i ttt 

1=

=  (116) 

where, 1=  iii ttt  and 0=0t . A driver program (implemented in the Python programming 

language for compatibility with Abaqus) controls the execution of the solution procedure. At each 
macrochronological time step, the time step size as well as the almost periodic damage field are 
estimated and passed to the macrochronological - multiscopic problem, which is evaluated for 
macrochronological response fields. The macrochronological response fields provide the initial 
state of the microchronological - multiscopic problem at fixed time it  due to the particular choice 

of the temporal homogenization operator. The point-wise value of the almost periodic damage 
field, )(

ap
 , at the current time step is computed and passed to the driver routine for computation of 

the next time step size. 
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Figure 13. Implementation Strategy of the Coupled Micro- and Macro-chronological 
Problems 

 
Adaptive Macrochronological Time Stepping 

  
The proposed solution algorithm outlined in Fig. 13 requires the resolution of k  cycles 

throughout the loading history, which are evaluated by the microchronological problem (Box 13). 
The accuracy and efficiency of the proposed approach is based on the appropriate selection of the 
macrochronological time steps, as well as the accurate approximation of the evolution of the 
almost periodic component of the damage field. In this study, the almost periodic damage fields 
are approximated based on a modified quadratic multistep method [13], whereas the 
macrochronological time step size is chosen adaptively based on a maximum damage 
accumulation criterion. It is assumed that damage accumulation is primarily due to cyclic loading 
and slow loading component remain smooth during the loading history. 

Let )(' tD  be a matrix of almost periodic damage rate fields:  
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in which, gn  denotes the total number of integration points within the macroscopic domain; gx  

denotes the value of the function at integration point g . Considering a smooth damage growth 
between macrochronological steps 1i  and 1i , the evolution of )(' tD  is approximated by a 

linear function around it :  

 ],[;)()(' 1 iiiiii ttttttt cbPD  (118) 

The coefficients of the linear approximations are obtained by imposing the following conditions 
on iP :  

 )('=(0) ii tDP  (119) 

 )('=)( 1 iii tt DP  (120) 
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Substituting Eqs. 119, and 120 into Eq. 118, the rate of the almost periodic damage fields is 
obtained as:  

  1)(')(')('=)()(' 1
11 
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 ii

i

i
iii tt

t

t
ttt DDDPD  (121) 

Let 1 iD  define the matrix of cyclic loading induced damage accumulated between time 

it  and 1it . Employing the linear approximation provided by Eq. 118 yields:  
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The macrochronological step size ( 1 it ) is chosen such that the maximum damage accumulation 

within a step does not exceed a threshold value:  
 maxmax1 Di  D  (123) 

where, maxD  is the damage accumulation threshold, and 
max
  denotes the matrix max norm. 

The loss of load carrying capacity during a microchronological problem following a long 
macrochronological step indicates a possible underestimation of damage accumulation during the 
macrochronological time step. This is due to the deviation of the damage accumulation from the 
piecewise quadratic approximation within the time step. When failure is observed, the previous 
macrochronological step size is shortened, and the previous macrochronological time step is 
repeated. The time step shortening is repeated until desired accuracy of the time-to-failure is 
achieved. The overall algorithm is presented below: 
    1.  Initialize algorithm: 0=i .  
    2.  Evaluate macrochronological step (Box 4).  
    3.  Evaluate microchronological problem at 0=t  (Box 13).  
    4.  Set 1=i ; 01 =t , where 0  is the duration of a single load cycle; (0)'=)(' 1 DD t . 

    5.  Evaluate macrochronological step.  
    6.  Evaluate microchronological problem at 1= tt .  
    7.  Set 2=i   
    8.  While ki  :   
        (a) Calculate it  using Eq. 123.  

        (b) Calculate )(' itD  using Eq. 121.  

        (c) Evaluate macrochronological step.  
        (d) Evaluate microchronological problem at itt = .  

        (e) If {failure event & toltt ii  /  }:   

            i.  ii tct  ,max 0  and go to step (b).  

        (f) Else if {failure event & toltt ii </  }:   

            i. Structural failure: Stop algorithm.  
        (g) 1 ii   
    9.  End.  
The proposed algorithm is initiated by evaluating two macrochronological time steps and two 
microchronological problems that corresponds to the first two load cycles, noting that a single load 
period is denoted by 0 . The almost periodic field is taken to vary linearly between the first and 
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second load cycles, and quadratically between the remaining macrochronological time steps. 
1<<0 c  is the step cutback factor when a failure event is detected. The failure event is defined as 

a loss of load carrying capacity of the structure, detected as lack of convergence that occurs during 
the evaluation of the microchronological problem. The macrochronological time step size cannot 
be smaller than a single load period ( 0= ). Structural failure is taken to occur when the failure 

event is detected, and the ratio of the current macrochronological time step size and the current 
macrochronological time is less than a specified tolerance ( tol ) value. The cutback iterations 
when a failure event is detected are controlled by the Python driver program, which employs the 
restart capability of Abaqus to iterate the evaluation of macro- and micro-chronological problems 
until convergence. 
 
Improved Adaptive Stepping Criterion 

 
An improved adaptive step size criterion can be developed by considering adaptive 

Runge-Kutta methods used in solving initial value problems. Adaptive Runge-Kutta methods 
estimate the truncation error by comparing an order n  method to an order 1n  method while 
adapting the step size according to this estimate. In similar manner, we consider a smooth damage 
growth between macrochronological steps i  and 1i  of one order less than Eq. 118 (i.e. a 
constant function).  

  10,;)()('  iiii ttttt bPD  (124) 

ib  is attained by imposing Eq. 119 on Eq. 124.  

 iii t bDP =)('=(0)  (125) 

We reach an expression for iP .  

 )('=)( ii tt DP   (126) 

In parallel with Eq. 122, the matrix of cyclic loading induced damage accumulated between times 

it  and 1it  is approximated by integrating Eq. 126 from 0  to 1 it .  
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Let 2
1 iD  be the second order approximation to 1 iD  in Eq. 122 and 1

1 iD  be the order one 

approximation of 1 iD  in Eq. 127. The step size is adaptively chosen so that the difference 

between 2
1 iD  and 1

1 iD  is less or equal to a tolerance denoted tol .  
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Assuming equality in Eq. 128, a closed form expression is reached for the step size 1 it .  

 
max1

1 )(')('

tol2
=


 




ii

i
i tt

t
t

DD
 (129) 

To utilize the new adaptive stepping criterion within the previously stated algorithm, replace Eq. 
123 in step 8a with Eq. 129. Eq. 129 is ill-defined if 0=)(')('

max1 ii tt DD . Therefore, if 

<)(')('
max1 ii tt DD , Eq. 123 is solved instead to determine 1 it .   is a small numerical 

parameter. 
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3.3.4  Model Verification 

The proposed adaptive macrochronological time stepping strategy is verified by comparing 
the performance with direct cycle-by-cycle simulations. In the direct cycle-by-cycle analysis, each 
load cycle throughout the loading is resolved, without resorting to the multiple temporal scale 
strategy. The simulations were conducted on a unidirectionally fiber-reinforced matrix unit cell. 
The fiber is taken to remain elastic throughout the loading period, whereas the damage 
accumulates within the matrix as a function of loading cycles. The failure response in the matrix 
phase is approximated using a 4-partition reduced-order model. A uniform tensile strain is applied 
transverse to the reinforcement direction. The strain amplitude is varied between zero and the 
maximum strain throughout the loading history. 

Figure 14 illustrates the variation of the damage variables within the unit cell as a function 
of applied loading cycles. Only two of the four matrix partitions show appreciable damage. The 
proposed model simulations are conducted by setting maxD  = 0.5%, 1%, and 2%. A cutback 

factor of 0.5 is employed ( 0.5=c ). The proposed adaptive time stepping strategy required 109, 
68, and 43 resolved microchronological load cycles for maxD  = 0.5%, 1%, and 2%, respectively, 

compared to 900 cycles resolved in the direct cycle-by-cycle approach. The model captures the 
failure response with good accuracy, particularly when maxD  = 0.5%. 

 

 

Figure 14. Comparison of the Cyclic Damage Accumulation Computed using the Direct 
Cycle-by-Cycle Approach and Proposed Multiscale Model with Adaptive Time Stepping 
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Figure 15. Comparison of the Cyclic Damage Computed using the Direct Cycle-by-Cycle 
Approach and Proposed Model with Adaptive Time Stepping with Smaller Loading 

Amplitude 
 

   
The efficiency of the proposed approach is further illustrated by conducting simulations 

when the unit cell is subjected to a slightly smaller loading amplitude. In this analysis, the 
cycle-to-failure of the first partition is 677 (in contrast to 377 of the previous simulations). The 
simulations are conducted for 1800 cycles. Figure 15 illustrates the variation of damage variables 
within the unit cell as a function of applied loading cycles as computed by the reference 
simulations and the multiple spatio-temporal model with adaptive time stepping methodology. 
The total resolved cycles of the proposed adaptive time stepping strategy remain largely the same (

maxD  = 0.5%, 1%, and 2% are 118, 72 and 47 respectively), pointing to significant 

computational advantage in high cycle failure conditions. 
 

Improved Adaptive Stepping Criterion Verification 
  
In Fig. 16, the improved adaptive stepping criterion is verified by comparing three different 

values of tol to a direct cycle-by-cycle simulation for the same loading case used in Fig. 14.  
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Figure 16. Comparison of the Cyclic Damage Accumulation Computed using the Direct 
Cycle-by-Cycle Approach and the Multiscale Model with Improved Adaptive Time 

Stepping 
 

The three values of tol were chosen to produce similar accuracy to the three values of maxD  in 

Fig. 14 (i.e. 0.5 %, 1%, and 2 %). The selected tol values were 0.001, 0.002 , and 0.004 , 
respectively. When comparing the new adaptive time stepping criterion with 0.001=tol  to 

0.5%=maxD , the same accuracy was maintained while resolving only 53 loading cycles as 

compared to resolving 109 loading cycles with the previous adaptive stepping criterion, a 
significant computational savings. 
 

 
3.3.5  Assessment of Model Capabilities 

  
The capabilities of the proposed multiple spatio-temporal methodology are assessed 

through the investigation of graphite fiber-reinforced epoxy composites (i.e., IM7/977-3) 
subjected to cyclic loading. This section presents the experiments conducted to study the cyclic 
response of the composite; calibration of the model parameters based on monotonic and cyclic 
experiments, and; validation of model predictions based on acoustic emission testing. 

 
Experiments 

 
A suite of experiments was conducted to calibrate the material parameters and assess the 

validity of the proposed multiscale model. Composite specimens with three separate layups of 
unidirectional laminae were tested under uniaxial monotonic and cyclic loading conditions: (a) 
Zero degree specimens consist of eight unidirectional plies with fibers oriented parallel to the 
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loading direction; (b) Ninety degree specimens consist of sixteen unidirectional plies with the 
fibers oriented perpendicular to the loading direction; and (c) Quasi-isotropic specimens with the 
layup of s245,90]45,0,[  . Specimen configurations are summarized in Table 1. The mean fiber 

volume fraction of the specimens is 65.6%, which was determined based on acid digestion testing. 
The results of experiments conducted on zero and ninety degree specimens are employed in the 
calibration of the parameters of the proposed multiscale model, whereas the quasi-isotropic 
specimens are employed in the validation analyses. 

 
Table 1. IM7/977-3 Specimen Dimensions 

 
Fiber 

Orientation 
Number of 

Plies 
Length [mm] Width [mm] Thickness [mm] 

0  8 250 13 1 
90  16 177 25 2 

Quasi-iso. 16 250 25 2 
 
 

 
Figure 17. Failure Profiles when Subjected to Monotonic Loading. (a) Zero-degree 

Specimens; (b) Ninety Degree Specimens; (c) Quasi-isotropic Specimens 
   

Acoustic emission (AE) was used to detect failure events within the quasi-isotropic layups. 
In-situ AE activity was recorded on a Micro-II Digital AE System produced by Physical Acoustics 
Corporation. In the AE technique, the stress waves produced by the sudden release of strain energy 
during localized failure events are identified and recorded as hits. Appropriate signal conditioning 
parameters are identified based on an AE calibration study prior to testing. A threshold wave 
amplitude of 48 dB enables the separation of all valid failure events from ambient noise. 

The first set of experiments conducted is on unidirectional unnotched tension specimens 
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tested under monotonic displacement control on an MTS universal testing machine according to 
ASTM Standard D3039 [3]. A grip pressure of 500 psi was applied to prevent slipping without 
crushing the composite. One axial and one transverse strain gage were mounted on each specimen 
to determine Poisson’s ratio. A one-inch extensometer was used to accurately measure the axial 
stiffness. All monotonic tests were conducted at a constant displacement rate of 1.27 mm/min. 
Thirteen zero degree specimens, seventeen ninety degree specimens, and seven quasi-isotropic 
specimens were subjected to uniaxial tension up to failure to ensure repeatibility. A moderate 
degree of modulus and strength scatter is observed in the experiments. Figure 17 illustrates the 
failure patterns, which show destructive fiber failure in the zero degree specimens, 
matrix-dominated failure in the ninety degree specimens, and combined matrix and fiber failure in 
the quasi-isotropic specimens. All non-zero plies in the quasi-isotropic specimens showed 
matrix-dominated failure, while the zero degree plies showed fiber failure. The elastic and strength 
properties observed in the experiments are summarized in Table 2. A Poisson’s ratio of 0.316 with 
a standard deviation of 0.039 was observed by placing a strain gage perpendicular to the loading 
on the 0  specimens. The shear modulus, 12G , was determined to be 4.66 MPa with a standard 
deviation of 0.61 using additional tension experiments conducted on composite specimens with a 
+/-45   layup according to the procedure described in ASTM D3518 [5]. 

 

Table 2: Calibrated Elastic Parameters of the Composite Constituents; Observed and 
Simulated Elastic Parameters of the Overall Composite (Standard Deviation in Parenthesis) 

    
  

Layup 
Young’s Modulus, 

E [GPa] 
Failure Strength, 

 f [MPa] 
0  158 (13)  2,841 (296) 
90  8.644 (0.712) 63 (14) 

Quasi-iso. 60.7 (2.2) 872 (30) 
 

The next set of experiments consisted of constant amplitude load-controlled cyclic tests 
that were conducted according to ASTM D3479 [4]. Cyclic testing was performed with a constant 
maximum stress amplitude, an R-ratio of 0.1, and a loading frequency of 5 Hz. The maximum 
applied stress amplitude for the 90  specimens was varied between 45% and 55% of the average 
monotonic ultimate stress of the layup configuration. The 90  specimens failed by matrix 
cracking across the width of the specimen. The quasi-isotropic layup was tested with a maximum 
applied stress amplitude of 17% of the ultimate stress of the corresponding layup. 

 
Model Calibration 

The domain of the microscopic problem (i.e., RVE) is a unidirectionally fiber reinforced 
matrix as illustrated in Fig. 18. The diameter of the fiber is set to ensure that the volume fraction in 
the RVE equals the experimentally measured volume fraction of 65.6%. We employ a 4-partition 
reduced order model to evaluate the failure response within the composite constituents. The matrix 
is represented using three partitions, whereas the fiber response is idealized using a single 
partition. The domains of each partition within the RVE are illustrated in Fig. 18. 
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Figure 18: RVE and Partition Structure for IM7/977-3   

The elastic response of the 977-3 resin is taken to be isotropic, with the Young’s modulus 
and the Poisson’s ratio of the material denoted by mE  and m , respectively. The IM7 fiber is 

taken to be transversely isotropic with five elastic parameters: f
1E , f

2E , f
12G , f

12 , and f
23 , where 

the 1-direction is along the fiber length. The Poisson’s ratios were obtained from the literature ( f
12  

and f
23  from [12] and m  from [31]). The remaining elastic parameters (i.e., f

1E , f
2E , f

12G , and 
mE ) were calibrated against the linear regions of the stress-strain curves recorded in the 

monotonic experiments. The calibrated elastic parameters of the composite constituents and the 
experimentally observed and simulated elastic parameters of the overall composite are 
summarized in Table 3.  

 

Table 3. Elastic Parameter Optimization 

    
mE  [GPa] f

1E  [GPa] f
2E  [GPa] f

12G  [GPa] m  f
12  f

23  

3.55 263.00 13.00 27.50 0.35 0.32 0.20 
 c

1E  [GPa] c
2E  [GPa] c

12G  [GPa] c
12  

Experiment 158.00 8.64 4.66 0.316 
Model 158.00 8.64 4.66 0.33 

Superscript c  indicates a composite material property. 

 

The damage model employed in this study includes seven parameters. Four of the seven 
parameters (i.e., m , m , f , and f ) determine the evolution of damage when subjected to 

monotonic loading conditions, whereas the remaining three parameters (i.e., m
0c , m

1c  and m
2c ) 

determine the sensitivity of damage evolution to cyclic loading. Experiments conducted under 
cyclic tensile conditions indicate that failure initiates within the matrix. Fibers are taken to be 
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insensitive to cyclic failure at the loading amplitudes considered in this work. The superscripts m 
and f denote matrix and fiber phases respectively. The matrix parameters are employed in 
modeling failure in the three matrix partitions, whereas the fiber parameters are employed in 
modeling the fiber partition. 

 

 

Figure 19. The Tension Experiments are Compared to the Calibrated Model Response 

   

m  and f  are regularization parameters that control the abruptness of the ultimate 
failure within the matrix and fiber phases, respectively. The values of m  and f  are chosen to 
avoid numerical difficulties associated with sudden failure events, while accurately capturing the 
characteristics of the stress-strain response. m  and f  are material parameters that control the 
ultimate strength of the matrix and fiber, respectively. The experimentally observed stress-strain 
response of the zero and ninety degree specimens are employed in the calibration process. The 
failure in the zero degree specimens is dominated by fiber failure, whereas matrix cracking 
dominates failure in the ninety degree specimens subjected to monotonic loading. m  and f  
are identified by minimizing the discrepancy between the experimental and simulated stress-strain 
curves. The calibrated model parameters are 0.05=m , 32.0=m , 0.05=f , and 

340.0=f . Figure 19 illustrates the experimentally observed and simulated stress-strain curves 
based on calibrated material parameters for zero degree and ninety-degree specimens. The mean 
ultimate strength and strain-at-failure for zero degree specimens based on experiments are 2841 
MPa and 0.0180, respectively. The mean ultimate strength and strain-at-failure for ninety degree 
specimens based on experiments are 63 MPa and 0.00728, respectively. The calibrated model 
yields 2846 MPa and 0.0186 for zero degree loadings and 67 MPa and 0.00822 for ninety degree 
loadings, which are in close agreement with the experiments. 

The cyclic failure of the matrix is characterized by the three remaining parameters: m
0c , 

m
1c  and m

2c . The calibration of the cyclic loading sensitivity parameters is conducted by 
employing the stress-life curves obtained from experiments in which ninety degree specimens are 
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subjected to cyclic loading in the tensile direction. In the experiments, the maximum amplitude of 
the cyclic loading was varied between 360 MPa and 520 MPa, while keeping the R-ratio constant 
(=0.1). The three parameters are calibrated by minimizing the discrepancy between the 
experimental and simulated cycles to failure under three different loading amplitudes. A least 
squares nonlinear optimization algorithm is employed in the identification of the optimal 
parameters. The calibrated values of 0c , 1c , and 2c  are 8.243, 2102.227  , and 5102.192  , 

respectively. Figure 20 illustrates the experimentally observed and simulated life curves. The 
calibrated model is in close agreement with the experimentally observed mean stress-life curve, 
which is expressed in terms of a power law fit. We note that the experiments display a substantial 
scatter around the power law fit for this material. 

 

 

Figure 20: Experimentally Observed and Simulated Stress-life Curves of the Ninety Degree 
Specimens 

 
Model Validation 

 
The capabilities of the proposed multiple spatio-temporal modeling approach are validated 

by comparing the predictions of the calibrated model with experiments conducted on 
quasi-isotropic specimens subjected to monotonic and cyclic loading conditions. A quarter of the 
specimen geometry is discretized due to symmetry with top eight plies explicitly modeled. 

Figure 21 illustrates the experimental and simulated stress-strain response of the 
quasi-isotropic specimens subjected to monotonic tensile loading. The experimentally-observed 
mean strength and strain-to-failure are 872 MPa and 0.0144, respectively. The proposed multiscale 
model predictions of the strength and strain-to-failure are 872 MPa and 0.0151, which are in 
excellent agreement with each other. The simulations revealed progressive failure within the 
matrix of individual off-axis plies as a function of loading. The ultimate failure is due to fiber 
failure in the 0  plies. The predicted failure pattern is in close agreement with the experimental 
observations. Figure 22 shows the results of the acoustic emission testing of a monotonically 
loaded specimen in terms of hits as a function of applied stress magnitude. The acoustic emission 
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data shown is indicative of the response of a typical specimen. The distinct failure events predicted 
by our simulations are indicated as well. The orientation of the ply in which the failure event 
occurs is also shown in Figure 22. All of the failure events were in the matrix with the exception of 
the final event. Since the proposed multiscale model is calibrated to the mean response of all 
specimens, the provided comparison is qualitative. Despite variations, the progressive nature of 
the matrix damage accumulation, as well as the initiation of damage is well captured by the 
proposed multiscale model. 

We further assessed the validity of the proposed model by comparing the model 
predictions to experiments on quasi-isotropic specimens subjected to cyclic loading conditions. A 
sinusoidal load with a peak magnitude of 17% of the mean ultimate failure load of the 
quasi-isotropic specimens (872 MPa) and an R-ratio of 0.1 is applied. The objective of the 
investigation is to assess the capability of the proposed model in capturing the distinct failure 
events that occur within the matrix material as a function of the applied load cycles. In our 
simulations, the first four distinct failure events occurred at 11766, 27794, 38817 and 46694 
cycles, respectively. Each of these failure events was an individual off-axis ply losing load 
carrying capacity due to a matrix crack extending the entire width of the specimen. The first failure 
event was in a ninety degree ply, the second and third events were in fourty-five degree plies, and 
the fourth event was in a minus fourty-five degree ply. Figure 23a shows the acoustic emission 
testing results in terms of total hits as a function of the number of loading cycles. The failure events 
predicted by the proposed multiscale model are indicated in Fig. 23a. Figure 23b plots the 
numerical derivative of total hits with respect to the total number of accumulated load cycles. The 
figures illustrate that the time-to-failure for major recorded failure events coincide with those 
predicted by the simulations. Despite close correlation with the acoustic emission testing, the 
predictive capability of the proposed model is qualitative. Additional experimental investigations 
that quantitatively link the failure events that occur during the cyclic loading are needed to fully 
assess the validity of the proposed approach. 

 

 

Figure 21. Comparison of Experimental and Predicted Stress-strain Curves of the 
Quasi-isotropic Specimens Subjected to Monotonic Tensile Loading 
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Figure 22. Predicted Failure Events Compared to Acoustic Emission Data of a 
Quasi-isotropic Specimen Subjected to Monotonic Tensile Loading 

 

 

Figure 23. Predicted Failure Events Compared to Acoustic Emission Data of a 
Quasi-isotropic Specimen Subjected to Cyclic Loading: (a) Hits vs. Loading Cycles; (b) 

Numerical Derivative of Hits vs. Loading Cycles  
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4.0  RESULTS AND DISCUSSION 
 

This section presents a two-part study on the progressive damage accumulation in carbon 
fiber reinforced polymer (CFRP) composites. The first part details failure under monotonic 
loading conditions. The second part of the study addresses fatigue loadings. A multiscale 
computational homogenization model [17] is employed to numerically characterize the 
progressive damage mechanisms of fiber fracture, matrix cracking, and delaminations as a 
function of loading. An experimental program using the combination of AE, X-ray radiography 
and X-ray CT techniques are employed to experimentally characterize the progression of damage 
throughout the loading history and assess the validity of the model predictions. A key contribution 
is that the sequencing and rate of failure at each ply of laminated composite specimens up to the 
sub-microstructure scale are established based on the combined experimental and computational 
investigation. 

The remainder of this section is organized as follows: Section 4.1 details the experimental 
and computational investigation of CFRP composites under monotonic loadings and Section 4.2 
describes the investigation of fatigue loadings. 

 
4.1  Experimental and Computational Investigation of CFRP Composites Under 
Monotonic Loadings 

 
4.1.1  Macroscale Numerical Model 

  
The geometry, finite element discretization, and boundary conditions considered in the 

macroscale specimen model are illustrated in Fig. 24. The length, width, and thickness of the 
numerical model were 6 mm, 25 mm, and 1 mm, respectively. The discretization of the model 
consisted of 26,560 trilinear hexahedral elements. Each ply was explicitly modeled along the 
thickness direction with 16 elements discretizing the thickness of the specimen layup. Only the top 
half of the specimen was discretized due to symmetry of the specimen. A small part of the 
specimen along the length ( L=6 mm) was modeled to reduce the computational cost of the failure 
simulation. Periodic boundary conditions were imposed along the y-direction to eliminate 
spurious boundary effects due to submodeling. The numerical specimen was chosen long enough 
to avoid the interaction of damage effects between the top and bottom edges. The specimen was 
loaded by increasing the average distance between the top and bottom edges using constraints. The 
magnitude of the applied stress was taken to be the total constraint force required to maintain the 
specified average distance between the specimen ends divided by the cross sectional area of the 
specimen.  
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Figure 24. Quasi-isotropic Virtual Specimen 

   
4.1.2  Microscale Numerical Model 
 
The symmetric reduced order computational homogenization method presented in Section 3.2 is 
used to model the CFRP material response. In accordance with this method, we describe our 
choices for the representative volume element and the microscale damage law used to evaluate the 
reduced order microscale problem associated with symmetric reduced order computational 
homogenization. 

  

 

Figure 25. The Unit Cell for IM7/977-3 with 66% Fiber Volume Fraction 

   

The unit cell of the CFRP composite material within a single ply is shown in Fig. 25. The 
unit cell consists of the unidirectional fiber and the epoxy resin. Consider the partitioning of the 
unit cell domain into n  parts within which the strains and damage are assumed to be spatially 
constant. Let )(D  be a scalar damage variable indicating the state of damage within part   
associated with the constitutive law in Eq. 130.  

 )()()()( :)(1=   LD  (130) 
)(  and )(  are the average strain and stress within part  , )(L  is the tensor of elastic 

moduli of the constituent material occupying part  , and ":" denotes the double inner product of 
two high order tensors. The evolution of )(D  as a function of loading is modeled as:  
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 )(= )(
max

)(  D  (131) 

where )(
max
  is defined as:  

 )}({max=)( )(

0

)(
max  





t
t


 (132) 

in which )(  is the damage equivalent strain in part  :  

 )()()()( ::
2

1
=   L  (133) 

The phase damage evolution equation function is modeled using a two-parameter arctangent law:  

 
)(arctan

2

)(arctan)(arctan
=)(

)(

)()()()(
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







b

bba




  (134) 

in which )(a  and )(b  are material parameters controlling the brittleness of failure and material 
strength, respectively. Figure 26 schematically illustrates the effect of parameters )(a  and )(b  
on constituent material response.  

The partitioning of the unit cell employed in the present investigation is shown in Fig. 27. 
The partitioning is achieved to capture the three dominant failure modes of fiber fracture, 
transverse matrix cracking, and delamination. Parts 1, 2, and 3 in Fig. 27 capture the fiber fracture, 
transverse matrix cracking, and delamination, respectively. Part 4 is common to transverse matrix 
cracking and delamination. Introduction of this part is an effective way to treat intersecting failure 
paths. With this partitioning scheme, the microscale reduced order model incorporates the relevant 
damage modes.  
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Figure 26. Stress-strain Curves Produced by the Two Parameter Arctangent Law: (a) )(a  
is Varied while )(b  is set to Maintain Constant Failure Stress; (b) )(b  was Varied while 

Maintaining Constant )(a  
 

 

 

Figure 27: Partitioning of the Unidirectionally Reinforced Composite Unit Cell 

   

4.1.3  Calibration of the Model Parameters 
  
The elastic and damage properties of the constituent materials (i.e. fiber and matrix) were 

calibrated using experiments conducted on 0  and 90  unidirectionally stacked specimens, as 
well as experimental data available in the literature. In the model, a uniform distribution of fibers 
was assumed. The variability seen in the 0  calibration experiments is partially due to 
nonuniform fiber distribution, but as the primary concern in this work is tensile loading, it is 
assumed the effect of nonuniform fiber distribution is limited. 

The 977-3 resin was taken to be isotropic with elastic modulus, (m)E , and Poisson’s ratio, 
(m) . The IM7 fiber was assumed to be transversely isotropic with elastic material properties 

denoted as (f)
1E , (f)

2E , (f)
12G , (f)

12 , and (f)
23 . The Poisson’s ratios of the resin and fiber were set as 

0.35=(m)  [31], 0.32=(f)
12 , and 0.20=(f)

23  [12]. The constituents’ elastic moduli, (m)E , (f)
1E , 

(f)
2E , and (f)

12G , were calibrated by minimizing the discrepancy between the composite elastic 

moduli of 0  and 90  specimens and the simulated elastic moduli of the homogenized 
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composite. The constituent moduli were determined as 3.55=(m)E  GPa, 263=(f)
1E  GPa, 

13=(f)
2E  GPa, and 27.5=(f)

12G  GPa which were in close agreement with previous investigations 
[31, 12]. 

The model parameters that define damage accumulation are )(ma  and )(mb  for the matrix 
and )( fa , and )( fb  for the fiber. The damage accumulation parameters are calibrated based on the 
set of experiments conducted on unidirectional 0  and 90  specimens. The constituent 
parameters are identified by minimizing the discrepancy between experimentally observed 
stress-strain response and numerical predictions of the multiscale model in the least squares sense. 
The calibrated and experimentally observed stress-strain response of the 0  and 90  specimens 
are displayed in Fig. 28. The 90  layup failure response was dominated by matrix failure whereas 
the 0  specimens fail by fiber fracture. The matrix and fiber damage accumulation properties 
were therefore separately calibrated based on 90  and 0  response, respectively. The matrix 
parameters were calibrated to the maximum observed strength among the experimental scatter 
since the failure originates at the largest flaw within the resin along the free edge. The fiber 
parameters were calibrated so that the model response equals the average experimental strength 
observed in the 0  specimens. The calibrated model parameters were 0.002=)(ma , 2.8=)(mb , 

0.05=)( fa , and 340=)( fb .  
 

 

Figure 28. The Stress-strain Response of the Calibrated Model Compared with 
Experimental Data: (a) Specimens with 90  Layup and (b) Specimens with 0  Layup 

   
 
4.1.4  Results and Discussion 

 
Figure 29 shows the cumulative hit and cumulative energy as a function of applied stress 

amplitude measured in the AE testing at each load increment. Cumulative energy weighs each 
recorded hit based on the magnitude of the strain energy released during the damage event. When 
the specimen is unloaded and reloaded, the cumulative hits and energy remained relatively flat 
until the past maximum loading magnitude was exceeded indicating insignificant cyclic damage 
accumulation with an exception between the loadings of 620 MPa and 710 MPa. Damage growth 
initiated within the specimen indicated by an increase in the AE hits around 400 MPa. Damage 
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within the specimen progressively accumulated with an increasing rate until the ultimate failure by 
fiber fracture in the 0  plies. In contrast with damage events at lower loading magnitudes, the 
acoustic emissions at failure were audible without any listening aides.  

 

 

Figure 29. Loading Stress versus (a) Cumulative AE Hits and (b) Cumulative AE Hit Energy 
   

While AE testing provides qualitative information about the progressive nature of damage 
accumulation, the type and location of failure associated with an acoustic hit is less clear. The 
frequency and amplitude of recorded waves does provide some degree of information on the 
nature of the failure event such as fiber fracture and matrix damage [14], but more detailed 
information such as damage in individual plies is difficult to gather from AE measurements alone. 
X-ray radiography and X-ray computed tomography provides a nondestructive snapshot of the 
location and type of accumulated damage within the specimen. An X-ray radiograph of the pristine 
specimen was taken before loading and additional radiographs were taken after each loading (i.e. 
300 MPa, 400 MPa, 620 MPa, 710 MPa, and 845 MPa). As illustrated in Figure 30, the cracks 
were visualized in light color in the X-ray radiographs due to the presence of the dye penetrant. 
Since the dye-penetrant could diffuse into the specimen through cracks originating at the specimen 
edges, only edge cracks could be visualized in the radiographs. No substantial cracks were visible 
for the first two loadings of 300 MPa and 400 MPa other than minor edge flaws. At a loading of 
620 MPa, visible cracks appeared with orientations both perpendicular and 45  to the length of 
the specimen. Between 620 MPa and 710 MPa, the number and length of cracks increased. Just 
before ultimate failure, a large delamination was clearly observed on the lower left side of the 
specimen (Fig. 30f). Smaller delaminations were clearly observed on both sides of the specimen.  
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Figure 30: X-ray Radiographs after Loading to (a) 0 MPa (b) 400 MPa (c) 620 MPa (d) 845 
MPa 

   

X-ray computed tomography was employed to obtain a 3-D visualization of the extent and 
mechanisms of damage within the specimen. Figure 31 illustrates the 3-D tomographic image of 
the specimen at 710 MPa and 845 MPa. Extensive 45  and 90  cracks are evident as well as 
delaminations along the length of the specimen edge. Figure 32 illustrates the layer-by-layer 
damage profile observed using the X-ray computed tomography imaging technique. The 0  ply 
shown in Fig. 32a exhibited some degree of debonding in the fiber direction. In contrast to the 
radiography, the tomographic images are able to capture damage zones away from the edges that 
are not exposed to the dye-penetrant (Fig. 32a). The 90  ply at the center of the specimen 
developed extensive matrix cracking extending across the specimen’s width along with rounded 
delaminations at the specimen edges. The 45  ply (the top ply of the specimen) shown in Fig. 32c 
developed extensive cracking across the specimen width along with triangular delaminations 
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developing at the specimen edges. The large delamination shown in the radiograph of Fig. 30d 
cannot be seen in Fig. 32 since the tomographic images were taken over a smaller region of the 
specimen outside of the large-scale delamination.  

 

 

Figure31. 3D Tomographic Images of Damage in the Specimen at a Loading of (a) 720 MPa 
(b) 845 MPa (c) 845 MPa 
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Figure 32. Computed Tomography Scans after Loading to 845 MPa: (a) 0  Ply (Ply 11) (b) 
Central 90  Ply (c) Top 45  Ply 

   

The calibrated computational model described in Section 4.1.3 was employed to gain 
further understanding of the progressive damage accumulation in the composite specimen. The 
model provides a more complete picture of the damage response than the experiments alone. 
Figure 33a shows the stress-strain response of the virtual specimen under monotonic tensile 
loading. The predicted stress-strain response of the overall composite is displayed alongside the 
cumulative hit versus stress curve recorded by the AE system seen in Fig. 33b (the hits were 
summed over all loadings). The ultimate strength of the specimen predicted by the model was 855 
MPa which was in excellent agreement with the experimentally observed strength of 872 MPa 
with a standard deviation of 30 MPa. The strength of the particular specimen probed by the NDI 
techniques was 846 MPa. The ultimate failure was caused by fiber fracture in the 0  plies in the 
numerical investigation.  
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Figure 33. (a) Strain vs. Stress for the Virtual Quasi-isotropic Specimen (b) Stress vs. 
Cumulative Hits for the Experimental Specimen 

   

The first major compliance change takes place at approximately 380 MPa when matrix 
cracking initiates in the 45  plies. The compliance change in the virtual specimen coincides 
with the initiation of acoustic emission hits illustrated in Fig. 29, which occurs at approximately 
400 MPa. The X-ray radiograph (Fig. 30b) taken at 400 MPa displays insignificant damage within 
the specimen confirming the damage initiation prediction of the model. The matrix cracks that 
initiated at the 45  plies rapidly propagate across the length of the specimen. Figure 34 
demonstrates the initiation and propagation of matrix cracks in the top 45  ply. The progression 
of damage in the inner 45  plies occurs less rapidly with cracking across the entire width of the 
specimen forming when the loading reached 475 MPa. The difference in speed of damage 
progression is due to the confinement of the inner 45  plies compared to the top ply, which 
retards crack growth when compared to the top layer. Matrix cracking within the 45  plies is 
followed by the initiation of damage within the 90  plies between 395 MPa (when damage first 
initiates in the 90  ply) and 409 MPa (when damage initiates in all 90  plies). Cracking 
extended across the entire width of the virtual specimen within the 90  plies between 472 MPa 
and 514 MPa. Figure 35 shows the progression of cracking in the 90  ply at the middle of the 
specimen. The 90  cracks clearly initiate from the specimen edges. Matrix cracking in the 0  
plies remains negligible until the loading reaches close to the ultimate failure strength of the 
specimen. The predicted matrix cracking in the 45  and 90  plies develops more rapidly in 
comparison to the matrix cracking in the experimental specimen as illustrated in Fig. 30b. This is 
partly attributed to the errors in the calibration of the matrix properties which was conducted based 
on 90  unidirectionally reinforced specimen response. The failure in the calibration experiments 
initiated and propagated at the most critical flaw (i.e. the weakest link) within the resin. The 
statistics generated by the calibration experiments therefore capture the lower end of the strength 
and ductility spectrum of the resin material. Nevertheless, the overall matrix cracking pattern is in 
reasonable agreement with the experimental observations.  
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Figure 34. The Damage Contours Corresponding to Transverse Matrix Cracking at the Top 
Ply of the Specimen ( 45 ) at the Applied Stress Level of (a) 388 MPa and (b) 394 MPa 

    

 

Figure 35. The Damage Contours Corresponding to Transverse Matrix Cracking at the 
Center of the Specimen ( 90 Ply) at the Applied Stress Level of (a) 412 MPa and (b) 470 MPa 

   
The initiation of delamination within the specimens occurs slightly after the initiation of 

matrix cracking. Small edge delaminations initiate between 385-416 MPa. The edge delaminations 
continue to grow slowly until the loading reaches close to the ultimate strength of the specimen. 
The rate of growth increases significantly as the magnitude of the loading approaches the ultimate 
strength. This observation is in close agreement with the high rate of increase in the AE hits at the 
later stages of loading to the progression of delaminations as shown in Fig. 33b. X-ray radiographs 
and tomographs confirm this observation. Figure 36 illustrates edge delamination propagation in 
the 7th ply around the ultimate strength of the specimen. The failure patterns predicted by the 
model shown in Figs. 34-36 are in good agreement with the patterns observed in the tomographic 
images in Fig. 32.  
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Figure 36. The Damage Contours Corresponding to Delamination near the Middle of the 
Specimen ( 45 Ply) at the Applied Stress Level of (a) 730 MPa and (b) 855 MPa 

   
 

4.2  Experimental and Computational Investigation of CFRP Composites Under Fatigue 
Loadings 

 
4.2.1  Macroscale Numerical Model 

  
The geometry and finite element discretization considered in the macroscale specimen 

model are the same as the model for monotonic loads discussed in Sec. 4.1.1 and illustrated in Fig. 
24. The length, width, and thickness of the numerical model were 6 mm, 25 mm, and 1 mm, 
respectively. The discretization of the model consisted of 26,560 trilinear hexahedral elements. 
Each ply was explicitly modeled along the thickness direction with 16 elements discretizing the 
thickness of the specimen layup. Only the top half of the specimen was discretized due to 
symmetry of the specimen. A small part of the specimen along the length ( L=6 mm) was modeled 
to reduce the computational cost of the failure simulation. Periodic boundary conditions were 
imposed along the y-direction to eliminate spurious boundary effects due to submodeling. The 
numerical specimen was chosen long enough to avoid the interaction of damage effects between 
the top and bottom edges. The magnitude of the applied stress was taken to be the total constraint 
force required to maintain the specified average distance between the specimen ends divided by 
the cross sectional area of the specimen. The constraint force was oscillated to produce a fatigue 
loading with an r-ratio of 0.1 and a maximum stress amplitude of 143 MPa. 

 
4.2.2  Microscale Numerical Model 

 
In this study, we employ the multiple spatio-temporal scale methodology discussed in 

section 3 to evaluate the damage accumulation and response of the CFRP quasi-isotropic 
specimens. The unit cell of the CFRP composite material within a single ply is taken to be the same 
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as in Sec. 4.1.2. Consider the partitioning of the unit cell domain into n  parts within which the 
strains and damage are assumed to be spatially constant. Let )(D  be a scalar damage variable 
indicating the state of damage within part   associated with the constitutive law in Eq. 135.  

 )()()()( :)(1=   LD  (135) 
)(  and )(  are the average strain and stress within part  , )(L  is the tensor of elastic 

moduli of the constituent material occupying part  , and ":" denotes the double inner product of 
two high order tensors. The evolution of )(D  as a function of the fatigue loading is modeled as:  
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where p  is the cyclic sensitivity parameter,   denotes the MacCauley brackets,   is the 

damage evolution law for monotonic loading, and )(  is the damage equivalent strain defined as  
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2

1
=   L  (137) 

The monotonic damage evolution law is taken to be the arctangent law used for the monotonically 
loaded specimens.  
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The cyclic sensitivity parameter p  is taken to be:  
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where )(
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c , and )(

2
c  are parameters controlling the fatigue response of the material. )(
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The adaptive macrochronological time stepping method in Sec. 3.3.3. is utilized with a 
1%=maxD . The partitioning of the unit cell employed in the present investigation is the same as 

that used for the monotonic loadings. With this partitioning, we can distinguish between transverse 
matrix cracking, delamination, and fiber failure. 

 
4.2.3  Calibration of the Model Parameters 

 
The elastic parameters and the monotonic arctangent damage law parameters )(a  and 

)(b  were chosen to be equal to their values from the monotonic loading calibrations. The only 
remaining parameters are )(

0
c , )(

1
c , and )(

2
c  which control the fatigue response of the 

constituent materials. A least squares nonlinear optimization algorithm was used to minimize the 
discrepancy between the mean stress life curve in Fig. 37 and the calibrated model to determine the 
fatigue parameters for the matrix. The mean stress life curve was determined from tension tests 
with fatigue loadings on 90  unidirectional specimens. This is the same mean stress life curve 
from Sec. 3.3.5 which should be referenced for further information regarding its determination.  
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Figure 37. The Calibrated Fatigue Response of Unidirectional 90 Specimens is Compared 
with a Statistical Curve Fit of the Experimental Determined Fatigue Response 

 

The fatigue parameters for the matrix parts were determined to be 8.033=)(
0
c , 

3)(
1 106.232= c , and 6)(

2 104.35= c . The fiber was assumed to accumulate no damage 
due to fatigue loadings. 

 
4.2.4  Results and Discussion 

 
X-ray radiography provides a nondestructive image of the type and location of damage 

accumulating in the specimen. X-ray radiographs of the quasi-isotropic specimens were taken after 
1500, 37500, 72500, and 100000 loading cycles. Figures 38 and 39 show the radiographs from two 
of the three specimens. The two chosen specimens are representative of the third. As illustrated in 
Figs. 38-39, cracks were visualized in light color in the radiographs due to the presence of dye 
penetrant applied to the specimen before the radiographs were taken. The dye-penetrant diffuses 
into the specimen through cracks originating at the specimen edges, and hence, only edge cracks 
are visualized in the radiographs. Few cracks were visible after the first 1500 loading cycles as 
indicated in Figs. 38a and 39a. It is possible that the cracks that are visible are manufacturing flaws 
as opposed to cracks that have developed during the first 1500 loading cycles. However, it is 
impossible to definitively draw this conclusion from the given data. After 37500 cycles, new 
cracks have developed at the edges of both 45  and 90  plies. By 72500 loading cycles, new 
cracks have initiated at the specimen edges along with lengthening of some of the cracks that were 
visible at 37500 cycles. With few exceptions the cracks do not extend very far across the specimen 
with almost no cracks reaching half of the specimens’ width. At 100000 cycles, the length and 
density of the cracks are nearly the same as at 72500 cycles. No delaminations were seen in any of 
the specimens during the 100000 loading cycles.  
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Figure 38. X-ray Radiographs of a Fatigue Specimen after (a) 1500 Loading Cycles (b)  
37500 loading Cycles (c) 72500 Loading Cycles (d) 100000 Loading Cycles 
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Figure 39. X-ray Radiographs of another Fatigue Specimen after (a) 1500 Loading Cycles 
(b) 37500 Loading Cycles (c) 72500 Loading Cycles (d) 100000 Loading Cycles 
   

The calibrated computational model described in Section 4.2.3 was used to gain additional 
understanding of damage accumulation in CFRP quasi-isotropic specimens subjected to fatigue 
loadings. We define a transverse matrix crack to be present at a material point when the damage 
scalars (2)D  and (4)D , associated with parts 2 and 4 of the partitioned unit cell seen in Fig. 27, are 
greater than 0.99 . A delamination is defined as when (3)D  and (4)D  are greater than 0.99 . A 
fiber failure is indicated by 0.99>(1)D . Figs. 40 and 41 show the value of the damage scalar (4)D
. Blue indicates a value close to zero and red indicates a value close to 1. At every material point 
within this simulation (4)D  goes to one after (2)D , and hence, in Figs. 40 and 41 red indicates the 
presence of transverse matrix cracking. Figure 40 shows transverse matrix cracking within the 
third ply from the top of the specimen which has an orientation of 45 , and Fig. 40 shows 
transverse matrix cracking within the seventh ply from the top of the specimen which also has an 
orientation of 45 . The cracking within these plies was representative of that in the fifth ply 
which has an orientation of 45 . The top 45  ply showed less transverse matrix cracking than the 
internal plies. At 1500 loading cycles, there was no cracking within the specimen mirroring the 
behavior of the experimental specimens. After 37500 loading cycles, there was transverse matrix 
cracking within the seventh ply, but no cracking had initiated within any other ply. By 72500 
cycles, transverse matrix cracking had initiated in all 45  plies with the exception of the top ply. 
At 100000 cycles, matrix cracking had initiated in all 45  plies. As in the radiographs, cracking 
was limited to the area in close proximity to the edges of the specimen even after 100000 loading 
cycles. At 100000 cycles, the simulation predicted no transverse matrix cracking in the 90  plies 
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counter to the experimental observations. There was no delamination or fiber failure present in the 
simulation agreeing with the damage types seen in the X-ray radiographs.  
 

 

Figure 40. Transverse Cracking in Third Ply ( 45 ) of the Virtual Specimen after (a) 1500 
Loading Cycles (b) 37500 Loading Cycles (c) 72500 Loading Cycles (d) 100000 Loading 

Cycles 
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Figure 41. Transverse Cracking in Seventh Ply ( 45 ) of the Virtual Specimen after (a) 
1500 Loading Cycles (b) 37500 Loading Cycles (c) 72500 Loading Cycles (d) 100000 Loading 

Cycles 
   

The computational performance of the adaptive time stepping algorithm is shown in Fig. 
42. The x-axis is the number of resolved loading cycles and the y-axis is the total number of 
loading cycles. As indicated in the figure, only 966 of the 100000 loading cycles were resolved. 
This leads to an average performance of 103.5 loading cycles per resolved cycle. This is a 
substantial savings in computational effort. For the final 20000 loading cycles (cycles 
80000-100000), the performance of the algorithm increased to 216.2 loading cycles per resolved 
cycle. Without the adaptive time stepping algorithm, it would be required to resolve all 100000 
cycles of a nonlinear multiscale finite element model with 26,560 elements. This would present a 
difficult computational barrier. The adaptive macrochonological time stepping algorithm allowed 
this simulation to be run on a single processor in three weeks.  
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Figure 42. The Performance of the Adaptive Macrochronological Time Stepping Algorithm 
over 100000 Loading Cycles 
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5.0  CONCLUSION 
 

This report presented a multiscale framework for modeling failure in brittle composites 
subjected to monotonic and fatigue loadings. Numerical testing verified the framework which was 
subsequently validated with experimental testing on carbon fiber reinforced polymers. More 
detailed conclusions regarding the multiscale framework are presented below. 

Section 3.2 presented a reduced order multiscale computational methodology for failure 
analysis of heterogeneous materials. The proposed approach provides a novel model development 
strategy for creating reduced-order models capable of efficiently and accurately representing the 
failure modes within the microstructure without recourse to a detailed finite element model of the 
RVE. A two-order modeling approach was devised to eliminate spurious residual stresses upon 
failure allowing accurate stress-redistribution within a macroscopic component. The resulting 
reduced-order model possesses symmetry allowing efficient numerical evaluation of the 
microscale problem. The reduced order model was verified against direct numerical simulations. 
The proposed model captures the failure modes within the microstructure obtaining good 
accuracy. 

In Section 3.3, a multiscale computational framework for prediction of failure in composite 
materials subjected to fatigue loadings was proposed. The reduced-order multiple spatial scale 
approach in combination with the multiple temporal scale time stepping approach provides a high 
level of computational efficiency without a significant loss in accuracy. This is critical to 
determining fatigue life in large-scale composite structures. The experimentally calibrated model 
predicted the observed early life failure events in carbon-fiber reinforced polymer specimens. 

In Section 4, a comprehensive experimental/computational investigation was undertaken 
to determine the nature of progressive damage accumulation in CFRP composites subjected to 
monotonic loading. Acoustic emission, X-ray radiography, and X-ray computed tomography 
inspection methods obtained a clear picture of the evolution of transverse matrix cracking and 
delamination within experimentally tested composite specimens as a function of the applied 
loading. The multiscale computational model was employed to gain further insight into the 
interaction and sequencing of damage mechanisms which were difficult to capture using any of the 
experimental techniques. The response mechanisms captured by the model predictions reasonably 
agreed with the experimental observations. 

An experimental and computational investigation was also conducted on CFRP composites 
subjected to fatigue loadings in Section 4. X-ray radiography visualized the evolution of transverse 
matrix cracking within the tested specimens as a function of the number of loading cycles. A 
multiple spatial and temporal scale model was employed to simulate the accumulation of matrix 
damage within the CFRP specimens. Considering the high level of scatter in the fatigue calibration 
data, the response of the model showed reasonable qualitative agreement with the experimental 
study. The adaptive time stepping algorithm significantly reduced the effort required in simulating 
fatigue loadings. 

Within the multiple spatial scale framework, the challenge remains that the resulting 
homogenized macroscale problem shows spurious mesh dependency. The methodologies 
proposed in this report eliminate mesh-dependency in the microscopic domain, but the 
homogenized macroscale problem remains local. For homogeneous materials, the computational 
mechanics literature has extensively investigated localization limiters that absolve spurious mesh 
dependency [8]. However, straightforward application of nonlocal damage theory is impractical 
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due to the significant associated mesh refinement. Future research will investigate 
enrichment-based nonlocal formulations that eliminate mesh dependency without requiring a high 
level of mesh resolution in the macroscale domain. 

An aircraft experiences a wide range of temperature conditions throughout its life and even 
within a single flight. The properties of a composite’s constituent materials can vary significantly 
with temperature. These effects can be taken into account within the microscale domain where 
constitutive laws sensitive to temperature effects would replace the microscale constitutive laws 
presently utilized in the multiple spatial scale algorithm. Also, the multiple temporal scale 
methodology would need extension to account for temperature changes in macrochronological 
time. 

The applicability of these methodologies should be extended from the specimen scale to 
the structural scale. Several possibilities show promise in this effort including the development of 
improved cycle stepping techniques that require fewer resolved cycles as evidenced by the 
improved cycle stepping criterion in Section 3.3.3. Also, the extension of the proposed multiscale 
methods to shell elements would allow more efficient representation of structures whose thickness 
is small compared to its planar directions. In particular, this could be utilized for modeling 
laminated composite aircraft skin. Another path involves utilization of parallel computing since 
the reduced order microscale problems at the gauss points of the macroscale structure can be 
solved simultaneously within a single time increment. 

Statistical variation is an important consideration when trying to model fatigue failure in 
composite materials. Both the constituent material parameters and the underlying microstructural 
geometry vary from specimen to specimen and even from one part of a specimen to another. The 
scatter in the calibration experiments revealed this statistical variability especially for fatigue 
loadings. In the future, the multiscale methodologies can be placed within a probabilistic 
framework that rigorously addresses and predicts the statistical variation. 
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 
 
AE: Acoustic Emission 
CDM: Continuum Damage Mechanics 
CFRP: Carbon Fiber Reinforced Polymer 
CHM: Computational Homogenization Method 
CT: X-ray Computed Tomography 
EHM: Eigendeformation-based Homogenization Method 
RVE: Representative Volume Element 
sEHM: Eigendeformation-based Reduced Order Homogenization Method With Symmetric 

Coefficients 
TFA: Transformation Field Analysis 
UMAT: User Material Subroutine 
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