Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
 2012

2. REPORT TYPE
 N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
 Shelf-Slope Physical/Biological Response to Monsoonal Wind Forcing and Riverine Inflow - 4D Sampling with Towed Profilers and Autonomous Gliders Off Vietnam

5. AUTHOR(S)

6. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Naval Postgraduate School Monterey CA 93943

7. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSOR/MONITOR’S ACRONYM(S)

10. SPONSOR/MONITOR’S REPORT NUMBER(S)

11. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release, distribution unlimited

12. SUPPLEMENTARY NOTES

13. ABSTRACT

14. SUBJECT TERMS

15. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 SAR

18. NUMBER OF PAGES
 2

19. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
LONG-TERM GOALS

To develop improved predictive capabilities for the distribution of particulate and dissolved materials in the open and the coastal ocean.

OBJECTIVES

To study the dynamics of absorbing and scattering materials in the South China Sea and its response to physical forcings, namely the monsoon, river inputs and topography.

Link in-situ measurements with remote sensing to be able to constrain parameter values and processes using remote observations.

APPROACH

We propose an observational program using ship-based towed profiling, long-endurance gliders and floats focused on:

1. Processes that govern circulation and biological variability over the shelf and slope, including the interplay between monsoonal wind forcing, freshwater input and topography.
2. Mechanisms that drive cross-slope exchange and communication between the Vietnam shelf and interior South China Sea.
3. The potential use of remotely sensed ocean color for characterizing circulation over the shelf and slope.
WORK COMPLETED

We have purchased two profiling floats through a DURIP (see below) that will be deployed as part of the observational program. We have completed no other work to date as we are waiting for the plans of the observational program to be finalized.

IMPACT/APPLICATIONS

This project will provide data necessary to understand how physical forcing, particularly that associated with the monsoon, affects the distribution of particulate and dissolved materials in the South China Sea. Understanding those dynamics are necessary to devise models able to predict the fate of such materials.

RELATED PROJECTS

As mentioned above profiling floats purchased through a DURIP grant (N000141010776) will be used as part of this project.

This work is in collaboration with Drs. Craig Lee and Burt Jones who are funded under the same DRI.