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Ü Î�Ñ4Ø�ÍFÔAÑb×êÑ�Ô Ü Ê�Ê�Ç Ü Ç�ÉËÍpÆ Ü Î�ë¶ÛpÑ�ÆFÑbÎ Ü ×ËÉ54�Ñ'Ô|ì Ü Ý=Ê�Ê�É Ü ÆlÕFÎ�Í éÒÓÑbÊ�Ê�ÑbÊ'í¡õdÈFÑ�ÉêÆAÇ�ÝFÉËÇ�ÉËÍpÆ^ÝFÆSÔAÑ�Î�×ËëaÉËÆFÛ�ÍrÝFÎ
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ÉËØ Ü ÛrÑ�Î�Ñ�Ê�Ç�ÍpÎ Ü�éÇ�ÉêÍrÆ Ü ÕFÕF×ËÉ�Ò Ü Ç�ÉËÍpÆFÊ Ü ÆDÔ�Ê�Íp×ËÚrÑdÇ�ÈFÑ¡ÆFÍpÆF×ËÉËÆFÑ Ü Î ÍpÕ=Ç�ÉËØ�É54 Ü Ç�ÉêÍrÆ
Ü ÆSÔ¡Õ Ü Î Ü Ø�Ñ�Ç�Ñ�Î�Ê�Ñ�×ËÑ'ÒÓÇ�ÉËÍpÆ�ÉËÊ�Ê�ÝFÑ�Ê Ü Ê�Ê�ÍFÒÓÉ Ü Ç�Ñ'Ô�ÌdÉêÇ�È�Ç�ÈFÑ"ÆFÑ�ÌØ�ÍFÔAÑ�×ËÉËÆFÛDí



I J)KML�N&OPN`¾7Q�¿RK�½#SUT�À ¿RV ÀWT4¼XVYK/Z0N[S
õdÈFÑ&Ì Ü ÚrÑ�×ËÑ�Ç`Ç�Î Ü ÆFÊ ÙCÍpÎ�Ø,ÉËÊ Ü Ç�ÉËØ�Ñ é ÙPÎ�Ñ -rÝFÑ�ÆDÒÓë�Î�Ñ�ÕFÎ�Ñ�Ê�ÑbÆ éÇ Ü Ç�ÉËÍrÆlÌdÈFÉ�Ò�ÈlÈ Ü Ê�ÛpÍAÍFÔ¶×êÍFÒ Ü ×ËÉ\4 Ü Ç�ÉËÍrÆ¤ÉËÆlÖDÍpÇ�È�ÔAÍpØ Ü ÉËÆFÊ'í>lÑ¶Î�Ñ�Ê�Ç�Î�ÉöÒ÷Ç¤ÍrÝFÎ Ü Ç�Ç�Ñ�ÆAÇ�ÉêÍrÆ,Ç�Í�ÍpÎ�Ç�ÈFÍpÆ=ÍpÎ�Ø Ü ×�Ê�Ñ�Õ Ü Î Ü ÖF×ËÑÌ Ü ÚpÑ�×ËÑ�Ç¡Ç�Î Ü ÆFÊ ÙCÍpÎ�Ø�Ê Ü ÆSÔ Ü Ê�Ê�ÝFØ�Ñ�Ç�È Ü Ç
Ç�È=Ñ�Î�Ñ Ü ÔAÑ�Î�ÉËÊ
Ù Ü�éØ�ÉË×ËÉ Ü Î"ÌdÉêÇ�ÈMÇ�ÈFÑ�Ì Ü ÚpÑb×êÑbÇdÇ�ÈFÑ�ÍrÎ�ë7AËâPC�í õdÈ=Ñ�ÙCÍp×Ë×ËÍ;ÌdÉËÆFÛ.ÔAÉËÊ éÒÓÝ=Ê�Ê�ÉËÍrÆ-ÉËÊdÉêÆAÇ�Ñ�ÆSÔAÑ'Ô^Ç�Í�Ñ�Ê�Ç Ü ÖF×ËÉËÊ�È-Ç�ÈFÑ�ÆFÍpÇ Ü Ç�ÉêÍrÆ4Ç�È Ü Ç¡ÌdÉê×Ë×ÖDÑ�ÝFÊ�Ñ'Ô^ÉêÆMÇ�ÈFÑ�Î�Ñ�Ê�Ç
Í;Ù Ç�ÈFÑ�Õ Ü ÕDÑ�Î'í]=Íp×Ë×ËÍ;ÌdÉËÆFÛ Ç�È=Ñ Ì Ü ÚrÑ�×ËÑ�Ç�×ËÉËÇ�ÑbÎ Ü Ç�ÝFÎ�ÑrÐ;Ñ�×ËÑ�Ø�Ñ�ÆAÇ�Ê�Í�Ù�Ç�ÈFÑ ÉËØ é

Ü ÛpÑ
^`á<_-ñ�``ä�Ð`âbac_-ñ�`�a �"d Ð Ü Î�Ñ.Ò Ü ×Ë×êÑ�Ô�Ç�È=Ñ�çSÆFÑ�Ê�Ç
ÊÓÒ Ü ×ËÑÊÓÒ Ü ×ËÉËÆFÛ.ÒÓÍAÑ�e(Ò÷ÉêÑbÆaÇ�Ê'íf]FÎ�ÍpØ�Ç�ÈFÑbÊ�Ñ¡çSÆFÑ�Ê�ÇdÊãÒ Ü ×ËÑ
ÊãÒ Ü ×ËÉËÆFÛ.ÒÓÍ éÑ�e(Ò÷ÉêÑbÆaÇ�Ê�ÌOÑ�ÍpÖFÇ Ü ÉËÆ-Ç�ÈFÑ.ÊÓÒ Ü ×ËÉËÆFÛ4ÒÓÍAÑ�e(Ò÷ÉêÑbÆaÇ�Ê Ü Ç Ü ×êÍ;Ì"Ñ�ÎÎ�Ñ�Ê�Ír×êÝ=Ç�ÉËÍpÆ�×ËÑ�ÚrÑ�×
ÌdÈ=ÉöÒ�È�Î�Ñ�ÕFÎ�Ñ�Ê�Ñ�ÆAÇ Ü Ò÷Í Ü Î�Ê�Ñ�Î®ÊãÒ Ü ×êÑ®ÚpÑ�Î éÊ�ÉêÍrÆ4Í�Ùg^ Ü ÆDÔ Ü Ê�Ñ�Ç"Í;Ù�Ì Ü ÚrÑ�×ËÑ�ÇOÒÓÍAÑ�e(ÒÓÉËÑ�ÆAÇ�ÊdÌdÈFÉ�Ò�È^Î�Ñ�Õ=Î�Ñ éÊ�Ñ�ÆAÇ�Ê
Ç�ÈFÑ�ÈFÍpÎ�É54�ÍpÆAÇ Ü ×¦ÐpÚrÑ�Î�Ç�ÉöÒ Ü × Ü ÆSÔ4Ô�É Ü ÛpÍrÆ Ü ×`ÔAÑ�Ç Ü ÉË×ËÊO×ËÍpÊ�ÇÉËÆ4Ø�Í;ÚAÉËÆFÛ�ÙPÎ�ÍpØ Ü çSÆFÑ�ÎdÊÓÒ Ü ×ËÑ�Ç�Í Ü ÒÓÍ Ü Î�Ê�ÑbÎ
ÊãÒ Ü ×ËÑpí0�&ë4Î�Ñ éÕDÑ Ü Ç�ÉËÆFÛ.Ç�ÈFÉËÊdÕFÎ�ÍFÒÓÑ�ÔAÝFÎ�Ñ�ÍpÆ^Ç�ÈFÑ�ÒÓÍ Ü Î�Ê�Ñ�ÊÓÒ Ü ×ËÑ�ÒÓÍAÑ�e(ÒÓÉËÑ�ÆAÇ�Êh ��â Ç�ÉêØ�ÑbÊ'Ð;Ì"ÑOÒ Ü Æ.ÍrÖFÇ Ü ÉêÆ Ü h é ×ËÑ�ÚrÑ�×AÌ Ü ÚrÑ�×ËÑ�Ç9Ô�Ñ'ÒÓÍpØ�ÕDÍpÊ�É éÇ�ÉêÍrÆ�í[>lÑ ÔAÑbÆFÍpÇ�ÑdÇ�ÈFÑdÊÓÒ Ü ×ËÉËÆFÛ�ÒÓÍAÑ�e(ÒÓÉËÑ�ÆAÇ�Ê Ü Ç�ÊãÒ Ü ×ËÑfi9j Ü ÆSÔÕDÍpÊ�ÉêÇ�ÉËÍpÆMá6_®ñ�``ä&ÖAëk^Ul�m�n j á<_-ñ�``ä�Ð`âbao_®ñ�`pa � l m Ü ÆSÔ�Ç�ÈFÑÌ Ü ÚpÑ�×ËÑ�Ç�ÒÓÍAÑ�e(ÒÓÉËÑ�ÆAÇ�Ê Ü Ç
ÊÓÒ Ü ×ËÑqi�Ðri9jkasi�autv��ârÐDÍpÎ�ÉËÑ�Æ éÇ Ü Ç�ÉËÍrÆFw�Ð�âbaowWao: Ü ÆDÔ4ÕDÍpÊ�ÉËÇ�ÉËÍpÆ®á6_-ñ�``ä"ÖAëF^Ul�mPn x�á6_®ñ�``äbí
õdÈFÑ�Ì Ü ÚrÑ�×ËÑ�ÇdÇ�Î Ü ÆFÊ ÙCÍpÎ�Ø�Ò Ü Æ-ÖDÑ�Î�Ñ�ÕFÎ�ÑbÊ�Ñ�ÆAÇ�Ñ�Ô Ü Ê Ü ÍpÎ éÇ�ÈFÍpÆFÍrÎ�Ø Ü ×dØ Ü Ç�Î�É§å7y�Ð"ÌdÈFÉ�Ò�ÈVÇ�Î Ü Æ=Ê¦ÙCÍrÎ�Ø�Ê Ü Æ�ÉËØ Ü ÛrÑ4²ÉËÆAÇ�ÍlÉËÇ�Ê^Ì Ü ÚrÑ�×ËÑ�Ç4ÔAÍrØ Ü ÉËÆ�Î�Ñ�ÕFÎ�Ñ�Ê�ÑbÆaÇ Ü Ç�ÉêÍrÆ,Ç�ÈFÎ�ÍrÝFÛpÈ�Ø Ü�éÇ�Î�É§å-Ø.ÝF×ËÇ�ÉêÕ=×êÉ�Ò Ü Ç�ÉËÍpÆZí õdÈ Ü Ç
ÉËÊ'Ð�z²lÞHy7² í{�&ë-ÝFÊ�ÉêÆ=Û4Ç�È=ÉêÊ�Ð

áÓâ'ädÒ Ü Æ(ÖDÑ�Ç�Î Ü ÆFÊ ÙCÍpÎ�Ø�Ñ'ÔMÉËÆAÇ�Í�Ì Ü ÚrÑ�×ËÑ�Ç Ô�ÍpØ Ü ÉËÆ Ü Êy,  Þ |}yfß~y .f� yH^�à�y,uz  Þ zßcz²�à�zu"ñ á}�Aä
ÌdÈFÑbÎ�Ñ�y . y�Þ t�ÙCÍr×Ë×êÍ;ÌdÊ�ÙCÎ�ÍrØwÇ�ÈFÑ�ÍrÎ�Ç�ÈFÍpÆFÍrÎ�Ø Ü ×êÉËÇ¦ëMÍ;ÙÇ�ÈFÑ�Ì Ü ÚrÑ�×ËÑ�ÇdÇ�Î Ü ÆFÊ ÙCÍpÎ�Ø Ü Ç�ÉËÍrÆ�í� � �hÂ#O ¾FÄ�SAÃ�K/O�Nf¼�VYKgZ�N��«ÀdÁ#N&O~T�À ¿��cS�N

Ä�½µ¼XVYK/Z0NH��N&Sr¾FÀ ¿RKZ¾FÄ�À ½]=Íp×Ë×ËÍ;ÌdÉËÆFÛ�Ç�È=Ñ�ÌOÍrÎ�ÏMÉËÆ�A BDC9ÍrÆ-ÉËØ Ü ÛpÑ�ÒÓÍFÔAÉËÆFÛ Ü ÆSÔ-ÔAÑ éÆFÍrÉËÊ�ÉËÆFÛSÐ�Ì"ÑMØ�ÍFÔAÑ�×dÇ�È=Ñ£Ô�ÉêÊ�Ç�Î�ÉêÖ=ÝFÇ�ÉËÍpÆ|Í;Ù�Ì Ü ÚrÑ�×ËÑ�Ç�Ò÷ÍaÑ2e éÒÓÉËÑ�ÆAÇ�Ê Í;Ù`ÉËØ Ü ÛpÑbÊ9ÖAë Ü ì�ÑbÆFÑ�Î Ü ×ËÉ\4bÑ'Ô é ì Ü ÝFÊ�Ê�É Ü ÆMá<�
��ä�ÔAÑ�Æ éÊ�ÉêÇ¦ë�A��9C�ídõdÈFÑ�ÙCÍp×Ë×ËÍ;ÌdÉËÆFÛ.ÔAÉËÊ�Ç�Î�ÉËÖFÝ=Ç�ÉËÍpÆMÙPÝFÆSÒÓÇ�ÉêÍrÆMÊ�Ñ�Î�ÚpÑ�Ê Ü ÊÇ�ÈFÑ�ÕFÎ�ÉËÍpÎdØ�ÍFÔAÑb×��á6^ l�n x á6_®ñ�``ä�� ��ñ�� l9n x á6_-ñ�``ä�ä � ÑÓåFÕ � � â������
^ l�n x á6_-ñ�``ä�Pl�n x�á6_®ñ�``ä/����

� � ñ
á6Brä

ÌdÈFÑbÎ�Ñ4â?a��~a � ÉËÊ Ü Õ Ü Î Ü Ø�Ñ�Ç�Ñ�ÎdÌdÈ=ÉöÒ�È-ÔAÑ�Ç�Ñ�Î�Ø�ÉËÆFÑbÊ�Ç�ÈFÑÇ Ü ÉË×�ÖDÑ�È Ü ÚAÉËÍpÎ¡Í;ÙOÇ�ÈFÑ�Ô�Ñ�ÆFÊ�ÉËÇ¦ë^ÙCÝFÆDÒÓÇ�ÉËÍpÆ Ü ÆSÔ;�Pl9n x�á<_-ñ�``ädÉËÊ
Ç�ÈFÑ�9�Óù��\�"úFù;ûÓù���������û&Ê�ÉËØ�ÉË× Ü Î Ç�Í.Ç�ÈFÑ�Ú Ü Î�É Ü ÆSÒÓÑ
Í�Ù Ü ì Ü Ý=Ê éÊ�É Ü Æ¤ÔAÑ�Æ=Ê�ÉËÇ¦ëaí�]FÍrÎ
Ê�ÉêØ�Õ=×êÉ�ÒÓÉËÇ¦ëAÐFÌ"Ñ.ÌdÉË×Ë×�Î�ÑÓÙCÑ�Î�Ç�Í4Ç�ÈFÑ4ÔAÑ�Æ éÊ�ÉêÇ¦ëMÉËÆlá<Bpä Ü Ê
�
��á¦ðFñ���l9n xPá6_®ñ�``äbñ}�Dä�í?]FÍrÎ��-Þµâ�ÌOÑ�È Ü ÚpÑÇ�ÈFÑ;� Ü Õ=× Ü ÒÓÉ Ü Æ¶ÍpÎ�ÔAÍpÝ=ÖF×ËÑ4ÑÓåFÕDÍpÆFÑ�ÆAÇ�É Ü × Ô�Ñ�ÆFÊ�ÉËÇ¦ë Ü ÆSÔ®ÙCÍrÎ�VÞ � Ì"Ñ4È Ü ÚrÑ�Ç�ÈFÑºÙ Ü Ø�ÉË×ËÉ Ü Î�ì Ü ÝFÊ�Ê�É Ü ÆVÔ�Ñ�ÆFÊ�ÉËÇ¦ëAíMÅ¦ÆAÇ�Ñ�Î éØ�Ñ'Ô�É Ü Ç�ÑdÚ Ü ×êÝ=Ñ�Ê Í;Ù��^ÒÓÍpÎ�Î�Ñ�Ê�ÕSÍrÆSÔ^Ç�Í�ÉËÆSÒÓÎ�Ñ Ü Ê�ÉËÆFÛp×Ëë�ÈFÑ Ü ÚAÉËÑ�ÎÇ Ü ÉË×ËÊ'í�>lÑ Ü Ê�Ê�ÝFØ�Ñ-Ç�È Ü Ç�Ç�ÈFÑ-ÊÓÒ Ü ×ËÉËÆFÛlÒÓÍAÑ�e(ÒÓÉËÑ�ÆAÇ�Ê;^Ul�mPn j Ð
âqas_-ñ�`�a �"d 1�� Ð Ü Î�Ñ�É¦í ÉKí Ô`í&ÌdÉËÇ�È;�
��á¦ðFñ�� l m n j;á<_-ñ�``ä�ñ��Sä
ÔAÑbÆFÊ�ÉËÇ¦ëAí
õdÈFÑ7Ê�ÕDÑ'ÒÓÉ§çøÒ Ü Ç�ÉËÍrÆ Í�Ù¤ÍpÆFÑH��Õ Ü Î Ü Ø�Ñ�Ç�Ñ�Î|ÙCÍpÎ|Ñ�ÚpÑbÎ�ëÌ Ü ÚpÑ�×ËÑ�Ç�ÒÓÍAÑ�e(ÒÓÉËÑ�ÆAÇ.Î�Ñ�Ê�Ý=×êÇ�Ê.ÉËÆ Ü ÆlÉËØ Ü ÛrÑ.Ø�ÍFÔAÑb× Ù Ü Î�Ç�ÍAÍÒÓÍrØ�ÕF×ËÑÓå4Ç�Í�ÖSÑ�Í;Ù�Ý=Ê�Ñ�ÉËÆ Ü Î�Ñ�Ê�Ç�ÍrÎ Ü Ç�ÉËÍpÆMÕFÎ�ÍFÒÓÑ�ÔAÝFÎ�ÑríOì�Ñ�Æ éÑ�Î Ü ×Ë×ËëaÐ¡Ç�È=Ñ�Î�Ñ�ÉËÊMÆFÑ�ÉËÇ�ÈFÑbÎ¤Ê�Ý�e(ÒÓÉËÑ�ÆAÇ-ÉËÆAÙCÍrÎ�Ø Ü Ç�ÉËÍpÆ�ù�úSû�üöÿ

ý�û�ü�ÆFÍpÎ�ÉËÆlÇ�ÈFÑ-Ô Ü Ç Ü Ç�Í¶Î�Ñ�×ËÉ Ü Ö=×êë¶Ê�ÕDÑ'ÒÓÉ§ÙCë|ÍpÎ�Ñ�Ê�Ç�ÉËØ Ü Ç�Ñ Ü

Ø�ÍFÔAÑ�×ZÌdÉËÇ�È Ü Ê¡Ø Ü ÆAë(ÔAÑbÛpÎ�ÑbÑ�Ê�Í;Ù�ÙCÎ�ÑbÑ'ÔAÍpØ Ü Ê
ÝFÆ=ÏaÆ=Í;ÌdÆFÊÉËÆVÇ�ÈFÑMÍpÎ�ÉêÛrÉËÆ Ü × ÉËØ Ü ÛpÑpíVï�ÍpÆFÑbÇ�ÈFÑ�×ËÑ�Ê�Ê'ÐdÇ�ÈFÑMÊ�Ç�Î�ÝSÒÓÇ�ÝFÎ�Ñ¶Í;ÙÇ�ÈFÑ�Ø�Í�Ô�Ñ�×�ÉËÆ-á<BpädÒÓÍrÝFÕF×ËÑ'Ô^ÌdÉËÇ�ÈMÇ�È=Ñ�Ê�ÕSÑ�ÒÓÉ§çøÒ Ü Ç�ÉËÍpÆ-Í�Ù9Ç�È=ÑÕFÎ�ÍpÖF×ËÑ�ØµÉêÆ^Ç�ÈFÑ�Ì Ü ÚpÑ�×ËÑ�ÇdÔAÍrØ Ü ÉËÆ4ÔAÍAÑ�ÊdÊ�Ý=ÛpÛpÑbÊ�Ç Ü Ú Ü Î�ÉËÑ�Ç¦ëÍ�ÙOÊ�ÉËØ�ÕF×ËÉ§çøÒ Ü Ç�ÉËÍpÆFÊdÌdÈ=ÉöÒ�È Ü Î�Ñ�Í;Ù ÝFÊ�Ñ�ÙCÍpÎ¡Ç�ÈFÑ�Î�Ñ�Ê�Ç�ÍrÎ Ü Ç�ÉËÍpÆÕFÎ�ÍpÖF×ËÑ�Ø-í Å¦Æ�Ç�ÈFÉËÊ�Ì"ÍpÎ�Ï`Ð�Ì"ÑOÒÓÍpÆ=Ê�É�ÔAÑ�Î�Ç�È=Ñ ÙCÍr×Ë×êÍ;ÌdÉËÆFÛ&Ç�ÈFÎ�Ñ�Ñ"�
ârí� 7���Z~A��ªM¡wõdÈFÑ�Ú Ü Î�É Ü ÆSÒÓÑ�Í;Ù-Ç�ÈFÑ�Ì Ü ÚpÑ�×ËÑ�ÇVÒÓÍAÑÓÙ éç`ÒÓÉËÑ�ÆAÇ�ÊVÔAÑ'Ò÷Î�Ñ Ü Ê�Ñ�Ê�ÑÓåFÕDÍpÆFÑ�ÆAÇ�É Ü ×Ë×êëfÌdÉËÇ�È1Ç�È=Ñ¸ÊÓÒ Ü ×ËÑpÐ
É¦í ÑpÐ�^"l9n x¦á6_®ñ�``äwÞ �
��á¦ðFñ�� � 1r¢�£ l 1 l m}¤ ñ��Säbñ w Þ
ârñ � ñ�:=ñ�â
as_®ñ�`�a � l ÌdÉêÇ�È�i j Ç�È=Ñ�ÒÓÍ Ü Î�Ê�Ñ�Ê�Ç�ÊÓÒ Ü ×ËÑpÐ��Ç�ÈFÑlÊÓÒ Ü ×ËÑ¶Õ Ü Î Ü Ø�Ñ�Ç�Ñ�Î¤ÒÓÍrÎ�Î�Ñ�Ê�ÕDÍpÆSÔ�ÉêÆ=Û�Ç�Í�i j Ü ÆSÔ¥§¦ ð=í�õdÈFÑ4Î Ü Ç�ÉêÍrÆ Ü ×ËÑ�ÖSÑbÈFÉËÆSÔ¶Ç�ÈFÉËÊ�Ø�ÍFÔAÑb× ÉËÊ�Ç�È Ü ÇÉËÇ ÉËÊ Ñ�-pÝ=ÉêÚ Ü ×ËÑ�ÆAÇ Ç�Í Ü ÔAÑ�Ç�ÑbÎ�Ø�ÉËÆFÉËÊ�Ç�ÉöÒ�Ø�ÍFÔAÑ�×ËÉËÆFÛ�Í;Ù`Ç�È=ÑÉËØ Ü ÛpÑ Ü Ê Ü Ø�ÑbØ.ÖDÑ�Î
Í�ÙW�&Ñ�Ê�Í;Ú^Ê�Õ Ü ÒÓÑ�Ê�AËâPC�í� í� 7���Z~A��¨�¡©EFÒ Ü ×êÉËÆFÛ7ÒÓÍAÑ�e(ÒÓÉËÑ�ÆAÇ�Ê Ü Î�ÑVÉ¦í É¦í Ô`í�ÌdÉËÇ�È�q��áKð=ñ��Pl�mPn j ñ}�Dä,ÔAÉËÊ�Ç�Î�ÉËÖFÝ=Ç�ÉËÍpÆ Ü ÆSÔ Ì Ü ÚrÑ�×ËÑ�Ç Ò÷ÍaÑ2e éÒ÷ÉêÑbÆaÇ�Ê Ü Ç Ü Õ Ü Î�Ç�É�ÒÓÝF× Ü Î�ÊãÒ Ü ×êÑ Ü Î�Ñ É¦í ÉKí Ô`í ÌdÉËÇ�È�q��áKð=ñ�� l ñ��Säbñ�ièÞªt��F«dñ�8 8�8Óñ�t
�¶âpí�õdÈFÉËÊ Ø�ÍFÔAÑ�×DÉËÊ
Ý=Ê�ÑÓÙCÝ=×9ÉËÆ-Ò Ü Ê�Ñ�Ê�ÌdÈ=Ñ�Î�Ñ�Ç�ÈFÑ�Ú Ü Î�É Ü ÆSÒÓÑ�Í�ÙOÇ�ÈFÑ�Ì Ü ÚrÑ�×ËÑ�ÇÒ÷ÍaÑ2e(ÒÓÉËÑ�ÆAÇ�Ê Ü Ç¤ÔAÉ¬`Ñ�Î�ÑbÆaÇ¶ÊãÒ Ü ×ËÑ�Ê¤Ò Ü ÆfÆFÍpÇ®ÖSÑ|ÌOÑ�×Ë× é
Ü ÕFÕFÎ�Í�å�ÉËØ Ü Ç�Ñ'ÔºÖaë Ü Ê�ÉËØ�ÕF×ËÑ
ÑÓåFÕDÍpÆFÑ�ÆAÇ�É Ü ×�× Ü Ì�í]=ÍpÎ¡Ç�ÈFÑ�Î�Ñ�Ø Ü ÉËÆSÔAÑbÎ�Í�Ù Ç�ÈFÉËÊ�Õ Ü ÕDÑ�Î'ÐZÌ"Ñ Ü Ê�Ê�Ý=Ø�Ñ.Ç�È Ü Ç�Ç�È=ÑÇ¦Ì"ÍdÕ Ü Î Ü Ø�Ñ�Ç�Ñ�Î�Ê ¥MÜ ÆSÔf��ÉËÆ�Ç�È=Ñ Ü ÖDÍ;ÚpÑ�Ø�ÍFÔAÑ�×ËÊ Ü Î�Ñ ÏAÆFÍ;ÌdÆ

Ü ÆSÔºçFåFÑ'Ô¸ù�úDû�üCý;ûbü�íOì�ÑbÆFÑ�Î Ü ×Ë×êëAÐFÇ�ÈFÑ�ÕDÑ�Î¦ÙPÍpÎ�Ø Ü ÆSÒÓÑ�Í;Ù Ç�È=ÑÎ�Ñ�ÛpÝF× Ü Î�É54�Ñ�Î¡ÉêÊdÉËØ�Õ Ü ÒÓÇ�Ñ�Ô4Ç�Í Ü ÛpÎ�Ñ Ü Ç�Ñ�Î
ÑÓåFÇ�Ñ�ÆAÇ�ÖAë^Ç�ÈFÑ�ÍpÆ é×ËÉËÆFÑ�É�ÔAÑ�ÆAÇ�É§çøÒ Ü Ç�ÉËÍrÆlÍ;Ù
Ç�È=ÑF�MÕ Ü Î Ü Ø�Ñ�Ç�Ñ�Î�Ê Ü ÆSÔ¶ÉËÇ�ÉËÊ�ÈFÑ�Î�ÑÌdÈFÑbÎ�Ñ�Ì"Ñ�Ò�È=ÍaÍrÊ�Ñ�Ç�Í�Ò÷ÍpÆSÒÓÑbÆaÇ�Î Ü Ç�Ñ�ÍpÝFÎdÑ�¬`ÍpÎ�Ç�Ê�í® � �hÂbO¦¾FÄ�SAÃ�K/O�N ¯�KM°�N[SAÄ�K�½ ¼XVYK/Z0N��N&Sr¾FÀ ¿RKZ¾FÄ�À ½©��OPZ À ¿FÄ ¾²±bV³MÍrÇ�ÉËÚ Ü Ç�Ñ'Ô¶ÖAë¤Ç�ÈFÑ Ü ÖSÍ;ÚrÑ4ÔAÉËÊãÒÓÝ=Ê�Ê�ÉËÍrÆ�Ð�ÌOÑMÒÓÍpÆ=Ê�É�ÔAÑ�Î ÜÎ�Ñ�Ê�Ç�ÍpÎ Ü Ç�ÉËÍpÆ�ÊãÒ�ÈFÑ�Ø�Ñ&ÙCÍpÎ`ÍrÖFÇ Ü ÉËÆFÉËÆFÛ Ü Æ�Ñ�Ê�Ç�ÉËØ Ü Ç�Ñ Í;ÙSÇ�ÈFÑ ÉËØ é
Ü ÛpÑ"= Ê"Ì Ü ÚrÑ�×ËÑ�Ç
ÒÓÍAÑ�e(ÒÓÉËÑ�ÆAÇ�Ê�z²&3�ÌdÈFÉ�Ò�È4ÉËÊ
ÔAÑÓçDÆFÑ'ÔMÉËÆ4Ç�Ñ�Î�Ø�Ê
Í�Ù9Ç�È=Ñ�ÙCÍp×Ë×ËÍ;ÌdÉËÆFÛ�ÍpÕFÇ�ÉËØ�É\4 Ü Ç�ÉËÍrÆ�ÕFÎ�ÍrÖF×ËÑ�Ø;�z² 3 Þ Ü Î�Û Ø�ÉËÆ´² ! � z �� zßcz² � óó à�µ l m n j � z² l m n j � ��

à ¶ l ¶ x µUl�n x � z²Rl9n x � �� $añ á6·rä
ÌdÈFÑbÎ�Ñ¹Ç�È=Ñ¹ÆFÍpÇ Ü Ç�ÉËÍrÆ z²Rl�n x�Ô�Ñ�ÆFÍpÇ�Ñ�Ê¨Ç�ÈFÑ¹ÚrÑ'ÒÓÇ�ÍrÎhÍ;Ù
Ì Ü ÚpÑ�×ËÑ�ÇbáCÊÓÒ Ü ×ËÉËÆFÛaä`Ò÷ÍaÑ2e(ÒÓÉËÑ�ÆAÇ�Ê Ü Ç`ÊãÒ Ü ×ËÑ/i Ü ÆSÔ¡ÍpÎ�ÉêÑbÆaÇ Ü Ç�ÉêÍrÆ
w
Ü ÆSÔ�µ l9n x Þ ó�¸ +�D*�¹�º�» í�õdÈ=Ñ
ÒÓÍpÊ�Ç ÙCÝ=ÆSÒÓÇ�ÉËÍrÆ�ÉêÆMá<·pä&È Ü Ê Ü ÝFÆFÉ¼-rÝFÑØ�ÉËÆFÉËØ�ÝFØwÙCÍrÎ Ü ÛrÉËÚpÑ�Æ�½díVõdÈ=ÉêÊ�ÙCÍr×ê×ËÍ;ÌdÊ�ÙPÎ�ÍpØ«Ç�ÈFÑ^Ù Ü ÒÓÇÇ�È Ü Ç�ÉËÇ�ÉêÊR@ÓÝ=Ê�Ç Ç�ÈFÑdÊ�ÝFØ�Ø Ü Ç�ÉËÍpÆ�Í;Ù Ü Æ�« ó Ü ÆSÔ Ü Æ�« ( ÆFÍrÎ�Ø
ÌdÈFÉ�Ò�È Ü Î�ÑdÖDÍpÇ�È4ÒÓÍpÆAÚrÑÓå.ÉËÆ7z²"í�õdÈ=Ñ"çSÎ�Ê�Ç ÍpÎÓÔAÑ�ÎOÒÓÍrÆSÔAÉËÇ�ÉËÍrÆFÊ
Ç�È Ü Ç�Ø�ÝFÊ�Ç�ÖDÑdÊ Ü Ç�ÉËÊ¦çSÑ'Ô�ÖAë¾z²&3"ÉËÊZÙCÍrÝFÆSÔ�Öaë�ÔAÉ¬øÑ�Î�Ñ�ÆAÇ�É Ü Ç�ÉËÆFÛá<·pä¡ÌdÉËÇ�È¶Î�Ñ�Ê�ÕSÑ'Ò÷Ç�Ç�Í z² í�GdÍ;Ì"Ñ�ÚrÑ�Î'Ð`Ç�ÈFÑ4ÒÓÍrÊ�Ç�ÙCÝ=ÆSÒÓÇ�ÉËÍrÆ¤ÉËÆ
á<·pä"ÉËÊdÆFÍpÇ
Ô�É¿¬`Ñ�Î�Ñ�ÆAÇ�É Ü ÖF×ËÑ�ÉËÆ^ÉêÇ�Ê�ÒÓÝ=Î�Î�ÑbÆaÇ�ÙCÍpÎ�Ø Ô�ÝFÑ�Ç�Í�Ç�È=Ñ
Ù Ü ÒÓÇ�Ç�È Ü Ç Ç�È=Ñ#À � ÆFÍpÎ�Ø1Ç�Ñ�Î�Ø�ÕFÎ�Ñ�Ê�Ñ�ÆAÇOÉËÆ�Ç�ÈFÑ
Ò÷ÍpÊ�Ç¢ÙCÝFÆSÒÓÇ�ÉËÍpÆ
ÉËÊ
Æ=Í£Ô�É¿¬`Ñ�Î�Ñ�ÆAÇ�É Ü ÖF× Ü Ç#4bÑ�Î�ÍDí.õ�Í Ü ×Ë×ËÑ�ÚAÉ Ü Ç�Ñ�Ç�ÈFÉËÊ�ÕFÎ�ÍrÖF×ËÑ�Ø-ÐÌ"Ñ�Ê�×ËÉËÛpÈAÇ�×êë^ÕSÑbÎ�Ç�Ý=Î�Ö¶Ç�ÈFÑ�À � ÆFÍpÎ�Ø Ç�Ñ�Î�Ø�Ç�Í4ÍrÖFÇ Ü ÉËÆ Ü ÔAÉ§Ù é
ÙCÑbÎ�Ñ�ÆAÇ�É Ü ÖF×ËÑ Ü ÕFÕFÎ�Í�å�ÉËØ Ü Ç�ÉËÍpÆ&� � ² � ��ÂÁÄÃ x |<^Sóx à�Å � ��ÆÓó ñÌdÈFÑbÎ�Ñ�^Çx�ÉêÊdÇ�ÈFÑ
w�Ç�È-Ñ�×ËÑ�Ø�Ñ�ÆAÇdÍ�Ù9Ç�È=Ñ�ÚpÑ'Ò÷Ç�ÍpÎd² Ü ÆSÔ�Å�È�ð
ÉËÊ Ü Ê�Ø Ü ×Ë× ÒÓÍrÆFÊ�Ç Ü ÆAÇ'í�E�ÝFÖFÊ�Ç�ÉËÇ�ÝFÇ�ÉêÆ=Û-Ç�ÈFÉËÊ Ü Õ=ÕFÎ�Í�åFÉËØ Ü Ç�ÉêÍrÆÉËÆAÇ�Í�á<·pä Ü ÆSÔ�ÔAÉ¬øÑ�Î�Ñ�ÆAÇ�É Ü Ç�ÉËÆFÛ
ÌdÉËÇ�È�Î�Ñ�Ê�ÕSÑ'Ò÷ÇOÇ�ÍFz²�Ì"ÑOÍrÖFÇ Ü ÉêÆ
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]ZÉËÛpÝFÎ�ÑVâ"��%"ÝFÎ�Ú Ü Ç�ÝFÎ�Ñ¤Í�Ù.Ç�ÈFÑ�� é ÈAëAÕSÑ�Î�Ê�ÝFÎ Ù Ü Ò÷Ñ Ü ÆSÔ�Ç�ÈFÑ
ÒÓÍrÎ�Î�Ñ�Ê�ÕDÍpÆSÔ�ÉêÆ=ÛFÉ#³vERÊ|ÕF×ËÍpÇ'í
Ç�ÈFÑ¡ÙCÍp×Ë×ËÍ;ÌdÉËÆFÛ�Ñ -rÝ Ü Ç�ÉËÍpÆ

¬ Þ7ÔAÉ Ü Û�Ë µUl�n x
á�� z^ 3l9n x á6_®ñ�``ä�� ó à�Å�ä ( 1���Æãó²Ì á6ÍräÎ zß . zß1à � � ¬�Ï�z² 3 Þ zß . z  á6ÐräÑ¡Æ(ÉËÇ�Ñ�Î Ü Ç�ÉËÚpÑ Ü ×ËÛpÍrÎ�ÉËÇ�ÈFØ�Ö Ü Ê�Ñ'Ô^ÍrÆ¤á<Ðpä"Ò Ü ÆMÖDÑ�ÔAÑ�ÚpÑb×êÍrÕSÑ�ÔÇ�Í Ü ÕFÕFÎ�Í�åFÉêØ Ü Ç�Ñ¡Ç�ÈFÑ�Ê�Ír×ËÝFÇ�ÉËÍpÆ z²&3pí0E�Ç Ü Î�Ç�ÉËÆFÛ�ÙCÎ�ÍpØ Ü Æ4ÉËÆFÉ é

Ç�É Ü ×`ÑÓåFÇ�ÉËØ Ü Ç�Ñpz²&£ j�¤ ÐAÌOÑ�Ê�Ír×ËÚpÑ�Ç�ÈFÑèÙCÍp×Ë×ËÍ;ÌdÉËÆFÛ�Ñ -rÝ Ü Ç�ÉêÍrÆ�ÙCÍrÎz²&£¼Ò�Ó ( ¤ ÝFÆAÇ�ÉË×�ÒÓÍrÆAÚpÑ�Î�ÛpÑ�ÆSÒ÷Ñ.ÉËÊ Ü Ò�ÈFÉËÑ�ÚrÑ'ÔÎ zß . zß�à � � ¬ £ÔÒ ¤ Ïpz² £¼Ò Ó ( ¤ Þ zß . z  ñ á6�rä
ÌdÈFÑbÎ�Ñ4¬�£¼Ò ¤ ÔAÑ�ÆFÍrÇ�Ñ�Ê�Ç�ÈFÑ4Ô�É Ü ÛpÍrÆ Ü ×ZØ Ü Ç�Î�É§å£ÍrÖFÇ Ü ÉËÆFÑ'Ô®Öaë
Î�Ñ�ÕF× Ü ÒÓÉËÆFÛ z^�3èÉêÆ¶á<ÍpädÖAë z^M£¼Ò ¤ ídÅ¦Ç
Ò Ü Æ-ÖDÑ.Ê�ÈFÍ;ÌdÆ-Ç�È Ü Ç
Ç�ÈFÑÉËÇ�ÑbÎ Ü Ç�ÉËÚpÑ Ü ×ËÛpÍrÎ�ÉËÇ�ÈFØ7ÉËÆ�á6�rä�ÒÓÍpÆAÚpÑbÎ�ÛpÑbÊ Ç�Í�Ç�È=ÑOÝFÆ=ÉÕ-rÝFÑ"Ø�ÉËÆ éÉËØ�ÝFØ,Í�ÙøÇ�ÈFÑ"ÕSÑ�Î�Ç�ÝFÎ�ÕSÑ�Ô4ÒÓÍrÊ�ÇZÙCÝFÆSÒ÷Ç�ÉËÍpÆ�ÉËÆ�á6·rä�íZõdÈFÑOÊ�Ç Ü ÖFÉ é×ËÉ54 Ü Ç�ÉËÍpÆ-ÒÓÍpÆ=Ê�Ç Ü ÆAÇ{Å Ü ¬`Ñ'ÒÓÇ�Ê�Ç�ÈFÑ�ÒÓÍrÆaÚrÑ�Î�ÛrÑ�ÆSÒÓÑ�Î Ü Ç�Ñpí�õdÈFÑÖFÉËÛrÛpÑ�Î Ç�ÈFÑ#Å ÐrÇ�È=ÑdÙ Ü Ê�Ç�ÑbÎOÇ�ÈFÑ
ÒÓÍpÆAÚrÑ�Î�ÛrÑ�ÆSÒÓÑpífGdÍ;Ì"Ñ�ÚpÑbÎ'ÐAÝFÊ éÉËÆFÛ Ü Î�Ñ�× Ü Ç�ÉêÚrÑ�×Ëë�× Ü Î�ÛrÑ�Å^È Ü Ê�Ç�È=ÑdÊ�É�ÔAÑ"Ñ�¬øÑ�ÒÓÇOÍ�ÙSÊ�Ø�ÍAÍrÇ�ÈFÉËÆFÛÍrÝFÇ Ç�È=ÑdÑ'ÔAÛpÑbÊOÉËÆ�Ç�ÈFÑdÉËØ Ü ÛrÑpí`õdÈFÑbÎ�ÑÓÙCÍrÎ�ÑpÐ�Å®Ê�ÈFÍrÝF×�Ô�ÖDÑdÊ�Ñ�ÇÇ�Í-Ö Ü × Ü ÆSÒÓÑ4Ç�ÈFÑ(Ò÷ÍpØ�ÕFÎ�ÍpØ�ÉËÊ�Ñ�ÖDÑ�Ç¦Ì"Ñ�Ñ�Æ�Ç�ÈFÑMÒÓÍpÆAÚrÑ�Î�ÛrÑ�ÆSÒÓÑ
Î Ü Ç�Ñ"Í;ÙDÇ�ÈFÑ Ü ×ËÛpÍpÎ�ÉËÇ�ÈFØ Ü ÆSÔèÊ�È Ü Î�ÕFÆFÑbÊ�Ê Í�ÙSÇ�ÈFÑ"Î�ÑbÊ�ÝF×ËÇ�ÉËÆFÛ¡Ê�Í é×ËÝFÇ�ÉêÍrÆ�í&� Ü Ê�Ñ'Ô�ÍpÆ�ÍpÝFÎ�ÑÓåFÕDÑ�Î�ÉËÑ�ÆDÒÓÑpÐAÌ"ÑOÎ�Ñ'ÒÓÍpØ�Ø�ÑbÆSÔ
Å Á â
ÙCÍrÎdÕFÎ�ÍrÖF×ËÑ�Ø�Ê"ÉêÆAÚrÍp×ËÚAÉêÆ=Û�Î�Ñ Ü ×�×ËÉ§ÙCÑ
ÉËØ Ü ÛpÑ�Ê�íÖf×<Ø Ù�Ú n Ú oÇÛcÜPÝ9q`n"Ü�Þ�Ý Þ&ß à Ú�á�âWã q�o�Ü�äFq`n"Ü�Þ�Ýå4orq/Û Ú n Ú oAmÑ Æ=ÍpÇ�ÑbÌOÍrÎ�Ç�ÈAë«ÙCÑ Ü Ç�ÝFÎ�Ñ�Í;Ù1Ç�ÈFÑwØ�ÝFÇ�ÉËÊãÒ Ü ×ËÑwÉËØ Ü ÛpÑÎ�Ñ�Ê�Ç�ÍpÎ Ü Ç�ÉËÍpÆ Ü ×ËÛrÍpÎ�ÉËÇ�ÈFØ ÉËÆAÇ�Î�ÍFÔAÝSÒÓÑ'Ô¶ÉËÆ-Ç�ÈFÑ�ÕFÎ�Ñ�ÚAÉËÍpÝ=Ê�Ê�Ñ'Ò éÇ�ÉêÍrÆ�ÉêÊ�Ç�ÈFÑ-ÆFÑbÑ'Ô|ÙCÍrÎ�Ø.ÝF×ËÇ�ÉêÕ=×êÑ^Î�Ñ�ÛrÝF× Ü Î�É\4 Ü Ç�ÉËÍrÆVÕ Ü Î Ü Ø�Ñ éÇ�Ñ�Î�Ê�í�Å¦Æ-Ç�ÈFÉËÊ�Õ Ü ÕSÑ�Î�ÐDÌOÑ�ÝFÇ�ÉË×ËÉ54�Ñ Ü Ø�ÝF×ËÇ�É�ÔAÉËØ�Ñ�ÆFÊ�ÉËÍpÆ Ü ×`ÑÓå éÇ�Ñ�ÆFÊ�ÉËÍrÆlÍ;ÙdÇ�ÈFÑ�ÕDÍpÕFÝ=× Ü Î
� é ÒÓÝFÎ�ÚrÑ�Ø�Ñ�Ç�È=Í�Ô�A�Í�COÒ Ü ×ê×ËÑ'Ô¶Ç�ÈFÑæ � é ÈaëAÕDÑ�Î�Ê�ÝFÎ¦Ù Ü ÒÓÑ�ç^Ç�Í4ÔAÑbÇ�Ñ�Î�Ø�ÉêÆ=Ñ�Ø.Ý=Ç�ÉËÕF×ËÑ�Î�Ñ�ÛrÝF× Ü Î�É54 Ü Ç�ÉËÍpÆÕ Ü Î Ü Ø�Ñ�Ç�Ñ�Î�Ê Ü ÕFÕSÑ Ü Î�ÉËÆFÛ�ÉËÆ®á6·päbíõdÈFÑ�� é ÈAëAÕSÑ�Î�Ê�ÝFÎ Ù Ü Ò÷Ñ�ÉêÊ Ü ÕF×ËÍpÇ�Í;ÙOÇ�ÈFÑ�×êÍrÛ4Í�ÙOÎ�Ñ�Ê�É�ÔAÝ Ü ×ÆFÍrÎ�Ø-Ð �  0�
ß^²&3Aá<½ ä � óó Ð Ü Û Ü ÉËÆFÊ�Ç`Ç�ÈFÑ ×ËÍpÛ"Í;ÙFÊ�ÉöÔ�ÑOÒÓÍpÆ=Ê�Ç�Î Ü ÉËÆAÇÆFÍrÎ�Ø�Ê � z² 3l9n x á<½ ä � �� ÐUi jba�i�a�t��¸ârÐrÙCÍpÎ Ü Î Ü ÆFÛrÑ�Í;Ù9Î�Ñ�ÛpÝ é
× Ü Î�É54 Ü Ç�ÉêÍrÆMÕ Ü Î Ü Ø�Ñ�Ç�Ñ�Î�Ê�ídÅ¦Ç
È Ü Ê
ÖDÑ�Ñ�Æ Ü Î�ÛpÝFÑ'Ô Ü ÆSÔMÊ�ÈFÍ;ÌdÆÇ�ÈFÎ�ÍrÝFÛpÈ�ÆAÝFØ�Ñ�Î�É�Ò Ü ×DÑÓåFÕSÑbÎ�ÉËØ�Ñ�ÆAÇ�ÊdÇ�È Ü Ç Ç�ÈFÑ
ÕDÍpÉËÆAÇ�Ê&ÍpÆ4Ç�ÈFÑ� é ÈAëAÕSÑbÎ�Ê�Ý=Î¦Ù Ü ÒÓÑ.ÌdÈ=Ñ�Î�Ñ�Ç�ÈFÑ.ì Ü ÝFÊ�Ê�É Ü Æ(Ò÷ÝFÎ�Ú Ü Ç�ÝFÎ�Ñ.Î�Ñ Ü Ò�ÈFÑ�Ê

Ü ×ËÍFÒ Ü × Ø Ü åFÉËØ Ü4Ü Î�Ñ(Ò÷×êÍrÊ�Ñ�×Ëë¶Ç�ÉËÑ'Ô¶Ç�Í-Ç�ÈFÑ�ÕDÍpÉËÆAÇ�Ê�ÍpÆlÇ�È=ÑÎ�Ñ�Ê�Ç�ÍpÎ Ü Ç�ÉËÍpÆ�Ñ�Î�Î�ÍpÎ'Ð � ²���² 3 á6½ ä � óó Ð"ÈaëAÕDÑ�Î�Ê�ÝFÎ¦Ù Ü ÒÓÑ¶ÌdÈFÑ�Î�ÑÇ�ÈFÑ.Î�Ñ�Ê�Ç�ÍpÎ Ü Ç�ÉËÍrÆ¤Ñ�Î�Î�ÍrÎ�Î�Ñ Ü Ò�ÈFÑ�Ê Ü ×ËÍFÒ Ü ×�Ø�ÉËÆFÉËØ Ü ídõdÈ=Ñk� éÈAëAÕSÑbÎ�Ê�Ý=Î¦Ù Ü ÒÓÑ�Ê�Ñb×êÑ�ÒÓÇ�ÉËÍpÆºÙCÍpÎ�½VÒ÷ÍpÎ�Î�Ñ�Ê�ÕDÍpÆDÔAÊ
Ç�Í.Ç�È Ü Ç�½¶ÙCÍrÎ
ÌdÈFÉ�Ò�ÈVÇ�ÈFÑ¤ì Ü ÝFÊ�Ê�É Ü Æ¸Ò÷ÝFÎ�Ú Ü Ç�ÝFÎ�Ñ(Í�Ù�Ç�ÈFÑ;� é ÈaëAÕDÑ�Î�Ê�ÝFÎ¦Ù Ü ÒÓÑÉËÊ Ü Ø Ü åFÉËØ�ÝFØ-íè³MÍpÆAÇ�Ñ7% Ü Î�×ËÍ�Ê�ÉËØ�ÝF× Ü Ç�ÉËÍrÆFÊMÉêÆDÔAÉ�Ò Ü Ç�Ñ�ÊÇ�È Ü Ç
A�Ð9C9Ç�ÈFÑ�� é ÈAëAÕSÑbÎ�Ê�Ý=Î¦Ù Ü ÒÓÑ.Ø�ÑbÇ�ÈFÍFÔ^ÕFÎ�ÍFÔAÝDÒÓÑ�Ê�Î�Ñ�ÛrÝF× Ü Î éÉ54 Ü Ç�ÉËÍpÆlÕ Ü Î Ü Ø�Ñ�Ç�Ñ�Î�Ê4ÌdÈFÉ�Ò�È Ü Î�Ñ Ü ×ËØ�ÍrÊ�Ç Ü Ê�ÛpÍAÍFÔ Ü Ê�Ç�È=ÑÍrÕFÇ�ÉËØ Ü ×PáPÉKí Ñpí�Ø�ÉËÆFÉËØ�É54�ÉËÆFÛ¶Ç�ÈFÑ¶Î�ÑbÊ�Ç�ÍrÎ Ü Ç�ÉËÍpÆ7Ñ�Î�Î�ÍpÎÓä�í õdÈFÑ
ÆFÑ�ÒÓÑ�Ê�Ê Ü Î�ë�ÙCÍpÎ�Ø.Ý=× Ü Ê�ÙCÍrÎ.Ç�ÈFÑ¤ÒÓÍrØ�ÕFÝFÇ Ü Ç�ÉËÍpÆlÍ�Ù.ì Ü ÝFÊ�Ê�É Ü ÆÒÓÝ=Î�Ú Ü Ç�ÝFÎ�Ñ¡Í;Ù`Ç�ÈFÑ?� é ÈAëaÕDÑ�Î�Ê�ÝFÎ Ù Ü ÒÓÑ�ÙCÍpÎ&Ç�ÈFÑ¡ÕFÎ�ÍrÖF×ËÑ�Ø1ÉËÆMá6·rä
Ü Î�Ñ�ÕFÎ�Í;ÚAÉ�ÔAÑ'Ô^ÉËÆ¾A�ÐDC íé ê ÄPVfÂ#O�KZ¾FÄ�À&½èê"¾�Â¡Á�°
Å¦Æ�Ç�ÈFÉËÊ Ê�Ñ'ÒÓÇ�ÉêÍrÆ�ÐAÌ"ÑdÉê×Ë×ËÝFÊ�Ç�Î Ü Ç�ÑdÇ�ÈFÑdÕSÑbÎ¦ÙCÍrÎ�Ø Ü ÆDÒÓÑ
Í�ÙøÍrÝFÎÕFÎ�ÍpÕDÍpÊ�Ñ'Ô�Ø�ÝF×ËÇ�ÉËÊãÒ Ü ×ËÑ(ÉËØ Ü ÛpÑMÎ�Ñ�Ê�Ç�ÍrÎ Ü Ç�ÉËÍpÆ Ü ×êÛrÍpÎ�ÉêÇ�ÈFØ�ÙCÍrÎ

ÖDÍpÇ�È�Î�Ñ Ü × Ü ÆSÔ�Ê�ëAÆaÇ�ÈFÑ�Ç�ÉöÒ®ÉËØ Ü ÛrÑ�Ê'ífÅ¦Æ�Ç�ÈFÑ®çSÎ�Ê�Ç4ÑÓå Ü Ø éÕF×ËÑpÐ�Ì"ÑOÝ=Ê�Ñ'Ô Ü � é�ë ì Ü ÝFÊ�Ê�É Ü Æ.ÒÓÍrÆaÚrÍp×ËÝFÇ�ÉêÍrÆ Ü ×;ÏrÑ�Î�Æ=Ñ�×¦Ð;ÌdÉËÇ�ÈòÇì�Þ,òÇí�Þ � 8 ð�Ç�Í�ÖF×ËÝFÎ � B"·bî � B"·
³ Ü ÆSÔAÎ�Éê×Ë×FÉËØ Ü ÛpÑpí/ïDÑ�Î�ÍØ�Ñ Ü Æ�ÌdÈFÉËÇ�Ñ�ì Ü ÝFÊ�Ê�É Ü Æ^ÆFÍpÉËÊ�Ñ
Ì Ü Ê Ü ÔFÔAÑ'ÔºÇ�Í�Ê�Ñ�ÇdÇ�ÈFÑ{EFïbÉ
Ç�Íð:rðpÔR�¡í õdÈFÑMÇ�ÍpÕVÇ¦Ì"ÍlÕF×ËÍpÇ�Ê.ÉËÆ�]�ÉËÛrÝFÎ�Ñ � ÔAÉËÊ�Õ=× Ü ë¶Ç�È=ÑÍrÎ�ÉËÛpÉËÆ Ü × Ü ÆSÔ^Ç�ÈFÑ�ÖF×ËÝFÎ�Î�Ñ'Ô`Ð=ÆFÍpÉËÊ�ë4ÉËØ Ü ÛrÑ�Ê'í>lÑlÎ�Ñ�Ê�Ç�ÍpÎ�Ñ�Ô�Ç�ÈFÑ�ÔAÑbÛpÎ Ü ÔAÑ'ÔY³ Ü ÆSÔAÎ�ÉË×Ë×�ÉêØ Ü ÛpÑlÝFÊ�ÉËÆFÛÇ�ÈFÎ�Ñ�Ñ|Î�Ñ�ÛrÝF× Ü Î�É\4 Ü Ç�ÉËÍrÆ,Ç�Ñ'Ò�ÈFÆFÉ¼-rÝFÑ�Ê � ÍpÝFÎ-Õ=Î�ÍpÕDÍpÊ�Ñ'ÔfØ�ÝF× éÇ�ÉêÊÓÒ Ü ×ËÑ^Î�Ñ�ÛrÝF× Ü Î�É54 Ü Ç�ÉËÍpÆ|ÊãÒ�ÈFÑ�Ø�ÑrÐOÇ�ÈFÑ;%"ÍpÆFÊ�Ç�Î Ü ÉËÆFÑ'Ô��`Ñ Ü Ê�ÇER-rÝ Ü Î�Ñ�ÊMá<%��&EFä Ü ×ËÛpÍpÎ�ÉËÇ�ÈFØ�ÌdÉËÇ�È Ü � é�ë � Ü Õ=× Ü ÒÓÉ Ü Æ|Î�Ñ�Û éÝF× Ü Î�É54�Ñ�Î�A�:9C�Ð Ü ÆSÔ¶Ç�ÈFÑ4õ�ñ Ü ×ËÛpÍpÎ�ÉËÇ�ÈFØòA�·9C�í4õdÈ=Ñ4Î�Ñb×êÑbÚ Ü ÆAÇÎ�Ñ�ÛpÝF× Ü Î�É54 Ü Ç�ÉËÍpÆVÕ Ü Î Ü Ø�Ñ�Ç�ÑbÎ�ÊMÌOÑbÎ�Ñ¤ÔAÑbÇ�Ñ�Î�Ø�ÉêÆ=Ñ'Ô�ÝFÊ�ÉêÆ=ÛlÑ�É éÇ�ÈFÑ�Î�Ç�ÈFÑ#� é Ò÷ÝFÎ�ÚrÑOÍrÎ9ÍrÎ�Ç�ÈFÑ�� é ÈAëaÕDÑ�Î�Ê�ÝFÎ Ù Ü ÒÓÑdØ�ÑbÇ�ÈFÍFÔ`í/]FÍrÎÇ�ÈFÑ�õ�ñ Ü ×ËÛpÍrÎ�ÉËÇ�ÈFØ Ü ÆSÔºÍpÝFÎ Ü ×êÛrÍpÎ�ÉêÇ�ÈFØ Ì"Ñ�ÝFÊ�Ñ'ÔpÅ£Þ�â"8 ð
Ü Ê�Ç�È=ÑdÊ�Ç Ü ÖFÉË×ËÉ\4 Ü Ç�ÉËÍrÆèÒ÷ÍpÆFÊ�Ç Ü ÆAÇ�íg]=ÍpÎZÍpÝFÎ�Ø�ÝF×ËÇ�ÉËÊãÒ Ü ×ËÑ ÉËØ Ü ÛpÑÎ�Ñ�Ê�Ç�ÍpÎ Ü Ç�ÉËÍpÆ Ü ×ËÛrÍpÎ�ÉËÇ�ÈFØ-ÐFÌ"Ñ�ÝFÊ�Ñ�Ô-Ç�ÈFÑ ë�Ü ÝFÖDÑ'Ò�ÈFÉËÑ"= Ê�Ñ�ÉËÛpÈAÇÇ Ü ÕMØ�ÍpÊ�ÇOÊ�ëaØ�Ø�ÑbÇ�Î�É�Ò Ü ×�Ì Ü ÚpÑ�×ËÑ�Ç�Ê
A � C í
Å¦Æc]ZÉËÛpÝFÎ�Ñ � Ì"Ñ£Ô�ÉêÊ�ÕF× Ü ëlÇ�ÈFÑ®Î�Ñ�Ê�Ç�ÍpÎ�Ñ'Ôc³ Ü ÆSÔAÎ�Éê×Ë×dÉËØ é

Ü ÛpÑ�Ê�í©]FÍrÎ4ÍpÝ=Î(Ø�ÝF×ËÇ�ÉËÊÓÒ Ü ×ËÑMÉËØ Ü ÛpÑ®Î�Ñ�Ê�Ç�ÍpÎ Ü Ç�ÉêÍrÆ,Ø�ÑbÇ�ÈFÍFÔ
Ì"Ñ-ÒÓÍpØ�ÕFÝ=Ç�Ñ'Ô|Ç¦Ì"Í¤Î�Ñ�Ê�Ç�ÍpÎ Ü Ç�ÉËÍpÆ=Ê Ü ÒbÒÓÍpÎÓÔAÉËÆFÛlÇ�Í¶Ç�ÈFÑ®Î�Ñ�Û éÝF× Ü Î�É54 Ü Ç�ÉËÍpÆlÊãÒ�ÈFÑbØ�Ñ�ÊF³MÍFÔAÑb×�â Ü ÆSÔ7³MÍFÔAÑb× � ÔAÑbÊãÒÓÎ�ÉêÖDÑ'Ô
ÉËÆVÊ�Ñ'ÒÓÇ�ÉêÍrÆc:-ÌdÉËÇ�È���ÞhâU8 ð=í7]=ÍpÎ�³MÍFÔAÑ�×�âpÐ&ÌOÑMÝFÊ�Ñ'Ô ÜB é ×ËÑ�ÚrÑ�×SÌ Ü ÚpÑb×êÑbÇ ÔAÑ�ÒÓÍpØ�ÕDÍpÊ�ÉêÇ�ÉËÍpÆ Ü ÆDÔ�Ê�ÑbÇdÇ�ÈFÑ¡ÑÓåFÕSÍrÆFÑ�ÆAÇ�É Ü ×Õ Ü Î Ü Ø�Ñ�Ç�Ñ�Î^Ç�Í ¥ Þ0â"8 � ís]=ÍpÎ�³MÍFÔAÑ�× � ÐOÌ"Ñ-ÝFÊ�Ñ'Ô Ü : é×ËÑ�ÚrÑ�×FÌ Ü ÚpÑ�×ËÑ�ÇOÔ�Ñ'ÒÓÍpØ�ÕDÍpÊ�ÉËÇ�ÉËÍpÆ Ü ÆSÔ�Ê�Ñ�Ç"Ç�ÈFÑ¡Î�Ñ�ÛrÝF× Ü Î�É54 Ü Ç�ÉËÍpÆÙCÍrÎ4Ç�ÈFÑ-ÊãÒ Ü ×ËÉËÆFÛ¸ÒÓÍAÑ�e(Ò÷ÉêÑbÆaÇ�ÊMÇ�Í,â�ð�1�ópíu]=ÍpÎ^Ç�ÈFÑ�³MÍFÔAÑ�×
â�Ò Ü Ê�Ñ.Ç�ÈFÑk� é ÈAëAÕDÑ�Î�Ê�ÝFÎ¦Ù Ü ÒÓÑ�Ì Ü Ê
ÝFÊ�Ñ'Ô-Ç�Í(ÔAÑbÇ�Ñ�Î�Ø�ÉêÆ=Ñ.Ç¦Ì"ÍÕ Ü Î Ü Ø�Ñ�Ç�Ñ�Î�Ê-ÒÓÍpÎ�Î�Ñ�Ê�ÕSÍrÆSÔAÉËÆFÛ�Ç�ÍVÇ�È=ÑlÊãÒ Ü ×êÉËÆFÛ�ÒÓÍAÑ�e(ÒÓÉËÑ�ÆAÇ�Ê
Ü ÆSÔ�Ç�ÈFÑVÒÓÍ Ü Î�Ê�Ñ�Ê�Ç¶ÊãÒ Ü ×ËÑlÌ Ü ÚrÑ�×ËÑ�Ç-ÒÓÍAÑ�e(ÒÓÉËÑ�ÆAÇ�Ê�í�Å¦ÆfÇ�ÈFÉËÊ
Ò Ü Ê�ÑpÐf� é ÈAëaÕDÑ�Î�Ê�ÝFÎ Ù Ü ÒÓÑ®ÉêÊ Ü � é�ë ÙCÝ=ÆSÒÓÇ�ÉËÍrÆVÍ;Ù
Î�Ñ�ÛpÝ=× Ü Î�É54 Ü�éÇ�ÉêÍrÆlÕ Ü Î Ü Ø�Ñ�Ç�Ñ�Î�Ê Ü Ê.Ê�Ñ�Ñ�Æ�ÉËÆÂ]ZÉËÛpÝFÎ�Ñ¤ârí¾Ñ¡×ËÊ�Í-Ê�ÈFÍ;ÌdÆVÉËÆ]ZÉËÛSíAâdÉËÊ Ü ÕF×ËÍpÇ�Í;Ù`Ç�ÈFÑdÎ�ÍAÍpÇ Ø�Ñ Ü Æ.Ê�-rÝ Ü Î�Ñ
Ñ�Î�Î�ÍpÎ�á6É#³vERÊ ä�Ðô (õ + � ²~� z² 3 � óó Ð Ü Ê Ü ÙCÝFÆDÒÓÇ�ÉËÍpÆ¶Í;ÙdÇ�È=Ñ�Ê�Ñ^Î�Ñ�ÛrÝF× Ü Î�É54 Ü Ç�ÉËÍpÆÕ Ü Î Ü Ø�Ñ�Ç�Ñ�Î�Ê'í�ÊZå Ü Ø�ÉËÆFÉËÆFÛ�Ç�ÈFÑ�Ê�Ñ^ÉËØ Ü ÛpÑbÊ�Ê�ÈFÍ;ÌdÊ�Ç�È Ü Ç�Ç�È=Ñ� é Ê�ÝFÎ¦Ù Ü ÒÓÑdÈ Ü Ê Ü ÔAÉËÊ�Ç�ÉËÆSÒÓÇ Ñ÷å�Ç�Ñ�ÆSÔAÑ�Ô�Ø Ü åFÉËØ ÜdÜ ×ËÍrÆFÛ
ÌdÈFÉ�Ò�ÈÇ�ÈFÑ�Éb³;ERÊMÉËÊ�ÚpÑbÎ�ë.ÒÓ×ËÍrÊ�Ñ"Ç�Í
ÖDÑ�ÉËÆFÛ Ü Ø�ÉËÆFÉËØ�ÝFØ-íDõdÈAÝFÊ'Ð;Ì"ÑÊ�Ñ�Ñ�Ç�È Ü Ç
Ç�ÈFÑ�Î�Ñ�Ê�Ç�ÍpÎ Ü Ç�ÉËÍpÆ Ü ×ËÛpÍrÎ�ÉËÇ�ÈFØµÉêÊdÆ=ÍpÇdÍ;ÚpÑbÎ�×Ëë4Ê�Ñ�ÆFÊ�É éÇ�ÉêÚrÑdÇ�Í�Ç�ÈFÑdÊãÒ Ü ×ËÉËÆFÛ.ÒÓÍAÑ�e(ÒÓÉËÑ�ÆAÇ"Î�Ñ�ÛrÝF× Ü Î�É\4 Ü Ç�ÉËÍrÆ.Õ Ü Î Ü Ø�Ñ�Ç�Ñ�Î
Ü ÆSÔM×ËÍFÒ Ü Ç�ÉêÆ=Û4Ç�È=Ñ�ÒÓÍrÎ�Î�Ñ'ÒÓÇ�Î�Ñ�ÛpÝF× Ü Î�É54 Ü Ç�ÉËÍpÆ-Õ Ü Î Ü Ø�Ñ�Ç�Ñ�Î¡ÙCÍrÎÇ�ÈFÑ�Ì Ü ÚrÑ�×ËÑ�Ç
ÒÓÍAÑ�e(ÒÓÉËÑ�ÆAÇ�Ê¡ÉËÊdØ�ÍpÎ�Ñ�ÉËØ�ÕDÍpÎ�Ç Ü ÆAÇ'íÅ¦Æè³MÍFÔAÑ�× � Î�Ñ�Ê�Ç�ÍpÎ Ü Ç�ÉêÍrÆ�Ð-Ì"ÑfÑ�Ø�ÕF×ËÍ;ërÑ'Ô Ü : é ×ËÑ�ÚrÑ�×Ì Ü ÚpÑ�×ËÑ�Ç4Ô�Ñ'ÒÓÍpØ�ÕDÍpÊ�ÉËÇ�ÉËÍpÆ Ü ÆDÔ Ü Ê�Ê�ÝFØ�Ñ'Ô�Ç�È Ü Ç^Ñ Ü Ò�È�ÊãÒ Ü ×ËÑÛrÑ�Ç�Ê Ü ÔAÉ¬øÑ�Î�Ñ�ÆAÇ4Î�Ñ�ÛpÝF× Ü Î�É54 Ü Ç�ÉËÍpÆVÕ Ü Î Ü Ø�Ñ�Ç�ÑbÎ'íH� Ü Ê�Ñ'Ô�ÍpÆ
Ç�ÈFÑ4ÉËÆFÊ�Ñ�ÆFÊ�ÉËÇ�ÉêÚAÉËÇ¦ë-Í�Ù Ç�ÈFÑ4Î�Ñ�Ê�Ç�ÍpÎ Ü Ç�ÉËÍpÆ|Ç�Í-Ç�ÈFÑ�ÊãÒ Ü ×ËÉËÆFÛ¤ÒÓÍ éÑ�e(Ò÷ÉêÑbÆaÇ¡Î�Ñ�ÛrÝF× Ü Î�É\4 Ü Ç�ÉËÍrÆ4Õ Ü Î Ü Ø�ÑbÇ�Ñ�Î�Ì"Ñ�Ê�Ñ�Ç�Ç�ÈFÉËÊdÚ Ü ×êÝ=Ñ�Ç�Íâ�ð�1ró�í



]ZÉËÛpÝFÎ�Ñ � �gö¡Î�ÉËÛrÉêÆ Ü ×¦Ð�ÖF×ËÝFÎ�Î�Ñ'Ô`ÐAÎ�ÑbÊ�Ç�ÍrÎ�Ñ'Ô^ÖAë�%��&E Ð;Î�Ñ�Ê�Ç�ÍrÎ�Ñ'Ô
ÖAëlõ�ñ Ü ÆDÔlÎ�ÑbÊ�Ç�ÍrÎ�Ñ'Ô�ÖAë7³MÍFÔAÑ�×�â Ü ÆSÔ�³MÍFÔAÑ�× � Ç�Ñ'Ò�È éÆFÉ¼-rÝFÑ�Ê�í

]ZÉËÛSí � Ê�ÈFÍ;ÌdÊ�Ç�È Ü Ç�ÖSÍrÇ�È¶Ç�ÈFÑ�õ�ñ Ü ×ËÛpÍrÎ�ÉËÇ�ÈFØ Ü ÆDÔ-ÍrÝFÎ
Ü ×êÛrÍpÎ�ÉêÇ�ÈFØ�ÕFÎ�ÍFÔAÝSÒÓÑdÎ�Ñ�Ê�Ç�ÍpÎ�Ñ�Ô�ÉËØ Ü ÛrÑ�Ê�ÚAÉËÊ�Ý Ü ×Ë×ËëdÊ�ÝFÕDÑ�Î�ÉËÍrÎ9Ç�ÍÇ�ÈFÑk%��[E Ü ×ËÛrÍpÎ�ÉËÇ�ÈFØ-í�>lÑ Ü ×êÊ�Í�ÍpÖFÊ�Ñ�Î�ÚrÑ�Ç�È Ü Ç
Ç�ÈFÑ.ÉËØ Ü ÛpÑ�ÊÎ�Ñ�Ê�Ç�ÍpÎ�Ñ�Ô�Öaë¡ÍpÝFÎ Ü ×ËÛpÍrÎ�ÉËÇ�È=Ø Ü Î�Ñ Ü ×êÉËÇ�Ç�×ËÑ�Ê�È Ü Î�ÕDÑ�Î�Ç�È Ü Æ�Ç�È Ü ÇÍ�ÙSÇ�ÈFÑ"õ�ñ Ü ÆSÔ�Ç�È=ÑOÇ�ÑÓåFÇ�ÝFÎ�Ñ é ×ËÉËÏpÑ"Î�ÑbÛpÉËÍpÆFÊ Ü ÖFÝFÆSÔ Ü ÆAÇ�ÉËÆ.Ç�ÈFÑ³ Ü ÆSÔAÎ�Éê×Ë×¡ÉêØ Ü ÛpÑ¶áCÑbÛSí"Ç�ÈFÑ®È Ü ÉËÎ�Ê Ü Î�ÍpÝFÆSÔ�Ç�ÈFÑ¶Ø�ÍpÝFÇ�È�Í;Ù
Ç�ÈFÑ�³ Ü ÆDÔAÎ�ÉË×Ë×�ä Ü Î�Ñ�ÖSÑbÇ�Ç�ÑbÎ.ÕFÎ�Ñ�Ê�ÑbÎ�ÚpÑ�ÔlÖAë-ÍpÝ=Î Ü ×ËÛpÍpÎ�ÉËÇ�ÈFØ-íõdÈFÑ�É#³vERÊ�Ú Ü ×ËÝFÑbÊ Ü Î�Ñ � :Fí�Í":®ÙPÍpÎMÇ�ÈFÑ¶õ�ñ Ü ×ËÛpÍpÎ�ÉËÇ�ÈFØ-Ð� �SíËâpâ¡ÙCÍrÎ�Ç�ÈFÑ�%��&E Ü ×ËÛpÍrÎ�ÉËÇ�È=Ø Ü ÆSÔ � :=í�Í"B Ü ÆSÔ � :Fí�Ð���ÙCÍrÎ
Ç�ÈFÑð³£Í�Ô�Ñ�×4â Ü ÆSÔ�³MÍFÔAÑ�× � Î�Ñ�Ê�Ç�ÍpÎ Ü Ç�ÉêÍrÆFÊ-Î�Ñ�Ê�ÕDÑ'ÒÓÇ�ÉêÚrÑ�×Ëëaí]ZÉËÆ Ü ×Ë×ËëAÐ�ÙCÍpÎ&Ç�ÈFÉËÊ"ÉêØ Ü ÛpÑdÌ"Ñ
Ê�Ñ�Ñ�×êÉËÇ�Ç�×ËÑ
ÔAÉ¬øÑbÎ�Ñ�ÆSÒ÷Ñ�Ñ�ÉËÇ�ÈFÑbÎdÉêÆÇ�Ñ�Î�Ø�Ê�Í�ÙOÇ�È=Ñ.Ñ�Î�Î�ÍrÎ�ÆFÍpÎ�ØwÍpÎ�ÉËÆ-Ç�ÑbÎ�Ø�Ê�Í�ÙOÚAÉêÊ�Ý Ü ×/-rÝ Ü ×ËÉËÇ¦ëÖDÑ�Ç¦Ì"Ñ�Ñ�ÆlÇ�È=Ñ�Ç�ÈFÑ�Î�Ñ�Ê�Ç�ÍpÎ Ü Ç�ÉËÍpÆ=Ê�Ý=Ê�ÉËÆFÛMÍpÝFÎ�Ø�Ñ�Ç�ÈFÍFÔ`í�õdÈFÑÕFÎ�ÉËØ Ü Î�ë Ü ÔAÚ Ü ÆaÇ Ü ÛrÑ Í;Ù`Ç�ÈFÑ#³£Í�Ô�Ñ�× � Ü ÕFÕFÎ�Í Ü Ò�È�ÉêÊ�Ç�È Ü Ç Ì"ÑÆFÍ�×ËÍpÆFÛrÑ�ÎdÆFÑ�Ñ�ÔMÇ�Í�ÉËÆSÔAÑ�ÕDÑ�ÆSÔAÑbÆaÇ�×Ëë(Ê�Ñ�ÇdÇ�È=Ñ ¥ Õ Ü Î Ü Ø�Ñ�Ç�Ñ�Î'íÅ¦ÆlÍrÝFÎ�çSÆ Ü ×OÑ÷å Ü Ø�ÕF×ËÑpÐ�Ì"Ñ�çSÎ�Ê�Ç.ÖF×ËÝFÎ�Î�Ñ'Ô�Ç�ÈFÑ^ÍpÎ�ÉêÛrÉËÆ Ü ×�&Î�É�ÔAÛrÑ4ÉËØ Ü ÛrÑ.ÌdÉËÇ�È Ü ��î��MÝFÆFÉ§ÙCÍrÎ�Ø�Ø�ÍrÇ�ÉËÍpÆ¶ÖF×ËÝFÎ Ü ÆSÔ
Ü ÔFÔAÑ'Ô�ÌdÈFÉËÇ�Ñlì Ü Ý=Ê�Ê�É Ü Æ�ÆFÍpÉËÊ�Ñ-Ç�Í�Ç�È=Ñ ÔAÑbÛpÎ Ü ÔAÑ'Ô�ÉËØ Ü ÛpÑ

]ZÉËÛpÝFÎ�Ñ�:R��ö¡Î�ÉËÛpÉËÆ Ü ×¦Ð�ÖF×ËÝFÎ�Î�Ñ'Ô Ð Î�ÑbÊ�Ç�ÍrÎ�Ñ'Ô|ÖAë¶Ç�ÈFÑ^õ�ñ.ÐZÎ�Ñ éÊ�Ç�ÍpÎ�Ñ'ÔMÖAë�³MÍFÔAÑ�×"â�ÊãÒ�ÈFÑ�Ø�Ñrí
Ç�Í(Ê�Ñ�Ç�Ç�ÈFÑkE=ï#É Ü Ç?�aðrÔR�¡í&]ZÉêÛrÝFÎ�Ñ��MÊ�ÈFÍ;ÌdÊ�Ç�ÈFÑ�ÍpÎ�ÉêÛrÉËÆ Ü ×
Ü ÆSÔ�Ç�ÈFÑ�ÔAÑ�ÛrÎ Ü Ô�Ñ'Ô�ÉËØ Ü ÛrÑ�Ê'í[>lÑ�Ô�ÉêÊ�ÕF× Ü ë�Ç�È=Ñ
Î�ÑbÊ�Ç�ÍrÎ Ü Ç�ÉËÍpÆFÊÍrÖFÇ Ü ÉêÆ=Ñ'Ô|Öaë|Ç�ÈFÑ®õ�ñ Ü ÆSÔ|Ç�È=Ñ-ÕFÎ�ÍrÕSÍrÊ�Ñ'Ô Ü ×ËÛpÍrÎ�ÉËÇ�ÈFØ�ÉËÆ]ZÉËÛpÝFÎ�Ñ��Dí�]=ÍpÎ�ÍpÝFÎ�Î�Ñ�Ê�Ç�ÍpÎ Ü Ç�ÉêÍrÆ�ÐZÌOÑ Ü ÕFÕF×ËÉËÑ'Ô-Ç�ÈFÑ�³MÍFÔAÑ�×
â^Î�Ñ�ÛrÝF× Ü Î�É\4 Ü Ç�ÉËÍrÆ¸ÊÓÒ�ÈFÑ�Ø�Ñ-ÌdÉËÇ�È ¥ Þ âU8 � Ð&�7Þ¨â"8 � Ü ÆSÔ
Ü B é ×êÑbÚpÑ�×�Ì Ü ÚpÑ�×ËÑ�Ç�ÔAÑ'ÒÓÍrØ�ÕSÍrÊ�ÉËÇ�ÉËÍpÆZí#>lÑ�Ý=Ê�Ñ'Ô®Ç�ÈFÑ Ü Õ=ÕFÎ�Í éÕFÎ�É Ü Ç�Ñ�Ô � é�ë � é ÈAëAÕSÑbÎ�Ê�Ý=Î¦Ù Ü ÒÓÑ.Ç�Í(ÔAÑbÇ�Ñ�Î�Ø�ÉêÆ=Ñ.Ç�ÈFÑ�Î�Ñb×êÑbÚ Ü ÆAÇÎ�Ñ�ÛpÝF× Ü Î�É54 Ü Ç�ÉËÍpÆMÕ Ü Î Ü Ø�Ñ�Ç�Ñ�Î�Ê�í�Ñ
×ËÇ�ÈFÍpÝFÛrÈ�ÐFÉËÆMÇ�È=ÉêÊ�Ò Ü Ê�Ñ�Ç�È=ÑÉb³;ERÊ®Ú Ü ×ËÝFÑ�Ê�Ì"Ñ�Î�Ñ¡Ê�ÉËØ�ÉË× Ü Î áÓâ �Fí ��:"ÙCÍrÎ9õ�ñ Ü ÆSÔ^â �=í Í � ÙCÍrÎÇ�ÈFÑ�Ø�ÝF×ËÇ�ÉËÊãÒ Ü ×ËÑ Ü ×ËÛpÍpÎ�ÉËÇ�ÈFØ4äbÐAÇ�ÈFÑ�Ç¦Ì"Í4Î�Ñ�Ê�Ç�ÍpÎ�Ñ'Ô-ÉËØ Ü ÛpÑ�ÊdÉËÆ]ZÉËÛpÝFÎ�Ñ#��Ñ÷å�È=ÉêÖ=ÉêÇ&Ú Ü Ê�Ç�×Ëë�ÔAÉ¬`Ñ�Î�ÑbÆaÇdÚAÉËÊ�Ý Ü ×`Ò�È Ü Î Ü ÒÓÇ�ÑbÎ�ÉËÊ�Ç�ÉöÒ÷Ê'íõdÈFÑ"õ�ñ Ü ×êÛrÍpÎ�ÉêÇ�ÈFØfÒÓÍpØ�ÕF×ËÑ�Ç�Ñ�×Ëë�ÌdÉËÕSÑbÊ ÍpÝFÇ�Ç�ÈFÑOÊ�Ø Ü ×Ë×rÙCÑ Ü�éÇ�ÝFÎ�Ñ�Ê^ÉËÆVÇ�È=Ñ(ÉËØ Ü ÛpÑ Ü ÆSÔ|ÕFÎ�ÍFÔAÝDÒÓÑ�Ê Ü Æ�Í;ÚpÑ�Î�×êëlÈ=ÍpØ�ÍpÛrÑ éÆFÉ54�Ñ�Ô¶Î�Ñ�Ê�Ç�ÍpÎ Ü Ç�ÉêÍrÆlÎ�Ñ�Ê�Ñ�Ø�ÖF×ËÉêÆ=Û Ü Æ æ ÍpÉË×�Õ Ü ÉËÆAÇ�ÉËÆFÛUç4Í;ÙdÇ�È=ÑÍrÎ�ÉËÛpÉËÆ Ü ×`ÊãÒÓÑ�Æ=Ñpí
ö¡Æ-Ç�ÈFÑ�ÍpÇ�ÈFÑ�Î¡È Ü ÆSÔ ÐSÇ�ÈFÑ�Ì Ü ÚrÑ�×ËÑ�Ç é Ö Ü Ê�Ñ'Ô
Ü ×êÛrÍpÎ�ÉêÇ�ÈFØ�ÉËÊ Ü ÖF×ËÑVÇ�Í,Î�Ñ�ÕFÎ�ÍFÔAÝDÒÓÑ|çSÆFÑ�ÎVÔAÑbÇ Ü ÉË×�Ç�ÈFÑbÎ�Ñ�ÖAëëAÉËÑ�×�ÔAÉËÆFÛ Ü Ø�ÍrÎ�Ñ�ÚAÉêÊ�Ý Ü ×Ë×Ëë Ü ÕFÕDÑ Ü ×ËÉËÆFÛ�Î�Ñ�Ê�Ç�ÍrÎ Ü Ç�ÉËÍpÆ�í÷ ê ÂbV�VYK�¿�°øK�½¡Áúù¤À ½
Ã�O�Â#SAÄ�À ½bS
Å¦Æ�Ç�ÈFÉËÊ�Õ Ü ÕSÑ�Î�ÐpÌ"Ñ"ÉêÆAÇ�Î�ÍFÔAÝSÒÓÑ�Ô Ü Ì Ü ÚpÑb×êÑbÇ¢Ô�ÍpØ Ü ÉËÆ�Ø�ÝF× éÇ�ÉêÊÓÒ Ü ×ËÑMÉËØ Ü ÛrÑ(Î�Ñ�Ê�Ç�ÍpÎ Ü Ç�ÉËÍrÆ Ü ×ËÛpÍrÎ�ÉËÇ�È=Ø�ÙPÍpÎ�ÝFÊ�Ñ¤ÉËÆV×ËÉËÆFÑ Ü Î



]ZÉËÛpÝFÎ�Ñ��M�kö¡Î�ÉêÛrÉËÆ Ü ×¦Ð`ÖF×ËÝFÎ�Î�Ñ'Ô Ð Î�ÑbÊ�Ç�ÍrÎ�Ñ'Ô|ÖAë¶Ç�ÈFÑMõ�ñ.ÐZÎ�Ñ éÊ�Ç�ÍpÎ�Ñ'ÔMÖAëF³£Í�Ô�Ñ�× â�ÊãÒ�ÈFÑ�Ø�Ñrí
ÉËØ Ü ÛrÑ�Î�ÑbÊ�Ç�ÍrÎ Ü Ç�ÉËÍpÆ¶ÕFÎ�ÍrÖF×ËÑ�Ø�Ê'í�]FÍr×Ë×êÍ;ÌdÉËÆFÛ�Ç�ÈFÑ�Î�Ñ'ÒÓÑbÆaÇ�Î�Ñ éÊ�ÝF×ËÇ�Ê�ÉËÆ.Ç�ÈFÑOÇ�ÈFÑ Ü Î�Ñ Ü Í�ÙSÉËØ Ü ÛrÑOÔAÑ�ÆFÍrÉËÊ�ÉËÆFÛ Ü ÆSÔ�ÒÓÍFÔAÉËÆFÛSÐ;Ì"ÑÔAÑbÚpÑ�×ËÍpÕDÑ'Ô Ü Ê�Ç Ü Ç�ÉËÊ�Ç�É�Ò Ü ×`ÕFÎ�ÉËÍrÎOØ�ÍFÔAÑ�×=ÙCÍrÎOÇ�ÈFÑ
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Abstract | Estimation and decision-theoretic

methods are presented for the localization and

characterization of an object positioned in the inte-

rior of a region given sparse, noisy observations of

scattered radiation obtained at the surface. Using

a B-spline model for the perimeter of the object, a

sequential generalized likelihood ratio approach is

used to deform the contour, add and remove knots,

and determine the internal structure of the object.

Prior models on the structure of the object are in-

troduced to regularize the overall problem. Exam-

ples are provided for a linearized inverse scattering

problem.

I. Overview

The problems of image formation and target identi�cation
from limited observations of scattered wave�elds arises in
areas such as non-destructive testing, medical imaging,
and land-mine remediation. Often the physical quantity
of interest (electrical conductivity, acoustic velocity etc.)
is pixelated and a gradient decent approach based on the
scattering physics is used to �nd an image of the parameter
[1]. The resulting image is then post-processed to extract
the desired targets. To bypass the computational burden
and ill-posedness of this imaging approach, there has also
been much work on directly estimating target shape and
location information [2]. The underlying assumption is
that the target represents a homogeneous perturbation on
a homogeneous background.

Here, we discuss an alternate method designed to solve
simultaneously the image formation and object detection
problems. The unknown is modeled as a superposition of
a slowly varying, compactly supported perturbation on a
background of partially known structure. Mathematically,
we have

g(r) = S(r)B1(r)a1 + (1� S(r))B2(r)a2 (1)

where g is the object of interest, S(r) is 1 over the (un-
known) support of the object and 0 elsewhere, B1 (B2)
are row vectors holding expansion functions describing the
texture of the object (background), and a1 (a2) are the
associated expansion coe�cients. Assuming the Bi are

1This work was supported by an ODDR&E MURI under Air
Force O�ce of Scienti�c Research contract F49620-96-1-0028, a
CAREER Award from the National Science Foundation MIP-
9623721, and the Army Research O�ce Demining MURI under
Grant DAAG55-97-1-0013.

known, the objective of the problem is to determine the
structure of S and the ai given a data vector y related to g
via y = Ag+n where A is the forward scattering operator
(here taken to be linear) and n is a vector of additive white
Gaussian noise.

We use an iterative algorithm to solve the target id and
imaging problems. First, given an estimated perimeter
curve at step k (denoted Ŝk), we employ estimation the-
oretic methods to determine a low-order, optimal image
of the perturbation and background. That is, we take as
estimates of the ai at step k,

(âk1 ; â
k
2) = argmin

a1;a2

ky �Ag(a1; a2; Ŝ
k)k22 +
a(a1; a2)

where 
a(a1; a2) is derived from a prior statistical model
on the behavior of the perturbation and the background.
Second, given an estimated image, we use an M-Ary hy-
pothesis testing approach to determine how best to modify
the structure of the perimeter curve. The mth hypothesis,
Hk
m, is of the form Skm = Ŝk+�Sm where �Sm is generated

by perturbing the current estimate of the object support
either by moving a control point in the representation of
the boundary or by adding a new knot to this representa-
tion. The new curve then is de�ned by the following

Ŝ
k+1 = argmax

m

h
log Prob(yjHk

m; â
k
1 ; â

k
2) + 
S(S

k
m)

i

where 
S is obtained from a prior model on the structure
of S which is constructed to reect our expectations con-
cerning the geometric properties of the \blobs" likely to
be found in the application of interest.

In the talk accompanying this abstract we describe in
greater detail the prior models associated with 
a and 
s,
the methods for determining âi, and the manner in which
the Hk

m are generated. Finally, we present examples of
this algorithm applied to a medical imaging problem in
which di�used photon wave�elds are used to probe the
sub-dermal structure of the human body.
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ABSTRACT

We address the problem of detecting buried mines or ob-
jects from multichannel sequentially collected ground pen-
etrating radar (GPR) data for applications such as land-
mine and unexploded ordnance remediation, utility line
mapping, and archaeology. Usually, the exact form of tar-
get signal is not known. We develop and analyze a low-
complexity, decision-theoretic, sequential detection strat-
egy to solve this problem. At each stop of the array, a
windowed ANOVA test is designed to look for significant
difference among the multichannel signals and suppress
accumulated noise. A sequential estimator-detector then
processes the ANOVA results to detect mines as array pro-
ceeds down track. Its performance in terms of mean time
between false alarms and probability of detection is an-
alyzed. Results from applying the method on real-world
data are presented.

1. INTRODUCTION

The use of ground penetrating radar (GPR) arrays for de-
tecting buried objects has received considerable attention
in recent years in areas such as landmine and unexploded
ordnance remediation, utility line mapping, and archaeol-
ogy [9]. A typical GPR configuration for such applications
is shown in Fig. 1. Here one array of transmitters and a sec-
ond array of receiving elements are simultaneously moved
down a linear track. At every stop of the system, each trans-
mitter emits a short pulse of electromagnetic energy which
interacts with the surrounding medium. Based on observa-
tions of scattered fields collected by the receivers the objec-
tive of the problem is to determine if an object is present in
the field of view of the array.

Current processing methods for this problem fall into
one of three categories. First, pattern matching methods [5]

This work was supported by an OSD MURI on Demining under Grant
DAAG55-97-1-0013

employ techniques such as fuzzy set theory and neural net-
works. Such methods can be fast but also require extensive
training to function well. Moreover, performance analysis
is limited to Monte-Carlo simulations. Second, image-then-
detect techniques [4] employ a beamforming or backpropa-
gation approach to build an image of the subsurface which
is then post-processed to detect objects. Such methods gen-
erally require the data from the full GPR scan to form an
image and are thus not well suited to on-line computations
in which information is processed sequentially as the array
proceeds down track. More subtly, the attenuation associ-
ated with the propagation of the GPR signal typically results
in useful signal only over receivers located closest to the fir-
ing transmitter. In many functioning systems in fact only a
single receiver is employed per transmitter. Thus, methods
based on beamforming which require array-based observa-
tions are not really appropriate for this problem. Finally,
there has been some very interesting work done in the area
of statistical processing methods [3] where one can examine
quantities such as detection rates, false alarm probabilities,
etc.; however the techniques in [3] for instance are based on
highly complex electromagnetic models for the GPR sensor
and are thus computationally intensive.

With this as background, here we view the GPR de-
tection problem in a multichannel (one channel per trans-
mit/receiver pair) blind signal detection framework and em-
ploy statistical methods to process the GPR returns. This
approach allows us to exploit two generic properties of the
signal transmission process. First, for any given stop of
the array, the presence of the mine close to a transmitter-
receiver (T/R) pair results in a jump in the mean value of the
observed signal relative to that seen in other pairs. Thus, we
develop a windowed ANOVA test [7] to detect this change.
Second, physical principles dictate that as the array moves
from one stop to the next, this jump will be detectable only
for those positions of the array close to the object; that is,
the jump will be transient [9]. This behavior is exploited in
the synthesis of a sequential detector to process the output of
the ANOVA test as the GPR system moves down the track.
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Figure 1: Setup of GPR array.

The paper is organized as follows. Section 2 discusses
physical model of a GPR system and corresponding math-
ematic model. In Section 3, we present a statistical algo-
rithm to detect mines and analyze its performance in mean
time between false alarms between false-alarms and proba-
bility of detection. Conclusion and direction of future work
is given in Section 4.

2. MODEL

2.1. GPR Model

To start, we consider a simple model of the GPR returns [2].
In addition to sensor noise, there are two primary compo-
nents in the GPR signal. One always sees a signal due to
the specular reflection of the transmitted signal from the
ground. While there are many ways of modeling this ground
bounce signal [3], here we assume that it varies slowly as the
array moves down the track so that it can be estimated and
subtracted from the data.

If a subsurface scatterer is present, the receiver records
signal from that source too. In Fig. 2 we plot the ground-
bounce corrected data for single T/R pair obtained from
field data as a function of down-track position of the sen-
sor. That is, each column of this image is composed of the
samples in the received waveform for a given stop of the
array. As can be seen from this figure the target signal is
transient in two ways. First, it appears only when the sen-
sor system is in the vicinity (� 0:5 meter) of the mine. For
most systems this implies that there are on the order of tens
of stops of the array when the mine can be detected out of
hundreds to thousands of array positions in a typical GPR
survey. Second, when the system is positioned close to the
object, the effects are only seen in a small number of sam-
ples of the received waveform.

Before proceeding, we make two observations regard-
ing the signals in Fig. 2. First in general the precise form of
the signal of interest is typically unknown due to variations
caused by fluctuations in the electrical properties of the soil,
unmodeled physical effects such as surface roughness, and
variability in the signature caused by the unknown orien-
tation of the target relative to the sensor. Indeed, Fig. 2 is
typical of the variability seen in practice. Second for clar-
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Figure 2: Signal generated from two objects buried at posi-
tion 1.5m and 3.0m.

ity, we have displayed signals from two targets which are
relatively easy to detect. Generally, even after removing the
ground bounce other sources of noise and clutter can sig-
nificantly reduce the detectability of the desired signal and
increase number of false-alarms.

2.2. Mathematic Model

Based on this discussion, at down track position n of the
array, we have the classic binary hypothesis model for the
GPR signal returns

H0 : xi(n) = wi(n)

H1 : xi(n) = si(n) +wi(n) (1)

for i = 1; � � � ;M where xi(n) is the length K vector of
time samples for the received signal from the ith T/R pair,
si(n) represents the signal due to the target, and wi(n) is
measurement noise, assumed to be white and Gaussian with
zero-mean and variance �2i . While the exact structure of si
is unknown, we see that the effects of this signal are to cause
a jump in the mean of the xi for those n where the target is
in the field of view of the GPR. Thus the statistical problem
of interest in this work is to detect this transient signal based
on data vectors fromM sensors sequentially obtained as the
system moves down track.

As detailed in the remainder of this paper, we approach
this problem in two steps. First, we develop a method for
detecting the presence of si for a fixed location of the GPR.
Second, we use this test in a sequential manner to process
the returns as the system acquires new data.

At a given position of the array since we do not know of
si the statistical problem we pose is

H0 : �i = 0

H1 : �i 6= 0; i = 1; � � � ;M

with �i = E [xi]. In many cases, analysis of variance
(ANOVA) is used to solve this problem. Recently however,
Fan [6], Fan and Lin [7], has noted that the performance of
ANOVA suffers for problems when the signal of interest is



limited to a small number of samples in the overall obser-
vation vector as is the case for the GPR problem of interest
here. Fan’s original work was limited to problems in which
the first m samples were used, with m found from the data.
Here we consider a generalization of Fan’s work to take into
account the fact that for the GPR problem the transient ob-
ject is significant over a window not generally starting with
the first sample. Following the windowed ANOVA, we turn
to a sequential probability ratio test (SPRT) to make on-line
detection as new data is acquired.

3. ALGORITHM

3.1. Estimation and detection

Before describing windowed ANOVA, it is helpful to see
why in some cases ANOVA loses its discrimination power.
For example, assume we have one observation vector of size
K � 1, x1 � N(�; �21I) and we wish to test H0 : � = 0

vs. H1 : � = �1: Standard ANOVA is to estimate � by x1
and use the testing procedure X2

1 = jjx1jj2. The approx-
imate power of the standard ANOVA estimator-correlator
test is

Pd(H1jH1) = Q

�
 �

PK

k=1 �
2(k)

�
2
1

p
2K

�
(2)

where  the test threshold and Q the complementary cumu-
lative distribution function and strictly decreasing. If �1 is
different from 0 for only a small number of k then as K
goes large,

PK

k=1 �
2
1(k) <<

p
K. From (2), we then con-

clude that testing all dimensions of the data actually causes
the test to lose power due to the accumulation of stochastic
noise. This deterioration is reflected in the factor 1=

p
2K.

Based on this observation, Fan et al. developed an adap-
tive windowed ANOVA test of the form described previ-
ously. Fig. 3 shows results from an ANOVA and a win-
dowed ANOVA test for the signals in Fig. 2. The win-
dowed ANOVA truncates observation vectors of length K
to length L by two steps 1) discarding the first m1 compo-
nents which are consisted of ground-bounce only (the target
reflected signal always comes after the ground-bounce) and
2) discarding the last m2 elements which represent signal
that has been attenuated too much to be meaningful for sig-
nal processing. Both the ANOVA and windowed ANOVA
tests easily detect the stronger signal, at position 1.5m. For
the weak signal at about position 3.0m, windowed ANOVA
shows improved performance. Specifically, the peak in the
windowed case is more clearly visible above the nominal
“noise floor.”

Generalizing windowed ANOVA to multiple observa-
tions, we build the test statistic as

X
2 =

MX
i=1

�
�2
i jjxi � xjj2 (3)
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Figure 3: Test statistic, a) result of an ANOVA, using all di-
mensions of observations, b) result of a windowed ANOVA,
using truncated observations.

with x =
PM

i=1 �
�2
i xi=

PM

i=1 �
�2
i . It is easily shown that

X
2 � �

2
ML(�

2) (4)

where

�
2 =

MX
i=1

�
�2
i jj�i � �jj2 (5)

with � =
PM

i=1 �
�2
i �i=

PM

i=1 �
�2
i and �2ML(�

2) is the �2

distribution withML degrees of freedom and non-centrality
parameter �2.

While windowed ANOVA detects difference among ob-
servations at one stop of the array, it does not capture the
structure seen as the array moves down track. To improve
detection performance, we employ a sequential detection
scheme based on the processing of the windowed ANOVA
statistic to look for the transient signal from one stop of the
GPR array to the next. Hence, the two hypotheses are

H0 : X
2(n) � �

2
ML(0)

H1 : X
2(n) � �

2
ML(�

2(n)) (6)

for n = 1; � � � ; N where �2(n) is defined in (5). At stop n,
the log likelihood ratio for this problem is

u(n) = ln
pn(X

2(n))

p0(X2(n))
(7)
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Figure 4: Sequential detection test statistic U(n).

with pn(X2(n)) the �2ML(�
2(n)) PDF evaluated at X2(n)

and p0(X2(n)) the �2ML(0) PDF evaluated at X2(n). One
difficulty with generating u(n) is that �2(n) is typically not
known a priori since the underlying �i are not assumed
known. Here we construct a generalized log likelihood statis-
tic. Typically, this is done by replacing �2(n) by its maxi-
mum likelihood estimate which for this problem is X2(n).
After some experimentation in real data and computer simu-
lation, we have found that performance can be improved by
incorporating a one-step delay into the processing. Specifi-
cally, we estimate �2(n) as X2(n� 1).

The full algorithm then is essentially a repeated sequen-
tial probability ratio test(SPRT) [1] and is summarized by
the following steps,

� U1 = 0.

� FOR n = 2; � � � ; N

– �̂
2(n) = X

2(n� 1)

– Form u(n) according to (7)

– U(n) = max(0; U(n� 1) + u(n)).

– IF U(n) > �, declare object.

� ENDFOR

where � is a preset threshold. Fig. 4 shows the result of the
algorithm applied on windowed ANOVA output of Fig. 3.
Clearly, setting � below about 0.01 will allow both objects
to be detected.

3.2. Performance

Performance of this algorithm is studied in terms of mean
time between false alarms and probability of detection. Un-
der H0, the test statistic changes as a Markov chain, with
update u(n) at each step. Under H1, the update u(n) is
changing, and therefore, the test statistics U(n) can be de-
scribed as an inhomogeneous Markov chain. One method
of analyzing Markov chain is a matrix approach, which we
will take in this paper. First, sinceML is usually very large,

�
2 distribution can be approximated by a Gaussian distribu-

tion. We then have

H0 : X2(n) � N(ML; 2ML)

H1 : X2(n) � N(ML+ �
2(n); 2ML+ 4�2(n)):

Second, suppose the update u(n) and the interval [��; �]
is uniformly quantized to 2k + 1 levels such that v0 = 0,
and vk = �. Let �nl = PrfUn = vljN > ng for integer
l 2 [0; k � 1], and �n = [�n0; �n1; � � � ; �n(k�1)]T denote
the probabilities ofUn = vk on the condition that there is no
alarm until after sample time n. We can write the transition
matrix C(n) at step n as [8]

C
(n) =

2
666664

p
0
n p

�1
n � � � p

�+1
n

pn(1) pn(0) � � � pn(� + 2)

pn(2) pn(1) � � � pn(� + 3)
...

...
. . .

...
pn( � 1) pn( � 2) � � � pn(0)

3
777775
(8)

where

pn(l) = Pr(log
f

(n�1)
1 (X2(n))

f0(X2(n))
= vl) (9)

and elements in first row of Eq. 8 are pin =
Pi

l=�1 pn(l).

Here f (n�1)1 (X2(n)) denotes the PDF of X2(n) under the
alternative hypothesis H1 and using X2(n � 1) to estimate
�
2(n). Under H1, the transition matrix C

(n) can be built
using Eq. 8 for different n, since signal is time varying. The
probability of detecting a signal of length nd is then found
from

Pd(nd) = 1� 1
T

ndY
n=1

C
(n)
�0 (10)

where 1 is a column vector of all ones. And the mean time
between false alarms T is found to be [8]

T = 1
T (I� C

(0))�1e1 (11)

in whichC(0) is the transition matrix under the signal-absent
statistics and e1 is a column vector containing a one in po-
sition 1 and zeros elsewhere. With more levels of quanti-
zation, we obtain more accurate estimation of Pd and T .
Fig. 5 shows simulated results of the mean time between
false alarms between false alarms under the null hypothesis
H0. With a changing measurement noise level, probability
of detection changes, as shown in Fig. 6.

Fig. 7 shows the probability of detection when the length
of signal is changing. As expected, a signal of large tran-
sient length can be detected at a higher probability.
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Figure 5: Mean time between false alarms with different
threshold and number of quantization levels.
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Figure 6: Probability of detection at different signal to noise
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4. CONCLUDING REMARKS

In this paper, we have proposed a sequential, windowed
ANOVA to process multichannel GPR returns. The method
has a relatively low computational complexity and can be
implemented in real-time. We have demonstrated the per-
formance of this technique on a sample of field data. Fu-
ture research will focus on adaptive sampling of received
signal to take into consideration of roughness of ground-
air interface; on-line localization will be integrated to allow
detect-localize-detect and thus provides higher probability
of detection.
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Abstract Berenger's Perfectly Matched Layer (PML) Absorbing Boundary Condi-

tion (ABC) has greatly enhanced FDTD scattering analysis. In a discretized domain,

however, performance is signal-dependent and large angle performance is poor due to

a rapid reduction in layer decay rate. Increasing the conductivity to o�set this reduc-

tion increases the discretization errors, especially at near-normal incidence angles.

However, by carefully specifying the conductivity in each of the PML sub-layers, it

is possible to balance the small and large angle performance. The signal-dependence

of reections may be described in terms of the number of spatial points per wave-

length. This lends itself to an overall strategy for which to search for PML pro�les

that provide superior performance for waves incident on a PML at angles between

0� and 75� and signals that have at least 15 spatial points per wavelength sampling.

A 1-dimensional projection method may be employed to allow an exhaustive search

to become a viable alternative to optimization. Such a search provides pro�le pa-
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rameters, that while not necessarily 'optimal', give excellent wide angle, wide band

reection performance.

I. INTRODUCTION

The Finite Di�erence Time Domain (FDTD) method for electromagnetic scattering

problems is particularly useful because it is wideband, easily implemented and adaptable

to a wide variety of problems. To keep FDTD simulations from becoming computationally

expensive, edges of the computational domain must be kept as close to the scatterer as

possible. To avoid reections from the edges of the domain from scattered �elds prop-

agating in all directions, an Absorbing Boundary Condition (ABC) must absorb waves

incident from all angles. Historically, ABCs have had only limited success in absorbing

waves incident at all angles[2-5], but this recently changed with the introduction of the

Berenger Perfectly Matched Layer (PML)[6].

The PML works perfectly in continuous analysis, absorbing waves incident at arbitrary

angles with arbitrary attenuation. Unfortunately, in order to be used in computer simu-

lations, the PML must be discretized. This discretization limits the conductivity increase

for o�setting the reduction in decay rate as the angle of incidence increases and thus limits

the overall performance of the PML. Although many e�orts improve the PML[7-15], few

of these deal with performance as a function of angle, choosing instead to concentrate on

improving performance at normal incidence. Although large angle e�ects may be minor if

waves incident on a PML at grazing angles reect nearly normally incident on an adjacent

PML, it has been shown [7] that there are several applications where this is not the case

and that the performance at large incidence angles is important to the overall performance

of the ABC. Consequently, the improvement of large angle performance of the PML is an

important problem.

Discretization also prevents the PML from being signal-independent, as it is in the

continuous case. Most investigators choose to describe this signal-dependence as a function
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of frequency. Because FDTD involves spatial and temporal sampling, we suggest that it

may be simpler to describe the signal-dependence in terms of spatial points per wavelength.

There has also been much e�ort to analyze numerical reections in the PML in order

to optimize[16-20] wave absorption. Obtaining a closed form expression for the reection

from a PML as a function of the PML parameters, however, is a di�cult problem. This

di�culty lies in the fact that numerical reections are created each time a wave passes from

one layer to another. These reections, in turn, create more reections as they encounter

di�erent layers. Keeping track of all reections becomes increasingly di�cult as the number

of layers is increased. Furthermore, this type of analysis can only be performed for one

frequency at a time, complicating any e�ort for optimization.

The approach being used for this current work is largely heuristic. We wish to under-

stand the mechanisms that a�ect reections from a PML in order to develop a strategy

that will allow us to identify PML parameters that will provide enhanced performance

over the widest range of angles and signals. With the aid of computational analysis tools,

an automated search has been developed for PML parameters . Although the 'optimal'

pro�le may depend on the speci�c application, the parameters determined in this analysis

provide the best wideband, wide-angle performance reported in the standard literature.

II. REFLECTION DEPENDENCIES

The decay rate of the PML in continuous time and space is given as � = ��0 cos �[9],

where � is the incidence angle, � is the conductivity of the PML and �0 is the impedance

of free space. Note that the decay rate is proportional to cos �. Since there is no reection

at the PML interface, � may be chosen arbitrarily large in order to o�set the loss of decay

rate due to the cos � factor.

The geometry for the discrete PML is shown in Figure 1. The decay rate in the dis-

cretized PML also decreases with increasing angle. Unlike with the continuous case, the

discretized �i in the ith PML sub-layer may not be chosen arbitrarily large. In general,
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since FDTD simulations calculate electric and magnetic �elds on complementary overlap-

ping lattices, they are sensitive to changes in the parameters of adjacent layers. Stated

another way, at any air-PML or PML-PML interface, the discrete equations for the �elds

at the interface are dependent on unmatched conductivities.

As an example, assume that �i are constant over a PML half space. An incident wave en-

counters only one interface, that between free space and the PML. The di�erence equation

for the �eld at the interface will be dependent on the conductivity of the free space(�=0.0)

and the conductivity of the PML(�=constant). If � is very small, the resulting reection

will also be very small. If � is increased, the decay rate increases, but there will also be

a larger reection from the interface. If a gaussian pulse, Exp[�c2(t� t0)
2
=W

2], where t0

is the time at which the pulse is at its maximum, excites the �rst row of an FDTD grid,

Figure 2 shows the total reection from a constant conductivity PML half space versus

angle for values of � equal 0.15, 0.3, and 0.45 S/m. For these simulations, the temporal

increment �t = 10pS, spatial increment � = 0:012m and W = 50

3
� = 0:2m. It is appar-

ent that the reection increases with an increase in �, and that as � increases the discrete

change in conductivity at the interface is moderated and the reection decreases.

It should be noted that the time and space steps need not have physical units. Instead,

the entire FDTD simulation including the PML may be entirely speci�ed by the Courant

number R = c�t=� and the ith layer decay rate Si = �i��0 and the performance of the

PML may be parameterized in terms of two unitless parameters: S = (S1; S2; :::; S �N),

�=� and the angle of incidence, �. Given these, � and the wave phase velocity all other

physical quantities can be determined.

One way reection from the PML is reduced is to vary the sub-layer conductivities from

small values near the free space interface to larger values toward the �nal sub-layer. This

pro�ling of PML conductivity improves absorption, providing an alternative to increasing

the number of sub-layers, which is computationally expensive. Since incoming waves do

not encounter larger values of � until well within the layer, the reections caused by these
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larger jumps in conductivity are attenuated by the initial lossy layers both for forward and

backward propagation. Yet even with the parabolic conductivity pro�le �i = �f (i=N)
2
[6],

the total reection from an 8-PML at 75� incidence is shown to be about �33dB, compared

to the �100dB achieved at normal incidence. It is noted that as the angle of incidence

is increased, the numerical experimental results more closely match the theoretical loss,

which for the case of [6] at 75�, was -31dB. This can be explained by the fact that as the

angle of incidence is increased, the projected spatial increment � cos � decreases, which has

the e�ect of decreasing the discretization error, and the jumps in conductivity variations

at every layer interface are smaller, giving lower sub-layer reections.

Since �
�
=�0 = �=�, where �

� is the magnetic conductivity, �=� may be used in both

Ampere's and Faraday's laws [13]. Discrete conductivity values �n can be assigned to every

half sub-layer. Using the half-layer pro�le speci�cation and assuming no discretization

error, the two-way loss equation is:

L = e
�2
P

2N

n=1
�n�0 cos �

�

2 (1)

with conductivity pro�le taking the form �n = �f (n=2N)p, n = 1; 2; :::2N . For this pro�le

form, the decay rate S may be described by Sf = �f� and p. A conductivity pro�le with

a power dependence is simple to implement and does not change as rapidly as a pro�le

with an exponential dependence, which was found to not perform as well.

The three di�erent time-domain signals shown in Figure 3 have di�erent temporal in-

crements(Sig.1 �t = 2ps, Sig.2 �t = 1:8ps, Sig.3 �t = 1:7ps), as well as the di�erent

waveforms which account for the di�erent frequency contents. These signals have been

used as the excitation for a 1-dimensional FDTD simulation to test various PMLs with

perfectly conducting terminations. In each case, the Fourier transform of the reected

�eld divided by the Fourier transform of the incident �eld has been plotted versus the

inverse of the discrete frequency, 2�=!�t, times the Courant number, R, which is also the

number of spatial points per wavelength, �=�. The use of non-physical units to describe
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PML reection has also been used in [22]. The incident waveform was obtained by using a

much larger FDTD simulation where the wave passes over the receiver location just out-

side the PML and the simulations is stopped before reection can occur. Results for the

1-dimensional FDTD simulations at normal incidence in Figure 4 show all three signals

practically overlapping for all three PML layer con�gurations of N = 8; 10; 12. The layer

size and normalized conductivity pro�le is indicated for each set of graphs. Note that since

the curves coincide for each PML con�guration, PML reections are independent of R and

of the waveform, but dependent primarily on the relationship between the two (i.e �=�).

To further investigate the PML reection dependencies, we consider the same three

signals, but in this case maintain the temporal increment and conductivity pro�le, but

use three di�erent spatial increments and hence di�erent Courant numbers and di�erent

values of the decay rate S. Here we test the 8-layer PML only, the results are in Figure

5. Note that the magnitudes of the reection coe�cients for the di�erent signals are very

di�erent.

These �gures clearly indicate that it is not the physical quantities ! and � that determine

the reection from the PML , but rather the non-physical quantities S and �=�. This

intuitive result follows since the PML works 'perfectly' in the continuous domain speci�ed

by physical parameters, while reections that arise from the discretized PML depends on

discretization parameters.

III. EXHAUSTIVE SEARCH VS. OPTIMIZATION

One obvious method for improving PML performance is to optimize the PML parame-

ters Sf and p over all angles and signals. To do this would require an analytic expression

for reections from the PML as a function of the size of the PML, incident angle, incident

signal, Sf and p. Such analytic expressions which have been numerically veri�ed for small

N PMLs appear in the literature [18,22]. For an 8-layer PML, analytic expressions in the

literature have not been found to accurately predict numerical reections for all angles and
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incident waveforms.

Even assuming con�dence with an analytic expression of the reection coe�cient, op-

timization of the PML over all pro�les, signals and angles is a non-trivial problem. By

relaxing the 'optimality' requirement, we may utilize an exhaustive search to identify pro-

�les that will provide superior performance over a wide range of signals and angles.

IV. EXHAUSTIVE SEARCH

The basic idea behind the exhaustive search is simple: FDTD simulations are run for

each PML pro�le under consideration. The search continues until suitable pro�le param-

eters have been identi�ed. Because we must account for both the angle-dependence and

signal-dependence, however, steps must be taken to make the search viable and manage-

able.

Having described the PML signal-dependence, we now consider angle-dependence. Sim-

ilar to an optimization problem, we must create a criterion on which to judge the results.

Furthermore, recall that the decay rate, � in the PML is given as � = ��0 cos �. Therefore,

regardless of the pro�le, we can expect signi�cant reection from a PML with a perfectly

conducting termination at very large angles. It is therefore appropriate to introduce a

weighting function. To improve large angle performance without sacri�cing near-normal

performance, we have chosen the simple 'minimax' criteria with a weighting function:

C(Sf ; p; �=�) = max
�

fj�(�; �f ; p; �=�)W (�)jg (2)

where W (�) is a weighting function and �(�; �f ; p; �=�) is the reection from the PML.

Note that C is not a function of �. We seek the values of Sf and p that minimize C. This

function is well-suited to the wide-angle minimum reection because it does not penalize

for a realization of �(�) that has a large variation. The weighting function, W (�) is equal

to unity (0dB) up to and including 60�, at which point it drops o� at �12dB=5� to a
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minimum of -36dB at 75�. This drop o� from 60� to 75� accounts for the reduction in

performance predicted by Eq. (1). Incident angles larger than 75� are not considered.

To deal the the signal-dependence, we describe reection as a function of spatial points

per wavelength and break incident signals into three groups. These groups have, respec-

tively, a minimum of 15, 20 and 30 spatial point per wavelength sampling for frequencies

that have power densities within -6dB of the maximum power density. The results reported

in this work are therefore worst case reections for signals adhering to these groups.

V. ONE DIMENSIONAL PROJECTION METHOD

Running a 2-dimensional FDTD simulation for every Sf and p is time prohibitive.

Furthermore, depending on the type of excitation used, analysis of the reection at a

single angle is quite complicated. Fortunately, it has been shown 2-dimensional uniform

plane waves may be represented using 1-dimensional FDTD simulations[21]. Reections

from a PML may also be analyzed using 1-dimensional FDTD simulations. Basically a

1-dimensional \slice" of a 2-dimensional wave is taken in the direction normal to the PML

under test. This 1-D wave moves with a velocity c= cos �, where c is the velocity of the 2-D

wave in the propagation direction perpendicular to the planar wavefront. The PML only

attenuates in the direction normal to its interface, so there are no transverse variations

in the PML, but since the normal variations are speci�ed by the same FDTD formalism

as the 2-D, the 1-D FDTD simulation e�ciently demonstrates the complete reection and

transmission characteristics of the PML.

This can be shown analytically. It has been shown [13] that the time harmonic curl

equations for TM waves inside a continuous PML may be written as:

�

@Ez

@y
= j!�0Hx (3a)

@Ez

@x

�
1

1� j�=!�0

�
= j!�0Hy (3b)
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@Hy

@x

�
1

1� j�=!�0

�
�

@Hx

@y
= j!�0Ez (3c)

The time-harmonic plane wave solution for Eq. (3) is of the form:

Ez = E0e
�jkpmlx x�jkyy+j!t (4a)

where the time dependence ej!t will be suppressed in the following:

H =
Ez

�0
(x̂ sin � � ŷ cos �) (4b)

with

k
pml
x = kx

�
1� j

�

!�0

�

= (
!

c
� j��0) cos �

(5)

Note that the velocity of the 1-D slice inside the PML is c= cos �. So the 1-D solution

should take the form:

E1Dpml = ẑEz (6a)

H1Dpml = ŷHy (6b)

at y = 0.

Because the solution in Eq. (6) does not satisfy Maxwell's curl equations, Ampere's

Law must be modi�ed. Taking the partial derivative of Hx and Hy from Eq. (4b) with

respect to y and x respectively at y = 0, with ky = (!=c) sin � gives:

@Hx

@y
= �jk0(sin

2
�)
Eo

�0
e
�jkx

pmlx (7a)

@Hy

@x
= jk0(cos

2
�)(1� j�=!�0)

Eo

�0
e
�jkx

pmlx (7b)

These are equated as:

@Hx

@y
=

�(1� cos2 �)

cos2 �(1� j�=!�0)

@Hy

@x
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Thus, the left hand side of Eq. (3c) becomes:

1

cos2 �(1� j�=!�0)

@Hy

@x

Now Eqs. (3) for the 1-D curl equations in the time domain becomes:

@Ez1Dpml

@x
= �0

@Hy1Dpml

@t
+
��0

�0
Hy1Dpml (8a)

1

cos2 �

@Hy1Dpml

@x
= �0

@Ez1Dpml

@t
+ �Ez1Dpml (8b)

Eq. (8) should be recognized as the lossy Faraday and Ampere Laws with an impedance

�
pml matched to that of free space:

p
�0=�0 = Ez=Hy.

It can be shown that there are 1-dimensional equivalents for TE waves inside the PML

as well. The derivation proceeds along similar lines.

To verify the proceeding derivation, we have run 2-dimensional FDTD simulations and

compared them with the 1-dimensional equivalents. The results are found in Figure 6. In

Figure 6, a TM plane wave incident at 30� is partially absorbed by an 8-layer PML at the

back wall. The incident wave is propagating toward the left, rear corner. Figure 6b shows

the reected �eld. Note that the incident and reected �elds obeys Snells's law and that

the reected �eld is several orders of magnitude smaller than the incident �eld. Figure 6c

shows a cross-section of the reected �eld from the 2-dimensional grid taken at 50� from

the right hand side as well as the reected �eld from 1-dimensional simulation. The time

stamp of the plots of Figure 6c are 150 timesteps from those of 6b. Note the similarities

in the pulse shape and amplitude. The 2-dimensional plane wave was created by using

1-dimensional FDTD simulations on the left and right hand sides of the grid as described

in [21]. The absence of additional reection artifacts along the left and right sides indicate

that the existing reected �eld is generated from the PML only.

The 1-dimensional method comprises a simple and e�cient means to test PML reec-

tions. The attenuation is in one direction, the direction normal to the boundary. A careful

10



dispersion analysis shows that the error from representing a 2-dimensional wave with a

1-dimensional slice is comparable to the error involved in numerical dispersion which is

inherent to 2-dimensional FDTD simulations. In two dimensions, Maxwell's curl equations

for the PML require either a supplemental equation, as used in [13], or split-�eld equations,

as used by [6].

Armed with this powerful tool, the search for Sf and p is greatly simpli�ed and hence

can be automated. A search program may iterate through di�erent values of �, Sf and p.

Furthermore, since reections can be described in terms of spatial points per wavelength,

we may use a single wide-band incident wave as a test signal and be able to account for

the signal-dependence of the PML as described in the previous sections.

VI. RESULTS

Using the techniques described in the previous sections, several automated searches

were performed to identify the PML pro�le parameters Sf and p that will yield superior

performance.

For each pro�le tested, a 1-dimensional FDTD simulation was run for every angle be-

tween and including 0� and 75� at 5� increments. In each case a wide-band test signal was

the incident wave. The reection coe�cient is calculated by:

j�(�=�)j = 20 logmax

n����fft(E
s)

fft(Ei)

����W (�)
o

where �(�=�) is the reection, Es is the scattered �eld and E
i is the incident �eld.

Our experiments indicate that �(�=�) becomes non-increasing after a certain value

of points per wavelength, usual between 100 and 150. Therefore, once �(�=�) has been

calculated for a given pro�le and angle, the maximum between 15, 20, 30 and 200 points per

wavelength respectively are recorded. Then these maxima are multiplied by the weighting

function as necessary to yield the overall maximum for a given pro�le. The parameters

that yield the smallest overall maximums are found in Table 1 through Table 4.

11



As the results reported in the tables are 'worst case' for the discrete frequency with

the greatest reection, depending on the incident time domain signal, results may be

signi�cantly better than those reported in the tables. For example, a gaussian pulse with

a 10�t time constant has been used as the incident signal to test plane waves incident on

the PML at various angles for some of the pro�les found in Tables 1 and 2. This is the

same test signal used in [6]. The reections coe�cient as calculated by

j�j = 20 logmax
�

���� E
s

maxtEi

����

have been plotted versus angle in Figure 7 for the 8-layer PML with conductivity pro�le

parameters Sf = 0:016 and p = 3:74. The results reported by Berenger [6] have also been

plotted. Note that there is more than an order of magnitude improvement at both 45�

and 75�. Using the same test signal, the reection coe�cient for a 10-layer PML with

conductivity pro�le parameters Sf = 0:025 and p = 3:91 has also been plotted on Figure

7. Using an additional two layers, we may further decrease �(�) by 2 orders of magnitude

at 75�.

The improved performance shown by the 10-layer PML at large angles suggests that

the weighting function may not be needed for larger PMLs. To explore this idea, several

additional searches were performed without including the weighting function, the results

for these searches are found in Tables 5 through 7. Although the results for searches that

do not employ the weighting function are not quite as good overall, these pro�les provide

excellent performance across the entire range of 0� to 75�.

VII. CONCLUSIONS

We have explored the mechanisms that govern reection form PML absorbing bound-

aries. In so doing, we have presented a simple means of accounting for the signal-

dependence of PML reections. Furthermore, we have shown that it is the 'discrete'

12



parameters points per wavelength �=� and loss per PML sublayer S which govern this

signal-dependence and not the 'physical' parameters ! and �.

We have presented a fast and simple method to determine the reection from a PML

due to uniform plane wave at arbitrary angle. This method does not require the use of an

anisotropic media or a split-�eld formulation. Plane wave decomposition may be used to

gain insight into the overall reection from arbitrary waves.

Employing these methods, we have conducted searches for conductivity pro�les that

provide improved performance. Assuming adequate sampling, pro�le parameters have

been provided which will insure exceptional performance over a wide variety of scattering

problems. This approach removes the burden of seeking adequate ABC absorption from

the FDTD user.

Despite the obvious utility of the method, caution must be exercise to ensure that

extreme angles (> 75�) are minimized. The method developed here also does not account

for evanescent waves.
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�=� Sf p � (dB)

15 0.0152 3.77 -90.27

20 0.0160 3.74 -93.71

30 0.0177 3.78 -98.83

Table 1 8-layer PML

�=� Sf p � (dB)

15 0.0215 3.93 -106.17

20 0.0179 3.99 -108.95

30 0.0193 6.98 -114.17

Table 2 10-layer PML

�=� Sf p � (dB)

15 0.026 4.20 -119.69

20 0.020 4.50 -122.37

30 0.021 4.40 -127.29

Table 3 12-layer PML

�=� Sf p � (dB)

15 0.020 4.70 -130.73

20 0.023 5.00 -138.12

30 0.023 5.00 -138.12

Table 4 14-layer PML



�=� Sf p � (dB)

15 0.0260 3.90 -102.30

20 0.0295 3.90 -106.42

30 0.0345 3.90 -107.43

10-layer PML No Weighting

Table 5

�=� Sf p � (dB)

15 0.0270 4.2 -116.64

20 0.0305 4.1 -120.83

30 0.0365 4.1 -122.49

12-layer PML No Weighting

Table 6

�=� Sf p � (dB)

15 0.028 4.5 -129.13

20 0.028 4.5 -129.13

30 0.031 4.9 -132.66

14-layer PML No Weighting

Table 7



Figure Captions

Figure 1 Lattice geometry and typical plane wave incident on N-layer conductivity

pro�led PML ABC.

Figure 2 Reection as a function of angle for PML half spaces with constant conduc-

tivity pro�le, �c = 0:45(�); 0:30(o), and 0:15(+).

Figure 3 Three time domain signals and their associated power spectral densities. For

Signal 1, �t = 2ps, Signal 2, �t = 1:8ps, Signal 3, �t = 1:7ps.

Figure 4 Reection coe�cient as a function of �=� for various PMLs as determined

using three di�erent signals. � = :6mm. Signal 1(-)(�t = 2ps), Signal 2 (..)(�t = 1:8ps),

Signal 3 ({)(�t = 1:7ps).

Figure 5 Reection coe�cient as a function of �=� for various PMLs as determined

using three di�erent signals. Signal 1(-)(�t = 2ps, � = :6mm, Sf� = 0:018, p=3.675),

Signal 2(..) (�t = 1:8ps, � = :54mm, Sf� = 0:0162, p=3.675), Signal 3({)(�t =

1:7ps,� = :51mm, �f� = 0:0153, p=3.675).

Figure 6 Gaussian plane wave incident on an 8-layer PML located at x = 392� at

30� (from lower right to left). These are views of a portion of a 400�100 grid. a) Incident

�eld, b) scattered �eld, showing specular reection from PML �ve orders of magnitude

lower than the incident �eld and c) cross-section of reected �eld from 2-D simulation and

reected �eld from 1-D simulation. Time slice of graphs in (c) +150 time steps of those in

(a) and (b).

Figure 7 Reection coe�cients of N-layer PMLs as a function of �.

(N; p; �f�)=(8; 3:74; 0:016)(�),(10; 3:91; 0:025)(��) and the results reported in [6](*). The

values of W and � used in the simulations were chosen to match those used in [6].
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Handheld forward-looking focused array mine detection with
plane wave excitation

Carey Rappaport*a, Stephen Azevedob, Tom Rosenburyb, Jamie Goughb, and Dongping Jina

aDept. Elect. and Comp. Eng., Northeastern University, Boston, MA 02115

bLawrence Livermore National Laboratory, Livermore, CA

ABSTRACT

A novel handheld time-domain array GPR antipersonnel mine detection system prototype has been
developed.  Using an offset paraboloidal reflector antenna to collimate rays from an ultra-wideband feed,
the transmitted microwave impulse is concentrated forward, in front of the antenna structure.  The
resulting wave is a non-uniform plane wave over the portion of ground being investigated, and is incident
at 45 deg. to normal.  As such, much of the ground reflected wave is directed further forward, away from
the operator, the reflector, and the receiving antennas, thereby reducing clutter.  However, the wave
transmitted into the ground, which interacts with the target, tends to have significant backscatter returning
toward the receiving antennas.  These receiving antennas are configured in a 2 by 2 array to provide
spatial focusing in both along and cross-track directions.  This is accomplished by measuring and
comparing the backscattered signals at each receiver in the narrow time window between the times when
the ground reflected wave passes the receiver and before this wave re-reflects from the reflector
components.

Two-dimensional FDTD simulation of this parabolic reflector transmitter indicates that it generates a
beam with a non-uniform planar wavefront, which scatters from rough ground primarily in the forward
direction.  The wave transmitted into the ground is also planar, propagating at the angle of refraction, and
scattering fairly isotropically from a small penetrable target.

This system has been built and tested at Lawrence Livermore National Laboratory, using a very narrow
pulse shape.  LLNL’s Micro-Impulse Radar (MIR) and custom-built wideband antenna elements operate
in the 1.5 to 5 GHz range.  One particular advantage of using the MIR module is its low cost: an
important feature for mine detectors used in developing countries.  Preliminary measured data indicates
that the surface clutter is indeed reduced relative to the target signal, and that small non-metallic anti-
personnel mines can be reliably detected at burial depths as shallow as 1 inch in both dry.

Keywords:  GPR, mine detection, focused array, reflector antenna.

1. INTRODUCTION

There is considerable interest in the detection of shallow buried objects, such as mines and buried pipes,
many of which are non-metallic. The detection of non-metallic objects, such as anti-personnel mines is
challenging, since the differences between the dielectric constant of the target and the surrounding soil is
relatively low.  Since this contrast is low, the target scattering is small, in particular compared to the
scattering by the ground surface.



To address the detection of plastic antipersonnel mines, which is also challenging for conventional metal
detector, a novel handheld time-domain array GPR system prototype has been developed. Designed at
Northeastern University, this detector makes use of an offset paraboloidal reflector antenna and an array
of wideband receiving elements to provide moderate forward-looking capability with reduced surface
clutter.

This new GPR system reduces this ground clutter by illuminating the sample ground surface with a
forward propagating, quasi-planar wave, and receiving the scattered signals with a two-dimensional
multistatic array. Since the scattering by a small target is relatively isotropic, while scattering by the
ground is primarily specular, a planar transmitted signal is well suited for shallow GPR detection. Plane
wave illumination has another advantage beside clutter reduction compared to point source excitations:
for a given target burial depth, the wave incident on a target from a plane wave source will always scatter
the same way.  For a point source, the incident wave on a given target will be illuminated from the side
for one transmitter position and directly above for another.  The constant exposure angle for a planar
wave excitation makes processing the returned signals more straightforward.

We have used the finite-difference time-domain (FDTD)1 method to electromagnetically model our novel
GPR configuration. We implemented the 2-D FDTD code to simulate the generation of the non-uniform
plane wave, the scattering by the modeled dispersive soil ground surface, the scattering by the target, and
the retransmission back into the air, confirming the clutter minimizing characteristics of this mine
detector. Computer simulation guides optimum size and offset section selection of the reflector, the
choice of height of reflector off the ground, and the best positions of receiving elements.

A prototype system has been fabricated and tested at Lawrence Livermore National Labs (LLNL) using
an excitation signal that is sufficiently short in time duration to resolve small targets and discriminate the
ground surface from a shallow buried target.  The multistatic array concept provides for additional clutter
rejection and time-domain focusing2.  This focusing is accomplished by measuring, comparing, and
summing the backscattered signals at each receiver in the narrow time window between the times when
the residual ground reflected wave passes the receiver and before this wave re-reflects from the reflector
components.

2. GROUND PENETRATING RADAR GEOMETRY

The radar system makes use of an inclined transmitted plane wave impulse excitation in conjunction with
a multistatic array of receivers.  It is an essential aspect of the radar design to send out a very short pulse,
and accurately measure the returned signal in very small time increments.  The radar system would not
function with stepped frequency excitation.

2.1 Parabolic Reflector Transmitter

In order to generate a plane wave near the ground surface, the transmitting antenna must collimate
outgoing rays in a beam that illuminates the sampled region of ground.  Not only must this antenna
generate a planar wavefront, but also its aperture must extend a distance comparable to the distance to the
ground.  In other words, the ground must be in the near field of the antenna.

A reflector whose surface is a section of a paraboloid of revolution collimates rays emanating from a feed
at its focal point.  As long as the section of the paraboloid is as deep and wide as its height above ground,
the wave it generates will remain planar over the illuminated region of ground.  Outside the illuminated
spot on the ground, the transmitted wave is not planar, but since most of the wave power is concentrated
within the beam, this diverging field is relatively unimportant.



The orientation of this quasi-planar transmitted wave must be carefully selected to balance the clutter
reduction and safety advantages of forward-look with packaging disadvantages.  For greater wave
incidence angles, the forward edge of the reflector must either be higher or farther forward.  And since
greater height requires greater aperture size, both options demand increased reflector size.  As a
compromise, the incidence angle was chosen to be at 45 deg. to normal.  To maintain close proximity of
the reflector to the ground surface, an offset section of the parent paraboloid is chosen for the reflector
antenna.

Figure 1 shows the geometry of the parabolic reflector and the way it directs rays from the transmitting
feed to the ground.  Diverging rays leaving the transmitter reflect from the paraboloidal surface, emerge
as parallel rays, in such manner as to keep the path length from the feed to an inclined wavefront constant.
The inclined wavefront is perpendicular to -- and propagates along -- the axis of revolution of the parent
paraboloid, which includes the parabola focus and vertex.  Also, the reflector produces a beam of
microwave energy with an abrupt drop in power outside the ray tube bounded by the perimeter of the
reflector (indicated with rays in Figure 1). The distance along the rays from reflector to ground S is equal
to the projected reflector diameter D (distance between the furthest rays), so the rays representing the
transmitted wave will be parallel, and the wave will be planar.  The governing equation for the nearfield
of the reflector is:  S << 2 D2 / λ, so when the reflector is positioned close to the ground, the radiated
wave is in the nearfield, and concepts of antenna gain and radiation pattern are irrelevant.

Figure 1.  Geometry of the offset parabolic reflector

Because the transmitted wave diverges very little from reflector to the ground, most of the power incident
from the illuminating feed is transferred to the ground.  Much of the ground reflected wave is directed
further forward, away from the operator, the reflector, and the receiving antennas.  In addition, the wave
transmitted into the ground is incident on the target in the same manner for any antenna position: always
as a plane wave with constant soil path length and incident angle θt = sin-1(1/√(2ε)).   Since the scattering
from an electrically small buried target is primarily isotropic, there will be a significant backscattered
signal, propagating oppositely to the surface clutter signal, returning toward the receiving antennas.

0 20 40 60 80 100
Downtrack Distance HcmL

-10

0

10

20

30

40

thg
ieH

HmcL

Target

Parabolic Reflector

Focal point of
transmitter

Soil

Air

Receivers
S



An offset section of the paraboloid is selected to avoid blockage of rays by the feed structure.  In contrast
to offset reflectors used in communications applications, this offset section is particularly deep, extending
from the vertex past the focal point by twice the focal length, giving an F/D ratio of the parent paraboloid
of about 0.15.  The best offset section extends from 45 deg. to about 115 deg. from the symmetry axis,
which ensures that the front and rear edges are at the same height above ground.  For a parabolic focal
length of 20 cm, the projected aperture diameter of the reflector is about 47 cm, which nominally
illuminates an elliptical spot of ground with axes 47 and 67 cm.   For a reflector positioned 33.5 cm above
the ground, the center of this elliptical region is immediately below the front edge of the reflector, and all
of the collimated rays from the reflector would reflect from a flat ground just missing the front of the
reflector.

2.2. Receiver Array

The receivers are positioned under the reflector, but behind the point on the ground at the center of the
illuminated spot.  The 4 receivers are arranged in a rectangular 2 by 2 array, with the forward pair
separated by about 40 cm, and the backward pair by the same distance, 20 cm behind the forward pair.
Since the receivers are displaced from the centerline, they do not appreciably block any of the wave from
the reflector to the ground.  Since the receivers are behind the point on the ground where the central ray
strikes the ground, they will completely miss the strongest ground reflection signal.   The entire structure
is less than 70 cm deep and stands within 40 cm of the ground, clearly small enough to be operated as a
handheld sensor.

2.3. Excitation Pulse

The LLNL Micro-Power Impulse Radar (MIR) was used as the transmitter source for the fabricated mine
detection prototype system 2.  This radar source generates an impulse with pulse width of about 300 ps
and frequency range from about 1.5 to 5 GHz (see Figure 2).  The duration of the main pulse peak is short
enough to resolve about 1cm in dry sand and 5 mm in moist loam.  However, this short pulse also
enhances  the  electrical  size  of  the  roughness  of  uneven  ground  surface.   Without the radar’s  clutter

Figure 2.  Measured excitation pulse of MIR radiated by the reflector feed.
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suppression advantage of forward specular reflection of the ground reflected wave, it would be very
difficult to distinguish the target signal.  Although it would be desirable to minimize the continued
“ringing” of the pulse, the large relative amplitude of the main peak and the characteristic shape of the
adjacent peaks makes the processing of returned signals to identify target scattering relatively
straightforward.

3. FDTD MODELING

In order to confirm the concept that a plane wave impulse will scatter from rough ground primarily in the
forward direction, while scattering from a small buried target is relatively isotropic, we computationally
model the problem using the Finite Difference Time Domain method (FDTD).  Real soils have dielectric
characteristics that are frequency dependent, and as such require convolution of the permittivity and
conductivity with electric field for modeling propagation and scattering in the time domain.  Since
convolution over all time is computationally prohibitive, other modeling methods must be used 3-5. We
avoid time domain convolution by modeling the frequency dependent conductivity as a rational function
of the Z-transform variable 6 Z = exp(jω∆ t):
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and assume a constant average dielectric constant.  The parameters in (1) are chosen to match the
experimental data, such as Puerto Rican clay loam (PRCL)7 with density 1.4 g/cc and moisture 10%, with
a time step ∆ t = 20ps8:  a1 = -0.88, b0 = 0.9162, b1 = -1.6766, b2 = 0.7611, and εAvg =  4.2.  The
expression for conductivity in Equation (1) is equivalent to the ratio J(Z)/E(Z).  By multiplying through
by the denominators, and using the fact that Z-1 corresponds to a unit time delay, a finite difference
equation relating current to E-field in the time domain is obtained.  This relation, along with D(t) =εAvg

E(t) models the dispersive nature of the soil in a manner that is easily implemented in FDTD.  The
perfectly matched layer (PML) absorbing boundary condition is used in the FDTD model to terminate the
computational grid9,10.

The transmitting antenna is modeled in two dimensions with a point source feed backed with absorber,
and a staircase approximated perfectly conducting parabolic arc reflector.  The absorber backing prevents
any direct radiation toward the ground, which would scatter, then reflect from the parabola and contribute
to the overall clutter.  Both TE and TM polarizations were modeled, with special care taken for the TE
computations to avoid electric field singularities at the ends of the reflector.  To test the detectability of
buried objects, two cases were run for each polarization:  one with a target present and one without.  We
examined rectangular targets with dimension 5cm by 10cm buried 5cm below the nominal ground
surface.  Both metallic and non-metallic targets under rough ground with mean height variation of 3cm
were considered.

Figure 3 presents three images for the TM simulation for the metallic mine target.  By convention, for
two-dimensional numerical calculations, the transverse plane is the plane of the calculation.  For this TM
calculation, the electric field is perpendicular to the plane of the paper.  The first image shows the total
scattered field, with reflection and diffraction from the reflector, scattering from the ground, and the
scattering of the mine.  The second shows the field distribution for the same ground, but without the
buried mine.  The planar wave generated by the parabola clearly scatters from the illuminated region of
rough ground in primarily the specular direction, remaining roughly planar.  The third image shows the
difference between the first two, representing the field scattered just by the mine, and then rescattered
from the air/soil interface.  This mine-scattered signal appears to be circular, showing that the electrically
small target scatters almost isotropically, with very little specular reflection from the top of the flat
metallic target.



Figure 3.  TM 2-D FDTD simulation of the LLNL MIR pulse reflected from the indicated 45 deg. inclined
offset parabolic reflector and interacting with rough dispersive PRCL: a) Total field with rectangular metal
mine target buried 5 cm, b) Ground scattered field with no target, c) Mine scattered field resulting from the
difference between a) and b).

Figure 4.  Same TM FDTD simulation as Figure 4, for non-metallic AP mine.  Reflector height above ground
is increased 25 cm to show backscattering details.

It is clear which features due solely to the mine are present in the first image. Those features due to
scattering from the ground, shown in the second image, are also easily distinguished in the first image.
Since these two sets of features the clearly separable in space for this particular time sample, it is
demonstrated that the ground surface clutter is suppressed by the geometry of the radar system.
Positioning the receivers behind the point where the central ray of the reflector intersects the ground
ensures that the signals received will be primarily from the mine target and not from the ground surface.

Figure 4 is similar to Figure 3, with a non-metallic mine target.  In this more challenging detection case,
the dielectric contrast is quite low, so the target scattering is much smaller.  In fact, the contrast between
the TNT target (εAvg =2.9, σ = 0.0005) and the soil is less than between the soil and the air.  It is thus
much more important with the non-metallic target that the ground surface clutter be reduced with good
sensor design.  Figure 4 shows that again the mine target signal is spatially separated and easily
distinguishable form the clutter signal.



4. PROTOTYPE SYSTEM AND RESULTS

The Lawrence Livermore National Laboratory MIR source is well-suited for the mine detection problem,
having the particular advantages of being small and extremely low cost, which are important features for
mine detectors used in developing countries.  This source was assembled with the custom-built metallic
offset paraboloidal reflector.  Figure 5 shows the full mine detector prototype; Figure 6 shows the device
performing measurements at the test site at LLNL.  In this test, a non-metallic antipersonnel mine
simulant was buried in dry sand 1 in. below a very rough surface.  This is a particularly challenging
detection problem, because the dielectric constants of the plastic body TNT filled mine and the
surrounding soil are very close.  In addition, the random rough surface height variation is of the order of
the height of the mine, and its burial depth.  Thus, the anomaly detection is frustrated by low signal to
clutter both in terms of size and contrast.

The result of processing the measured signals is shown in Figure 8, with bright areas signifying
anomalies.  To process the receiver signals, the direct signal from the transmitter to each receiver is
removed, and the resulting signals are aligned in time to focus on suspected targets.  Although there is
still appreciable clutter from the rough ground, the target is still visible in the center of the image, two-
thirds of the way up.  The extent of the rough ground variation precludes clutter suppression using purely
signal processing means.  However, by ensuring that the ground-scattered signal specularly reflects away
from the receivers, the target signal can be discriminated from the clutter.

Figure 5  Offset parabolic mine detector with LLNL
MIR sources and antenna elements

Figure 6  Parabolic mine detector
under test at LLNL test site



Figure 7  Detection results for the parabolic transmitter with LLNL MIR radar elements
for rough dry sand with non-metallic AP mine buried 1 in.

5. CONCLUSIONS

A novel GPR mine detection system that reduces ground surface clutter has been developed and tested.
The detector uses an offset parabolic reflector to generate a forward propagating plane wave to illuminate
the ground and a 2-dimensional multistatic array to focus and enhance the received backscattered signal.
Numerical simulations support several design assumptions:

1) The measured excitation gives good resolution and sufficient penetration in realistically modeled soil.

2) The offset parabolic reflector converts circular waves emanated by a point source feed into a non-
uniform plane wave.

3) Choosing an offset parabolic section avoids blockage in generating a forward propagating plane wave.

4) A forward-looking planar transmitted wave takes advantage of specular ground reflection, spatially
separating the target signal from the clutter signal.



5) Positioning receivers behind the central transmitted ray allows the monitoring of the backscattered
mine signal while avoiding the ground clutter signal.

6) Even for a rough surface with a buried non-metallic mine, FDTD predicts distinct target and surface
scattered signals.

Measured signals using the LLNL MIR radar for rough dry sand indicate that small non-metallic mine
targets can be detected and discriminated from the cluttered background, even when shallow buried to a
depth of 1 in. below a rough ground surface.
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Multi-mode subsurface sensing and imaging for land mine detection

Carey M. Rappaport, Michael Silevitch, Stephen McKnight, Charles DiMarzio,
Eric Miller, and Harold Raemer

Dept. Elect. and Comp. Eng., Northeastern University, Boston, MA 02115

ABSTRACT

Northeastern University is heading one of three teams involved in five year, $5,000,000
Multidisciplinary University Research Initiative (MURI) programs in demining, supported by the
Army Research Office.  The Northeastern effort involves a team of six other universities and small
businesses and integrates electromagnetic, acoustic, and optical sensing modalities.  We are
designing sensors to measure many of the physical characteristics of the ground with and without
mines, and developing carefully-tailored signal processing algorithms that specifically take the
sensor and the physics into account.

Keywords:  GPR, mine detection, focused array, reflector antenna.

INTRODUCTION

The best mine detectors, used in both US Army countermine operations and by humanitarian
demining efforts that can afford them, are based on fifty-year-old technology comparable to metal
detectors used by beach-combers.  There is tremendous potential for improving the reliability of
mine detection using state-of-the-art sensors, computer modeling, and signal processing, combined
with the phenomenal recent advances in computer power.  The overall goal of humanitarian
demining is to use these tools to help people around the world clear hazardous land at a cost that
even developing countries can afford.

The difficulty with finding buried mines is that there is no single type of “target”, nor surrounding
background.  In addition, the soil surrounding the mine often strongly absorbs electromagnetic
radiation and may also have buried rocks, moisture pockets, tree roots, and bits of metal scrap
(especially in a former battlefield). A rough soil surface may also randomly scatter much of the
transmitted sensing signal and can be a significant source of detection noise.  Conventional radar is
relatively good at detecting metallic objects, both in the air and underground, but is much less
effective at detecting nonmetallic targets, such as stealth aircraft or plastic mines.  In addition,
objects too close to the ground surface pose a problem in discrimination of the target from the
ground surface itself.  Thus, large metallic 30cm diameter anti-tank mines are relatively easy to
find, but the 8cm anti-personnel mines with as little as half a gram total metal content, buried just 2
to 10cm under ground are quite difficult to detect.  The need to find all sorts of targets, at depths
varying from just below the surface to ten centimeters deep, in all terrain, from desert to rice paddy
to rain forest, make mine detection a challenging problem.



Figure 1 illustrates four typical mine positions and approaches using conventional sensing
modalities to detect them.  Although there are newer and more exotic detection technologies being
considered for mine detection, cost considerations preclude widespread acceptance for
humanitarian demining.  One promising novel detection modality which may become economically
feasible is Nuclear Quadrupole Resonance sensing of the chemical nature of bulk explosives [1]

Figure 1.: Typical mine burial scenarios and appropriate detection modalities.

The sensing modalities alone are not enough to solve the mine detection problem.  In addition,
there must exist powerful physics-based and statistical signal processing algorithms to reconstruct
the target features based on observed measurements.  These algorithms in turn require
computational models that allow for hypothesis testing, iterative or recursive estimation, and
inverse scattering.  Finally, since it is unlikely that a single detection modality will find every mine,
it is important to combine the information from several sensing modalities with appropriate fusion
techniques.  The Northeastern University MURI strategic plan, showing the various overlapping
efforts is shown in Figure 2.

The four main sensing modalities are ground penetrating radar (GPR), electromagnetic induction
(EMI), infrared (IR), and acoustic detection.  The processing approaches include parameter-based
inverse scattering, recursive estimation, defraction tomography, batch statistical detection, and
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matched filtering.  The stars with letter correspond to individual projects, abbreviated on the right.
In the following sections, we will discuss a selection of these topics.

Figure 2:  Northeastern University MURI  project integration.

ELECTROMAGNETIC INDUCTION

Electromagnetic induction sensing of metallic objects is the standard subsurface detection modality.
Metal detectors have been used since before World War II, and are quite effective in alarming on
metal case mines and unexploded ordnance (UXO), such as shells and bombs (which are usually
metallic).  This technology can also sense the small metal firing pin almost always present in
plastic and wooden mines [2].  However, when the EMI sensor sensitivity is set to detect such
small metal targets, all sorts of man-made metallic and naturally occurring conductive clutter--such
as nails, spent bullets, and bits of rust--is detected, and the false alarm rate becomes unacceptable.
One approach to better discriminate targets from clutter and reduce the false alarm rate is to use
wideband electromagnetic induction spectroscopy (EMIS) [3].  By examining the characteristics of
the metal scattered signal from 30Hz to 24 kHz, and using a physical model of the target induced
dipole moment, unique features of the mines in question can be distinguished [4].
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GROUND PENETRATING RADAR

Ground penetrating radar is effective at identifying dielectric contrasts in the surrounding
environment.  If the dielectric contrast is large enough, the size of the mine target large enough, and
the distance from the ground surface deep enough, it is possible to uniquely detect mines.
However, distinguishing a nonmetallic mine from a dry or sandy soil background is quite
challenging, because the dielectric constants of TNT and dry soil are practically the same.  Also,
for the case of antipersonnel mines, the target volume is small and it may only be buried a few
centimeters below the surface.  Removing the strong ground surface reflection clutter without
overly suppressing the mine signal is a topic of active research [5].

Sophisticated electromagnetic modeling illustrates some of the problematic issues.  Figure 3 shows
two images created using the three-dimensional finite difference frequency domain (FDFD) method
[6, 7]. Both images show the total Ex field at two planes above, on and below a random rough
ground surface due to a Hertzian x-directed dipole above the ground.  The left image shows the
response when a rectangular nonmetallic mine target is buried 5cm down, while the right image
results from a circular cylindrical mine with the same volume buried at the same place.  Only by
careful observation can the differences be observed.  Clearly, sharp corners and smooth surfaces
cannot be readily detected.  In practice, direct comparison between the field configurations for
known target cases is not possible.  Even if the ground roughness could be measured and stored,
computationally modeling the effects of the clutter cannot be accomplished in real time.  The
images of Figure 3 require approximately 50 hours of CPU time on a multiprocessor Compaq
Alpha computer.

Figure 3:  3-D FDFD computational model of  total Ex due to a dipole radiating at 960 MHz for a
buried rectangular box target (left) and a circular cylindrical target (right) in clay loam soil with

rough surface.



One of our major research projects is to improve the detection capability of ground penetrating
radar by reducing clutter by simultaneously using multiple and receivers to focus waves on points
under the ground surface.  By “looking” at the mine from different angles at the same time, it is
possible to emphasize the features of the mine, and minimize the clutter from the rough ground
surface and uneven intervening soil.  In addition, if the transmitted wave is planar and forward
directed, the reflection from the ground surface tends to continue forward, away from the sensor.
As such, it does not have as great an effect confusing the target signal.  This effect has been
confirmed both with computational models [8, 9], and in hardware, with an offset parabolic
transmitting antenna [10].  Figure 4 depicts hardware fabricated by Lawrence Livermore National
Labs.  Test results for a nonmetallic mine buried in dry sand 1 inch under rough surface indicate an
easily detectable anomaly with the size and approximate shape of the mine.

Figure 4:  Offset parabolic reflector transmitter and multiple element receiver GPR handheld mine
detector, with processed detection results for nonmetallic mine buried in rough sand

ACOUSTIC SENSING

Another exciting research area is the novel use of sound waves to detect acoustic echoes from
buried mines.  In deserts where the sandy soil is usually quite dry, non-metallic mines look
electromagnetically very much like the background, and so are hard to pick out.  To solve this
problem, Northeastern University’s Demining team is using sound rather than radar or
electromagnetic induction to find solid mine-like objects embedded in loose soil.  The acoustic
mismatch between granular soil and any metallic or non-metallic solid object is very high, giving a
strong target-to-medium contrast.

Plastic AP
mine, 1” deep



One major problem with ground penetrating sonar is coupling through the ground surface.  While
medical ultrasound devices can be pressed firmly onto a patient’s skin, direct ground contact in a
minefield is not feasible.  We have developed an alternative: using a laser beam to quickly heat the
ground, causing rapid expansion, which in turn generates a sonic shock wave [11].  The scattered
signals are detected either with a microphone placed very close to the ground, or
interferometrically, using another laser beam to detect the ground motion.

This geometry, as well as sample detection results is shown in Figure 5.  The mine simulant target
is a bisected hockey puck, positioned slightly inclined to the ground surface.  The surrounding
material in this experiment was dry sand.  A CO2 TEA laser generated 150 mJ pulses several times
a second, resulting in a string of acoustic pulses generated at the sad surface.  A microphone was
fixed relative to the laser, and the two were moved in a serpentine pattern relative to the ground.
The measured signals were first filtered to remove at much of the ground surface reflection as
possible, then the recorded signals were displayed as a function of position on the ground (bottom
figure) [12].   The shape of the target is clearly distinguishable.  It is also possible, by observing the
arrival time of the target signal at the particular point, to determine the depth from the ground
surface to the top of the target.

Figure 5:  Laser induced acoustic sensing, geometry (top), and measured results (bottom).
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INFRARED SENSING

Infrared detection is another sensing modality that has been used to find mines.  Both polarimetric
effects, which can distinguish exposed man-made objects [13], and thermal effects can be
exploited.  By measuring the subtle temperature changes from solar heating between soil with and
without a mine, it is sometimes possible to find shallowly buried mines.  Northeastern University’s
team has developed a novel means of using IR thermography by simulating the sun with
microwave heating [14].  Our heater points down, toward the ground, deeply heating a small patch
of soil.  Meanwhile, we take IR pictures of the soil patch and look for anomalous heating patterns.
Instead of being limited to sunrise and sunset, when the solar heating changes are most noticeable,
our system can be used all day.   Figure 6 shows this concept of heating the ground with
microwaves.  The right image indicates the temperature differences on the sand surface due to non-
uniform heating of the soil above the targets.  The shapes of the targets are clearly visible.

Figure 6:  Microwave enhanced IR thermography concept (left) and measured results (right).

It is also possible to use multiple microwave frequencies for heating the ground.  Since the surface
heating pattern is relatively insensitive to frequency, while the heating at depth depends strongly on
frequency, taking the difference from two heatings will better show the presence of buried
anomalies [14].
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CONCLUSIONS

In designing each of our sensors, our emphasis is to use as much of the available information as
possible: use many different probing signals, with differing frequencies; use the widest possible
view, with many inexpensive sensors coupled together; use the information gained from mine-free
terrain and from confirmed terrain with mines to give improved detection confidence; use the fact
that mines are stationary, while the detectors can move, and above all, keep the advanced
technology simple in principle, so that it can detect mines in dirty, or frozen, or hard-to-traverse
terrain.
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Multi-mode subsurface sensing and imaging for land mine detection
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ABSTRACT

Northeastern University is heading one of three teams involved in five year, $5,000,000
Multidisciplinary University Research Initiative (MURI) programs in demining, supported by the
Army Research Office.  The Northeastern effort involves a team of six other universities and small
businesses and integrates electromagnetic, acoustic, and optical sensing modalities.  We are
designing sensors to measure many of the physical characteristics of the ground with and without
mines, and developing carefully-tailored signal processing algorithms that specifically take the
sensor and the physics into account.

Keywords:  GPR, mine detection, focused array, reflector antenna.

INTRODUCTION

The best mine detectors, used in both US Army countermine operations and by humanitarian
demining efforts that can afford them, are based on fifty-year-old technology comparable to metal
detectors used by beach-combers.  There is tremendous potential for improving the reliability of
mine detection using state-of-the-art sensors, computer modeling, and signal processing, combined
with the phenomenal recent advances in computer power.  The overall goal of humanitarian
demining is to use these tools to help people around the world clear hazardous land at a cost that
even developing countries can afford.

The difficulty with finding buried mines is that there is no single type of “target”, nor surrounding
background.  In addition, the soil surrounding the mine often strongly absorbs electromagnetic
radiation and may also have buried rocks, moisture pockets, tree roots, and bits of metal scrap
(especially in a former battlefield). A rough soil surface may also randomly scatter much of the
transmitted sensing signal and can be a significant source of detection noise.  Conventional radar is
relatively good at detecting metallic objects, both in the air and underground, but is much less
effective at detecting nonmetallic targets, such as stealth aircraft or plastic mines.  In addition,
objects too close to the ground surface pose a problem in discrimination of the target from the
ground surface itself.  Thus, large metallic 30cm diameter anti-tank mines are relatively easy to
find, but the 8cm anti-personnel mines with as little as half a gram total metal content, buried just 2
to 10cm under ground are quite difficult to detect.  The need to find all sorts of targets, at depths
varying from just below the surface to ten centimeters deep, in all terrain, from desert to rice paddy
to rain forest, make mine detection a challenging problem.



Figure 1 illustrates four typical mine positions and approaches using conventional sensing
modalities to detect them.  Although there are newer and more exotic detection technologies being
considered for mine detection, cost considerations preclude widespread acceptance for
humanitarian demining.  One promising novel detection modality which may become economically
feasible is Nuclear Quadrupole Resonance sensing of the chemical nature of bulk explosives [1]

Figure 1.: Typical mine burial scenarios and appropriate detection modalities.

The sensing modalities alone are not enough to solve the mine detection problem.  In addition,
there must exist powerful physics-based and statistical signal processing algorithms to reconstruct
the target features based on observed measurements.  These algorithms in turn require
computational models that allow for hypothesis testing, iterative or recursive estimation, and
inverse scattering.  Finally, since it is unlikely that a single detection modality will find every mine,
it is important to combine the information from several sensing modalities with appropriate fusion
techniques.  The Northeastern University MURI strategic plan, showing the various overlapping
efforts is shown in Figure 2.

The four main sensing modalities are ground penetrating radar (GPR), electromagnetic induction
(EMI), infrared (IR), and acoustic detection.  The processing approaches include parameter-based
inverse scattering, recursive estimation, defraction tomography, batch statistical detection, and
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matched filtering.  The stars with letter correspond to individual projects, abbreviated on the right.
In the following sections, we will discuss a selection of these topics.

Figure 2:  Northeastern University MURI  project integration.

ELECTROMAGNETIC INDUCTION

Electromagnetic induction sensing of metallic objects is the standard subsurface detection modality.
Metal detectors have been used since before World War II, and are quite effective in alarming on
metal case mines and unexploded ordnance (UXO), such as shells and bombs (which are usually
metallic).  This technology can also sense the small metal firing pin almost always present in
plastic and wooden mines [2].  However, when the EMI sensor sensitivity is set to detect such
small metal targets, all sorts of man-made metallic and naturally occurring conductive clutter--such
as nails, spent bullets, and bits of rust--is detected, and the false alarm rate becomes unacceptable.
One approach to better discriminate targets from clutter and reduce the false alarm rate is to use
wideband electromagnetic induction spectroscopy (EMIS) [3].  By examining the characteristics of
the metal scattered signal from 30Hz to 24 kHz, and using a physical model of the target induced
dipole moment, unique features of the mines in question can be distinguished [4].
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GROUND PENETRATING RADAR

Ground penetrating radar is effective at identifying dielectric contrasts in the surrounding
environment.  If the dielectric contrast is large enough, the size of the mine target large enough, and
the distance from the ground surface deep enough, it is possible to uniquely detect mines.
However, distinguishing a nonmetallic mine from a dry or sandy soil background is quite
challenging, because the dielectric constants of TNT and dry soil are practically the same.  Also,
for the case of antipersonnel mines, the target volume is small and it may only be buried a few
centimeters below the surface.  Removing the strong ground surface reflection clutter without
overly suppressing the mine signal is a topic of active research [5].

Sophisticated electromagnetic modeling illustrates some of the problematic issues.  Figure 3 shows
two images created using the three-dimensional finite difference frequency domain (FDFD) method
[6, 7]. Both images show the total Ex field at two planes above, on and below a random rough
ground surface due to a Hertzian x-directed dipole above the ground.  The left image shows the
response when a rectangular nonmetallic mine target is buried 5cm down, while the right image
results from a circular cylindrical mine with the same volume buried at the same place.  Only by
careful observation can the differences be observed.  Clearly, sharp corners and smooth surfaces
cannot be readily detected.  In practice, direct comparison between the field configurations for
known target cases is not possible.  Even if the ground roughness could be measured and stored,
computationally modeling the effects of the clutter cannot be accomplished in real time.  The
images of Figure 3 require approximately 50 hours of CPU time on a multiprocessor Compaq
Alpha computer.

Figure 3:  3-D FDFD computational model of  total Ex due to a dipole radiating at 960 MHz for a
buried rectangular box target (left) and a circular cylindrical target (right) in clay loam soil with

rough surface.



One of our major research projects is to improve the detection capability of ground penetrating
radar by reducing clutter by simultaneously using multiple and receivers to focus waves on points
under the ground surface.  By “looking” at the mine from different angles at the same time, it is
possible to emphasize the features of the mine, and minimize the clutter from the rough ground
surface and uneven intervening soil.  In addition, if the transmitted wave is planar and forward
directed, the reflection from the ground surface tends to continue forward, away from the sensor.
As such, it does not have as great an effect confusing the target signal.  This effect has been
confirmed both with computational models [8, 9], and in hardware, with an offset parabolic
transmitting antenna [10].  Figure 4 depicts hardware fabricated by Lawrence Livermore National
Labs.  Test results for a nonmetallic mine buried in dry sand 1 inch under rough surface indicate an
easily detectable anomaly with the size and approximate shape of the mine.

Figure 4:  Offset parabolic reflector transmitter and multiple element receiver GPR handheld mine
detector, with processed detection results for nonmetallic mine buried in rough sand

ACOUSTIC SENSING

Another exciting research area is the novel use of sound waves to detect acoustic echoes from
buried mines.  In deserts where the sandy soil is usually quite dry, non-metallic mines look
electromagnetically very much like the background, and so are hard to pick out.  To solve this
problem, Northeastern University’s Demining team is using sound rather than radar or
electromagnetic induction to find solid mine-like objects embedded in loose soil.  The acoustic
mismatch between granular soil and any metallic or non-metallic solid object is very high, giving a
strong target-to-medium contrast.
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One major problem with ground penetrating sonar is coupling through the ground surface.  While
medical ultrasound devices can be pressed firmly onto a patient’s skin, direct ground contact in a
minefield is not feasible.  We have developed an alternative: using a laser beam to quickly heat the
ground, causing rapid expansion, which in turn generates a sonic shock wave [11].  The scattered
signals are detected either with a microphone placed very close to the ground, or
interferometrically, using another laser beam to detect the ground motion.

This geometry, as well as sample detection results is shown in Figure 5.  The mine simulant target
is a bisected hockey puck, positioned slightly inclined to the ground surface.  The surrounding
material in this experiment was dry sand.  A CO2 TEA laser generated 150 mJ pulses several times
a second, resulting in a string of acoustic pulses generated at the sad surface.  A microphone was
fixed relative to the laser, and the two were moved in a serpentine pattern relative to the ground.
The measured signals were first filtered to remove at much of the ground surface reflection as
possible, then the recorded signals were displayed as a function of position on the ground (bottom
figure) [12].   The shape of the target is clearly distinguishable.  It is also possible, by observing the
arrival time of the target signal at the particular point, to determine the depth from the ground
surface to the top of the target.

Figure 5:  Laser induced acoustic sensing, geometry (top), and measured results (bottom).
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INFRARED SENSING

Infrared detection is another sensing modality that has been used to find mines.  Both polarimetric
effects, which can distinguish exposed man-made objects [13], and thermal effects can be
exploited.  By measuring the subtle temperature changes from solar heating between soil with and
without a mine, it is sometimes possible to find shallowly buried mines.  Northeastern University’s
team has developed a novel means of using IR thermography by simulating the sun with
microwave heating [14].  Our heater points down, toward the ground, deeply heating a small patch
of soil.  Meanwhile, we take IR pictures of the soil patch and look for anomalous heating patterns.
Instead of being limited to sunrise and sunset, when the solar heating changes are most noticeable,
our system can be used all day.   Figure 6 shows this concept of heating the ground with
microwaves.  The right image indicates the temperature differences on the sand surface due to non-
uniform heating of the soil above the targets.  The shapes of the targets are clearly visible.

Figure 6:  Microwave enhanced IR thermography concept (left) and measured results (right).

It is also possible to use multiple microwave frequencies for heating the ground.  Since the surface
heating pattern is relatively insensitive to frequency, while the heating at depth depends strongly on
frequency, taking the difference from two heatings will better show the presence of buried
anomalies [14].
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CONCLUSIONS

In designing each of our sensors, our emphasis is to use as much of the available information as
possible: use many different probing signals, with differing frequencies; use the widest possible
view, with many inexpensive sensors coupled together; use the information gained from mine-free
terrain and from confirmed terrain with mines to give improved detection confidence; use the fact
that mines are stationary, while the detectors can move, and above all, keep the advanced
technology simple in principle, so that it can detect mines in dirty, or frozen, or hard-to-traverse
terrain.
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Semi-analytic mode matching for detecting nonmetallic

mines buried in realistic soils
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ABSTRACT

The ultra-wideband detection of plastic land mines buried in lossy, dielectric soils is simulated using a new semi-
analytic mode matching (SAMM) algorithm. Here, we apply SAMM to the 3D canonical problem of finding
the nonspecular reflection of an obliquely-incident plane wave on a lossy dielectric half-space containing a small,
shallowly-buried dielectric sphere. However, SAMM can also be extended to smoothly-varying convex-shaped
mines buried under modestly rough ground. In the SAMM algorithm, the frequency-dependent scattered fields
are constructed from moderately low-order modal superpositions of spherical waves, each satisfying the Helmholtz
equation in its respective material (air, ground, or mine). By least squares fitting, mode coefficients are found
which optimally match all boundary conditions at designated points along the boundary surfaces. Spherical wave
expansions are chosen at multiple coordinate centers so that small numbers of modes are needed to give convergent
results.

The inverse discrete Fourier transform (IDFT) of a wideband GPR reflected signal yields a time domain signature
dependent on mine and soil characteristics as well as the burial depth and radius of the mine in a particularly
simple way: scattering times are dominated by analytically-computed Mie scattering from a spherical mine in an
infinite soil background. Specifically, two or more characteristic time peaks are observed in SAMM simulations,
suggesting that the ultra-wideband spectral radar response may yield particular advantages not exploited by
currently-employed detection systems.

Keywords: GPR, mine detection, dielectric target imaging, modal analysis, ultra-wideband radar

1. INTRODUCTION

The challenging problem of detecting small, buried, nonmetallic objects (e.g., antipersonnel land mines) by GPR
in lossy, dispersive, rough soil has been studied extensively,1—3 and fully three-dimensional numerical methods
(e.g., FDFD, FDTD,4 and moment method5,6) tend to be computationally expensive and time-consuming ways
to analyze real problems. Additionally, much of the radar literature analyzes far-field scattering of large, metallic
objects in air,7—9 although antipersonnel land mine detection is usually performed in the near field; i.e., the
radar transmitter and/or receiver are often held within a few wavelengths of the mine and/or ground surface.
Therefore, many of the established far-field techniques are not applicable for detecting buried mines. Analytic
simulations10,11 (e.g. integral equations, T-matrices) can often be difficult to implement for problems with half-
space geometries. We therefore seek a hybrid method which is both physically-based and is applicable to a wide

1



range of geometries, with special emphasis on near-field scattering: the SAMM algorithm is one such approach.

In other papers12,13 we compare SAMM with FDFD simulations of a 2D buried cylinder under a ground plane,
and find excellent agreement between the two methods, even when the ground surface is randomly rough, the
ground material is modeled by a frequency-dependent complex dielectric constant, and the mine is not perfectly
spherical.

Because SAMM is relatively fast and applies over a large frequency range, ultra-wideband frequency sweeps of
the scattered fields can be simulated, enabling time-domain analysis of 3D buried mine scattering via the IDFT.
Characteristic time peaks can be readily identified (even in fairly lossy ground media) which have a simple physical
basis; a corresponding FDTD analysis would need to finesse the problem of dispersive media.14

2. SEMI-ANALYTIC MODE MATCHING (SAMM)

The geometry of the canonical buried mine problem is given in Fig. 1, where a sphere of complex dielectric ²m
and radius R is buried d meters below the surface of the ground; the perpendicular distance from the center of
the mine to the surface is ` = R+ d. The ground has complex dielectric ²g and extends infinitely far below the
mine; the boundary between the ground and air is an infinite flat plane.

Since the mine is spherical, we describe the waves in each region by the electric and magnetic Hertz potentials15

Πe and Πm:

H =∇× (rΠe)/η; E =∇× (rΠm) (1)

which satisfy the scalar wave equation (∇2 + k2)Πe,m = 0 where ∇2 is the spherical Laplacian. The dispersion
relation k2 = ω2µ0² must be obeyed in each of the three regions (air, ground, and mine). The Hertz potentials
Πe and Πm therefore have the modal structure

Πe,m(r,k) = lim
Nmax→∞

NmaxX
n=1

lim
Mmax→n

min(n,Mmax)X
m=−min(n,Mmax)

Ce,mnm fn(kr)P
m
n (cos θ)e

imφ (2)

where the mode coefficients Ce,mnm have units of electric field and we assume a time-harmonic dependence exp(−iωt)
with angular frequency ω throughout this paper. The spherical Bessel function fn(kr) has order n and possibly
complex argument kr; Pmn (cos θ) is the associated Legendre polynomial of order n and degree m.

16,17 For the
SAMM algorithm to succeed, it is crucial to expand the spherical modes about a proper choice of coordinate
centers so that the fields converge with increasing mode integers n and m. Otherwise, the scattering fields cannot
be constructed with a finite number of modes. In the discussion which follows, we shall consider only incident
TE plane waves, as the TM case is easily found by duality.

We begin the SAMM algorithm by finding the reflected and transmitted plane waves that would exist were no
mine buried below the ground. For oblique incidence, the usual textbook formulas result.18 The plane wave
transmitted into the ground serves as the driving term for Mie scattering, which can be thought of as the first
reflection from the mine before any rescattering from the air/ground interface has occurred. The transmitted
plane wave must therefore be decomposed into spherical modes originating at the mine center with coefficients
Ce,mnm given in Ref. [13]. Because the spherical mine has a boundary which falls along the contour r = R in
spherical coordinates, it is straightforward to match boundary conditions analytically on the spherical surface
with the spherical modes, resulting in textbook Mie scattering fields.15,19 These Mie modes now drive further
rescattering from both the air/ground interface and mine, described by spherical mode expansions about both
the mine and its image in air; these rescattering modes, or r-modes, must be truncated to be useful in numerical
simulations. That is, the radial mode index n is not allowed to exceed a specified Nmax while the angular mode
index m is limited to the smaller of n and a specifiedMmax. In the case of a normally-incident plane wave (which
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Figure 1: Geometry of the buried land mine. A spherical mine with radius R and complex permittivity ²m is buried

a depth d below an infinite planar surface. Air (²0) extends infinitely far above and ground (²g) infinitely far below the

ground plane. The coordinate systems C0, C, and C
0 are centered at the plane, mine and image mine, respectively, where

the image mine is centered a distance ` = R+ d above the plane.

can be generated by a dipole infinitely far above the ground plane), we can show that Mmax = 1, meaning that
the field components have dipole-like sinφ or cosφ dependence.

In Fig. 2, we show the error caused by truncating the spherical mode expansion of a normally-incident plane wave
as a function of Nmax for three values of kgR at the highest frequency in the simulation (8 GHz). Although it
may be necessary to use 30-50 spherical modes to compose the plane wave accurately, the more computationally
difficult rescattering can often be truncated after many fewer modes (10-20). In essence, rescattering is a local
event, limited to a relatively small region of space, and constructed from modes centered near the observation
point in the vicinity of the mine. In contrast, constructing an infinite plane wave from local spherical modes
requires many more of them since the plane wave has infinite extent. Keeping large numbers of plane wave
decomposition modes and their corresponding Mie scattering modes is simple computationally, since these mode
coefficients are computed analytically from exact Mie solutions. Unlike the Mie modes, the r-modes are not
decoupled because the planar boundary is not a natural contour in spherical coordinates: a single excitation
coefficient leads to an infinite number of coupled spherical modes. Fortunately, with appropriate choices for the
scattering centers of these additional modes, only a relatively few need be kept.



Figure 2: Error (dB) in decomposing a normally-incident TE plane wave in air [²g = ²0], dry sand20 [²g = 2.55(1+i0.01)²0],
and Bosnian soil from the Alicia test site21 [²g = 8.66(1 + i0.2)²0 at 8 GHz]. The discrepancy between the transmitted

plane wave and its modal decomposition is measured on the surface of a 5-cm spherical mine. We observe that larger error

results for a given truncation level Nmax in the soil with the larger dielectric constant.

Because each mode couples only to itself, the Mie coefficients can be compute analytically to any order in n and
m. We expect that the plane wave plus the Mie scattering will account for much of the buried mine scattering.
(For ²g = ²i, the Mie fields are the exact solution.) However, re-scattering from the planar boundary will lead to
additional fields which we shall expand in spherical modes centered at both the mine (z0 = −`) and the image
of the mine (z0 = `). Just as the simple problem of an antenna over a perfectly-conducting plane is solved
by creating an image below that plane, we expect the image modes to model the infinite nature of the ground
plane. Using the image scattering center for a modal expansion will allow convergence (and hence truncation)
of the r-modes. We observe that modes will tend to converge only if all the centers from which scattered waves
appear to originate are included; selection of the appropriate scattering centers can be more an art than a science,
particularly in complex cases of irregularly shaped mines and rough surfaces. We may test the final solution in
two ways: (1) by demonstrating convergence of the field to a stable value as more modes are chosen, and (2) by
comparing field results to simulations of the identical geometry by established methods like FDFD or the moment
method. We shall find that for the problem of a sphere buried under a flat surface, the actual scattering center
plus image center is a reasonable way to implement SAMM. For a rough surface, these scattering centers will
prove insufficient and additional ones will need to be chosen.

Once the scattering modes have been identified, we must ensure that the fields arising from the Mie and r-modes
obey all boundary conditions (BCs) at the boundary surfaces. Were we satisfying BCs analytically, it would be
sufficient to match the tangential components of E and H: four BCs would be needed at each boundary for a
unique solution.15 Because we do not have a truly analytic solution (we are matching the field at discrete points),
we shall enforce continuity of both tangential components of E andH as well as the normal components of D and
B. We then use least squares analysis17 to find the mode coefficients that best fit the six BCs at each of Nsurface



sampled surface points. We require all six (non-independent) BCs to be met at each point on each relevant
surface, since minimizing the error in the four necessary BCs could lead to large errors in the remaining two, a
common issue in least squares matrix inversion. There will be problems for which expansion in finite numbers
of spherical modes will be quite difficult: targets which are not “fairly” spherical, mines with sharp protrusions,
rough surfaces with steep slopes etc. are probably not amenable to modal expansion techniques. Although sharp
metallic target corners, for which fields can approach infinity, are also poorly modelled with SAMM, the plastic
antipersonnel mines for which SAMM simulations are successful present the greater detection challenge and are
sufficient reason to utilize the new algorithm.

For an infinite planar surface, we shall not be able to allocate points in such a way as to completely cover the
boundary. Placing a large fraction of the available points too far away from the region of the plane immediately
over the mine results in inaccuracy near the mine, since the far points adjust the global behavior of unimportant
regions of space and insufficient numbers of points are left to describe the near field. Conversely, placing points
over too small a region of the plane results in modes which are highly degenerate; if the observation point is
located above the plane (rather than on it), a wider planar region must also be covered. By comparing SAMM
to standard simulations, we can get a sense of how best to allocate the surface points.

In summary, we implement SAMM by: (1) Choosing the appropriate scattering centers, about which modes will
be expanded, (2) Creating a finite series of spherical modes with the appropriate values for wave numbers k
and wave impedances η so that these modes automatically satisfy the Helmholtz equation in air, ground, and
target material, (3) Allocating points on all boundaries and finding the mode coefficients which best fit–in the
least squares sense–all boundary conditions at these points. We choose the spherical Bessel functions properly,
so that radiation conditions and singularity issues are addressed: fields that fall within the origin of a modal
coordinate system and fields which represent plane waves are specified by spherical Bessel functions of the first

kind jn(kr), while scattering fields are described by outwardly-propagating spherical Hankel functions h
(1)
n (kr),

and finite regions which do not include the origin have two linearly independent field solutions.

3. APPLYING SAMM TO THE BURIED SPHERE PROBLEM

Referring to Fig. 3, we shall express the fields within each region of the problem as:

Πe,mair =
NmX
n=0

MmX
m=−Mm

re,mnm h
(1)
n (kir)P

m
n (cos θ)e

imφ (3)

Πe,mground =
NmaxX
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MmaxX
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³
Ce,mnm jn(kgr) +A

e,m
nmh

(1)
n (kgr)

´
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imφ+
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m
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imφ +
NmX
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0)eimφ0 (4)

Πe,mmine =

NmaxX
n=0
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T e,mnm jn(kmr)P
m
n (cos θ)e

imφ+ (5)
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te,mnm jn(kmr)P
m
n (cos θ)e
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0)Pmn (cos θ

0)eimφ0 (6)

The wave prefixed by the coefficient Ce,mnm is the transmitted plane wave, while the modes multiplied by Ae,mnm and
T e,mnm are the Mie coefficients of the first scattering from the mine; these Mie modes are truncated at Nmax and
Mmax. The r-modes, truncated at Nm ≤ Nmax and Mm ≤ Mmax, have coefficients r

e,m
nm , q

e,m
nm , q

0e,m
nm , te,mnm , and

t0e,mnm . Note that there is no part of the Hertz potential in air arising from the image scattering center; the image
fields are valid only below the ground plane. In the case of a normal plane wave excitation, Mm = Mmax = 1
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Figure 3: Schematic of plane waves, Mie modes, and spherical scattering modes (r-modes) in the SAMM algorithm. The

incident plane wave (I) is reflected (R) and transmitted (T). This latter wave is decomposed into spherical modes, which

lead to Mie scattering modes (Ae,m, T e,m). These Mie modes reflect and refract at the ground plane, leading to r-modes

(re,m, qe,m, q0e,m, te.m, and t0e.m) valid in their respective domains as shown. The unprimed spherical modes originate
at the center of the mine; the primed spherical modes originate at the image mine and the mode indices nm have been

suppressed for clarity.

so each of the ten r-mode families will require 2Nn coefficients, leading to 20Nn unknown mode coefficients.
For oblique incidence (or for rough surface scattering of any type of plane wave), |m| is not limited to one and
approximately 20NmMm coefficients will need to be fitted. Clearly, SAMM is tractable only if Nm and Mm are
limited to relatively small values. Further analysis in this paper is limited to the case of normally-incident plane
waves.

With the mode coefficients determined by inverting an overconstrained matrix equation having approximately
6Nsurface equations and 20Nm unknowns so as to minimize the least squares error, the electric and magnetic fields
can be reconstructed. Fig. 4 shows the transverse field component Ex plotted in both the y-z plane (at x0 = 0),
and x-y plane (at z0 = 0). There is quite a striking difference between filling the ground with air, dry sand and
Bosnian soil, with air-filled ground returning the strongest signal of the three. Determining mine signatures using
air as the surrounding medium is clearly doomed to failure. Calculation of the r-modes for the single frequency
in Fig. 4 took about 6 minutes in Matlab 5.3 on a Pentium desktop computer. The linear matrix has 4818 x
240 elements and is densely filled. A spherical Bessel function and a Legendre polynomial must be computed for
each element, which is the major computational burden in the simulation. Although Nm = 12 in this simulation,
Nmax = 25 so additional special functions must be calculated for the Mie scattering which forms the right hand
side of the overconstrained matrix equation. Using a compiled language would greatly increase computational
speed.



Figure 4: Magnitude of scattered electric field |Ex| at (a)—(c) x0 = 0 (y-z slice) and (d)—(f) z0 = 0 (x-y slice). A 3 GHz
TE plane wave is normally incident on a half-space with ground having the electrical characteristics of (a),(d) air [²g = ²0]
(b),(e) dry sand20 [²g = 2.55(1+ i0.01)²0], and (c),(f) Bosnian soil from the test site Alicia21 [²g = 8.82(1+ i0.13)²0 at
3 GHz]. In all cases, the mine is a 5-cm sphere filled with TNT20 [²m = 2.9(1+ i.001)²0] buried 5 cm below the ground

surface. The mine and plane, where appropriate, are outlined in white on each plot. Because the gray scale is nonlinear

to enable small amplitude features to be seen, note that the maximum field magnitudes are: (a) 4.5, (b) 0.80, (c) 0.80, (d)

0.33, (e) 0.018, and (f) 0.036 (normalized to the plane wave transmission coefficient).

4. MINE DETECTION USING SAMM

The electric field is plotted in Fig. 4 at a single frequency, but one of the powerful features of the SAMM algorithm
is that it applies over a very wide frequency band. In Fig. 5, the electric field component Ex is plotted as a
function of frequency at the observation point x0 = y0 = z0 = 0, which is directly over the mine. Once again, the
mine is a 5-cm radius TNT sphere buried 5 cm below the planar surface, the ground is either air, dry sand, or
Bosnian soil, the excitation is a normally-incident TE plane wave, and the frequency sweep runs between 0.5 and
8 GHz in increments of 0.025 GHz. All components of electric and magnetic fields are matched at the planar and
mine boundary surfaces at 401 and 258 points, respectively, and the planar data points are placed within a circle
of radius 20 cm centered at the observation point. Because the plane wave is normally incident, the angular modes
have only exp(±iφ) dependence, so Mmax = Mm = 1. The radial mode cutoffs are Nmax = 30 (air), Nmax = 40
(sand), Nmax = 50 (Bosnian soil) and Nm = 16. The resulting frequency sweeps are windowed to eliminate the
worst errors, caused by an insufficiently large area over which the planar points are placed at low frequencies,
and too few r-modes (Nm too small) at high frequencies; the value of Nm is chosen to be a compromise between
frequency range and computational speed. In these simulations, the plane surface points are placed along the
intersections of evenly-spaced radial (ρ) and angular (φ) contours, the sphere surface points are evenly-spaced in
the θ and φ directions, and all points are given equal weighting. The optimal locations and weightings for the
surface points which minimize field error are still unknown.



Figure 5: Frequency and time domain IDFT of Ex calculated at the observation point x0 = y0 = z0 = 0 for the case
where the ground has the electrical characteristics of air (true Mie scattering). The upper left plot is the magnitude and

phase (dashed line) of the scattered field Ex over the frequency range 0.5 to 8 GHz taken at intervals of 0.025 GHz. The
plot immediately below is the r-mode scattering which is essentially zero because with no discontinuity between εi and εg,
exact Mie scattering results. The bottom left plot shows the least squares error (lower curve) in the SAMM simulation

and also the maximum error (upper curve) of any one point along the planar or sphere surface. The IDFT of the total

scattered field (Mie plus r-mode) is given on the right. Both characteristic times T0 and T1 (T0 < T1) are clearly observed,
as well as additional characteristic times separated by ∆t = 4R/cm+2R/cg corresponding to multiple reflections within
the sphere. Perfect matching of the ground to air is responsible for the additional structure in the IDFT, which tends to

disappear in imperfectly-matched, lossy soils (see next two figures).

In each of Figs. 5 to 7, the upper left plot gives the magnitude and phase of the electric field Ex as a function
of frequency for the entire scattered field; the middle left plot gives just the r-mode scattering. The lower left
plot shows the least square error (LSE) and maximum error over the surface points as a function of frequency; in
general, the LSE is about two orders of magnitude less than the maximum error. The right plot is the IDFT of
the entire scattered field. Overlaid on this IDFT are the two characteristic times T0 and T1, given by

T0 = 2d/cg (7)

T1 = T0 + 4R/cm

In all three figures, these two characteristic times are a dramatic feature.

The T0 and T1 values correspond to the round trip time of a ray from a point directly above the mine traveling
through ground and mine with velocities cg and cm, respectively. Because the mine has the well-measured
dielectric constant of TNT and a characteristic size and shape (assumed here to be a sphere of radius R), the
difference T1 − T0 = 4R/cm is specific to the mine target. Rocks, which have different dielectric constants and
sizes, will give different pairs of time peaks. Once these time peaks are identified, the vertical position of the
mine can be determined by estimating the ground dielectric constant (and thus the resulting ground propagation



Figure 6: Scattering of a TNT sphere buried in dry sand, with all other parameters identical to those of the previous

figure. The frequency is plotted from 1 to 8 GHz in increments of 0.025 GHz and the LSE is significantly worse than in the

case of air because the r-modes play a dominant role in the scattering. The IDFT of the total scattering signal possesses

the characteristic times T0 and T1 as well as an additional time constant corresponding to T1+2d/cg. Although the sand
is not very lossy, it is significantly mismatched to the air. No characteristic times greater than 2 ns are observed, unlike

the scattering from the mine surrounded by air shown in the previous figure.

velocity), and multiplying by T0/2. Since modal expansions of the target are relatively insensitive to small
variations of mine shape and air/ground interface compared with burial depth and dielectric characteristics, the
SAMM method efficiently identifies the salient features needed for mine detection.

5. CONCLUSIONS

A new algorithm is developed which finds all field components in the region of interest near a buried dielectric
land mine by fitting spherical modes to all interfaces. This SAMM algorithm quickly and efficiently computes
the frequency domain fields where they would be measured (on or near the ground surface in the vicinity of the
suspected target) using the important physical aspects of the detection problem: size, aspect ratio, orientation,
burial depth, and dielectric characteristics of the mine and surrounding soil.

Although a finely-sampled ultra-wideband frequency sweep requires too much computation to be performed in real
time on currently available computers, the knowledge gained from studying several typical cases elucidates some
of the important feature of wideband mine detection. Inverse Fourier transforming the scattered field frequency
response gives a time signature with two characteristic peaks corresponding to burial depth and target size.
These particular features are robust and uniquely characterize the target (though not necessarily the surrounding
soil) with a single monostatic measurement. With multiple receivers and multiply-incident plane waves, more



Figure 7: Scattering from a spherical TNT mine buried in Bosnian soil for 1 to 5 GHz in increments of 0.025 GHz, with

other parameters equivalent to those of the previous two figures. In this case, the r-modes dominate because of the extreme

mismatch between the soil, air, and mine. Errors at low frequency could be improved by making the area over which points

are sampled on the plane larger, and errors at high frequency would be improved by using more modes. The IDFT of the

total signal has only the two characteristic times T0 and T1; as in the case of sand, soil mismatch dampens the longer time
constants.

independent information would be available to improve both detection and false alarm rates.

In addition, as long as the specular ground reflection is eliminated, these characteristic peaks become apparent
regardless of the surrounding soil type, depth of burial, or even relative contrast between mine and ground. The
peaks for a TNT mine can be clearly identified even when buried in soil with approximately the same dielectric
constant, e.g., sand. The SAMM method is readily extended to oblique plane wave incidence, nonspherical
targets, multiple targets and rough ground surfaces by specifying additional modal scattering centers. Work is
also progressing on more sophisticated processing of the wideband frequency response and its IDFT beyond the
simple identification of the time difference between characteristics peaks.
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Abstract– A 2D finite difference frequency domain
(FDFD) algorithm is used to verify new semi-analytic mode
matching (SAMM) simulations of scattered fields result-
ing from plane waves incident on a random rough dielec-
tric half-space containing a buried dielectric target. The
SAMM algorithm uses moderately low-order modal su-
perpositions of cylindrical waves, each of which satisfies
the 2D-Helmholtz equation in its appropriate region (air,
ground, or mine) and then matches all nonzero electric
and magnetic field components at each interface by least
squares fitting.
For smooth ground, coordinate scattering centers

(CSCs) are chosen at the mine center and at its image above
the plane to model scattering. For random rough ground,
additional CSCs are located within the rough layer. Excel-
lent agreement between 2D-FDFD and the two dimensional
version of SAMM is observed, with 2D-SAMM being at
least an order of magnitude faster; 3D-SAMM is estimated
to be four orders of magnitude faster than 3D-FDFD, with
drastically reduced memory requirements.

Keywords–GPR, mine detection, dielectric target imag-
ing, modal analysis.

I. INTRODUCTION

ANEW 3D semi-analytic mode matching (SAMM) al-
gorithm has been described previously [1], which is

particularly adept at finding the scattered near fields from
buried dielectric objects (e.g. antipersonnel land mines).
Here, we validate the 2D version of SAMM for scatter-
ing from a 2D buried cylinder by comparing it to a 2D
finite difference frequency domain (FDFD) simulation.
We also extend SAMM to cases where the ground has
a random rough surface, a topic of considerable interest
[2,3]. We consider only normally-incident TM plane waves
scattered from buried mines with circular cross-section,
though oblique incidence and modestly irregular mine
shapes are easily handled by SAMM. Three-dimensional
rough surface scattering is more computationally difficult
both for SAMM and FDFD methods, so we focus here
on the simpler 2D geometry from which useful physical
insights can also be extracted.

II. SEMI-ANALYTIC MODE MATCHING

For 2D cylindrical geometry having no variation along
z, the TM electric and magnetic fields (Hz = 0) may
be described by the vector Hertz potential Π = ẑΠz(ρ,φ)
obeying the scalar wave equation (∇2+k2)Πz = 0, where

This work was supported by The Army Research Office Multidisci-
plinary University Research Initiative Grant No. DAAG55-97-0013.

∇2 is the 2D cylindrical Laplacian and k is the wave num-
ber in the medium of interest [4]. A modal expansion of
Πz is given by:

Πz(ρ,φ; k) = 1/k
2 lim
Nmax→∞

NmaxX
n=−Nmax

CnFn(kρ) exp(−inφ)

(1)
where Cn is the cylindrical mode coefficient (units of elec-
tric field) and Fn(kr) is a Bessel function of order n. With
judicious use of the Bessel recurrence relations, we can find
the Cartesian field components, each of which must also
satisfy the scalar wave equation, in terms of the cylindrical
modes of (1):

Ez = lim
Nmax→∞

NmaxX
n=−Nmax

CnFn(kρ)e
−inφ (2)

Hx = lim
Nmax→∞

NmaxX
n=−Nmax

(Cn−1+Cn+1)
2η Fn(kρ)e

−inφ(3)

Hy = lim
Nmax→∞

NmaxX
n=−Nmax

(Cn−1−Cn+1)
2iη Fn(kρ)e

−inφ(4)

where η is the wave impedance. To be useful numerically,
(2)—(4) must be truncated at n = Nmax, a finite (small)
integer. For an error of −290 dB (about machine accu-
racy) at 3 GHz, plane wave decomposition in dry sand [5]
(²g = 2.55(1 + i0.01)²0) and Bosnian soil from the test
site Alicia [6] (²g = 8.82(1 + i0.13)²0) requires 24 and 32
modes, respectively.
Equations (2)—(4) are applied to each region (air,

ground, mine) where we expand the modes with respect
to convenient coordinate axes. We locate these coordi-
nate scattering centers (CSCs) so modal expansions will
converge for small values of n; in general, we place CSCs
everywhere waves appear to originate.
Fig. 1 shows the geometry of a cylindrical mine with

circular cross-section of radius R buried a depth d be-
low the nominal surface of a random rough ground plane.
Because there is no variation along z, the rough surface
contour is actually a series of randomly-spaced, rounded
grooves extending infinitely far in the ±z direction. The
figure also indicates schematically how modes are de-
fined in each region. For geometries which include an
infinitely-extended ground plane, CSCs are chosen at both
the mine and its image above the plane, in analogy with
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Fig. 1. A dielectric cylinder with radius R is buried dmeters below a
rough ground surface. This particular randomly-generated sur-
face has a ground-filled bump on the left and an air-filled pit on
the right. Modes are given schematically in each of the regions
where they apply, and are designated “J” or “H” depending on
which Bessel function is necessary. Modes with no sub- or su-
perscripts originate at the mine (C-coordinate system), while
the primed modes originate at the image mine (origin at C0).
Modes with 1 or 2 as subscripts originate at the CSCs C1 and
C2 (there may be more surface CSCs if the rough surface has
a small correlation length, and none if the ground is smooth).
The incident plane wave (I) is reflected (R) and transmitted
(T ); this latter wave is decomposed into cylindrical modes (C),
which lead to Mie scattering modes (A, T ) [see text]. These Mie
modes reflect and refract at the ground plane, leading to rescat-
tering or r-modes, valid in their respective domains as shown.
For the simpler case of a flat planar boundary, we eliminate the
scattering centers C1 and C2, and only the r-modes {r, q, q0, t,
t0} remain.

image techniques routinely used for analyzing antennas
over perfectly-conducting ground planes. For a smooth
air/ground interface, this single image is sufficient to de-
scribe the scattering. For a rough surface, the bumps and
depressions on the surface will each act as scattering cen-
ters, particularly in the case where the size of the defects
is comparable to the size of the mine. In this case, we add
CSCs at each place on the plane surface where rescatter-
ing is expected with the following procedure: (1) create a
reflection of the rough surface about the nominal smooth
ground surface making linked “bubbles” containing either
air or ground, (2) put CSCs along this nominal plane in
the center of each defect, and (3) choose modes within
and without the “bubbles” which behave appropriately;
i.e., use Bessel functions of the first kind Jn(kρ) for re-
gions which include the CSC or to expand a plane wave,

and use outwardly-propagating Hankel functions H
(1)
n (kρ)

for regions which do not include the CSC and which must
obey radiation conditions far from the scatterer.

Analytic (modal) Mie solutions for a dielectric mine of
circular cross-section buried in infinite ground [4] describe
unperturbed scattering with the coefficients An and Tn
shown in Fig. 1. These Mie modes are then perturbed by
the actual half-space ground with its random rough sur-
face, leading to rescattering (r-modes) which come from
all the multiple interactions between the mine and plane.
We truncate r-modes originating at the mine, its image,
and the rough surface at Nm, Nm, and Ns, respectively.
The coefficients of these r-modes are found by locating
Nsurface points along the air/ground and mine/ground in-
terfaces and reconstructing Ez, Hx, and Hy at each point
using (2)—(4). The mode coefficients that best fit the three
boundary conditions (one for each nonzero field compo-
nent) at each of the Nsurface sampled surface points are
found using least squares techniques. We may test the
final solution in two ways: (1) by demonstrating conver-
gence of the nonzero fields to stable values as more modes
are chosen, and (2) by comparing fields to those generated
by established methods like FDFD or the moment method
for identical geometries.

III. RESULTS AND CONCLUSIONS

In all simulations, a 3 GHz TM plane wave was normally
incident on a 5-cm radius TNT mine having circular cross-
section and buried 5 cm below the nominal ground surface
of dry sand. For the SAMM algorithm, Nmax = 25; the
35-cm planar surface and mine surface were both sampled
with 600 points. FDFD simulations had a grid spacing
of 1/12 cm corresponding to 441× 420 grid points. For a
smooth surface, the SAMM algorithm performs exception-
ally well, exceeding the accuracy of the FDFD simulation
after Nm = 6, as shown in column 3 of Table I. Column
4 compares the SAMM simulations to the most accurate
case shown in the table: SAMM(Nmax = 12). SAMM(6) is
about 16 times more accurate than the FDFD simulation,
which has about 0.126% average error (attributable to dis-
cretization). The SAMM simulation took 3 [SAMM(1)]
to 6 [SAMM(12)] min. on a Pentium-based personal com-
puter, while the FDFD simulation took 45 min., almost an
order of magnitude longer, and required the huge memory
allocation of 0.93 million nonzero sparse matrix elements.
By contrast, SAMM(6) required singular value decompo-
sition of a 3600× 65 element dense matrix.
The rough surface used for the SAMM and FDFD sim-

ulations is given in Fig. 2, and the magnitude of Ez is
plotted in Fig. 3 for both the SAMM(Nm = 8, Ns = 4)
and FDFD simulations. The average error is 1.66% be-
tween methods, lies primarily near the rough surface, and
is mainly attrributable to SAMM. Table II shows how the
average error varies with the mine/image modes number
Nm and rough surface mode number Ns. As desired,
excellent results are obtained by truncating r-modes at
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TABLE I

Comparison of SAMM and FDFD for smooth ground surface

The average least squares error (LSE) on the smooth plane is com-
puted for SAMM simulations as a function of r-mode truncation
integer Nm. In addition, the SAMM simulations are compared both
with a finely-gridded FDFD simulation and with the best SAMM
simulation in the table, SAMM(12).

Smooth Surface, Average Error
LSE at SAMM(Nm) SAMM(Nm)

Nm plane vs. FDFD vs. SAMM(12)

1 2.05e-03 0.00554 5.21e-03

2 1.49e-03 0.00379 3.38e-03

4 4.07e-04 0.00131 4.90e-04

6 7.78e-05 0.00127 7.62e-05

8 1.33e-05 0.00126 1.87e-05

10 2.16e-06 0.00126 7.99e-06

12 3.91e-07 0.00126 –

Fig. 2. Geometry of the mine and random rough surface. The rough
surface is generated by creating a coarse grid with spacing equal
to 7 cm, the correlation length. Each grid point is randomly
assigned a height from a normal distribution having a 1 cm rms
surface height. Surface points are found by spline interpolation
to the coarse surface grid.

many fewer than the Nmax = 25 modes required for ac-
curate plane wave expansion. Increasing Nm appears to
affect the error more sharply than increasing Ns, lead-
ing to the conclusion that fewer scattering modes need be
kept from CSCs placed at the rough surface. Since these
are the modes that add combinatorially, we expect that
3D-SAMM algorithms will prove quite tractable.

The 3D-SAMM would requires about 6 times as many
modes and 30 times as many surface points, corresponding
to 200 times the memory and 1000 times the CPU time of

Fig. 3. |Ez | plotted in the x-y plane for both SAMM(8,4) and
FDFD using the rough surface of Fig. 2. The error is less than
4% and averages 1.66%.

TABLE II

Comparison of SAMM and FDFD for random rough surface

SAMM simulations having Nm modes for the CSCs centered at both
the mine and image mine and Ns modes for each CSC centered
within the rough surface are compared with a finely-gridded FDFD
simulation.

Rough Surface, Average Error
Nm\Ns 0 1 2 4 8

1 0.192 0.121 0.0953 0.0830 0.0811

2 0.147 0.0850 0.0797 0.0768 0.0764

4 0.0672 0.0257 0.0232 0.0222 0.0224

8 0.0234 0.0171 0.0169 0.0166 0.0169

2D-SAMM; by contrast, 3D-FDFD needs more than 1000
times the storage and 106 times the CPU requirements of
2D-FDFD. Although SAMM is more difficult to program
than FDFD and cannot currently model fine-scale rough-
ness, the favorable scaling from 2D to 3D in the SAMM
algorithm makes this new method worth pursuing.
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Abstract: 
 
The problem of scattered and transmitted electromagnetic wave distortion by random rough ground 
surfaces can be reduced by using a lightweight dielectric matching layer.  For mine detection 
applications, it is essential for this layer to be lightweight, low loss, readily conformable, and adaptable 
to different soil types.   
 
Arrays of metal-coated plastic spheres act as lossless artificial dielectrics with impedance determined 
by the volume packing fraction.  By controlling the thickness of insulator surrounding each sphere, a 
close-packed array with the dielectric properties of soil can be created inside a compliant rolling bag 
that will conform to the rough surface of the ground.  Since this artificial dielectric is matched to the 
soil, the ground surface interface is “softened”, without an abrupt transition from soil to air.  Signals 
transmitted and received by GPR antennas immersed in the artificial dielectric within the bag will not 
be corrupted by ground surface clutter.   Alternatively, an artificial dielectric layer on the ground with 
a planar air interface could be used to ensure that the surface reflection is a constant, well-calibrated 
signal. 
 
Computational models indicate complete removal of the ground clutter, even with occasional gaps 
between the artificial dielectric and the ground.  Experimental studies with swept-frequency 
measurements and impulse GPR indicate that using this dielectric layer matching to a rough loamy soil 
ground surface is results in signals that are practically indistinguishable from those of an equivalent 
layer of the same type of soil. 
 
 
Keywords:  mine detection, artificial dielectrics, ground-penetrating radar, coupling, impedance 
matching 



Introduction 
 

 
A major challenge of radar detection of near-surface buried objects—such as land mines—is to 
distinguish the signals scattered from targets as opposed to the ground surface.  In the particular case of 
nonmetallic mines, the contrast between the mine and the surrounding soil is often lower than between 
the soil and the air above it; and the clutter signal from a rough interface is often much stronger than 
the target signal from the mine.  For more deeply buried targets, it is possible to reduce this clutter by 
time gating a short duration radar signal.  However for targets buried at depths comparable to the 
height variation of the rough surface, this gating is not feasible.  While it is possible to reduce the 
ground scattering clutter by attempting to characterize it using statistical methods [1-3], or illuminate 
the ground with an inclined plane wave and measure the backscattered signal [4,5], a more direct way 
to is to directly eliminate the surface roughness with an artificial matching layer.  
 
 
 
 
 
 

Artificial Matching Layer 
 
 
The purpose of an artificial layer is to fill the voids and lessen the effects of bumps in the ground 
surface with a medium that electromagnetically resembles the soil.  To reduce clutter, it is more 
important to “soften” and “planarize” the interface than to act as an impedance transformer between 
the soil and the air.  If the effective interface at the top of the layer is planar, and its impedance is 
known, the reflection of waves from the interface are easy to account for, and their contribution to 
clutter can be effectively subtracted.  For example, this reflection from the layer top could be measured 
as part of the radar calibration procedure, or calculated numerically.  Alternatively, the entire antenna 
could be immersed in a compliant bag filled with the artificial dielectric material, so that there would 
be no air interface. 
 
Figure 1 schematically shows how this configuration might look, with a thin, but tough plastic bag 
filled with a lightweight material that simulates soil.  It is obviously important to ensure that the 
material be light enough to avoid triggering mines, and that the material be loose enough to 
reconfigure itself as the bag rolls along the ground.   
 
Conducting spheres that are spatially separated have been used as artificial dielectrics (AD) for many 
years [6].  However, solid metal balls are too heavy for this use, and separating them in a fixed matrix 
is clearly infeasible.  Instead metal-coated plastic balls could be used.  These lightweight “beads” are 
available as decorative craft items.  An additional benefit is that these beads are lacquered or plastic 
coated with an insulating layer that serves to isolate them for one another. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1:  Geometry of the artificial dielectric matching layer, used to reduce the clutter effects of 
random rough ground for GPR mine detection. 
 
 
 
 

Simulation of Imperfect Void Filling 
 
 
One concern with using an array of discrete objects in a bag as an artificial layer is the possibility of 
occasional gaps between the soil and the matching medium.  The extent of this imperfect filling can be 
predicted numerically.  
 
Using the FDTD method for dispersive soil [7], we computed the distorting effects of occasional air 
voids (depicted in Figure 2).  A modulated TM Gaussian pulse, originating at a point 35 cm above the 
rough surface of Puerto Rican clay loam with a metallic target buried 10 cm below the nominal 
surface, was modeled with and without the AD. 
 
Figure 3 shows the total field at the same time instances for the three comparative cases.  At left, the 
moderately rough ground surface, with ±5 cm height variation causes enough  
 
wave scattering to completely obscure the buried target.  The incident cylindrical wave and the 
transmitted wave are visible, as is the lack of field within the mine.  Even for this strong scatterer, the 
ground clutter dominates.  The second and third plots show the reduction in clutter when an AD is 
used.  With no air voids (center), the incident field exists solely in the AD and soil.  The interface is,  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  Modeled geometry with air, dispersive clay soil, and occasional air voids 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 a)         b)            c) 

 
 

 
Figure 3:  Comparison of modeled field a) without AD matching layer, b) with matching layer 
perfectly conforming to ground surface, and c) with realistic layer with air gaps 



 
for all practical purposes, undetectable.  The wave scattered by the target is clearly visible as the 
second smaller radius circle centered at the target.  Compared to the first case, it is quite 
straightforward to identify which signal originates at the mine.  In the third plot, the gaps of Figure 2 
result in some clutter form the imperfectly matched interface.  However, these scattered fields are 
small compared to those of the mine target. 

 
 
 
 

 
Artificial Dielectric Impedance Calculation 

 
 
The effective impendence of an array of conducting spheres is dependent on the geometry of the array, 
and the proximity of the spheres.  The sphere separation can be computed in terms of the volume 
packing fraction of spheres in space.  For simple cubic (sc) packing, with a sphere of radius r on each 
corner of a unit cube, the volume occupied by the eight sphere octants that lie within the cube is 
4/3πr^3, which is also the packing fraction.  The maximum packing fraction occurs when r = ½, with a 
value of about 0.52.  For a face centered cubic (fcc) packing, in which there are spheres centered on the 
cube corners and the centers of the cube faces, the volume (and hence packing fraction) within the six 
hemispheres and eight octants that lie within the cube is 16/3πr^3.  The maximum sphere radius in this 
case is one-quarter of a face diagonal, or √2/4, leading to a maximum packing fraction of 0.74. 
 
The calculated impedance of an array of conducting spheres, as a function of packing fraction for sc 
and fcc can be approximated by the formulas [6]: 
 
 
 
 
 
where 
 
 
 
 
 
 
 
 
and 
 
 
 
 
 
 
 

=1 + 3p/A(p)  
ε/ε0   

µ/µ0 
}

For sc: A(p) = -1/R1 - p + 1.3047R3p 10/3 + 0.0723R5p 14/3  

For fcc: A(p) = -1/R1 - p + 0.0753R3p 10/3 + 0.2420R5p 14/3       

- 0.5289R3
2p 17/3 + 0.1526R7p6 

+ 0.0558R3
2p 17/3 + 0.0231R7p6 

{ Rn =    -1    for effective dielectric constant 
n/(1+n) for effective magnetic permeability 

 



 
  
 
  
 
 
 
 

 
 
 
 
 

Figure 4:  Dependence of effective dielectric constant and magnetic permeability of AD in terms of 
volume packing fraction p. 
 
These formulas are plotted in Figure 4, showing that the sc packing has slightly greater effective 
dielectric constant and lower permeability than that of the fcc packing, but that a higher packing 
fraction is possible with fcc.  In practice, we would expect that random distributions of spheres would 
fall between the two sets of curves.  For a dense random packing of thinly insulated spherical beads, 
we might expect a relative impedance as high as √(0.25/10), or about 0.16 times the impedance of free 
space.  This matches a dielectric constant of 39 in a non-magnetic (µ = µ0) medium, much greater than 
most soils. 
 

As most mine detection systems operate over several frequencies at once, it is important that the AD 
layer match over a wide frequency band.  Figure 5 shows the reflection coefficient as a function of         

 
Figure 5:  Computed reflection coefficient for AD/soil interface with normal incidence for four 
discrete frequencies, as a function of packing fraction p.  The soil is Puerto Rican clay loam with 10% 
moisture and 1.6 g/cc density. 



packing fraction for various frequencies for a planar interface between AD and frequency-dependent 
lossy soil.  As long as the wavelength is large compared to the diameter of spherical conductors in the 
AD array, its bulk dielectric constant is independent of frequency.  In addition, the AD is lossless, so 
the reflection coefficient increases as the loss tangent increases.  Figure 5 indicates that even for fairly 
dispersive soil, a good wide-band impedance match is possible. 
 
Considering a typical range of soil dielectric constants from 2.5 (dry sand) to 20 (20% moist clay 
loam), it is feasible to match the impedance using one of as few as three or 4 well-chosen ADs.  
Dividing the range into three dielectric regions centered at constants 3.33, 7.3, and 16.0 would 
introduce a maximum normally incident reflection coefficient of 0.098.   For the four-region division 
with dielectric constants 2.98, 5.22, 4.13, and 16.0, the maximum reflection coefficient is 0.070.  The 
range of dielectric constants covered in each region is shown in Figure 6.  The boundaries of each of 
these regions are determined by equating the ratio of the central value to the boundary value (or its 
inverse). 
 
 

 
 
 

Figure 6:  Segmenting the typical range of soil dielectric constants into three or four regions with the 
same maximum reflection coefficient:  0.098 (top), and 0.070 (bottom). 

 
 
 

 
Experimental Realization of Artificial Dielectric 

 
Using just freely flowing insulated conducting craft beads for a matching layer would produce the 
maximum effective AD dielectric constant.  To match to a particular soil requires increasing the 
spacing between the beads.  Alternatively, it has been found that by introducing small air-filled plastic 
balls to the beads reduces the volume packing fraction, albeit non-uniformly.  As long as the balls are 
fairly uniformly distributed amongst the beads, and their diameters are small compared to the smallest 



wavelength, they can be viewed as an array of lower dielectric constant spheres in a higher dielectric 
constant background:  sort of a reverse artificial dielectric.  The net effect is to reduce the overall bulk 
dielectric constant. 
 
Several sizes of polypropylene balls were used to adjust the packing fraction and effective dielectric 
constant:   20, 10, and 6 mm diameter.  Each AD mixture of beads and balls was tested in a cylindrical 
cavity by comparing its S-parameters to those of soil.  In order to prevent direct interaction with the 
coaxial probe inserted into the cavity, the bottom portion was filled with paraffin.  Although this 
complicates the direct wideband measurement of the dielectric constant of the material under test, it 
does provide for direct impedance comparisons across the entire frequency band of interest. 
 
Relatively good performance from 700 MHz to 1.7 GHz was obtained using several mixture 
combinations.   The S11 response is presented in Figure 7 for various mixtures compared to 15% moist 
clay loam.  Also shown is the response for dry sand, which is quite different.   
 
The S21 measurements for a transmitter/receiver probe pair inserted in a soil-filled tank with the AD or 
soil filling an intervening region gave similar well-matched results. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7:  S11 measurements of a cylindrical cavity partially filled with:  soil (dark solid line), AD 
with 20 mm balls (o), 10mm balls (+), or  sand (--). 



Impulse Radar Experiments using AD Matching Layer 
 
 
With a good impedance match over the frequency range of an impulse radar, the final step is to 
compare the time domain signals scattered from smooth, roughened, and AD matched rough soil.  For 
this experiment, the impulse radar used was the Geo-Centers, Inc. EFGPR with TEMR antennas [8].   
Two antennas—one acting as the transmitter, and the other the receiver—were positioned next to one 
another roughly 2 meters away from the surface of the tank of sifted clay loam soil.  A 900 ps single 
pulse was fed to the transmitter, and the waves scattered from the soil surface was measured by the 
receiver for various cases. 
 
First, the soil surface was raked as flat as possible, providing a planar half-space interface.  The 
scattered field was measured.  Next, soil was removed down to about 3 inches in several spots 
(corresponding to a standard deviation of about 1 in. relative to the mean level) and set aside.  The 
rough surface signal was measured.  The depressions were next filled with the AD mixture of beads 
and 20 mm polypropylene balls in the volume ratio of 1.73 to 1, and the top surface smoothed.  A 
photograph of this configuration appears in Figure 8.  The field scattered from this smoothed surface 
was measured, and the AD was twice removed, replaced, and the signal remeasured.  Finally, the AD 
was completely removed (facilitated by using the plastic sheet seen in Figure 8), and the original 
removed soil was replaced and smoothed, and the scattered signal measured.   
 

 
 

Figure 8:  Soil test tank, with rough surface “smoothed with AD composed of 6mm insulated 
conducting beads and 20 mm balls, in a volume ratio of 1.73 to 1. 
 



The measured results for the six test cases are presented in Figure 9.   Five of the six traces appear to 
have almost the same behavior, with the greatest variation at late times, 3.5 ns after the first arrival.  
The sixth trace, corresponding to the rough soil surface without AD is significantly different, with as 
much as 0.3 ns delay relative to the flat soil surface.  Although this delay may not seem like much, it 
can cause significant error in the processing of the radar signal.  For example, at time 7.98E-8, the 
rough surface clutter is negative, while the flat surface signal is positive with almost the same 
magnitude.  Any clutter reduction using the wrong assumption of the ground surface would introduce 
100% more error at this time point!   
 
It is interesting to note that the time shift between the rough and smooth ground signals is not constant, 
indicating that there are multiple scattering effects occurring with this rough ground surface.  This is 
why attempts at identifying and subtracting the ground reflected signal as a shifted copy of the flat 
ground signal does not always reduce ground clutter [2].   
 
As is evident from Figure 9, the various AD placements repeatably form a well-matched layer to the 
rough surface soil.  Although the response from the soil with the AD layer is not exactly the same as 
the original flat surface soil, its variations are comparable to the case of the original soil being replaced 
and resmoothed. 
 

           
 

 
 

Figure 9:  Time domain measurements of soil with flat surface, rough surface, and with added AD 
composed of beads and 20 mm balls in volume ratio 1.73 to 1. 
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Conclusions 
 
 
An artificial dielectric, which maintains the approximate impedance characteristics of soil over a wide 
frequency range, has been developed and experimentally tested.  Being flexible, lightweight, and with 
adjustable dielectric constant, this AD composed of insulated, metallized craft beads can be used in 
mine detection applications where it is important to for this layer to conform to ground surface 
variations while exerting minimal pressure on the ground.   
 
The AD can be used as a rough ground surface smoothing layer with a planar top surface, or as a 
medium to fill the entire space between the antenna and the ground.  As a smoothing layer, the AD can 
effectively replace the random interface roughness that corrupts the GPR signal with hard to 
characterize clutter with an unchanging planar interface the effects of which can be easily identified 
and eliminated.  Computational modeling has shown that even with imperfect filling of rough surfaces, 
the clutter reduction is significant. 
 
The effective impedance of the artificial dielectric is easily controlled by adjusting the volume ratio of 
beads to non-conducting polypropylene balls.  Only three or four types of bead/ball AD mixtures are 
needed to match the entire range of most soil dielectric constants with reflection coefficients less than 
10%.   
 
Experiments with fielded impulse GPRs indicate that the AD layer matches to rough soil surfaces 
about as well as the same soil does. 
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• No single type of “target”

- 647 types of mines (i.e. size, shape, material - plastic)

• Ground is different from country to country

- ground isn’t flat:

rough soil surface may also randomly scatter much of the transmitted
sensing signal and be a significant source of detection noise ----> this is
a MAJOR problem

- soil type is never known (inhomogeneous soil, moisture content, etc.)

- it may also have buried rocks, moisture pockets, tree roots, and bits of
scrap metal especially if a former battlefield

• Burial depth of mine in ground varies

- exposed

- just under surface

- shallow burial

- deep burial

Land Mine Detection Problems

} Radar not effective
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• Finding anti-personnel land mines:

- small “targets”: ~ 10 cm diameter

- non-metallic: ~ .5 gram metal firing pin

- not deeply buried < 15 cm deep

• Ground-Penetrating Radar (GPR) ----> one approach for shallow
penetration

- distinguish mine based on the shape of anomaly in soil

- time domain or frequency domain

- inexpensive to build

- very susceptible to natural clutter

Humanitarian Demining Mission

For GPR applications, the “target” is characterized not only by the in-
herent properties of the buried object and soil but also by the effects of
the air-ground interface
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Finite Difference Frequency Domain Technique
FDFD

• Computational tool for simulating the scattered wave distri-
bution

- A direct solution of Maxwell’s curl equations in the frequency
domain

• Permits accurate representation at each frequency

- random rough surface (ground roughness)

- various target shapes

• Appropriate for near-field scattering
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• Background

• Frequency Domain Results

• Time Domain Results

• Summary

Outline
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2-D FDFD Land Mine Simulation Cases

• TNT Mine: Er = 2.9(1+0.001i)

- Circular (5 cm radius)

- Elliptical (5 cm by 3 cm)

- Rectangular (10 cm by 4 cm)

• Ground Surface

- Smooth

- Rough (avg. roughness = 1 cm, corr. length = 4 cm)

• Ground Type

- Dry Sand: Er = 2.55(1+0.01i) at .5 GHz

- Bosnian Soil: Er = 8.9(1+0.13i) at .5 GHz

• Burial Depth of Mine in Ground
- 2.5 cm, 5 cm, and 10 cm

• Frequency Bandwidth: .5 to 5 GHz, 100 MHz steps

• Time Domain Considerations:

- 341 receivers above mine (transverse position)

- receiver observation heights: at interface, 2.5 cm and 5 cm above interface,

Note: Each FDFD simulation took 12 hours to run on an SGI Octane (output file = 100 MB)

Parameters Varied (36 Cases Total)

Smooth Surface Interface Rough Surface Interface

This viewgraph is under construction
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.5 GHz 1 GHz 2 GHz

4 GHz 5 GHz3 GHz
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Circular TNT Mine 5 cm Deep in Bosnian Soil
FDFD Simulation Results for Smooth Surface Interface
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Circular TNT Mine 5 cm Deep in Bosnian Soil
FDFD Simulation Results for Rough Surface Interface

normally incident TM plane wave
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Circular TNT Mine 5 cm Deep in Dry Sand
FDFD Simulation Results for Smooth Surface Interface
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normally incident TM plane wave

.5 GHz 1 GHz 2 GHz

4 GHz 5 GHz3 GHz

Circular TNT Mine 5 cm Deep in Dry Sand
FDFD Simulation Results for Rough Surface Interface

Transverse Distance (cm)

Magnitude of Electric-Field Scattering

Air

Sand
D

ep
th

 (
cm

)

At high frequencies the rough surface scattering dominates

ε 2.55=

ε 2.9=
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Air

Sand

Circular TNT Mine 5 cm Deep in Dry Sand
FDFD Simulation Results for Smooth Surface Interface

E-Field vs. Frequency vs. Transverse Position at fixed depth heights:
At interface, 2.5 cm and 5 cm above air-soil interface

normal incidence
TM plane wave
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Air

Sand

Circular TNT Mine 5 cm Deep in Dry Sand
FDFD Simulation Results for Rough Surface Interface

E-Field vs. Frequency vs. Transverse Position at fixed depth heights:
At interface, 2.5 cm and 5 cm above air-soil interface

normal incidence
TM plane wave

at interface 2.5 cm above interface 5 cm above interface

ε 2.55=

ε 2.9=
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• Background

• Frequency Domain Results

• Time Domain Results

• Summary

Outline
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• The power spectral density of the reflected signal yields a time
domain signature dependent of the soil characteristics as well
as the burial depth and radius of the mine

• Two or more characteristic time peaks (To and T1) are observed
suggesting that the ultra-wideband spectral radar response may
yield particular advantages not exploited by currently employed
detection systems

• The ultra wideband timing characteristic behavior is examined
for three different heights at/above interface (i.e., at interface, 2.5
cm and 5 cm above interface) over the entire transverse distance
and time

• This study determines the feasibility of detecting mine-like tar-
gets based on stepped-frequency GPR time signatures

Time Domain Signature Investigation
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Characteristic Times for Circular Target in Lossy Media
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-------------+
 
 
 

=

d = burial depth
cg = average soil wave velocity
cm= mine wave velocity
R = average mine radius

ToT1

T1 = 2.200 ns

Two-way travel times, To and T1, are timing peaks that directly correspond to the burial
depth and target size if the dielectric constant of the land mine and soil are known a priori

At Interface

Time Domain Results (PSD) from FDFD Simulation

Land Mine (5 cm radius) Buried 5 cm Deep in Dry Sand with Smooth Air-Ground Interface

FDFD Land Mine Scenario

Characteristic Time Equations at Interface directly above mine

To

X341 Receivers X X X X X X X X X

Characteristic Times from FDFD Simulation

for all Receivers

To = 1.064 ns
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T1

To

To T1 To T1To T1

Time Domain Scattering Results for Land Mines Buried 10 cm
Deep in Dry Sand: Smooth Air-Ground Interface
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PSD Results using Welch’s Method
At Interface

location directly above mines

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−80

−70

−60

−50

−40

Time (ns)

R
C

S
 (

d
B

s
m

)

Circle   
Ellipse  
Rectangle

Circle
Ellipse
Rectangle



ieee.rev4.fr.18
AJD

MIT Lincoln Laboratory

Circular Land Mine

PSD Results using Welch’s Method

T1

Elliptical Land Mine
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Time Domain Scattering Results for Land Mines Buried 10 cm
Deep in Bosnian Soil: Smooth Air-Ground Interface
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PSD Results using Welch’s Method

Smooth Surface Interface w/Mine Rough Surface Interface only Rough Surface Interface w/Mine

Time Domain Scattering Results for Rectangular Land Mine
Buried 10 cm Deep in Dry Sand

Smooth Surface Interface versus Rough Surface Interface

PSD Results using MUSIC Method

T1

To

T1

To
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T1

Smooth Surface Interface w/Mine

To

Rough Surface Interface only Rough Surface Interface w/Mine

Time Domain Scattering Results for Circular Land Mine Buried
10 cm Deep in Dry Sand

Smooth Surface Interface versus Rough Surface Interface

PSD Results using Welch’s Method

PSD Results using MUSIC Method

T1

To



ieee.rev4.fr.21
AJD

MIT Lincoln Laboratory

T1

Smooth Surface Interface w/Mine

To

Rough Surface Interface only Rough Surface Interface w/Mine

Time Domain Scattering Results for Elliptical Land Mine
Buried 10 cm Deep in Dry Sand

Smooth Surface Interface versus Rough Surface Interface

PSD Results using Welch’s Method

PSD Results using MUSIC Method

T1

To
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Smooth Surface Interface with Mine

To T1

Rough Surface Interface only Rough Surface Interface with Mine

Time Domain Scattering Results for Rectangular Land Mine
Buried 10 cm Deep in Bosnian Soil

Smooth Surface Interface versus Rough Surface Interface

PSD Results using Welch’s Method

T1

To



ieee.rev4.fr.23
AJD

MIT Lincoln Laboratory

Smooth Surface Interface with Mine

To T1

Rough Surface Interface only Rough Surface Interface with Mine

Time Domain Scattering Results for Rectangular Land Mine
Buried 10 cm Deep in Bosnian Soil

Smooth Surface Interface versus Rough Surface Interface

PSD Results using Welch’s Method

T1

To
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• Rough surface effects are a dominant scattering mechinism in
the GPR detection of buried objects

• Frequency domain numerical modeling (FDFD) is a viable means
of testing candidate sensing concepts on a wide variety of con-
ditions

• Using the appropriate signal processing techniques, land mine
identification using spectral timing peaks is a viable means to
determine land mine burial depth and size

- wideband processing enables time signatures that highlight invari-
ance

• Application: stepped-frequency GPR radar

Summary



Northeastern University Demining MURI 
5th Year EXECUTIVE SUMMMARY

Carey Rappaport
Principal Investigator
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Northeastern University



• Basic Research
• Systems approach: optimize sensor configuration & 

combination, modeling, processing, and reconstruction
• Establish quantifiable performance bounds

• Combined Modalities and Algorithms
• Devise sensors with multiple physical effects
• Fuse multiple sensor information

• Support Theory with Real Measured Data
• Design the sensor configuration first
• Control and understand data collection 

Guiding Principles



• Humanitarian Demining:  Find Anti-personnel 
mines
• Small targets: ~10 cm diameter
• Non-metallic: ~0.5 gram metal firing pin
• Not deeply buried < 15 cm deep

• Target in real environment
• Inhomogeneous soil
• Realistic, rough ground interface

• Practical detection modalities
• Efficient
• Low cost
• Light weight
• Robust/Flexible/Rugged

• Develop modality to suit mine position in ground

Demining Mission



Polarimetric IR, EM Induction

Microwave Enhanced IR Thermography,
Laser/Acoustic, EM Induction

AirAirAir

SoilSoilSoil

AirAirAir

SoilSoilSoil

AirAirAir

SoilSoilSoil

Clay: Focused GPR, EM Induction
Sand: Laser/Acoustic, EM Induction 

EM Induction, GPR Spectral Analysis

AirAirAir

SoilSoilSoil

Just Under 
Surface

Exposed

Shallow
Buried

Deep
Buried

Non-Metallic AP Mine Burial Scenarios; 
Proposed Solution Modalities



MURI

Technology Transitions

Antenna element analysis for 
GeoCenters, Inc. 

Humanitarian Demining program

Processed EG&G GPR data, 
Paper accepted at TGARS

Processed European,
DeTeC consortium GPR data

Processed NIITEK (Wichmann)
GPR data

CenSSIS:  $28M NSF ERC 
Subsurface Sensing in Soil, 
Water and Body 

Raytheon: 
Vehicles in Foliage

INEEL: 
Subsurface 

pollutant detection

SERDP SEED contract: 
EMU classification methods 

for UXO discrimination and classification

Raytheon: 
Counter-Terrorism efforts



Center for
Subsurface Sensing & Imaging Systems

• FY 2000 NSF ERC
(Eng. Research Center)

• Very Competitive
2 out of 89 Funded
10 Year Program 

• $28 Million Initial
5 year Investment
NSF/Univ Partners

• Direct MURI Legacy

• www.censsis.neu.edu

• FY 2000 NSF ERC
(Eng. Research Center)

• Very Competitive
2 out of 89 Funded
10 Year Program 

• $28 Million Initial
5 year Investment
NSF/Univ Partners

• Direct MURI Legacy

• www.censsis.neu.edu



100nm- 0.01 mm100nm- 0.01 mm

Subcellular BiologySubcellular Biology Tissues & OrgansTissues & Organs

0.1 mm - 10 cm0.1 mm - 10 cm

10 cm - 1 km10 cm - 1 km

OpticsOptics UltrasoundUltrasound

SonarSonarRadarRadar

1 cm - 100 m1 cm - 100 m

Underground
Diagnosis

Underground
Diagnosis

Underwater
Exploration
Underwater
Exploration

The Scope of CenSSIS 
Goes Beyond Humanitarian Demining



The CenSSIS Focus:  Multi-Application 
Subsurface Detection and Sensing Concepts

Long Range Goals

• Attack important real world problems

• Create a unified framework

• Diverse Problems – Similar Solutions

• Combine new multi-sensor instruments & methods into an 
engineered system 

• Implement a multi-disciplinary education program within a 
distributed university

• Increase the number of women and minorities in engineering

• Create sustained industrial partnerships



Key Milestones of the CenSSIS Master Research Plan

Yr 5Yr 4Yr 3Yr 2Yr 1

BED and 
I-PLUS
Integration

Integrated
SSI 
Projects

R3 
Projects

R2 
Projects

R1 
Projects

2D Quadrature
Microscope Indoor Multilayer

Hyperspectral Imaging
Diffuse Optical Tomography

High Contrast Ultrasound Imaging

Quantitative Subretinal 
and Undersea Mapping

Advanced Electrical 
Impedance Tomography

Real Time 
Molecular 
Tracking

3D Quadrature
Microscope

SoilBED 
(1st Gen)

BioBED 
(1st Gen)

Unified 
Framework 

(1st Gen)

MedBED
SeaBED 
(1st Gen)

SoilBED
(2nd Gen)

I-PLUS 
(1st Gen)

BioBED, MedBED, 
SeaBED
(2nd Gen)

Data and 
Database 
Standards

First Gen Collaborative 
Environment

Physics Based 
Compression Tools

Second Gen 
Collaborative Environment

First Gen 
Solutionware Modules

Data and MetaData 
Libraries
Fast Scalable Parallel 

Computation Tools

Special 
Purpose 
Sensor 

Fusion Tools

Diffuse 
Tomography

Tools

Robust 
Nonlinear 
Inversion 

Tools

Physics Based 
Image 

Understanding 
Tools

General 
Purpose 
Sensor 
Fusion 
Tools

Fast 2D 
Models

Photo-
Acoustic 

Probe

Special 
Purpose 

3D Models

Nonlinear 
Ultrasound 

Probe

Acoustic-
Photonic 

Probe

General 
Purpose 3D 

Models

Entangled 
2-Photon 

Probe

Application to Real World Problems



Examples of Year 1 
CenSSIS Project Accomplishments

• Diffuse Optical Tomography (DOT) Toolbox
– Diverse Applications
– (NU/MGH/Tufts/TMW) Team

• Acoustic Diffraction and Electrical Near Field Probing of Complex 
Underground Media

– Buried Waste Assessment
– (NU/INEEL/UOK) Team

• New Sensor Fusion/ Mosaicing Tools

• 3D Retinal & Undersea Images 
• (RPI/WHOI) Team

• New Models for Subcellular Dynamics Tested Against Real Data 
(BWH/NU)

• New Acoustic Method for Cardiac Artery and Underground 
Assessment 

– (BU/LLNL/NU/Industry) Team



Heart
Attack

Prevention

Real-Time 
Vascular 
Imaging

Early
Tumor

Diagnosis

Functional
Deep Brain

Imaging

3D
Subretinal
Diagnosis

Humani-
tarian

Demining

Discovery
Of Buried
Facilities

3D Pollution
Assessment

Real-time
Roadbed

Assessment

The  MURI Legacy: A Vehicle to Attack 
Important Real World Problems



NEU Demining MURI Publications 
January 1997 – September 2001

• 66 Journal Papers
– 12 in IEEE Transactions on Antennas and Propagation.
– 10 in IEEE Transactions on Geoscience and Remote 

Sensing.
– 6 in IEEE Transactions on Image Processing.
– 6 in Journal of Subsurface Sensing Technologies and 

Applications.
• 149 Conference Papers

– 25 Invited submissions
– 3 Keynote presentations



Patents

• DiMarzio, Charles A., Stephen W. McKnight, and Scott C. 
Lindberg, Optical-Pulse-Induced Acoustic Mine Detection,  
U. S. Patent 6,069,843.  Awarded on 30 May 2000.

• Rappaport, Carey L., and Charles A. DiMarzio, 
Microwave Enhanced Infrared Thermography, Provisional 
Application 60/057,253,  filed 29 Aug 1997. Full 
application submitted 27 August 1998. 

• Rappaport, Carey M., Handheld Radar Mine Detector with 
Offset Parabolic Reflector Transmitter and Array Receiver, 
Provisional Patent filed



GPR EM Ind.

Acoustics

IR

Param. Based ISParam. Based IS

FusionFusion

Diff. Tomog.Diff. Tomog.
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Recur. EstimationRecur. Estimation
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A. FD Model: rough,wet,shape

B. Handheld Parabola/ Array

C. SDFMM

D. Artif. Diel. Macth Layer

E. Subsurface Probe  

F. GPR Shape Detection

G. Diffusive Wave Shape

H. Anomaly + Fining Pin

I. Pushbroom EMI

J. GEM III Spetroscopy

K. Statist. GPR Array Proc.

L. Kalman filtering

M. GPR Psuedo-Inverse.

N. EMIS

O. Laser/Acoustic Sensing

P. Acous Prop. Model/Meas.

Q. Match Filt. Laser/Acoust. 

R. Microw. Enhanced IR 

S. Polarimetric IR

B
C

NEU MURI Research Integration



Computational Modeling Applications

• Gaussian Beam Asymptotics (2-D ? 3-D)
– Fast rough surface effect modeling

• SDFMM (3-D)
– Fast frequency domain MoM
– Two target analysis

• FDFD (3-D)
– Slow but versatile frequency domain
– Shows target feature invariant
– Guides clutter removal strategy

• Dispersive FDTD (3-D)
– Monte Carlo rough surface analysis
– Establishes ground cutter signal ident. and removal strategy
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Frequency Domain Computational 
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Air-ground 
interface 
estimation 

Ground 
scattering

compensation

Underground 
detection and 

imaging

Gaussian Beam fast forward models

late-time

interface

target 
scattering

Detection,
Regularization and
Feature extraction

early-time

Observation data

Soil
parameters

Statistical Signal 
& Image Processing,
Computer Vision

Mathematical Physics

Electromagnetics

Focusing with 
Statistical CompensationGround truth

Focusing with 
Adaptive Compensation

Model-Based Adaptive GPR Detection 
and Estimation



•• 33--D Fast D Fast MoMMoM ModelingModeling
•• Random rough ground.Random rough ground.
•• Near field computations.Near field computations.
•• Target & Clutter objects.Target & Clutter objects.

•• New integral equation formulations.New integral equation formulations.

•• Fast Multipole Method to solve for the unknown surface currentsFast Multipole Method to solve for the unknown surface currents..

•• Sources of Clutter: (1) Rough ground, (2) Second object.Sources of Clutter: (1) Rough ground, (2) Second object.

•• Parallel Implementation of the fast SDFMM computer code.Parallel Implementation of the fast SDFMM computer code.

•• Parametric investigations: target/clutter object shape, separatParametric investigations: target/clutter object shape, separation, location, ion, location, 
multiple frequencies, Monte Carlo simulations.multiple frequencies, Monte Carlo simulations.

Incident WavesIncident Waves Received WavesReceived Waves

Rough SurfaceRough Surface

Tree rootTree rootMineMine

SDFMM for Two Penetrable Objects Buried SDFMM for Two Penetrable Objects Buried 
under Random Rough Groundunder Random Rough Ground

“Steepest Descent 
Fast Multipole 

Method”



Study of Mutual Coupling Effects of 
Multiple Buried Objects



Finite Difference Modeling Predicts Detectability
and Aids in Sensor Design

• Frequency domain (FDFD) suggests features for 
target discrimination.
• Point source and plane wave excitations possible
• Soil inhomogeneities can be accurately modelled (loose soil)
• 3-D implemented using sparse techniques with 50X speedup 

over FORTRAN
• Time domain (FDTD) assists in characterizing and 

filtering rough ground clutter effects.
• 3-D model validated with measured data for GeoCenters 

TEMR element on outdoor test track
• FDTD model for smooth or average surface reflection used 

to minimize surface clutter and enhance plastic mine target 



FDFD Simulation of Rectangular TNT Mine Buried 
10cm in Dry Sand with Flat/Rough Ground Surface

Smooth Surface Interface

Rough Surface Interface

Note:  different scales used to show dominant scattering locations

normally incident 
TM plane wave

Air
Sand

?r = 2.9
?r = 2.55

normally incident 
TM plane wave

Air
Sand

?r = 2.9
?r = 2.55

Note:  different scales used to show dominant scattering locations

As resolving capacity increases, rough surface scattering 
overwhelms target scatter



Time Domain Scattering Obtained from Stepped 
Freq. Model of Targets Buried 10cm in Sand

Elliptical

Rectangular

Circular

Time domain scattering results were generated using 
MUSIC algorithm applied to frequency domain scattering 
data received at the interface

Normalized dB

Smooth Interface w/Mine Rough Interface only Rough Interface w/Mine

10 cm diameter

10 cm by 6 cm

10 cm by 4 cm

Note:  Target 
features invariant 
to rough surface 
clutter



Target features are 
detectable in Time 
Domain, but are 
distorted by ground 
clutter

Time-Filtered Frequency Response
Rectangle in Dry Sand

Removing early time signals 
recovers wideband frequency 
response of target

Rough Surface, no filtering Rough Surface, filtered

Rough Surface, filteredRough Surface, no filtering

Smooth Surface, filtered

Smooth Surface, filtered

In Frequency Domain, full 
signal is dominated by 
ground surface clutterTarget features
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Computed signals for:

Flat Ground with      
No Mine ………….

Rough Ground with 
Mine -----------------

Computed Mine Signal 
subtracting scaled and 
shifted Flat Ground 
with No Mine Signal 
from Rough Ground 
with Mine Signal

Ground Surface Clutter Suppression using Flat 
Ground Reflection

FDTD Ground Surface Clutter 
Identification and Removal



Original Signal Averages Obscure 
Mine Signal

No Mine Mine

? h = 3 cm, lc = 10 cm
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Identifying and Removing Ground Surface Signal 
& Realigning  Makes Target Signals Stand Out



ROC Curves for Various Target Depths

((?? hh , , llcc , depth), depth)

(1, 10, 4.8)cm(1, 10, 4.8)cm
(1, 10, 6.1)cm(1, 10, 6.1)cm
(1, 10, 8.5)cm(1, 10, 8.5)cm
(1, 10, 9.8)cm(1, 10, 9.8)cm
(3, 10, 8.5)cm(3, 10, 8.5)cm

(3,10,8.5)

4.8
6.1

9.8

8.5

The deeper the target, the easier it is 
to remove the ground surface clutter



Latest Modeling Accomplishments

• Validated 2-D and 3-D modeled time domain 
clutter suppression on measured 3-D data with 
real targets 

• Developed fast 3D FDFD preconditioner
• Established feature database for FDTD model
• Extended SDFMM for multiple buried objects
• Parallelized FDFD, SDFMM
• Analyzed multistatic focusing advantages



Novel Experimental Systems

• Artificial Dielectric for ground surface 
matching

• Antenna confirmatory probe 
• Hyperspectral Polarimeter for surface mine 

detection
• Microwave Enhanced Infrared Thermography 

with dual frequency discrimination



Conformable Artificial Dielectric Device to 
“Smooth Out” Rough Ground Clutter

Volume:  6mm dielectric beads  ~  2L
8mm plastic beads      ~  2L



Artificial Dielectric Filling Rough 
Ground Surface Troughs



Artificial Dielectric Aids Detection for 
Targets at Various Depths

AD used to remove 
rough ground surface 
clutter shows target 
responses for 
nonmetallic AP mines 
buried at 1”, 1.5” and 2”
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Experimental Results for Conducting Bead 
Artificial Dielectric Matching Layer

• Lightweight Artificial Dielectrics can be made 
easily and inexpensively

• Wide range of soils permittivities can be matched 
with Artificial Dielectrics

• Response from rough ground smoothed with AD: 
– almost as good as undisturbed soil
– just as good as if holes refilled with original soil

• Target signals greatly enhanced using AD
– Rough ground clutter effectively suppressed
– Target depth accurately determined



• Use frequency independent Conical 
Spiral antenna, adapted to lossy soil 
as probe inserted near target

• Illuminate target with 0.5 to 8 GHz 
circularly polarized wave

• Detect wideband spectral response 
with same, second, or above surface 
antenna

• Observe spacing between peaks in 
FFT signal which depend only on 
target composition and geometry
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Subsurface Ultra Wideband Radar Probe 
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2 cm Monopole Antenna in Moist Soil: 
Measured Sensitivity to Metal/Plastic Target

7.5 GHz

7.5 GHz 8.0 GHz

8.0 GHz

-------- No target 2.5” deep
-------- Plastic mine 2.5” deep               
-------- Metal target 2.5” deep

-------- No target 2.0” deep
-------- Plastic mine 2.0” deep               
-------- Metal target 2.0” deep

Probe at 2 inch depth, at 60 deg. angle

Probe at 2.5 inch depth, at 60 deg. angle

Strong signal dependence for probe near targets
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Confirming Data from Visible Band
Imaging Hyperspectral Polarimeter* 

Current Results
• LWIR implementation proved too costly, so visible band selected for 

demonstrating effectiveness of approach, including Aerodyne’s key 
concepts
– Polarization Spectral Intensity Modulation** (Patent Pending)
– Attribute Diversity

• Projected Performance Demonstrated
– Eigenvalue analyses of initial data, albeit limited in range of 

conditions, indicate that polarization enhanced spectral is many
times more effective than spectral only for discriminating man 
made objects in clutter.    

• Benefits of approach realized
– Complete Stokes Vector extraction
– Perfect registration and simultaneous attribute measurements
– No moving polarization elements required

*Implementation support from Air Force Research Laboratory
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IR IR

• Solar Ground 
Heating
• 1000 W/m2 Sufficient
• Dawn/Dusk Required
• Minimal Penetration

• Microwave 
Heating
• Comparable Power
• No Sunny Day, 

Dawn/Dusk 
Constraint

• Variable Penetration

Motivation for Microwave Enhanced IR 
Thermography (MEIT)



Two-Frequency Microwave Enhanced 
IR Heating Concept

Incident Fields

(Similar at Both Frequencies) Scattered Fields

• Surface Effects Similar at Both Frequencies
• Propagation Effects Different



Two Frequency Microwave Power 
Distribution along Rough Surface

Surface Roughness increase (fixed depth=6 cm)
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GPR/EMI Experiments at the 
NEU Dedham Test Track

• Accessibility
• 10 miles from NU, BU
• Ability to take data in different track/weather conditions
• Quick feedback on hardware/software development

• Convenience
• Built-in tracking platform
• Fast set-up

• Customizability
• Control of targets, clutter objects
• Create specific target characteristics

• Comparison of multiple modalities on identical 
track conditions



Track Targets

1”APM-1463’ ½”

1 ½”, 3”ClutterScrew & Rock A59’ 0”

2”SimulantEM-655’ 6”

2”ATVS-1.651’ 6”

2”APValmora 6948’ 6”

3”ClutterScrew44’ 0”

2”ATVS-2.241’ 0”

2”SimulantEM-336’ 9”

DepthTypeTargetLocation



Clutter/False Alarm Objects

• Simple clutter:  
isolated rocks and 
screws
• Rocks=radar false 

alarm
• Screw=EM Induction 

false alarm

• Complex clutter:  
screws in proximity of 
rocks



Multistatic Ground-Penetrating Radar

• Parabolic reflector 
antenna for forward-
directed plane wave

• Four detectors for 
back-scattered 
radiation

• High-bandwidth (1.7 
GHz) pulsed sources

• Scans of track C/L, 
+/-3”, +/-6”, -9”, -12”
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Ground-Penetrating Radar:  “Air Shot”

Front Receivers

Rear Receivers

Transmitter

GeoCenters, TEMR 
wideband antenna 
element (700 MHz to 
1.7 GHz) used to feed 
offset parabola.

2 X 2 array gives four 
times the received 
power of a monostatic
radar, as well as 
temporal focusing left 
to right and forward 
to back

View from below



Radar in Operation at NEU Dedham Test Track
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GPR Signal Processing: 
Programmatic Overview

• Basic philosophy:
– Combination of tractable physical models with sophisticated, 

statistical signal processing methods to make intellectually 
interesting advances that address real problems

• Algorithmic work
– Recursive detection methods for array GPR data based on sequential 

hypothesis testing and modified ANOVA technique
– Fusion of physics-based backprojection (F-K Migration) with min-

entropy image restoration work to obtain robust GPR SAR auto-
focus method for object localization

• Validation:  all on real data
– Detection method: NU and EG&G data
– Localization: NU, DeTeC, NITTEK data

• Continued effort work via Night Vision Forward 
Looking Program



Matched Filter Processed GPR Signals
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GPR Signal Processing: 
Accomplishments

• Basic problem: 
– Localization of buried targets from multi-monostatic 

and multistatic GPR data
• Approach: 

– Novel fusion of simple physics and solid image 
restoration in he form of entropy-regularized, F-K 
migration technique

• Results:
– Strong localization ability demonstrated on real data 

sets from multiple sources (NU, NIITEK, DeTeC).



Measured NEU Data Processing with Optimized 
F-K Migration: PMN AP Plastic Mine

Shift data starting times within 
sample window to compensate 
for tilted illumination

F-K migration

Optimization to 
compensate for 
air/ground interface

Shift result back to 
original starting times 
for each window 



Measured Data:
Wichmann Radar for M19 target

FK
result

Opt’ed
FK result



EMI: Programmatic Development

• Philosophy:
– Simple, parametric physical models combined with 

“robustifying” processing schemes to arrive at novel methods 
for solving real problems

• Algorithmic advances
– Optimal processing of data collected as a function of time, 

space, and frequency
– Recursive detection methods designed to function 

progressively as the data are acquired
– Batch data approach to object characterization robust to 

unknown orientation and location of object
• Proof-of-concept level validation on real sensor data
• Transition to UXO problem via SERDP SEED grant



EMI Track Scan

• Geophex GEM-3 
EMI sensor

• Ten frequency 
bands sampled

• Full track scans at 
6” resolution

• Detail target scans 
at 3” resolution



EMI: Accomplishments This Year

• Implemented and evaluated statistically based method for 
discriminate already detected-objects

• Algorithm characteristics
– Based on analytical dipole scattering model
– Able to process using time or frequency domain data
– Capable of handling (and works best for) spatially sampled EM data
– Inherently robust to modeling errors as well as uncertainty in position and 

orientation of the object
• Evaluated using

– Synthetic data (time and frequency domain sensors) 
– Real GEM3 (frequency domain sensor)
– Results encouraging

• Next up:
– A min-max optimization approach for dealing with uncertainties in 

positioning of sensors



Multi-Frequency EMI Measurements: Mines and 
Clutter 5 cm deep - Background Removed Wet Sand 

(with Columbia University)

Small/Large non-
metallic AP mines

Steel pipeSteel ball
990Hz 10590Hz 18270Hz



(Green mines, black clutter)

Low-Resolution
EMI Detection

Low-Resolution
GPR Detection
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•All targets detected
•Rock false alarms 
rejected
•Entirely nonmetallic 
EM-3 & EM-6 targets 
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Rejection from GPR/EMI Fusion

Fusion
Confirmation

Decision
Fusion 

(OR/AND)

High-Resolution
EMI Localization

High-Resolution
GPR Localization



Conclusion

NEU’s Dedham Test Track provides an 
essential resource to enable the evaluation 
and verification of processing and fusion 
algorithms with real data from a well-
characterized “ground truth” facility



Laser/Acoustic Experimentation

Broadband 
Detector

Krohn-Hite 
Filter/ Amplifier

Storage 
Scope CO2 Laser 

100mJ, 
100ns pulse

Laser Power Supply 
(~10Hz Repetition Rate)

Pulse trigger

Target
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Overall Summary
• Integrated Approach:  develop models, sensors, and 

algorithms in conjunction with each other for particular 
problem  

• New Sensors:  Multistatic Array GPR, Laser/Acoustic, MEIT, 
Microwave Probe, Artificial Dielectric Matching Layer

• New Models:  Dispersive 3-D FDTD, Multi-object SDFMM, 
Sparse Preconditioned 3-D FDFD, Gaussian Beam 
Asymptotics

• New Rough Surface Clutter Reduction Methods: Time-
Gated Frequency Response, Ground Clutter Pulse Capture and 
Removal

• New Reconstruction:  Sequential Array Estimation, EMI 
Imaging, Multistatic Template Field Matching, Optimized  F-
K Migration
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A Sliding Window RLS-like Adaptive Algorithm for
Filtering alpha-stable Noise

Murat Belge and Eric L. Miller

Abstract|We introduce a sliding window adaptive RLS-

like algorithm for �ltering alpha-stable noise. Unlike pre-

viously introduced stochastic gradient type algorithms, the

new adaptation algorithm minimizes the Lp norm of the er-

ror exactly in a sliding window of �xed size. Therefore,

it behaves much like the RLS algorithm in terms of con-

vergence speed and computational complexity compared to

previously introduced stochastic gradient based algorithms

which behave like the LMS algorithm. It is shown that the

new algorithm achieves superior convergence rate at the ex-

pense of increased computational complexity.

I. Introduction

In the vast majority of signal processing applications it

has been assumed that the signal or noise under investiga-

tion can be modeled by a Gaussian distribution law. This

assumption has been justi�ed by the central limit theo-

rem and strong analytical properties of Gaussian pdf which

leads to linear algorithms. However, in many real-world

problems the noise encountered is more impulsive in nature

than that predicted by a Gaussian distribution. Examples

are underwater acoustic noise, low frequency atmospheric

noise and many types of man-made noise [1]. Systems op-

timized under the Gaussian assumption often yield unac-

ceptable performance when subjected to impulsive, non-

Gaussian noise [12]. There exists a class of distributions,

called alpha-stable distributions, than can be used to model

these types of noise [1].

With the introduction of alpha-stable distributions to

the signal processing community, a number of di�erent

adaptive �ltering approaches have been proposed for �l-

tering these processes [3], [5], [4], [7]. All of the algorithms

that have been introduced so far can be classi�ed as an

LMS variant [8] which basically updates the �lter coe�-

cients by using an instantaneous approximation to the gra-

dient of the cost function. The only di�erence of these

algorithms from the conventional LMS algorithm is the

minimization of the Lp norm of the error at the output

of the adaptive �lter instead of the usual Euclidean norm.

The Least Mean p-Norm (LMP) algorithm [6] was derived

exactly as described above. Later, motivated by the nor-

malized versions of the LMS algorithm, Arikan et. al. de-

veloped the Normalized LMP (NLMP) algorithm [3]. Both

LMP and NLMP su�er from the same problem that has

plagued the LMS algorithm. Namely, when the input to the

adaptive �lter is highly correlated the convergence is very

Dept. of Electrical and Computer Engineering, Northeastern Uni-
versity, Boston, MA 02148. This work was supported by an ODDR&E
MURI under Air Force O�ce of Scienti�c Research contract F49620-
96-1-0028, a CAREER Award from the National Science Foundation
MIP-9623721, and the Army Research O�ce Demining MURI under
Grant DAAG55-97-1-0013.

slow. The RLO algorithm [7] is an alternative to LMP and

NLMP, however its implementation requires some a-priori

information on the error statistics and the �lter inputs [7].

In this work, we develop a sliding window adaptation

algorithm which is similar to the RLS algorithm [2] both

in terms of derivation and convergence characteristics. The

new algorithm provides much increased convergence rate

at the expense of increased computational complexity. A

block implementation of the new algorithm decreases the

computational cost substantially.

II. Sliding Window Least Mean p-norm

Adaptation Algorithm

The objective of an adaptation algorithm is to minimize

the averaged error at the output of the �lter by adjust-

ing the coe�cients of the �lter. Adaptive estimation of a

time-varying �nite impulse response system is usually ob-

tained by limiting the �ltering memory. Here, we adopt a

true �nite memory or a sliding window approach for the

adaptation of �lter coe�cients. That is we minimize the

averaged Lp norm of the error in a window of size L:

Jw(n) =

nX
k=n�L+1

jd(k) � wt(n)x(k)jp =

nX
k=n�L+1

je(k)jp

(1)

where d(k) is the desired signal at time k, w(n) is the vector

of optimal �lter coe�cients at time n, x(k) = [x(k) x(k �
1) : : : x(k � N + 1)]t contains the N most recent samples

of the input signal and 1 � p < 2. Taking the gradient of

Jw(n) with respect to w(n) and equating the result to zero

we obtain:

nX
k=n�L+1

je(k)jp�1sign[e(k)]x(k) = 0 (2)

which can be written as

nX
k=n�L+1

u(k)x(k)xt(k)w(n) =

nX
k=n�L+1

u(k)d(k)x(k) (3)

where u(k) = je(k)jp�2, and (3) is obtained by sub-

stituting
e(k)

je(k)j
for sign[e(k)] in (2) and rearranging.

De�ning r(n) =
P

n

k=n�L+1 u(k)d(k)x(k) and R(n) =P
n

k=n�L+1 u(k)x(k)x
t(k) we obtain the following expres-

sion for w�(n) which minimizes the p-norm of the error in

a window of size L:

w�(n) = R�1(n)r(n) (4)

Note, however, that w�(n) cannot be readily obtained from

(4) since R(n) and r(n) are functions of w�(n). However,
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we can devise an iterative scheme to solve for w�(n) at

each point in time. Such an approach leads to the following

algorithm:

Algorithm 1.

1. w0(n) = w�(n� 1)

2. Compute uj(k) = jd(k) � xt(k)wj(n)jp�2; k = n� L+

1; ::; n

3. Compute Rj(n) =
P

n

k=n�L+1 u
j(k)x(k)xt(k) and

rj(n) =
P

n

k=n�L+1 u
j(k)d(k)x(k)

4. wj+1(n) =
�
Rj(n)

�
�1

rj(n)

5. If
kw

j+1(n)�wj(n)k

kwj(n)k
< � then, w�(n) = wj+1(n), stop; else

j = j + 1, goto step 2
For each new input sample, we apply algorithm 1 to obtain

the optimal �lter coe�cients, w�(n), for the current time.

Steps 2-5 of Algorithm 1 constitute the so-called iterative

re-weighted least squares (IRLS) method which has been

suggested and applied in several contexts [11], [9], [10]. The

convergence of the IRLS algorithm can be guaranteed by

making the following modi�cation [9]:

uj(k) =

�
uj(k) if uj(k) � 1

�

1
�

if uj(k) > 1
�

(5)

where � is a small positive constant.

Note that, in step 4 of Algorithm 1, we need the inverse

of Rj(n). Rather than �rst computing Rj(n) and then

inverting this matrix to obtain wj+1(n) we may consider

computing
�
Rj(n)

�
�1

directly in step 3 of Algorithm 1. To

this end, consider the following expression for i = L; ::; 1:

Rj(n�i+1) = Rj(n�i)+uj(n�i+1)x(n�i+1)xt(n�i+1)

(6)

De�ning, P j(n) =
�
Rj(n)

�
�1
, and applying the matrix in-

version lemma [2] to (6) we obtain:

P j(n� i+1) = P j(n� i)�
1

�(n� i)
g(n� i)gt(n� i) (7)

where g(n � i) = P j(n � i)x(n � i + 1) and �(n � i) =

1=uj(n� i+1)+xt(n� i+1)g(n� i). Equation (7) implies

that the matrix P j(n) can be obtained by a series of re-

cursive updates starting from the matrix P j(n�L) at the

beginning of the window. We assume that P j(n�L) = 1
�
I ,

which corresponds to a soft initialization [2]. Then, in

step 4 of Algorithm 1, we compute P j(n) by using (7)

instead of Rj(n) and then obtain wj+1(n) in step 5 by

wj+1(n) = P j(n)r(n).

The complexity of the algorithm given above is

O(MLN2) where M is the number of IRLS iterations

(steps 2-5 of Algorithm 1) needed. Because of the similarity

of the algorithm to RLS, we call the new approach the re-

cursive least mean p-norm algorithm (RLMP). The direct

implementation of the RLMP algorithm is infeasible for

most applications because of its high computational com-

plexity which is dominated by construction of P j(n). How-

ever, a subsampled version of the RLMP algorithm where

the �lter coe�cients are updated once at every k iterations,

k > 1 being the subsampling rate, can be considered. In
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Fig. 1. Transient behavior of tap weight adaptations for RLMP with
L = 50, k = 10 (solid line), RLMP with L = 100, k = 50 (circles),
NLMP (dashed line) and LMP (dash-dotted line) algorithms.

particular, if k = L, the complexity of the RLMP algorithm

is O(MN2) per iteration. In this case, the �lter coe�cients

are updated once for every data block of length L. As we

will see in Section 3, the average number of IRLS itera-

tions can be quite low making the subsampled version of

the RLMP algorithm a viable alternative to its stochastic

gradient type counterparts.

III. Simulation Study

In this section, we compare the performance of the

RLMP algorithm to that of NLMP and LMP algorithms.

In the NLMP and LMP algorithms, the coe�cients of the

adaptive �lter is updated as follows [3]:

w(n+ 1) = w(n) + �
je(n)jp�1sign[e(n)]

h(n)
x(n) (8)

where h(n) = 1 for LMP and h(n) = kx(n)kp
p
+ , with

 > 0 being a small constant, for the NLMP algorithm.

Following [3], we consider the following AR process:

x(n) = 0:99x(n� 1)� 0:1x(n� 2) + u(n) (9)

where u(n) is an alpha-stable sequence of i.i.d. random

variables with � = 1:2, � = 0 and  = 1. A simulation

is performed to identify the coe�cients of the AR process

with the p = 1:1 norm. Figure 1 shows the transient behav-

ior of the tap weights of the adaptive �lter and Fig. 2 shows

the norm of the error between the true and the estimated

parameters, de�ned as E(n) = 20 log10 kwtrue
� w(n)k2.

Both �gures were obtained by averaging the results of 100

independent trials. The parameters of the RLMP algo-

rithm are: � = 10�6, � = 10�4, � = 10�2. The RLMP

algorithm was implemented for two di�erent window sizes

corresponding to L = 50 and L = 100 samples. For L = 50,

the �lter coe�cients were updated once for every 10 it-

erations and for L = 100, the �lter coe�cients were up-

dated once per 50 data samples. For a window of L = 50

samples, the RLMP algorithm produces a steady-state tap
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Fig. 2. Transient behavior of tap weight error powers for RLMP with
L = 50, k = 10 (solid line), RLMP with L = 100, k = 50(circles),
NLMP (dashed line) and LMP (dash-dotted line) algorithms.

weight error of approximately -20dB. This �gure can be

made smaller/larger by adjusting the window length. The

step sizes of the NLMP and the LMP algorithms were set to

produce the same steady state tap weight error as RLMP.

The step size for NLMP was found to be 3:8 � 10�2 and

5�10�5 for LMP. Figure 1 and 2 show that RLMP provides

a large improvement in convergence rate over the NLMP

and LMP. To give an idea about the number of iterations

needed for the outer IRLS iterations to converge, we com-

puted the number of IRLS iterations at each discrete time,

n, by averaging 100 trials. The results are displayed in

Fig. 3. It is seen that at most 3 iterations are su�cient to

obtain a relative error
kw

j+1(n)�wj(n)k

kwj(n)k
of about 10�2.

Examining Algorithm 1 in detail, we see that the most

e�cient implementation of the RLMP algorithm requires

ML(2N2+3N+2) multiplications, 2ML divisions andML

nonlinear operations per update of the �lter coe�cients. In

general, for k = L (i.e. �lter coe�cients are updated once

for each data block of L samples), the computational e�ort

required by the RLMP algorithm is approximatelyM times

that of a single RLS update plus M nonlinear operations.

From Fig. 3, we see that, for this example, the ensemble

average of M is actually quite low and approximately 2:5

at the steady state.

IV. Conclusion

In this letter, we described a novel adaptation algorithm

for �ltering alpha-stable noise. The new algorithm is de-

rived by minimizing the averaged Lp error at the output

of the �lter in a window of �xed size. Simulations show

that the new algorithm provides much improved conver-

gence rate compared to other stochastic gradient based

adaptation algorithms for alpha-stable noise environments.

The major disadvantage of the algorithm is its computa-

tional complexity. We proposed a subsampled implemen-

tation of the RLMP algorithm which reduces the compu-

tational complexity to O(MN2) per data sample. Current
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Fig. 3. Fig. 3 Ensemble average of the number of IRLS iterations
needed at each time instant for RLMP with L = 50, k = 10 (solid
line) and RLMP with L = 100, k = 50(circles).

research is focused on frequency domain implementations

of the RLMP algorithm which will further reduce the com-

putational complexity.
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Abstract

The problem of characterizing the structure of an object buried in an inhomogeneous halfs-

pace of unknown composition is considered. We develop a non-linear inverse scattering algorithm

based on a low dimensional parameterization of the unknown object and the background. In

particular, we use low order polynomials to represent the contrast in the real and imaginary

parts of the object and background complex permittivities. The boundary separating the target

from the unknown background is described using a periodic, quadratic B-spline curve whose con-

trol points can be individually manipulated. We determine the unknown control point locations

and contrast expansion coe�cients using a greedy-type approach to minimize a regularized

least-squares cost function. The regularizer used here is designed to constrain the geometric

structure of the boundary of the object and is closely related to snake methods employed in the

image processing community. We demonstrate the performance of our approach via extensive

numerical simulation involving 2D, TMz scattering geometries.
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1 Introduction

We consider the problem of localizing and characterizing the structure of an object buried in a

halfspace given noisy observations of scattered electromagnetic �elds collected near the interface.

Such problems arise in application areas including environmental remediation, humanitarian demi-

ning, medical imaging and non-destructive testing [6,11,14,26]. Here we are particularly concerned

with addressing two of the many challenges associated with such inverse scattering problems. First,

these problems are known to be highly ill-posed in that the quantity of information contained in

the data, which are collected only near the interface, is quite limited relative to the amount of

information one would like to extract. This leads to considerable instabilities in terms of reliably

characterizing the behavior of the subsurface [21,25] . A second di�culty is the need to deal with

clutter. Here we take clutter to be physical characteristics of the medium, in particular volume

inhomogeneities, whose presence impedes our ability to characterize the object of interest.

Typical methods for overcoming these two problems are based on forming an image of the

subsurface and then post processing the results to extract target information [5, 27]. The issue of

ill-posedness is addressed through the use of a regularization procedure [3, 23, 25] to stabilize the

imaging portion of the algorithm while clutter suppression is achieved through the use of image

processing methods to separate targets from background. In forming an image, however, one must

solve a large scale, non-linear optimization problem whose size is equal to the number of pixels

(voxels) in the region of interest; a highly computationally intensive process. Moreover, under this

approach one uses the limited data to generate values for all of the pixels only a few of which

contain useful information about the underlying target. By di�using the information in the data

in this manner, target detection can be problematic [24].

There has been considerable work in the past decade on methods that extract directly from the

data geometric information regarding the shape and location of the object [8{13,19,21,22,29,32].

2



The assumption underlying most of these methods is that the object is embedded in a medium of

otherwise known structure (homogeneous or halfspace). Rather than parameterizing the problem

in terms of a large number of pixel values, a relatively small number of unknowns are used to

describe the shape of the target. For these methods the issue of ill-posedness is either addressed

through a regularization procedure related to the shape of the object [21] or through the use of

more traditional Tikhonov or minimum norm least squares methods [11,15,32].

For our problems, these shape-based methods are not applicable. For example, the approach

taken in [13] requires that the object be surrounded on all sides by transmitters and receivers.

While this assumption is satis�ed in, for example, medical imaging applications, we are restricted

here to problems where we have only reection-type data at our disposal. Additionally, most of the

previously developed techniques assume that the electrical properties of the background are fully

known and in many cases, the object's contrast function is also speci�ed a priori [22]. Because we

wish to address the issue of volume inhomogeneity, we must look to a di�erent approach.

Hence we consider a parameterization based on a concise description of the object's geometric

structure that provides for the recovery of a limited amount of information regarding the spatial

variations of the complex permittivity over the target and the background. As described in x 2, the

variations in the background and the object contrast are modeled via a superposition of a small

number of expansion functions; one set of functions for the background and separate set for the

object. Thus, the unknowns here are the corresponding expansion coe�cients.

As in [1,11,21], we seek a representation for the shape of the object in terms of a small number

of unknowns. In previous work, a Fourier-type expansion is used in conjunction with an underlying

assumption that the object of interest is star-like. Here we choose to describe the boundary of the

objects di�erently, using a linear combination of quadratic B-splines [4, Chap. 3]. The motivation

for this choice comes from the fact that the parameters governing this representation (known as

3



control points) impact the shape of the object only over a small portion of the perimeter. Thus,

the control points provide direct and local control over the object's shape. This control is exploited

in the development of a simple and e�cient inversion scheme described in x 3. Finally, the control-

point parameterization leads to a natural, shape-based regularization technique related to snake

methods [4] used in image processing for contour representation and image segmentation.

We view this approach as a compromise between an ill-posed imaging method that allows for

arbitrary variation throughout the region and the more constrained shape-based methods in which

homogeneity is assumed. By restricting the contrast variations to lie within the linear span of a set

of basis functions, we clearly limit the classes of variations which can be recovered from this inversion

process. The motivation for this decision comes from the fact that a detailed reconstruction of the

medium is often not what is desired nor is it supported by the information in the data. Rather,

the primary information of interest concerns the geometric structure of the object. Thus we are

willing to settle for a coarse reconstruction of the object and background contrast functions.

The remainder of this paper is arranged as follows. In x 2, the scattering problem and the models

for the object and background are presented; x 3 gives a presentation of the inversion procedure

with examples of its performance shown in x 4. Conclusions and future work are described in x 5.

2 Problem formulation

We consider a two-dimensional scattering problem illustrated in Fig. 1. Time harmonic e�j!t

y-polarized plane waves at various incident angles and frequencies are used to probe the medium.

The complex permittivity of the lower halfspace is represented as the sum of a nominal, constant

value, �1 + (j=!)�1, and a space varying perturbation,

g(r) = �0�p(r) +
j

!
�p(r); (j =

p�1); (1)
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that encompasses both the object of interest as well as the clutter. Here, r = [x z]T is a two vector

indicating the position of a point in the plane, �0 is a constant that denotes the permittivity of free

space, and ! denotes angular frequency. The scattered �elds generated by g are observed along an

array of point receivers also located in the upper halfspace. Under this 2D model, there is only a

single component of the electric �eld thereby resulting in a scalar scattering problem.

The model linking the structure of g to the observed scattered �eld at the kth point along the

array, rk, is [7, Chap. 9]

y(rk) = !
2
�0

Z
W

G(rk; r
0)E(r0)g(r0)dr0 + n(rk); (2)

where y(rk) is the datum at rk for a given incident �eld, W is the region over which g is nonzero,

n is zero mean, additive white Gaussian measurement noise with variance �2, and G and E denote

the Green's function and total electric �eld, respectively. The constant �0 denotes the permeability

of free space. In (2), we are only concerned with evaluating the Green's function, G(r; r0), when r

is above the interface and r0 is below in which case [10]

G(r; r0) =
j

2�

Z
1

�1

1

0 + 1
exp

�
j�(x� x

0) + j(1z � 0z
0)
�
d� (3)

with i = (k2i � �)1=2 where ki = !

p
�i�0 + j�i�0=! denotes the wavenumber in the upper (i = 0)

and lower (i = 1) halfspace. The total electric �eld E(r) is governed by the Helmholtz equation

�r2 + k
2(r)

�
E = 0

with a Sommerfeld radiation condition where k
2(r) is equal to k

2
0 above the interface and k

2
1 +

!
2
�0g(r) below. Finally, the total electric �eld at r is the sum of the unperturbed electric �eld

generated by a plane wave impinging on a halfspace, Eunp(r), [20, x 3.2] and the scattered electric

�eld, Es(r). With E = Es +Eunp, it is easy to show that:

�r2 + k
2(r)

�
Es = �!2�0g(r)Eunp: (4)

As y(r), the observed �eld, depends on the total �eld in the region W , it therefore implicitly

depends on the particular unperturbed �eld, Eunp, on g(r), and on the frequency !.
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2.1 A Model for g(r)

As described in the introduction, we model the unknown portion of the permittivity in the

lower halfspace as a superposition of a slowly varying, compactly supported anomaly (the target)

on a background of partially known structure (clutter). Mathematically �p(r) is decomposed as

�p(r) = S(r)

NaX
i=1

a1;ib1;i(r) + [1� S(r)]

N
bX

i=1

a2;ib2;i(r) � S(r)B1(r)a1 + [1� S(r)]B2(r)a2 (5)

where S(r) is one over the (unknown) support of the object and zero elsewhere. The functions b1;i

represent basis functions describing the contrast of the real part of the anomaly while the b2;i do

the same but for the background. The ai;j are the expansion coe�cients determining the weight

of each function. The row vectors Bi; i = 1; 2 hold the expansion functions and ai are vectors of

expansion coe�cients. An analogous model holds for �p(r), which is proportional to the imaginary

portion of g(r):

�p(r) � S(r)B1(r)c1 + [1� S(r)]B2(r)c2: (6)

While in principle the expansion functions could di�er between �p and �p, the support function S

is the same since it represents a physical boundary between the object and the rest of the medium.

The particular choice of the bi;j depends on the application at hand. If one thought that

there was a homogeneous dielectric anomaly of contrast a1;1 against a real-valued homogeneous

background of value a2;1 then one would take b1;1(r) = b2;1(r) = 1. Use of higher order polynomi-

als, trigonometric functions etc. provide greater exibility in capturing true, underlying inhomo-

geneities. In any event, assuming the Bi are known, the objective of the problem in this paper is

to determine the structure of S along with the ai and ci given the observed scattered �eld data.

In this work, we employ a B-spline model to describe the contour of the anomaly, that is, the

boundary of the set S(r). To de�ne this curve, we start with an interval [0; L] on which a knot

sequence k0; : : : ; kK�1 with 0 � ki � L is de�ned. For this sequence, there exists a periodic basis
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of quadratic B-splines Cki (s) such that

b(s) � [x(s); z(s)] =

K�1X
i=0

Cki(s)[xi; zi]; s 2 [0; L] (7)

for a given set of xi; zi expansion coe�cients, or control points, uniquely de�nes a closed, C2

parametric curve in the plane. The support of each Cki(s) is [ki; ki+3]. Since the basis is taken

to be periodic, the control points are assumed to be wrapped; that is, [x0; z0] = [xK�2; zK�2] and

[x1; z1] = [xK�1; zK�1], so there are a total of K control points, K � 2 of which are unique.

To implement our model, we assume that the boundary of the anomaly is in the form:

b
�(s) �

K�1X
i=0

Cki(s)[x
�

i ; z
�

i ]: (8)

If r = [x z]T is a point inside b
�(s), then for example, �p(r) is B1(r)a1, while for r outside,

�p(r) = B2(r)a2.

3 Algorithm

In this section we describe in detail the algorithm we use to solve the inverse problem. We begin

by discussing the discretized form of the model. The reader is referred to Table 1 for a summary

of the indexing parameters that have been or will be identi�ed.

3.1 Discretization

Using the method of moments [17] with a pulse basis and point matching to discretize (2) and

a lexicographical ordering of the unknowns yields the matrix equation:

y = GD(E)g + n; y 2 C
M�1 (9)

where M is the number of source/receiver pairs, y and n are vectors with components y(rk) and

n(rk) respectively, G the discrete Green's function premultiplied by !
2
�0, D(�) is the diagonal

matrix formed from the vector argument, and E is the vector containing the total electric �eld

(which depends on g) at each pixel. Finally, g 2 C
N�1 is a vector holding the intensity values of
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g(r) at the N grid points in our discretization of the subsurface and from (5) and (6) is given as:

g = �0[SB1 (I� S)B2]a+
j

!
[SB1 (I� S)B2]c �

�
�0V

j

!
V

�
w (10)

where a = [aT1 a
T
2 ]

T , c = [cT1 c
T
2 ]

T , w = [aT cT ]T , S is a diagonal matrix corresponding to S with

Si;i = 1 if any part of pixel i is inside b�(r) and 0 otherwise, I is the identity matrix, and the Bi

denote the N �Na and N �Nb matrices corresponding to evaluating Bi(r) at the N gridpoints.

Finally, using A = GD(E) with (10) and (9) we have

y = [�0AV;
j

!
AV]w+ n � Kw + n; y 2 C

M�1
: (11)

Note that there is one such matrix-vector equation of this form for each frequency and each di�erent

incident angle. In the remainder of the paper, we assume n1 frequencies and n2 angles are used,

and we use double superscripts i; k to denote the corresponding vectors and matrices at frequency

!i and angle �k: single superscripts imply that that quantity depends only on !i. For example,

y
i;k denotes the data obtained via (9) or (11) for frequency !i and incident angle �k

y
i;k = G

iD(Ei;k)gi + n
i;k = K

i;k
w+ n

i;k
; (12)

whereas gi denotes (10) at frequency !i.

3.2 Generating Scattered Field

To generate the data for a given frequency !i and incident angle �j , we need to compute

the M -length vector Ei;j (i.e. we need to solve the forward scattering problem). To do this, we

determine the scattered �eld by discretizing (4) using a �nite di�erence scheme with PML boundary

condition (details are described in [18]) to obtain the matrix equationMi
E
i;j
s = �!2l �0giEi;j

unp where

the unperturbed �eld E
i;k
unp is known and depends on incident angle and frequency, and Mi is the

matrix corresponding to the discretized operator in (4) with the PML boundary condition. The

scattered �eld is determined by solving the matrix equation for E
i;j
s , and �nally, Ei;j = E

i;j
unp+E

i;j
s .
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3.3 Algorithm Description

Our algorithm seeks to �nd a good approximation to g(r) by successively generating better and

better approximations to b�(s), the boundary of the anomaly, and the coe�cient vectors a and c.

In particular, we seek a minimum of the following cost function

J(b(s); a; c) =

n1X
i=1

n2X
k=1

kyi;k �GiD(Ei;k)gik22 + �1
1 (b(s)) + �2
2 (b(s)) : (13)

where we emphasize that both Ei;j as well as gi depend implicitly on the geometry of the anomaly

as well as the expansion vectors via the models developed in x 2 and x 3.1. The �rst term in (13)

enforces �delity to the data while the second and third play the role of regularizers.

Traditional regularization methods used to combat ill-posedness in an image restoration frame-

work function by enforcing smoothness, or in some cases edge preservation, in the reconstruction.

In our case, the 
i; i = 1; 2 are used to inuence the geometric structure of the recovered anomaly.

Speci�cally, we de�ne these functions as


1(b(s)) =

K�2X
i=0

(zi � z
�)2 and 
2(b(s)) =

K�2X
i=0

(xi � xi+1)
2 + (zi � zi+1)

2 (14)

where K is the total number of control points, xi and xi are the coordinates of the ith control

point, and z
� is a �xed z-value depending on the particular application. The �rst term attempts

to penalize objects that are too deep while the second penalizes the total length between control

points. In this way we dissuade the algorithm from choosing curves that are overly elongated and/or

deep. Our justi�cation for the �rst of these choices comes from our knowledge that signi�cant depth

information is not available in the measured data due to the loss in the soil and the positioning

of detectors only above the interface. Moreover, in most applications one possesses some a priori

information concerning the depth at which targets are likely to be buried. The values of �1; �2 tell

how strongly we want to dissuade the algorithm from reconstruction of curves that are too elongated

and/or deep. Finding near optimal regularization parameters is a very di�cult problem and there is

a whole body of literature dedicated to this issue (see, for instance, [2,16]). In this work, we assume
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that good parameters are known a priori : determining accurate parameter selection strategies will

be the subject of future work.

We consider a greedy-type algorithm for minimizing (13). We begin with an initial estimate,

b
(0)(s), of b�(s) de�ned by a set of K knots and K � 2 distinct control points. From b

(0)(s) the

matrix S is found. Suppose for the moment that initial estimates of a; c, denoted a
(0)
; c

(0), are

known (we address the issue of generating these guesses below). Using (10), the gi are calculated

for the di�erent frequencies. We then use (13) to determine the cost of (b(0); a(0); c(0)).

We update the estimate of b(0)(s) by systematically perturbing each control point from its orig-

inal position by a �xed amount �h in the horizontal, vertical, and diagonal directions, respectively,

for a total of 8 di�erent moves per point. Note that each of these 8 moves corresponds to a new

curve by de�nition in (7). Since there are K � 2 unique points and 8 moves for each point, this

corresponds to 8(K�2) di�erent possible new curves. For each possible curve, we �rst estimate new

values for a and c and then evaluate the cost associated with the current curve and these estimates

using (13). Finally, b(1)(s), a(1); and c(1), our new estimates, are taken as that triple giving mini-

mum cost, provided that cost is less than (or equal to) the cost associated with (b(0)(s); a(0); c(0)).

The process is repeated as many times as is necessary.

In principle, determination of a and c requires the solution of a low dimensional inverse scat-

tering problem. That is, every time we want to determine the cost for a candidate curve, we need

to solve a non-linear optimization problem. To simplify this procedure, we consider an alternative

approach. At the end of the kth stage, we compute the internal �elds associated with the current

estimate of the anomaly. This requires the solution of n1n2 forward scattering problems of size N .

From (9), the data yi;l depend on the anomaly through gi and the internal �elds. At stage k+1, we

assume that as we move the control points to generate new candidate structures, the changes in the

internal �elds are negligible compared to the changes in the gi. Thus, for each of these candidates,
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we hold the internal �elds �xed at the values computed at the end of the previous stage.

This approach is useful for two reasons. First, it reduces the number of forward solves associated

with each iteration from 8(K�2)n1n2 to just n1n2. Second, by holding the internal �elds �xed, (9)

and (11) indicate that the unknown expansion coe�cients are locally linearly related to the data.

Thus, estimates of these quantities can be obtained via a linear least squares procedure that is far

less demanding than a nonlinear optimization problem. In particular, we have

ŵ = argmin
w

kKw� yk22 = (KT
K)�1KT

y (15)

where K is the matrix obtained by stacking all of the real and imaginary parts of Ki;k de�ned

in (11) and (12) and (with a slight abuse of notation) y is the corresponding stacked real and

imaginary parts of yi;k.

Now we address the coice of a(0); c(0). Solving (15) requires K, which by (11) requires Ai;k,

which in turn requires Ei;k. But computing Ei;k according to x3.2 would require prior knowledge

of the unknown gi. Thus, to get initial estimates of the expansion coe�cients, we set Ei;k to E
i;k
unp;

in other words, we use the Born approximation to determine initial guesses of a(0); c(0).

The algorithm is initialized using an object of size larger than any target of interest located in

the vicinity of the true object. There are many possible methods for determining such an initial

guess. For example, there are methods that determine a \best �t" disk as an initialization: one

based on array processing is described in [28] while another based on statistical hypothesis testing

is detailed in [24]. Here, we always assume that the initial object is given and refer the reader to

the literature for speci�c techniques to determine this guess.

The overall algorithm is sketched in Fig. 2. One advantage of this approach is that it is quite

easy to implement and in principle, all candidates at any given stage can be generated in parallel.

Thus it is computationally attractive. It is not di�cult to prove that if we were to recompute

the internal �elds for each possible control point move (rather than leaving it �xed at the previous
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estimate), then we would be guaranteed that at every outer iteration of our algorithm the cost would

be non-increasing. By insuring old curves cannot be regenerated1, this would imply convergence of

the algorithm to a minimum of (13) taken over the collection of anomalies that can be generated by

these moves. However, since we hold the internal �elds �xed as we loop over control point moves

and update them only after a move is chosen, monotonicity of the cost cannot be guaranteed.

Generally, we have noticed through extensive simulation that as long as the parameters �1 and �2

are well chosen, the cost does in fact decrease as the iterations progress.

4 Numerical Examples

In this section we present several numerical examples that illustrate the e�ectiveness of our

algorithm. All experiments were done in Matlab using double precision arithmetic. Creation and

manipulation of the B-spline curves was achieved with Matlab's Spline Toolbox.

In all of the numerical examples, we used three frequencies (500, 700, and 900 MHz) and three

incident angles (0, �=4, ��=4). The region of interest for which we would like to obtain an image

was 40cm across (-20cm to 20cm) and 20 cm deep (0 to 20cm). We discretized this region into

pixels of size 1cm-by-1cm. Data were collected at 19 receivers located at -18cm to 18cm in 2cm

increments. To de�ne the entries of the Green's function matrix G, we set �1 = 2:5�0; �1 = 3E� 3,

which corresponds to assuming that the upper halfspace is air and the lower halfspace is sand.

Depending on the example, we �ll the Bi(r) matrices of (5) and (6) with monomials of at most

degree 2. Finally, Table 2 summarizes the parameters for each of the experiments. The values for

the �i were chosen by trial and error. In all experiments, the value of the step size, �h, was taken

to be one centimeter. Finally, the contours of all the true objects were generated using a B-spline

with K = 6 knots while the reconstructions were generated for a K = 5 knot contour.

1It turns out that our approach to updating the internal electric �eld can create the situation in which distinct

curves yield the same cost. Thus we implement extra logic in our implementation to ensure that we never enter a

loop.
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To produce noisy data, independent additive Gaussian noise was added to both the real and

imaginary parts of the noise free data. Letting ~y denote the vector obtained by stacking Ki;j
w

for all frequencies and incident angles we have y = ~y + n where n = �rnr + j�ini and nr;ni

were generated using Matlab's randn function. The constants �r; �i were determined so that the

signal-to-noise ratio (SNR) with respect to the real and imaginary parts of ~y were the same:

SNR = 10 log10
real(~y)T real(~y)

�rN
= 10 log10

imag(~y)T imag(~y)

�iN
:

We used two measures of success in comparing our reconstructions with the true images. The

�rst is a relative error measure over all pixels in the union of the true curve and the reconstructed

curve, which we index by the index set I:

SE =
k�true(I)� �p(I)k2

k�true(I)k2 +
k�true(I)� �p(I)k2

k�true(I)k2
For each example, we also recorded the maximum pointwise relative error in the real (imaginary)

part of the solution over the pixels in the intersection of the true and reconstructed curves. The

values for these measures for the 5 examples described below are in Table 4.

4.1 Examples 1 and 2: Homogeneous Perturbations

As a �rst example, we consider the problem with a homogeneous object of unknown contrast

embedded in a homogeneous half-space at an SNR of 20 dB, Fig. 3(a){(b). While the inversion

scheme knows the correct basis function to use for the object and background (i.e. Na = 1 = Nb

in (5) and (6) with b1;1 = 1 = b2;2 in both cases) it still does not know the values of the expansion

coe�cients. In Fig. 3(e) we display the true boundary of the object along with the initial guess of

this quantity and the �nal boundary estimate produced by our algorithm. The true and estimated

images of the �p and �p for this problem are shown in Fig. 3(c){(d) where we observe that the

unknown contrasts are estimated quite accurately. This conclusion is supported by the numerical

values for our �gures of merit given in Table 4.

For comparison sake, we have also implemented a more traditional Born iterative method (BIM)
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[31] inversion procedure using a TSVD (truncated singular value decomposition) regularization

technique to stabilize the linear system that must be solved at each iteration. After optimizing the

regularization parameter for this procedure, the reconstructions of the real and imaginary parts of

g are shown in Figs. 4.

This example demonstrates that even under noisy circumstances, the approach we have proposed

is able to capture accurately both the shape and the numerical values of the unknown permittivity

and conductivity of the object. While the BIM clearly indicates the presence of an object in �p,

almost nothing is seen in the �p image. Further, note that the anomaly boundary is much less well

reconstructed compared to our new approach. Also, numerous artifacts appear in both parts of the

reconstruction. By constraining the reconstruction as is done in our algorithm, we obtain a much

more accurate representation of the true pro�le. Our reconstructed object di�ers from the true by

only four pixels. Moreover, the amplitudes of �p and �p are quite close to their true values.

The performance of our approach is further veri�ed in Fig. 5 where we display boundary curves

and true and estimated images of �p and �p for an object rotated relative to the interface. The BIM

plots are shown in Fig. 6. The same level of performance as was seen in the previous example is

also seen here. Moreover, because we reconstruct the boundary explicitly, this approach allows us

to easily characterize the orientation of the buried object, a potentially useful piece of information

for later processing stages concerned with identi�cation and classi�cation.

4.2 Cramer-Rao Bounds for Examples 1 and 2

We next turn our attention to more challenging problems in which the electrical properties of

both the background and the object can vary. A �rst issue of concern is construction of the B

matrices used to model these variations. Intuitively, we expect that that as the size of the object

falls, it will be increasingly di�cult to recover higher order information about the target structure

when the pro�le of the much larger background region is also unknown. In fact, we can quantify
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the validity of this idea using the notion of a Cramer-Rao bound (CRB).

As explained more fully in [30, x 2.4], the CRB provides a lower bound on the variance of

any unbiased parameter estimator in a noisy data information extraction procedure of the type

considered here. The CRB is a deterministic quantity reecting the nature of the physical model,

the parameterization of the problem, and statistics of the noise corrupting the data. While we

make no claims here concerning the bias of our estimator, the CRB provides a useful gauge as to

the maximum con�dence we should have in the numerical values of the a and c estimates produced

by our algorithm. Speci�cally, by examining the bounds for di�erent con�gurations of object and

background, we obtain insight into how we may want to structure our inversion algorithm.

Here we consider our ability to recover information concerning at most linear variations in both

the background and the object, i.e. cases in which the real or imaginary parts of these quantities

behave as d0+d1x+d2z where the dj can represent any of the the ai;j or ci;j coe�cients appearing

in the model of x 2.1. This level of complexity is su�cient to understand the basic issues. In

particular, we consider CRB information for objects of three sizes with linear contrast variations

(shown in Fig. 7) embedded in backgrounds whose variations are also linear. Fig. 8 illustrates the

con�gurations of interest for the medium size object. The SNR for all experiments is 30 dB.

The numerical values of the square roots of the CRBs (i.e. the lower bounds on the standard

deviations) for the experiments are provided in Table 3. The �rst column refers to the coe�cient in

the model. For example, the row beginning \Object real: const." holds the information regarding

the true value and the bound on the constant coe�cient in the real part of the object. Similarly,

\Bkgnd real: x" is the row for the coe�cient governing the real part of the x variation in the

background. In all cases, the bounds on the coe�cients governing the background are a small

fraction of the true values and vary little with the size of the embedded object. These small bounds

imply small variance in the estimates of the background structure and thus indicate that we can
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in fact determine these quantities rather accurately. This is true both for the constant term in the

variation as well as the linear terms. In contrast, our ability to recover anything but the unknown

constant term describing the object is more limited. The bounds on the x and z coe�cients are at

best on the order of the true values and grow at a much more rapid rate as the object size decreases

making determination of these quantities a very delicate procedure.

With this in mind, in the remainder of this paper (with the exception of Example 5) we consider

object models comprised of only unknown constants. As we show below, even when the true object

is of a more complex structure, the use of this simple model still allows for accurate localization

and the recovery of limited quantitative information. In light of the underlying objective of our

approach, we view this tradeo� of accuracy in \pixel" space for accuracy in localization and ge-

ometric characterization as acceptable. In terms of specifying the model for the background, the

situation is less clear. Extensive numerical experiments (not reported here) indicate that one needs

a relatively accurate model to achieve good localization. That is, the order of the model should

approximate well the true distribution of the volume inhomogeneity. As a rigorous solution to the

model order determination problem is outside of the scope of this paper, here we consider only

models whose order meets or exceeds that of the true distribution.

4.3 Examples 3-5

The next example we consider is illustrated in Fig. 9. Here we have an object with a piecewise

constant pro�le in a background with linear variation. We invert using a model for a constant

object and a quadratic background variation. The values for the object are intended to represent

a dielectric scatterer with an air gap. It is important to note that this object can never be well

represented using our low order polynomial model. The results of inverting with a model employing

a constant object with a quadratic background are shown in Figs. 10(c){(e). The strong localization

performance demonstrated in these images in spite of this inherent model mismatch points to the
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robustness of our approach to inversion 2.

A similar experiment was repeated except that the values for the real and imaginary parts

of the background were each corrupted by small amounts of appropriately scaled [0; 1] additive

uniform noise. Now neither the object nor the background can be exactly represented using the

polynomial model. As shown in Fig. 10 we achieve highly accurate shape information along with

useful information concerning the variations in the object as well as the background. Again, these

results are indicative of the ability of a low order parameterization to withstand modeling inaccu-

racies. We note that for both of these examples, the results in Table 4 reect the fact that we have

sacri�ced contrast accuracy for geometric �delity. However, by modeling the contrasts as unknown

constant, as expected we obtain estimated values that are close to the average values of the actual

perturbations (which can be positive or negative) over the support of the anomaly. In Example 3

the computed real and imaginary perturbations are 8.9E-2 and -2.5E-2, respectively, compared to

the means of the true perturbations to the real and imaginary parts, 8.3E-2 and -2.3E-3. Likewise,

for Example 4 the calculated real and imaginary parts over the anomaly are 5.8E-3 and -7.01E-3

whereas the means of the true real and imaginary parts are 2E-2 and -2.4E-3.

Finally, in Fig. 11 we consider the problem of recovering a linearly varying object in a linearly

varying background. Motivated by the CRB results, the object here is taken to be larger than

those of the previous examples so that there will be su�cient signal to allow us to resolve the

permittivity variations. As in the other cases, we again achieve strong localization. However there

is some noticeable error in the estimates of the permittivity coe�cients which is a reection of the

inherent di�culty in accurately obtaining this information. This example points to the need for

further work in re�ning the permittivity estimates after having determined the boundary of the

2For this and the remaining experiments, we do not show the results of the BIM approach to inversion. Even

after extensive �ne tuning of the algorithm, it was impossible to obtain results comparable to those seen with the

currently considered method.
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object: model order determination and low order parameterizations should both play a role.

5 Conclusions and Future Work

We presented a new and potentially e�cient technique for simultaneously solving the image

formation and object characterization problems from scattered electric �eld data. The key idea was

to formulate the perturbation in terms of a small number of parameters via a B-spline representation

for the contour of the target. The examples illustrated that our technique can lead to good quality

reconstructions: in particular, we found that it was possible to get good localization information

even if the background is not homogeneous. A key issue associated with this strong performance

is the ability to select good regularization parameters that balance the information content of the

data with that of the constraints. In this work, we selected those parameters by hand. Clearly, an

important area of future e�ort is the automation of this process.

Our experiments showed and the computed Cramer-Rao bounds con�rmed that it is di�cult,

if not impossible, to get \linear" or even more complex information about the object unless it was

su�ciently large, the noise su�ciently small, and the perturbation in the object was large relative

to the perturbation in the background (i.e. the background needs to be nearly homogeneous).

One potential computational advantage to our technique is its inherent parallelism: cost eval-

uations can be done in parallel, making it computationally feasible to consider more complicated

structures. For our reconstruction technique to capture more complex structures, however, we need

to consider how to alter the complexity of the boundary representation by inserting and deleting

basis elements in the B-spline representation. Solving this order determination problem in an e�-

cient and close to optimal manner is far from trivial. In the future, we will also consider extensions

of this work to the case of multiple objects. Finally, we hope to extend the work presented here to

the 3D problem and to analyze its performance on real data.
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K total number of control points (K � 2 unique)

n1 number of frequencies used to probe the earth

n2 number of angles used to probe the earth

N number of unknowns in subsurface discretization

M number of data points for given �,!

NM total number of data points

Na number columns in B1

Nb number columns in B2

Table 1: Summary of index parameters. Note that the degrees of polynomials used to represent

the object and the background are Na � 1 and Nb � 1, respectively.

Example SNR True Obj. True Back Obj. Back �1 �2

1 20dB 0 0 0 0 3.28E-4 1.59E-4

2 20dB 0 0 0 0 6.0E-5 6.0E-5

3 30dB PWC 1 0 2 1.55E-4 7.9E-5

4 20dB PWC 1,rand 0 2 9.0E-5 6.0E-5

5 30dB 1 0 1 0 4.0762E-4 1.7015E-4

Table 2: Summary of experiments. Numbers in columns 3 to 6 indicate the degree of the polynomial

used to generate the data (columns 3,4) or to reconstruct (columns 5,6). \PWC" indicates that

the true object had piecewise constant perturbations in both the real and imaginary parts. \rand"

indicates that random uniform perturbations were added to the real and imaginary parts of the

background when generating data.

Coe�cient (True) (Large) (Medium) (Small)

Value Bound Bound Bound

Object

real: const 4E-1 7.43E-2 3.42E-1 4.27

real: x 1 1.02 2.56 4.57E+1

real: z 8 9.17E-1 5.18 9.29E+1

imag: const -2.2E-3 3.09E-3 3.11E-2 8.57E-1

imag: x 1E-2 4.22E-2 1.08E-1 2.05

imag: z 4E-2 4.98E-2 7.09E-1 2.06E+1

Bkgnd

real: const -1E-1 2.42E-2 2.14E-2 1.71E-2

real: x 1 1.72E-1 1.58E-1 1.51E-1

real: z 4 2.09E-1 2.00E-1 1.89E-1

imag: const -1E-3 8.93E-4 7.99E-4 7.32E-4

imag: x 0 6.95E-3 6.15E-3 5.80E-3

imag: z 1E-2 8.25E-3 7.45E-3 7.35E-3

Table 3: Values of the bounds for the case when the background and the object BOTH vary linearly

(at 30dB). Note that the bounds for all 3 linear terms for the object dramatically increase as the

size of the object decreases, whereas the bounds for the background decrease only slightly.
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Ex. SE RE (real) RE (imag)

1 0.335 0.110 0.607

2 0.593 0.367 0.616

3 1.051 1.059 0.172

4 6.182 1.191 2.565

5 1.447 3.185 0.085

Table 4: Measures of success in reconstruction. First column gives the experiment number and

second column gives the error measure de�ned in the beginning of x 4. Last two columns give

maximum pointwise relative error for the real and imaginary parts, respectively, over the pixels in

the intersection between the true and reconstructed images.

Figure 1: Experimental con�guration for general problem of interest

22



Algorithm 1

k := 1

Given initial estimates [b(1)(s); a(1); c(1)] compute Ei;j and Ai;j for 1 � i � n1; 1 � j � n2

While (current-cost can still be reduced) do

� For i = 0; : : : ; K � 3 do

1. Select control point (xi; zi)

2. For each of 8 moves of (xi; zi) by �h do

(a) Update (xi; zi) by a move

(b) Form candidate contour, b(s), from other control points and new version

of (xi; zi)

(c) Generate estimates â; ĉ using current Ai;j (see (15))

(d) cost := J(b(s); â; ĉ) (see (9) and (13))

(e) If cost < current-cost

b
(k)(s) := b(s); current-cost := cost; [a(k); c(k)] := [â; ĉ]

(f) Elseif cost = current-cost

If b(s) is di�erent from all previous b(k)(s),

b
(k)(s) := b(s); [a(k); c(k)] := [â; ĉ]

� From [b(k)(s); a(k); c(k)] compute Ei;j and Ai;j for 1 � i � n1; 1 � j � n2

� Update [a(k); c(k)] using the new A
i;j

� current-cost := J(b(k)(s); a(k); c(k))

� k := k + 1

end while

Figure 2: Anomaly Recovery Algorithm
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Figure 3: True distributions, estimates, and boundary structures for example 1 (parameters given

in Table 2).

24



width, in cm.

de
pt

h,
 in

 c
m

.

ε
p
 obtained using the Born Iterative Method

−20 −15 −10 −5 0 5 10 15 20

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1

(a) Estimate of �p(r)

width, in cm.

de
pt

h,
 in

 c
m

.

σ
p
 obtained using the Born Iterative Method

−20 −15 −10 −5 0 5 10 15 20

0

5

10

15

20

0

2

4

6

8

10

12

14

16
x 10

−4

(b) Estimate of �p(r)

Figure 4: Born iterative results for example 1
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Figure 5: True distributions, estimates, and boundary structures for example 2 (parameters given

in Table 2).
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Figure 6: Born iterative results for example 2.
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Figure 9: True distributions, estimates, and boundary structures for example 3 (parameters given

in Table 2).
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Figure 10: True distributions, estimates, and boundary structures for example 4 (parameters given

in Table 2).
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Figure 11: True distributions, estimates, and boundary structures for example 5 (parameters given

in Table 2).
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Abstract

Photothermal depth pro�lometry is formulated as a non-linear inverse scattering problem.

Starting with the one dimensional heat di�usion equation, we derive a mathematical model

relating arbitrary variation in the depth-dependent thermal conductivity to observed thermal

wave�elds at the surface of a material sample. The form of the model is particularly convenient

for incorporation into a non-linear optimization framework for recovering the conductivity based

on thermal wave data obtained at multiple frequencies. We develop an adaptive, multi-scale

algorithm for solving this highly ill-posed inverse problem. The algorithm is designed to produce

an accurate, low order representation of the thermal conductivity by automatically controlling

the level of detail in the reconstruction. This control is designed to reect both (1) the nature

of the underlying physics which says scale should decrease with depth and (2) the particular

structure of the conductivity pro�le which may require a sparse collection of �ne scale compo-

nents to adequately represent signi�cant features such as a layering structure. The approach

is demonstrated in a variety of synthetic examples representative of non-destructive evaluation

problems seen in the steel industry.

Keywords: Adaptive signal representation, multiscale methods, B-splines, non-linear inverse

scattering, photothermal depth pro�ling.
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1 Introduction

One of the most promising applications of photothermal non-destructive evaluation (NDE)

technology is in the area of depth pro�lometry (DP) [4, 8{13]. This techniques uses a modulated

laser beam to induce thermal waves in a material sample with the resulting wave�eld amplitude and

phase measured at the surface. The experiment is repeated for a number of modulation frequencies

yielding a spectrum of observations. Assuming that the structure varies only with depth, the

problem is to convert the measured spectrum into a depth-varying pro�le of a relevant physical

property such as thermal conductivity [8], thermal e�usivity [9], or thermal di�usivity [10, 12, 13].

Considerable work has been done in developing physical models and algorithms based on these

models for reconstructing pro�les. All models reported in the literature are based on the one

dimensional, heat di�usion equation (HDE). In much of this work, the material is considered to be

composed of layers where the physical properties assume simple functional forms. For piecewise

constant layers, the HDE can be solved in terms of a recursively de�ned generalized reection

coe�cient [4, 9]. In the limit of in�nitesimally thin layers, the recursion converges to a non-linear

Ricatti equation. For �nitely thick, piecewise linear layers the solution is given via a di�erent

recursively de�ned reection coe�cient [8].

An alternate approach based on the notion of a thermal harmonic oscillator (THO) has been

pioneered by Mandelis and collaborators [11, 12]. Making a WKB approximation for variations of

the thermal e�usivity yields solutions to the HDE in terms of integrals of the thermal di�usivity.

Using a particular functional form for this pro�le, analytic expressions have been reported for a

semi-in�nite medium and a �nite depth inhomogeneity backed by a semi-in�nite substrate [10].

Each of these physical models has been used as the basis for an inversion algorithm. Under

suitable approximations (most notably, ignoring the non-linear term) the Ricatti equation model

reduces to a Laplace transform type relationship between the derivative of the log-e�usivity and
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the data [4, 9]. Tikhonov regularized, linear inversion methods are then used to determine the log

e�usivity [9]. While the details of the inversion methods for the piecewise constant and THO models

are di�erent, they both share a common structure in which the data are processed progressively

from high to low modulation frequencies. The higher frequencies are used to estimate the pro�le

structure in slices of the material closest to the surface while the lower frequency data provide

information concerning the deeper variations. For the piecewise constant pro�le method, the width

of these slices is determined a priori [8]. The THO method locally �ts pro�les of a prede�ned

structure to slices whose widths are determined adaptively as the algorithm progresses [10, 13].

We pursue a di�erent approach to the DP problem. Rather than considering solutions to the

HDE for speci�c pro�les or approximations to the physics, we employ a numerical implementation

of the HDE which allows for exact solutions (up to discretization error) for arbitrary pro�les. In

particular, it is not necessary to assume that the thermal conductivity is slowly varying. The price

for this exibility is increased computational complexity. Thus, we also introduce a highly e�cient,

non-linear approximation to the exact solution. For the problem of interest in this paper, we show

that this method, which is similar in nature to the Extended Born Approximation [5,18], is about

20 times faster than the exact model with a loss in accuracy close to machine precision.

The use of this physical model allows us to formulate the pro�le reconstruction process as a

non-linear inverse scattering problem in a highly lossy medium. Problems of this type are known

to be ill-posed in that small perturbations in the data can lead to large amplitude, non-physical

artifacts in a reconstruction. To stabilize the inversion process, one typically uses a regularization

procedure. Our previous e�orts in this �eld have included the use of wavelet-based regularization

techniques for two dimensional, single frequency, non-linear inverse scattering problems [14, 15].

The use of wavelets was motivated by analysis which indicated that a given level of accuracy

in a reconstruction required that the resolution in the estimated pro�le be space varying. The
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data and the physics supported �ne scale estimates in regions close to the detectors while coarser

scale information could only be recovered further into the material sample. Representation of the

unknown image using an orthonormal wavelet basis provided a convenient means of enforcing this

variable resolution. Regularization was achieved in part by concentrating the information in the

data on the recovery of a low order representation of the unknown comprised of relatively few �ne

scale wavelet coe�cients supplemented by a small number of coarse scale coe�cients

For the DP problem we build on this work using an alternate multiscale representation of the

unknown pro�le. Rather than an orthonormal basis of wavelets, we use a collection of spline func-

tions possessing a natural multiscale structure. Speci�cally, coarse scale elements can be expressed

as linear combinations of �ner scale splines [17]. By surrendering the orthonormality property of

wavelets, we have a more exible method for modeling the unknown pro�le.

As in [14] our inversion approach here is designed to produce a low order reconstruction in

which the distribution of �ne scale detail is determined in an automatic, controlled, and rational

manner. The precise method for accomplishing this, however, is substantially di�erent from our

previous wavelet related e�orts. Starting with a coarse scale set of functions, we iteratively re�ne

the reconstruction to (a) add detail and then (b) prune away unnecessary degrees of freedom to

obtain a more parsimonious description of the pro�le. The �nal estimate is comprised of functions

at many scales whose spatial distribution is dictated adaptively by the data and the physical model.

Like the results in e.g. [10] we tend to see �ne scale detail close to the surface with coarser scale

elements used deeper into the material. However, our approach involves no decomposition of the

material into slices (prede�ned or virtual). Unlike the techniques in [8, 10] where low frequency

data play no role in the structure of the reconstruction near the surface, here the data from all

frequencies impact the entire structure of the estimated pro�le.

In x4 we show that limiting the number of degrees of freedom in the reconstruction is useful
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for a number of reasons. First, the low dimensionality can lead to computational e�ciencies. We

demonstrate via numerical experiments that the adaptive algorithm can be substantially faster

than a brute-force, �ne scale reconstruction with little loss in accuracy. Additionally, our approach

can lead to better reconstructions. As described in greater detail in x3.1, inversion requires the

solution of a non-linear optimization problem and is thus prone to convergence to local minima of

an associated cost function. By constraining the reconstruction using our adaptive approach, we

show that it is also possible to converge to a lower cost point in solution space than is the case for

a high dimensional, �ne scale approach to inversion. Currently, we have observed these advantages

only through simulation. An area of work is in the development of a more rigorous theory to

understand the conditions where we might expect improved computational and/or reconstruction

performance.

The remainder of this paper is organized as follows. In x 2, the physical model is developed.

Our approach to inversion is provided in x 3. Here we formulate the basic problem in an inverse

scattering context, de�ne the spline functions, and describe the details of the adaptive algorithm.

In x 4 we present examples of this method. Conclusions and future work are the subject of x 5.

2 Formulation of the Depth Pro�lometry Problem

2.1 Continuous Formulation

The DP problem of interest in this paper is the reconstruction of the thermal di�usivity pro�le

based on observations of thermal waves obtained from illumination by a modulated laser source.

The starting point is the one dimensional HDE with boundary conditions stated as follows:

d

dz
�(z)

d

dz
T (z) � i!�(z)c(z)T (z) = 0 (1)

� �(z)
d

dz
T (z) =

1

2
Q z = 0 (2)

T (z) = 0 z !1 (3)
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where � is the thermal conductivity, � the density and c the speci�c heat. T (z) is the thermal

wave�eld, ! the angular modulation frequency, and Q the intensity of the laser light incident at the

surface which is taken to be at z = 0. An ei!t time dependence for the source and T is assumed.

To produce a form of the model useful in an inverse scattering context we start by decomposing

�(z) into the sum of a background component, �b(z), and a perturbation of arbitrary magnitude,

�p(z). Generally the background is taken to be a nominal pro�le such as a halfspace as in [8, 12]

or a well characterized material sample backed by air [10]. The goal of the inverse problem is the

reconstruction of �p(z)
1. Inserting � = �b + �p into (1), we write the overall model as

(Fb + Fp)T = v (4)

where we have de�ned the matrices of linear operators, Fb and Fp, and the source vector, v, as

Fb =

2
6666664

d
dz
�b(z)

d
dz
� i!�(z)c(z)

b0

b1

3
7777775

Fp =

2
6666664

d
dz
�p(z)

d
dz

0

0

3
7777775

v =

2
6666664

0

1

2
Q

0

3
7777775
: (5)

The linear operator b0 enforces the boundary condition, (2), and b1 implements (3).

We manipulate (4) to obtain a solution of the HDE in the form

T = (I + GbFp)
�1 Gbv (6)

with Gb � F�1b the Green's operator for the boundary value problem (1){ (3) with � = �b. Borrow-

ing from the inverse scattering literature, the �eld computed with �p = 0 is termed the background

�eld and is given as Tb � Gbv. The scattered �eld Ts � T � Tb is then

Ts = GbFpT = Gb
d

dz
�p

d

dz
T (7)

= GbFp (I + GbFp)
�1 Gbv: (8)

where (7) follows from the de�nition of Fp in (5) and (6) is used to obtain (8).

1In theory, the speci�cation of �b(z) is somewhat arbitrary as the algorithm is designed to produce a �p such that

�b + �p is as accurate as possible. However, making �p \small" through as precise a description of �b as is possible

does practically improve the convergence of the inversion.
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The goal of the DP problem is to recover �p from observations of Ts taken at z = 0 for multiple

modulation frequencies. In preparation for a description of the inversion algorithm in x 3, (7)

indicates that Ts(0) can be written as a linear functional of �p in which the functional explicitly

depends on Gb and dT=dz. Because T (z) itself is dependent on �p, the functional also implicitly

depends on the thermal conductivity. Thus letting yk be the complex value datum taken at the

kth frequency !k, we write

yk = ck(�p)�p (9)

where ck is the linear functional obtained from (7). In x 3.2 we provide a explicit formula for ck in

the context of a discretized model. The data vector comprised of yk for k = 1; 2; : : : ; Ny is

y = C(�p)�p (10)

with C being the column vector of ck's. The DP problem of interest in this work then is the recovery

of �p from knowledge of y as well as the HDE model.

2.2 Discretization

To implement a solution to the DP problem requires a discretized form of the physical model.

Here we use a standard �rst-order �nite di�erence scheme for the HDE in (1){ (3). The �eld T (z),

and the physical properties �(z), �(z) and c(z) are sampled on a uniform grid of spacing h. First

order di�erentiation w.r.t z then is represented using a bi-diagonal matrix, Dz, with 1=h on the

main diagonal and �1=h on the �rst super diagonal. For the homogeneous Neumann boundary

condition, (3), we set to zero the last element in the vector of samples for the �eld T where we ensure

that the boundary is taken far enough from the surface so that numerical artifacts are negligible.

To construct, the discrete form of the ck in (9), consider the expression for Ts in (7). Under the

discrete model we have

Ts;k = Gb;kDzD(�p)DzTk (11)

with Gb;k the matrix form of Green's operator for the k-th frequency, Tk the vector of samples of
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the thermal �eld and similarly for �p and Ts;k. For a vector x, D(x) is the diagonal matrix whose

(ii)th element is xi. After some tedious but elementary algebra, it is not hard to show that from

(11) we can write the surface value of the scattered wave�eld under the discretized model as

Ts(z = 0) = Gb;k(1; :)D(Tk)DzD(DzTk)�p � ck(�p)�p (12)

with Gb;k(1; :) being the �rst row of the matrix Gb. From (12) we conclude that the discrete

representation for the linear functional ck(�p) in (9) is the row vector Gb;k(1; :)D(Tk)DzD(DzTk).

The most computationally intensive part of this forward model is determination of the vector

Tk. From (6), the discretized form of this this calculation requires the solution of the linear system

(I +Gb;kFp)Tk = Gb;kv: (13)

Because the inversion algorithm requires systems of this form be solved hundreds if not thousands

of times, there is signi�cant motivation for seeking accurate approximations to the determination

of Tk. The similarity of the DP problem to inverse electrical conductivity problems found in the

geophysical community, lead us to consider a so-called Extended Born Approximation (EBA) to

(13). A detailed theoretical treatment of this method may be found in [5, 18]. The practical

implementation of the EBA for our problem amount to replacing the full matrix I+Gb;kFp by only

its diagonal elements thereby greatly reducing the number of operations need to determine Tk. In

x 4, we provide experimental veri�cation of both the accuracy and e�ciency of this method.

3 A Scale-Adaptive Algorithm for the DP Problem

We start by considering the �xed-scale solution to the DP problem in which we seek to recover

�p directly from the data. The machinery developed here then forms the basis for the adaptive

method developed later in this section.

3.1 The Fixed-Scale Solution

As is typically done for an inverse problem of the type considered here [15, 16, 18], we use our

discretized model to de�ne the estimate of �p as the solution to the following regularized least
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squares cost function:

�̂p = argmin
�p

ky � C(�p)�pk
2
2 + �2kDz�pk

p
p: (14)

The �rst term in (14) ensures that the estimate is consistent with the data. The second term plays

the role of a regularizer and is used to help combat the ill-posedness. By varying p in the range

1 to 2 one can control the smoothness in the reconstruction. For p = 2, one obtains a traditional

smoothness regularizer. As p approaches 1, the regularizer is more encouraging of forming pro�les

which have edges or other sharp discontinuities as might be found in certain NDE applications.

With p = 1, one has a total variation (TV) regularization scheme [7, 19].

The regularization parameter, �, in (14) determines the relative importance of the two terms

on �̂p. As �! 0, we demand that �̂p just �t the data. As mentioned in x 1, the resulting estimate

tends to display high frequency, large amplitude artifacts. On the other hand, as �!1, the data

play a limited role in inuencing �̂p and we obtain overly smooth estimates. Proper selection of

this parameter is a non-trivial problem [1, 6]. In this paper, we set � by trial and error.

To solve (14) we start by writing kDz�pk
p
p = g(�p)

T g(�p) with g the vector whose ith element

is [Dz�p]
p=2
i . Thus (14) is formulated as a non-linear least squares optimization problem:

�̂p = argmin
�p

eT (�p)e(�p) (15)

e(�p) =

2
664
y � C(�p)�p

�g(�p)

3
775 (16)

Eq. (15) is solved using the leastsq routine provided in Matlab's Optimization Toolbox. For a

given �p this program requires the ability to evaluate the RHS in (15) and a method for computing

the Jacobian of the vector e in (16) with respect to each element of �p. The cost evaluation is done

using the equations developed in the previous section. We approximate the Jacobian, J , as

J =

2
664
�C(�p)

@g
@�p

3
775 : (17)
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After some straightforward calculus, it is not hard to show that

@g

@�p
=

p

2
D (g)�p=2D (sign(g))Dz

with sign(g) the vector whose ith element is the signum of gi. Note that in (17) we ignore the

dependence of C on �p. This is the primary motivation for formulating the physical problem in the

manner of x2. This approximation is closely related to the Born Iterative Method [2] for problems

in which the �c product in (1) is to be recovered rather than �.

3.2 Adaptive Multiscale Inversion

As discussed in x1, a key issue of interest in this paper is the determination of a low order,

multiscale representation for the vector �p as a means of reducing the complexity of the inversion

process and improving the quality of the ultimate reconstruction by \appropriately" distributing

�ne scale information. To achieve this, we constrain �p to live in the linear span of a set of vectors

where we adaptively determine both the vectors and the required expansion coe�cients. Formally,

we consider representation of �p of the form

�p =

NbX
i=1

biai = Ba (18)

where bi is the ith vector, ai the expansion coe�cient, B the matrix whose ith column is bi, and a

the vector of ai. Note that a is of length Nb.

Using (18) and (15), the determination of �̂p now reduces to the estimation of the ai via

â = argmin
a

eT (Ba)e(Ba) = argmin
a

ke(Ba)k22 (19)

where e(Ba) is (16) evaluated at the vector �p = Ba. Letting N be the length of �p, then typically

we have Nb << N so that (19) is a far smaller optimization problem than (15). In the remainder

of this section, we describe the family of vectors used in our approach as well as the methods we

have developed to adaptively determine those bi to include in �̂p.

The bi vectors are sampled versions of a family of continuous functions which satisfy the following
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two scale dilation equation [17]

b(z) =

Nk�1X
k=0

�kb(2z � k): (20)

In words, (20) says that the function b can be expressed as a linear combination of dilated and trans-

lated versions, b(2z�k), of itself. While speci�cation of the coe�cients �i can lead to many functions

which satisfy (20), including wavelets, here we are concerned with B-splines [17, Chap. 7.4]. For

example, with �0 = �1 = 1, the b(z) satisfying (20) is nothing more than the box function from

z = 0 to z = 1. Such zeroth order splines form a basis for piecewise constant functions. With

�0 = �2 = 1 and �1 = 2, we obtain a hat function, or �rst order B-spline, which is piecewise linear.

Here we employ piecewise quadratic B-splines generated using �0 = �3 = 1 and �1 = �2 = 3.

In Figure 1, we illustrate these functions on two spatial scales: a coarse scale at the top and a

�ner scale at the bottom. Note that the relative spacing of the spline functions is proportional to

their width. Additionally, because these functions satisfy (20), wide functions on one scale can be

expressed as linear combinations of narrow functions on the next scale. For example, the highlighted

element shown at the top of Figure 1 can be decomposed via (20) in terms of the �ne scale functions

in the bottom panel. We represent the relationship among these functions using a graph as shown

in Figure 2. The nodes in the graph represent the functions (or associated expansion coe�cients)

and the edges indicate the links from one scale to the next.

We make use of the non-linear least squares formulation of x 3.1 and the functions de�ned

above to obtain a reconstruction of �p using the algorithm outlined in Fig. 3. We start with a low

order, coarse scale collection of quadratic B-splines. With these bi, we estimate a set of expansion

coe�cients to get a rough �̂p. The remainder of the algorithm is a loop where the current collection

of vectors is alternately re�ned and then unneeded detail is pruned away. The goal is to provide

su�cient exibility to add arbitrary detail to �̂p followed by a stage in which we determine which, if

any, degrees of freedom associated with this detail were warranted. Those not needed are removed.
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While one might consider many methods to accomplish this objective, in the following paragraphs,

we detail an approach which we have found to work well at least for the DP problem.

In the re�nement stage, we replace all bi in our representation of �̂p by their �ner scale children
2.

This allows for the recovery of �ner scale information at the expense of a higher order representation.

Once the new collection of vectors is constructed, we solve for a new vector of expansion coe�cients

to produce a �ner scale estimate of �p. While this requires the solution of a new non-linear

least squares problem, the coarse scale estimate is used to initialize the �ner scale reconstruction

procedure to speed convergence. Speci�cally, the ai for each child is initialized using the average of

the previously generated parent estimates. From Figure 2, assume that vectors 3-8 had just been

replaced by 9-22. Then, e.g., the initial values for a13 and a14 would both be a4+a5
2

.

After re�ning the estimate, we next remove unnecessary detail. The goal here is to reduce the

complexity of the model by

� Coarsening Replacing �ne scale children with their parents in regions where such detail is

not warranted

� Pruning Removing from the representation vectors which contribute little to �̂p

Coarsening is done in a sequence of steps in which limited detail is removed at each stage until

we can no longer represent the current estimate of �p to within some predetermined tolerance. A

similar procedure is carried out for pruning except that we remove from the estimate in a one-

by-one manner vectors whose jaij are small. The result is a lower order model which is a \small"

perturbation of the optimal estimate computed from the previous optimization step.

As illustrated in Fig. 4, we begin coarsening by looking for all collections vectors in our current

B matrix which represent a complete set of children for a given parent. For example, in Figure 2,

vectors 13-16 are a complete set of children for 5. For each such children-parent set, we consider

2Obviously, those bi already at the �nest scale are not re�ned.
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a new collection of vectors obtained by replacing those �ne scale children with all of their coarse

scale parents keeping the remaining members of the current collection the same. Again, referring

to Figure 2 suppose that the current B matrix was comprised of vectors 9-22. One set of vectors

considered by the pruning process would be 9{12, 4{6, and 17{22. Here 13{16 are removed and

replaced by all relevant parents, in this case 4, 5, and 6. Another possible con�guration is 9, 10,

3{5, and 15{22 where 11{14 are replaced by 3{5.

This replacement strategy yields some �nite number of possible sets of vectors for representing

�p with each set having fewer members than the current one. To determine which, if any collection

is selected, we project �̂p onto the linear span of the vectors in each set. Let Bi be the matrix

constructed from one such coarse set of vectors. The projection, �̂p;i, is computed as �̂p;i = BiB
y

i �̂p

where B
y

i is the pseudo-inverse of Bi [3, p. 243]
3. As explained in Appendix 6, to evaluate the

utility of �̂p;i it is useful to compute a weighted error, kJ(�̂p� �̂p;i)k where J is given in (17) and is

evaluated at �̂p. If the minimum weighted error over all i is less than some threshold, we replace the

�ne scale collection with the elements from the new, coarsened set, otherwise we stop. If we do not

stop, then the pruning process is repeated. Speci�cally, if B�

j denotes the selected set, we replace

children in B�

j by parents again using the relative norm criteria just described. If the minimum

error still is not too small, B�

j is replaced by a new, smaller set and the process continues.

To do pruning, we start by removing from the �nal set of vectors produced by coarsening that

vector whose jaij is smallest. As is done in pruning, we look at the weighted error between �̂p and

its projection onto the remaining vectors. If this error exceeds a threshold, then we stop, otherwise,

the procedure continues using the expansion coe�cients associated with this projection.

After pruning is �nished, we pass the new collection of expansion vectors into the non-linear

3Because we allow Bi to contain B-spline vectors at multiple scales and arbitrary dyadic shifts, it is possible that

elements of Bj will be linearly dependent hence the need to use a pseudo-inverse. Both theoretically and practically

this linear dependence causes no di�culty for the algorithm in this paper.
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least squares solver to obtain the best estimate of the conductivity using this coarsened set. Again,

another optimization is performed. As described in the previous paragraphs however, the pruning

process yields a low order collection of vector which still supports an accurate approximation of �̂p.

Thus, it is reasonable to assume that the set of optimal expansion coe�cients should be close to the

coe�cients obtained by projecting �̂p onto the coarse set. Throughout our numerical experiments,

we have found that initializing in this way does in fact lead to rapid convergence of the non-linear

least squares routine for this stage of the algorithm.

This re�nement-pruning loop is continued until the relative di�erence of the two-norm between

estimates produced at the end of two successive pruning stages is below some threshold. We note

that this approach does not guarantee a monotonic decrease in the cost function as we change

the vectors in B. Indeed, we have seen in our experiments that the optimal �p obtained after a

coarsening/pruning step can have a higher cost than the previous �̂p comprised of a larger number

of expansion vectors. As examined in Appendix 6 however, the choice of weighted error criteria for

accepting a coarsened or pruned collection of vectors is constructed in a way to limit the resulting

rise in cost. Thus, while the cost may increase, we guarantee that this increase is bounded.

4 Examples

Here we consider the performance of our inversion approach on a variety of pro�les. The

background is meant to model case hardened steel as in [8] so �b = 0:45 W cm�1 K�1, � = 7:7 g

cm�3, and c = 0:48 J g�1 K�1. In all cases depth pro�les are constructed for z between 0 and 400

�m from the surface based on thermal wave data from 16 logarithmically spaced frequencies in the

range 10 to 10000 s�1. The signal to noise ratio on Ts is taken to be 30 dB.

Over the 400 �m range of interest, we discretize the forward model on a grid of 256 equally

spaced points corresponding to an interpoint spacing of about 1:57 �m. All data vectors are
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generated using the exact, discretized forward model while the inversion algorithm makes use of

the EBA-type model described at the end of x2.2. For all examples, �,the tolerance parameters used

in the coarsening and pruning stages was 1e � 4 The threshold used to terminate the re�nement-

pruning loop was 5%. In all cases, � = 1 (this value was determined by trial and error) and the

reconstruction algorithms were initialized with zero for the perturbation. Finally, there were a total

of �ve scales worth of B-spline functions that could be used in the construction of �̂p.

A Monte-Carlo analysis was used to evaluate the Extended Born Approximation to the true

scattering model. We started by generating 100 random �p pro�les via

�p =

17X
i=1

aibi

where the bi are a collection \mid-scale" B-splines shown in Figure 5(a) and the ai were taken to be

zero mean, independent Gaussian random variables with standard deviation 204. The goal here was

to produce pro�les which were not merely small perturbations on the background. Some samples

are shown in Figure 5(b). For each pro�le, we solved the forward problem using the exact method

and the EBA. Over the 100 trials, the average relative error between the exact and approximate

data vectors was about 10�13 while the EBA required about 18 times fewer oating point operations

than the exact model. Thus, for the problems of interest here, the EBA represents a highly e�cient,

essentially exact solver for the HDE.

We start be examining the performance of our approach for a pro�le with a layer-like inclusion

shown as the solid line in Figure 6(a). To gauge the average performance in the presence of noise, in

this and the next example, we performed the inversion ten times for ten di�erence realizations of the

additive disturbance. In Figure 6(a) the dashed line is a plot of the average reconstruction for the

adaptive method while the results of inverting using the �nest scale grid of 256 points are given by

the dashed-dot line. Here we set p = 1:1 in (14) to obtain an edge-preserving type of regularization.

4Too keep � positive, we set to zero any values of �p < 45, where 45 is the background thermal conductivity.
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In practice it would be necessary to also develop a method for choosing this quantity; however for

the sake of simplicity, as with �, we assume that p is known a priori.

Figure 6(a) shows that, on average, the results of using the adaptive approach are comparable to

those of a �xed, �ne scale inversion. For the adaptive method, the peak value of the reconstruction

is slightly closer to that of the true pro�le. However, for the �xed scale method, the average

reconstruction is slightly atter over the region of the layer. The average mean square error between

the two methods di�ered by about 1% with the �ne scale case having smaller average error.

As stated in the Introduction, one of the potential advantages of the adaptive method over

a �xed scale inversion is computational. To explore this issue, we \instrumented" the leastsq

procedure to collect statistics of the inversion process. For one of the ten runs in Figure 6(b) and

(c), we plot the value of the cost function and the value of the error against the number of times

the inversion routine made a call to evaluate the cost. Since cost evaluation requires the evaluation

of the HDE model which is the most computationally intensive step in the process, the number of

times the cost function is called is a valid measure of the complexity of the inversion procedure.

Also, for the adaptive approach, the plot displays the cost and error for all re�nement-pruning

stages of the algorithm and thus is an accurate portrayal of the complexity of the entire routine.

We observe from Figure 6(b) and (c) that the adaptive method converges at a faster rate than

the �ne scale method. Thus, while the two method converge essentially to the same pro�le, by

constraining the inversion, we get closer to the �nal result faster. We note that this behavior was

true in general for all ten runs. Moreover, because the adaptive approach required fewer unknowns,

for this problem, signi�cantly fewer oating point operations were needed. The average number

of unknowns in the �nal reconstruction over the ten runs was about 19 for the adaptive approach

versus 256 for the �ne scale method. Reduction in the size of the inverse problem translated into a

oating point count that was about 2.86 times smaller for the adaptive method than the �xed scale
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inversion. Thus, for this problem, the adaptive method produces essentially the same reconstruction

as a �xed scale technique at a signi�cantly reduced level of complexity.

In addition to this quantitative advantage, the adaptive inversion also yields interesting quali-

tative results. By examining which vectors are used in the reconstruction, we see that the adaptive

approach placed limited detail precisely where it belongs in a reconstruction using fewer, coarser

scale vectors where �p varies more slowly. Indeed, Figure 6(a) indicates that for both �xed and

adaptive inversions, the edge closer to the surface is recovered more accurately than the edge deeper

into the medium. For the same run used to produce the graphs in Figure 6, we show in Figure 7(a)

the individual vectors which contribute to the �nal adaptive reconstruction. We see in particular

that most of the �ne scale detail is distributed near the leading edge with wider, coarser scale

vectors used for much of the remainder of the reconstruction. This point is further highlighted in

Figure 7(b) where we plot as a function of depth, the �nest scale in the reconstruction. Speci�cally,

at each point, z, there may be a number of vectors whose support includes this point. Figure 7(b)

then shows the scale of the �nest vector having support at each position. Larger numbers imply

�ner scale and for these examples, there are 5 scales of B-splines which may be used.

Typically, for a di�usive inverse problem of the type considered here, physical intuition dictates

that the level of detail decreases as a function of increasing depth due to the heavy damping of

the thermal waves. While this may be true in general, it also ignores the fact that one may want

limited �ne scale detail to support the reconstruction of important sharp features (e.g. edges) which

may be present in the pro�le. The results in Figure 7 demonstrate that the algorithm described in

this paper is capable of adapting the detail in the reconstruction in a way which reects both the

underlying physics as well as the structure of the particular pro�le. The general trend is a decrease

in resolution as a function of depth; however, we see an increase in the level of detail speci�cally

in the neighborhood of the edge. Thus, to obtain the shaper pro�le, the algorithm automatically
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chooses to distribute some �ne scale degrees of freedom near the feature of import.

In Figs. 8 and 9, we examine the results of the method represented in this paper for a smoother

pro�le. For this analysis, we set p = 2 in (14) to obtain a more standard smoothness type of

regularizer. The results here indicate a di�erent advantage the adaptive method may have with

respect to a �xed, �ne scale inversion. Figure 8 shows that over the ten runs used to evaluate

the performance of the algorithm, on average the �xed scale approach converges to a far from

global minimum of the cost function. Alternatively, by constraining the search space, the adaptive

inversion routine essentially settles into a lower cost local minimum which is also of much lower

error. The convergence curves for one of the runs shown in Figure 8(b) and (c) provide further

evidence of this behavior. For this problem, despite the fact that the adaptive approach uses on

average about 11 vectors, approximately 16% more oating point operations are required versus

the �nest scale inversion. Thus, in contrast to the �rst example, here we see a slightly higher

computational cost producing a signi�cantly improved reconstruction.

Finally, in Figure 9, the constituent components of the one of the ten �nal reconstructions are

displayed. We see here that the absence of an edge or other sharp feature in �p has resulted in

coarser scale vector being used here relative to those in Figure 7. Generally, the trend is one of

decreasing resolution as a function of depth.

5 Conclusions and Future Work

We have described an inverse scattering type of approach to the photothermal depth pro�lom-

etry problem. Using the heat di�usion equation as the basic physical model, a measurement model

is derived based on a decomposition of the thermal conductivity into the sum of a background

component and an arbitrary sized perturbation. The physical model is cast in a form appropriate

for use in a regularized, iterative inversion scheme. We have presented an accurate, low complexity
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approximation to the exact HDE model having the form of an Extended Born Approximation.

We have introduced and explored the performance of an inversion technique designed to focus

the information in the data on a small number of carefully selected degrees of freedom. Speci�cally,

we have made use of multiscale, B-spline functions to construct an adaptive algorithm in which the

presence of �ne scale detail in the reconstruction is carefully controlled. The algorithm is based

on an iterative loop in which the current set of vectors is �rst re�ned, to allow more detail, and

subsequently pruned, to remove unwarranted degrees of freedom. The utility of this approach

has been demonstrated on a number of simulated examples representative of applications of this

technology to the non-destructive evaluation of case hardened steel. We plan on testing this method

on experimental data in the near future.

In comparing the adaptive method to a �xed, �ne scale inversion we have seen two types of

behavior. For one problem the two approaches produce essentially the same reconstruction but the

computational cost of the adaptive method is far smaller than that of the �xed scale technique.

Alternatively, for a second problem, the adaptive method was shown to converge to a far lower

cost of the optimization function; however the price paid for this improved performance was about

a 20% increase in complexity. One important objective in the future is to develop a theoretical

understanding of the circumstances (classes of pro�les, noise conditions, sensing system parameters,

etc.)under which one might expect one of these two types of performance.

6 Appendix 1

Because the basis coarsening and pruning steps remove degrees of freedom from the represen-

tation of �̂p, it is possible value of the cost function will rise after these procedures. The objective

of this appendix is to derive a method for accepting a coarsened set of vectors which guarantees

that the relative rise in cost is no larger than some prede�ned threshold.
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Referring to (15) we de�ne F (�p) as eT (�p)e(�p). Let us assume that we have a �ne scale

estimate, �̂p which we wish to coarsen. Because �̂p is by de�nition a solution to the non-linear least

squares optimization problem for some B, a second order Taylor expansion of F about �̂p yields []

F (�̂p + �) � F (�̂p) + 1=2�TH� (21)

where H is the Hessian of the cost function. Since � is small, the Hessian is well approximated by

JTJ [] with J the Jacobian of e evaluated at �̂p. Thus, after some algebra we write the relative

change in cost due to a perturbation � from �̂p as

F (�̂p + �)� F (�̂p)

F (�̂p)
�

kJ�k22
2F (�̂p)

: (22)

From x 3.2, for the coarsening problem, � = �̂p � �̂p;i. Thus, to ensure that the relative change in

the cost rises by at most �, we require that kJ(�̂p � �̂p;i)k
2
2 < 2�F (�̂p).
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8 Figure Captions
� Fig. 1: Examples of quadratic B-spline functions on two spatial scales

� Fig. 2: Graphical representation of multiscale B-spline vectors. Nodes on one horizontal

level represent vectors or their associated expansion coe�cients at a given scale. Links from

one node to the next indicate cross-scale dependencies induced by the underlying two scale

dilation equation, (20). Coarse scales are at the top with �ner scales at the bottom.

� Fig. 5: In (a) we plot the B-spline vectors used to generate pro�les for the testing of the

EBA. A few samples of the resulting pro�les are shown in (b)

� Fig. 6: Reconstruction performance and convergence behavior for adaptive method and �xed,

�nest scale approach for a layer-like pro�le. In (a), the average reconstructions taken over 10

noise realizations at 30 dB is compared to the true pro�le. For one of these runs, (b) and (c)

demonstrate the improved convergence behavior typically exhibited by the adaptive method.

� Fig. 7: Reconstruction (a) and �nest scale distribution (b) for the adaptive inversion method

for layer-like pro�le.

� Fig. 8: Reconstruction performance and convergence behavior for adaptive method and �xed,

�nest scale approach for a smoothly varying pro�le. In (a), the average reconstruction taken

over 10 noise realizations at 30 dB is compared to the true pro�le. For one of these runs, (b)

and (c) demonstrate the convergence behavior of the two methods.

� Fig. 9: Reconstruction (a) and �nest scale distribution (b) for the adaptive inversion method

for smooth pro�le.
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Figure 1: Examples of quadratic B-spline vectors on two spatial scales
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Figure 2: Graphical representation of multiscale B-spline vectors. Nodes on one horizontal level

represent vectors or their associated expansion coe�cients at a given scale. Links from one node to

the next indicate cross-scale dependencies induced by the underlying two scale dilation equation,

(20). Coarse scales are at the top with �ner scales at the bottom.

Basic Inversion Algorithm

INITIALIZE
B := coarse set of B spline functions

â := argmina ke(Ba)k
2
2

�̂p := Bâ

done := false

LOOP

while (done == false)

FIRST REFINE

Bfine := re�ne(B)

âfine := argmina ke(Bfinea)k
2
2

�̂p;fine := Bfineâfine
F := ke(Bfineâfine)k

2
2

J := Jacobian of e evaluated at �̂p

NEXT COARSEN

Bcoarse := coarsen(Bfine; �̂p;fine; F; J; threshold)

FINALLY PRUNE

Bprune := prune(Bcoarse; �̂p;fine; F; J; threshold)

âprune := argmina ke(Bprunea)k
2
2

�̂p;prune := Bpruneâprune

CHECK TO SEE IF WE ARE DONE

if k�̂p � �̂p;prunek
2
2=k�̂pk

2
2 > threshold

B := Bprune

�̂p := �̂p;prune
else

done := true

end if

end while

Figure 3: Pseudo-code for Inversion Algorithm
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Coarsening Algorithm

B := prune(Bin; �̂p; F; J; threshold)

INITIALIZE

B := Bin

done := false

LOOP while (done == false)

for i = 1; 2; : : : number of ways to generate coarsened versions of B

Bi := ith valid coarsened version of B

�̂p;i := BiB
y

i �̂p
errori := kJ(�̂p;i � �̂p)k

2
2

if mini errori < 2F threshold

i� := argmini errori
B := Bi�

else

done := true

end if

end for

end while

Figure 4: Pseudo-code for Coarsening Algorithm
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Figure 5: In (a) we plot the B-spline vectors used to generate pro�les for the testing of the EBA.

A few samples of the resulting pro�les are shown in (b)
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Figure 6: Reconstruction performance and convergence behavior for adaptive method and �xed,

�nest scale approach for a layer-like pro�le. In (a), the average reconstructions taken over 10 noise

realizations at 30 dB is compared to the true pro�le. For one of these runs, (b) and (c) demonstrate

the improved convergence behavior typically exhibited by the adaptive method.
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Figure 7: Reconstruction (a) and �nest scale distribution (b) for the adaptive inversion method.
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Figure 8: Reconstruction performance and convergence behavior for adaptive method and �xed,

�nest scale approach for a smoothly varying pro�le. In (a), the average reconstruction taken over

10 noise realizations at 30 dB is compared to the true pro�le. For one of these runs, (b) and (c)

demonstrate the convergence behavior of the two methods.
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A shape reconstruction method for electromagnetic

tomography using adjoint �elds and level sets

Oliver Dorn� Eric L. Miller� Carey M. Rappaport �

March 20, 2000

Abstract

A two-step shape reconstruction method for electromagnetic (EM) tomog-

raphy is presented which uses adjoint �elds and level sets. The inhomogeneous

background permittivity distribution and the values of the permittivities in

some penetrable obstacles are assumed to be known, and the number, sizes,

shapes, and locations of these obstacles have to be reconstructed given noisy

limited-view EM data. The main application we address in the paper is the

imaging and monitoring of pollutant plumes in environmental cleanup sites

based on cross-borehole EM data. The �rst step of the reconstruction scheme

makes use of an inverse scattering solver which �rst recovers equivalent scat-

tering sources for a number of experiments, and then calculates from these an

approximation for the permittivity distribution in the medium. The second step

uses this result as an initial guess for solving the shape reconstruction problem.

A key point in this second step is the fusion of the 'level set technique' for

representing the shapes of the reconstructed obstacles, and an 'adjoint �eld

technique' for solving the nonlinear inverse problem. In each step, a forward

and an adjoint Helmholtz problem are solved based on the permittivity distri-

bution which corresponds to the latest best guess for the representing level set

function. A correction for this level set function is then calculated directly by

combining the results of these two runs. Numerical experiments are presented

which show that the derived method is able to recover one or more objects with

nontrivial shapes given noisy cross-borehole EM data.

�Center for Electromagnetics Research, Northeastern University, Boston, MA, E-mail:

dorn@cer.neu.edu, elmiller@ece.neu.edu, rappaport@neu.edu
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1 Introduction

In this paper, we investigate the retrieval of an unknown number of penetrable

objects (inclusions) imbedded in an inhomogeneous background medium based on

observations of electromagnetic (EM) �elds. The electromagnetic characteristics

(permittivity and conductivity) of the background medium as well as of the ma-

terial forming the inclusions are assumed to be known, but the main topological

information concerning the number, sizes, shapes, and locations of the inclusions is

missing and has to be reconstructed from the EM data.

One possible technique for using EM �elds in cross-borehole tomography is Elec-

troMagnetic Induction Tomography (EMIT) [3, 18, 44, 49, 50, 51] which typically

operates at frequencies between 1 to 20 kHz. In this frequency band, electromagnetic

�elds tend to di�use rather than propagate as waves through the Earth. Penetration

depths of 100 m or more are possible at these low frequencies, but the di�usional

behavior of the �elds makes the inverse problem severely ill-posed.

However, if the typical distances in the area of interest are not much larger than

10-20 m, we can use EM �elds in the higher frequency band of 5 to 30 MHz instead.

The wavelengths of these �elds are typically between 2-15 m in moist soil, where

the relative dielectric constant is typically around 20 [48]. Therefore, we can make

use of wave propagation phenomena in the inversion process. In the present paper,

we address this situation. The main application we have in mind is the imaging and

monitoring of pollutant plumes at environmental cleanup sites given cross-borehole

EM data, where the distances of the boreholes are not much larger than 10-20 m.

We assume that the known conductivity distribution is positive but small every-

where, and that the permittivity distribution in the medium has to be recovered.

Inside the pollutant plumes, the permittivity is assumed to be constant with a known

value, and the background permittivity is arbitrary but also known. Therefore, the

task is to �nd the number, shapes, sizes and locations of the pollutant plumes from

cross-borehole data gathered for a small number (less than 10) of frequencies. No
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topological constraints are made on the shapes of these plumes. For example, they

are allowed to be multiply connected, and to enclose 'cavities' or 'holes' �lled with

background material.

The main di�culties which arise in this situation are 1.) We want to allow for

an (arbitrary) inhomogeneous background permittivity distribution in the inversion;

2.) The inverse problem is usually strongly nonlinear because of the high contrast

of the permittivity values inside the plumes to the background medium; 3.) The

data in our application are typically noisy and have only limited view; and 4.) The

number of the plumes is typically unknown, and their shapes can have a complicated

geometry.

In this paper, we propose a new shape reconstruction method which works in a

two-step fashion in order to overcome these di�culties.

The �rst step of this combined inversion scheme plays the role of an initializing

procedure for the second step, and employs a 'source-type' inversion method (which

is described in more details in section 5) to deal with the high nonlinearity in the

problem due to the presence of strong scatterers.

Then, the second step directly starts with the outcome of this initializing pro-

cedure, and continues by using a combination of the 'adjoint �eld technique' and a

level set representation of the shapes until the inversion task is completed. Using

a level set representation in this second step enables us to easily describe and keep

track of complicated geometries which arise during the inversion process.

Both steps use an 'adjoint �eld technique' for the inversion which has the very

useful property that the inverse problem can be solved approximately by making

two uses of the same forward modelling code. Using a somewhat oversimpli�ed de-

scription of our technique, the updates to the level set function are obtained by �rst

making one pass through the code using the permittivity distribution corresponding

to the latest best guess of the level set function, and then another pass with the

adjoint operator applied to the di�erences in computed and measured data. Then

the results of these two calculations are combined to determine updates to the level

set function. The resulting procedure is iterative, and can be applied successively

to parts of the data, e.g., data associated with one transmitter location and one

frequency can be used to update the model before other transmitter locations and

other frequencies are considered. This general procedure has several of the same ad-

vantages as wave equation migration in reection seismology [10] and is also related

to recent methods in EM migration introduced in Zhdanov et al. [51]. A similar

technique has been successfully applied recently as part of an iterative nonlinear

inversion scheme in [17, 18, 33].

The level set method was originally developed by Osher and Sethian for describ-
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ing the motion of curves and surfaces [35, 41]. Since then, it has found applications

in a variety of quite di�erent situations. Examples are image enhancement, com-

puter vision, interface problems, crystal growth, or etching and deposition in the

microchip fabrication. For an overview we refer to [42].

The idea of using a level set representation as part of a solution scheme for

inverse problems involving obstacles was �rst suggested by Santosa in [40]. More

recently, a similar method was applied to a nonlinear inverse scattering problem by

Litman et al. in [28]. In that work, an inverse transmission problem in free space is

solved by a controlled evolution of a level set function. This evolution is governed

by a Hamilton-Jacobi type equation, whose velocity function has to be determined

properly in order to minimize a given cost functional.

The approach developed here does not lead to a Hamilton-Jacobi type equation.

We follow an optimization approach, and employ a very speci�c inversion routine (an

adjoint �eld technique) for solving it. This has the advantage that we do not have to

propagate the level set function explicitly by computing a numerical Hamiltonian.

Instead, our inversion routine provides us in each step with an update that has to

be applied directly to the most recent level set function. Doing so, we automatically

'propagate' the level set function until the method converges.

This gain in simplicity, however, has its price. In order to arrive at an e�cient

scheme which is practically useful as well as easy to implement, we will apply some

suitable approximations when deriving the algorithm. We will point out and discuss

these approximations in those sections of the paper where they are applied.

For interesting approaches to solving shape recovery problems in various applica-

tions we refer to [23, 24, 26] and to the references therein. For alternative approaches

to the shape reconstruction method in geophysical applications see [30, 39, 43] and

the references therein. The treatment of more general inverse scattering problems

is for example addressed in [4, 8, 11, 12, 15, 22, 31, 33, 38].

The paper is organized as follows. In section 2 we will present the basic equations

of 2D EMs in a form convenient for development of the shape reconstruction tech-

nique. In section 3 we formulate the shape reconstruction problem and introduce

the level set formulation of this problem. In section 4, we derive the basic shape

reconstruction algorithm using level sets and adjoint �elds. Section 5 describes how

to calculate a suitable initialization for the shape reconstruction algorithm. In Sec-

tion 6 numerical experiments are presented which demonstrate the performance of

the algorithm in di�erent situations. The �nal section summarizes the results of this

paper and indicates some directions for future research.
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2 The physical experiment

2.1 The Helmholtz Equation

We consider the 2D Helmholtz Equation

�u+ k2(x)u = q(x) in IR2; (1)

with complex wavenumber

k2(x) = !2�0�0

�
�(x) + i

�(x)

!�0

�
: (2)

Here, i2 = �1, ! denotes the angular frequency ! = 2�f , �0 is the magnetic

permeability in free space �0 = 4� � 10�7 Henrys per meter, �0 is the dielectric

permittivity in free space �0 = 8:854 � 10�12 Farads per meter, � is the relative

dielectric permittivity (dimensionless), and � is the electric conductivity in Siemens

per meter. The form of (2) corresponds to time-harmonic line sources ~q(x; t) which

have a time-dependence ~q(x; t) = q(x)e�i!t. For these sources we require that there

exists a radius r0 > 0 such that supp(q) �� Br0
(0), where Br(x) = fy 2 IR; jx�yj <

rg denotes the open ball centered in x with radius r > 0. For simplicity we assume

throughout the paper that we can �nd a ball BR(0) with R > r such that the

complex wavenumber k2(x) is constant with value k20 in IR2nBR(0), and that for this

k0 the �eld u generated by (1) satis�es the Sommerfeld radiation condition

lim
r!1

p
r

�
@u

@r
� ik0u

�
= 0 (3)

with r = jxj where the limit is assumed to hold uniformly in all directions x=jxj.
With this assumption, the problem (1)-(3) possesses a uniquely determined solution

u in IR2 [12].

Furthermore we will consider in this paper only the case that the conductivity

is positive everywhere, � > 0 in IR2, and that it is small in some sense which will be

speci�ed later. Typical values in our geophysical examples will be � � 10�3 � 10�4

Siemens per meter or less [48].

We want to introduce some notation here which will be useful in the following.

We denote the wavenumber k2(x) in short form by

k2(x) = �(x) = a�(x) + ib�(x); a = !2�0�0; b = !�0: (4)

We only consider positive frequencies ! > 0 such that a; b > 0.
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2.2 Formulation of the inverse problem

We assume that we are given p di�erent source distributions qj, j = 1; : : : ; p. For

each of these sources, data are gathered at the detector positions xd, d = 1; : : : ;Dj ,

for various frequencies fk, k = 1; : : : ;K. The total number of receivers Dj , as well

as their positions xd, might vary with the source qj. We assume, for simplicity in the

notation, that these positions do not depend on the frequency fk. This restriction

is, however, not necessary for the derivation of the inversion method. We require

that there exists a radius r1 > 0 such that all receiver positions are inside the ball

of radius r1, i.e. xjd 2 Br1
(0) for all d = 1; : : : ;Dj , j = 1; : : : ; p.

For a given source qj and a given frequency fk we collect a set of data ~Gjk which

is described by

~Gjk =
�
~ujk(xj1); : : : ; ~ujk(xjd); : : : ; ~ujk(xjDj

)
�
T

2 Zj (5)

with Zj = CDj being the data space corresponding to a single experiment using one

source and one frequency only. In (5), the �elds ~ujk solve (1)-(3) with the correct

permittivity distribution ~�(x), i.e.

�~ujk + [ak~�(x) + ibk�(x)] ~ujk = qj(x) in IR2 (6)

with

ak = !2
k
�0�0; bk = !k�0; !k = 2�fk: (7)

In a slightly more formal way, we de�ne for a given source qj the measurement

operator Mj acting on solutions u of (1) by

Mju =

�Z
IR2

u(x)�(x � xjd)dx

�
T

d=1;:::;Dj

: (8)

With this notation, (5) is written as

~Gjk = Mj~ujk; j = 1; : : : ; p; k = 1; : : : ;K: (9)

We gather these data sets ~Gj;k for all sources qj, j = 1; : : : ; p, and all frequencies fk,

k = 1; : : : ;K, and the aim is to recover from this collection of data sets

~G = ( ~G1;1; : : : ; ~Gp;K)
T (10)

the unknown parameter distribution ~�(x) in the domain of interest.

In the application of EM cross-borehole tomography, the sources and receivers

are typically situated in some boreholes, and the permittivity distribution � (and/or

the conductivity distribution �) between these boreholes has to be recovered from
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the gathered data. In the 2D geometry considered here, typical sources are time-

harmonic line sources which can be modelled in (1) by

qj(x) = Jj�(x� xj); j = 1; : : : ; p; (11)

where xj denotes the 2D coordinates of the j-th line source, j = 1; : : : ; p, and the

complex number Jj is the strength of the source. We will use these sources in our

numerical experiments in section 6.

3 The shape reconstruction problem

In this section we formulate the shape reconstruction problem which we want to

solve, and cast it in a form which makes use of the level set representation of the

domains.

3.1 Shape reconstruction and inverse scattering

To start with we introduce some terminology which we will use throughout the

paper.

De�nition 3.1 Let us assume that we are given a constant �̂ > 0, an open ball

Br(0) � IR2 with r > max(r0; r1) > 0, and a bounded function �b : IR
2 ! IR. We

call a pair (
; �), which consists of a compact domain 
 �� Br(0) and a bounded

function � : IR2 ! IR, admissible if we have

�j
 = �̂; �jIR2n
 = �bjIR2n
: (12)

In other words, a pair (
; �) is admissible if � is equal to a preassigned constant value

�̂ inside of 
, and equal to the preassigned background permittivity �b outside of 
.

The domain 
 is called the scattering domain.

Remark 3.1 For an admissible pair (
; �), and for given �̂, �b, the permittivity � is

uniquely determined by 
.

With this de�nition, we can now formulate the shape reconstruction problem.

Shape reconstruction problem. Let us assume that we are given a constant

�̂ > 0, a bounded function �b : IR
2 ! IR, and some data ~G as in (10). Find a domain

~
 such that the admissible pair (~
; ~�) reproduces the data, i.e. (9) holds with ~ujk

given by (6) for j = 1; : : : ; p, k = 1; : : : ;K.
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Using the same notation and assumptions as in de�nition 3.1, we want to formu-

late another inverse problem which we will call the inverse scattering problem and

which will play an important part when solving the shape reconstruction problem.

Inverse Scattering Problem. Let us assume that we are given a bounded func-

tion �b : IR
2 ! IR, and some data ~G as in (10). Find a bounded function ~�s : IR

2 ! IR

with supp(�s) �� Br(0) such that ~� = �b + ~�s reproduces the data, i.e. (9) holds

with ~ujk given by (6) for j = 1; : : : ; p, k = 1; : : : ;K.

The inverse scattering problem gives rise to the following decomposition of � in

IR2.

Decomposition of �(x) :

(i) � = �b + �s in IR2 (13)

(ii) supp(�s) �� Br(0): (14)

In other words, the permittivity distribution � is decomposed into the background

distribution �b and the perturbation �s which is assumed to have compact support

and which we will refer to as the scattering potential in the following.

Solving the shape reconstruction problem requires only to �nd the shape of

the domain ~
, since the function ~� is then uniquely determined by (12). Solving

the inverse scattering problem, on the other hand, amounts to �nding the entire

function ~�s from the given data, which is much harder to do. However, it will turn

out that �nding a good approximate solution of the inverse scattering problem is

much easier to achieve and will provide us with an excellent initial guess for starting

our shape reconstruction routine.

De�nition 3.1 allows us to formulate a �rst version of the strategy which we want

to use for solving the shape reconstruction problem.

Strategy for solving the shape reconstruction problem. Construct a series of

admissible pairs (
(n); �(n)), n = 0; 1; 2; : : :, such that the mis�t between the data

(10) and the calculated data corresponding to (
(n); �(n)) decreases with increasing

n, and ideally, i.e. in absence of noise, tends to zero in the limit n ! 1. Use the

approximate solution of the inverse scattering problem (i),(ii) to initialize this series

by determining a good starting element (
(0); �(0)).

3.2 The domains 
(n)

In our numerical examples, each of the domains 
(n) which we are looking for can

be given as a collection of a �nite number Ln of disjoint, compact subdomains 

(n)
l

,
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l = 1; : : : ; Ln, with


(n) =

Ln[
l=1



(n)
l
; 


(n)
l
\ 


(n)
l0

= ; for l 6= l0: (15)

The shapes of these subdomains 

(n)
l

can in principle be arbitrary. In particular,

they are allowed to be multiply connected, and to enclose some 'cavities' or 'holes'

�lled with background material. Moreover, the number Ln of these subdomains

might (and usually does) vary with the iteration number n. For the derivation of

the inversion method, we assume that the boundaries @

(n)
l

of these domains are

su�ciently smooth (e.g. C1).

It is essential for the success and the e�ciency of the reconstruction scheme to

have a good and exible way of keeping track of the shape evolution during the

reconstruction process. The method we have chosen in our reconstruction algorithm

is a level set representation of the shapes as it was suggested by Santosa [40]. This

representation has the advantage that the level set functions, which are in principle

only used for representing the shapes, can in a natural way be made part of the

reconstruction scheme itself. Doing so, it is not necessary anymore to refer to the

shapes of the domains until the reconstruction process is completed. The �nal shape

is then recovered from the representing level set function easily. In the following we

will discuss in a more formal way how this can be achieved.

3.3 Level set representation of the domains 
(n)

Assume that we are given a domain 
 �� Br(0). The characteristic function �
 :

IR2 ! f0; 1g is de�ned in the usual way as

�
(x) =

(
1 ; x 2 


0 ; x 2 IR2n
:
(16)

De�nition 3.2 We call a function � : IR2 ! IR a level set representation of 
 if

�
(x) = 	�(x) on IR2 (17)

where 	� : IR
2 ! f0; 1g is de�ned as

	�(x) =

(
1 ; �(x) � 0

0 ; �(x) > 0:
(18)

For each function � : IR2 ! IR there is a domain 
 associated with � by (17),(18)

which we call 
[�]. It is clear that di�erent functions �1; �2, �1 6= �2, can be asso-

ciated with the same domain 
[�1] = 
[�2], but that di�erent domains cannot have
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the same level set representation. Therefore, we can use the level set representa-

tion for unambiguously specifying a domain 
 by any one of its associated level set

functions.

The boundary � = @
[�] of a domain 
[�], represented by the level set function

�, is de�ned as

� = fx 2 IR2 : for all � > 0 we can �nd x1; x2 2 B�(x) (19)

with �(x1) > 0 and �(x2) < 0 g

De�nition 3.3 We call a triple (
; �; �), which consists of a domain 
 �� Br(0)

and bounded functions �; � : IR2 ! IR, admissible if the pair (
; �) is admissible in

the sense of de�nition 3.1, and � is a valid level set representation of 
.

Remark 3.2 For an admissible triple (
; �; �), and for given �̂, �b, the pair (
; �)

is uniquely determined by �.

We use these de�nitions to reformulate our shape reconstruction problem.

Level set formulation of the shape reconstruction problem. Given a constant

�̂ > 0, a background distribution �b, and some data ~G as in (10). Find a level

set function ~� such that the corresponding admissible triple (~
; ~�; ~�) reproduces the

data, i.e. (9) holds with ~ujk given by (6) for j = 1; : : : ; p, k = 1; : : : ;K.

The strategy for solving this shape reconstruction problem has to be reformu-

lated, too. It reads now as follows.

Strategy for solving the reformulated shape reconstruction problem. Construct

a series of admissible triples (
(n); �(n); �(n)), n = 0; 1; 2; : : :, such that the mis�t

between the data (10) and the calculated data corresponding to (
(n); �(n); �(n))

decreases with increasing n, and ideally, i.e. in absence of noise, tends to zero in

the limit n ! 1. For �nding this series we only have to keep track of �(n) and

�(n), but not of 
(n)
. The function �(n) is needed in each step for solving a forward

problem (1), and a corresponding adjoint problem. The knowledge of �(n) is used in

each step to determine �(n). The �nal level set function �(N), which satis�es some

stopping criterion, is used to recover the �nal shape 
(N) via (17).

4 Step 2: Solving the shape reconstruction problem

In this section we derive the basic shape reconstruction method which uses adjoint

�elds and the level set representation introduced above. The initializing procedure

('Step 1') for this reconstruction routine will be discussed in section 5.
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4.1 Function spaces

We want to specify now the function spaces which we will be working with. The

main objective of this section is to introduce the inner products on these function

spaces, which will become important when de�ning the adjoint linearized operators

in sections 4.6 and 5.3.

The space of sources and scattering sources Y is de�ned as

Y =
n
q : IR2 ! C; q = 0 on IR2nBr(0);

Z
Br(0)

jqj2dx <1
o
; (20)

hq1 ; q2iY =

Z
Br(0)

q1(x)q2(x) dx; (21)

where the bar means 'complex conjugate'. The space F of scattering potentials is

de�ned as

F =
n
�s : IR

2 ! IR; �s = 0 on IR2nBr(0);

Z
Br(0)

j�sj2dx <1
o
; (22)

h�s;1 ; �s;2iF =

Z
Br(0)

 �s;1(x)�s;2(x) dx; (23)

with some positive weighting factor  > 0 which is introduced here for convenience.

Analogously, the space of level set functions � is de�ned as

� =
n
� : IR2 ! IR; � = 0 on IR2nBr(0);

Z
Br(0)

j�j2dx <1
o
; (24)

h�1 ; �2i� =

Z
Br(0)

 �1(x)�2(x) dx: (25)

This space for the level set functions is mainly chosen in order to have an inner

product available which is convenient for the derivation of the shape reconstruction

algorithm. We mention that the regularity of an arbitrary function in � is, strictly

speaking, not su�cient for our purposes, such that we will apply further regularity

constraints on those level set functions � 2 � which we choose for representing the

boundaries @
[�].

The data space Zj corresponding to source qj , j = 1; : : : ; p, was already intro-

duced earlier, and is given by Zj = CDj , where Dj is the total number of receivers

corresponding to source qj.

4.2 Operators

In the following, we will introduce some operators which will enable us to formu-

late the shape reconstruction problem in a way suitable for deriving the inversion

algorithm.
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Given a constant �̂ and a bounded function �b : IR2 ! IR. Then, with each level

set function � 2 � a uniquely determined scattering potential �(�) is associated by

putting

�(�)(x) =

(
�̂� �b(x) ; �(x) � 0

0 ; �(x) > 0:
(26)

With (18) we can write this also as

�(�)(x) = 	�(x)(�̂� �b(x)) ; x 2 IR2: (27)

Notice that the operator � is chosen such that the triple (
; �; �) with � = �b+�(�)

and domain 
[�] forms an admissible triple (
; �; �) in the sense of de�nition 3.3.

Moreover, for (
; �; �) an admissible triple, we see that �(�) is just the scattering

potential �s as de�ned in (13),(14)

�(�)(x) = �s(x) = �
(x)(�̂� �b(x)) ; x 2 IR2: (28)

Let us assume now that we are given a background permittivity �b and that we have

collected some data ~Gjk which correspond to the 'true' permittivity distribution

~� = �b + ~�s; (29)

where ~�s is the 'true' scattering potential. The residual operators Rjk map for a

source position qj and a frequency fk a given scattering potential �s to the corre-

sponding mismatch in the data

Rjk : F �! Zj ; Rjk(�s) = Mjujk � ~Gjk (30)

where ujk solves

�ujk + [ak(�b + �s)(x) + ib�(x)] ujk = qj (31)

and Mj is the measurement operator de�ned in (8). From (9) we see that for the

'true' scattering potential the residuals vanish,

Rjk(~�s) = 0 for j = 1; : : : ; p; k = 1; : : : ;K; (32)

if the data are noise-free.

The forward operators Tjk which map a given level set function � 2 � into the

corresponding mismatch in the data are de�ned by

Tjk : � �! Zj ; Tjk(�) = Rjk(�(�)) (33)

for j = 1; : : : ; p, k = 1; : : : ;K. The goal is to �nd a level set function ~� 2 � such

that

Tjk(~�) = 0 for j = 1; : : : ; p; k = 1; : : : ;K: (34)

We mention that all three operators �, Rjk and Tjk are nonlinear.
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4.3 Linearized operators

For the derivation of the shape reconstruction algorithm, we will need expressions for

the linearized operators corresponding to the nonlinear operators introduced above,

and for their adjoints with respect to the given inner products. In this section,

we de�ne the linearized operators, and expressions for their adjoints are derived in

section 4.6.

In Santosa [40] it is shown that, for a homogeneous background �b, the in�nitesi-

mal response ��s(x) in the scattering potential �s(x) to an in�nitesimal change ��(x)

of the level set function �(x) has the form

��s(x) = � [�̂� �b]
��(x)

jr�(x)j

����
x2@
[�]

: (35)

The function ��s in (35) can be interpreted as a 'surface measure' on the boundary

� = @
[�]. Similar to (35), we would like to de�ne the linearized operator ~�0[�] by

�
~�0[�]��

�
(x) = � [�̂� �b(x)]

��(x)

jr�(x)j
�̂�(x) (36)

where �̂�(x) denotes the Dirac delta distribution concentrated on � = @
[�]. In

this interpretation, (36) describes an in�nitesimal 'surface load' of permittivity on

� which has to be recovered from the mismatch in the data.

However, the expression on the right hand side of (36) is not an element of F

which causes problems when we want to calculate the inner products de�ned in

section 4.1. Therefore, we will introduce an approximation to the operator (36)

which maps from � into F and which will be more convenient for the derivation of

the reconstruction method.

For a given level set function � 2 �, let � = @
[�] and B�(�) = [y2�B�(y) a

small neighborhood of � with some given constant 0 < �� 1. The (approximated)

linearized operator �0[�] is de�ned as

�0[�] : � �! F;
�
�0[�]��

�
(x) = � [�̂� �b(x)]

��(x)

jr�(x)j
C�(�)�B�(�)(x): (37)

Here, C�(�) = L(�)=Vol(B�(�)) where L(�) =
R
Br(0)

�̂�(x)dx is the length of the

boundary �, and Vol(B�(�)) =
R
Br(0)

�B�(�)(x)dx is the volume of B�(�). For a very

small � we will get a very large weight C�(�), whereas for increasing � this weight

C�(�) decreases accordingly. The operator de�ned in (37) maps now from � into F

such that we can make use of the inner products de�ned on these spaces.

We mention that the term jr�(x)j in (35), (36), as well as the derivation of

these expressions, implies some regularity constraint on �. For example, � 2 C1

would be possible. Another possibility would be to use a 'signed distance function'
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as a standard representation of the boundary [42]. We do not want to specify the

regularity of � at this point, but assume instead that it is 'su�ciently smooth' for

our purposes.

The linearized residual operator R0

jk
[�s] is de�ned by

R0

jk
[�s] : F �! Zj ; R0

jk
[�s]��s = Mjvjk (38)

where vjk solves the linearized equation

�vjk + [ak(�b + �s)(x) + ib�(x)] vjk = � ak��s(x)ujk(x) (39)

with ujk a solution of (31). This representation can be derived by perturbing

�s ! �s + ��s ; ujk ! ujk + vjk; (40)

plugging this into (31) and neglecting terms which are of higher than linear order in

the perturbations ��s, vjk.

Notice that the right hand side of (39) can be interpreted as a 'scattering source'.

We will use this concept later for solving our inverse scattering problem approxi-

mately in order to �nd a starting guess for the shape reconstruction scheme. But

we want to mention here already that the linearization assumption built into (38),

(39), namely that vjk is small compared to ujk, will not be necessary when solving

the inverse scattering problem. That will allow us to circumvent some di�culties

which often arise in high contrast inverse problems due to the occurence of strong

nonlinearities.

As our third linearized operator, we introduce the linearized forward operator

T 0
jk
[�] by putting

T 0
jk
[�] : � �! Zj ; T 0

jk
[�]�� = R0

jk
[�(�)] �0[�]��: (41)

All three operators �0[�], R0

jk
[�s], and T 0

jk
[�] are linear.

4.4 A nonlinear Kaczmarz-type approach

The algorithm works in a 'single-step fashion' as follows. Instead of using the data

(10) for all sources and all frequencies simultaneously, we only use the data for one

source and frequency at a time while updating the linearized residual operator after

each determination of the corresponding incremental correction ��. So, in each step

we will look for a solution of the equation

T 0jk[�]��jk = �Tjk(�) (42)
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for a given source index j = 1; : : : ; p and a given frequency index k = 1; : : : ;K.

After correcting � by

� �! �+ ��jk; (43)

we use the updated residual equation (42) to compute the next correction ��j0k0 .

Doing this for one equation after the other, until each of the sources qj and each of

the frequencies fk has been considered exactly once, will yield one complete sweep of

the algorithm. This procedure is similar to the Kaczmarz method for solving linear

systems, or the algebraic reconstruction technique (ART) in x-ray tomography [32]

and the simultaneous iterative reconstruction technique (SIRT) as presented in [16].

Related approaches have also been employed in ultrasound tomography by Natterer

and W�ubbeling [33], in more general bilinear inverse problems by Natterer [34], in

optical tomography by Dorn [17], and in 3D-electromagnetic induction tomography

(EMIT) by Dorn et alii [18].

4.5 The minimization problem

Let us assume now that we are given a level set function �(n)(x) and a scattering

potential �(n)
s

(x) such that (
(n); �b+�
(n)
s
; �(n)) forms an admissible triple in the sense

of de�nition 3.3. Using a data set ~Gjk corresponding to the �xed source position

qj and the frequency fk, we want to �nd an update ��(n) to �(n) such that for the

admissible triple �

(n+1); �b + �(n+1)

s
; �(n+1)

�
:= (44)�


[�(n) + ��(n)]; �b +�(�(n) + ��(n)); �(n) + ��(n)
�

the residuals in the data corresponding to this source and this frequency vanish

Tjk(�
(n+1)) = Tjk(�

(n) + ��(n)) = 0: (45)

Applying a Newton-type approach, we get from (45) a correction ��(n) for �(n) by

solving

T 0
jk
[�(n)]��(n) = �Tjk(�

(n)) = �
�
Mjujk � ~Gjk

�
(46)

where ujk satis�es (31) with �s = �(�(n))

�ujk +
h
ak(�b +�(�(n)))(x) + ib�(x)

i
ujk = qj(x) (47)

and

�b(x) + �(�(n))(x) =

(
�̂ ; x 2 
[�(n)]

�b(x) ; x 2 IR2 n
[�(n)]:
(48)

Since we have only few data given for one source and one frequency, equation (46)

usually will have many solutions (in the absence of noise), such that we have to pick
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one according to some criterion. We choose to take that solution which minimizes

the energy norm of ��(n)

Min k��(n)k2 subject to T 0
jk
(�(n))��(n) = �

�
Mjujk � ~Gjk

�
: (49)

This solution can be formulated explicitly. It is

��
(n)
MN = �T 0

jk
[�(n)]�

�
T 0
jk
[�(n)]T 0

jk
[�(n)]�

��1 �
Mjujk � ~Gjk

�
; (50)

where T 0
jk
[�(n)]� denotes the adjoint operator to T 0

jk
[�(n)].

4.6 The adjoint linearized operators

In order to calculate the minimal norm solution (50), we will need practically useful

expressions for the adjoints of the linearized operators of section (4.3). We will

present such expressions in this section. The calculation of the actions of these

operators will typically require to solve an adjoint Helmholtz problem. This explains

the name 'adjoint �eld method' of the inversion method employed here.

To start with, a simple calculation gives us the following theorem.

Theorem 4.1 The adjoint operator �0[�]� which corresponds to the linearized op-

erator �0[�] is given by

�0[�]� : F �! � ;
�
�0[�]���s

�
(x) = � [�̂� �b(x)]

��s(x)

jr�(x)j
C�(�)�B�(�)(x): (51)

The next theorem describes the adjoint operator R0
jk
[�s]

� which corresponds to

R0
jk
[�s]. Its proof is analogous to the proof of Theorem 4.1 in the appendix, or to

the proof given in a similar situation in Dorn et al. [18], and is therefore omitted

here.

Theorem 4.2 Let � = (�1; : : : ; �Dj
)T 2 Zj and let xjd, d = 1; : : : ;Dj be the detector

positions corresponding to qj. Then the action of the adjoint operator R0
jk
[�s]

� on �

is given by

R0

jk[�s]
�� = �

1

ak
Re (ujkzjk) �Br(0) (52)

where ujk solves

�ujk + �k(x)ujk = qj(x); (53)

and zjk solves the 'adjoint equation'

�zjk + �k(x)zjk =

DjX
d=1

��d�(x� xjd) (54)

with

�k(x) = ak[�b(x) + �s(x)] + ibk�(x) (55)

and ak, bk de�ned as in (7).
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Finally, by combining theorems 4.1 and 4.2, we get an expression for the adjoint

operator T 0
jk
[�]� which corresponds to the linearized forward operator T 0

jk
[�]. It is

described in the following theorem.

Theorem 4.3 Let � = (�1; : : : ; �Dj
)T 2 Zj and let xjd, d = 1; : : : ;Dj be the detector

positions corresponding to qj. Then the adjoint operator T 0
jk
[�s]

� acts on � in the

following way

T 0jk[�]
�� = �0[�]�R0

jk[�(�)]
�� (56)

=
[�̂� �b(x)]

akjr�(x)j
Re (ujkzjk) C�(�)�B�(�)(x);

where ujk solves (53) and zjk solves (54) with �s replaced by �(�).

4.7 The operators T 0

jk
T
0 �

jk

Let us consider the operator

C
(n)
jk

:= T 0jk[�
(n)]T 0jk[�

(n)]� (57)

in (50) more closely. Using (41) it gets the form

C
(n)
jk

= R0

jk
[�(�(n))] �0[�(n)] �0[�(n)]�R0

jk
[�(�(n))]�: (58)

With (37), (51) we see that, due to the operator �0[�(n)] �0[�(n)]� in (58), C
(n)
jk

maps

�rst from the data space to functions in F or � which are supported on B�(�), and

then back to the data space. In a discretized setting, it might happen that for a

coarse mesh (and a small �) the number of pixels representing B�(�) becomes close

to (or even smaller than) the number of data points. This observation lets us expect

that the inversion of C
(n)
jk

in (50) will be highly ill-conditioned and unstable. This

is con�rmed by our numerical experiments so far.

Therefore, we will regularize the inversion of C
(n)
jk

and the action of its inverse

on the right hand side of (46).

4.8 Regularization of T 0

jk
T
0 �

jk

A standard way of regularization is the Tychonov-Phillips regularization scheme

which amounts to replacing the operator T 0
jk
[�(n)]T 0

jk
[�(n)]� in (50) by the operator

T 0jk[�
(n)]T 0jk[�

(n)]� + �I (59)

with some suitably chosen regularization parameter � > 0. A small � means little

regularization, whereas in the case of very noisy data we might wish to use a very
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large � such that (59) is dominated by the term �I and we can approximate it

further by a simple multiplication with the regularization parameter �.

However, motivated by the above mentioned observations, we choose a di�erent

form of regularization. First, we add a Tychonov-Phillips term to �0[�(n)] �0[�(n)]�

such that the right hand side of (58) becomes

C
(n)
jk

� R0

jk
[�(�(n))]

�
�0[�(n)] �0[�(n)]� + �I

�
R0

jk
[�(�(n))]�: (60)

Now, using a very large regularization parameter �, we approximate (60) further by

C
(n)
jk

� �R0
jk
[�(�(n))]R0

jk
[�(�(n))]�: (61)

Since calculating the operator (61) in each step of the inversion routine is still

very time-consuming, we approximate this operator further by replacing the argu-

ment �(�(n)) by the background scattering potential which is zero. Therefore, we

end up with the following approximation for C
(n)
jk

C
(n)
jk

� Ĉjk := R0

jk[0]R
0

jk[0]
� for all n = 1; 2; : : : (62)

The multiplicator � is neglected in (62) since it becomes part of the relaxation

parameter in our inversion scheme. We see that we have replaced in (62) the highly

ill-conditioned and di�cult to calculate operator C
(n)
jk

by a much better conditioned

operator Ĉjk which has to be computed only once and which can be precalculated

before starting the inversion routine.

The next theorem tells us how to practically compute the operator Ĉjk for a

given background permittivity �b.

Theorem 4.4 Let us assume that we are given a background permittivity distribu-

tion �b, a �nite set of sources qj, j = 1; : : : ; p, and for each of these sources a �nite

set of receiver positions xjd, d = 1; : : : ;Dj. We apply each of the sources with K dif-

ferent frequencies fk, k = 1; : : : ;K. The operators Ĉjk, j = 1; : : : ; p, k = 1; : : : ;K,

are then described by Dj �Dj matrices of the form

Ĉjk =

(Z
Br(0)

ujk(x)'dk(x)ujk(x)'lk(x)

)
l = 1; : : : ; Dj

d = 1; : : : ; Dj

; (63)

where '�k solves

�'�k + (ak�b + ibk�)'�k = �(x� xj�) (64)

and ujk solves

�ujk + (ak�b + ibk�)ujk = qj: (65)

The index � in (64) can stand for a receiver index d or l. In (63), the receiver index

l is the row index, and the receiver index d is the column index of Ĉjk.
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The proof of this theorem is similar to the proof of Theorem 5.2 given in the

appendix such that we omit it here.

4.9 Updating the level set function

In order to calculate a correction ��
(n)
MN by (50) we have to apply the operator

T 0
jk
[�(n)]� to the vector

� := Ĉ�1
jk

�
Mjujk � ~Gjk

�
: (66)

An explicit formula for T 0
jk
[�(n)] was already given in (56)

T 0
jk
[�(n)]�� =

[�̂� �b(x)]

akjr�(n)(x)j
Re

�
ujk(x)zjk(x)

�
C�(�)�B�(�)(x); (67)

where ujk and zjk solve (53)- (55) with �s replaced by �(�(n)).

To stabilize the reconstruction scheme, we replace the term jr�(x)j in (67) by

some constant c1. Doing so we avoid dividing by numerical derivatives which might

cause instabilities due to numerical noise and roundo� errors. This is justi�ed as

long as jr�(x)j does not vary too much along the boundary. It turns out that the

updates we apply in our numerical examples to the level set functions usually justify

this assumption. In cases with limited view and very noisy data, however, we will

apply an additional 'smoothing procedure' (which is described in section 4.10) to

the level set functions near the boundary after each update in order to guarantee

the necessary regularity for the succeeding steps.

With these modi�cations, (50) yields the following update formula for the level

set function

��̂(n)(x) = �
�̂� �b(x)

c1ak
Re

�
ujk(x)zjk(x)

�
C�(�)�B�(�)(x) (68)

where ujk and zjk solve (53)- (55) with � given by (66) and �s replaced by �(�(n)).

Notice that, although we did not explicitly impose any regularity constraints on

the updates (68), they are in the range of R0
jk
[�(�(n))]� (up to the factor �̂� �b(x))

which implicitly gives us some information about the regularity we can expect. Our

numerical experiments so far indicate that the degree of regularity which is achieved

by applying (68) is typically su�cient 'for practical purposes' in those situations

where the data are not too noisy and where we have suitably arranged receiver

positions all around the obstacles. (This is the 'full view' situation.)

However, in cases of noisy and limited-view data, the resulting boundaries look

rough and fuzzy, in particular when high-frequency data are used for the reconstruc-

tion. In these situations, we can improve the results by applying some additional

regularization on �. A possible way of doing so is to �lter the level set function after
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each update in order to smooth it locally. An example for such a procedure is 'curve

shortening by di�usion', which is briey described at the end of section 4.10.

We mention that an interesting (and from a mathematical point of view more

satisfactory) alternative to this procedure would be to apply some additional reg-

ularity constraints already in the derivation of (68), such that we would not have

to worry at all about the smoothness of the resulting level set functions. We will

investigate possible ways of doing so in our future research.
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4.10 Implementation: The levelART algorithm

In brief algorithmic form, the nonlinear Kaczmarz-type method for shape recon-

struction using level sets (which we call for short 'levelART' because of its above

mentioned similarity to the 'ART' algorithm in x-ray tomography) can be written

in the following way.

Preparation step.

� Calculate Ĉjk and

Djk = Ĉ�1
jk

(69)

according to (63) for each source qj, j = 1; : : : ; p, and each frequency fk,

k = 1; : : : ;K, and store in memory for later use.

� Build groups of frequencies Gm = ff1; : : : ; fKmg, m = 1; : : : ;M .

Initialization.

n = 0;

(
(0); �(0); �(0)) given from STAF.

Reconstruction loop.

FOR m = 1 : M march over frequency groups Gm

FOR i = 1 : Im perform Im sweeps for frequency group Gm

FOR k = 1 : Km march over frequencies in Gm

FOR j = 1 : p march over sources qj for each frequency

�jk = Djk(Mjujk � ~Gjk); ujk solves (53) with �(n)

��jk = � �̂��b(x)
ak

Re(ujkzjk)�B�(�); zjk solves (54) with �(n) and �jk

END

��(n)(x) =
Pp

j=1 ��jk(x);

�(n+1) = C
(n)
LS (�

(n) + �
C�(�)
c1

��(n)); update level set function

Optional step: 'curve shortening' by di�usion. See separate chart.

�(n+1) = �b +�(�(n+1)); n = n+ 1; Reinitialization n! n+ 1

END

END alternatively, some stopping criteria can be used here

END

(
(N); �(N); �(N)) = (
[�(n)]; �b +�(�(n)); �(n)); Final reconstruction.
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Here, � is a relaxation parameter for the update of the level set function which

is determined empirically. The constant C�(�) could be calculated explicitly for

the actual curve �(n), or it could be approximated by some value corresponding

to a simple geometrical object (to give an example, in case of a single circle it

would be C�(�) = (2�)�1). In our numerical experiments so far, however, it is

simply considered as part of �. The same holds true for c1. The constant � is in

our numerical experiments chosen between 30-40 cm, which corresponds to 2-3 grid

cells. The scaling factor C
(n)
LS is determined after each update to keep the global

minimum (or maximum) of the level set function at a constant value.

The following smoothing �lter on the level set function is optional. We usually

apply it when we use noisy high-frequency data for the reconstruction. Especially in

the limited-view examples presented in sections 6.3 and 6.4, the application of this

�lter improves the reconstructions signi�cantly. Smoothing the level set function

with this �lter has the e�ect of local curve shortening. Roughness and small scale

oscillations in the reconstructed boundaries are smoothed out such that the 'energy'

of the reconstructed boundaries is reduced. The �ltering step can be described as

follows.

Optional step: 'Curve shortening' by di�usion.

Introduce arti�cial time � 2 IR. @

@�
= time derivative, � = Laplace operator.

Solve initial value problem (with absorbing boundary conditions) on Br(0):

~�(x; 0) = �(n+1)(x);

@

@�

~�(x; �) = �~�(x; �); � 2 [0; T�]; x 2 Br(0).

�(n+1)(x) = ~�(x; T�),

with regularization parameter T�.

5 Step 1: A Source-Type Adjoint Field method

For starting our shape reconstruction method using level sets we will need an initial

guess (
(0); �(0); �(0)).

Although it is possible just to create an arbitrary initial guess without using any

data at all, we believe that it is important for the e�ciency and the robustness of

such a method to start it with a good initial guess. There are several reasons for

this. First, when deriving the shape reconstruction method (which we will call for

short 'levelART' in the following) we used a perturbation approach which is strictly
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justi�ed only when we already have a good �rst guess available. Moreover, we see

in our numerical experiments that starting with a good initial guess stabilizes the

shape reconstruction routine, in particular in cases where the data are incomplete

and noisy. In addition, �nding a good �rst guess reduces the amount of work which

has to be done by the levelART routine itself, such that in the end the combined

code will converge much more rapidly than levelART alone would do without a good

initialization.

In this section, we will present the second key point of our combined inversion

scheme, namely a fast, inexpensive and stable method for �nding a very good �rst

guess (
(0); �(0); �(0)) for levelART. This method is designed to share basic features

with the levelART algorithm, such that it can be implemented in addition to leve-

lART with almost no extra cost.

5.1 Source-type methods

In the framework of inverse scattering problems, the method we propose here can

be considered as a 'source-type inversion method'. Roughly speaking, the general

idea of source-type reconstruction methods in inverse scattering is to split a given

nonlinear inverse scattering problem into two subproblems. The �rst one is linear,

and tries to recover a virtual 'equivalent source' in the medium which would be able

to �t the data if applied with the known background distribution. This equivalent

source is related to the unknown scattering potential by a nonlinear 'constitutive'

relation. Therefore, in the second part of the algorithm, a nonlinear inverse problem

has to be solved to derive the scattering potential from the recovered equivalent

source distribution.

This idea is not at all new. It has been applied for example in the Source-Type

Integral Equation (STIE) method of Habashy et al [21], or in the method presented

by Chew et al. in [9]. More recently, similar ideas have been applied by Abdullah

et al. [1], Caorsi et al. [6], and van den Berg et al. [46, 47].

All of these approaches have in common that they use the source-type method as

a stand-alone inversion scheme. Such a method has the advantage that it is not as

sensitive to strong nonlinearities in the inverse problem as for example perturbation

methods or the Born or Rytov approximation are [15, 20, 27].

On the other hand, interpreting the inverse scattering problem as an inverse

source problem is not without drawbacks. For example, the existence of so-called

'non-radiating sources' or 'invisible sources' gives rise to a nonuniqueness in the in-

verse source problem, which is di�cult to deal with when solving the nonlinear part

[1, 14, 21]. Moreover, it is not clear at all how to combine properly the information

corresponding to di�erent experiments, since each experiment creates its own 'equiv-
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alent sources' and its own 'invisible sources'. For more information about possible

applications, advantages and drawbacks of the source-type scheme as a stand-alone

inversion tool we refer to [1, 5, 6, 9, 14, 21, 46, 47].

Our approach is di�erent from those mentioned above. We only want to �nd

a good approximation to the scattering potential, and a corresponding initial level

set function suitable to start the shape reconstruction routine. Moreover, we can

make use of our prior information about the permittivity distribution. This will

allow us to circumvent most of the problems of source-type schemes which have

been mentioned above.

We will now describe this method, which we will call the Source-Type Adjoint

Field (STAF) method, in more details.

5.2 Solving the inverse scattering problem

Consider the inverse scattering problem formulated in section 3.1. The decomposi-

tion (13), (14) reads

~�(x) = �b(x) + ~�s(x) (70)

with some (known) background distribution �b and the (unknown) scattering poten-

tial ~�s having compact support, supp(~�s) �� Br(0). The goal is to �nd ~�s(x) from

the data (9).

We already mentioned above that we actually will not recover the entire function

~�s(x) from the data ~Gjk in this preprocessing step. All we will �nd is 1.) A very

good �rst guess for the scattering potential �(0)
s

which will be part of the initializing

triple (
(0); �b + �(0)
s
; �(0)), and 2.) A corresponding level set function �(0). We will

freely make use of the prior information resulting from the knowledge of �̂ inside

the estimated scatterer 
(0). However, our numerical results so far indicate that the

method proposed here -if suitably adapted- can actually be used to �nd, in addition

to 
(0) and �(0), also a good �rst estimate �̂(0) for the contrast �̂. This will be used

in our future work to start a reconstruction method which tries to recover ~
 and �̂

simultaneously from the given data.

For a �xed frequency fk and a source qj, let ~ujk be the solution of

�~ujk + (ak(�b + ~�s)(x) + ib�(x)) ~ujk = qj(x); (71)

and let ujk be the solution of the 'unperturbed' equation

�ujk + (ak�b(x) + ib�(x)) ujk = qj(x): (72)

De�ne

~vjk := ujk � ~ujk: (73)
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Subtraction of (72) from (71) shows that ~vjk solves

�~vjk + (ak�b(x) + ib�(x)) ~vjk = ~Qs

jk
(x); (74)

where the 'scattering source' ~Qs

jk
(x) is de�ned as

~Qs

jk
(x) = ak~�s(x)~ujk(x): (75)

We introduce a 'source type' forward operator Ajk by putting

Ajk : Y �! Zj ; AjkQ
s

jk
= Mjvjk (76)

where Mj is the measurement operator de�ned in (8), and vjk solves

�vjk + (ak�b(x) + ib�(x)) vjk = Qs

jk(x): (77)

The operator Ajk is linear.

Let us assume now that we apply the 'correct' scattering source ~Qs

jk
(x) de�ned

by (75) as argument of Ajk. Then we know from (9), (29), (30) that

Ajk
~Qjk = Mj~vjk = Mj(ujk � ~ujk) = Mjujk � ~Gjk = Rjk(0): (78)

The vectors Rjk(0) are easily computed by solving a forward problem on the back-

ground distribution (72). Therefore, all we have to do to get back the scattering

source ~Qs

jk
from the data ~Gjk is to solve (78) for ~Qs

jk
. Doing so amounts to solving

an ill-posed but linear inverse problem.

Once we have recovered ~Qs

jk
(x), we want to get back ~�s(x) out of it by using

the constitutive relation (75). This second part of the inversion scheme can be

interpreted as solving a nonlinear inverse problem since ~ujk(x) depends on ~�s(x).

Notice that ~Qs

jk
(x) varies with di�erent sources and frequencies, but that ~�s(x)

is the same for all sources and all frequencies (if we neglect dispersion). We will

make use of this observation when we try to solve the nonlinear part (75). In the

following, we describe the method which we will use to recover the scattering source

~Qs

jk
(x) from a given data set ~Gjk for a �xed source qj and a �xed frequency fk.

5.3 Looking for a scattering source

Since for a �xed (primary) source position and a �xed frequency we have only few

data given to recover ~Qs

jk
, and since we have to take into account that also 'non-

radiating' and 'invisible' sources have been generated in the experiment, we assume

that there will be many solutions (in absence of noise) of (78). To pick one we are

looking for the solution with minimal norm

Min kQs

jk
kY subject to AjkQ

s

jk
= Rjk(0): (79)
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It is given by

Qs

jk;MN
= A�

jk

�
AjkA

�

jk

��1
Rjk(0); (80)

where A�
jk

denotes the adjoint operator to Ajk.

The following theorem, which is proven in the appendix, tells us how to calculate

the action of A�

jk
on a vector � 2 Zj in an e�cient way.

Theorem 5.1 Let � = (�1; : : : ; �Dj
)T 2 Zj and let xjd, d = 1; : : : ;Dj be the detector

positions corresponding to the source qj. Then, A�

jk
� is given by

A�

jk
� = zjk�Br(0); (81)

where zjk solves

�zjk + (ak�b + ibk�) zjk =

DjX
d=1

�d�(x � xjd): (82)

Corollary 5.1 Let '�k solve

�'�k + (ak�b + ibk�)'�k = �(x� xj�): (83)

Then, we can write (81) in the alternative form

�
A�
jk�

�
(x) =

DjX
d=1

�d'dk(x)�Br(0)(x) =

DjX
d=1

�d'dk(x)�Br(0)(x): (84)

The next theorem, which is proven in the appendix, gives an explicit expression

for the operators AjkA
�

jk
.

Theorem 5.2 Let us assume that we are given a background permittivity distri-

bution �b and a �nite set of receiver positions xjd, d = 1; : : : ;Dj. The operators

AjkA
�
jk
, j = 1; : : : ; p, k = 1; : : : ;K, are then described by Dj �Dj matrices of the

form

AjkA
�

jk =

(Z
Br(0)

'dk(x)'lk(x)

)
l = 1; : : : ; Dj

d = 1; : : : ; Dj

; (85)

where '�k solves (83) and the index � can stand for a receiver index d or l. In (85),

the receiver index l is the row index, and the receiver index d is the column index of

Ĉjk.

Remark. Notice that (85) does not depend on the sources qj, but only on the

arrangement of the detectors and on the background permittivity distribution �b.

The operators AjkA
�

jk
can be precomputed before starting the inversion routine,
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and this has to be done only once for each frequency as long as we use the same

arrangement of detectors for all sources qj, j = 1; : : : ; p.

In the case of noisy data we will invert AjkA
�

jk
+ �I instead of AjkA

�

jk
in (80)

with a suitably chosen regularization parameter � > 0. This amounts to applying

Tychonov-Phillips regularization.

5.4 Recovery of the scattering potential

After we have found a scattering source Qs

jk
which satis�es (79), we want to use the

constitutive relation

Qs

jk
(x) = ak~�s(x)~ujk(x); (86)

which holds for the 'correct' scattering source ~Qs

jk
according to (75), to �nd an

approximation for ~�s(x).

Let ~ujk be a solution of (71) and ujk a solution of (72). We decompose Qs

jk
, ~ujk,

ujk and ~�s into amplitude and phase

Qs

jk(x) = jQs

jk(x)j e
ir(x); ~ujk = j~ujkj ei~s(x); (87)

ujk = jujkj eis(x); �s(x) = j�s(x)j eit(x); (88)

where we have omitted the subscripts jk in the argument functions r, ~s, s, and t for

simplicity in the notation. Making use of the fact that ~�s(x) 2 IR we see that

t(x) 2 f0; �g for all x 2 IR2: (89)

With (87),(88) equation (79) decomposes into two equations, one for the amplitude

and one for the phase. They are

jQs

jk
(x)j = ak j~�s(x)j j~ujkj; (90)

r(x) = ~s(x) + t(x): (91)

The observation in our numerical experiments is that, although s(x) and ~s(x) might

be quite di�erent from each other for large perturbations ~�s(x), the amplitudes

jujk(x)j and j~ujk(x)j most often do not di�er too much from each other in the

scattering region. Therefore, in our applications it is a reasonable approximation to

assume that

j~ujk(x)j � jujk(x)j in Br(0): (92)

With this approximation, (90) yields the following estimate for j~�s(x)j

j~�(jk)
s

(x)j �
jQs

jk
(x)j

akjujk(x)j
in Br(0): (93)
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We have added the indices j and k on the left hand side of (93) to indicate that

we have used only the data ~Gjk corresponding to source qj and frequency fk for its

determination.

Notice that the step (92), (93) is nonlinear since taking the amplitude of a

complex number is a nonlinear operation. Therefore, the approach presented here is

quite di�erent from the usual Born approximation which approximates ~ujk by ujk.

For the purposes of the present paper, the determination of j~�s(x)j is already
su�cient in order to get a good �rst guess for the scattering potential �(0)

s
(x) and for

the level set function �(0)(x), since we can now make use of our prior information

about the correct value of �̂ in (12).

We mention, however, that the recovery of the phase t(x) is also possible from

(86). (This will be necessary for example when we try to recover ~
 and �̂ simul-

taneously from the given set of data ~Gjk.) We can do this by using equation (91).

We already mentioned that the assumption ~s(x) � s(x) might be quite wrong for

situations with large scattering potentials ~�s(x). However, in our situation we only

have to decide whether t(x) is zero or �, which means that we have to determine

whether in (91) r(x) = ~s(x) or r(x) = ~s(x)� � is satis�ed. Therefore, a reasonable

estimate for t(x) is to put

t(jk)(x) =

(
0 ; js(x)� r(x)j < �=2;

� ; elsewhere:
(94)

Our numerical experiments so far show that a suitable combination of these estimates

resulting from many source positions gives a very good reconstruction of the phase

t(x) in Br(0) even in the situation of limited view and noisy data. We will not need

this estimate in the present paper.

5.5 Combining the results from single experiments

We can combine now the estimates j~�(jk)
s

(x)j from many source positions qj, j =

1; : : : ; p, by putting

j~�(k)
s
(x)j =

1

p

pX
j=1

j~�(jk)
s

(x)j: (95)

If we want to take into account also the information corresponding to many

frequencies we can do so by putting

j~�s(x)j �
1

pK

KX
k=1

pX
j=1

j~�(jk)
s

(x)j (96)

where the sum is over all frequencies fk, k = 1; : : : ;K, and all source positions qj ,

j = 1; : : : ; p. In (96) we have neglected dispersion.
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A similar strategy can be employed to improve the estimates for the phase

t(jk)(x).

5.6 The initial level set function

We are now ready to de�ne the initial triple (
(0); �(0); �(0)).

We assume that we are working in a high contrast situation, such that exactly

one of the following conditions is satis�ed

�̂� �b(x) � 0 for all x 2 ~
 (97)

�̂� �b(x) � 0 for all x 2 ~
: (98)

Since we know �̂ and �b(x), we know the constant

sign(~
) :=

(
1 ; if (97) holds

�1 ; if (98) holds.
(99)

Let us assume that we want to use j~�(k)
s
(x)j as de�ned in (95) for a �xed frequency

fk to specify the level set function �(0). Choose a threshold value 0 < LS < 1 (in

our numerical examples presented in section 6 we use LS = 0:7) and de�ne

�LS := LS max
x2Br(0)

j~�(k)
s
(x)j: (100)

For the level set zero L
(0)
0 of �(0) we require that

L
(0)
0 =

n
x 2 Br(0) : j~�(k)

s
(x)j = �LS

o
: (101)

This means that we want all points of Br(0) where the reconstruction j~�(k)s
(x)j has

exactly the value �LS to be mapped to zero by the level set function �(0)

�(0)(x) = 0 for all x 2 L
(0)
0 : (102)

The level set function is now de�ned as

�(0)(x) = C
(0)
LS sign(~
)

�
�LS � j~�(k)s

(x)j
�
; (103)

where C
(0)
LS is some suitably chosen scaling factor. Notice that (102) and (103) are

consistent.

The initial scattering domain 
(0) and the permittivity �(0) are de�ned as


(0) = 
[�(0)]; �(0) = �b +�(�(0)): (104)

Together with �(0) they form an admissible triple (
(0); �(0); �(0)).
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5.7 Implementation: The STAF algorithm

In brief algorithmic form, the Source Type Adjoint Field (STAF) scheme can be

written in the following way.

Preparation step.

� Select a group of frequencies Gs = ff1; : : : ; fKsg which are used for the STAF

reconstruction. Typically, this is just one frequency.

� Calculate AjkA
�

jk
according to (85) for each frequency f 2 Gs. The operator

AjkA
�
jk

does not depend on the index j if we use the same detector positions

for all sources.

� Calculate

Bjk =
�
AjkA

�

jk

��1
or Bjk =

�
AjkA

�

jk
+ �I

��1
(105)

for all f 2 Gs and store in memory for later use.

Reconstruction step.

FOR k = 1 : Ks

FOR j = 1 : p

Rjk(0) =Mjujk � ~Gjk, ujk solves (72)

�jk = BjkRjk(0), Bjk from (105)

Qs

jk
= A�

jk
�jk = zjk�Br(0), zjk solves (82)

j~�(jk)
s

(x)j =
jQs

jk
(x)j

akjujk(x)j

END

END

j~�s(x)j = 1
pKs

P
Ks

k=1

Pp

j=1 j~�
(jk)
s

(x)j, x 2 Br(0)

�(0)(x) = C
(0)
LS sign(~
)(�LS � j~�s(x)j) as in (103)

(
(0); �(0); �(0)) = (
[�(0)]; �b +�(�(0)); �(0)).

6 Numerical Experiments

6.1 Discretization of the computational domain.

In our numerical experiments, we use a Finite-Di�erences Frequency Domain (FDFD)

code written in MATLAB for solving (1)-(3). The code uses appropriately designed
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perfectly matched layers (PML) to avoid reections at the arti�cial computational

boundaries [36, 37].

The system which results after discretization is solved by a simple Gauss elimina-

tion scheme, which is reected in the implementation shown in sections 4.10 and 5.7.

The LR-factorization corresponding to the most recent best guess is used there to

calculate the �elds for all transmitters and all receivers simultaneously. Therefore,

the computational cost for solving all necessary forward and adjoint problems is just

one LR-factorization for STAF, and one LR-factorization per update for levelART.

If a di�erent solver is used (e.g. GMRES or QMR), then we might �nd more e�cient

strategies than those presented in sections 4.10 and 5.7. We mention also that an

iterative solver has been developed recently in [25] which is optimized to work on

several source distributions simultaneously.

The physical domain is partitioned into 100�100 elementary cells (pixels) in the

�rst numerical example, and into 180� 110 elementary cells in the second and third

example. Each of these grid cells has a physical size of about 0:14 � 0:14 m2, such

that the total computational domain in the �rst example covers an area of 14� 14

m2, and in the other two examples of 15� 25 m2. The eight layers which are closest

to the boundaries of the computational domain are used as a PML.

We will refer to the �rst numerical example as the 'full-view' situation, and to the

other two numerical examples as the 'limited-view', 'cross-borehole' or 'geophysical'

situations. This terminology is motivated by the source and receiver geometries

used, which are as follows.

In the full-view example, we have 64 sources and receivers given which surround

the domain of interest. Each source position is at the same time a receiver position

and vice versa. The distance of two adjacent sources or receivers from each other is

four pixels or about 55 cm. The area enclosed by these sources and receivers has a

size of 10 � 10 m2.

In the two limited-view examples, 74 sources and receivers are positioned equally

spaced in two boreholes. The distance of two adjacent sources or receivers from each

other is again 4 pixels or 55 cm, and the distance of the two boreholes from each

other is about 10 m.

We mention that, in all of our numerical examples, the regions beyond the source

and receiver positions are part of the inversion problem, too. This means, the area

which has to be recovered from the data is the whole area situated between the

PML boundaries. In some of our numerical experiments, artifacts can be observed

developping in the outer areas during the early stages of the reconstruction process.

We apply time-harmonic dipole sources of the form (11) with frequencies of

f = 5, 10, 15, 20, 25, or 30 MHz. In our examples, this corresponds to wavelengths
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in the background medium between 2 meters for f = 30 MHz and 13 meters for

f = 5 MHz. The size of an individual grid cell is chosen such that each of these

wavelengths is sampled by at least 16 pixels in order to avoid numerical artifacts

due to undersampling.

The data in our numerical examples are generated by running the FDFD forward

modelling code on the correct permittivity and conductivity distributions. Using the

same forward code for creating the data and for doing the reconstruction is usually

called 'inverse crime'. Therefore, to make sure that the situations we model in our

experiments are as realistic as possible, we have tested the forward modelling code

thoroughly, and add Gaussian noise with signal-to-noise ratios between 10 and 5 dB

to the real and imaginary parts of the generated data.

6.2 A full-view example

Our �rst numerical example tests whether the derived algorithm is able to recon-

struct a relatively complicated shape in the ideal situation where sources and re-

ceivers completely surround the area of interest. The geometry of this example is

shown in Figure 1. The positions of the sources and receivers are indicated by dots

in the Figure. The background medium in this example consists of a homogeneous

conductivity distribution �b = 3:0 � 10�4 Siemens/m, and a homogeneous permit-

tivity distribution �b = 20. Inside the object, the permittivity is �̂ = 15, having a

moderate contrast to the background distribution.

Notice that an interesting feature of this geometry is the 'hole' in the body of

the object which is di�cult to reconstruct. We will see that, during the evolution of

the permittivity in levelART, the boundaries of the reconstructed domain will split

and merge in the attempt to recover this geometry correctly.

First, we test the STAF algorithm in Figure 2 by reconstructing the permittivity

�(0) using only the data Gs = f30 MHzg. These data are noisy with a signal-to-noise
ratio (SNR) of 10 dB in the real and the imaginary parts. Compare the result with

the upper left image of Figure 3 where we used (noise-free) data with frequency

Gs = f5 MHzg.
A comparison of reconstructed permittivities for di�erent frequencies between 5

and 30 MHz shows that -in the ideal situation of sources and receivers completely

surrounding the area of interest- the STAF algorithm usually yields already a decent

approximation to the shape of the inclusion when applied to the data with the

highest frequencies, whereas it yields a reconstruction with decreasing resolution

when applied to data corresponding to lower frequencies.

Therefore, it seems to be most e�cient to apply the STAF algorithm directly

to the highest frequency data, such that we do not need at all any low-frequency
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information for the reconstruction. We will see in the following two geophysical

examples that this is certainly not true in applications where we have only data

with limited view available. In these cases, the use of lower frequency data stabilizes

the reconstruction process, and is necessary for preparing the �nal reconstruction

step using the higher frequency data.

We also want to demonstrate the performance of the levelART reconstruction

scheme when applied to this geometry. We start the algorithm by using as initial

permittivity �(0) the low resolution STAF reconstruction which is shown in the upper

left image of Figure 3, and the corresponding initial level set function �(0). No noise

is added to the data. Figure 3 shows di�erent stages in the reconstruction process.

We �rst apply levelART with a frequency of 10 MHz to this initial guess and run it

for 30 sweeps. Then, we run levelART with 20 MHz for 30 more sweeps, and �nally

for another 30 sweeps with 30 MHz. The �nal reconstruction �(N) is shown in the

lower right image of Figure 3. The �nal level set function �(N) corresponding to this

reconstruction is displayed in Figure 14.

We see from this example that the shape reconstruction algorithm using level

sets is able to split and merge boundaries easily in order to build up relatively com-

plicated geometries. In the present situation, splitting and merging of boundaries

was necessary for building the 'hole' in the reconstructed domain.

6.3 A cross-borehole situation with multiple objects

In our second numerical example, we consider a situation which is typical for geo-

physical applications. Comparable situations occur for example when we wish to

monitor pollutant plumes at environmental cleanup sites from cross-borehole EM

data.

We assume that we have 74 sources and receivers equidistantly distributed over

two boreholes. The distance of the boreholes from each other is 10 meters, and the

distance of two adjacent sources or receivers is 55 cm. The area between the two

boreholes has to be monitored given the gathered data. The geometry is shown in

Figure 4.

The background permittivity distribution in this example consists of four tilted

layers with values of �b = 21 in the top layer, and then continuing downwards with

20 , 19, and again 21 for the deepest layer. The conductivity distribution �b is

homogeneous with a value of �b = 3:0� 10�4 S/m everywhere.

Embedded in this background are three compact inclusions as shown in Figure

4. The permittivity inside these inclusions is �̂ = 5, having a high contrast to

the background values. The three inclusions are oriented such that there are two

'channels' of background material between them, one of them in the vertical and
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one in the horizontal direction. The di�culty in this example is to separate the

three inclusions from each other from the limited-view data. In particular, the

reconstruction of the vertical channel is critical since we expect that the resolution

in the horizontal direction will su�er from the missing data.

Again, we �rst apply the STAF reconstruction scheme to the data to get a �rst

guess of the permittivity distribution �(0). Figure 5 shows the result for Gs = f30
MHzg. Comparing this result with the reconstruction for the same frequency in

our �rst numerical example, we conclude that the performance of STAF for high-

frequency data is in the limited-view case not as good as in the case where we can use

data with full view. We observe that the vertical resolution of the reconstruction

is still good, whereas in the horizontal direction severe artifacts build up which

reduce the quality of the high-frequency STAF reconstructions as an initial guess

for levelART.

Figure 6 shows the corresponding STAF reconstruction using Gs = f5 MHzg.
We do not observe any artifacts in this reconstruction which might be caused by

the limited view in the data. Therefore, we see that the decreased resolution of

STAF using low-frequency data is in this situation compensated by a much higher

robustness with respect to missing data. Keeping this in mind, we will typically

start our reconstructions in the limited-view geometry by using the STAF result

which correspond to (one or more of) the lowest available frequencies.

Starting out from the permittivity �(0) as shown in Figure 6, and the corre-

sponding level set function �(0), we want to use the levelART algorithm in order

to calculate a series of shape deformations which transforms the initial shape into

the correct permittivity distribution. Figure 6 shows a reconstruction which uses

data where the real part and the imaginary part have been contaminated by addi-

tive Gaussian noise with a signal-to-noise ratio (SNR) of 10 dB before starting the

reconstruction process. Figure 7 shows the same reconstruction scheme, but with

an even lower SNR of now 5 dB in the data.

Di�erent strategies are possible for levelART. Which one works best, depends

on the speci�c situation, for example the number and arrangement of sources and

detectors, and on the noise level of the data. The strategy we use here (for both

SNR values) is the following: First, we apply 20 steps of levelART with a frequency

of 15 MHz to the initial guess. The result is shown in the lower left images of Figures

6 and 7. At this stage, the task of splitting the initial object into three subsets is

almost completed.

Then, we apply levelART with a combination of three frequencies, namely 20, 25,

and 30 MHz. This means that in a given sweep each of these three frequencies is used

exactly once in the prescribed order, before starting again with the lowest frequency
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(20 MHz) for the new sweep. This �nal step completes the reconstruction in just a

few (about 10) sweeps. The succeeding sweeps do not improve the reconstruction

signi�cantly. Moreover, the norms of the residuals approach a constant value as the

Figures 8 to 11 show.

Figures 8 to 11 show the evolution of the norms of the residuals during the

reconstruction process for di�erent signal-to-noise ratios in the data. The graphs

with the symbol '�' correspond to noiseless data, the graphs for a SNR of 10 dB are

indicated by '�', and those for a SNR of 5 dB by '+'.

Figure 8 shows the norms of the residuals for f = 15 MHz during the 20 steps

using the data with this frequency. The norms of the residuals decrease in all cases

continually during the reconstruction process. Figures 9 to 11 show the evolution of

the norms during the �nal 30 sweeps with the frequencies 20, 25 and 30 MHz. We see

that after 10 sweeps the residuals approach some constant value which depends on

the noise level of the data. In the lower right image of Figure 6, the reconstruction

for a signal-to-noise ratio of 10 dB after completion of these 10 sweeps is shown.

The corresponding level set function is shown in Figure 15.

Our experience is that marching over the higher frequencies in the described

fashion stabilizes the inversion procedure especially in the limited-view situation

considered here. However, so far we do not have any theoretical analysis which

supports this observation.

Notice the artifacts which appear in the case of an extremely low SNR of 5 dB in

Figure 7. These artifacts remain more or less stable when applying levelART with

a constant frequency of 15 MHz, and disappear when marching to the higher fre-

quencies in the succeeding reconstruction step. Notice that we also apply a di�usion

('curve shortening') �lter for these higher frequencies, see section 4.10.

We observe again that levelART has no problems in propagating and track-

ing these multiple artifacts, even when they �nally shrink and disappear. Notice

also that, similar to the �rst numerical example, the algorithm splits the original

boundary in order to arrive at the three separated inclusions forming the �nal re-

construction.

6.4 A cross-borehole situation with a single inclusion and variable

conductivity

In our third numerical example, we want to test a situation where the conductivity

inside the inclusions is di�erent from the given background values. Since we did not

take these conductivity changes into account when deriving the reconstruction algo-

rithm, the question arises how much the performance of the reconstruction method

will be e�ected by such changes in the conductivity distribution.
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We assume therefore that we know the two values �̂ and �̂ of the permittivity

and the conductivity inside the inclusions, but both of them are di�erent from the

background values. We run the STAF routine as usual, which amounts to treating

the conductivity changes simply as an additional form of noise. When applying

levelART, we calculate the updates ��(n) for the level set function �(n) in the same

way as derived above, but when determining the corresponding updated permittivity

distribution �(n), we update at the same time the conductivity distribution �(n) such

that �(x) = �̂ where the level set function �(n) has negative values. Strictly speaking,

we still invert only for the permittivity �, but we make use of the fact that inside

the obstacles the conductivity and the permittivity are closely related to each other.

Figure 12 shows the geometry of this example, and Figure 13 shows the results

for two di�erent conductivity values �̂ = 1:0 � 10�6 S/m and �̂ = 1:0 � 10�2 S/m.

Notice that these two values di�er from each other and from the background value

�b = 3:0 � 10�4 S/m by orders of magnitude! In both cases, Gaussian noise has

been added to the real and imaginary parts of the data with a signal-to-noise ratio

of 10 dB before starting the reconstruction routine.

As before, we start the reconstruction with the STAF guess corresponding to a

frequency of 5 MHz. After only six sweeps of levelART, using the frequencies 15,

20, 25, and 30 MHz one after the other in each sweep, we arrive in both cases at

a very good reconstruction of the permittivity distribution and of the conductiv-

ity distribution. We conclude that the performance of the reconstruction method

(STAF and levelART) is not signi�cantly e�ected by the changes in the conductivity

distribution.

This robustness with respect to changes in the conductivity certainly has its

limits. However, the example presented here makes us con�dent that in practi-

cal situations, when the conductivity value �̂ inside the obstacles is approximately

known and not too large (< 1:0� 10�2 S/m), the shape reconstruction method will

perform stably and reliably and will give us a good reconstruction of the actual

permittivity distribution.

7 Summary and future directions

We have presented a stable and e�cient two-step shape reconstruction algorithm

for EM cross-borehole tomography which uses adjoint �elds and level sets. We have

shown that this method is able to recover one ore more objects with nontrivial shapes

given noisy cross-borehole EM data.

The �rst step of this combined inversion scheme plays the role of an initializing

procedure for the second step, and employs a 'source-type' inversion scheme to deal
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with the high nonlinearity in the problem due to the presence of strong scatterers.

Although we believe that the preprocessing routine we propose here will work

well in most situations, it can be replaced by any other preprocessing tool which

shares the main features of the derived algorithm.

The second step of the inversion routine starts directly with the outcome of

this initializing procedure, and continues by using a combination of an 'adjoint �eld

technique' and a level set representation of the shapes until the inversion task is

completed. We have shown that using a level set representation in this second step

enables us to easily describe and keep track of complicated geometries which arise

during the inversion process.

We mention that the FDFD routine, which has been employed in both steps to

solve the forward and the adjoint Helmholtz problems, can be replaced by any other

more e�cient Helmholtz solver which has been tested to work reliably in the given

situation.

We have shown in our numerical experiments that the proposed reconstruction

scheme performs stably with respect to changes in the conductivity distribution, al-

though these conductivity changes have not been taken into account for the deriva-

tion of the scheme. It would be desirable, however, to extend the reconstruction

scheme to work simultaneously on the permittivity and the conductivity distribu-

tion. This seems to be possible, and we will address this problem in our future

work.

We also assume that we know the permittivity values inside the obstacles, and

that we only have to recover their shapes and their locations. In our future research,

we will investigate the situation where both, the shapes and the permittivity values

inside the obstacles, have to be recovered from the given data.

Throughout the paper, we have not clearly speci�ed the degree of regularity

which we require for the level set functions � representing the domains 
. A pos-

sible choice would be � 2 C1
0 (Br(0)) (i.e. continuously di�erentiable on Br(0) and

zero on @Br(0)), which would require some additional regularization in our numerical

experiments. We also have introduced in (72) an approximated linearized operator

�0[�] motivated by our wish to use convenient inner products. Are there any function

spaces which are more useful for our purposes? Will a practically useful reconstruc-

tion scheme result if we use di�erent inner products instead of introducing �0[�]? To

answer both questions, a thorough theoretical analysis has to be done to investigate

the implications of using di�erent function spaces for the level set representation.

The main ideas of the reconstruction method presented here are not restricted

to a 2D geometry. Therefore, we believe that it is possible to extend the method

to a more realistic 3D situation. All what is needed for this is an e�cient forward
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solver for the 3D system of Maxwell's equations. A forward solver which has been

tested for such situations has been presented in [7, 18]. Moreover, applications to

situations in medical imaging [2, 11], or in the nondestructive testing of materials

[45], seem interesting and possible.
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9 Appendix

9.1 Proof of theorem 5.1

Green's formula for an in�nite domain (without boundary terms since � > 0) reads

for general v; z

Z
IR2

[�v + �kv] z dx +

Z
IR2

v(x)(

DjX
d=1

�d�(x � xjd)) dx (106)

=

Z
IR2

v [�z + �kz] dx +

DjX
d=1

(

Z
IR2

v(x)�(x � xjd)dx)�d

where we have used the notation �k = ak�b + ibk�. Let now vjk be a solution of

(77), and zjk a solution of (82). Then the �rst term on the left hand side of (106)

reads Z
IR2

Qs

jk
(x)zjk(x) dx =

D
Qs

jk
; zjk�Br(0)

E
Y

; (107)

whereas the second term on the right hand side is

hMjvjk ; �iZj =
D
AjkQ

s

jk ; �
E
Zj

: (108)

The remaining two terms cancel each other because of (82). Therefore, (106) gets

the form D
Qs

jk ; zjk�Br(0)

E
Y

=
D
AjkQ

s

jk ; �
E
Zj

; (109)

which proves the theorem.
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9.2 Proof of theorem 5.2

SinceAjkA
�
jk
is a linear operator acting on the �nite-dimensional data space, it is suf-

�cient to �nd the action ofAjkA
�
jk
on each of the basis vectors ed = (0; : : : ; 0; 1; 0; : : : ; 0)T ,

d = 1; : : : ;Dj , where the '1' is at the d-th position. From (83) we see that�
A�
jked

�
(x) = 'dk(x)�Br(0)(x): (110)

Application of Ajk yields for the l-th component (l = 1; : : : ; Dj)�
AjkA

�

jk
ed

�
l

= vjk(xjl); (111)

where vjk is given by

vjk(y) =

Z
Br(0)

Gk(y; x)'dk(x) dx (112)

and Gk(y; x) is Green's function satisfying

�Gk(y; x) + (ak�b + ibk�)Gk(y; x) = �(y � x): (113)

Reciprocity yields Gk(xjl; x) = 'lk(x). Therefore, we get from (111), (112)

�
AjkA

�

jked

�
l

=

Z
Br(0)

'lk(x)'dk(x) dx; (114)

which proves the theorem.
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Figure 1: Original object for the example with full view. The dots in the �gure

indicate the source and receiver positions. The permittivity in the background is

�b = 20, and in the object �̂ = 15.
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Figure 2: STAF reconstruction of permittivity distribution for the example with full

view using f = 30 MHz and noisy data with 10 dB SNR.
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Figure 3: Evolution of permittivity �(n). Left column from top to bottom: STAF

reconstructions of �(0) for 5 MHz (top left); This is the starting guess for the following

reconstruction using levelART. After 10 steps of levelART with 10 MHz; After 30

steps with 10 MHz; Right column from top to bottom: After 10 steps with 20 MHz;

After 30 steps with 20 MHz; Final reconstruction after 30 steps of levelART with

30 MHz (bottom right). The algorithm used noise-free data.
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Figure 4: True permittivity distribution in the cross-borehole example. The dots

in the �gure indicate the source and receiver positions. The permittivity in the

background layers is (from top to bottom) �b = 21, 20, 19, and 21. Inside the object

it is �̂ = 5.
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Figure 5: STAF reconstruction of permittivity distribution for cross-borehole exam-

ple using noisy data with 30 MHz and 10 dB SNR.
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Figure 6: Evolution of the permittivity distribution �(n) in the cross-borehole exam-

ple using noisy data with 10 dB SNR and limited view. Top left: STAF reconstruc-

tion of �(0) for 5 MHz. This is the starting guess for the following reconstruction

using the levelART algorithm. Bottom left: After 20 steps of levelART with 15

MHz; Top right: After 2 sweeps with 20, 25, and 30 MHz; Bottom right: After 10

sweeps of levelART with 20, 25, and 30 MHz.
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Figure 7: Evolution of the permittivity distribution �(n) in the cross-borehole exam-

ple using noisy data with 5 dB SNR and limited view. Top left: STAF reconstruction

of �(0) for 5 MHz. This is the starting guess for the following reconstruction using

the levelART algorithm. Bottom left: After 20 steps of levelART with 15 MHz; Top

right: After 2 sweeps with 20, 25, and 30 MHz; Bottom right: After 10 sweeps of

levelART with 20, 25, and 30 MHz.
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Figure 8: Norm of residuals for 15 MHz in cross-borehole example.
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Figure 9: Norm of residuals for 20 MHz in cross-borehole example.
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Figure 10: Norm of residuals for 25 MHz in cross-borehole example.
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Figure 11: Norm of residuals for 30 MHz in cross-borehole example.
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Figure 12: Original permittivity distribution �(n) in the cross-borehole example using

noisy data with 10 dB SNR and limited view. The permittivity �b in the background

is the same as in �gure 4, and in the inclusion it is �̂ = 5. The conductivity in the

background is �b = 3:0� 10�4 S/m, and in the inclusion it is either �̂ = 1:0 � 10�6

S/m (�rst example), or �̂ = 1:0 � 10�2 S/m (second example). The dots in the

�gure indicate the source and receiver positions.
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Figure 13: Reconstruction of permittivity and conductivity distributions after ap-

plying STAF with 5 MHz, and 6 sweeps of levelART with 15, 20, 25, and 30 MHz.

Left column: Example with �̂ = 1:0 � 10�6 S/m inside the obstacle. Shown is the

reconstructed permittivity (top) and reconstructed conductivity (bottom). Right

column: Example with �̂ = 1:0 � 10�2 S/m inside the obstacle. Reconstructed

permittivity (top) and reconstructed conductivity (bottom). The conductivity was

treated as noise in STAF, and was considered linked to the current reconstruction

of the permittivity distribution in levelART. All data were contaminated with white

Gaussian noise of 10 dB SNR before starting the reconstruction process.
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Figure 14: Final level set function ��(N) for the full-view example. Figure 3 shows

the corresponding permittivity distribution �(N).
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Figure 15: Final level set function ��(N) for the cross-borehole example using data

with 10 dB SNR. Figure 6 shows the corresponding permittivity distribution �(N).
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Statistical Method to Detect Subsurface

Objects Using Array Ground Penetrating

Radar Data
Xiaoyin Xu, Eric L. Miller, Carey M. Rappaport and Gary D. Sower

Abstract

We introduce a combination of high-dimensional analysis of variance (HANOVA) and

sequential probability ratio test (SPRT) to detect buried objects from an array ground pene-

trating radar (GPR) surveying a region of interest in a progressive manner. Using HANOVA,

we exploit the transient characteristic of GPR signals in the time domain to extract infor-

mation about buried objects at �xed positions of the array. Based on the output of the

HANOVA, the SPRT is employed to make detection decisions recursively as the array moves

downtrack. The method is on-line implementable and of low computational complexity. Our

approach is validated using �eld-data from a landmine detection application.

Index Terms

Analysis of variance (ANOVA), GPR mine detection, array signal processing, sequential

detection, transient signal analysis.

I. Introduction

Ground penetrating radar (GPR) is widely used in detecting subsurface objects such as

buried landmines, unexploded ordnance, and utility lines [1]. Compared with other subsur-

face sensing technologies, GPR has a few advantages. First, it is sensitive to changes in all

three electromagnetic characteristics of a media, electric permittivity, electric conductivity,

and magnetic permeability. Thus GPR is capable of detecting both metallic and non-metallic

X. Xu, E. L. Miller, and C. M. Rappaport are with the Center for Subsurface Sensing and Imaging Systems,
Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA. G. D. Sower
is with the EG&G MSI Inc., 2450 Alamo Ave. S.E., Albuquerque, NM 87106. This work was supported by an ARO
MURI on Demining under Grant DAAG55-97-1-0013
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TRANSIENT STATISTICAL METHOD FOR ARRAY GPR PROCESSING 1

objects. Second, unlike sensors that can only survey an area directly beneath them, GPR can

survey an area in front of it [2,3]. Therefore a GPR system can be used to detect dangerous

objects before the system moves over and past them. This can be important for operations

such as buried landmine detection and unexploded ordinance remediation.

A typical GPR transmitter/recover con�guration is shown in Fig. 1(a). The system

consists of one transmitter and one receiver. The transmitter emits a short pulse of electro-

magnetic energy and the receiver collects the echo for a certain time period. The exact type

of the transmitter and receiver, shape of the electromagnetic pulse, and system setup depend

on the speci�c application of the GPR [1, 4{6]. To improve performance and e�ciency, a

GPR array is usually employed to sweep a large area in a relatively short time. Fig. 1(b)

shows a typical GPR array moving in the x-direction. At every stop of the array, the GPR

array operates in the following sequence: 1) the �rst transmitter radiates a pulse into the

ground and then turns o�, 2) the �rst receiver turns on to collect reected signal, 3) the �rst

receiver turns o� after a short time, usually 10 to 20 ns. The above process repeats from

every pair of transmitters and receivers and then the GPR array moves to next position.

Based on the echoes, the processing objective is to determine if an object is present in the

GPR's �eld of view.

The inherent near-�eld nature of the GPR detection problem coupled with the fact

that the objects of interest are embedded in an inhomogeneous halfspace with a typically

rough interface present some signi�cant challenges in the area of GPR signal processing.

Indeed assuming one has detailed knowledge of the air-earth interface as well as the electrical

properties of the subsurface, just modeling the received signal using, for example, a three

dimensional �nite di�erence time domain code, is a daunting task [4, 7]. The use of such a

forward model in any form of on-line processing routine where one might need to account

April 29, 2001|3 : 44 pm DRAFT
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Fig. 1. Setup, a) a single GPR system, b) a GPR array (plane view).

for e.g. unknown ground structure is clearly infeasible at the current time.

Thus, here we consider detection methods which are less computationally demanding

with an eye toward approaches that could be used in real-world scenarios. Our interests

are in techniques possessing three important characteristics. First, to reect the manner in

which GPR data are acquired and the nature of the GPR mission, the algorithms should

be causal in that they need only the data at the current and previous sensor position to

determine whether an object is present in the �eld of view of the sensor. Second, they

should be of low complexity. Preferably the number of calculations would grow linearly with

the size of the data set. Finally, the processing schemes should be robust to uncertainties in

the GPR environment and hence the particular detailed structure of the received signals.

Current signal processing methods with some or all of these characteristics fall into

one of three categories. First, pattern matching methods [8] employ techniques such as

fuzzy set theory and neural networks. Such methods can be fast but also require extensive

training to function well. Second, image-then-detect techniques [9] employ a beamforming or

backpropagation approach to build an image of the subsurface which is then post-processed

to detect objects. These approaches generally require the data from the full GPR scan to
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TRANSIENT STATISTICAL METHOD FOR ARRAY GPR PROCESSING 3

form an image and are thus not well suited to on-line computations in which information is

processed sequentially as the array proceeds down-track. Finally, there has been much work

done in statistical signal processing, where one can employ statistical tools to detect objects

and examine quantities such as probability of detection and probability of false-alarm [10].

Here we consider a statistical, transient detection approach. By \transient" we mean

that the signals of interest are manifest in the GPR data for a small number of sensor

positions and for relatively few samples in any received waveform. For example, in Fig. 2

we plot raw observations obtained by one T/R pair from an EG&G GPR system [11], over

an M20 metal mine. Each column of this image is a time-series of observations for a given

stop of the array. It is seen that the received GPR signal is transient in two ways. First, for

each time-series (i.e. for each column of the image) containing an object signal, the signal

appears only in a brief window, roughly from samples 300 to 700. The reason is that the

object signal always comes after the signal arising from the bounce o� of the air-ground

interface and attenuates quickly in lossy media. Second, the object signal shows up only at

a few down-track positions of the GPR array, speci�cally locations 15 through 25. In both

cases, the appearance of object signal changes the mean value of the data. Our method

for object detection then is based on detecting change in this mean �rst in the cross-track

direction and then in the down-track direction.

More speci�cally our approach consists of two parts. First, at each down-track position

of the array, we process the data among all T/R pairs to generate one test statistic. We

use high-dimensional analysis of variance (HANOVA) to test whether the data consists of

reected signal from a buried object. The HANOVA is a generalized version of standard

analysis of variance (ANOVA), which is a method for testing hypothesis about means of

random vectors [12, 13]. Second, a sequential probability ratio test (SPRT) is applied to
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Fig. 2. Observation from one T/R pair, for a metal mine M20 buried at about position 20. Unit in
down-track position is about 7.6 cm. Unit in time axes is 0.02 ns.

process the statistic of the HANOVA as the array moves down-track. The SPRT is a recursive

statistical hypothesis testing technique that provides early indication of the onset of changes

in a time series. The output of the SPRT is compared with a threshold. If it exceeds the

threshold, a detection is declared, otherwise, the GPR array moves one more step down-track

and new data are collected and processed in the above manner [14].

As explained in greater detail below, our approach does in fact satisfy the three require-

ments we discussed previously. It is causal and has computational complexity that grows

linearly with the size of the data. Moreover, we show through real-data examples that it

is robust, requiring little in the way of training and able to successfully address the object

detection problem for a number of GPR systems operating in a wide range of environments.

We do stress here that the algorithm in this paper is intended only to �nd anomalies beneath

the GPR array and not to solve the far more challenging classi�cation problem. Thus, from

a practical perspective our approach will serve well as an e�cient \pre-screener" in a larger

automatic target detection algorithm suite. Finally, our method is motivated by landmine

detection using GPR, however it can also be used in other detection application, such as

laser-induced acoustic subsurface objects detection [15].

The paper is organized as follows. Section II discusses the problem formulation and our
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method. Section III gives some examples of using the method in di�erent situations. Field

data from di�erent radar con�gurations and test sites are used to show how the algorithm

works. Conclusion and direction of future work are given in Section IV.

II. PROBLEM FORMULATION AND ALGORITHM

To begin, we consider a single GPR T/R pairs as shown in Fig. 1(a). After each transmis-

sion, the receiver collects an echo for a certain amount of time. Depending on the presence of

an object, there are either two or three components in the echo. One is measurement noise,

assumed to be white and Gaussian. Another is background, i.e., \nominal" signal observed

in object-free regions. The third component is object signal, reection from a buried object.

For the GPR array shown in Fig. 1(b), assume we have M GPR Transmitter/Receiver

(T/R) pairs surveying an area in N steps, the task is to use present and previous array mea-

surement to detect buried mines as the array moves down-track. At each down-track position,

we model the array detection problem in a typical hypotheses testing framework [14],

H0 : there is no object;

H1 : there is an object:

The null hypothesis H0 means that there is no buried object in the �eld of view of the GPR

array, so the total received signal is comprised of nominal background and measurement noise.

By nominal background, we mean any portion of the received waveform not sensor noise and

not arising from the interaction of the transmitted pulse with the object. Reection from the

air-ground interface is the dominant component of this part of the signal. The alternative

hypothesis H1 indicates that there is buried object so that the received signal consists of

nominal background, measurement noise, and an object signal.

In this paper we assume that the nominal background signal has been removed via a
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preprocessing stage. The most used background removal methods include casual methods,

such as subtraction of a moving average from the observation [16], and non-causal methods,

such as subtraction of an ensemble average from the observation [17, 18]. Causal methods

use data from previous and present collection, non-causal methods use data from previous

and future collection. In this paper, a moving average (MA) �lter is used to eliminate the

nominal background.

In practice, the receiver collects time-samples of the reection and stores it as a vector.

For convenience, we use vector notation in our discussion, i.e., y(m;n) is a column vector

representing observation of the mth T/R pair at the nth down-track position. The length

of y(m;n) is K, the number of samples in time. Fig. 3 shows the received signal after the

nominal background removal.1 We then have the hypothesis test

H0 : y(m;n) = v

H1 : y(m;n) = s(m;n) + v (1)

where m = 1; � � � ;M , n = 1; � � � ; N are positions of GPR, s(m;n) is the assumed signal

due to presence of buried object, v is assumed to be a white Gaussian noise with a zero

mean, and covariance matrix �2
vI, where I is the identity matrix of size K and independent

of (m;n).

The statistical assumptions about v are not strictly accurate in describing the noise

in a GPR signal. For example the background removal process will not be perfect leaving

a component of correlated \clutter" in the data which may or may not possess Gaussian

statistics. Despite the mismatch, the use of the additive white Gaussian noise model is

useful for a number of reasons. This model allows us to develop an algorithm for object

1 For the purpose of illustration, in this section we use �eld data from a buried metal mine to illustrate clearly the
concept under consideration. Examples which demonstrate better the utility of our approach on more challenging
problems, including buried plastic mines, are given in Section III.
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Fig. 3. Signals from four T/R pairs, after background removal, a) pair 1, b) pair 2, c) pair 3, d) pair 4.
Unit in time axes is 0.02 ns.

detection which is �rmly rooted in Gaussian-based statistical decision theory and which can

be generalized in the future for more complex noise processes. Moreover, the complexity of

such algorithms is quite low making them well suited for real-world implementation. Finally,

test results in Section III from real �eld data demonstrate that the method is quite e�ective

in detecting objects. Thus, the Gaussian noise model is shown to work in practice. While it

may be interesting to explore other, more accurate models for the sensor noise to determine

for example what can be gained in terms of performance and what would be lost in terms

of computational complexity, such an e�ort is beyond the scope of the work in this paper.
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Based on the previous discussion, after background removal the hypothesis test in (1)

may be written as

H0 : y(m;n) � N(0; �2
vI)

H1 : y(m;n) � N(s(m;n); �2
vI); m = 1; � � � ;M; n = 1; � � � ; N (2)

where the notation y � N(x;R) indicates that y is distributed as a Gaussian random vector

with mean x and covariance matrix R.

As stated in the Introduction, we take a two-step approach to the processing of y(m;n).

First for each n we use the HANOVA procedure to generate a single test statistic, Y (n), from

the data from all T/R pairs. Second, a recursive, sequential detection scheme is employed

to process Y (n) as we proceed down track in order to determine where objects are present.

A. Cross-track Processing

We begin by discussing the use of HANOVA to process data in the cross-track direction.

HANOVA is a generalized version of analysis of variance (ANOVA). ANOVA is a body of

methods to analyze the data with a view to test hypotheses about the e�ects of one or more

factors [19]. To review the basics of ANOVA, we follow the notation established above for the

GPR problem and for simplicity assume we have one data vector of size K � 1 from a single

T/R pair, y � N(s; �2I) and we wish to test H0 : s = 0 (i.e., no object) vs. H1 : s 6= 0 (i.e.,

an object present)2. Standard ANOVA is essentially an \energy detection" scheme [12] where

we estimate s by y, generate the test statistic Y = kyk2, and compare Y to a threshold, .

If Y exceeds the threshold, H1 is chosen, else H0 is selected. The probability of detection of

the standard ANOVA is

Pd(H1jH1) = Q

�
 � jjsjj2

�2
p
2Kq

1 + 2jjsjj2
�2K

�
(3)

2 For notational simplicity, we drop the explicit dependence of all quantities on m and n in this discussion
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where  is the test threshold decided by setting an acceptable probability of false-alarm

under H0 and Q is the complementary cumulative distribution function and is strictly de-

creasing [20]

Q(Y ) =

Z 1



P1(Y )dY: (4)

Recently, Fan [12] and Fan and Lin [13], have noted that the performance of ANOVA

su�ers for problems when the signal of interest is limited to a window of the observation

vector. The reason is that a full dimensional test loses its power due to accumulation of

stochastic noise. To see why, suppose s is di�erent from 0 only for say the �rst k0 samples

of the full observation vector. Then on average as K > k0 goes large,
PK

k=1 [s]
2
k =�

2
p
2K

decreases due to the accumulation of zero mean noise samples and the term within the

parenthesis of (3) increases, thus reducing Pd. Therefore, for higher probability of detection,

we would like to con�ne the test on a window mostly containing the signal of the observation

vector. The window we choose is a box window w, de�ned as

[w]k =

8>><
>>:
1; k = k1; � � � ; k2

0; otherwse

(5)

where 1 � k1 < k2 � K. The k1 and k2 are chosen in a preset manner, as discussed later

in this section. Multiplying each element in y by the corresponding element of w gives the

windowed yw

[yw]k = [y]k � [w]k ; k = 1; � � � ; K: (6)

To demonstrate the utility of HANOVA, we test the time-series shown in Fig. 4(a). We

choose to test the vector at its full dimension k1 in (5) is 1 and k2 = 1000, and two windowed

sub-dimensions (each containing fewer and fewer noise components) k1 = 100 and k2 = 900,
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To choose this window we note that (3) indicates that the probability of detection

achieves its maximum value when the term inside the parenthesis is minimized. Equally, one

wants to maximize the quantity

argmax
k1;k2

Pk2
k=k1

[s(m;n)]2k
�2
v

p
k2 � k1 + 1

�
p
k2 � k1 + 1 (7)

where k1 < k2 and k1; k2 2 1; � � � ; K. The di�culty for us is that in general, the precise

structure of s is not known. Hence, we use the data to form an estimate of s as follows.

Assume we are at the nth stop, then we estimate s by the mean value of the previous l vectors

ŷ(m;n) =

8>><
>>:
Pn
j=1 y(m;j)

j
; n = 1; � � � ; l

Pn
j=n�l y(m;j)

l
; n > l

(8)

where m = 1; � � � ;M and the corresponding window w(m;n) is decided based on ŷ(m;n) as

k1; k2 are de�ned by (7). More will be said about choosing a proper l in Appendix A.

Rather than looking for the optimal window by searching over all k1-k2 pairs, we pursue

a suboptimal, but more e�cient two-stage approach. First, we �x k1 as 1, incrementally

increase k2, and stop when (7) is maximized. Thus we determine the end point of the window

k2. Starting from k2, working backward toward the �rst point, we similarly determine the

starting point of the window, k1. Both searching steps can be computed in linear complexity,

it takes o(K) steps to �nd the k2 and o(k2) steps to �nd the k1
3. In summary the steps for

looking for windows at the nth stop of the GPR array are given in Fig. 5.

Having determined the window at the position (m;n), the next stage of processing is

to generate a single detection statistic at stop n. Here we generalize HANOVA to multiple

vector observations, via

Y (n) =
1

�2
v

MX
m=1

jjyw(m;n)jj2: (10)

3 The notation o(K) means that the computational complexity grows slower than or equally fast as K increases.
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� FOR n = 1 : N
{ FOR m = 1 : M
{ ŷ(m;n) =

Pn
j=n�l y(m;j)

l� Set k1(m;n) = 1, �nd k2(m;n) by

k2(m;n) = argmax
k2=1;��� ;K

�Pk2
k=1[ŷ

2(m;n)]k

�2
v

p
k

�
p
k

�

� Let p[1:k2(m;n)] = �
�
[ŷ2(m;n)][1:k2(m;n)]

�
, where �(�) is an operator that

ips up-down elements of its operand.
� Find k1(m;n) by

k1(m;n) = k2(m;n)� argmax
k

�Pk2(m;n)
k=1 [p2]k

�2
v

p
k

�
p
k

�

� Set the window w(m;n) by

[w(m;n)]k =

(
1; k = k1(m;n); � � � ; k2(m;n)

0; otherwse

� Windowed yw(m;n) is decided by

yw(m;n) = y(m;n)�w(m;n) (9)

{ ENDFOR
� ENDFOR

Fig. 5. Steps of deciding window w(m;n) and yw(m;n).

Note yw(m;n) can be of di�erent length because of di�erent window applied. Fig. 6(a) shows

the result of applying HANOVA to the data in Figure 3. Where the HANOVA output is high,

so too is the likelihood of an object being present. Thus in Fig. 6(a), the object is clearly

detectable. More examples involving di�erent types of objects will be given in Section III.

B. Down-track Processing

While HANOVA detects statistical signi�cance at one stop of the array, it does not

capture the object signal structure seen as the array moves down-track. To improve detection

performance, we employ a sequential detection scheme to process Y (n) recursively as n
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Fig. 6. HANOVA and SPRT processing results for metal mine data shown in Fig. 3

increases in order to identify the transient signal arising from the mine [14,21]. Speci�cation

of this sequential probability ratio test (SPRT) begins by noting that under our models Y (n)

takes on a �2 distribution under both H0 and H1. Standard statistical analysis [12] yields

H0 : Y (n) � �2PM
m=1

�k(m;n)
(0)

H1 : Y (n) � �2PM
m=1

�k(m;n)
(�2(n)) (11)

for n = 1; � � � ; N where the notation x � �2
p(�

2) indicates that the random variable x

is distributed according to a �2 law of order p and non-centrality parameter �2 [20] and

�k(m;n) = k2(m;n)�k1(m;n) is the length of the (n;m)th window. For the GPR problem

it is easy to show that

�2(n) =
1

�2
v

MX
m=1

jjs(m;n)�w(m;n)jj2: (12)

For our problem, the length of each window, �k(m;n), is large (on the order of hundreds)

and the central limit theorem permits us to approximate the �2 distribution using a Gaussian

April 29, 2001|3 : 44 pm DRAFT



TRANSIENT STATISTICAL METHOD FOR ARRAY GPR PROCESSING 14

distribution [20]. We then have

H0 : Y (n) � N(�0; �
2
0) � N

 
MX
m=1

�k(m;n); 2
MX
m=1

�k(m;n)

!

H1 : Y (n) � N(�1(n); �
2
1(n)) � N

 
MX
m=1

�k(m;n) + �2(n); 2
MX
m=1

�k(m;n) + 4�2(n)

!
:

(13)

At stop n, the log likelihood ratio for the hypothesis testing problem in (13) is

u(n) = ln
pn(Y (n))

p0(Y (n))
; n = 1; � � � ; N (14)

where pn(Y (n)) is the PDF of Y (n) evaluated at the nth stop under H1 and p0(Y (n)) is the

PDF of Y (n) evaluated under H0. Under H0, �0 and �2
0 are estimated using data from an

object-free area. Therefore, for this algorithm, the GPR array must start by collecting data

in a calibration region to initialize these variables. Under H1, one di�culty with generating

u(n) is that �1(n) and �2
1(n) are typically not known a priori since the underlying s(m;n)

are not assumed known. It turns out that we only need to estimate �1(n), and �2
1(n) can be

found from the following relation

�2
1(n) = 2

MX
m=1

�k(m;n) + 4�2(n)

= 2
MX
m=1

�k(m;n) + 4

�
�1(n)�

MX
m=1

�k(m;n)

�

= 4�1(n)� 2
MX
m=1

�k(m;n): (15)

At the nth stop, we estimate the mean of Y (n) by its maximum likelihood estimator

�1(n) = Y (n).

The sequential probability ratio test statistic U(n) is a cumulative sum, changing with

the acquisition of each new u(n)

U(n) = max(0; U(n� 1) + u(n)): (16)
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� U(1) = 0
� FOR n = 2; � � � ; N

{ �1(n) = Y (n)
{ Form �2

1(n) according to (15)
{ Form u(n) according to (14)
{ U(n) = max(0; U(n� 1) + u(n))
{ IF U(n) > �, declare object, set U(n) = 0, ENDIF

� ENDFOR
Fig. 7. Sequential processing.

Because subsurface object detection is a binary hypothesis testing problem, e.g., we are only

interested in knowing whether there is a buried object, the SPRT statistic is bounded from

lower bound, zero. When U(n � 1) + u(n) is negative, U(n) is reset to zero. For a preset

threshold �, the SPRT will make one of two decisions at each n

U(n) � � ) choose H1

U(n) < � ) take another observation:

The sequential detection is then essentially a repeated SPRT [22] and summarized in Fig. 7.

Fig. 6(b) shows the sequential test statistic when the SPRT is applied to the data in Fig. 6(a).

Because the SPRT in (16) has the form of a modi�ed \integrator," a typical time series for

the SPRT statistic takes a step-like form. The larger and sharper the step, the more likely

it is that a target is present. At the position where there is an object, the sequential test

statistics has a clear upward change again indicating the existence of an object at about

position 16.

III. Examples

In this section we use �eld data as examples to illustrate the performance of our method.

The �eld data are collected by both single GPR and GPR arrays at di�erent test sites. For

each data set, we compare the results from using standard ANOVA, HANOVA, ANOVA
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followed by SPRT, and HANOVA followed by SPRT. Comparison indicates that generally

HANOVA performs better than ANOVA, and with SPRT, both ANOVA and HANOVA make

fewer false-alarms. In other words, HANOVA with SPRT gives the best receiver-operating

characteristics, as we shall see later in this section.

At �rst, we apply our method on data collected by single GPR at di�erent test sites.

Some data are taken under relatively favorable condition, while most are from more hostile

test sites which involve rough ground surface and other clutter. Fig. 8 compares results of

ANOVA and HANOVA on a buried steel object at position 50. For comparison, the outputs

of ANOVA and HANOVA are normalized to one. It is observable that while both methods

detect the object easily, the HANOVA is better in suppressing noise output where there is no

object, e.g., at position 1 through 40 and 60 through 100, Fig. 8(c) and (d). Fig. 9 shows the

results from detecting a plastic mine, M19, at position 50. Again, the HANOVA performs

better in suppressing noise. At positions 20 through 40, the HANOVA creates a much lower

noise level than the ANOVA does. Similarly, the HANOVA produces a cleaner output at

the end of the run.

Fig. 10 shows the results of ANOVA and HANOVA in detecting an anti-tank mine,

TM62, from a very \noisy" data set. The mine is buried at position 60. Outputs of both

HANOVA and ANOVA consist of the correct detection and some false alarms. The HANOVA

maintains a better performance than the ANOVA in the sense that, for a given detection

threshold, the HANOVA would generally have a smaller number of false-alarms. For the

HANOVA, no false alarms will be declared for a threshold greater than 0.5, while for the

ANOVA, the threshold must be set above 0.8 to avoid making a wrong decision. Between

threshold 0.5 and 0.8, the ANOVA will make two false-alarms while the HANOVA has

zero false-alarm.
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Fig. 8. Results of a single GPR measurement above a steel object around position 50, a) raw observation,
b) observation after nominal background removal, c) ANOVA output, d) HANOVA output. In a) and b),
each unit in time axes is 0.02 ns.

Next, by comparing the outputs of the SPRT in the above three examples, we see that

sequential processing generally smoothes the output and generates fewer false-alarms than by

using ANOVA (or HANOVA) only, Fig. 11. In all three examples, SPRT following HANOVA

performs better than SPRT following ANOVA, in the sense that the output is more leveled

o� at object-free area and the jump at the position of the buried object is sharper.

To study the receiver operating characteristic (ROC) of the method, we test our method

on multiple runs of di�erent type of targets. Fig. 12(a) shows the ROC curves of ANOVA

and HANOVA to detect metallic objects. The objects include metallic mines such as TM15,
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Fig. 9. Comparison between the ANOVA and HANOVA, a) raw data over an M19, anti-tank mine, buried
at position 50, b) demeaned data, c) result of the ANOVA over the M19, d) result of the HANOVA.

TM46, and PMN. Fig. 12(b) shows the ROC of ANOVA-SPRT and HANOVA-SPRT. Com-

pared with Fig. 12(a), SPRT improves the performance of both ANOVA and HANOVA.

In generating these curves a correct identi�cation of any of the objects was taken to be a

\detection" whether or not the object itself was a mine. Indeed, as noted in the Introduc-

tion, the algorithm in this paper is intended only to detect the presence of objects below

the array and not to solve the classi�cation problem. Still, given the \real-world" conditions

under which the data were taken, the low false alarm rates here point to the robustness of

our approach.

Next, we compare the performance of ANOVA, HANOVA, ANOVA-SPRT, and HANOVA-
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Fig. 10. More comparison between the ANOVA and HANOVA, a) raw data over a TM62, anti-tank mine,
buried to the side of the track at position 58, b) demeaned data, c) result of the ANOVA, d) result of the
HANOVA.

SPRT in detecting plastic mines. The mines are M19, VS-1.6, T72, and C4A1. Fig. 13 shows

the ROC curves of the above four methods. It is seen that both the ANOVA-SPRT and

HANOVA-SPRT perform better than the ANOVA and HANOVA, respectively.

As another example, we test our method on a di�erent array radar system at another

test site. The setup of the GPR array is shown in Fig. 14. There is one transmitter in this

system. In front of the transmitter, four receivers are positioned in a 2�2 pattern. Above

the transmitter and the receivers there is a hyperbolic reection plate, it is set so that the

transmitter is at the focal point of the reection plate. The array moves on a linear track
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to collect data. At each step, the transmitter sends a spherical wave to the reection plate

and after reection, the sphere wave becomes plane wave. The four receivers then collect

reection of this plane wave from the ground. The system has the advantage of generating

plane wave and points it forward to reduce ground reection. Fig. 15 displays collected data

from the two front receivers at the Dedham test site of Northeastern University and the

corresponding signal after background removal. In an area of 58 m2, there are 12 buried

landmines of di�erent types, such as M19, PMN, VS-2.2, and so on. Using our method

we are able to detect all 12 mines with a few false-alarms, Fig. 16. The results are similar

to those obtained by a single GPR. For a detection rate above 90%, the HANOVA has a

signi�cantly smaller number of false-alarm.

IV. Summary

In this paper, we have proposed a sequential, high-dimensional ANOVA to process GPR

returns. The method is tested on real data and has a relaxed requirement on the physical

model used in the processing routine. The method is on-line implementable and has a linear

computational load. The method works in two stages: �rst it looks for statistically signi�cant

di�erence from array observations, second, it applies a sequential detection as new data are

obtained. HANOVA is powerful in the sense of maximizing probability of detecting statisti-

cally signi�cant di�erence among sub-dimensions of a full vector of observations. Sequential

detection recursively processes the result of the HANOVA and enables real-time processing

as new data are collected. We have demonstrated the performance of this technique on

samples of �eld data.

Future research will focus on classi�cation and localization. Classi�cation consists of

two steps. First, a feature extraction scheme is applied on reected signals to generate

intermediate result, second, the output from feature extraction is fed into a Bayesian classi�er
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to make the classi�cation. Localization is based on optimized frequency-wavenumber (F-K)

migration. F-K migration is an inversion method that back-propagates wave�eld from the

ground surface to subsurface and construct an image of subsurface reectivity. Regular F-K

migration is well modeled for seismic signal processing. Though GPR signal is di�erent from

seismic signal, F-K migration can still work very well in processing GPR signals. Nonetheless,

improvement in terms of resolution and accuracy can be achieved by considering optimization

in F-K migration. In our future work, an optimization method will be used to improve the

F-K migration.

Appendix

I. Window Selection in HANOVA

Ideally, we want to �nd a window that is sensitive to the presence of a signal and provides

little response in the test statistic when there is noise only. But these two requirements are

often in conict with each other. From (8), we can change the order l of the MA process

to control the window we use. The smaller is l, the more sensitive the window is to the

presence of signal and strong noise. On the other hand, the larger is l, the more robust

will the statistic be to noise, which translates into a smaller probability of false-alarm. But

a large l reduces sensitivity of the HANOVA to signal. Fig. 17 shows the e�ect of l on

window selection and the corresponding HANOVA results. Three di�erent l are used, i.e.,

l = 1; 4; 9. In the data, there are three mine objects, two metal mines at the position 110

and 170. A weak mine object is at position 25. For comparison, we normalize the HANOVA

outputs in each case by its maximum value, which corresponds to the strong metal mine

buried at position 110. Fig. 17(a) and (b) show the window chosen by a MA of order 1 and

the resulting HANOVA output. The two strong objects can be detected at a threshold of

0.7, the weak object can only be found at a threshold of 0.2. Fig. 17(c) shows the window
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chosen by a MA of order 4. The window oscillates much less than the window in Fig. 17(a).

From the HANOVA result, Fig. 17(d), we can �nd all the three objects at a threshold of 0.3.

Increasing the order of MA process can make the results worse, Fig. 17(e) and (f). A large

window reduces the sensitivity of the HANOVA to signal and actually makes detection more

di�cult. Now the weak object at position 25 can not be detected at a threshold greater

than 0.3. As a guideline, we �nd that MA processes of order between 3 and 10 yield good

windows both in sensitivity to signal and robustness to noise. This selection is a�ected by

the step-size of the array. An array moving at small step-size will allow an MA process of

large l in selecting windows, and vice versa.
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Fig. 11. Results of the SPRT, a buried steel object, a) output of ANOVA-SPRT, b) output of HANOVA-
SPRT; a buried M19, c) output of ANOVA-SPRT, d) output of HANOVA-SPRT; a buried TM62, e) output
of ANOVA-SPRT, f) output of HANOVA-SPRT.
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Fig. 12. Rate of detection and rate of false-alarms in detecting metallic objects, solid line is the result of
HANOVA, dashed line is the result of ANOVA, a) ANOVA vs. HANOVA, b) ANOVA-SPRT vs. HANOVA-
SPRT.
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Fig. 13. Rate of detection and rate of false-alarms in detecting plastic mines, solid line is the result of
HANOVA, dashed line is the result of ANOVA, a) ANOVA vs. HANOVA, b) ANOVA-SPRT vs. HANOVA-
SPRT.
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Fig. 14. GPR array used at Dedham test site of Northeastern University, a) plane view, b) side view.
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Fig. 15. GPR data from the Dedham test site, (a) from the left front receiver, (b) from the right front
receiver, (c) signal (a) after background removal, (d) signal of (b) after background removal. Unit in time
axes is 120 ps.
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Fig. 17. Choices of window and e�ect on HANOVA, lower line is k1(m;n), upper line is k2(m;n), a) window
selected by an order 1 MA process, b) HANOVA result from the window to the left, c) window selected by
an order 4 MA process, d) HANOVA result from the window to the left, e) window selected by an order 10
MA process, f) HANOVA test result from the window to the left.
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ABSTRACT

We consider the problems of detecting, localizing, and characterizing the shapes of buried mines from
acoustic transducer data. A multipath model is used to describe the contributions in the data from �elds
scattered both by the ground as well as the object. By identifying the parameters in the model, we
can successfully solve the target identi�cation problem. Unfortunately, the narrow band and bandpass
characteristics of the transducer in our system prevent a straightforward application of a Wiener �lter as
a means of extracting these parameters. Because of the bandpass nature of the transducer it is necessary
to develop a base-banding procedure as a preprocessing stage for the Wiener �lter. Due to the very
narrow bandwidth, a detect and subtract method is constructed to extract the weak signal arising from
the buried object which otherwise is drowned out in the sidelobes generated by the processing of the ground
bounce. We demonstrate the utility of our approach on real experimental data collected at Northeastern
University.

Keywords: Mine detection, laser induced acoustic scanner, Wiener �lter

1. INTRODUCTION

The problem of detecting and localizing buried mines from observation of reected radiation has received
considerable attention in recent years. In this paper, we consider a statistical signal processing approach
to solving such problems given data collected using a scanning laser-based acoustic sensor developed in [1].
The experimental system is shown in Fig. 1. The transmitter sends a laser pulse into the ground where
an unknown target is buried. An acoustic wave is generated by the sand as it is heated by laser. Part
of this acoustic wave is reected by the ground and seen by the acoustic transducer. The other part is
transmitted into the earth and reected by a landmine. Thus the received signal will be the mixture of
reected waves from both the ground and the target. This procedure is repeated on a regular basis as the
apparatus scans a 2D grid. The objective of the processing is the localization and characterization of the
buried object given this collection of time traces.

Because the propagation and scattering of acoustic waves through the earth is a highly complex physical
process even when the constitutive parameters of the medium are known, it would be quite di�cult to
employ sophisticated inverse scattering type methods to image the subsurface. Thus, in this paper we
consider a simpli�ed model for describing the data which lends itself to accurate yet tractable information
extraction algorithms. We assume that the problem can be described using a so-called multipath model

commonly employed in the �eld of communications2 wherein the received signal at location i of the scan,
ri(n), can be expressed as

ri(n) = s(n) � hi(n) + w(n) (1)

Other author information: PS: peshi@ece.neu.edu, ELM: elmiller@ece.neu.ed. This work was supported by the Army
Research O�ce Demining MURI under Grant DAAG55-97-1-0013
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Figure 1. Experimental system

where s(n) is taken to be a nominal template signal, w(n) is additive noise and � denotes convolution. The
multipath channel impulse response, hi(n), characterizes the structure of the reection from the ground
and the mine when the sensing system is at location i and is written as

hi(n) =
NiX

j=1

�i;j�(n� �i;j) (2)

with Ni the number of paths seen at location i. In this work, Ni is taken to be one or two depending on
whether only the ground bounce is seen in the receiver (Ni = 1) or if one observes both the ground bounce
as well as a response from the buried object (Ni = 2). The quantities �i;j are the time delays associated
with each path and the �i;j are amplitude reduction factors caused by the propagation and scattering
processes.

The goal of the processing then is the determination of the multipath parameters, fNi; �i;j; �i;jg for
each position of the sensor. As we discuss in x 3, examination of these quantities can be of great use
in localizing and characterizing the shape of a buried object. From a processing perspective then, the
challenging feature of this problem is the detection of the multipath parameters. This is a common
statistical signal processing problem and for which various solution methods have been proposed including
generalized cross correlation,3 Wiener-type �ltering,4 and nonlinear estimation techniques.5 In this
paper, we focus our attention on Wiener �ltering processing due to its simplicity and strong performance
for the problem at hand.



2. DETECTION METHOD

The Wiener �lter solution for a discrete time channel identi�cation problem given by (2) is4:

Ĥ(ej!) =
R(ej!)S�(ej!)

jS(ej!)j2 + �
(3)

where Ĥ(ej!),R(ej!) and S(ej!) are the discrete-time Fourier transforms (DTFT) of ĥ(n), r(n) and s(n)
respectively, � is the variance of the channel distribution, and a hat over a variable indicates estimated
quantity. The desired multipath parameters can then be determined by taking the inverse DTFT of (3) to
obtain ĥ(n) and �nding the peaks. The locations of the peaks provide estimates of the delay parameters
and the amplitudes of the peaks yield the �'s. There are however three di�culties that need to be addressed
before applying the Wiener �lter to our problem:

� The received signal in our system is bandpass. As is discussed at length in x 2.1 this introduces a
number of phase shifts which impact the performance of a straightforward Wiener �lter implemen-
tation.

� The ability to clearly distinguish the peaks in ĥ requires that the data be broadband. Unfortunately,
the transducer in our system has a very narrow bandwidth so ĥ(n) will display large side-lobes and a
broad main-lobe. The delay and amplitude estimation problem becomes much more di�cult in this
case especially since the second path (indicating the presence of an object) will be highly attenuated
with a delay quite close to that of the ground bounce.

� The template s(n) for our problem is unknown while the above processing assumes it is given. The
precise structure of the template signal depends on the nature of the transmitter and receiver as well
as the detailed physics of the propagation problems. For none of these quantities do we currently
have accurate models.

To solve this problem we examine two approaches. First, we will determine s(n) empirically by
taking it to be the signal received from a known no-mine location. That is, the observed ground path
will represent the template. Then all other traces will be processed based on this template. Second,
we explore methods for adaptively updating the template as the sensor scans to combat the spatial
variability of the template and reduce the e�ects of additive noise.

These three problems will be addressed in the following three subsections respectively.

2.1. Baseband processing with Wiener �lter

Because the transducer acts as a bandpass �lter, the Wiener �lter output is bandpass with a non-zero
carrier. Since there is normally a phase shift between the baseband Wiener �lter output and this carrier,
the peak location of the bandpass Wiener �lter output will generally di�er from that of the baseband
case. More importantly, there is also a phase shift between the reected waves from the ground and the
buried object. In this case, the bandpass signal can not be used directly as a template for the Wiener �lter
because the reected wave of the second path is no longer a scaled and delayed version of the �rst. This
fact makes direct use of the Wiener �lter in (3) highly inaccurate. However, this problem can be solved by
the following baseband processing.

Dropping the explicit dependence on i, the position of the sensor, the bandpass signal can be written
as s(n) = sc(n) cos(!0n+ �)� ss(n) sin(!0n+ �), where sc and ss are the in-phase and quadrature parts
of s respectively. Denote the baseband expression of s(n) as sb(n) = sc(n) + jss(n). Assuming there are



only two paths in the channel, we have r(n) = �1s(n� �1) +�2s(n� �2) +w(n) , where �1 and �2 are real
and w(n) is additive Gaussian noise. After substitution, we have

r(n) =
NiX

j=1

�jsc(n� �j) cos(!0(n � �j) + �j) + �jss(n� �j) sin(!0(n� �j) + �j)) + w(n) (4)

The signal r(n) then is down converted to baseband by multiplying by cos(!0n) and sin(!0(n) respectively.
After some algebra, it can be shown that at baseband,

rb(n) =
NiX

j=1

�j exp(j�
0

j)sb(n� �j) + wb(n) (5)

where wb(n) is the baseband expression for w(n) and is complex. Thus, it can be seen that by using sb(n)
as a template, path information such as time delay � , amplitude � and phase shift �0 can be detected by
a Wiener �lter which is employed at baseband. Following this algorithm, our baseband Wiener �ltering
procession can be implemented as shown in Fig. 2.

UpdateTemplate

Normalize

Wiener

Filter

Update Logic

Substract

90

Trace

Input

Parameter
Output

Figure 2. Baseband Wiener �lter processing

2.2. Template Determination

The next problem we address is the determination of the template signal sb(t). We begin by using a �xed
template obtained as the trace at a known no-mine location. By doing this, it is assumed that the noise
level is not very high which is valid for our system. While the assumption of a �xed template may be



accurate over some limited spatial region, the changing characteristics of ground (temperature, moisture,
material composition, etc.), imply that one should consider methods for adaptively updating the template.
Thus, the problem at hand is how to decide the template for a new trace before we do the processing. To
address this di�culty, �rst we assume that the system is slowly space-varying system, which implies the
template at a location will be highly correlated with that of its neighbors. Thus we may predict the new
template based on the previous templates.

One issue of concern here is that we update the template using only data from positions in which
there is no buried object. While one could extract templates from neighboring scans for which a mine is
present, the utility of such a procedure is heavily dependent on the accuracy of the estimated multipath
parameters. While the experiments in x 3 demonstrate that we can determine roughly the location and
shape of the buried object, at this point in time, the parameter estimates are not su�ciently accurate for
template extraction. Thus, we prefer to take an approach where, at each location of the sensor, we �rst
determine whether or not there is a buried object present. This determination is made by examining the
estimate of the amplitude coe�cient associated with the second path. If this estimate is above a given
threshold, we say that a mine is present, otherwise we assume there is no object at this position. A couple
of remarks are in order concerning this process:

1. At the current time, the threshold is determined assuming we have a rough idea as to the size of the
second-path amplitude coe�cient for the class of buried objects of interest. Clearly, a key area of
future research is the adaptive determination of this quantity as the sensor scans the region.

2. Given knowledge of the second-path amplitude, we currently set the mine/no-mine threshold rela-
tively low to ensure that few traces associated with the presence of a mine are used in the updating
procedure. This low threshold does cause some cases where we should update the template but do not
because we mistakenly say that a mine is present. We have found empirically that such \mistakes"
have little impact on the overall results of our processing as the template itself generally changes
quite slowly so that a small number of missed updates cause little degradation in performance.

Finally our updating algorithm is

snew(n) = (1� �)sold(n) + �r0(n) (6)

where snew(n) is the new template, sold(n) is the old template, � is updating factor and r0(n) is a normalized
version of current trace r(n) with r0(n) = r(n� �1)=�1. The received current trace cannot be used directly
because the ground is normally not at. The ground-reected trace will have a di�erent arrival time thus
causing error if added directly. Further, the power of the template needs to be �xed so that the detected
amplitude information of the second path can be employed to make a decision at both the updating stage
and the post-detection stage. Moreover, by averaging the signals using (6) this algorithm is seen to be
capable of alleviating the e�ects of additive noise.

So far what has been achieved is a Wiener �lter output which contains all the information of the channel
while the particular characteristic of template are largely eliminated. The next question we want to answer
is how to extract channel information from this output. This issue is highly nontrivial when considering
the extremely narrow bandwidth of the received signal (see Fig. 3). As discussed in the next section, we
consider a detect and subtract method for solving this problem.

2.3. Detect and Subtract

The acoustic transducer used in our system has a very narrow bandwidth (Fig. 3). Thus, in the time
domain, all the spikes (i.e. multipath components) in the channel response are \smeared out" which makes
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Figure 3. Frequency spectrum of received signal

the distinction of closely separated paths very di�cult. More problematic, it also introduces large side
lobes at the output of the Wiener �lter which makes weak paths vanished in the side lobes of a strong
path. Unfortunately, the amplitude of the desired second path (coming from the mine) is much smaller
than that of main path (coming from the ground) in our system. Thus the second path is very di�cult to
detect from the original Wiener �lter's large-rippled output. Figs. 4(a) and (c) are typical traces obtained
over a no-mine location and a mine location respectively. Clearly, they are very similar and the second
path can not be detected directly.

Our method to overcome this problem is as follows. First we extract the information (amplitude, time
delay and phase shift) from the ground-reected path. Due to the strength of this signal, this process is
generally quite accurate. Next, rather than continuing by looking for the second path from this original
Wiener �lter output, we use our estimated parameters to mathematically subtract the ground bounce
portion of the signal from the current time trace. By using this modi�ed trace as input to a new Wiener
�lter, it is then much easier to determine the parameters of the signal component coming from the buried
object. In Figs. 4(b) and (d) we show the Wiener �lter output after subtraction of the �rst path for
Figs. 4(a) and (c) respectively. It can be seen that the second path is clear in Fig. 4(d) while the second
path in Fig. 4(b) will be eliminated due to its small amplitude.

2.4. Mine Detection with Post Processing

By applying the above methods, we get estimates of the amplitude, time delay and phase shift of the
ground-reected wave (�rst or main path) and the target-reected wave (second path). The issue now is
how best to use the information of the second path to decide if there is a mine and determine the mine's
contour and depth in the sand.

Note that no matter whether there is a mine, the second path parameters are always estimated. However
it can be seen from the results that the mine's information can be identi�ed by noticing the fact that at
positions where a mine is present: (a) the amplitudes of the second path will be relatively large and
(b) the time delay of the second path will be pretty close (at target surface) or vary slowly (non-at
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Figure 4. Output of Wiener �lter

target surface). Based on these observation, simple post processing is employed by checking the amplitude
of second path and comparing the time delay with its neighbors. First, for locations with the largest
second path amplitudes, we say there is a mine. Then we reduce the amplitude threshold and examine
the locations which are adjacent to the currently-detected mine-locations. If their delays are close enough
(a delay threshold is used here), we say these adjacent locations are also mine-locations. This process is
then repeated until a predetermined amplitude threshold is reached at which point we stop. As was the
case with the template updating process, the value of this lower amplitude limit is determined under the
assumption that we have a rough idea as to the second-path amplitude coe�cient for the class of object
under consideration.



3. RESULTS

The sand box is grided into 25x15 unit squares and a half hockey puck is buried horizontally. The results
of the �xed template method are shown in Fig. 5, (a) is the ground delay (relative to the initial template
which is chosen to be (1,1) location), from which we can see that the ground is not at as assumed and has
a small slope. Fig. 5(b) and (c) are the amplitude and time delay of detected second paths respectively.
It can be seen that the amplitudes of the second path when a mine is present are relatively larger than
those of no-mine locations and the time delays for mine locations are pretty close to each other (due to
at upper surface of the target). After post-detection processing, the mine's support is shown in Fig. 5(d).

The updating template method is also employed with several di�erent updating factors, � in (6). It
is found that when � is large (eg. 0.8 or 1.0), the system is sensitive to the detection error and the
performance is worse. If � is 0 then we have the non-adaptive processing scheme. We have experimentally
determined that an updating factor of 0.2 is found to be a good choice and its results are shown in Fig. 6.
We can see that ground delay is similar to what we had before but the amplitude and time delay of the
second path are much clearer. Finally, the detected mine's support is shown in Fig. 6(d). Relative to the
�xed template case, we see that the holes have been �lled and the outliers entirely suppressed.

Fig. 7 shows the results of the updating template method (with � = 0:2) when two rectangular targets
are buried in the sand. As can be seen, these two objects can also be detected clearly.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an approach for the detection and localization of buried mines from acoustic
transducer data via paramater estimation using a multipath propagationmodel. Since the received signal is
bandpass, a baseband Wiener �lter is introduced to solve the problem of phase shifts among the multipath
components in the signal. Due to the extremely narrow bandwidth of the transducer, distinct multipath
spikes are smeared out and large side lobes are generated in the output of the Wiener �lter. A detection
and subtraction method then is employed to deal with this bandwidth problem. Both �xed and adaptive
template methods are considered in this paper. It can be seen from the result that the later works better
by properly choosing the update factor.

The above processing is based on a linear multipath model assumption. Speci�cally, the characteristics
of acoustic wave propagation are entirely omitted to simplify the analysis and computation. Thus the
detection performance is expected to be better if the model can be improved to include more speci�c features
of the acoustic wave properties. In particular, we conjecture that there is a third signal component caused
by reection of the input signal from the bottom of the mine. Our current processing methods however are
insu�cient to pull this very weak signal from the data. The solution may lie on the improvement of channel
and noise model but also on the more powerful parameter estimation methods. All told, we consider the
following topics to be of great interest for future work

1. Propagation model improvement.

2. Noise characteristic modeling.

3. Adaptive and robust methods for determining the thresholds in the template updating and post
detection processing stages.

4. Performance analysis for all detection and estimation stages of our approach.

5. Post detection algorithm modi�cation to further sharpen the boundaries of the object.
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Figure 5. Results for �xed template
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Figure 6. Results for updating template
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ABSTRACT

We consider the problem of detecting and localizing buried landmines from a ground penetrating radar
(GPR) array. A simpli�ed, ray-optics-based physical model for time domain GPR returns is presented.
Under this model in the absence of an object from the �eld of view of the array, there exist well de�ned
symmetries in the structure of the radar returns. In particular, for a bistatic system composed of one
length M transmit array and a second length M array of receivers, we identify M subsets of signals from
the M2 total transmitter/receiver pairs such that the mean value of the signals within each subset should
be the same when no object is present. This relationship then forms the basis for a modi�ed Hotelling's
T 2-test to detect the presence of objects when there is noise in the signal. Simulation results demonstrate
the validity of these methods.

1. INTRODUCTION

Mines kill or maim hundreds of people every week, mostly innocent and defenseless civilians. Among the
various demining methods developed in recent years, ground penetrating radar (GPR) holds substantial
promise because of its sensitivity to non-metallic, plastic objects which traditional metal detectors are
largely incapable of �nding. Nevertheless, using GPR to detect and localize mines is both di�cult and
complex. One key problem is the rejection of interference caused by the signal arising from scatter o� the
air-earth interface. Both the magnitude of the ground bounce and its timing are such that they can easily
swamp the relatively small signal arising from the interaction of the transmitted GPR waveform with the
buried mine. To help overcome this di�culty, we consider the use of a GPR array to provide a richer
and more diverse set of data thereby making accurate detection and localization possible in circumstances
where a single GPR is unable to perform well.

In this paper we discuss a method to detect mines which exploits both the physics of the problem as well
as the geometry of the array system. We assume that the GPR array is deployed as shown in Fig. 3 with
one linear array of transmitters and a second array of receivers both traveling down a track. As described
in Section 3, the geometric symmetry inherent in this con�guration introduces a \statistical symmetry"
in the received signals. In particular, this symmetry is preserved precisely when there is no mine. On the
other hand, the presence of a mine will break this symmetry and therefore provide information as to the
existence of an object. Based on this relationship, we develop a statistical test of homogeneity to ascertain
the presence of an object in the �eld of view of the array.

The organization of this paper is as follows. Section 2 introduces the physical model of GPR signals
and the con�guration of the GPR array. In Section 3 we present the detection algorithm, using a modi�ed
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form of Hotelling's T 2-test. Examples are given in Section 4 to demonstrate validity of the algorithm.
Section 5 summarizes present work and points out future research direction.

2. PHYSICAL MODEL AND PROBLEM FORMULATION

2.1. A Single GPR System

To detect and localize mines, a ground penetrating radar array is implemented. Fig. 1 shows a typical
single GPR system with the signals it generates.1 In this paper we assume a simpli�ed model where the
signal seen by the receiver is composed of at most two components. The �rst signal is the reected signal
from the ground and is always present in the data. The second component (if it exists) is the reected
contribution from an object in the �eld of view of the array.

G

M

Mine

Transmitter Receiver

Air

Ground

Figure 1. Schematic drawing of a single GPR, transmitter and receiver.

The received signal, �(t), is taken to be the sum of delayed and attenuated versions of two \template"
signals indicating the nominal behavior of the ground bounce signal and the nominal behavior of a signal
arising from scattering from a mine. Mathematically we have

�(t) = a g(t� �g) + b m(t� �m) (1)

where  g and  m are the nominal ground bounce and mine reected signal, a and b are attenuation factors,
�g is the delay of the ground reection, and �m is the delay of the mine signal. Note that if no mine is
present, � is just equal to the �rst term of (1).

To �nd the delays and the attenuation factors we assume that the propagation of the signal from the
transmitter to the receiver can be described using a ray-optics-type model shown in Fig. 1. That is, the
ground bounce is composed of signal reected from the interface at the specular point midway between the
transmitter and receiver while the four-part path of the mine component of the signal can be determined
via the judicious use of Snell's law.

To begin, the �g and �m are determined by the travel time of two-way paths and can be calculated as

Delay =
2-way path length

velocity of the wave
: (2)

To �nd �g and �m, we need to locate reecting point and refracting point shown in Fig. 2. Let media 1 be
air and media 2 be soil, with electric permittivity �0 and �1, respectively, Fig. 2.(a), the reecting point
on the boundary between two points (x1; y1) and (x2; y1) in media 1 is simply the mid-point (x4; 0), where
x4 =

x1+x2
2 .
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Figure 2. Geometries for determining (a) the reecting point and (b) the refracting point, �1 > �0.

For the refracting point, according to Snell's law, for a source located at (x1; y1) in media 1 and target
at (x3; y3) in media 2, the refracted ray from source to target must intersect the boundary at a point
(x5; 0), Fig. 2.(b), such that2

Ref�1g
�0

=

(x1�x5)2
(x1�x5)2+y21
(x3�x5)2

(x3�x5)2+y23

: (3)

Solution of this quartic equation has four roots. By Fermat's principle, which states that of all possible
paths joining two given points on a wave path, the wave path has actual least travel time, we can discard
three physically impossible roots and retain the true refracting point. Once the reecting point and the
refracting point are established, the delay �g and �m can be found as,

�g = 2

p
(x1 � x4)2 + y21

c
(4)

�m = 2

p
(x1 � x5)2 + y21

c
+ 2

p
(x3 � x5)2 + y23
c=Re

p
�1

(5)

where c is the speed of light in air and c
Refp�1g is the speed of the wave in soil.

In addition to the time delays, the received signal �(t) has an amplitude reduction caused by propagation
through the soil as well as geometric spreading as it traverses both the air and the earth. In soil, the wave
attenuates exponentially with the distance it travels, e��sd. The quantity �s is the attenuation constant
of the soil which is related to the conductivity and permittivity of the medium3 while d is the distance
the wave travels in the earth. We assume geometric spreading results in an inverse path length amplitude
reduction. Referring to the setup of Fig. 2, then we have the overall amplitude reduction factors given by

a =
1

2
p
(x1 � x4)2 + y21

and b =

�
e��s

p
(x3�x5)2+y23p

(x1 � x5)2 + y21 +
p
(x3 � x5)2 + y23

�2

:

2.2. GPR Array

In this work, the GPR array is assumed to consist of M pairs of transmitters and receivers. Data are
collected by the GPR array as it travels step by step down track, Fig. 3. At each stop of the array, M2

signals (time-traces) are collected; one for each transmitter/receiver pair.
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Figure 3. Array of GPR, moves in x-direction(down-track).

Using the model developed in the previous section and assuming that the GPR array is at its k-th stop,
the signal seen at receiver j due to input from transmitter i is written as

�kij(t) = aij g(t� �g;ij) + bkij m(t� �km;ij); i; j = 1; � � � ;M; k = 1; � � � ; K: (6)

Note that a and �g do not depend on k, the down-track GPR array position. This is easy to understand
because the ground-reected signal only depends on the relative position of transmitter and receiver�. To
simplify matters, in the future we use the following shorthand

gij(t) = aij g(t � �g;ij) skij(t) = bkij m(t� �km;ij):

Each �ij(t) is densely sampled P times over a time interval. The interval is chosen to be long enough to
embrace both ground bounce and mine signal. When no ambiguity will arise, we refer to the vector of
samples, �k

ij
, rather than the temporal signal, �kij(t) with a similar interpretation holding for g

ij
and skij .

Note �k
ij
, g

ij
, and skij are column vectors of size P .

For a given location of the GPR array, to detect mines, we carry out a binary hypothesis test. Under
the null hypothesis, H0, the received signal �k

ij
is comprised of ground bounce g

ij
plus measurement noise,

which is assumed to be a white Gaussian vector, w � N(0; �2I). Under the alternate hypothesis, H1, �
k

ij

consists of ground bounce, noise, and mine signal, skij . Mathematically we have

Hk
0 : �k

ij
= g

ij
+ w

Hk
1 : �k

ij
= g

ij
+ skij + w: (7)

Our processing method is based on the observation that under H0, the M
2 received signal should

display certain symmetries, as illustrated by Fig. 4. For example if no mine is present then �
12

should be
\statistically equal" to �

21
, �

23
, �

32
, �

34
, and �

43
because the ground bounce in each case depends only on

the relative spacing of the sensors which is identical for these six pairs. Similarly, �
13

should be statistically
equal to �

31
, and so on. By \statistically equal" we mean that any variations in these signal are caused by

random sensor noise. In other words, signals from these sets will, on average, possess the same means with
some variability (variance) caused by the noise. Thus statistical tests designed to determine homogeneity
of a population (i.e. equality of mean vectors) can be used to test whether an object is present (lack of
homogeneity) or absent (all the data vectors are about the same). Finally, for the M2 received signals it
is not hard to show that there are only M sets of statistically di�erent signals because of this symmetry.
Note the M sets of signals are not of equal size, some sets consist of more signals than the others.

�Here we are assuming that the ground is locally at over the extent of the sensing system. Extension of the results in this
work to smoothly changing ground is an area of current work.
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3. INFORMATION EXTRACTION ALGORITHM

From the above discussion, we know that if a mine is present, the symmetry of received signals will be
disrupted. Therefore, to detect mines, we can look for asymmetry of received signals. Basically, our
approach is to sequentially detect any changes in the means of the received signals. For the purpose of
illustration, we use M = 4 pairs of transmitter and receiver. At each stop k of the GPR array, we then
have 4 sets of statistically di�erent signals, S1 = f�k

11
; �k

22
; �k

33
; �k

44
g, S2 = f�k

12
; �k

21
; �k

23
; �k

32
; �k

34
; �k

43
g,

S3 = f�k
13
; �k

31
; �k

24
; �k

42
g, and S4 = f�k

14
; �k

41
g.

3.1. Homogeneity Test of Single Set

Here we discuss the homogeneity test of a single set, say S1 =
n
�k
11
; �k

22
; �k

33
; �k

44

o
. We consider the

acceptance test of the hypothesis

H0: �k
ii
in the set are from same multivariate Gaussian distribution, with equal and known

covariance matrices, and identical, unknown means; i = 1; � � � ; 4:
Because the test is identically the same at each stop k for the remainder of this subsection we drop the k
notation.

As the problem currently stands, we do not assume that the ground bounce signals are known. In fact,
a simple transformation of the data allows us to perform the test without ever having to know the ground
bounces or estimate them. To see this, we begin by forming the collection of all pairwise di�erences of the
signals within the set under consideration. For S1 we get the set D1 de�ned as

D1 =
n
�
11
� �

22
; �

11
� �

33
; �

11
� �

44
; �

22
� �

33
; �

22
� �

44
; �

33
� �

44

o
� f�1; �2; �3; �4; �5; �6g :

Testing H0 using the original set of �
ii
signals then is equivalent to testing the following hypothesis using

the �n vectors:

H 0
0: �n in the set are from same multivariate Gaussian distribution, with equal and known

covariance matrices and means equal to zero



To test this equality of means, we carry out a Hotelling's T 2-test.4 As described more fully in [5], this
test amounts to the following comparison

�1 =
6X

n=1

1

2
�TnR

�1�n 7 threshold (8)

with R(= �2I) is the covariance matrix of the measurement noise and threshold is chosen to ensure an a

priori speci�ed probability of false acceptance. The hypothesis is accepted if the left hand side is less than
or equal to threshold and rejected otherwise. Noting that R is diagonal, we write �1 as

�1 =
1

2�2
�1

TA1�1 =
1

2�2

h
�T
1
�T
2
�T
3
�T
4

i 2664
3I �I �I �I
�I 3I �I �I
�I �I 3I �I
�I �I �I 3I

3
775
2
664
�
1
�
2
�
3
�
4

3
775 : (9)

For a set Si of size Ni, it is easy to show that Ai is an Ni �Ni block matrix. Its block diagonal elements
are (Ni � 1)IP�P and the o� diagonal elements are �IP�P .

3.2. Homogeneity Test of Multiple Sets

For the application of interest in this paper, we have multiple sets (four for our sample system) for which
we wish to test homogeneity. Here we adopt a simple, generalized form of the T 2 test in which the four
�i's are weighted and added to yield one �nal test statistic,

� = �1�1 + �2�2 + �3�3 + �4�4: (10)

The �i are weight factors, de�ned by

�i =
1

li
(

4X
j=1

l�1j )�1 (11)

where lj are the path lengths of ground bounces for set Sj . More will be said about this weight factor in
Section 3.3. Stacking all the 16 signals �ij to form a long column vector, we obtain a new vector

�T =
�
�T
1 �T

2 �T
3 �T

4

�
and

� =
1

2�2
�TA� =

1

2�2
�
�T
1 �T

2 �T
3 �T

4

�
2
664
A1�1 0 0 0
0 A2�2 0 0
0 0 A3�3 0
0 0 0 A4�4

3
775
2
664
�1

�2

�3

�4

3
775 :

(12)

Matrix A is a block diagonal matrix. Obviously, A is symmetric. Note A is positive semide�nite by its
buildup. According to Mathai,6 the �rst two moments of � are given by,

�� = (6�1 + 15�2 + 6�3 + �4)P

�2� = (24�21 + 90�22 + 24�23 + 2�24)P:
y (13)



It has been shown that � asymptotically has a Gaussian distribution6 for large NP , i.e., � � N(��; �
2
�).

The generalized T 2-test amounts to � 7 � where � is the threshold chosen to ensure an a priori speci�ed
probability Pfa of false acceptance. The � is determined by

Pfa =

Z 1

�

1q
2��2

�

e
� (����)

2

2�2
� d�: (14)

3.3. Sequential Detection

Now we consider the actual GPR array operation as the array moves down-track. At each stop k, we
calculate a corresponding �k. When there is no mine in the �eld of view of the array, we record �k only.
That is, �k = �k under hypothesis H0. When there is a mine, the mine signal skij adds to the ground

bounce. Passing skij to the generalized Hotelling's T 2-test produces an output signal, denoted by �k . So

the problem is to detect signal �k , given the observed signal sequence �k and known \noise" �k, using the
additive noise model �k = �k + �k under the alternate hypothesis H1. Though �

k is unknown and changes
with k, it is always positive because of the very nature of quadratic form of the generalized T 2-test. Fig. 5
shows separate �ki and �ki + �ki . Signals on the left side of Fig. 5 are typical \noise" sequences, taken from
four di�erent sets of transmitter-receiver combinations. Signals on the right side are \noise" and mine
signals, corresponding to the respective sets of transmitter-receiver combinations. It is seen that �ki are
much weaker in set S3 and S4. This observation can be explained by the increased attenuation associated
with the longer distances the mine signals in sets S3 and S4 travel. For this reason, we introduced the
weight factors in Eq. 11.

When the mine is buried deep, the mine signal attenuates exponentially as explained in Section 2.1.
Detecting this unknown low power signal can be aided quite a bit using sequential detection methods which
retain information from previous scans to improve the SNR. We therefore employ a sequential detector as
the GPR array moves down track. At each stop k, the detector makes one of two decisions7: (1) Hypothesis
H0 is true, no mine signal is present, (2) Reject H0. Because �

k causes a positive displacement of the mean
of �k, we choose a running average of �k as a statistical test8,9

gk =
1

N

kX
j=k�N+1

�k; k = N;N + 1; � � � ; K (15)

and make a decision by checking gk 7 � where � is a threshold. At each stop k, gk is compared to
the threshold to make a declaration of mine presence. Fig. 6 illustrates relationship between threshold
settings and declaration of mine presence as the GPR arrays move down-track. Each �lled dot indicates a
location of the array where we say that a mine is present. Such a declaration is made when gk is above the
threshold for consecutive 5 stops of k. A lower threshold allows us to make early declaration of mine. The
disadvantage is a high false-acceptance rate. The false-acceptance probability Pfa equals the probability
under hypothesis H0 that the g

k crosses the threshold. The detection probability Pd equals to 1�Pfa. By
virtue of the generalized T 2-test, �k are statistically independent. Hence, gk has the Gaussian distribution,
N(��;

1
N
�2�). Thus, in principle, for a given Pfa, � can be determined similarly as in Eq. 14.

ySee appendix
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4. EXAMPLES

In this section we consider some examples of the above procedure. Monte-Carlo runs were used to determine
the probability of detection and probability of false-alarm for various noise levels and depth of buried mines.
In this work, the signal to interference plus noise ratio is de�ned as

SINR = 10 log10
sT s

gT g + P�2
: (16)

In all cases, we generate synthetic data with an object located around the 50th stops of the GPR array and
buried 10 cm underground. The GPR array is composed of four pairs of transmitters and receivers evenly
spaced along a baseline width of 80 cm. A transmitter and its corresponding receiver (e.g. transmitter 1
and receiver 1) are 20 cm apart. The GPR array is 40 cm above the ground. For simplicity we assume
that the nominal ground bounce and mine-bounce signal take the form of a second derivative of a Gaussian
shown in Fig. 7(a). Current work in our group is aimed at developing more sophisticated models for these
signals. Fig. 7(b) and (c) show the received signals of two pairs of T/R combinations. Because of the
domination of the ground bounce, it is di�cult to see any mine signature. Even after pairwise subtraction,
the mine signal can hardly be observed in Fig. 7(d). But the generalized T 2-test can pick up this di�erence
and declare a mine.

Fig. 8(a) shows the receiver operating characteristics of detecting a mine buried 10 cm underground.
Fig. 8(b) shows two ROC's for mines buried at di�erent depth under the same noise power. Because of
the fast attenuation in soil, the deeper buried mine has a signi�cantly smaller SINR thereby leading to the
degradation in performance.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we discuss a statistical approach to detect mines using a GPR array. Exploiting the geometric
symmetry of GPR array setting, we have looked into tests for statistical homogeneity of GPR returns as
a tool for performing detection. Basically, by treating the received signal as a multivariate Gaussian
distribution we test its statistical homogeneity using a generalized, sequential Hotelling's T 2-test.

Future work will take into consideration of rough ground-air interface and time-delay estimation to
actually localize detected mines. An assumption of this work is that the soil conditions are known. Sen-
sitivity analysis involving mismatch in soil parameters will be valuable to apply this method to realistic
scenario. Moreover, the additive white Gaussian noise mode will be lifted as we explore issues associated
with the modeling of clutter, the incorporation of these models into our processing, and the development
of test which are robust (or invariant) to uncertainty in these models.

6. APPENDIX

From Mathai's6 work, for X � N(�;�), the �rst two moments of quadratic XTAX can be found by

E[�] = tr(A�)+ �TA�

V ar[�] = 2tr(A�)2 + 4�TA�A�: (17)

For the generalized T 2-test, we have

�T =

"
�T
11
; � � � ; �T

44
; �T

12
; � � � ; �T

34
; �T

13
; � � � ; �T

24
; �T

14
; �T

41

#
(18)
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Figure 8. Receiver operating characteristics.

where

�
11

= � � � = �
44
� �(1) �

12
= � � �= �

34
� �(2)

�
13

= � � � = �
24
� �(3) �

14
= �

41
� �(3): (19)

Next, we note that 4�TA�A� = 0 under the condition of Eq. 19,

4�TA�A� = 4
4X

i=1

h
�(i)

T � � � �(i)
T
i

| {z }
Ni

Ai�Ai

2
64�

(i)

...

�(i)

3
75 (20)

where h
�(i)

T � � � �(i)
T
i
Ai = 0 (21)

because of the semide�niteness of Ai. Similarly, �TA� = 0. The mean of � is then given by 1
2�2 [tr(A�)].

For A = block diag fA1�1;A2�2;A3�3;A4�4g we have

E[�] =
1

2�2
tr(A�) =

1

2

4X
i=1

Ni(Ni � 1)P�i: (22)

Additionally AA = block diag
�
A1A1�

2
1;A2A2�

2
2;A3A3�

2
3;A4A4�

2
4

	
where

AiAi =

2
6664
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i �Ni)I �NiI � � � �NiI

�NiI (N2
i �Ni)I � � � �NiI

� � � � � � . . . � � �
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3
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Here I is of size P � P and Ai is of size NiP �NiP . We then have

tr(Ai)
2 = (N2

i �Ni)NiP tr(A)2 =
4X

i=1

tr(Ai)�
2
i =

4X
i=1

(N2
i �Ni)NiP�

2
i :

so that V ar[�] = 1
4�4 2tr(A�)2 = 1

2

P4
i=1(N

2
i �Ni)NiP�

2
i :
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ABSTRACT

The problem of mine localization and characterization from electromagnetic induction data is addressed.
We consider processing techniques based on an inductive sensor model originally proposed by Das et. al
in [2]. Given this model we examine estimation-theoretic methods for determining an object's center, its
orientation, and scattering characteristics (as de�ned by a spectrum of low order multipole moments) from
low frequency spectroscopic data obtained over a grid of spatial locations. Under this model, the data
are linear functions of the multipole moment spectra and non-linearly related to object's location and
rotation angles. An estimation procedure based on a low-dimensional non-linear optimization routine for
the determination of the object center and rotation angles is employed with a linear least squares inversion
method used to estimate the multipole moment spectra. Examples are provided for ellipsoidal objects.

1. INTRODUCTION

Electromagnetic induction (EMI) systems represent one of the more common sensing technologies for the
detection and localization of buried metallic objects including landmines and unexploded ordinance. While
many systems, such as the EM61, operate essentially in the time domain using pulsed induction principals,
there has been signi�cant interest recently in the use of swept frequency measurements to perform so-called
electromagnetic induction spectroscopy (EMIS). Indeed, work in [1] indicates that data taken over a band
from tens of hertz to tens of kilohertz convey information not only about presence of absence of an object
but also about object shape, size, orientation, and material characteristics; i.e. such data can in principle
be used to perform object characterization.

In this paper, we consider the development of a tractable, physical model to describe an EMIS system
and associated processing methods to extract from EMIS data information regarding the location, orien-
tation and structure of a buried object. In Section 2, we describe a generalized form of an EMIS forward
model based on the work of Das et. al.2 Assuming that the incident EMI �eld is uniform over the support
of the object, the model approximates the scattering properties of the object in terms of multipole moment
spectra (MMS) which can be used to easily determine the �elds observed by the EMI receiver. From an
inversion perspective, the idea motivating the work in this paper is that successful estimation of these
moment spectra can form the basis for object classi�cation and identi�cation. Also, we note that, unlike
general �nite element, boundary element, or �nite di�erence type scattering models, the one considered
here is particularly well suited for the processing tasks at hand because it is parameterized directly in
terms of the quantities of interest: the MMS, the co-ordinates of the object center, and the three rotation
angles used to de�ne the orientation of the scatterer relative to a global, Cartesian frame.

Given this model, in Section 3, we describe an algorithm designed to extract this information from
EMIS data. Under this model, the data are linearly related to the multipole moment spectra and non-linear

Other author information: MO: mozdemir@cdsp.neu.edu, ELM: elmiller@ece.neu.ed, SJN nortonsj@ornl.gov. This work

was supported by the Army Research O�ce Demining MURI under Grant DAAG55-97-1-0013



functions of the object location and rotation angles. This functional form is exploited in the construction
of an estimation procedure based on a low-dimensional non-linear optimization routine required for the
determination of the object center and rotation angles (six variables in all). Embedded within this routine
is an associated regularized, linear least squares inversion procedure which determines the estimates of the
MMS.

Examples demonstrating the performance of this approach are provided in Section 4. They show the
simulation results for the sphere and the spheroid object. Finally, in Section 5, we provide conclusions and
indicate future work in this e�ort.

2. PROBLEM FORMULATION AND PHYSICAL MODEL USED

In this paper we consider an extension of a physical model for EMI proposed in [2] describing the scattering
of low frequency electromagnetic radiation by spherical or spheroidal objects of known conductivity and
permeability. As seen in Fig. 1 the transmitters and receivers are taken to be square coils (not necessarily
co-located) with sides of length 2A. The target center is located at r0 = (x0; y0; z0) in the x � y � z

coordinate system. For the problems of interest in this work the e�ects of the low conductivity ground
typically can be ignored2 so that the entire sensor system is taken to reside in free space.

The physical model is based on the assumption that scattering characteristics of the object of interest
can be approximated using a low order multipole model. The electromagnetic force EMF, s, induced in a
single turn receive coil by an object at r0 in response to the �eld setup by a single loop transmitting coil
is given as:

s =
i!�0�0

I
gT�f (1)

where g is a 3 � 1 vector holding the x, y, and z components of the magnetic �eld produced at r0 by
a current I owing in the receive coil, gT indicates the transpose of g, f is the same as g but for the
transmitting coil, ! is the operating frequency, i =

p�1, and �0 is the permeability of free space. As
described in Appendix A of [2], the vectors g and f are functions only of the relative positions of the
object, the receiver, and the transmitter.

The tensor �0�, de�nes the multipole scattering characteristics of the object. Here � is the normalized
polarizability tensor, and �0 = 3�r�1

�r+2
is the sensitivity factor for a sphere of relative permeability �r. In

this work we consider targets to be well modeled as ellipsoids. In the event that the target's axes are
parallel to those of a global Cartesian co-ordinate system � can be represented as

� =

2
64 �1

�2
�3

3
75 : (2)

The three frequency dependent �'s (here referred to as moment spectra) each are associated with one of
the principal axes of the ellipsoid. For a sphere, all three are identical and closed form expressions can be
found for all orders of multipoles.1 In [2], scattering from spheroids was considered. In such cases, two
of the �'s are the same, and closed form expressions for their dipole moment structure can only be found
in the case of ! = 0. More recently, the work in [3] indicates how one might employ multiple poles in the
complex frequency plane to accurately model the scattering process for arbitrary objects. Generally, the
problem of determining the moment spectra given the axis lengths and material of the object is an open
problem and one which we are currently pursuing. Here we assume that such a correspondence can be
found and concentrate instead on the estimation of � from a given set of data.

In the event that the ellipsoid is rotated relative to the global co-ordinate system, it is necessary to
mathematically express the components of g and f in the frame of the ellipsoid as follows. The �eld vectors



Figure 1. One sensor comprising sensor coils and target object.

f and g are assumed to be expressed in a global Cartesian co-ordinate system x� y � z. A second system
x
000 � y

000 � z
000

, whose axes coincide with the ellipsoid axes can be found by doing the following rotations.
It is �rst rotated through the angle of � about the z-axis. We obtain the new system x

0 � y0 � z0 . Next the
new system is rotated about y

0

-axis through the angle of �, resulting in another system x
00 � y

00 � z
00

. To
complete the transformation, the axes are rotated about x

00

through the angle of  , and we �nd the last
system x

000 � y000 � z000 , coinciding with the ellipsoid axes. All rotations are shown in Fig. 2. This sequence
of transformations is described by the rotation matrix,

R =

2
64 cos � cos� cos � sin� � sin �
� cos sin�+ sin� sin � cos� cos cos�+ sin� sin � sin� sin� cos �
sin sin�+ cos sin � cos� � sin cos�+ cos� sin � sin� cos� cos �

3
75 : (3)

The matrix R is incorporated into the model as follows

s =
i!�0�0

I
gTRT�Rf (4)

where the vector Rf represents the components of the transmitted �eld in the co-ordinates of the rotated
ellipsoid with an analogous interpretation for Rg.

In this work, we are concerned with processing methods based on multi-frequency data obtained from
multiple transmitter/receiver locations. Assuming we collect M frequency samples from each of N com-
binations of transmitters and receivers then we can write the kth frequency sample at the nth position
as

yn;k =
i!k�0�0

I
gn

TRT�kRfn + wn;k (5)

where wn;k is measurement noise. From this data set, our goal is to determine the position, the orientation,
and the moment spectra of the buried object.



Figure 2. Angle transformations about three coordinate axes.

3. INFORMATION EXTRACTION ALGORITHM

The model developed in the previous section is particularly well suited to the processing task at hand.
First, the position of the target appears only in the vectors g and f and the orientation angles are seen
in the matrix R. While the data are non-linear functions of these variables (six in all) the analytical
nature of the model makes determination of these quantities relatively straightforward using a non-linear
optimization routine. More importantly, the shape and electrical characteristics of the object are encoded
in the moment spectra �i which are linearly related to the data. Thus, determination of these large vectors
(three complex valued unknowns per frequency) reduces to a linear least squares problem the solution of
which can be obtained in closed form. In this section, we provide a more detailed description of how these
observations are exploited in the design of an e�cient processing scheme.

First of all, we manipulate the model to a form that is more suitable for processing. Because �i(!) i =
1; 2; 3 is a complex quantity in general, so is yn;k . Thus, after separating the data into into real and
imaginary parts, we make explicit the linear dependence of the data on the multipole moments as follows"

yRn;k
yIn;k

#
=

"
aRn 0
0 aIn

#
| {z }

An

�k +

"
wRn;k
wIn;k

#
(6)

�k = [�R1;k �
R
2;k �

R
3;k �

I
1;k �

I
2;k �

I
3;k]

T (7)

where superscript R indicates real part and superscript I indicates imaginary part. The aRn and aIn are
1 � 3 vectors depending on (a) r0, (b) the locations of the transmitter and receiver, and (c) the rotation
angles, � = [�  �]. These vectors can be obtained from the f 's, R, and g's after some straightforward



algebra. Finally, the vector �k holds the real and imaginary parts of the samples of the three multipole
moment spectra for the ellipsoid at frequency !k .

Stacking the data from all transmitter-receiver pairs for all frequencies gives the discretized data model:

y = A(ro; �)�+ n: (8)

ForM frequencies A = IM 
A1 where IN is the N �N identity matrix, 
 denotes the Kronecker product
and A1 is the block diagonal matrix obtained from all the An's. Note that if we collect data from a total of
N transmitter/receiver pairs then Ai is a 2N by 6 matrix and A is 2NM � 6M . Finally, we take the noise
vector, w, to be zero mean, independent identically distributed Gaussian random variables with variance
�2.

Eq. (8) is used in a penalized least squares approach to determine the location of the object, r0, the
orientation angles, � and multiple moments, �: Estimates of these quantities, denoted as r̂0, �̂, and �̂

respectively, are de�ned as those values which minimize the following cost function:

C(r0; �; �) = ky �A(r0; �)�k2K�1 +
3X
i=1

�ikLi�k22: (9)

In (9), K = �2I is the noise covariance matrix, kxkA � xTAx, and the Li are used to regularize the
problem by enforcing smoothness in the spectra of the multipole moment estimates. Speci�cally, Li is
built such that

kLi�k22 =
X

m2fR;Ig

M�1X
k=1

(�mi;k+1 � �mi;k)2: (10)

The regularization parameters �i in (9) are used to determine the tradeo� in the reconstruction between
the two terms in the cost function. The �rst terms enforces �delity to the data while the second ensures
smooth spectra. By providing for up to three such parameters, we allow for exibility in adapting the
processing structure to the problem at hand. For example, in the case that we knew we were looking
for spherical objects then all three �i function would be the same and we would require only one �. For
spheroidal objects, where two of the axes are the same, only two �i and �i are required: one for the major
and one for the minor axis. Finally, we note that in general, the on-line determination of �i is a well-
studied, non-trivial issue beyond the scope of this paper.4{6 For simplicity, in the examples in Section 4,
we assume that the �i are known.

To minimize the cost function, we note �rst that because (9) is quadratic with respect to �, �̂ can be
explicitly stated in terms of � and r0 via

�̂ =

 
ATK�1A+

3X
i=1

�iL
T
i Li

!�1
ATK�1y � Q(r0; �)y (11)

so that we can write:

r̂0; �̂ = argmin
r0;�

C(r0; �; Q(r0; �)y) (12)

�̂ = Q(r̂0; �̂)y: (13)

In our experiments we have found that C is generally quite well behaved with respect to the location
parameters but exhibits many local minima in terms of the orientation angles. Thus, we have adopted the
following strategy for �rst determining rough estimates of r0 and � and then re�ning these quantities. We



begin by imposing a coarse grid on the three dimensional space of all permitted orientation angles. For
each �-value in the grid, a 3D non-linear least squares solver is used to �nd the optimal r0. We use that
� values with the smallest overall cost and the associated estimate of r0 for that cell to initialize a full 6D
non-linear least squares scheme to �nd the �nal values of �̂ and r̂0. Using these values, we construct �̂
according to (13).

4. EXAMPLES

In this section, the performance of the estimation approach is demonstrated and analyzed under two mine
shapes. We simulate data taken on a 10 � 10 grid of 100 cm2 pixels by a monostatic transmit/receive
system comprised of square coils 5 cm on a side. Ten frequencies logarithmically spaced between 0 and
4.3KHz are used. One corner of the grid is taken to be (0; 0)m while the opposite is at (1; 1)m.

As a �rst example, we consider a spherical mine located at (x0; y0; z0) = (0:50; 0:50; :10)m�, and with
radius 5cm. The medium as well as the object are taken to be non-ferrous and the conductivity of the
sphere is 106S/m. We assume that the sphere's response can be modeled as a dipole and we use the results
of [1] to compute the dipole moment spectrum (DMS). The real and imaginary parts of this spectrum are
shown as a solid line in Fig. 3. Because the sphere is rotationally invariant, there is no need to estimate the
rotation angles so the problem here reduces to determining the location and the DMS. To demonstrate the
performance of our approach, we perform 10 Monte Carlo simulations at a signal to noise ratio of 20 dB.
In this case, the sample mean of the estimated object center is (0:5000; 0:4998; 0:0993)m with a standard
deviation of �(0:0003; 0:0004; 0:0030)m. In Fig. 3 the dotted lines show the sample mean of the estimated
DMS with associated error bars. We see from these results that the approach is highly accurate both in
terms of estimating the position as well as the moment spectrum.
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Figure 3. The real and imaginary part of estimated and real moment spectra of sphere mine for � = 0:0001.

�Increasing depth here corresponds to increasing z



As a second example, we consider a spheroidal objecty again located at (x0; y0; z0) = (0:50; 0:50; :10)m
and which has been rotated using � = 0:75 radians and  = 2:30 radians. In this case, we presently
have no closed form expression for the frequency dependent MMS of such an object. However, under the
assumption that the scattering characteristics of an eccentric object will be substantially di�erent for the
major versus minor axes, we hypotheses MMS spectra shown in Fig. 4 and Fig. 5 as solid lines and examine
the performance of our approach under these conditions.

In this case, we estimate the center of the object, minor and major axis moment spectra and two
rotation angles. Further, we assume that the optimum �1 and �2 values for the major and minor axis
are known. For �1 = 0:001 and �2 = 1, after performing 10 Monte Carlo simulations at 20 dB SNR,
the sample mean of the estimated object center is (0:5002; 0:4995; 0:0969)m with a standard deviation of
�(0:0020; 0:0014; 0:0034)m. The sample mean of estimated rotation angles are � = 0:7439 radians and
 = 2:3527 radians with standard deviations of �(0:0424) and �(0:1271), respectively. The real and
imaginary parts of the two estimated moment spectra for the major and minor axes are shown in Fig. 4
and Fig. 5, respectively.
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Figure 4. The real and imaginary part of estimated and real moment spectra of spheroid mine for
�1 = 0:001 and �2 = 0:001, and for the major axis.

As a last example, we consider an ellipsoid object at the same location as the previous example. For
this case we use the same data as for the second, spheroidal example; however, we lift the assumption
that we know we are looking for a spheroidal object and instead estimate three MMS and three rotation
angles. For �1 = 0:001, �2 = 0:001 and �3 = 1, after we perform 10 Monte Carlo simulations at 20 SNR,
the sample mean of the estimated object center is (0:5003; 0:4992; 0:0911)m with a standard deviation of
�(0:0013; 0:0015; 0:0046)m. The sample mean of the estimated rotation angles are � = 0:7443 radians,

yNote that because the object is taken to be spheroidal, two of the three principle axes are identical so we only need

estimate a pair of rotation angles and a pair of MMS.
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Figure 5. The real and imaginary part of estimated and real moment spectra of spheroid mine for
�1 = 0:001 and �2 = 1, and for the minor axis.

 = 2:5231 and � = 0:0619 radians with standard deviations of �(0:3015), �(0:0841) and �(0:2652)
respectively. The real and imaginary parts of the estimated moment spectra for the three axes are shown
in Fig. 6, Fig. 7 and Fig. 8, respectively. From Fig. 6 and Fig. 7 we see that the MMS estimates are
approximately the same for the two equal axes. From this observation and the fact that the � estimate
was so close to zero, we conjecture that one could use these results in a classi�cation scheme to conclude
reliably that the object under investigation possessed spheroidal symmetry. Constructing such a classi�er
is a project we are currently pursuing.

The sample means of the estimated object center and rotation angles for three examples are illustrated
in the following table with standard deviations. From all results the approach estimating the position, the
rotation angle and the moment spectrum is highly precise.

Sphere Case Spheroid Case Ellipsoid Case

Standard Standard Standard
mean Deviation mean Deviation mean Deviation

x̂0 0.5000 0.0003 0.5002 0.0020 0.5003 0.0013
ŷ0 0.4998 0.0004 0.4995 0.0014 0.4992 0.0015
ẑ0 0.0993 0.0030 0.0969 0.0036 0.0911 0.0046

�̂ - - 0.7439 0.0424 0.7563 0.3015

 ̂ - - 2.3527 0.1271 2.5982 0.0841

�̂ - - - - 0.0619 0.2652
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Figure 6. The real and imaginary part of estimated and real moment spectra of spheroid mine for
�1 = 0:001, �2 = 0:001 and �3 = 1 , and for the �rst axis.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a technique for the estimation of the MMS, the co-ordinates of the
object center, and the rotation angles from EMIS data. Under this approach, the data are linearly related
to the multipole moment spectra and non-linear functions of the object location and rotation angles.
We determined the object center and rotation angles by using a low-dimensional non-linear optimization
method and employed a linear least square inversion procedure to determine the estimates of the MMS.

While the results in this paper are encouraging much work remains to be done in this area. First, we
are currently looking to verify our work by applying these methods to real sensor data in collaboration
with Geophex Inc. Second, the closed form analytical nature of the model makes it well suited to extensive
performance analysis based on Cramer-Rao lower bounds on the variances of the estimates we obtain
for angles, location, and MMS. Using this performance metric allows one to start looking at issues of
optimizing sensor con�gurations for particular detection/characterization problems. Moreover, for much
of this work we assumed that we knew whether the targets of interest possessed spherical or ellipsoidal
symmetry. More interesting is the case where we estimate three rotation angles and three moment spectra
and employ a statistical test to determine the symmetry characteristics of the underlying target. Again,
performance analysis is also of interest. Finally, as has been mentioned previously in this paper, from
a modeling perspective we are currently looking to techniques for mapping object characteristics (size,
shape, and material parameters) into the � functions used in this model. As any such mapping represents
an approximation to the true physics, it would be interesting to explore methods for doing this which
explicitly minimize the error in the approximation.
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1 Introduction 

Calculation oJ scattered dcclromagnetic Iidds is oJ intcrcsl in many dill"crcnl science areas. Fm 

example, ;:w important component of m;:wy ground penetra,ting radar (C:t>lt) problems is the effi-

cient computation of the scattered fields produced by a collection of buried objects \Vhen illuminated 

by a radar source. The choice oJ technique fm computing lhcsc lidds is often dri vcn by a variety 

of factors inr,luding computational complexity a.nd the flexibility to handle easily a. \vide ra.nge of 

configurations of scatterers. In applications such as mine detection and hazardous waste removal 

ob jccls can be either dielectric, metallic or mixtures. Their sizes can range Jrom sub-wa vdcnglh 

to a few multi pies of a. wavelength. Therefore, one desires an effkient, flexible forward solver that 

is useful both for analysis and that can be incorporated into signal processing algorithms. 

The mosl popular forward solver fm Lhcsc and related complex scallcring problems, the ~victhod 

of lVIoments CviolVI) [6], is based on a fine discretization of the region of interest and requires the 

inversion oJ a large dense matrix to calculate lhc scallcrcd lidd. As this task requires O(N~J 

calculations \vhere N is the number of grid points, :'vlo!'v1 1s known to be quite computationally 

intensive. \Vhile fast multipole techniques [9] are useful for reducing the complexity of J'vioi\.f-

lypc linear syslcms, these algmithms arc lypically used Jor metallic objects and have Lhcorctical 

diffkulties with the spurious modes that can be circumvented only by "complexiiication" [12]. 

Finite difference techniques are also frequently used as fonvard solvers and like 1\.-IoM rely on a full 

space discrctizalion. Although the rcsulling malriccs arc sparse, one slill laces Lhc ddicalc task oJ 

sper,ifying an absorbing boundMy condition to terminate the computational grid. 

Here >ve consider the use of transition matrix (T-matrix) methods [H,l5] for solving the scat-

Lcring problems oJ intcrcsl. r nlikc MoM and lini tc diJI"crcnccs, Lhc T-matrix approach docs nol 

require an absorbing boundary condition and substitutes the discretization of space with harmonic 

2 



expansions of the Iidds thereby reducing the number of unknowns fm a >vide range of problems. 

l1'or scattering problems involving single objects, this technique is a.pplicable for metallic a.nd di

electric scatterers. For problems involving multiple objects, Che·w and co-·workers have pioneered 

lhc development of a mnnbcr of fast, recursi vc T-mat.rix algorithms fm determining the scattered 

fields in a variety of scenarios [l 4,8, 1:3]. l1'or example, in [:3], problems involving eler,trir,ally large 

dielectric objects are considered. By tesselating the objects into many small sub-scatterers and 

using low mder multipole expansions of the Iidds fm each sub-scallerer the aulhors arrive at. a 

highly efficient, T-matrix based algmithm fm computing the sr,attered fields. ln [4], Che\v et.al. 

consider a scattering problem involving a group of metallic strips. Here the method of moments 

is used to compute the T-matrices for each, individual strip and the same recursion as in [1:3] is 

employed to solve the overall, multi-object scattering problem. 

The motivation fm the algorilhm developed in lhis paper is the need to solve scallering problems 

for the GPlt-type geometry shown in Fig. l. Sper,ifically, we are interested in the development and 

verification of a recursive algorithm capable of computing scattered fields from multiple dielectric 

and/ or metallic ob jecls in the ncar lid d. Fm simplici t.y, we considered an E; polarized plane wave 

incident on a two dimensional problem geometry in whid multiple sr,a.tterers ead possessing a 

circular cross-section (i.e. infinite circular cylinders) are located in an infinite medium of constant, 

complex permittivity. Decausc the usc of a tessdalcd scheme is ina.ppropriat.c for metallic objecls, 

to ha.ndle this mixed-object problem we formulate a recursive algorithm based on high mder har

monic expansions for the full scatterers. \Ve demonstrate that this approach causes instabilities 

in the original recursive algorithm when nea.r field computations a.re required. Hy modifying these 

recursions we obtain a stable algorithm ·which avoids these instabilities and which is capable of 

accuralc nca.r a.nd far lidd calculations for the mixed scattercr problem of interest. Finally, we 



demonstrate that this approach retains the low computational complexity of the method in [3]. 

The remainder of this paper is organized as follows. In Section 2 we review the T-matrix theory 

for single scatterers and the recursive T -matrix algorithm for multiple scatterers. In Section 3, we 

discuss how T-matrix techniques can be applied to GPR geometries, and we will present two alter-

native approaches to calculate the scattered field and the modification in the recursive algorithm. 

In Section 4, we will discuss the results and show examples and finally in Section 5 we will draw 

conclusions and suggest future work. 

2 T-Matrix Background 

2.1 Single Scatterer T-matrix 

The total scalar electromagnetic (or acoustic) wave in a homogeneous background with a ho-

mogeneous scatterer is given by1 : 

(1) 

where 'lj;inc(r_) is the wavefield incident on the scatterer and 'lj;sca(r_) is the field scattered from the 

object. 

Applying the Poincare-Huygens principle and the Gauss theorem we can write the total field 

outside the scatterer as [11]: 

'l/;(r._) = 'lj;inc(r_) +is dS'{ 'lj;+(r')V''g(klr_- r'l)- [Y' +'l/J(r')]g(klr_- r'l)} (2) 

where Sis a piecewise smooth surface enclosing the scatterer, 'lj;+ and V' -f-'lj; are the total field 'l/;(r._) 

and its gradient on the outer surface of the scatterer, and g(klr._- r'l) is the free space Green's 

function. The vectors r_ and r' are from the scattering origin to observation points and to source 

points on the scatterers, respectively. The Green's function can be expanded in terms of cylindrical 

1 Time factor of e;wt is suppressed 
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basis functions (in 2-D) as follows [11]: 

g(klr_- r'l) = -j~ L 'l/Jn(kr_>)Rg'l/Jn(kr_<) (3) 
n 

where 'l/Jn(kr_) = Hh2)(kr)e-jn¢ are the basis functions representing traveling waves and Rg'l/Jn(kr.) = 

Jn(kr)e-jn¢ are the basis functions representing the standing waves. Here, Rg stands for "regular 

part of", Hh2)(z) is the nth order Hankel function of second kind, Jn(z) is the nth order Bessel 

function, and r.> (r.<) means the larger (smaller) of r. and r'. 

Based on the same decomposition, the scattered and incident fields can be expanded as [11]: 

(4) 
n 

and 

(5) 
n 

where'!/!_ and Rg'!i!_ are column vectors filled with 'l/Jn(r.) and Rg'l/Jn(r.), respectively and T stands for 

transposition. 

The T-matrix now is defined as [11,14]: 

i_ = Tg_. (6) 

The elements of T can be found by using (2), (3) and the boundary conditions. For a detailed 

analysis of the single object T-matrix method, the reader is referred to [14,15,11]. 

2.2 Recursive T-matrix Algorithm 

The recursive T -matrix algorithm uses the basic principle of single scatterer T -matrix formulas 

in that for each object, the scattered fields from others are assumed a part of total incident field. 

This way for every scatterer aT-matrix can be assigned. The recursion starts with the T-matrices 

of individual scatterers, then one by one scatterers are incorporated into the equation and the T-

matrices are updated until, for every scatterer, the final form of the T -matrix, including all multiple 

scattering effects, is obtained. 
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Formally, for L scatterers, the harmonic expansion of scattered field, similar to (4), can be 

written as [3]: 
L 

'l/Jsca(r_) = L.P.T(ri)Ti(L),Bi,Og_ (7) 
i=l 

where Ti(L) is the T-matrix for ith object in the presence of L scatterers and ,Bi,o is the translation 

matrix used to translate same type basis functions between scattering coordinate center ( x 8 , Ys) 

and ith object's local coordinate center (xi, Yi), i.e. standing waves in ith local coordinate system 

to standing waves in Oth (scattering) coordinate system; or traveling waves in ith local coordinate 

system to traveling waves in Oth (scattering) coordinate system. 2 Fig. 1 pictorially shows the 

coordinate systems and how the translation matrices work. Expansion of the scattered field in (7) 

is valid if all observation points are outside the circle enclosing all scatterers. Following Chew's 

derivation, the recursive construction of Ti(L) can be written as [3, eq.10-11] : 

T n+I(n+I j/3n+l,O = [I - T n+I(l) t, <>n+l,iT i(n)f3;,o<>O,n+l]-l T n+I(l) ~n+l,O + t, <>n+l,iTi(n)f3i,O] 

(8) 

and 

(9) 

where n = 1, 2, ... , L, i = 1, 2, ... , nand an,i is the translation matrix used to change different basis 

functions between reference coordinate systems (Fig. 1), i.e. standing waves in nth local coordinate 

system to traveling waves in ith local coordinate system. The recursion starts with the individual 

T-matrices, Ti(l)' of the scatterers, i.e. the T-matrix of the ith scatterer when there are no other 

scatterers in the medium. 

Theoretically the matrices a, ,8, T are of infinite dimension. T-matrix algorithms truncate these 

matrices with finite values N and M such that the residual error is below the machine precision 

2 The translation matrices f3i,o contain Bessel functions and complex exponentials. For details about these matrices 

see [1, 11]. 
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or acceptable levels. Here c.V represents lhc mnnbcr of harmonics used t.o expand lhc Iidds at. 

the srattering origin and M r12pr12sents thP number of haxmonirs used to Pxpand the fields in the 

objects ' local coordinate systems. Thus, the T-ma.trix is of size A1 x AI, f3i,o is of size A1 x c.V 

and O:i,n+l is of size 111 X A1. The parameters c.V and A1 arc rdaled to the dislancc of scallerers 

from the sc=tttPI"ing origin and the radii of the scatterNs, respedively. As the distanres between 

sca.tterers and the scattering origin increase, iV needs to be increased~ and as the radii of scatterers 

increase~ A1 needs t.o be increased [:3]. 

3 A Modified Recursive T-Matrix Method 

The work in this paper was moli valed by the desire to obtain a. fast., accurate forward modeling 

code for ground p12netrating radar typP geometries illustratPd in Fig. 2. As discussed inSertion l 

this application requires the computation of near field values of scattered field arising from mixtures 

of dielectric and mclallic objects. To cfl"cct.i vdy handle these requirements, we propose a fonnulat.ion 

of the recurs ive T-matrix algorithm based on the representation of the srattered fi12ld from ead 

full object using high order expansions (i.e. large M) in the recursions in (S) and (9). 

In principle, this approach supports lhc comput.alion of scattered Iidds from arbilrary collec-

tions of dielectric and metallir objects. In fart, we demonstrate that this is true sperifirally for 

far-field calculations. 1~nfortunately, the use of higher order expansions results in an instability 

in a. particular harmonic expansion formula upon which lhc original recursive T-malrix algorithm 

is based when near field computations are required. In the remainder of this section, ·we describe 

explicitly lhis dilliculty and propose a modiJied recursion which by-passes this addilion formula 

and results in a sta.ble method for solving the problem of interest. 



3.1 Determination of Scattering Origin 

Unlike most radar applications, in a GPR measurement geometry the scattered field is generally 

observed in the near or intermediate field. Since the harmonic expansions upon which the recursive 

T-matrix algorithm is based have validity regions (see eqn.( 4)), there are certain limitations as 

to where the scattering origin can be placed relative to the receiver array. In this section, we will 

briefly discuss how the scattering origin is determined, when the object locations and radii are given 

for the GPR-type configuration in Fig. 2. The triplet (xi, Yii ai) represents x andy coordinates and 

radius of the ith object relative to the global origin 0 9 and Lis the number of objects buried under 

the receiver array. 

Because of the requirements on the loci of observation points imposed by ( 4) for single objects 

and (7) for multiple objects, the scattering origin (x 8 , Ys) relative to 0 9 must be selected such that 

there must be at least one circle, centered at (x 8 , Ys), encircling all objects with no receivers inside 

it. The dashed circle in Fig. 2 depicts such a circle. Assuming a linear receiver array, the condition 

to choose the scattering coordinate system is: 

(10) 

where 

Rc = . max {j(xs- Xi)2 + (Ys- Yi)2 + ai}. 
~E{1,2, ... ,L} 

(11) 

This condition must be met by individual objects as well as by all objects collectively. Therefore, 

we can rewrite the condition in (10) and (11) as the intersection of regions as follows: 

(xs, Ys) E { (x, Y)l J] j(x- Xi)2 + (y- Yi)2 < IYI- ai}. (12) 

In fact, each term under the intersection sign in (12) defines the region under an upside-down 

parabola. Fig. 3 depicts the parabolic regions for three objects. Placement of objects in this 

figure is very typical of a mine detection problem. In this geometry, any point inside the shaded 
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area, representing the intersection of all three parabolic regions, can be selected as the scattering 

origin. Ideally, we can place the scattering origin at Ys ~ -oo. This choice of (x 8 , Ys) will always 

satisfy the condition in (10). However, the order of harmonics used in the T-matrix algorithm is 

proportional to the distance between scattering origin and object centers [3], i.e. N ex: kri where 

N is the harmonic used for translations to and from the scattering origin, k is the wave number 

and i = 1, 2, ... , L. Therefore, the optimum scattering origin should be within this shaded area and 

as close as possible to the objects in order to minimize the harmonics used for translations. As 

we show in Section 3.2, with this choice of (x 8 , Ys), the distances between object centers and the 

scattering origin can be very close, which causes convergence problems in the addition formulas of 

T-matrix algorithm. In Section 3.3, we describe a modification in the recursive T-matrix algorithm 

that lets us use the algorithm with optimum choice of scattering origin. 

3.2 Problems With Higher Order Harmonic Expansions 

The convergence problems alluded to earlier can be traced to the fact that equation (8) uses 

the identity 

a - (3 a p,q - p,O O,q (13) 

which in turn requires the ordering of the objects such that lz:.1 1 ~ lz:.2 1 ~ ... ~ lz:.L I· By using 

definitions of ap,q, f3p,O and ao,q [1,11], we can write the (m, m')th entry, [ap,q]m,m'' as: 
N 

H(2) ,(klr l)e-j(m-m')q\pq = lim """' J _ (klr l)e-j(m-n)(qlp+rr) H(2) ,(klr l)e-j(n-m')q\q 
m-m -pq N -+oo ~ m n -p n-m -q 

n=-N 

(14) 

where Z:.pq = IZ:.pq I e- jq\pq = Z:.q - Z:.p and Z:.i = lz:.i I e- jq\i, i = p, q. This truncated sum does not converge 

if Z:.q = Z:.p + f)_ where If}_ I is small as compared to lz:.P I and lz:.q I, and if m - m' is a large number 

( -M ~ m ~ M and -M ~ m' ~ M.) Fig. 4 shows the convergence of the series in (14) for the 

corner entries of (13) for M = 5, i.e. max{ m- m' = 10}. Here we have three curves, showing the 
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convergence for Q = 0.1z:.P, Q = 0.25z:.P and Q = 0.5z:.P, M ~ 5 and Q < 0.1z:.P are typical parameter 

choices for the problems of interest in this paper. It is clear from this figure that as the magnitudes 

of two vectors get closer, the convergence rate slows. Chew et.al. [4] suggested a windowed addition 

theorem (which is originally developed for Hz polarized scattering) to overcome this problem, but 

the implementation of this method introduces two new variables to choose in order to set the width 

and shape of the window. In addition, the implementation of windowed summation introduces 

errors in the sum for vectors for which the convergence is not a problem. 

It should be noted that not all valid scattering origins for a given problem give rise to this 

convergence problem. Indeed, trial an error will quickly demonstrate that, for a given collection 

of scatterers, there exist scattering origins where the original T -matrix recursions work just fine. 

These points are typically far from the scatterers thereby requiring large N in the recursions and 

moreover there does not appear to be an easy means of a priori determining whether a chosen origin 

will or will not give rise to a covergence difficulty. Thus, in the following sections, we introduce 

a modified recursion which bypasses the convergence issue for all valid scattering origins thereby 

allowing us to use the closest valid origin (i.e. smallest N) to solve the problem. 

3.3 Modified Recursive T-Matrix Algorithm 

The recursion in (8) and (9) takes place over the quantities Ti(n),Bi,o' and we have determined 

that the convergence problem stems from (13). Therefore, to eliminate the need to use this identity, 

we go one step back in the derivation of recursion formulas, and write (8) as [3, eq.7-8]: 

T n+l(n+l )f3n+l,O ~ [I -T n+l(l) t, "n+l,iT i(n)"i,n+l r 1 T n+l(l) ~n+l,o + t, "n+l,iT i(n)f3i,o l 
(15) 

and (9) as: 

(16) 
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without using (13). Since (13) is not used in (15) and (16) we can base a new recursion on these 

two equations and the identity: 

/3i,of3o,i = I (17) 

where /3i,o is M X N, f3o,i is N X M, and (17) holds as long as N > M which is always true as long 

as objects are not overlapping. By using (15), (16) and (17) the modified recursion equations can 

be written as: 

Tn+I(n+I)f3n+I,O = [I- Tn+I(l) t, <>n+I,iTi(n)f3i,of3o,i<>i,n+I]-l Tn+I(l) ~n+I,O + t, <>n+I,iTi(n)f3i,O] 

(18) 

and 

(19) 

Note that the recursion is still over the same block, Ti(n)f3i,o' but since (13) is eliminated these 

new recursion equations do not suffer from convergence problems. 

As reported in [3] the original recursive T-matrix algorithm has a complexity of O(M2 N) per 

recursion. It is easily shown that the modified algorithm also has a complexity of O(M2 N) per 

recursion with a slightly larger constant in front of M 2 N resulting from extra multiplications to 

obtain Ti(n) from Ti(n)f3i,o· To calculate the scattered field from L objects, L(L-1)/2 recursions are 

required. Therefore, the overall complexity of both the recursive and modified recursive algorithm 

4 Discussion And Examples 

In this section, we first verify our new scattering algorithm against published results and then 

provide a collection of examples that are particularly relevant for near field, GPR-type applications. 

As most previously published results for mixed scatterer problems involve far field computations, 

in verifying our approach we also demonstrate its ability to handle far zone calculations. Where 
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appropriate, we compare the computational complexity of our higher order, modified recursive 

algorithm (HO-MRA) against two alternate T-matrix approaches. First, we implement the lower 

order, original recursive algorithm (LO-ORA) of [3] for near and far field, dielectric-only problems. 

For far zone problems with mixtures of dielectric and metallic scatterers, we consider high order 

(i.e. large M) forms of the original recursions (labeled HO-ORA here) (8) and (9), where, because 

of the far field assumption, the instability problem is not an issue. 

Before we proceed, we define the terms used in this section. The echo width, i.e. scattering 

cross-section per unit length, and normalized echo width are defined as [10]: 

. I 'lj;sca (z:.) 12 
a(¢) = hm 27l'r 'lj;. ( ) , r-+oo ~nc r_ (20) 

and 

(21) 

where A is the wavelength in the medium of propagation. The normalized scattering field pattern 

is defined as: 

(22) 

In order to ensure that the modified algorithm can indeed find the true scattered fields, we 

verified our calculations against published scattered field patterns. We first calculated the scattered 

field due to two dielectric cylinders placed in free space, each with relative dielectric constant of 

2.6, and radius of 0.5-A. The distance between the cylinders is 3.A (Fig. 5( a).) An Ez polarized 

planewave is incident from 0°. Fig. 5(b) shows the echo width calculated using the HO-MRA of 

this paper (solid line), the LO-ORA of [3] (dashed line) and results in [10] (circles). Fig. 6(b) shows 

a similar comparison for a mixed object case depicted in Fig. 6(a), i.e. one cylinder is metallic 

and the other is lossy dielectric with Er = 4- j5. For this case, we did not include the echo width 

calculated using the original recursive algorithm, since the method in [3] is limited to dielectric 
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objecls. As in previous examples, lhc echo >vidt.h obtained using lhc modilied algorilhm and that. 

reported in [I OJ are very close. 

Next, >ve compared the scatterin?; patterns for t\VO metallic cylinders. In this case both cylinders 

have a. radius of l.L\ (ka = 7) and separated by a disla.ncc oJ 2.6/\ (hl = 16.) Fig. 7(a.) shows lhc 

scattering geometry for this example and (b) s hows the scattered field patterns of both our solution 

(solid line) and the one ?;iven in [5] (circles.) As seen from these figures, the scattering pattern 

oblaincd using lhc modilied algorithm and that. given in [3] arc very dose. 

Now, we present scattering examples that are especially useful in CPI{ applications . All objeds 

are assumed to be buried in a homogeneous, lossy back?;round (Eb = fi£0 , crh = 5 x 10-2 5'/m; typical 

properties of .j% moi s t San Antonio clay loam or I 0% moist Puerto ltico clay loam [7]); the 

opera tin?; frequency is 1G H z and a planewave is incident from 90", see Fig. S( a). \'Ve first find the 

scattered Iidd Jrom 3 dideclric mine-like ob jecls with diameters 7 . .Scm as shown in Fig. 8( a). All 

objects have a relative permittivity of 2 .. j. The scattering origin has to be placed far av.;ay from 

the receiver array (x,. = 0.5m, y,. = -l.:2.5m), because the objects are close to the receivers, which 

in l urn requires a. large value, 120, Jor lY. For this case, we calculaled lhc scattered lidd using 

both the L0-0 I{A and H 0-!'vtltA defined in Section 2.2 and Section :3.:3, respectively. 11'ig. 8(b) 

shows the scattered fields observed along the receiver array usin?; the H0-1.fRA (solid line) and 

lhc LO-ORA (circles). ll is dear from lhis ligure lhal both a.pproa.chcs .'l'idd very simila.r lidds 

but the computa.tional complexity (fiop count) of our method is 18.94 x 106 flops \vhile that of the 

tesselated scheme is 1671 x lOf. flops. 

The second C PIt exa.m pie depicts a mixed mine-like object case since the objects at the sides are 

metallic and the object at the center is dielectric with a relative dielectric constant of 2 .. ), Fig. 9(a). 

The mine-like geornet.ry is unchanged and lhc scattering origin is slill at. (J:8 = 0.5m, Ys = -1.2.5rn). 



As a. result N = 120, and since lhc o b jed radii arc rda.ti vdy small ;.\1 = 12. The scallned Jidd 

observed along the rer,eiver arra.y for mixed mine-like objer,t r,ase is shown in Fig.9( b). The last 

example demonstrates the calculation of scattered field from buried waste drums. For this case 

we have 2 metallic drums of radius 0.3m buried in lhc same lossy background before, as shown in 

l1'ig. IO(a). The sr,attering origin is plar,ed at (:rs = lm, Ys = -L37m) to minirni7.e the harmonir,s 

used in the expansions (.Af = 25, iV = 110). For drum case .Af is quite large since the radii of 

lhc objecls arc considcra.bly large. Fig. 10(b) shows the scattered Jidd obsnvcd along the rccei vcr 

array placed directly aJHwe the cylinders. 

Having verified the scattering field patterns of new recursion with the ones in the literature 

and presented the GPlt examples, we wmpared the complexities of the HO-IVIltA, LO-OltA, and 

HO-ORA. To ensure a fa.ir comparison, whenever a tessellation is required, >ve set the density of 

sub-scallners to be dose lo lhal used in [3]. Pcrl'onna.nce of Uw each approach is measured by lhc 

floating point operations (fiops) required to cakulate the sr,attered field. Table l shows the flop 

count of all three recursive T-matrix algorithms that can be used to find the scattered fields from 

rrmllipk, spatially separated cylindns. Table 2 shows the mnnbcr of scallners L, harmonics ;.\1, 

:V and the lor,ation of the sr,atteri ng origin (:rs, Ys) used in these exam pies. 

The first three rows of Tables 1 and 2 correspond to examplesfrom the tvm dimensional scattering 

literalurc. For lhcsc cases, all observalion points arc in lhc far Iidd so lhal the convergence problem 

alluded to earlier is not a.n issue. As a result, \Vith dielectrir, objects HO-IVIltA, LO-OltA and HO

ORA can be used to calculate the scattered field. 10-0RA is used only with dielectric objects [:-q 

a.nd as seen from Ta.ble l its wrn putational wm plexity is quite large as wm pared to H 0-!'vtltA and 

HO-ORA. The reason behind this large complexity is that numerous sub-scatterers are required 

for each cylinder. The compula.tional complexity of IIO- 0 RA is at mosl 15o/c. less th<m that of 
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IIO-}IRA since the laller needs exlra. multiplications lo obtain Ti(n) horn Ti(n)J3i,o· 

The last three rrrws of Ta.ble l show the fiops needed to iind the srattered iield for C t>lt-speriiic 

examples and Table 2 shuws the number of scatterers, harmonics and the locus of the scattering 

origin used in these examples. The geornetries of G PR cases of interest arc dcpiclcd in Figures 8( a), 

9(a.) and lO(a). Unlike previous examples, CPl{ problems require measuring the srattered field in 

the near field, ·which restricts the reg;ions \Vhere the scattering; orig;in can be placed. As \Ve have 

shown in Seclion :3, lhe choice of optimum scattering origin resulls in convergence problems in IIO-

OIL.\, making it inarressible for Gt>lt geometries. In addition LO-OltA is not used \Vith metallir 

objects leaving; only HO-IVIRA for all GPR g;eometries and all material types. Even when LO-ORA 

is used for dielertrir-only objects, one has to spend approx. 88 times more fiops than it is needed 

for H 0-I\-IRA (Table 1). 

5 Conclusions 

In this paper, we present a new recurs 1ve T-matrix algorithm speriiically designed for the 

efficient solution of near field scattering problems involving heterog;eneous collections of metallic 

and dideclric objects. Vl''e have verilicd this algorithm against previously published resulls thereb.Y 

demonstrating its utility fm far iield computations and indira.ted its use fm Ct>lt-type scattering 

problems. For near and far-field dielectric scattering problems, this algorithm is sig;nificantly more 

diicienl than the sub-scat.t.erer method in [:3]. For far-Iidd computations, the technique in this paper 

is slightly more costly than the use of hig;her order expansions in the original recursive formulae. 

The work in this paper suggests a va.ridy of additional research directions. Firsl, we arc quite 

interested in extending the modified recursive algorithm into three dimensions while simultaneously 

considering scattering problems involving irregularly shaped objects \Vhere the T-matrices would be 
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computed using the method of moments as in [4]. Such work would allow for the easy examinalion 

as to hmv objed sha.pe a.nd orientation impa.r,ts the sr,a.ttered fields a.nd ultimately, the a.bility to 

detect and localize objects. In terms of the GPR application \Vhich originally motivated this effort, 

we arc looking lo T-malrix lypc methods which might. allow for some level of modeling lhc air-

earth intNface relevant in these srenarios without destroying the wmputational efficiency of the 

scattering model. Finally~ applyin?; the near field computational abilities of this approach to other 

application areas would be quite intercsling. 
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HO-MRA LO-ORA HO-ORA 
Fig. 5 0.6 1150 0.55 
Fig. 6 1.9 n/a 1.76 
Fig. 7 8.84 n/a 7.73 
Fig. 8 18.94 1671 c/p 
Fig. 9 18.95 nja cjp 
Fig. 10 29.5 n/a c/p 

Table 1: Complexity Comparison for Recursive Algorithms. All numbers in FLOPS/106 , n/a means 
not applicable and c/p means convergence problems 
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Abstract -- The three-dimensional, wideband, bistatic ground penetrating radar (GPR) 

scatter response of rough, realistic ground is efficiently and accurately simulated using a 

hybrid high resolution 3-D and large area 2-D FDTD model.  The 3-D computation 

carefully models the transmitting and receiving antennas, while the 2-D FDTD models 

wave propagation between the antennas and the scattering by the soil below them.  The 

FDTD soil model considers realistic frequency dependent (dispersive) soil with Gaussian 

height variations. The modeling results are compared to experiments performed with the 

Geo-Centers, Inc. commercially available GPR system used for mine detection.  Despite 

the simplicity of the 2-D model, the results of the simulation and the experiment agree 

quite well.    
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Introduction 

 

Ground penetrating radar is widely used to detect buried objects including land mines and 

buried waste containers, in excavation planning, and in roadway and bridge structural 

quality assessment [1].  Computationally modeling the performance of GPR is important 

in determining its feasibility in various situations and for designing the best sensing 

system for the given application. Appropriate computational models, such as the finite 

difference time domain (FDTD) method [2, 3], can be used for transmitter/receiver 

design and in parameter studies that include soil moisture and density variations [4].  The 

FDTD method is particularly well suited both for modeling soil surface roughness and 

volume inhomogeneities and the complex structures of wideband GPR antennas.  

Computational modeling is an essential complement to laboratory and field GPR 

experiments, which are particularly hard because of the difficulty in burying objects so 

they appear to be in long undisturbed ground.  

 

The most accurate models for GPR are three dimensional, but 3-D FDTD modeling is 

computationally complex and expensive.  Two-dimensional FDTD models can simulate 

much of the characteristic performance of GPR with orders of magnitude less 

computational expense.  To model the entire link between the signal fed to the 

transmitting antenna and the signal measured at the output port of the receiving antenna, 

a reasonable compromise is to combine 3-D and 2-D models.   
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The present approach models the complex antenna volume with 3-D FDTD with a mesh 

fine enough to capture the variations in material geometry, and combines it with lower 

resolution free-space and soil scattering models using multiple 2-D FDTD meshes.  As 

long as the small-scale wave variations (such as in the vicinity of the antenna or a 

localized three-dimensional scatterer) are partitioned in the 3-D model, the remaining 

piecewise-plane-wave-like propagation can be modelled with 2-D computation without 

introducing too much inaccuracy.  Three-dimensional reflection from, and transmission 

through planar boundaries are also adequately approximated with 2-D FDTD, as long as 

the boundary is perpendicular to the computation plane.  In addition, the distortion effects 

of random rough ground can be included in this 2-D modeling scheme.   Although rough 

ground has randomness in two surface dimensions, as long as the surface height variation 

is small compared to the excitation wavelength, the depolarization and out-of-plane 

scattering effects are small.  Fast computation is particularly important when the average 

scattering response of many surface realizations of random rough ground must be 

calculated. 

 

In a subsequent study, the scattering of buried targets will be reported. In this present 

report, only the rough ground surface scattering with no target in the soil will be 

discussed.  Indeed, to understand the scattering mechanisms of buried targets, it is first 

necessary to test the transmission through the ground surface and quantify scattering from 

the ground surface, which is the greatest source of clutter.  We model the scatter response 

of realistic soil using the geometry and parameters employed by the Geo-Centers, Inc. 

Energy Focused Ground Penetrating Radar (EFGPR).  
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Geo-Centers EFGPR 

 

The EFGPR is a time domain focused multistatic linear array radar used for buried mine 

detection.  Each element of the array is a wideband transverse electromagnetic rhombus 

(TEMR) antenna, which resembles a bow-tie antenna that is rolled back and joined to 

itself using a pair of resistors. The measured performance of the TEMR indicates a very 

uniform radiation pattern in both planes throughout a broad frequency range [5].  This 

TEMR antenna is used for both transmitting and receiving elements. A Picosecond Labs, 

Inc. pulser feeds the elements with a single nanosecond pulse with the frequency 

response between 700 MHz and 1.3 GHz.  

 

In order to enhance the performance of TEMR antennas in detecting buried mines, the 

transmitting and receiving antennas elements in the array (shown in Fig. 1) operate 

simultaneously in a fully multistatic radar mode.  The system can also be used in studying 

the scattering response of the ground surface in order to understand the scattering 

mechanism of buried mines.   

 

As shown in Fig. 1, the distance between the centers of adjacent transmitters, and 

between adjacent receivers, is about 0.244m, as is the distance between centers of 

transmitter Ti and corresponding receiver Ri (i = 1,2,3,4). The transmitter and receiver 

linear arrays lie about 0.39m above the ground surface. The transmitters and receivers are 

arranged in the x-z plane, with z-polarization so that waves incident in planes parallel to 
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the y-z plane are transverse magnetic (TM), while those incident in the x-y plane are 

transverse electric waves (TE).   

 

The multistatic nature of the EFGPR array configuration allows for focusing on sample 

volumes of the subsurface and enhances the target signal to noise ratio.  Examining a 

target from multiple views not only increases the response of the desired signal, but also 

reduces ground surface clutter, since different patches of ground are illuminated by the 

different sources and viewed by different receivers, and these variations tend to cancel.  

To characterize the ground clutter response for this array configuration, each possible 

transmitter element/receiver element combination must be analyzed separately.  This is 

adequately modeled by considering the received signals at the four receivers R1, R2, R3 

and R4 due to just transmitter T1.  One aspect of these various links is that although the 

transmitting and receiving antenna elements are both z-polarized, the wave interactions 

with the ground have both TE and TM components.  

 

 

FDTD Simulation 

 

The link between the pulser input signal and received output voltage involves three 

modeling steps: one for the transmitting TEMR antenna, one for the receiving TEMR 

antenna, and one for the propagation through air and scattering from ground. The TEMR 

antennas have been successfully modelled with fine resolution (∆ = 0.00152m) in three 

dimensions in both transmit and receive modes, as reported in Sahin [6].  The measured 
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transmitter excitation pulse is shown in Fig. 2.  The waves radiated from the downward 

pointing transmitting antenna are first computed for all electric and magnetic field 

components throughout the 161 X 161 X 108 point grid, and the entire time record of 

electric field on the six bounding faces of the surrounding rectangular box are stored.  

Next, these calculated field values are coupled to a coarser 2-D grid by down-sampling 

by a factor of eight at grid points along the line segments where the transmission (2-D 

incidence) plane intersects the faces of the bounding box.   

 

In addition, to avoid corner issues, the fields on the vertical (x-y and y-z) sides of the 

bounding box are projected onto the line crossing the bottom face (referred to as the 

aperture line), as shown in Figure 3.   This aperture line will serve as one of the edges of 

the 2-D computational grid along which the excitation will be specified.  It is tilted at an 

angle φ relative to the z-axis to account for the varying angle between transmitter and 

receiver.  Since most of the transmitted power from the TEMR antenna propagates 

through the bottom face of the bounding box, the projected fields propagating through the 

side faces primarily ensures a smooth fall-off of power past the edge of the bottom box 

face.  The projection of the fields from the side faces is accomplished by: 1) determining 

the approximate antenna phase center, 2) tracing rays from this center to the aperture line, 

3) determining the attenuation spreading factor and time delay based on the length of this 

ray, 4) finding the electric field values at the point where the ray intersects the side face, 

and 5) converting these values to appropriate values on the aperture line.   
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The first step of finding the phase center uses the time domain fields on the bottom face 

of the bounding box.  It is assumed that all outward propagating waves follow rays 

originating at the same point at the same time, as in the case of a pyramidal horn antenna 

[7].  By symmetry, the phase center lies along the centerline of the bounding box 

perpendicular to—and at a height yc above—the aperture line.   Two observation points 

along the aperture line are selected: one in the center, and one near the edge of the 

bounding box.  The peak of the time pulse at each of these points is found, and its time 

and amplitude are recorded.  Next, the distance yc along the centerline is found by 

equating the path length difference between each of the two observation points and the 

phase center (r1 = yc and r2 = √( yc
2 + 11.62)  ) to the time difference between the observed 

pulse peaks multiplied by the speed of light.  The observed 210 ps time difference 

between arrival times of the peaks leads to yc =  7.5 cm, or about 49 ∆.   

 

The second and third steps follow from similar triangles.  Given the distance along the 

aperture line from the box centerline to the edge of the bottom face d, a point on the box 

side face y’ projects out a distance z’ = d yc /(yc - y’) along the aperture line (when φ = 0).  

The distance from the phase center to this projected point is rp = √( yc
2 + (d+z’)2), while 

the distance to the point on the ray at the box face is rf  = √(( yc - y’)  2 + d2).  The relative 

time delay for the projected point relative to the point on the ray at the box face is          

(rp – rf)/c, and the relative attenuation is approximately rf /rp.  A similar analysis holds for 

φ ≠ 0. 
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The fourth and fifth steps involve resolving the electric field components on the box edge 

face ),'( dzyE =  into tangential and normal components to the aperture line at the point 

where it intersects the projecting ray yEyzEzEa ˆˆˆˆ •+•=  

 

The resulting fields aE  are finally down-sampled in time by about a factor of seven, to 

yield a Courant Number of 0.5.   These transverse and normal electric field components 

are then passed in an array of 247 time steps by 80 positions, as input to the 2-D FDTD 

soil scattering model along the top boundary.  Fig. 4 shows one half of this array of Eaz 

field values for the TE excitation.  A similar array would be used for the other 2-D 

incidence planes. 

 

One difficulty with dividing the model into separately calculated pieces is that the reverse 

coupling of waves scattered from the ground back into the transmitting antenna is 

ignored.  This is only important from the receiver signal point of view if this 

backscattered wave then rescatters from the transmitting antenna.  However, this effect is 

small, since all elements in the physical array are isolated with absorber to minimize both 

this rescattering and the direct-coupled signal from transmitter to receiver. 

 

To use the 2-D FDTD to model the scattering response of the ground surface, we 

transform coordinates such that the incident plane includes the T1/Ri (i = 1,2,3,4) antenna 

pair and is perpendicular to the ground.  Designating the incidence plane as the Xi-Yi  

plane as shown in Fig. 5, the 2-D FDTD now approximates the transmitter and receiver 

as infinitely long in the Zi-direction.  Since the ground surface is infinite and 



 9

perpendicular to the incidence plane, it is well modelled with 2-D FDTD.  For the angle 

between the x-axis and Xi axis given by ßi, the electric field components in xyz 

coordinates, the correspond to field components in the XiYiZi frame as: 

 

                                         izixXi EEE ββ sincos += ,                                            (1) 

                                         izixZi EEE ββ cossin −= ,                                            (2) 

                                         yYi EE −= .                                                                      (3) 

 

Since the incident electric field is neither perpendicular nor parallel polarized to the 

incidence plane (Xi-Yi plane) for some transmitter/receiver pairs, it is impossible to use 

the 2-D FDTD TE or TM codes directly.  Instead, the perpendicular (EXi, EYi) and parallel 

(EZi) polarization components are first calculated by vector transform, then a TE FDTD 

code is used for the parallel polarized field while a TM code is used for the perpendicular 

field.  The TE and TM components of the receiver field can be transformed similarly. 

 

The space grid chosen for the 2-D FDTD air/ground interaction code is a 361×200 with 

space increment 0122.0=∆ m. The time increment 12105.20 −×=∆t s, was chosen to 

maintain the Courant stability condition 2/1/ <∆∆tc . The distance between the 

centers of transmitter and receiver is 20 grid points (0.244m) and the bottom plane of the 

transmitter/receiver pair is 32 grid points, 0.39 meter above the ground surface. The soil 

is modelled as Puerto Rican clay loam with 5% moisture and 1.4 g/cm3 density with 

dielectric constant and conductivity varying across the frequency band from 4.5 to 4.35  

and 0.012 to 0.045 S/m respectively [8]. We model the frequency dependence of the soil 



 10

medium using the Z-transform representation of conductivity with constant dielectric 

constant [9], where Z -1 = exp(-jω∆t) is the Z-transform variable corresponding to a unit 

delay in the time domain:  
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The parameters are chosen to match measured values of soil over the 30 MHz to 4 GHz 

frequency range: 5843.00 =b , 0649.11 −=b , 4811.02 =b , 88.00 =a , and the average 

value of dielectric constant is 136.3=Avε .  With this conductivity model, a finite time 

difference equation relating conduction current to E-field is straightforward. The Perfect 

Matched Layer (PML) absorbing boundary condition for both free space and dispersive 

soil is used in the model [10].  Both flat and rough ground surfaces are used in our 

simulation. The roughness of the measured ground surface is accurately modeled with a 

Gaussian height distribution with zero mean and standard deviation σh, given by the 

probability density function relating two heights z1 and z2 separated by a distance xd [11]: 
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The standard deviation of surface height σh is about 1.8 cm and correlation length lc is 

about 18 cm.  Although with this height variation 95% of the excursion from flat is 

within + 3.6 cm (or about + 3∆), the FDTD calculation shows noticeable differences 

compared to those for flat ground. 

 

The results of the 2-D FDTD computations for waves radiated by T1, which impinge on 

each of the four receivers, are shown in Fig. 6.  Only one realization of rough ground is 

used for the responses displayed in this figure;  other realizations yielded similar 

responses.  For R1, only the TE calculation is used, while for the three other receiver 

positions, the incident wave is divided into TE and TM components, each component is 

propagated separately, and then the waves impinging on each receiver is recombined.  

Note that eliminating roughness increases wave coherence, resulting in greater scattered 

amplitudes, but also leads to a slight delay relative to the rough ground calculation.  

 

 

Antenna Transfer Function 

 

The signal measured at each receiver output port in the experiment is an output voltage, 

while the signal obtained by the 2-D FDTD simulation is the electric field incident on the 

receiver location. Rather than perform another 3-D FDTD calculation on the receiving 

TEMR antenna, the receiving TEMR antenna transfer relation is used to convert the 

incident quasi-plane wave into the received voltage.  The transfer function in the 

frequency domain can be obtained by dividing Discrete Fourier Transforms of the 
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receiver output voltage by that of its corresponding incident plane wave E-field [12]. The 

required receiver output voltage for the ground scattered case is thus obtained by Fourier 

transforming the field at the receiver, multiplying by the transfer function, and Inverse 

Fourier Transforming the result.  In addition, before inverse transforming, we use a 

Wiener filter given by: 

 

ε+
=

•

2|)(|
)(

)(
kX

kX
kWF       (6) 

 

where X(k) is the DFT wave signal at the given receiver position, and 510=ε .  The 

Wiener filter reduces the numerical noise in the TEMR antenna transfer function. The 

magnitude of the transfer function is shown in Fig. 7.  

 
 
 
 
 

Results and Analysis 

 

Fig. 8 shows the received voltages at the output terminals of R1, R2, R3, R4 when T1 is 

used as the transmitter, calculated by the hybrid 2-D/3-D FDTD model for both rough 

and flat ground and compares them to corresponding signals measured in the field.  These 

signals are obtained by applying the antenna transfer function of Fig. 7 to the incident 

wave signals of Fig. 5.  The experimental results were obtained at the Northeastern 

University Dedham test track.  TEMR antenna elements were used as both transmitters 

and receivers in the configuration of Fig. 1 [13].  For each transmitter/receiver pair, the 

measured signals vary for different positions along track. To obtain a representative set of 
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measured responses, each sample signal from each position is shifted in time to align its 

first peak.  Then the shifted sample signals for each of the four transmitter/receiver pairs 

are added and divided by the number of samples.  These averages are taken to be the 

measured signals to be compared to calculated signals. This procedure takes account of 

the differences caused by ground surface variations along the track, but has the 

disadvantage that some of the small signal features are averaged-out.  

 

To compare the amplitudes of the measured and calculated signals, each of the average 

measured signals are divided by the maximum average measured T1/R1 signal, and each 

of the calculated flat ground signals are divided by the maximum flat ground T1/R1 

signal.  The resulting maximum average measured signal values for T1/R2, T1/R3 and 

T1/R pairs are 0.9217, 0.4875 and 0.2490 respectively.  The maximum calculated flat 

ground signal values for T1/R2, T1/R3 and T1/R pairs are 0.8145, 0.4621 and 0.2434 

respectively.   The close correspondence between measured and calculated maximum 

signal values indicate that the procedure for modeling source and receiver polarization 

variation is valid. 

 

The main peaks of the FDTD calculated and measured signals have similar shape and 

width, and the leading behavior of each the signals is similar. The correspondence 

between the trailing (late time) behavior of the measured and calculated signals is worst 

for the closest transmitter/receiver pair (T1/R1), probably due to the multiple scattering 

from the ground back to the transmitter, which is ignored in the hybrid computational 

model.  Although the largest negative excursion of the FDTD signals are slightly 
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different from those of the experiment, the results of the FDTD calculation are otherwise 

close to those of the experiment. The difference between the FDTD calculated voltage 

signals for rough ground and flat ground are smaller than those of the corresponding 

incident waves.   

 

Considering the various approximations: 1) the actual 3-D propagation and scattering are 

modelled with 2-D calculations; 2) the ground surface is modelled as a rough curve in    

2-D FDTD rather than a true rough surface with variations in two directions; 3) the 

ground scattered wave is modelled as a plane wave incident on the receiving antenna; 4) 

the approximations made when extrapolating the transmitted electric fields from the sides 

of the 3-D computational domain; 5) the possible inhomogeneity and uncertain soil type, 

moisture, and density inherent in the actual experiment; 6) the averaging of the 

experimental data for varying ground surface; and 7) the variations in the electronically 

generated wideband signal, electronic noise, temperature conditions, and general 

measurement error; the results show that the 2-D FDTD does an impressive job of 

modeling the electric field while maintaining the characteristics of the real electric field. 

Although the differences between the measured and calculated signals may be greater 

than the expected variations due to buried targets, the FDTD calculation captures the 

effects of rough dispersive ground as well as relative changes due to buried targets. 
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Conclusions 

 

The approach of simulating the clutter response of realistic soil for an existing high-

performance impulse GPR using relatively simple 2-D FDTD calculations has been 

demonstrated.  The radiated fields generated using a high resolution 3-D FDTD within a 

small box surrounding the antenna element are sampled along the line segment of the 

incidence plane, decomposed into TE and TM components, and then propagated with a 

coarse 2-D FDTD dispersive soil model.  The waves incident on the receiver are then 

convolved with the transfer function of the receiving antenna to give the received signal. 

 

Computed results compared well to experimentally measured signals using the Geo-

Centers TEMR antenna transmitter/receiver pairs. The simulated output voltages are 

close to those obtained from experiment, with similar pulse shape. Despite slight 

quantitative differences between the modelled and experimental data, 2-D FDTD has 

been shown to simply and successfully simulate scattering by rough dispersive ground. 

 

To address scattering from finite 3-D buried targets, it is anticipated that another 3-D 

simulation of the sub-volume surrounding and including the target would be required.  

For shallow buried targets, the target volume could include the ground surface as well.  

Thus, the simulation could be divided into 3-D models of the transmitting antenna, the 

target and the receiving antenna, with 2-D simulation of the intervening space.  Multiple 
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interactions between the antenna and the target tend to be small, especially for buried 

targets, so this division will not introduce much modeling error. 
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Figure 1:  Geo-Centers’ EFGPR four transmitter/four receiver array mine detection system. 
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Figure 2:  Measured excitation voltage fed to the transmitting antenna. 



 21



 22

Figure 4:  Electric field generated by the 3-D fine mesh FDTD antenna model, down-sampled for 
use as the input excitation for the 2-D TE FDTD air/soil propagation model. For clarity, only the 
positive half of the excitation is shown. 
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Figure 6:  Electric fields at the four receiver positions for perfect flat ground and slightly rough 
ground. 
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Figure 7:  Magnitude response of the TEMR antenna transfer function. 
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Figure 8:  Comparison of the receiver output voltage simulation results with those of 
experiments for the four receivers 

·• 

• -un4 --- n..._...v-... 
-n.n.n.•-•>~ 

·• 

Tune(p~) 

+ Nlu•-
••• l"mlr<C$11v-<l 
- mn\!'lo•-•>~ 



Object Detection Using High-Resolution Near-Field Array

Processing�

Adnan S�ahin and Eric L. Miller
Center for Electromagnetics Research,

235 Forsyth Building, 360 Huntington Ave.
Northeastern University, Boston, MA 02115

Telephone: (617) 373-8386
Telefax : (617) 373-8627

email: adnan@cdsp.neu.edu

April 24, 1998

Abstract

In this paper we present an algorithm for the detection and localization of an unknown
number of objects present in the near �eld of a linear receiver array. To overcome the nonplanar
nature of the wave�eld over the array, the full array is divided into a collection of sub-arrays, such
that the scattered �elds from objects are locally planar at each sub-array. Using the MUSIC
algorithm, directions of arrival (DOA) of locally planar waves at each sub-array are found.
By triangulating these DOAs, a set of crossings, condensed around expected object locations,
are obtained. To process this spatial crossing pattern, we develop a statistical model for the
distribution of these crossings and employ hypothesis testing techniques to identify a collection
of small windows likely to contain targets. Finally, the results of the hypothesis tests are used
to estimate the number and locations of the targets. Using simulated data, we demonstrate
usefulness and performance of this approach for typical background electrical properties and
signal to noise ratios.
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1 Introduction

The problem of detection and localization of objects in the near �eld of an antenna array has

arisen in a number of application areas in recent years. For example, in the area of landmine

remediation, the goal is to �nd relatively small, metallic and plastic objects located in a lossy

medium (the soil) but a few centimeters from the transmitters and receivers. Alternatively, for

purposes of environmental remediation, the targets of interest tend to be larger (eg. steel metal

drums �lled with hazardous waste), and located on the order of meters from the array. Although

several near-�eld array processing methods have been reported in the literature, their use has been

restricted to the localization of independent sources radiating spherical waves [1{3] and are thus

not suited to the problem of interest in this work: the detection and localization of extended targets

illuminated by an incident plane wave and positioned such that multiple scattering e�ects cannot

be ignored.

The problem of target detection and localization for these and related applications often is

addressed by using the data to produce a pixel-by-pixel map of the region near the array and then

post-processing the image to localize the objects [4{8]. Since the initial image generation represents

an ill-posed inverse problem, a stable solution requires the use of a regularization method [9].

Unfortunately, typical regularizers result in smooth images thereby making the detection all the

more di�cult. In this paper, we develop an alternate approach to target detection and localization

which bypasses this di�cult step of image generation and is aimed at extracting the number of

objects and their locations more directly from the data.

Of particular interest is the measurement geometry shown in Fig. 1. A plane wave illuminates

the region of interest assumed to be a homogeneous, possibly lossy medium containing one or

more targets located in the near �eld of an array of receivers. The inherent array structure of
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the measurement geometry suggests that the high resolution array processing techniques [10, 11]

quite popular in the signal processing community would be well suited for the near-�eld detection

problem. Adapting such methods to the problem of interest here presents a collection of interesting

challenges. First, these array processing techniques typically assume that the sources are in�nitely

far away so that the waveform received on the array is planar. For our problem, since the objects

are located relatively close to the receiver array, this key assumption is not valid. Second, for such

near-�eld objects both range as well as the direction of arrival has to be determined in order to

localize the object. Finally, a problem common to both the near-�eld and far-�eld array processing

algorithms is that the number of incident waveforms/targets is not known a priori.

To deal with the nonplanar nature of the wavefronts over the array, we partition the receiver

array into sub-arrays, such that the scattered �eld is locally planar at each sub-array. Then,

using high resolution array processing techniques, each sub-array identi�es a single direction of

arrival (DOA) corresponding to the most dominant scatterer in the vicinity of that sub-array.

The localization of the objects in terms of their ranges and bearings is achieved by triangulating

the directions of arrival from all subarrays which in turn results in a crossing pattern of DOA

intersections. Examination of typical crossing structures reveals that there are two distinct patterns

where the crossings are either dense or sparse. Dense crossing regions clearly indicate object

locations and are distinguished from \background" regions where the crossings are sparse. The

problem of object detection and localization then is reduced to the processing of the crossings

obtained from our triangulation procedure.

For this purpose, we introduce a simple yet accurate stochastic model describing the spatial

distribution of DOA crossings. Such modeling is warranted for two reasons. First, due to the noise

in the data, the DOA intersection points are inherently randomly distributed in the plane. Second,
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such modeling forms a solid basis for algorithm development and quantitative performance analysis

in the form of detection and false alarm rates.

In this work, we model the two classes of crossings (dense vs. sparse) using a pair of spatial

Poisson distributions [12]. The Poisson model in the target region has a large rate parameter

while that of the background region is considerably smaller. Based on these target and background

models, we develop a hypothesis testing technique for the joint estimation of the rate parameters

and the localization of dense crossing regions which indicate the existence of targets. Simple post-

processing of the hypothesis testing results provides both the number of targets and estimates of

their locations. Finally, we verify that the a Poisson model is in fact a rather accurate description

of the spatial distribution of crossings.

We demonstrate the performance of this approach for the detection and localization of multiple

mine-like and drum-like targets located in the near �eld of the receiver array. For mine-like targets

relative positions of the objects are changed to see the e�ect of object geometry on detectability.

We show that the detectability improves, and false alarm rate decreases as the objects are located

far apart. For drum-like targets, we demonstrate the e�ect of relative depth as well as relative

distance between objects on detectability.

The remainder of this paper is organized as follows. In Section 2 we describe the models and

notation used in the paper, in Section 3 we introduce the detection algorithm and hypothesis

testing. Examples depicting performance of the algorithm are given in Section 4 and in Section 5

we will draw conclusions and suggest future work.
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2 Background

The multi, bi-static measurement scheme depicted in Fig. 1 is considered in this paper. A

perpendicularly polarized plane wave, Ei(r), impinges on a collection of objects in a known back-

ground, inducing surface and volume currents which in turn radiate a scattered �eld, Es(r)
1. The

scattered electric �eld from the targets is spatially sampled by a uniformly spaced, N -element linear

array with isotropic receiver characteristics. The measured data at the sensor outputs are:

x = Es + n; (1)

where Es = [Es(r1) Es(r2) � � �Es(rN)]T , ri is the vector from the origin to the ith receiver location

and n is zero mean, white Gaussian noise.

The structure of the receivers in Fig. 1 coupled with the underlying problem of target detection

suggests the use of array processing methods for localizing buried targets. In this paper we con-

sider the MUSIC (Multiple Signal Classi�cation) [13] algorithm. Traditionally, MUSIC and other

direction �nding techniques are used to determine directions of arrival (DOA) of plane waves to a

receiver array. Here, we adapt MUSIC to the near-�eld detection problem.

To make use of the MUSIC algorithm, the experiment as represented by (1) is repeated many

times to determine the statistics of x. In particular, if L scattering experiments are performed,

then the maximum likelihood estimate of the spatial autocovariance matrix R is given by [10]:

R̂ =
1

L

LX

l=1

xlx
H
l (2)

where xl is the data measured at the lth experiment, and superscript H denotes conjugate transpose.

Then, the eigenspace decomposition of R̂ yields [10]:

R̂ = Ûs�̂sÛ
H
s + Ûn[�̂

2I]ÛH
n (3)

where Ûs is the estimated signal subspace matrix and contains the M signal eigenvectors, and Ûn

1All analysis is in frequency domain, thus the e
j!t dependence is suppressed
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is the estimated noise subspace matrix and contains N �M noise eigenvectors of multiple noise

eigenvalue �̂2. The projection operator onto the noise subspace is de�ned as [10]:

�̂n = ÛnÛ
H
n : (4)

Assuming plane wave incidence on the array, the idea behind MUSIC is that the reciprocal of

the \distance" between the estimated noise subspace and the true noise subspace has sharp peaks

around the DOAs. Thus, if one plots this quantity versus all possible angles, estimates of DOAs

can be determined by the maxima of the resulting angular spectrum which is given by [10]:

PMUSIC(�) =
a(�)Ha(�)

a(�)H�̂na(�)
(5)

where a(�) = [1 ej�d cos � ej2�d cos � � � � ej(N�1)�d cos �]T is the direction vector, � is the wave

number in the medium of propagation, and d is the distance between two receivers.

As stated previously this formulation of the array processing problem assumes that the radiator

is in�nitely distant so that the scattered �eld has planar wavefronts and the elements of the direction

vector a(�) are complex exponentials. However for the problems of interest here, the receivers are

in the near-�eld region of the radiating sources, resulting in non-planar wavefronts. Additionally,

the target localization problem not only requires the DOA relative to the array but also the range

of the target from a point on the array (eg. the leftmost element.)

3 Algorithm

A key element of the work in this paper is the development of a sub-array processing method for

detection of multiple objects in the near �eld of an array. In a previous work [14], we have examined

such a technique for detection and localization of single metallic and dielectric objects. As illustrated

in Fig. 2 (and as is generally the case), the localization problem in [14] is straightforward since

typically all crossings are densely packed within the radius of the object. Therefore, the location

of the object can be inferred quite easily. For multiple objects, however, the crossing pattern is
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quite complicated, since DOAs of di�erent objects create unwanted crossings as shown in Fig. 3.

The clusters of object crossings are embedded in this unwanted background crossings, and have to

be extracted carefully. Thus, in this work, we concentrate exclusively on the problem of multiple

object detection.

Before introducing the details of our approach, we want to briey describe the algorithm with

the help of ow chart in Fig. 4. The algorithm proceeds as follows:

1. Sub-array processing: At this stage of the algorithm, we partition the receiver array so

that the observed scattered �eld is locally planar at each sub-array. The directions of arrival

(DOAs) are found using MUSIC as if planar waves are impinging on the sub-arrays. The

DOAs are then triangulated to obtain the crossing pattern. This stage of the algorithm is re-

peated several times for plane waves at di�erent temporal frequencies to improve performance

and resolution. The crossing patterns obtained at di�erent frequencies are overlaid to yield

an aggregate crossing pattern which is, then, passed onto the second stage of the algorithm.

2. Crossing analysis: In the second stage, the crossing pattern is modeled with two Poisson

counting processes, corresponding to target and background regions. After estimating the

required rate parameters using the crossing data, a hypothesis testing procedure is employed

to determine a set of \window" regions corresponding to areas containing targets.

3. Target extraction: At the �nal stage of the algorithm, the individual detection windows are

aggregated into a number of spatially disjoint groups. The total number of groups indicates

the estimated number of targets, and average coordinates of all windows in a group indicate

the estimated center of the corresponding target.
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3.1 Sub-array Processing

The direction �nding algorithms traditionally assume plane wave incidences and determine the

DOA associated with each plane wave. For near-�eld problems, however, both DOA and the range

of the source (in our case scatterer) should be acquired. Here, we describe a sub-array processing

(SAP) scheme which only requires one-dimensional search in DOA space of each sub-array. The

idea behind the sub-array processing is that if the aperture of the sub-array is small enough, the

scattered �eld impinging upon it can be assumed locally planar. Thus, the plane wave MUSIC

can be used to �nd DOAs at each sub-array, and by triangulation, it is possible to localize the

scatterers.

When there are M > 1 objects in the vicinity of the array, we have two options in terms of how

MUSIC is employed:

1. Each sub-array �nds M DOAs for all locally planar waves scattered from M objects, or

2. Each sub-array �nds one DOA for the locally planar wave dominant in the total scattered

�eld (Fig. 3 shows M = 2 case).

GivenM objects and S sub-arrays, for each operating frequency the �rst and second options result

in 0:5SM(SM�1) and 0:5S(S�1) crossings, respectively. The �rst option creates many unwanted

crossings when DOAs belonging to di�erent objects intersect. In addition, we have to know the

number of objects under the array to use this option. On the other hand, the second option does

not require the knowledge of number of objects, and the scattered �elds from targets closer to the

sub-arrays, particularly in a lossy medium such as soil, dominate the total scattered �eld at the

sub-arrays. Therefore, the latter option seems more practical especially when one wants to avoid

estimating the number of scatterers �rst, and is used in the remainder of this paper.
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Once one DOA at each sub-array is determined, all DOAs are triangulated to estimate the target

locations. Fig. 3(a) shows the triangulation of DOAs, and (b) shows the crossings. In contrast to

the single object case, for multiple objects, the crossing pattern may get quite complicated since

DOAs belonging to di�erent objects also intersect each other to create unwanted crossings. Thus, a

second level of processing is required to extract the clusters indicating the estimated object centers.

3.2 Crossing Analysis

In this section we present an approach that models the DOA crossings with Poisson point

processes. Inspecting Fig. 3(b), we see two distinct regions where the density of the crossings are

quite di�erent: in the �rst region (background region) the crossings are sparse, and in the second

region (target region) the crossings are dense. By exploiting this di�erence, it is possible to isolate

target locations. Hence, we introduce a Poisson model for DOA crossings which has a large rate

parameter (intensity) in target regions and a small rate parameter in the background region.

Formally, for a given crossing pattern, we count the number of crossing Yj , j = 1; 2; � � � ; Ny, in

a window of size wx�wy , where Ny is the total number of non-overlapping windows, wx and wy are

the width of the windows in x and y directions, respectively. The windows must be non-overlapping

to guarantee the independence of random variables Yj .

In order to ensure that Yj is Poisson distributed, we tested for �tness to Poisson distribution

by using the graphical technique presented in [15]. The technique proposes that for each count k

observed in Yj , we plot k versus (lnk! + lnFk) where Fk =
PNy

j=1[Yj = k] is the number of data

values Yj equal to k. If the �t to the Poisson model is satisfactory, then the plot should form a

straight line with slope approximately ln�, where � is the rate parameter of the distribution. When

we apply this test to a typical crossing pattern, instead of a straight line, we observed the curve in

Fig. 5. By examining this curve, we notice that it can be decomposed into two parts, each roughly
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corresponding to a straight line. The �rst part is when the crossing count k is small (between 0

and 2), and the second part is when k is large (greater than 3.) It is clear that these two regions

correspond to the background process which is expected to have a small count of crossings, and the

target process which is expected to have a large count of crossings. Furthermore, using these two

approximately linear regions, we can decouple background and target processes by identifying kb

and Fkb for the background, and kt and Fkt for the target regions where kb = 0; 1; 2, kt = 3; 4; � � �,

Fkb =
PNy

j=1[Yj = kb] and Fkt =
PNy

j=1[Yj = kt]. Then, the rate parameters for the background and

the target regions are given by their maximum likelihood estimators [15]:

�̂b =
1

Nb

2X

kb=0

kbFkb; (6)

and

�̂t =
1

Nt

1X

kt=3

ktFkt; (7)

where Nb =
P

kb
Fkb and Nt =

P
kt
Fkt. Having estimated �̂b and �̂t, the probability mass functions

in the background and target regions can be expressed as:

fX(kjBackground) = PfX = kjBackgroundg =
1

k!
e��̂b�̂kb (8)

and

fX(kjTarget) = PfX = kjTargetg =
1

k!
e��̂b�̂kb : (9)

To extract crossing clusters, we sweep the region of interest with a test window of size wx�wy.

It is important that the area of the test window is equal to the area of the non-overlapping windows

used in estimating the rate parameters. At each location of the test window, we count the number

of crossings Tj, j = 1; 2; � � � ; Ntest, where Ntest is the total number of overlapping sweep windows

in the region of interest. The number of overlapping test windows Ntest de�nes the resolution of

detection, and it is greater than Ny . Since we are going to test each Tj against the hypothesis one

by one, the use of overlapping windows is allowed. Hypothesis test permits us determine whether
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the test window is over a background region or over a target region. The hypothesis test is then

formally written as:

� H0: Tj is Poisson distributed with a small rate parameter �̂b,

� H1: Tj is Poisson distributed with a large rate parameter �̂t.

Based on this hypothesis test, if H0 is true, we decide that the window belongs to a background

process with a small intensity. However, if H1 is true, we declare that the window belongs to a

target process with a large intensity and call it a detection.

The likelihood ratio for the hypothesis test is formed in terms of the probability mass functions

of (8) and (9) as:

�(Tj) =
fX(TjjH1)

fX(TjjH0)

The decision is, then, made based on the test:

lnf�(Tj)g = Tj
H1

> K;

where the decision threshold, K, is found from a speci�ed false alarm rate Pfa using (10). This

means that all windows which has K or more crossings in them will be declared as target locations.

Probability of false alarm Pfa can be written in terms of the decision threshold K and probability

mass function of background process in (8) as :

Pfa =
1X

k=K

fX(kjH0): (10)

Given the decision threshold K, the probability of detection for the Poisson model developed in

this section is given by:

Pd =
1X

k=K

fX(kjH1): (11)

It might be argued that since target windows are obtained via thresholding, there would be no

need for a Poisson-based model as described in this section. A plain thresholding scheme on DOA

11



crossings would also locate the targets successfully. However, the Poisson model provides a solid

groundwork for a detailed statistical analysis. With the model, it is possible to de�ne probabilities

of false alarm and detection. Based on these statistical analyses, it is possible to make educated

predictions about the performance of the system under di�erent conditions.

3.3 Target Extraction

Hypothesis testing with the Poisson model results in detection windows as shown in Fig. 6.

By looking at this �gure, a human operator may conclude the target locations and their numbers.

However, we want the detection algorithm to do these decisions and calculations for us automati-

cally. In e�ect, we want the algorithm to yield the number of targets in the region of interest and

their estimated locations, rather than the intertwined pattern of detection windows.

The pattern of detection windows suggests that the detection windows belonging to the same

targets overlap. Therefore, we classify the detection windows so that all overlapping windows

form a di�erent group. The number of targets is, then, equal to the number of groups and the

estimated object centers are obtained by averaging the coordinates of the windows in each group.

The grouping algorithm we use, therefore, proceeds as follows. Start with the �rst window on the

list of detection windows and place it in the �rst group. For each of the other windows, test if they

overlap with any window in the kth group for k = 1; 2; � � � ; Gc, where Gc is the number of currently

available groups. If the window overlaps with only one group, add it to that group. If the window

overlaps with more than one groups, merge those groups, and reduce the number of current groups

Gc accordingly. If the window does not overlap with any windows among Gc groups, then form

(Gc+1)th group with that window. When all detection windows are classi�ed, Gc gives the number

of objects, and averaged coordinates of all windows in each group give the estimates of center of

the objects they represent.
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3.4 Frequency Diversity

Frequency diversity is often used in detection applications for two important reasons: to increase

the resolution (high frequencies) and to allow radar signals to penetrate deeper into the medium

(low frequencies). Therefore, with a wide frequency range, one can ideally get more resolution

in the vicinity of the radar, and more penetration to probe deeper objects. To take advantage of

these bene�ts, we use the sub-array processing in a multi-frequency scheme. For each frequency the

sub-array processing described in Section 3.1 is carried out to obtain the DOAs and the crossing

pattern. Then, these multiple crossing patterns are overlaid to give an aggregate crossing pattern

which is modeled as Poisson counting processes in Section 3.2.

4 Examples

In this section, we present applications of sub-array processing to the detection of multiple

mine-like and multiple drum-like objects. In order to simplify the scattering phenomenon associ-

ated with the detection problem, both mine-like and drum-like objects are modeled with simple,

circular objects. The system parameters for both applications are kept constant to provide a better

comparison of the method between applications. In order to introduce frequency diversity, the

objects are illuminated with plane waves at three di�erent frequencies: 1.2, 1.0 and 0.8 GHz. The

frequency range used is typical of that used in practical subsurface sensing systems. The scattered

�eld is observed along a 33-element, uniform, linear receiver array which spans an aperture of

1.5 m. The sensors are assumed to be ideal, isotropic receivers, and the inter-element spacing of

the receivers are chosen such that it is less than half a wavelength for the soil characteristics [16]

at the frequencies used. The receiver array is divided into 11 three-element sub-arrays for the pro-

cessing. The objects are placed in a lossy, homogeneous background which has the same electrical
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characteristics of 5% moist San Antonio clay loam or 10% moist Puerto Rico clay loam (�b = 6�0,

�b = 5� 10�2 S=m) at around 1.0 GHz [16].

For the simulations, the de�nition of signal to noise ratio (SNR) is not obvious. In practical

problems, SNR is imposed by the nature of the system noise. However, in computer simulations

we want to reference the noise power to a �xed quantity that does not change as the positions of

the objects change. For this purpose SNR is referenced to the scattered �eld strength of a single,

cylindrical, metallic object placed at the same depth as the objects, in the same lossy medium.

The radius of the reference scatterer is the same as the radii of the targets. With this de�nition,

the noise power is always proportional to the power of reference scattered �eld, not the power of

�eld scattered from targets which changes as the positions of objects change.

In all examples the exact scattered �eld due to multiple objects embedded in a homogeneous,

lossy background is calculated using the recursive T-matrix algorithm [17{20] to keep the compu-

tational requirements at reasonably low levels.

4.1 Multiple Mine-like Objects

In these examples, we placed two mine-like objects, each with 7.5 cm. diameter, 15 cm. under

the receiver array. Even though the algorithm is capable of detecting more than two objects, it

seems that for practical purposes no more than two mines will be placed in the array's aperture of

1.5 meters. We have not explored the performance of the processing with respect to depth assuming

that mine-like objects will be placed at uniform depths under the array.

The �rst example demonstrates the utility of the sub-array processing in detecting and localizing

both a metallic and a dielectric object in the same medium. For this purpose, a metallic object

and a dielectric object with dielectric constant of 2.5 are placed at (20;�15) cm and (80;�15) cm,

respectively, in the homogeneous background described before, Fig 6. Signal to noise ratio is �xed
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at 10 decibels. Fig 6 shows the directions of arrivals, and detection windows when probability of

false alarm is 10�8, which corresponds to a crossing threshold of K = 7. The two circles in this

�gure denote the objects, and the intertwined squares, due to overlaps in test windows, depict

the estimated target windows. The detection windows are then used in the grouping algorithm

described in Section 3.3. As expected two distinct groups of overlapping windows indicated that

there are two objects beneath the array. The estimated center for the objects are found to be

(19:52;�14:02) cm and (80:10;�14:82) cm. Consequently, both metallic and dielectric objects are

detected within acceptable estimation error margins.

Next, we consider an example that demonstrates the detectability of objects and the perfor-

mance of SAP as relative positions of the objects change. In this example, both objects are assumed

to be metallic in order to see the inuence of relative distance between same type of objects on

detectability and estimation error. For this purpose, we �xed the location of the �rst object at

(x; y) = (�40;�15) cm. The other one is moved from x = 0 cm to x = 125 cm in the lateral

direction while its depth is kept at the same level as the �xed object, Fig. 7. The signal to noise

ratio is assumed to be 30 decibels.

With this geometry, the moving object is always located under the array, and thus detected for

all combinations of relative positions. Detection of the �xed object, on the other hand, is challenging

since it lies outside the span of the array. Fig 8 shows the average simulated probability of detection

of the �xed object over 100 Monte-Carlo simulations as the other object is moved under the array

when probability of false alarm is set to 10�3. As it is clear from this �gure, the �xed object can

be detected only if the other object is well away from it. The �xed object may also be detected

with less than 10% probability when the moving object is located between x = 0 and x = 20

cm. This is due to the fact that for these relative locations, both objects are close enough so
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that DOAs belonging to the moving object create crossings around the �xed object as well as the

moving object. In fact, because of this e�ect, the region between the two objects is incorrectly

detected as targets, and thus false alarm rate is large when relative distance between two objects is

small, Fig. 9. Simulated Pfa;sim as depicted in Fig. 9 approaches to the false alarm rate set at the

beginning of the simulation (dashed line), as the relative distance between the objects increase.

We have also investigated the e�ect of relative distance on estimated object centers. For this

purpose, we plotted the averaged estimation error in x-direction (�x = xtrue � xestimated) versus

the averaged estimation error in y-direction (�y = ytrue � yestimated) for both �xed and moving

objects in Fig. 10(a-b). The estimated object coordinates are obtained by averaging 100 Monte-

Carlo simulations. The dashed circles indicate the boundaries of the objects. The closer the

symbols (�'s or �'s) are to the center, the smaller is the estimation error. Since the moving object

is always detected, each small circle in Fig. 10(a) corresponds to a di�erent position of the moving

object. As seen from this plot, the estimation error of the moving object is only a small fraction

of the radius. Small circles outside the object boundary (dashed circle) correspond to locations

where the moving object is close to the �xed object. Each small circle and diamond in Fig. 10(b)

corresponds to a relative position when the �xed object is detected. The small circles denote the

error in estimated centers when the moving object's x-coordinate is greater than 95 cm, and small

diamonds correspond to other locations of the moving object for which the �xed object is detected.

The loci of small circles and diamonds clearly imply that as the relative distance between the

objects gets larger, the estimation error in the position of the �xed object gets smaller.

4.2 Multiple Drum-like Objects

In this section, two drum-like objects, each with 50 cm. diameter, are placed at various depths

from the receiver array. Since drums are made up of metals, the objects are assumed to have
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in�nitely large conductivity. The signal to noise ratio is set at 10 decibels. The detection windows

for a typical case is shown in Fig. 11. In this example one object is at (�40;�125) cm and the other

is at (140;�125) cm, while the lossy, homogeneous background is the same as previous example.

The threshold of detection corresponding to a false alarm rate of 10�8 is found to be K = 6.

Fig. 11(b) depicts the detection windows obtained after hypothesis testing. These windows are

then processed by the grouping algorithm of Section 3.3. As expected, there found to be two

overlapping window groups which imply that there are two objects in the region of interest with

centers located at (�40:02;�111:70) cm and (139:93;�108:46) cm.

As the second example of this section, we considered keeping one of the objects at a �xed loca-

tion, and moving the other object around below the array. The �rst object is �xed at (�40;�125) cm,

and the other is moved from x = 40 cm to x = 240 cm in the lateral direction at two di�erent

depths, -125 cm and -137.5 cm, Fig. 12. The SNR is set to 30 dB. Contrary to mine-like object

example, in this case the �xed object is at an advantageous location and detected with a probability

of 1.0 regardless of the position of the moving object in the de�ned region. The moving object is

hard to detect, since it is placed either outside the span of the array most of the time or deeper

than the �xed object. Fig. 13 depicts the average probability of detection of the moving object over

100 Monte-Carlo simulations for two depths when probability of false alarm is set to 10�3. It is

clear that as the moving object is placed far from the array, it is less likely to be detected. Relative

to the depth of the �xed object, if the moving object is placed deeper, it has to be nearer to the

array to be detected. Simulated probability of false alarm (Pfa;sim) for this example is zero for all

positions of the moving object, since both objects are relatively far apart to cause a false detection

window.

We have also investigated the e�ect of relative distance and depth on estimated object centers.
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For this purpose, we plotted the estimation error in x-direction (�x = xtrue � xestimated) versus

the estimation error in y-direction (�y = ytrue � yestimated) for both �xed and moving objects

for two depths in Fig. 14(a-b). The estimated object coordinates are obtained by averaging 100

Monte-Carlo simulations. The dashed circles indicate the boundaries of the objects. Circles shows

the estimation errors when both objects are at the same depth, and diamonds show those when

the moving object is a half radius deeper than the �xed object. Symbols (circle/diamond) inside

the dashed circle indicate the estimation errors less than the radius of the object. In Fig. 14(a-b)

it is observed that as the moving object gets far from the array, the estimation error in position of

moving object increases, and that in position of �xed object becomes smaller. Placing the moving

object at a deeper location increases the estimation error in its position, and slightly improves that

in �xed object's position.

5 Conclusions

In this paper we present an algorithm that can detect and localize an unknown number of objects

in the near �eld of a linear sensor array. The issues related to near-�eld scattering are overcome

by partitioning the full array into sub-arrays so that the non-planar scattered �eld becomes locally

planar at each sub-array. DOAs corresponding to these locally planar waves are then determined

using array processing techniques. Triangulation of such DOAs results in dense and sparse regions

of crossings which are modeled with a pair of spatial Poisson distributions. Estimated object

locations, and the number of objects are �nally obtained by applying a hypothesis test to Poisson

models and then extracting groups of spatially disjoint detection windows.

We demonstrate the performance of the algorithm using simulated data. The usefulness of this

algorithm is exhibited for both mine-like and drum-like objects. For mine-like targets, we show that
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the algorithm can detect and localize multiple targets with di�erent electrical properties. Then,

we demonstrate the detectability of such objects when relative distance between them changes.

We conclude that the detectability improves as the objects are located farther from each other

while staying within a reasonable distance from the array. In addition, it is shown that theoretical

and simulated probabilities of false alarm and detection are in agreement. For drum-like targets,

we demonstrate the usefulness of the algorithm for detection and localization of multiple objects.

Furthermore, the e�ect of relative distance and relative depth on detectability is treated. Results

of this analysis supports the results obtained for mine-like objects.

As the future work, we want to combine the algorithm of this paper with the matched �eld

processing (MFP) adapted for near-�eld object detection in [14]. The MFP is known for its accuracy

and when used in tandem with the SAP, where SAP supplies rough estimates of object positions

to MFP, it would be possible to localize closely located objects. The combined algorithm would

inherit the best merits of both algorithms, viz. speed and e�ciency of SAP and accuracy of MFP.
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ABSTRACT

In recent years there has been considerable interest in the use of ground penetrating radar (GPR) for the
non-invasive detection and localization of buried objects. In a previous work, we have considered the use of
high resolution array processing methods for solving these problems for measurement geometries in which
an array of electromagnetic receivers observes the �elds scattered by the subsurface targets in response to
a plane wave illumination. Our approach uses the MUSIC algorithm in a matched �eld processing (MFP)
scheme to determine both the range and the bearing of the objects.

In this paper we derive the Cramer-Rao bounds (CRB) for this MUSIC-based approach analytically.
Analysis of the theoretical CRB has shown that there exists an optimum inter-element spacing of array
elements for which the CRB is minimum. Furthermore, the optimum inter-element spacing minimizing
CRB is smaller than the conventional half wavelength criterion. The theoretical bounds are then veri�ed
for two estimators using Monte-Carlo simulations. The �rst estimator is the MUSIC-based MFP and the
second one is the maximum likelihood based MFP. The two approaches di�er in the cost functions they
optimize. We observe that Monte-Carlo simulated error variances always lie above the values established
by CRB. Finally, we evaluate the performance of our MUSIC-based algorithm in the presence of model
mismatches. Since the detection algorithm strongly depends on the model used, we have tested the
performance of the algorithm when the object radius used in the model is di�erent from the true radius.
This analysis reveals that the algorithm is still capable of localizing the objects with a bias depending on
the degree of mismatch.
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1. INTRODUCTION

Non-invasive detection and localization of buried objects using ground penetrating radar (GPR) type ge-
ometries have been of interest to many researchers in recent years. Some of the most promising application
areas for this technology include mine detection and hazardous waste remediation.

In subsurface object detection most often a pixel-by-pixel map of the region of interest is produced
and the detection is then made by post-processing the image [1{3]. However, since this inverse problem
is inherently ill-posed, the image-then-detect approach is quite sensitive to noise. While the ill-posedness
can be o�-set through regularization [4], typical regularization methods result in smooth images thereby
making the detection all the more di�cult. On the other hand, making use of the fact that the ultimate
goal of the problem is the localization of objects with known structures, we can reparameterize the problem
within an object-based detection framework [5{7]. Rather than looking for a large number of pixels, we
extract the information about a small number of unknowns from the data: speci�cally the coordinates of
the buried objects. By constraining the degrees of freedom in this manner, ill-posedness is substantially
reduced and the resulting algorithms prove to be robust to noise.

The inherent array structure of GPR measurement geometry in Fig. 1 suggests that the high resolution
array processing techniques [8], in particular, multiple signal classi�cation (MUSIC) algorithm [9], quite
popular in the signal processing community would be well suited for the subsurface detection problem.
However, direction �nding array processing techniques assume that the sources are in�nitely far away so
that the waveform received on the array is planar. For subsurface object detection case, on the other hand,
the objects are located relatively closer to the receiver array, thus the scattered �eld from these objects
across the array is not planar. In addition, for such near �eld objects, range as well as the direction of
arrival has to be determined in order to localize the object. In ocean acoustics, the matched �eld processing
(MFP) [10] has been successfully used for localization of sources modeled as point radiators. MFP is an
array processing technique that uses the spatial complexities of the �elds to localize sources, and thus
allows for estimation of both the range and the bearing of the objects. Recently, MFP has been adapted to
other application areas such as stratospherical electromagnetics [11], acoustics [12], and subsurface object
detection [13]. In [13], we have demonstrated that MUSIC-based MFP can be used to detect and localize
simple shaped metallic and dielectric objects over a wide range of soil characteristics and signal to noise
ratios quite accurately.

In this paper, we extend the results of [13] to include the performance analysis for the matched �eld
processing. Since we use a model based approach, it is imperative to know the performance of the algorithm
against changes in problem parameters. For this purpose, we derive the Cramer-Rao performance bound for
an unbiased estimator of the object position similar to derivations in [14]. Analytical bounds of range and
bearing variables are then validated by running Monte-Carlo experiments for two estimators. The �rst one
is MUSIC-based MFP described in [13], and the second one is the maximum likelihood (ML) based MFP.
We observe that asymptotically MUSIC and ML estimators perform very similarly as reported in [14]. In
addition, plotting the analytical CRB against the array length with �xed number of receivers reveals that
there are optimal array lengths for estimating the range and bearing of an object, which minimizes the
lower bound. Therefore, if one aims to determine the target's range or bearing with minimum variance,
there exists an optimal array length, corresponding to an optimal inter-element spacing. Finally, we show
the sensitivity of model mismatch on object radius by using a di�erent radius in MFP model than the true
radius of the object. This analysis demonstrates that under model mismatches, MFP can still localize the
objects with a bias dependent on the degree of mismatch.

The remainder of the paper is organized as follows. In Section 2, we introduce the problem geometry,
and brief overview of plane wave MUSIC. In Section 3, we review the matched �eld processing for subsurface
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detection problems. The Cramer-Rao lower bound for MFP is derived in Section 4. Numerical examples are
presented in Section 5, and in Section 6, conclusions will be drawn and future directions will be presented.

2. PROBLEM GEOMETRY AND BACKGROUND

The ground penetrating radar (GPR) type measurement scheme depicted in Fig. 1, is considered in this
paper. The objects are buried in a background for which the constant electrical characteristics (relative
permittivity and conductivity) are assumed known. A transverse magnetic (TM) polarized plane wave,
Ei(r), impinges on the objects, inducing surface and volume currents which in turn radiate a scattered
�eld, Es(r)

y. An important assumption in our approach is that the material properties and the shapes
of the objects are known a priori. The scattered electric �eld from these objects is spatially sampled by
a uniformly spaced, linear array with isotropic receiver characteristics. The measured data at the sensor
outputs are:

y = Esx+ n; (1)

where Es = [Es(r1) Es(r2) � � �Es(rN)]
T , ri, i = 1; 2; � � � ; N , is the vector from the origin to the ith receiver

location and n is spatially and temporally white Gaussian noise. If M objects scatter the incident �eld,
then Es becomes an N �M matrix with each column formed by the scattered �eld due to a di�erent
object. For time domain applications, the vector x contains the time variations. Since we do our analysis
in the frequency domain, and suppress ej!t, x = 1 for multiple scatterers, and x = 1 for single object.
For the sake of simplicity, this paper deals with the case where there is only one scatterer in the region of
interest. Thus, the data model can simply be written as:

y = Es + n: (2)

The structure of the receivers in Fig. 1 coupled with the underlying problem of target detection suggests
the use of array processing methods for localizing buried targets. In this paper we consider the MUSIC
(Multiple Signal Classi�cation) [9] algorithm. Traditionally, MUSIC and other direction �nding techniques

yAll analysis is in frequency domain, thus the e
j!t time dependence will be dropped.



are used to determine the directions of arrival (DOA) of plane waves to a receiver array. In the rest of this
section, we will briey review the plane wave MUSIC.

The experiment as represented by the data model in (1) is repeated many times in order to determine
the statistics of y. In particular, if L experiments are performed, then the maximum likelihood estimate
of the spatial autocovariance matrix R = EfyyHg is given by:

R̂ =
1

L

LX
l=1

yly
H
l (3)

where yl is the data measured at the lth experiment, and superscript H denotes conjugate transpose. The
sample covariance matrix R̂ is used in MUSIC algorithm to separate signal and noise subspaces through
the eigenspace decomposition [8]:

R̂ = Ûs�̂sÛ
H
s + Ûn[�̂

2I]ÛH
n (4)

where Ûs is the estimated signal subspace matrix and contains the M signal eigenvectors, and Ûn is the
estimated noise subspace matrix and contains N �M noise eigenvectors of multiple noise eigenvalue �̂2.
The projection operator onto the noise subspace is de�ned as [8]:

�̂n = ÛnÛ
H
n : (5)

The basic idea behind the planewave MUSIC algorithm is that the reciprocal of the \distance" between
the estimated noise subspace and the true noise subspace has sharp peaks around the DOAs. Thus, if one
plots this quantity versus all possible angles, estimates of DOAs can be determined by the maxima of the
angular spectrum. The spatial spectrum of the MUSIC algorithm is given by [8]:

PMUSIC(�) =
a(�)Ha(�)

a(�)H�̂na(�)
(6)

where a(�) = [1 e�j�d cos � e�j2�d cos � � � � e�j(N�1)�d cos � ]T is the direction vector that accounts for a
plane wave impinging on the array, � is the wave number in the medium of propagation, and d is the
distance between two receivers.

It is important to realize that the formulation of the array processing problem presented in this section
implicitly assumes that the radiator is in�nitely distant so that the scattered �eld has planar wavefronts
at the sensor array. Thus, the elements of the direction vector a(�) are complex exponentials indicative of
plane wave signals. However in many applications, including GPR, the receivers are in the near-�eld region
of the radiating sources, resulting in non-planar wavefronts. The target localization problem, therefore,
not only requires the DOA relative to the array but also the range of the target from a point on the array.
The MUSIC-based MFP described in the next section supplements the plane wave MUSIC to address the
near �eld localization.

3. MATCHED FIELD PROCESSING

As mentioned in the introduction, the matched �eld processing [10] uses the spatial complexities of the
�elds to localize sources in underwater acoustics. In a similar manner, plane wave MUSIC outlined in
Section 2 can be modi�ed so that the direction vector is �lled with the type of the wavefront impinging
on the array. As a result, the problem of non-planar wavefronts caused by near �eld scattering is resolved,
and both the range and angle of the scatterer can be estimated. Therefore, MUSIC-based MFP forms the
following spectrum:

PMUSIC(r; �) =
a(r; �)Ha(r; �)

a(r; �)H�̂na(r; �)
(7)



where the direction vector a(r; �) is now �lled with the type of wavefront expected to impinge on the
receiver array. For example, if one is concerned with the localization of independent point sources in the
near �eld of the array, spherical MUSIC [12] can be employed to �nd both the DOAs and the distance of
the object from the array. Spherical MUSIC uses e�j�rmn=rmn to �ll in the direction vector, as opposed
to plane wave MUSIC which uses e�j�rncos�m , where rmn is the distance between the nth array receiver
and the mth source (object), rn is the distance between the origin and the nth receiver, �m is the DOA
of mth source, and � is the wavenumber in the medium of propagation. Since the detection problem is
parameterized by an angle and a distance variable, a two dimensional search in this parameter space is
necessary.

For the inverse scattering problem, however, the direction vector a(r; �) is �lled with the scattered �elds
from possible object locations, and the location (r̂; �̂) maximizing the MUSIC spectrum in (7) is selected
as the estimated object center. Because a two dimensional search requires that the exact scattered �eld
be calculated at each point of the parameter mesh, MFP is in general computationally intensive. In the
event that the object to be detected is modeled as a simple shape, however, computing the exact scattered
�eld can be relatively simple. In this paper, we simplify the shapes of the objects by replacing them with
in�nitely long circular cylinders. With simple shapes, the forward scattering problem can easily be solved
using harmonic expansions of the �elds, see Appendix A for details. In these �eld calculations, the air-earth
interface is ignored in order to simplify the formulation.

To summarize, the MUSIC-based MFP algorithm proceeds as follows:
1. Using the data model in (1), perform L, single-frequency scattering experiments each producing a

snapshot vector, yl, composed of the observed scattered �elds over the receiver array

2. Estimate the autocovariance matrix R̂ using (3)

3. Perform an eigenanalysis on R̂ to �nd the noise-subspace projector �̂n (4) and (5)

4. For each point (rk; �k) on a prede�ned range and angle grid, �ll in the direction vector a(rk; �k) with
the scattered �eld due to an object placed in that location, and calculate the associated value of
PMUSIC(rk; �k) in (7)

5. Choose (r̂; �̂) as the estimate of the target location that grid point with the largest PMUSIC .

Fig. 2(b) shows the MUSIC spectrum when a metallic mine-like object in 7.5 cm diameter is placed 15 cm
below the array as depicted in Fig. 2(a). The 33-element linear, uniform receiver array spans an aperture
of 1.5 meters. All sensors are assumed to be ideal, isotropic receivers. The operating frequency is 1.0
GHz and the plane wave is incident with 90 degrees. The lossy, homogeneous background has the same
electrical characteristics of 5% moist San Antonio clay loam or 10% moist Puerto Rico clay loam (�b = 6�0,
�b = 5 � 10�2 S=m) at around 1.0 GHz [15]. The signal to noise ratio (SNR) is �xed at 0 decibels. As
Fig. 2(b) depicts, the location of the object (r = 15cm, � = 90o) is indicated with a very sharp peak. For
relatively high SNR values, the peak remains prominent, and the estimation error is usually on the order
of grid size. For lower SNR levels, the peak gets atter, and as a result estimation errors increase.

4. CRAMER-RAO BOUND FOR MATCHED FIELD PROCESSING

The Cramer-Rao Bound (CRB) provides very valuable information about the lower limit for the variance
of any unbiased estimator. In order to �nd CRB, however, one should have a closed form expression of the
log-likelihood function. In this section, we will extend the results in [14] to include the previously described
problem of object localization in [13]. Since the additive noise in (1) is white, Gaussian distributed, the
log-likelihood function can be written as [14]:

lnL = constant� 2NL ln� �
1

�2

LX
l=1

[y� Es(r; �)x]
H[y� Es(r; �)x] (8)
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Figure 2. MFP localization example: single metallic object in a lossy, homogeneous background

where �2 is the noise variance, N is the number of receivers and L is the number of data vectors used for
estimating the covariance matrix R̂.

Given the log-likelihood function, the Fisher Information Matrix (FIM) can be written as:

J =

"
�rr �r�
��r ���

#
(9)

where �pq = E[@
2 lnL
@p@q

], p = fr; �g and q = fr; �g. Following the same steps as [14], the entries of FIM, can
be written as:

�pq =
2

�2

LX
l=1

RefxHDH
p Dqxg; (10)

where Dp = @Es(r;�)
@p

and Dq = @Es(r;�)
@q

with p = fr; �g and q = fr; �g. Since x is constant over L
experiments, (10) can be further reduced to:

�pq = 2L� SNR � RefDH
p Dqg (11)

where SNR is de�ned as jxj2

�2
. The CRB matrix for r and �, then, can be expressed in terms of FIM entries

as:

CRB(r; �) =

"
crbrr crbr�
crb�r crb��

#
=

"
�rr �r�
��r ���

#�1
(12)

Finally, inserting (11) into (12), we obtain:

CRB(r; �) =
1

2L� SNR

(
Re

"
DH

r Dr DH
r D�

DH
� Dr DH

� D�

#)�1
: (13)



In the rest of the paper, we will refer crbrr and crb�� as the Cramer-Rao Bounds of radial and azimuthal
coordinate variables, respectively. The proper interpretation of CRB matrix is that if r̂ and �̂ are unbiased
estimates of polar variables r and �, then"

Ef(r̂� r)2g Ef(r̂� r)(�̂ � �)g

Ef(�̂ � �)(r̂ � r)g Ef(�̂ � �)2g

#
� CRB(r; �) (14)

is positive semi-de�nite [16].

5. EXAMPLES

In this section we numerically evaluate the CRB derived in previous section for the geometry depicted in
Fig. 2(a). The object to be localized is a metallic mine-like scatterer modeled as an in�nitely long circular
cylinder, with 7.5 cm diameter in cross-section. The object is placed 15 cm beneath a 33-element receiver
array which spans an aperture of 1.5 meters. Center of the array is used as the origin of polar coordinate
system that de�nes the object's radial and azimuthal coordinates. All sensors are assumed to be ideal,
isotropic receivers, and form a linear, uniform receiver array. The operating frequency is 1.0 GHz and the
plane wave is incident with 90 degrees. The calculation of scattered electromagnetic �eld and its derivatives
is further simpli�ed by ignoring the air-earth interface. The lossy, homogeneous background has the same
electrical characteristics of 5% moist San Antonio clay loam or 10% moist Puerto Rico clay loam (�b = 6�0,

�b = 5� 10�2 S=m) at around 1.0 GHz [15]. The signal to noise ratio (SNR) is de�ned as jxj2

�2
, with x = 1,

see the discussion in Section 2. In all examples, the data model (1) is generated L = 250 times to obtain
the sample covariance matrix R̂ using (3).

We present several examples in this section: the �rst one is the evaluation of theoretical CRB given by
(13), the second one is a comparison of analytical CRB with Monte-Carlo simulations, and the last one is
about the e�ect of model mismatch on detection performance.

5.1. Evaluation of CRB

In order to determine CRB, one needs to calculate the derivatives of the scattered electric �eld Es with
respect to radial coordinate r and azimuthal coordinate �. Finding these derivatives for single object is
quite straightforward but tedious, the reader is referred to Appendix A for details of determining �elds
and their derivatives.

Fig. 3 depicts the dependence of CRB on inter-element spacing for the localization geometry given in
Fig. 2(a). Here, the number of receivers is N = 33, and the length of array aperture is varied from 10 cm
to 2 meters. For each array length, the object is placed under the center of the array. SNR is 0 decibels.
Fig. 3(a) shows the variance of estimated radial coordinate r̂, and Fig. 3(b) shows that for estimated
azimuthal coordinate �̂. Axes corresponding to inter-element spacing are normalized to the wavelength
in the medium of propagation. It is interesting to note that these curves reach minimum for di�erent
inter-element spacings. This observation suggests that if one wants to minimize the variance of r̂, there
exists an estimator which approaches this minimum variance for a certain value of inter-element spacing,
and this value is distinctly di�erent from the one that minimizes the variance of �̂. Fig. 3 also reveals that
in order to achieve the minimum point on CRB curves both for r̂ and �̂, inter-element spacing should be
much smaller than the half-wavelength criterion suggested by the sampling theorem.
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Figure 3. Analytical CRB vs: inter-element spacing
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Figure 4. Comparison of analytical CRB with sample variances of MUSIC-MFP and ML-MFP

5.2. Comparison of CRB with Monte-Carlo Simulations

In this example Monte-Carlo simulated sample variances are compared with the analytical CRB given in
(13). We have run the MFP algorithm de�ned in Section 3 for the geometry given in Fig. 2(a) 1000 times,
each time obtaining an estimate of radial (r̂) and azimuthal (�̂) coordinates of the object. At the end,



sample variances of r̂ and �̂ are calculated and compared with the CRB variances crbrr and crb�� obtained
analytically. Fig. 4 shows the comparison of variance of estimates obtained using MUSIC-MFP (circles)
against the CRB (solid line). As expected, increasing signal to noise ratios results in decreasing variances.
In addition, we compared the performance of MUSIC-MFP, and CRB with the maximum likelihood (ML)
estimator. For this purpose, MFP is carried out by replacing MUSIC spectrum of (7) with ML cost [14]
in the algorithm:

F (r; �) = trf[I � Es(r; �)(Es
H(r; �)Es(r; �))

�1Es
H(r; �)]R̂g (15)

where tr denotes the sum of diagonal entries. By minimizing F (r; �), maximum likelihood estimates
(r̂ML; �̂ML) of r and � can be found. In Fig. 4, diamonds denote the variances of these quantities obtained
with 1000 Monte-Carlo runs of ML-MFP. As these �gures depict, ML-MFP performs better than MUSIC-
MFP for low signal to noise ratios, and with increasing SNR both converge to the same value.
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Figure 5. E�ects of mismatch on estimated object location and estimation variances

5.3. Model Mismatch in Object Radius

As the last example, we consider the model mismatch in the object radius. Understanding the system
performance is quite important in model-based detection algorithms. For this purpose we have de�ned
a mismatch factor (MF), such that the MUSIC-MFP searches for an object of radius MF � �, while the
actual object is of radius �. The system described at the beginning of this section is used in the experiment
with the object geometry given by Fig. 2(a). Signal to noise ratio is �xed at 20 decibels. The sample
covariance matrix in (3) is evaluated using the scattered �eld from the object with radius �. Then, while
estimating r̂ and �̂, the direction vector a(r; �) in (7) is �lled with the scattered �eld from an object whose
radius is mismatched, i.e. �mismatch = MF� �. This experiment is repeated 500 times, and sample mean
and variances of r̂ and �̂ are plotted in Fig. 5. Part (a) of this �gure depicts the sample mean of r̂. It is
interesting to note that, as the mismatch factor increases, MUSIC-MFP localizes the object with increasing
bias. Therefore, for this example model mismatch causes bias in the radial coordinate's estimate. Even
though not plotted here, sample mean of �̂ is insensitive to the mismatch factor. This would be expected



since the changes in radius does not alter the symmetry around the center of the object, thus azimuthal
coordinate's estimate is not a�ected. Fig. 5(b) shows that the variance of �̂ decreases with increasing
radius. This is expected given the plot in Fig. 5(a), since MUSIC-MFP thinks that an object of radius
MF� � is buried at a depth di�erent from the true depth. The variance of r̂, on the other hand, remains
almost constant over all mismatch factors.

6. CONCLUSIONS

In this paper, performance bounds for detection of objects using the matched �eld processing is derived
and analytical results are veri�ed with simulations. The object geometry is simpli�ed with in�nitely long
circular cylinders embedded in a homogeneous background whose electrical characteristics are known.
The uniform, linear array with ideal, isotropic sensors is used as the receiver array while the medium is
illuminated by a plane wave.

In previous work [13], we have demonstrated that it is possible to use the matched �eld processing
(MFP) to detect and localize mine and drum sized objects for various background and SNR scenarios.
Here, we have derived analytical expressions of the performance bounds on estimates of object coordinates.
The performance bounds basically indicate the best case scenario with the best estimator. Therefore, with
these bounds available, it is possible to know if an object can be located with speci�ed accuracy. Analysis
of theoretical bounds have revealed that there exists an optimum inter-element spacing for which the
bound is minimum. Thus, if an estimator is known to be bounded by CRB tightly, choosing the optimum
inter-element spacing would minimize the estimation error. The analytical performance bounds are, then,
veri�ed with two simulation schemes: MUSIC based MFP, and ML based MFP. Simulations have veri�ed
that sample variances always lie above the values established by CRB. It has been observed that the
di�erence between variances of estimates of object coordinates and their respective lower bounds gets
smaller as the signal to noise ratio increases. Finally, it is shown that model mismatch in the object radius
causes bias in estimating the object's radial coordinate. Furthermore, it is observed that if the object
radius in the model is larger(smaller) than the true radius, variance of sample azimuthal coordinate �̂ is
smaller(larger).

As for the future work, we would like to extend present results in three directions. In the theoretical
performance bound area, we will derive analytical expressions for the variances of estimation errors in
MUSIC-MFP and extend the results of CRB analysis for multiple objects. In terms of simulations, we will
run Monte-Carlo experiments to observe the change in error variances as the object location under the
receiver array changes. For the model mismatch issue, we will extend the analysis to include mismatches
in electrical properties of background and object. In order to account for mismatches due to object shapes,
we would also like to analyze shape mismatch where the model and true object shapes are di�erent.

APPENDIX A.

The scattered electromagnetic �eld from a cylindrical object with circular cross-section due to a plane
wave incidence can be calculated using the harmonic expansions of the �elds [17]. Given the center of the
object (x0; y0) and incidence angle of the planewave �inc; the scattered �eld at the ith receiver location
ri = (ri; �i) in the coordinate system of object (Fig. 6) is given by:

Es(ri) =
1X

m=�1

j�mcmH
(2)
m (�ri)e

jm(�i+���inc) (16)

where

cm = �
Jm(��)

H
(2)
m (��)



for metallic scatterers. The radius of the object is � and the wavenumber in the medium of propagation
is �. The coe�cients cm decay quite rapidly as the number of harmonics increases. Thus, in�nite sum
in (16) can be truncated at M . The value of M is proportional to the radius of the object, M / ��.
The variableM representing the number of harmonics here should not be confused with the same variable
representing the dimension of the signal subspace in the body of the paper. It should be noted that the
origin of coordinate system while calculating (16) is the center of the object, and coordinates of all sensors
should be translatedz to the object's coordinate system in polar form. Therefore, for every object location,
this translation has to be carried out repeatedly.
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Figure 6. Geometry for calculation of the scattered �eld and its derivatives

The derivatives with respect to object's polar coordinates (r; �) have to be taken carefully, since we have
to translate coordinates of receivers into object's local coordinate system, and then calculate the scattered
�eld in that coordinate system. Therefore, we use the de�nition of the derivative operation to �nd the
derivatives of the �elds:

@Es(r; �)

@r
= lim

�r!0

Es(r +�r; �)�Es(r; �)

�r
(17)

and
@Es(r; �)

@�
= lim

��!0

Es(r; �+��)� Es(r; �)

��
: (18)

Here Es(r; �) = [Es(r1); Es(r2); � � � ; Es(rN)]
T , where N is the number of sensors in the array. To �nd

Es(r+�r; �) and Es(r; �+��), the center of the object should be expressed in terms of its original center
(x0; y0) when it is moved by an in�nitesimal amount in r and � direction. When the object is moved in
r-direction by �r, the new center (xr; yr) becomes:

xr = x0 +�r cos(�) yr = y0 ��r sin(�):

zTranslation of coordinates between two points is straightforward and is not discussed here



The angle � can be expressed in terms of �. When the object is moved in �-direction by ��, the new center
(x�; y�) becomes:

x� = x0 � r�� cos( ) y� = y0 � r�� sin( )

where  can be expressed in terms of � and ��. Once the new object centers are found, all receiver
coordinates can be translated to the new object centers where the scattered �eld is calculated. Having
obtained Es(r + �r; �) and Es(r; � + ��), the derivatives of the scattered �elds with respect to r and �
can be determined using (17) and (18), respectively.
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ABSTRACT

In recent years there has been considerable interest in the use of ground penetrating radar (GPR) for the
non-invasive detection and localization of buried objects. In a previous work, we have considered the use of
high resolution array processing methods for solving these problems for measurement geometries in which
an array of electromagnetic receivers observes the �elds scattered by the subsurface targets in response to
a plane wave illumination. Our approach uses the MUSIC algorithm in a matched �eld processing (MFP)
scheme to determine both the range and the bearing of the objects.

In this paper we derive the Cramer-Rao bounds (CRB) for this MUSIC-based approach analytically.
Analysis of the theoretical CRB has shown that there exists an optimum inter-element spacing of array
elements for which the CRB is minimum. Furthermore, the optimum inter-element spacing minimizing
CRB is smaller than the conventional half wavelength criterion. The theoretical bounds are then veri�ed
for two estimators using Monte-Carlo simulations. The �rst estimator is the MUSIC-based MFP and the
second one is the maximum likelihood based MFP. The two approaches di�er in the cost functions they
optimize. We observe that Monte-Carlo simulated error variances always lie above the values established
by CRB. Finally, we evaluate the performance of our MUSIC-based algorithm in the presence of model
mismatches. Since the detection algorithm strongly depends on the model used, we have tested the
performance of the algorithm when the object radius used in the model is di�erent from the true radius.
This analysis reveals that the algorithm is still capable of localizing the objects with a bias depending on
the degree of mismatch.

Keywords: Matched Field Processing, MFP, Subsurface Detection, MUSIC, Cramer-Rao Bound, Perfor-
mance Bound
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1. INTRODUCTION

Non-invasive detection and localization of buried objects using ground penetrating radar (GPR) type ge-
ometries have been of interest to many researchers in recent years. Some of the most promising application
areas for this technology include mine detection and hazardous waste remediation.

In subsurface object detection most often a pixel-by-pixel map of the region of interest is produced
and the detection is then made by post-processing the image [1{3]. However, since this inverse problem
is inherently ill-posed, the image-then-detect approach is quite sensitive to noise. While the ill-posedness
can be o�-set through regularization [4], typical regularization methods result in smooth images thereby
making the detection all the more di�cult. On the other hand, making use of the fact that the ultimate
goal of the problem is the localization of objects with known structures, we can reparameterize the problem
within an object-based detection framework [5{7]. Rather than looking for a large number of pixels, we
extract the information about a small number of unknowns from the data: speci�cally the coordinates of
the buried objects. By constraining the degrees of freedom in this manner, ill-posedness is substantially
reduced and the resulting algorithms prove to be robust to noise.

The inherent array structure of GPR measurement geometry in Fig. 1 suggests that the high resolution
array processing techniques [8], in particular, multiple signal classi�cation (MUSIC) algorithm [9], quite
popular in the signal processing community would be well suited for the subsurface detection problem.
However, direction �nding array processing techniques assume that the sources are in�nitely far away so
that the waveform received on the array is planar. For subsurface object detection case, on the other hand,
the objects are located relatively closer to the receiver array, thus the scattered �eld from these objects
across the array is not planar. In addition, for such near �eld objects, range as well as the direction of
arrival has to be determined in order to localize the object. In ocean acoustics, the matched �eld processing
(MFP) [10] has been successfully used for localization of sources modeled as point radiators. MFP is an
array processing technique that uses the spatial complexities of the �elds to localize sources, and thus
allows for estimation of both the range and the bearing of the objects. Recently, MFP has been adapted to
other application areas such as stratospherical electromagnetics [11], acoustics [12], and subsurface object
detection [13]. In [13], we have demonstrated that MUSIC-based MFP can be used to detect and localize
simple shaped metallic and dielectric objects over a wide range of soil characteristics and signal to noise
ratios quite accurately.

In this paper, we extend the results of [13] to include the performance analysis for the matched �eld
processing. Since we use a model based approach, it is imperative to know the performance of the algorithm
against changes in problem parameters. For this purpose, we derive the Cramer-Rao performance bound for
an unbiased estimator of the object position similar to derivations in [14]. Analytical bounds of range and
bearing variables are then validated by running Monte-Carlo experiments for two estimators. The �rst one
is MUSIC-based MFP described in [13], and the second one is the maximum likelihood (ML) based MFP.
We observe that asymptotically MUSIC and ML estimators perform very similarly as reported in [14]. In
addition, plotting the analytical CRB against the array length with �xed number of receivers reveals that
there are optimal array lengths for estimating the range and bearing of an object, which minimizes the
lower bound. Therefore, if one aims to determine the target's range or bearing with minimum variance,
there exists an optimal array length, corresponding to an optimal inter-element spacing. Finally, we show
the sensitivity of model mismatch on object radius by using a di�erent radius in MFP model than the true
radius of the object. This analysis demonstrates that under model mismatches, MFP can still localize the
objects with a bias dependent on the degree of mismatch.

The remainder of the paper is organized as follows. In Section 2, we introduce the problem geometry,
and brief overview of plane wave MUSIC. In Section 3, we review the matched �eld processing for subsurface
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detection problems. The Cramer-Rao lower bound for MFP is derived in Section 4. Numerical examples are
presented in Section 5, and in Section 6, conclusions will be drawn and future directions will be presented.

2. PROBLEM GEOMETRY AND BACKGROUND

The ground penetrating radar (GPR) type measurement scheme depicted in Fig. 1, is considered in this
paper. The objects are buried in a background for which the constant electrical characteristics (relative
permittivity and conductivity) are assumed known. A transverse magnetic (TM) polarized plane wave,
Ei(r), impinges on the objects, inducing surface and volume currents which in turn radiate a scattered
�eld, Es(r)

y. An important assumption in our approach is that the material properties and the shapes
of the objects are known a priori. The scattered electric �eld from these objects is spatially sampled by
a uniformly spaced, linear array with isotropic receiver characteristics. The measured data at the sensor
outputs are:

y = Esx+ n; (1)

where Es = [Es(r1) Es(r2) � � �Es(rN)]
T , ri, i = 1; 2; � � � ; N , is the vector from the origin to the ith receiver

location and n is spatially and temporally white Gaussian noise. If M objects scatter the incident �eld,
then Es becomes an N �M matrix with each column formed by the scattered �eld due to a di�erent
object. For time domain applications, the vector x contains the time variations. Since we do our analysis
in the frequency domain, and suppress ej!t, x = 1 for multiple scatterers, and x = 1 for single object.
For the sake of simplicity, this paper deals with the case where there is only one scatterer in the region of
interest. Thus, the data model can simply be written as:

y = Es + n: (2)

The structure of the receivers in Fig. 1 coupled with the underlying problem of target detection suggests
the use of array processing methods for localizing buried targets. In this paper we consider the MUSIC
(Multiple Signal Classi�cation) [9] algorithm. Traditionally, MUSIC and other direction �nding techniques

yAll analysis is in frequency domain, thus the e
j!t time dependence will be dropped.



are used to determine the directions of arrival (DOA) of plane waves to a receiver array. In the rest of this
section, we will briey review the plane wave MUSIC.

The experiment as represented by the data model in (1) is repeated many times in order to determine
the statistics of y. In particular, if L experiments are performed, then the maximum likelihood estimate
of the spatial autocovariance matrix R = EfyyHg is given by:

R̂ =
1

L

LX
l=1

yly
H
l (3)

where yl is the data measured at the lth experiment, and superscript H denotes conjugate transpose. The
sample covariance matrix R̂ is used in MUSIC algorithm to separate signal and noise subspaces through
the eigenspace decomposition [8]:

R̂ = Ûs�̂sÛ
H
s + Ûn[�̂

2I]ÛH
n (4)

where Ûs is the estimated signal subspace matrix and contains the M signal eigenvectors, and Ûn is the
estimated noise subspace matrix and contains N �M noise eigenvectors of multiple noise eigenvalue �̂2.
The projection operator onto the noise subspace is de�ned as [8]:

�̂n = ÛnÛ
H
n : (5)

The basic idea behind the planewave MUSIC algorithm is that the reciprocal of the \distance" between
the estimated noise subspace and the true noise subspace has sharp peaks around the DOAs. Thus, if one
plots this quantity versus all possible angles, estimates of DOAs can be determined by the maxima of the
angular spectrum. The spatial spectrum of the MUSIC algorithm is given by [8]:

PMUSIC(�) =
a(�)Ha(�)

a(�)H�̂na(�)
(6)

where a(�) = [1 e�j�d cos � e�j2�d cos � � � � e�j(N�1)�d cos � ]T is the direction vector that accounts for a
plane wave impinging on the array, � is the wave number in the medium of propagation, and d is the
distance between two receivers.

It is important to realize that the formulation of the array processing problem presented in this section
implicitly assumes that the radiator is in�nitely distant so that the scattered �eld has planar wavefronts
at the sensor array. Thus, the elements of the direction vector a(�) are complex exponentials indicative of
plane wave signals. However in many applications, including GPR, the receivers are in the near-�eld region
of the radiating sources, resulting in non-planar wavefronts. The target localization problem, therefore,
not only requires the DOA relative to the array but also the range of the target from a point on the array.
The MUSIC-based MFP described in the next section supplements the plane wave MUSIC to address the
near �eld localization.

3. MATCHED FIELD PROCESSING

As mentioned in the introduction, the matched �eld processing [10] uses the spatial complexities of the
�elds to localize sources in underwater acoustics. In a similar manner, plane wave MUSIC outlined in
Section 2 can be modi�ed so that the direction vector is �lled with the type of the wavefront impinging
on the array. As a result, the problem of non-planar wavefronts caused by near �eld scattering is resolved,
and both the range and angle of the scatterer can be estimated. Therefore, MUSIC-based MFP forms the
following spectrum:

PMUSIC(r; �) =
a(r; �)Ha(r; �)

a(r; �)H�̂na(r; �)
(7)



where the direction vector a(r; �) is now �lled with the type of wavefront expected to impinge on the
receiver array. For example, if one is concerned with the localization of independent point sources in the
near �eld of the array, spherical MUSIC [12] can be employed to �nd both the DOAs and the distance of
the object from the array. Spherical MUSIC uses e�j�rmn=rmn to �ll in the direction vector, as opposed
to plane wave MUSIC which uses e�j�rncos�m , where rmn is the distance between the nth array receiver
and the mth source (object), rn is the distance between the origin and the nth receiver, �m is the DOA
of mth source, and � is the wavenumber in the medium of propagation. Since the detection problem is
parameterized by an angle and a distance variable, a two dimensional search in this parameter space is
necessary.

For the inverse scattering problem, however, the direction vector a(r; �) is �lled with the scattered �elds
from possible object locations, and the location (r̂; �̂) maximizing the MUSIC spectrum in (7) is selected
as the estimated object center. Because a two dimensional search requires that the exact scattered �eld
be calculated at each point of the parameter mesh, MFP is in general computationally intensive. In the
event that the object to be detected is modeled as a simple shape, however, computing the exact scattered
�eld can be relatively simple. In this paper, we simplify the shapes of the objects by replacing them with
in�nitely long circular cylinders. With simple shapes, the forward scattering problem can easily be solved
using harmonic expansions of the �elds, see Appendix A for details. In these �eld calculations, the air-earth
interface is ignored in order to simplify the formulation.

To summarize, the MUSIC-based MFP algorithm proceeds as follows:
1. Using the data model in (1), perform L, single-frequency scattering experiments each producing a

snapshot vector, yl, composed of the observed scattered �elds over the receiver array

2. Estimate the autocovariance matrix R̂ using (3)

3. Perform an eigenanalysis on R̂ to �nd the noise-subspace projector �̂n (4) and (5)

4. For each point (rk; �k) on a prede�ned range and angle grid, �ll in the direction vector a(rk; �k) with
the scattered �eld due to an object placed in that location, and calculate the associated value of
PMUSIC(rk; �k) in (7)

5. Choose (r̂; �̂) as the estimate of the target location that grid point with the largest PMUSIC .

Fig. 2(b) shows the MUSIC spectrum when a metallic mine-like object in 7.5 cm diameter is placed 15 cm
below the array as depicted in Fig. 2(a). The 33-element linear, uniform receiver array spans an aperture
of 1.5 meters. All sensors are assumed to be ideal, isotropic receivers. The operating frequency is 1.0
GHz and the plane wave is incident with 90 degrees. The lossy, homogeneous background has the same
electrical characteristics of 5% moist San Antonio clay loam or 10% moist Puerto Rico clay loam (�b = 6�0,
�b = 5 � 10�2 S=m) at around 1.0 GHz [15]. The signal to noise ratio (SNR) is �xed at 0 decibels. As
Fig. 2(b) depicts, the location of the object (r = 15cm, � = 90o) is indicated with a very sharp peak. For
relatively high SNR values, the peak remains prominent, and the estimation error is usually on the order
of grid size. For lower SNR levels, the peak gets atter, and as a result estimation errors increase.

4. CRAMER-RAO BOUND FOR MATCHED FIELD PROCESSING

The Cramer-Rao Bound (CRB) provides very valuable information about the lower limit for the variance
of any unbiased estimator. In order to �nd CRB, however, one should have a closed form expression of the
log-likelihood function. In this section, we will extend the results in [14] to include the previously described
problem of object localization in [13]. Since the additive noise in (1) is white, Gaussian distributed, the
log-likelihood function can be written as [14]:

lnL = constant� 2NL ln� �
1

�2

LX
l=1

[y� Es(r; �)x]
H[y� Es(r; �)x] (8)
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Figure 2. MFP localization example: single metallic object in a lossy, homogeneous background

where �2 is the noise variance, N is the number of receivers and L is the number of data vectors used for
estimating the covariance matrix R̂.

Given the log-likelihood function, the Fisher Information Matrix (FIM) can be written as:

J =

"
�rr �r�
��r ���

#
(9)

where �pq = E[@
2 lnL
@p@q

], p = fr; �g and q = fr; �g. Following the same steps as [14], the entries of FIM, can
be written as:

�pq =
2

�2

LX
l=1

RefxHDH
p Dqxg; (10)

where Dp = @Es(r;�)
@p

and Dq = @Es(r;�)
@q

with p = fr; �g and q = fr; �g. Since x is constant over L
experiments, (10) can be further reduced to:

�pq = 2L� SNR � RefDH
p Dqg (11)

where SNR is de�ned as jxj2

�2
. The CRB matrix for r and �, then, can be expressed in terms of FIM entries

as:

CRB(r; �) =

"
crbrr crbr�
crb�r crb��

#
=

"
�rr �r�
��r ���

#�1
(12)

Finally, inserting (11) into (12), we obtain:

CRB(r; �) =
1

2L� SNR

(
Re

"
DH

r Dr DH
r D�

DH
� Dr DH

� D�

#)�1
: (13)



In the rest of the paper, we will refer crbrr and crb�� as the Cramer-Rao Bounds of radial and azimuthal
coordinate variables, respectively. The proper interpretation of CRB matrix is that if r̂ and �̂ are unbiased
estimates of polar variables r and �, then"

Ef(r̂� r)2g Ef(r̂� r)(�̂ � �)g

Ef(�̂ � �)(r̂ � r)g Ef(�̂ � �)2g

#
� CRB(r; �) (14)

is positive semi-de�nite [16].

5. EXAMPLES

In this section we numerically evaluate the CRB derived in previous section for the geometry depicted in
Fig. 2(a). The object to be localized is a metallic mine-like scatterer modeled as an in�nitely long circular
cylinder, with 7.5 cm diameter in cross-section. The object is placed 15 cm beneath a 33-element receiver
array which spans an aperture of 1.5 meters. Center of the array is used as the origin of polar coordinate
system that de�nes the object's radial and azimuthal coordinates. All sensors are assumed to be ideal,
isotropic receivers, and form a linear, uniform receiver array. The operating frequency is 1.0 GHz and the
plane wave is incident with 90 degrees. The calculation of scattered electromagnetic �eld and its derivatives
is further simpli�ed by ignoring the air-earth interface. The lossy, homogeneous background has the same
electrical characteristics of 5% moist San Antonio clay loam or 10% moist Puerto Rico clay loam (�b = 6�0,

�b = 5� 10�2 S=m) at around 1.0 GHz [15]. The signal to noise ratio (SNR) is de�ned as jxj2

�2
, with x = 1,

see the discussion in Section 2. In all examples, the data model (1) is generated L = 250 times to obtain
the sample covariance matrix R̂ using (3).

We present several examples in this section: the �rst one is the evaluation of theoretical CRB given by
(13), the second one is a comparison of analytical CRB with Monte-Carlo simulations, and the last one is
about the e�ect of model mismatch on detection performance.

5.1. Evaluation of CRB

In order to determine CRB, one needs to calculate the derivatives of the scattered electric �eld Es with
respect to radial coordinate r and azimuthal coordinate �. Finding these derivatives for single object is
quite straightforward but tedious, the reader is referred to Appendix A for details of determining �elds
and their derivatives.

Fig. 3 depicts the dependence of CRB on inter-element spacing for the localization geometry given in
Fig. 2(a). Here, the number of receivers is N = 33, and the length of array aperture is varied from 10 cm
to 2 meters. For each array length, the object is placed under the center of the array. SNR is 0 decibels.
Fig. 3(a) shows the variance of estimated radial coordinate r̂, and Fig. 3(b) shows that for estimated
azimuthal coordinate �̂. Axes corresponding to inter-element spacing are normalized to the wavelength
in the medium of propagation. It is interesting to note that these curves reach minimum for di�erent
inter-element spacings. This observation suggests that if one wants to minimize the variance of r̂, there
exists an estimator which approaches this minimum variance for a certain value of inter-element spacing,
and this value is distinctly di�erent from the one that minimizes the variance of �̂. Fig. 3 also reveals that
in order to achieve the minimum point on CRB curves both for r̂ and �̂, inter-element spacing should be
much smaller than the half-wavelength criterion suggested by the sampling theorem.
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Figure 3. Analytical CRB vs: inter-element spacing
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Figure 4. Comparison of analytical CRB with sample variances of MUSIC-MFP and ML-MFP

5.2. Comparison of CRB with Monte-Carlo Simulations

In this example Monte-Carlo simulated sample variances are compared with the analytical CRB given in
(13). We have run the MFP algorithm de�ned in Section 3 for the geometry given in Fig. 2(a) 1000 times,
each time obtaining an estimate of radial (r̂) and azimuthal (�̂) coordinates of the object. At the end,



sample variances of r̂ and �̂ are calculated and compared with the CRB variances crbrr and crb�� obtained
analytically. Fig. 4 shows the comparison of variance of estimates obtained using MUSIC-MFP (circles)
against the CRB (solid line). As expected, increasing signal to noise ratios results in decreasing variances.
In addition, we compared the performance of MUSIC-MFP, and CRB with the maximum likelihood (ML)
estimator. For this purpose, MFP is carried out by replacing MUSIC spectrum of (7) with ML cost [14]
in the algorithm:

F (r; �) = trf[I � Es(r; �)(Es
H(r; �)Es(r; �))

�1Es
H(r; �)]R̂g (15)

where tr denotes the sum of diagonal entries. By minimizing F (r; �), maximum likelihood estimates
(r̂ML; �̂ML) of r and � can be found. In Fig. 4, diamonds denote the variances of these quantities obtained
with 1000 Monte-Carlo runs of ML-MFP. As these �gures depict, ML-MFP performs better than MUSIC-
MFP for low signal to noise ratios, and with increasing SNR both converge to the same value.
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Figure 5. E�ects of mismatch on estimated object location and estimation variances

5.3. Model Mismatch in Object Radius

As the last example, we consider the model mismatch in the object radius. Understanding the system
performance is quite important in model-based detection algorithms. For this purpose we have de�ned
a mismatch factor (MF), such that the MUSIC-MFP searches for an object of radius MF � �, while the
actual object is of radius �. The system described at the beginning of this section is used in the experiment
with the object geometry given by Fig. 2(a). Signal to noise ratio is �xed at 20 decibels. The sample
covariance matrix in (3) is evaluated using the scattered �eld from the object with radius �. Then, while
estimating r̂ and �̂, the direction vector a(r; �) in (7) is �lled with the scattered �eld from an object whose
radius is mismatched, i.e. �mismatch = MF� �. This experiment is repeated 500 times, and sample mean
and variances of r̂ and �̂ are plotted in Fig. 5. Part (a) of this �gure depicts the sample mean of r̂. It is
interesting to note that, as the mismatch factor increases, MUSIC-MFP localizes the object with increasing
bias. Therefore, for this example model mismatch causes bias in the radial coordinate's estimate. Even
though not plotted here, sample mean of �̂ is insensitive to the mismatch factor. This would be expected



since the changes in radius does not alter the symmetry around the center of the object, thus azimuthal
coordinate's estimate is not a�ected. Fig. 5(b) shows that the variance of �̂ decreases with increasing
radius. This is expected given the plot in Fig. 5(a), since MUSIC-MFP thinks that an object of radius
MF� � is buried at a depth di�erent from the true depth. The variance of r̂, on the other hand, remains
almost constant over all mismatch factors.

6. CONCLUSIONS

In this paper, performance bounds for detection of objects using the matched �eld processing is derived
and analytical results are veri�ed with simulations. The object geometry is simpli�ed with in�nitely long
circular cylinders embedded in a homogeneous background whose electrical characteristics are known.
The uniform, linear array with ideal, isotropic sensors is used as the receiver array while the medium is
illuminated by a plane wave.

In previous work [13], we have demonstrated that it is possible to use the matched �eld processing
(MFP) to detect and localize mine and drum sized objects for various background and SNR scenarios.
Here, we have derived analytical expressions of the performance bounds on estimates of object coordinates.
The performance bounds basically indicate the best case scenario with the best estimator. Therefore, with
these bounds available, it is possible to know if an object can be located with speci�ed accuracy. Analysis
of theoretical bounds have revealed that there exists an optimum inter-element spacing for which the
bound is minimum. Thus, if an estimator is known to be bounded by CRB tightly, choosing the optimum
inter-element spacing would minimize the estimation error. The analytical performance bounds are, then,
veri�ed with two simulation schemes: MUSIC based MFP, and ML based MFP. Simulations have veri�ed
that sample variances always lie above the values established by CRB. It has been observed that the
di�erence between variances of estimates of object coordinates and their respective lower bounds gets
smaller as the signal to noise ratio increases. Finally, it is shown that model mismatch in the object radius
causes bias in estimating the object's radial coordinate. Furthermore, it is observed that if the object
radius in the model is larger(smaller) than the true radius, variance of sample azimuthal coordinate �̂ is
smaller(larger).

As for the future work, we would like to extend present results in three directions. In the theoretical
performance bound area, we will derive analytical expressions for the variances of estimation errors in
MUSIC-MFP and extend the results of CRB analysis for multiple objects. In terms of simulations, we will
run Monte-Carlo experiments to observe the change in error variances as the object location under the
receiver array changes. For the model mismatch issue, we will extend the analysis to include mismatches
in electrical properties of background and object. In order to account for mismatches due to object shapes,
we would also like to analyze shape mismatch where the model and true object shapes are di�erent.

APPENDIX A.

The scattered electromagnetic �eld from a cylindrical object with circular cross-section due to a plane
wave incidence can be calculated using the harmonic expansions of the �elds [17]. Given the center of the
object (x0; y0) and incidence angle of the planewave �inc; the scattered �eld at the ith receiver location
ri = (ri; �i) in the coordinate system of object (Fig. 6) is given by:

Es(ri) =
1X

m=�1

j�mcmH
(2)
m (�ri)e

jm(�i+���inc) (16)

where

cm = �
Jm(��)

H
(2)
m (��)



for metallic scatterers. The radius of the object is � and the wavenumber in the medium of propagation
is �. The coe�cients cm decay quite rapidly as the number of harmonics increases. Thus, in�nite sum
in (16) can be truncated at M . The value of M is proportional to the radius of the object, M / ��.
The variableM representing the number of harmonics here should not be confused with the same variable
representing the dimension of the signal subspace in the body of the paper. It should be noted that the
origin of coordinate system while calculating (16) is the center of the object, and coordinates of all sensors
should be translatedz to the object's coordinate system in polar form. Therefore, for every object location,
this translation has to be carried out repeatedly.
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Figure 6. Geometry for calculation of the scattered �eld and its derivatives

The derivatives with respect to object's polar coordinates (r; �) have to be taken carefully, since we have
to translate coordinates of receivers into object's local coordinate system, and then calculate the scattered
�eld in that coordinate system. Therefore, we use the de�nition of the derivative operation to �nd the
derivatives of the �elds:

@Es(r; �)

@r
= lim

�r!0

Es(r +�r; �)�Es(r; �)

�r
(17)

and
@Es(r; �)

@�
= lim

��!0

Es(r; �+��)� Es(r; �)

��
: (18)

Here Es(r; �) = [Es(r1); Es(r2); � � � ; Es(rN)]
T , where N is the number of sensors in the array. To �nd

Es(r+�r; �) and Es(r; �+��), the center of the object should be expressed in terms of its original center
(x0; y0) when it is moved by an in�nitesimal amount in r and � direction. When the object is moved in
r-direction by �r, the new center (xr; yr) becomes:

xr = x0 +�r cos(�) yr = y0 ��r sin(�):

zTranslation of coordinates between two points is straightforward and is not discussed here



The angle � can be expressed in terms of �. When the object is moved in �-direction by ��, the new center
(x�; y�) becomes:

x� = x0 � r�� cos( ) y� = y0 � r�� sin( )

where  can be expressed in terms of � and ��. Once the new object centers are found, all receiver
coordinates can be translated to the new object centers where the scattered �eld is calculated. Having
obtained Es(r + �r; �) and Es(r; � + ��), the derivatives of the scattered �elds with respect to r and �
can be determined using (17) and (18), respectively.
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Abstract

In this paper we explore the utility of multiscale and statistical techniques for detecting

and characterizing the structure of localized anomalies in a medium based upon observations

of scattered energy obtained at the boundaries of the region of interest. Wavelet transform

techniques are used to provide an e�cient and physically meaningful method for modeling the

non-anomalous structure of the medium under investigation. We employ decision-theoretic

methods both to analyze a variety of di�culties associated with the anomaly detection problem

and as the basis for an algorithm to perform anomaly detection and estimation. These methods

allow for a quantitative evaluation of the manner in which the performance of the algorithms is

impacted by the amplitudes, spatial sizes, and positions of anomalous areas in the overall region

of interest. Given the insight provided by this work, we formulate and analyze an algorithm for

determining the number, location, and magnitudes associated with a set of anomaly structures.

This approach is based upon the use of a Generalized, M-ary Likelihood Ratio Test to succes-

sively subdivide the region as a means of localizing anomalous areas in both space and scale.

Examples of our multiscale inversion algorithm are presented using the Born approximation of

an electrical conductivity problem formulated so as to illustrate many of the features associ-

ated with similar detection problems arising in �elds such as geophysical prospecting, ultrasonic

imaging, and medical imaging.
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1 Introduction

The goal of many applied problems is the recovery of information regarding the structure of a
physical medium based upon measurements of scattered radiation collected at the boundaries [8,
15,19,43,48]. For some of these tomographic-type inverse problems, one seeks a complete description
(in the form of an image in two dimensions or a volumetric rendering in 3D) of the structure of
the medium. In other cases, however, the full reconstruction is not needed; rather, the ultimate
objective is to extract the structure of areas in the medium which are, in some sense, anomalous;
that is, regions where the nature of the medium di�ers from some prior set of expectations. This
anomaly detection problem arises, for example, in geophysical prospecting where in many instances
the fundamental issue is the determination of oil bearing regions in the earth and medical imaging
where tumor detection is of import.

As discussed in [27,29,31,33,34,44,45] for many of the application areas previously cited, meth-
ods for solving the anomaly detection problem typically proceed by initially generating the full,
pixel-by-pixel reconstruction and subsequently post-processing the results to determine the nature
of anomalous structures. The necessity of generating a solution to the so-called \full inverse prob-
lem" however makes these schemes rather unattractive. Indeed, for many interesting applications,
obtaining a full reconstruction of the medium presents a collection of well-known and extensively
studied challenges [2,3,40] which suggest that solving this problem as the �rst step toward localizing
anomalies should be avoided. In this paper we demonstrate the utility of a multiscale framework
for explicitly solving the spatial anomaly detection problem in the context of linearized inverse
scattering (also known as di�raction tomography [15]) applications.

The basis for solving the anomaly detection problem is the use of wavelet transforms and
the statistical theories of optimal estimation and detection to develop both e�cient algorithms
for anomaly detection and localization and analytical insight into the nature of the problem and
the limits of performance that result from the fundamental physics relating the characteristics of
the medium to the observations. In [39, 40], we introduced the use of wavelet transforms and
multiresolutional statistical techniques for overcoming many of the challenges associated with the
solution of full reconstruction, linearized inverse electrical conductivity problems. Many of the
results in [39, 40] followed from the use of multiscale, statistical regularization methods for the
incorporation of prior knowledge into the inversion routine. The use of such prior statistical models
automatically implies an assumption of some type of statistical regularity on the �eld and therefore
fails to capture adequately the presence of anomalies or localized inhomogeneities. Thus, roughly
stated, the problem considered in this paper is the detection, localization, and estimation of such
anomalies superimposed on a background of know statistical structure and observed indirectly
through the scattering measurements.

The consideration of the anomaly detection problem raises a variety of questions beyond those
arising in the full reconstruction inverse problem. How many anomalies are there? Where are
they located? What are their sizes? What are their amplitudes? Given answers to the �rst
three of these problems, the fourth is a variant of the full inverse problem in which we focus our
attention on determining the magnitudes of only the previously identi�ed anomalous regions. The
determination of the number, sizes and locations of the anomalous regions is, however, a potentially
daunting collection of tasks as a result of the vast number of combinations of anomaly structures
which, in principle, must be explored in the generation of a solution.

Over the past decade, signi�cant work has been performed in the area of anomaly detection
from tomographic-type measurements. In [44], Rossi and Willsky were concerned primarily with
the use of estimation-theoretic analysis and algorithmic methods for determining the location of
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a single object of known size and structure given noisy and sparse computed tomography (CT)
measurements. Recently, these results have been extended by Devaney and co-workers [16, 17, 46]
in consideration of di�raction tomography (DT) and exact scattering applications. More closely
related to the problem of interest in this paper is the work of Bresler, Fessler and Macovski. In [5],
the authors examined a 3D reconstruction problem from CT measurements in which the �rst step of
their algorithm required the localization of an unknown number of anomalies of unknown structure.
The solution to this problem presented in [5] was to estimate the required parameters for a pre-
determined, maximum number of anomalies knowing that further processing would eliminate falsely
identi�ed anomalous regions.

In this paper, we present a scale-recursive algorithm for anomaly detection and characterization
given DT-type data. Here, the tools of optimal hypothesis testing are used to make a sequence of
anomaly detection and localization decisions starting at coarse scales, thereby allowing for the detec-
tion of spatially large anomaly structures and providing coarse localization of �ner scale anomalies,
and then moving to �ner ones. This algorithm is signi�cant for two reasons. First, this approach
provides a computationally e�cient and accurate means of localizing areas of anomalous behavior.
Second, the anomaly characterization algorithm may be viewed as a highly e�cient �rst stage in a
larger image processing application. Speci�cally, the output of the algorithm could be re�ned (for
example via the methods described in [5, 44] generalized to the case of di�raction tomography) by
higher level processing stages concerned with issues such as identi�cation, classi�cation, or imaging.
Toward this end, in Section 6.3, we present one way in which knowledge of the anomaly structures
can be used to supplement the information in the prior statistical model in order to improve the
output of a least-squares, pixel-by-pixel reconstruction of the region of interest.

In addition to the development of the scale-recursive processing algorithm, by using these same
statistical techniques, we provide analysis of the anomaly detection problem that not only yields
overall performance limits, but also guides the detection procedure. For example, we are able to
de�ne and determine the statistical distinguishability of a small scale, large amplitude anomaly
from a larger scale, but smaller magnitude structure or a pair of closely spaced anomalies from a
single, broader anomalous region. The use of the results from this analysis can then tell us at what
scale and in which regions to terminate our detection procedure, i.e. when �ner scale localization
is unwarranted given the available data.

In Section 2, we present an overview of the particular anomaly detection problem of interest in
this work. The formal de�nition of the anomaly detection problem as one of optimal hypothesis
testing and a review of results from statistical decision theory is provided in Section 3. In Section
4 we demonstrate the utility of our framework in characterizing the detectability of an anomaly.
Section 5 is devoted to the question of the distinguishability of anomalies as a function of their
relative positions and structures. In Section 6 we develop and analyze a scale-recursive algorithm
for anomaly detection, localization, and estimation, and present the results of its performance under
a variety of experiment conditions. Conclusions reached in this paper and directions for further
work are presented in Section 7.

2 A Multiscale Framework for Inverse Scattering

2.1 The Scattering Problem

The context in which we develop our anomaly detection algorithm is a low-frequency, two-dimen-
sional inverse electrical conductivity problem illustrated in Figure 1 and similar to problems arising
in the �eld of geophysical prospecting [23, 24, 48] and medical imaging using electrical impedance
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Figure 1: Con�guration of inverse conductivity problem. The electromagnetic sources (indicated by
the black circles) emit time-harmonic waves into a lossy medium which subsequently are scattered
by conductivity inhomogeneities located in the darkly shaded rectangle, A. The secondary �elds are
observed at one or both receiver arrays located on either vertical edge of region under investigation.
Based upon these observations, the objective of the inverse problem is the reconstruction of the
conductivity perturbation.

tomography [18{20,22,29{31,43]. Here, we have an array of electromagnetic line-sources oriented
perpendicularly to the page emitting time-harmonic, waves into a lossy medium. The electrical
properties of this environment are assumed to be decomposed into the sum of an in�nite, known,
and constant background and a conductivity perturbation, g, with support restricted to region A in
Figure 1. The �elds from the transmitters are scattered by g, and the secondary �elds are observed
at one or both of the receiver arrays positioned on the vertical edges of region A. Based upon these
observations, the objective of the problem is to detect and localize areas in the region of interest
where the structure of g is, in a sense to be de�ned below, anomalous.

We consider the collection of eighteen scattering experiments de�ned in Table 1 where each
such experiment produces a vector of measurements comprised of the in-phase and quadrature
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components of the observed scattered �eld obtained over one of the two receiver arrays due to
energy put into the medium from one of the sources operating at a particular frequency. As
is shown in [9], the use of the �rst Born approximation yields the following linear relationship
between the vector of observations associated with the ith scattering experiment, yi, and a discrete
representation of the two dimensional conductivity anomaly, g

yi = Tig + ni i = 1; 2; : : : ; 18 (1)
where the matrices Ti encompass the (linearized) physics and ni is an additive, zero-mean, un-
correlated, random vector representing the noise in the data. That is, the ith noise is modeled
as ni � N (0; riI) where I is an appropriately sized identity matrix.1 The discrete representation
of the conductivity g is constructed using the so-called \pulse" set of basis functions where the
conductivity is assumed to be piecewise constant over an Ng;x�Ng;z grid of square pixels covering
A [26]. For future reference, we de�ne the \stacked" system of data

y = Tg + n (2)
where yT = [yT1 yT2 : : :yT18] with T and n de�ned accordingly.

Experiment Source Frequency Receiver
number Position of source (Hz) Array
1 { 6 0:20:100 fHI = 10; 000 Left
7 { 12 0:20:100 fMID = 1; 000 Left
13 { 18 0:20:100 fLO = 100 Right

Table 1: Data set de�nitions for observation processes of interest in the paper. The notation
x : y : z indicated that the sources are distributed in y increments along a line from x to z.

2.2 A Multiscale Representation of the Problem
The detection techniques developed in Sections 4 { 6 are based upon a linear model relating mul-
tiresolution representations of g and ni to a multiresolution representation the data, yi. A scale-
space representation of the problem has been chosen for two reasons. First, the matrices Ti in
(1) are of the class which are made sparse in the wavelet transform domain [1, 4] thereby lowering
the computational complexity of the detection algorithm in Section 6. Although not considered
extensively in this work, such computational bene�ts are explored in [41]. Second, as we discuss
below, a collection of useful and physically meaningful models for the non-anomalous behavior of
the conductivity �eld are speci�ed easily in the wavelet domain.

Following the work in [39, 40], orthonormal, discrete wavelet transform (DWT) [14] operators
(matrices) Wi and Wg are used to move from physical to scale space in the following manner

�i =Wiyi = (WiTiWT
g )(Wgg) +Wini � �i + �i (3)

where WT
g Wg =WT

i Wi = I follows from the orthonormality of the wavelet transformation [14,35].
There are a variety of reasons why we may wish to use di�erent transforms for the data than for
g. First, from Figure 1, each data set is to be collected over a 1D array of receivers. Hence, Wi

will act on a one dimensional signal while Wg is used to transform the 2D conductivity pro�le.
Additionally, it may be the case that the lengths of each data record vary from one observation
process to the next. Finally, analogously to the physical space case, we de�ne the stacked systems

� = � + � (4)
where � = [�T1 �T2 : : :�T18]

T , � and � are de�ned analogously and � � N (0; R) with R =
diag(r1I ; r2I; : : : ; r18I).

1The notation x � N (m;P ) indicates that the random vector x has a Gaussian probability distribution with mean
m and covariance matrix P .
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2.3 Multiscale Prior Models
Recently there has been signi�cant work in the use of fractal models for describing the spatial
distribution of geophysical quantities. In [13], Crossley and Jensen explore the propagation of
acoustic radiation in the Earth's crust using a velocity model composed of the sum of a deterministic
pro�le and a fractal perturbation. In considering the distribution of hydraulic conductivity, Brewer
and Wheatcraft [6] employ a wavelet-based model very similar to the one described below as a
means of interpolating coarse scale observations of hydraulic conductivity to �ner scales. Brown [7]
relates both the electrical and hydraulic conductivities in the earth to a self-similar model for the
height distribution in rock fractures and studies the resulting uid and current ow patterns though
such a formation. Finally, the propagation of electromagnetic radiation through media with fractal
characteristics has been studied extensively by Jaggard and co-workers [32].

With this work as motivation, we use a stochastic, fractal-type model to describe the spatial
distribution of the electrical conductivity in the absence of anomalies. While there are many self-
similar models which may be used to describe the conductivity, results of Wornell [50], Tew�k [47],
and Chou et al. [10{12] suggest that there exist a wide range of statisticalmodels speci�ed directly in
the wavelet transform domain possessing the desired modeling characteristics and simple structures
thereby making them quite attractive for use in signal and image processing applications.

Under the particular wavelet-based model of interest in this paper, the wavelet coe�cients of the
non-anomalous conductivity �eld, denoted by the vector ~, are taken to be uncorrelated, Gaussian
random variables. That is, ~ is distributed according to

~ � N (0; P0) (5)
where P0 is a diagonal matrix whose nonzero entries are the variances of the corresponding wavelet
coe�cients. While a detailed description of the internal structure of P0 is presented in [35,50], the
fractal-type behavior of the process is obtained by taking the variance of the wavelet coe�cients
to vary exponentially with scale. Coe�cients in ~ governing the coarsest scale behavior of the
conductivity have relatively large variances while �ne scale components possess smaller variances.

3 Anomaly Detection as a Hypothesis Testing Problem

3.1 A Model for the Conductivity

The objective of the anomaly detection problem is to determine those areas in A where the behavior
of g is anomalous in that in these regions g di�ers from some prior set of beliefs regarding the manner
in which the conductivity is expected to behave. Thus, the conductivity g is decomposed as

g = ~g + �g (6)
where ~g represent that portion of g consistent with our prior assumptions and �g encompasses the
anomalous behavior of the conductivity; that is, the perturbation of the conductivity away from
its non-anomalous structure. In the wavelet transform domain, (6) takes the form

 =Wgg =Wg~g +Wg�g � ~ + �: (7)
As will be seen in Sections 4{6, considerable insight into the anomaly detection problem is

obtained through performance analysis carried out using anomaly structures of varying sizes (i.e.
spatial scales) located in di�erent regions of A. Also, the primary intent of the detection algorithm
presented in Section 6 is to localize quickly and e�ciently regions where anomalies are suspected to
exist. As region A is pixelated into anNg;x�Ng;z grid and because we perform anomaly localization
through a process of spatial subdivision, we are lead naturally to consider a representation in which
anomalous regions are de�ned to be superpositions of rectangular subsets of A.

Referring to Figure 2, the structure of the ith anomaly in A is de�ned by its magnitude, ai, its
size, and its location in A. The area of an anomaly de�nes its scale in that small scale anomalies are
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Anomaly 1

Anomaly 2

Region A

Figure 2: General structure of anomalous regions of interest in this paper. The magnitudes, a1 and
a2 of the two anomalies shown here are proportional to the color of the corresponding rectangles.

correspondingly small in area and similarly for larger scale anomaly structures. Mathematically,
the form for the anomalous behavior of the conductivity over the region A is

�g =
NaX
j=1

bjaj = Ba: (8)

Here, Na is the number of anomalous regions located in A, aj is a scalar de�ning the magnitude of
each anomaly, and bj represents the discrete indicator function over the jth rectangular region in
�g. In (8), the column vector a represents the collection of anomaly amplitude coe�cients while B
is the matrix whose jth column is bj . In the wavelet transform domain, (8) is written as

� =
NaX
j=1

(Wgbj) aj � Ba (9)

where B = [Wgb1Wgb2 : : : WgbNa
]. Finally, use of (7) and (9) in (4) yields the following relationship

among the anomaly structures, the non-anomalous background ~g or ~, and the data
� = �� +�~ + � = �Ba +�~ + � (10)

where, because ~ and � are taken to be uncorrelated,
P� = E[��T ]�E[�]E[�T] = �P0�

T +R: (11)
Note that the analysis methods and algorithmic techniques presented in this work are based entirely
on an observation model of the form in (10). In particular, the results in this paper are not
dependent upon the assumption of rectangular anomalies; rather structures with arbitrary shapes
and orientations can be employed in principle through the appropriate speci�cation of the matrix B.
Nonetheless, as will be seen in Sections 4{6 of this paper, rectangular structures prove to be highly
useful for obtaining signi�cant insight into the nature of the anomaly characterization problem and
as the basis for an algorithm designed to extract this information from observed scattered �elds.

To provide a normalized notion of the overall size of an anomaly, we de�ne an SNR-type
quantity called the anomaly-to-background ratio (ABR) which provides a measure of the energy in
an anomaly relative to that of ~g. Mathematically, we have for an anomaly �g composed of a single
rectangular region de�ned by the column vector b and with amplitude a

ABR2 =
Power in �g

Expected power in ~g
=

a2
�
bTb

�
tr( �P0)

(12)

where tr(M) is the trace of the matrix M and �P0 =WT
g P0Wg is the covariance matrix of ~g.
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As described in [40], under the Born approximation used to obtain (1), g = WT
g  represents a

perturbation about a known, constant background conductivity, g0. From physical principles, the
overall conductivity, g0+ g = g0+ ~g+Ba must be greater than zero. Thus, in theory the elements
of a may assume both positive as well as negative values so long as the positivity constraint is
satis�ed. To simplify matters, in this paper we assume that the ai are strictly greater than zero
corresponding to regions of locally higher conductivity than the background.

3.2 The M-ary Hypothesis Testing Problem

In Section 6, we consider a statistical decision-theoretic methodology for reconstructing � which
is based upon a sequence of M-ary Generalized Likelihood Ratio Tests (GLRT) as a means of
localizing an unknown number of anomalous regions in A. The mathematical description of each
such test begins with the formulation of the followingM hypotheses, Hi for i = 0; 1; 2; : : : ; M � 1,
corresponding to M di�erent con�gurations of anomalous areas

Hi : � = �Biai +�~ + � i = 0; 1; 2; : : : ; M � 1: (13)
Note that from (13) under Hi we have, � � N (�Biai; P�) where P� is given by (11).

The hypothesis test is implemented as a rule which when given the data, indicates which of the
Hi is true. Because it will be the case in Section 6 that the ai are taken to be deterministic but
unknown parameters, a standard likelihood ratio test solution to the hypothesis testing problem [49]
cannot be employed in this context. Rather, we use a Generalized Likelihood Ratio Test (GLRT)
[49] for performing the test. This procedure requires �rst that an estimate of each ai be computed
assuming that Hi is correct. As this problem is, in general, ill-posed, we choose here to use the
following regularized, least squares estimate

âi = (BT
i �

TP�1� �Bi + �I)�1BT
i �

TP�1� �: (14)
where the parameter � is used to control the degree of regularization.

Given âi, the hypothesis testing rule employed in this paper is

Choose Hi with i =

(
0 maxj Lj(�) < 0

argmaxj Lj(�) otherwise
(15)

where
Lj(�) = lj(�)� l0(�) j = 1; 2; : : : ; M � 1 (16)

and for j = 0; 1; 2; : : : ; M � 1

lj(�) = �TP�1� �Bj âj � 1

2
âTj BT

j �
TP�1� �Bj âj : (17)

3.3 The Binary Hypothesis Testing Case

While the algorithm for extracting anomaly information is based upon the M-ary GLRT, much of
the analysis of the anomaly detection problem is performed in the context of the binary hypothesis
testing (BHT) framework in which two alternatives, �0 = B0a0 and �1 = B1a1, are compared.2

Traditionally, the analysis of the BHT centers around the probability of detection, Pd and the false
alarm probability, Pf . For the linear-Gaussian model considered in this work, it is shown in [49]
that Pd and Pf are related to the various quantities de�ning the structure of the problem via

d = erfc-1
*
(Pf )� erfc-1

*
(Pd) (18)

2Note that in the contexts where the binary testing scenario is to be explored, the values of a0 and a1 are assumed
known so that a generalized test is not required.
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where
d2 = (�1 � �0)

T�TP�1� �(�1 � �0) (19)

erfc*(x) =

Z
1

x

1p
2�

e�t
2=2dt: (20)

Thus, based upon (18), we see that our ability to distinguish between two anomaly structures is
intimately related to the Fisher discriminant, d, which has the interpretation of a \signal-to-noise"
ratio [49]. Note that for a given Pf , larger d results in larger Pd and therefore better performance.

From (19) we observe that the performance of the binary hypothesis test is a function of both
the geometric con�gurations, as captured in the matrices Bi, and the magnitudes, ai, of the two
candidate anomaly structures. To better understand the role of these two factors, consider the case
in which �i corresponds to a single rectangular region so that each Bi is a column vector and each
ai is a scalar. Substituting (9) into (19) and expanding the quadratic yields

�21a
2
1 � 2�1;0a1a0 + �20a

2
0 � (erfc-1

*
(Pf )� erfc-1

*
(Pd)) = 0 (21)

where
�2j = BT

j �
TP�1� �Bj for j = 0; 1 (22)

�1;0 = BT
1 �

TP�1� �B0: (23)
In [37], it is shown that when viewed as a function of a0 and a1, (21) de�nes an ellipse the form of
which is illustrated in Figure 3.3 This ellipse indicates that, given the geometry of the candidate
anomalies, B0 and B1, there are only certain combinations of a0 and a1 which will result in per-
formance below that level dictated by a particular Pd and Pf . In fact, these points are precisely
those that lie inside the plotted ellipse. Also, there exists a minimum level, amin

1;0 (depending on

the geometric structures of both anomalies) such that for �1 = B1a1 with a1 > amin
1;0 , the binary

hypothesis test will achieve or exceed the Pd and Pf performance �gures independent of a0.

4 Detectability Analysis

The �rst issue we address in conjunction with the anomaly detection problem is that of the de-
tectability of an anomaly as a function of location, spatial size, and amplitude. After de�ning a
particular collection of anomaly structures, a set of binary hypothesis testing problems are explored
in whichH0 corresponds to there being no anomaly in the region while under H1, a particular mem-
ber of our anomaly collection is assumed to be present. The objective of the detectability analysis is
to determine the minimum magnitude each such structure must possess to guarantee a prespeci�ed
level of performance from the binary hypothesis test.

Detectability is of interest due to the physics governing the relationship between the observa-
tions, �, and the conductivity,  and the constrained experimental conditions in which data are
collected only along the vertical edges of A. From these facts, it is not expected that arbitrarily
small (in scale and magnitude) anomalies will be detectable with arbitrary precision throughout A.
Rather, we anticipate that small anomalies should be readily detected only close to the observation
points while interior to region A small scale structures would require signi�cantly larger magnitudes
to be as detectable as their counterparts closer to the edges.

With this intuition in mind, we consider a family of anomaly structures generated by a set of
dyadic tesselations of A. For example, with Ng;x = Ng;z � Ng = 16, we take as J1 the set of N2

g

indicator functions which are one over single pixels in A and zero elsewhere. Analogously, J2 is the
collection of N2

g =4 characteristic functions over disjoint 2� 2 sized regions of A. Thus, in general

3For illustrative purposes only, in Figure 3 it is assumed that the major axis of the ellipse is oriented at an angle
less than 90� from the a0 axis. While this is not necessarily the case, the analysis which follows is independent of
which axis is the major and which the minor.
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Figure 3: The structure of the ellipse de�ned by (21). The axes represent the magnitudes of
anomaly structures in a binary hypothesis testing problem. As discussed in Section 2, a0 and a1
are taken to be nonnegative so that only the �rst quadrant is shown in this illustration. Here a�

1

is the minimum amplitude of �1 required to detect this structure when the alternate hypothesis is
�0 = 0 for a BHT with prespeci�ed Pd and Pf . The value amin

1;0 is the minimum intensity of �1
required to ensure that for any �0 the performance of the resulting BHT meets or exceeds that
de�ned by Pd and Pf .

Jm (for m an integral power of 2) is the set of (Ng=m)2 non-overlapping square regions of size
m�m completely covering A. Finally, we de�ne J as the union of all Jm.

To begin our analysis of detectability, for each anomaly structure in J , we consider a collection
of binary hypothesis testing problems where the two hypotheses in the jth problem correspond to
the situations in which no anomaly is present in A or a scaled version of the jth element of J is in
A. Recalling (13), these alternatives take the form

H0 : � = �~ + � (24a)
H1;j : � = �Bjaj +�~ + �: (24b)

The goal of our detectability analysis then is to determine for each anomaly structure in J , the
minimum value of aj , denoted a�j , such that the above hypothesis test attains a certain level of
performance as speci�ed by Pd and Pf .

The primary quantity used to characterize the performance of the binary hypothesis test in
(24a){(24b) is the Fisher discriminant discussed in the previous section which here takes the form

d2j = a2j(BT
j �

TP�1� �Bj) � a2j �
2
j (25)

where �2j is de�ned in (22) and represents the Fisher discriminant for the unit amplitude anomaly

over the jth member of J . Now, for a given Pd and Pf , (18) and (25) are combined to give the
following expression for a�j :

a�j =
erfc-1

*
(Pf )� erfc-1

*
(Pd)

�j
: (26)

In Figure 4, a�j are plotted for all anomalies in J for the case in which data from the 18
experiments described in Table 1 at an SNR of 10 are available and where Pd is set to 0.95 and Pf

is 0.05. In this work, the SNR associated with the anomaly-free observation process �i = �i~ + �i
with �i � (0; r2i I) and  � (0; P0) is de�ned as
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Figure 4: Value of a�j for all anomaly structures in J where the data from the experiments described
in Table 1 at an SNR of 10 are used as input to the likelihood ratio test. Here, we have Pd = 0:95
and Pf = 0:05. Note that the scales in these images are all di�erent with a� decreasing signi�cantly
as the size of the anomalies increases.

SNR2
i =

Power per pixel in�i

Power per pixel in �i
=

tr(�iP0�T
i )

Ngr2i
: (27)

Thus, each 1� 1 pixel in Figure 4(a) corresponds to an anomaly in J1 with the intensity of that
pixel proportional to a�j . In all four cases, we see that near the middle of the region, the magnitude
required to obtain the desired level of performance in the binary hypothesis test is signi�cantly
larger than that required near the vertical edges i.e. where the sources and receivers are located.
For vertical values roughly in the range 40 � z � 60, this e�ect is somewhat smaller. Also, as the
areas of the anomalies increase, the required magnitudes decrease. This coincides with the intuition
that large scale structures should be easier to detect than their �ne scale counterparts. Finally, the
ABR values in Figure 4 are quite small with the median values all less than 0.9. This implies that
our statistical approach toward anomaly detection should prove quite advantageous in detecting
relatively small amplitude conductivity anomalies.

To explain the behavior of a�j , we note that as described in [40] the low and medium frequency
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kernels are most sensitive to the conductivity structure over the horizontal range 0 � x � 50 so
that the required magnitude for an anomaly to be \seen" in this area should be relatively low. The
smaller values of a�j in the region 40 � z � 60 are due primarily to the combined coverage of this
region by more observation kernels, Ti, than is the case for the top and bottom edges.

5 Distinguishability Analysis

In this section, we explore issues associated with our ability to successfully distinguish between
pairs of candidate anomalies in order to obtain quantitative insight into the ambiguity which exists
in attempting to di�erentiate between anomalous structures of di�ering sizes, locations, and mag-
nitudes. The results of this work then are used both in the formulation as well as the analysis of
the detection algorithm in Section 6.

Before proceeding with the analysis, we note that the issue of distinguishability has been con-
sidered previously in the context of electrical impedance tomography [18, 22, 29]. In that work,
distinguishability was examined in a deterministic setting where observation perturbation was mod-
eled as a bounded but otherwise unknown signal. Under such a model, two conductivity pro�les
were de�ned to be distinguishable if the norm of the di�erence between the data sets produced
by each exceeded the noise level. The notion of distinguishability developed below is rather di�er-
ent as it rests upon a statistical model for both the additive measurement noise and background
perturbations in the medium's conductivity.

The mathematical formulation of the distinguishability problem of interest in this work follows
directly from Section 3.3. We begin by considering the following binary hypothesis testing problem

Hj : � = �Bjaj + �~ + � (28a)
Hi : � = �Biai +�~ + �: (28b)

The primary tool for our distinguishability analysis is the quantity amin
i;j de�ned in Section 3.3 to

be the smallest value of ai such that the performance of the binary hypothesis test in (28a){(28b)
meets or exceeds that de�ned by Pd;i;j and Pf;i;j independent of the amplitude of aj . Finally, for
all experiments and for all i and j of interest in this section, Pd;i;j is equal to 0.95 and Pf;i;j = 0:05.

In Figures 6, amin
i;j is shown as a function of j 2 J in the case where the geometric structure of

anomaly ~i is given in Figure 5(a). Similarly, amin
i;j is displayed for the anomaly geometry of Figure

5(b) in Figure 7. Essentially these two examples demonstrate the manner in which the ability to
di�erentiate structures is dependent upon the spatial position of the anomalies in region A. In
both cases, we see that the largest values of amin

i;j are associated with hypothesis tests in which �i is
compared to a second, relatively close-by anomaly structure; however, these amplitudes are roughly
twice as large for the structure located toward the middle of the region than for the anomaly closer
to the source/receiver arrays.

In Table 2, the ABRs corresponding to the largest and smallest values for amin
i;j in Figures 6

and 7 are shown. That is for i �xed, the entries in the �rst column of Table 2 are the anomaly-to-
background ratios generated by

a
max;min
i = max

j
amin
i;j

while those of the second column are associated with
amin;min
i = min

j
amin
i;j :

Note that if ai is greater than amax;min
i , a BHT with the anomaly �i given by Biai will meet the

Pd;i;j and Pf;i;j speci�cation regardless of both the amplitude as well as the location of j , i.e.

the performance will be independent of j. On the other hand if ai is less than a
min;min
i then for

every j there will be some range of amplitudes aj for which the performance speci�cations will
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Figure 5: Anomaly structures to be analyzed in distinguishability problems

not be achieved. Now, from the �rst row of Table 2, we see that for an anomaly with geometric
structure in Figure 5(a), an ABR of 2.11 ensures that any binary hypothesis test in which this
structure is compared to a member of J will meet the performance speci�cations of Pd;i;j = 0:95
and Pf;i;j = 0:05. Alternatively, if the ABR falls below 0.56 then for all structures in J , (i.e. all
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Figure 6: Images of the minimum magnitude of the anomaly in Figure 5(a) to guarantee a Pd = 0:95
and Pf = 0:05 in binary hypothesis tests involving this anomaly structure and elements of J . Note
that while the scales in these images are di�erent the magnitudes are all less than 2.5.

Bj) the performance of the BHT will fail to meet the Pd;i;j and Pf;i;j requirements for some range
of aj . Similar results hold for the second anomaly structure located closer to the left side except
that in this case, the required values of the ABR are smaller.

Anomaly Maximum Minimum
�i ABR ABR

Rightmost (Figure 5(a)) 0.49 0.24
Leftmost (Figure 5(b)) 2.11 0.56

Table 2: Minimum and maximum anomaly-to-background ratio associated with the smallest and
largest values for amin

i;j for the anomaly structures in Figure 5(a) and 5(b).
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Figure 7: Images of the minimum magnitude of the anomaly in Figure 5(b) to guarantee a Pd = 0:95
and Pf = 0:05 in binary hypothesis tests involving this anomaly structure and elements of J . Again,
the scales in (a) through (d) are all di�erent; however the overall range of values is between 0.9
and 1.3.

6 A Multiscale Algorithm for Anomaly Characterization

In this section we describe and analyze a multiscale, decision-theoretic algorithm to determine
the positions, sizes and magnitudes of an unknown number of anomalous structures in region A.
We begin with a small collection of relatively large rectangular areas in which anomalies may be
located. Each region represents a top-level node in a tree of �ner-scale subdivisions of A. We
next use a decision-directed procedure for determining how best to move from one level of the
tree, corresponding to a collection of coarse-scale hypotheses, to the next level in which anomalies
are better localized using smaller-scale rectangles. The result of this procedure is a collection of
rectangular areas of varying sizes and positions where we believe anomalies exist. To limit the
number of targeted areas which contain no anomalies, the algorithm concludes with a pruning step
where we also estimate the magnitudes of the �nal group of chosen anomaly structures.
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6.1 A Scale Recursive, Decision Driven Detection Algorithm

The �rst step in our detection algorithm involves an M-ary Hypothesis test in which we consider
10 ways to subdivide A in order to better localize anomalous structures. As seen in Figure 8 the
�rst con�guration corresponds to the presence of a coarse scale anomaly with support over all of
A. This particular structure indicates that no further decomposition is warranted. The next four
possibilities each allows for a single anomaly localized to the top, bottom, left and right halves
of A respectively. Because anomalies might lie both in the left/right as well as the top/bottom
halves, the sixth and seventh structures in Figure 8 are included. Since multiple anomalies may be
present in the region, the eighth con�guration corresponds to the presence of one anomaly located
in the left half and one in the right while the ninth presents the analogous situation but for the
top and the bottom. Finally, for this initial decomposition only, we consider the last case where we
conjecture that no anomalous regions exists in A.

Given the 10 choices in Figure 8, we formulate a 10-ary hypothesis testing problem the solution
of which is obtained using the Generalized Likelihood Ratio Test (GLRT) discussed in Section
3.2. Using (17) we compute the values of the generalized log-likelihood function for each of the
hypotheses under consideration. From Figure 8, if H0 is chosen, no further decomposition occurs
and we conclude that there is a single anomaly covering the entire region of interest. IfH9 is selected,
the algorithm terminates with the conclusion that there is no anomaly in region A. Otherwise, we
decompose that hypothesis with the largest generalized log-likelihood value.

Our scale-recursive decomposition of A continues by essentially repeating the hypothesis testing
procedure for each of the subregions indicated by the initial 10-ary hypothesis test as being of
interest. For example, consider the case where H3 is chosen. Referring to Figure 8, this selection
corresponds to an anomaly located in the left half of A. In an e�ort to better localize the anomalous
activity in this region, we consider an M-ary hypothesis test similar to that described in the previous
paragraph but where the underlying area involved in the decomposition is now the left half of A
rather than all of A. While the subdivision is of a rectangular region as opposed to a square area,
the form of the hypotheses fundamentally remains the same as in those displayed in Figure 8 in
that we consider the possibilities of anomalies located in the top, bottom, left, and right halves, etc.
of this long and thin structure. We note that the �rst of these nine hypotheses, H0, corresponds to
the case where no further decomposition of the left half is warranted and thus serves as a means
of terminating the scale recursive search over this region of A. Instead of ten, there are only nine
hypotheses as we no longer include the possibility that no anomaly exists in the left half of A since
the previous iteration indicated that somewhere in the left side there exists an anomaly.

This nine-hypothesis GLRT is repeated recursively beginning with the regions selected in the
initial decomposition of A. This decision-theoretic localization process continues until no further
subdivision in a particular region is warranted based upon the selection of the H0 hypothesis at
some stage of the process or because no addition re�nement is possible because the structures under
consideration are too small. Thus at the end of our scale-recursive decomposition of A we have a
collection of rectangular regions where anomalous structures are likely to exist. We then collect
the wavelet-domain representations of these rectangles as columns in a matrix labeled Bleaf .

To limit the number of false alarms generated by our detection algorithm, we retain only those
structures in Bleaf corresponding to su�ciently \detectable" anomalies. Speci�cally, we begin
computing âleaf , the amplitudes associated with Bleaf , using (14) with Bi replaced by Bleaf . Next,
for each column of Bleaf , we calculate the minimum required amplitude to guarantee a set level of
performance from a detectability-type hypothesis test developed in Section 4 (here we use Pd = 0:80
and Pf = 0:10). The �nal estimated anomaly structure generated by our algorithm is composed of
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Figure 8: Geometric structures of nine possible decompositions used at each stage of our de-
composition of A. The darkly shaded regions indicate the areas where anomalous structures are
hypothesized to exist. While the �gure illustrates the decomposition of a square region, analogous
subdivision schemes are used for rectangular areas as well with the fundamental idea being the
presence of anomalies in the top, bottom, left, right, etc.

those columns of Bleaf and elements of aleaf corresponding to anomalies whose amplitudes exceed

this required minimum and we label these estimates B̂ and â respectively.

6.2 Algorithm Analysis

The scale-recursive detection algorithm described in Section 6.1 requires that we be able to identify
successfully large-scale structures covering the true, smaller-scale anomalies. The results of the
distinguishability analysis suggest that the correct large-scale structures are likely to be selected.
Indeed, Figures 6 and 7 showed that the largest values of amin

i;j corresponded to those j in J
which overlap anomaly i. From this, we conclude that small-scale anomalies \look" most like those
large-scale counterparts located in the same region of A.
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To further verify this intuition, we undertake a more detailed performance analysis of the GLRT
used in the detection algorithm. Speci�cally, we consider the case where a single anomaly, �g�, of
unknown amplitude exists at some �ne scale and we perform a generalized binary hypothesis in
which the two hypotheses correspond to coarse scale structures one of which covers �g� and one
of which does not. We are interested in examining how the probability of correctly choosing the
overlapping structure (which we call the probability of detection for these experiments) using the
GLRT of Section 3.2 varies with the scale and position of the non-overlapping alternate as well as the
amplitude of the true anomaly. High detection probabilities reect favorably on the GLRT-based
approach of the scale-recursive algorithm.

Following the notation of (17), let l1(�) be the statistic associated with the overlapping anomaly
hypothesis and l0(�) be the statistic for the non-overlapping case. From (15) and (16), the proba-
bility of choosing the overlapping structure given knowledge of �� =Wg�g

� is
Prob [L1(�) > 0j��] = Prob [l1(�)� l0(�) > 0j��] : (29)

Upon substituting (14) into (16) and using (17), straightforward linear algebra demonstrates that
the random variable L1(�) may be written as

L1(�) = x21(�)� x20(�) (30)
where the two-vector x(�) = [x1(�) x0(�)]

T is
x(�) = BT

10�
TP�1� � � N (BT

10�
TP�1� ���;BT

10�
TP�1� �B10) (31)

and for j = 0; 1
B10 = [s1B1 s0B0] (32a)

s2j =
1

2
[Pj(1 + �Pj)] (32b)

Pj = (BT
j �

TP�1� �Bj + �)�1 (32c)
From (30), Prob [L1(�) > 0j��] = Prob [ jx1(�)j > jx0(�)j j��] which is the integral of the proba-
bility density function for x(�) de�ned in (31) over the shaded region in Figure 9.

In Figure 10, detection probabilities are displayed for binary hypothesis tests where �g� is the
structure in Figure 5(a) and the hypotheses are pairs of structures from J . For example, the shade
of dark region in the lower left corner in Figure 10(a) is Prob[L1(�) > 0 j��] for the BHT where
the �rst hypothesis is the large structure overlapping the true, smaller size anomaly (represented
by the white region in Figure 10(a)) and the alternate hypothesis is the 8�8 pixel lower left corner
of A. Similar interpretations hold for the other two dark areas in Figure 10(a) and for each of the
smaller square areas in Figures 10(b){(c). For all of these images, the ABR for the true, small
anomaly is set to 1.5. Figures 10(a){(c) indicate the manner in which the detection performance
of the GLRT-based algorithm depends upon the scale of the hypotheses relative to that of the true
anomaly. At the coarsest scale, detection probabilities are about 60%. However, for all �ner scales,
Pd rises sharply with the lowest values con�ned to structures which are close to the true anomaly.

In Figure 10(d), we display the minimum Pd at each scale as a function of true anomaly's ABR.
For example, the points on each of the three curves at an ABR of 1.5 are the minimum Pd values in
each of the three images in Figure 10(a){(c). From these curves we see that at the coarsest scale,
even at high ABRs, the detection probabilities reach about 80%. As expected, when the hypotheses
are drawn from the �ner scales, the minimum Pd rises quickly to close to 100%.

The results in Figures 10 indicate that if the scale-recursive anomaly detection algorithm devel-
oped in Section 6.1 correctly identi�es the coarse scale structures overlapping the true anomalies,
then the detection performance at �ner scales should be quite good even at ABRs less than 1.
Also, because the lowest detection probabilities at �ne scales are associated with structures close
to the true structure, it is anticipated that the scale-recursive detection algorithm should be very
successful in producing estimates of anomalies which are \su�ciently close" to the truth if not
exactly the truth. This idea will be made more precise in Section 6.3.

The analysis in this section indicates that the primary di�culty associated with the algorithm is
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Figure 9: Integration region in x1 � x0 space for evaluation of Prob [L1(�) > 0j��] in (29)

that coarse scale detection probabilities can be low. To overcome the potential problem of selecting
the wrong area or areas of A for further re�nement at coarse scales we modify the scale-recursive
algorithm in the followingmanner. At the opening stage of the algorithm, rather than accepting the
single hypothesis with the largest generalized log-likelihood value, we consider further re�nement
of A based upon those hypotheses corresponding to the four largest log-likelihood values (excluding
H0 and H9). As will be seen in Section 6.3, despite the additional computational requirements of
this approach, the overall complexity of the algorithm remains rather low. Finally, we note that one
could extend this strategy of keeping additional structures for further re�nement to more than just
the �rst stage of the algorithm and could retain fewer or greater than four alternatives; however
for the application of interest here, the choices described above were su�cient.

6.3 Examples

In this section, we examine the performance of the scale-recursive algorithm described in Sections
6.1 and 6.2. First, we use Monte Carlo studies to verify the ability of this approach to detect
anomalous structures. The quantities of interest here are the sample probability of detection, �Pd,
the sample average value of the number of false alarms per pixel �Pf , and the sample probability
of error, �Pe. We say that a particular rectangular anomaly, ��, has been detected if there exists
a column in bB which is su�ciently close to ��. Speci�cally, we de�ne a \region of ambiguity"
associated with the anomaly structure currently under investigation. This area is constructed such
that anomaly structures identi�ed in this region are \essentially indistinguishable" from the true
anomaly. More formally, we compute the probability of successfully distinguishing �� from each
member of J in a binary hypothesis test of the form in (28a){(28b). For each such test, the
amplitudes of the two anomalies are chosen so that relative to the anomaly-free background, the
two structures are equally detectable (i.e. they individually have the same d2 value as de�ned with
Pd = 0:85 and Pf = 0:10 in (18) and (26).) A pixel in A is said to be in the ambiguity region if (1)
there exists a member of J which is nonzero on that pixel and (2) the probability of distinguishing
that element of J from �� is below a given threshold, taken as 0.85 for all problems considered in
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Figure 10: In (a){(c) detection probabilities are displayed for binary hypothesis tests where �g� is
the structure in Figure 5(a) and the hypotheses are pairs of structures from J . For each such test,
one of the hypotheses is a larger scale structure overlapping �g� while the second structures is from
the same scale as the �rst but is disjoint from the pixels of �g�. The shade of each square in (a){(c)
is the probability of correctly choosing the overlapping structure when the alternate is the anomaly
occupying the square under investigation. The ABR for the true structure is 1.5. The minimum
Pd at each scale as a function of true anomaly's ABR is shown in (d).

this section. Finally, for an estimated structure to be called a detection the area of intersection
between it and the region of ambiguity must be at least a quarter of the area of the estimated
structure. Such a de�nition implies a constraint on the localization of an estimated anomaly in
both space and scale before we will call it a detection. As an example, the region of ambiguity
at Pd = 0:85 associated with the anomaly structure in Figure 5 is displayed in Figure 11. The
elements of bB which do not correspond to detections are taken to be false alarms and the per-pixel
false alarm rate, �Pf , is de�ned as the total number of false alarm pixels divided by the number of
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pixels in region A. Finally, the sample probability of error is �Pe = 1� �Pd + �Pf .
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Figure 11: Region of ambiguity for structure shown in Figure 5 for Pd = 0:85.

We also examine the computational complexity of the scale-recursive algorithm. The complexity
of the algorithm is quanti�ed in terms of the number of Generalized Likelihood Ratio Tests (GLRTs)
which must be performed in the processing of the data. As the spatial decomposition of region A
is driven by the noisy data, the number of GLRTs will vary from one data set to the next. Thus,
for a particular �g�, the computational performance is based upon the average number of required
GLRTs required per iteration of the corresponding Monte-Carlo.

Finally as discussed in Section 1, the detection algorithm results are used to improve the solution
to the full reconstruction inverse problem. From our model for  in (6), the estimate of the overall
conductivity is the sum of the estimates of � and ~, denoted �̂ and ~̂ respectively, where �̂ = B̂â is
provided by our scale-recursive detection algorithm. Now, the linear least-squares estimate (LLSE)
of ~ developed in [37,40] is based upon the assumption that no anomalies exist in the data; however,
the output of the detection algorithm provides additional information through �̂ as to the structure
of the conductivity �eld. To make use of the information in order to improve the estimate ̂, we
de�ne ~̂c as the LLSE of ~ based upon a \corrected" data set in which the e�ects of �̂ have been
removed. Mathematically this corrected estimate takes the form

~̂c = P�TR�1
h
� � �B̂â

i
(33)

where P = (�TR�1�+P�1
0

)�1 is the error covariance matrix for nominal LLSE. Thus, the estimate
of the overall conductivity �eld is

̂ = ~̂c + �̂ = P�TR�1� +
�
I � P�TR�1�

� B̂â (34)
where we recognize the term P�TR�1� as the uncorrected LLSE estimate [49].

Unless otherwise stated, the data upon which the examples are based are generated using the
Born-based measurements model in (2) for the scattering experiments described in Table 1. For
all cases consider, the background conductivity, g0, is set to 1 S/m and at the highest ABRs of
interest, the anomaly amplitudes are only 0.7 S/m. As discussed in [25], under these circumstances
the Born approximation is known to be valid. In Section 7, we discuss issues associated with
extending the work in this paper to account for the underlying non-linearity associated with the
inverse conductivity problem. Finally, for all experiments the parameter � in (14) is set to 0.25.
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6.3.1 The Single Anomaly Case

We begin by considering the case where it is known that there is a single anomaly of unknown
amplitude and location in region A. Given that there is only one structure, the combinatorial
complexity associated with an \exhaustive search" for the anomaly is su�ciently low that we shall
compare both the detection/false-alarm performance as well as the complexity of the scale-recursive
approach against an alternate algorithm akin to a multi-scale matched �lter. This algorithm detects
the single anomaly by computing the GLRT for each of the structures in family J taking that
element of J associated with the largest GLRT statistic as the estimate. Because this method
is multiscale in nature and has a �xed number of GLRTs per Monte-Carlo iteration (since there
are a �xed number of structures in J ) it allows for a fair comparison against which we can judge
the performance of the scale-recursive algorithm. For the scale-recursive method, we shall account
for the knowledge that there is only a single anomaly in A by retaining only the column of Bleaf
associated with the most likely anomaly structure. Finally, for this example, the true anomaly
structure is shown in Figure 5 and the SNR for all scattering experiments is 10.

In Figure 12 we show �Pd, �Pf , �Pe and the average number of GLRTs per Monte-Carlo iteration
as a function of anomaly-to-background ratio obtained after 500 Monte-Carlo iterations. The solid
lines are the results for scale-recursive algorithm and the dashed lines indicate the performance of
the multi-scale exhaustive search procedure. Figure 12(a) indicates that at low ABRs, the scale-
recursive approach tends to have a higher detection probability than the exhaustive search with a
slightly higher probability of false alarm. Even for the low ABR of 0.50, �Pd is well above 50% and
rises to above 90% for ABR values greater than one. At high ABRs the performance of the two
algorithms is about the same. Despite the slightly higher �Pf of the scale-recursive approach, the
overall error probability is lower for the scale-recursive method at these small ABRs. Finally, from
12(c) the computational complexity of the scale-recursive characterization algorithm is seen to be
roughly constant across the ABR range at 65% that of the exhaustive search.

In Figure 13(a) we display one realization of g = �g + ~g obtained in our Monte Carlo process at
an ABR of 1.5. Using the LLSE to perform the full reconstruction as in [40] results in the image
in Figure 13(b). By incorporating the results of the scale-recursive detection algorithm into the
inversion procedure through the use of (34), we obtain the estimate of the overall conductivity �eld
shown in 13(c). Thus, successful identi�cation of the highly parameterized anomaly structures can
signi�cantly improve localization both in space and scale and the GLRT procedure results in an
accurate estimate of the structure's amplitude. Also, the details in the remainder of the estimate
do in fact reect the coarse scale, fractal features of the conductivity pro�le in Figure 13(a).

6.3.2 The Multiple Anomaly Case

We now turn our attention to the case where multiple anomalies exist in regionA.4 Lifting the single
anomaly assumption causes the computational complexity of an exhaustive-search-type of approach
to be prohibitive in that one would be required to examine the likelihood of all combinations of
all non-overlapping, structures in a collection such as J assuming separately n = 1 then n = 2
through n = Nmax anomalies exist in region A where Nmax is a pre-determined maximum number
of anomalies. Thus, here we present only the results of the scale-recursive detection algorithm. In
particular, we explore the performance for the anomaly con�guration in Figure 14.

4Note that in this multi-anomaly case, the ABR is used to determine the magnitude of each structure individu-
ally.For example at an ABR of one, the amplitude of the left anomaly is set so that if it were the only structure in
the medium, the ABR would be one.
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(a) �Pd (top curves) and �Pf (bottom
curves) for the anomaly in Figure 5(a)
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(b) �Pe for the anomaly in Figure 5(a)
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Figure 12: Performance curves as a function of ABR obtained after 500 Monte-Carlo iterations
for the anomaly in Figure 5(a). Solid lines = results for scale-recursive algorithm. Dashed lines =
results for multi-scale exhaustive search. The error bars are drawn at the plus/minus two standard
deviation level.

The Monte-Carlo results for this experiment are displayed in Figure 15 where the top two
curves of (a) correspond to the individual �Pd statistics for the two anomalies and the lowest of
the three curves is a plot of �Pf . Here we see that both structures are quite easily detected with
a �Pd of well over 90% even at the low ABR of one. As is expected, removing the single-anomaly
assumption causes the algorithm to retain a greater number of candidate structures (including the
true anomalies) thereby raising �Pf above that seen in Section 6.3.1.

In Figure 15(c) we plot the average number of GLRTs as a function of ABR. Note that at
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(a) Anomaly in fractal background
(ABR=1.5)
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(c) Reconstruction of conductivity
in (a) using (34)

Figure 13: Comparison of reconstructed conductivity pro�le using the LLSE of [40] and an estimate
based upon the output of the scale-recursive anomaly detection algorithm. The true conductivity
is shown in (a) and contains a single anomaly near the center of the region. The LLSE is shown
in (b) and the estimate obtained from (34) is illustrated in (c). Here we see that the use of the
information from the detection algorithm allows for the successful localization of the anomaly in
space and scale without sacri�cing our ability to resolve the fractal features of the conductivity
pro�le in (a). Additionally, the GLRT procedure results in an accurate estimate of the anomaly's
amplitude.

worst the complexity of this algorithm is still well below the complexity of the single-anomaly
exhaustive search algorithm and only about 30% greater than the complexity of the single-anomaly
scale-recursive algorithm. Thus, despite the fact that the multiple anomaly problem is, from a
combinatorial viewpoint, signi�cantly more complex than the single anomaly case, we see that the
scale-recursive localization method represents a highly e�cient and accurate means of localizing an
unknown number of structures in the region of interest.

In Figure 16, we compare the full reconstruction results obtained from the LLSE to those where
(34) is used to estimate the underlying conductivity for one run of the Monte-Carlo at an ABR of



Accepted for publication in Multidimensional systems and signal processing 25

x

z

0 20 40 60 80 100

0

20

40

60

80

100

Figure 14: Two-region anomaly structure

1.5. From Figure 16(b) we see that the LLSE is successful in reconstructing the structure on the
left; however, the lower amplitude/more pixel anomaly is almost completely undetected. Figure
16(c) indicates that the incorporation of the information from the anomaly detection algorithm
signi�cantly improves the localization in space as well as scale of both anomaly structures, especially
the rightmost. Finally, the anomaly amplitudes are better estimated using the GLRT method.

7 Conclusion and Future Work

In this paper, we have presented a framework based upon techniques from the areas of multiscale
modeling, wavelet transforms, and statistical decision and estimation theory for addressing a variety
of issues arising in anomaly detection problems. Beginning with a linear model relating the data
and the quantity to be reconstructed, we use the wavelet transform to take the problem from
physical space to scale space where computational complexity is reduced for a wide variety of
problems [1, 4, 41] and where we are able to take advantage of the rich and useful class of models
recently developed for describing the structure of the medium in the absence of anomalous activity
[21,35,47,50]. The problems of characterizing the number, positions, and magnitudes of anomaly
structures was formulated using the tools of statistical decision theory. To understand how the
physics of the problem and the constraints on the geometry of the data collection process a�ect our
ability to isolate anomalous regions, we de�ned and explored the issues of anomaly detectability and
distinguishability. This analysis led to the development of a scale-recursive algorithm employing a
sequence of Generalized Likelihood Ratio Tests for extracting anomaly information from data.

This work was presented in the context of a linearized inverse scattering problem arising in
geophysical prospecting. The same scattering model is encountered in a variety of other �elds
where some form of energy is used to probe a lossy medium [18{20,22,29,31]. More generally, the
analysis and algorithmic methods developed in this work require only a measurements model of
the form in (2) and are thus relevant for any linear inverse problem (eg. computed tomography) in
which anomaly characterization is of interest.

An important extension of the work presented here is in development of algorithms and analysis
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(a) �Pd (top curves) and �Pf (bottom curve)
for the anomalies in Figure 14
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(b) �Pe for the anomalies in Figure 14
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Figure 15: Performance curves obtained after 500 Monte-Carlo iterations of scale-recursive detec-
tion algorithm for the anomalies in Figure 14. Solid lines in (a) and (b) are detection and error
probabilities for the upper left anomaly while dashed lines are for lower right anomaly. The error
bars are drawn at the plus/minus two standard deviation level. In (c), the computational complex-
ity associated with this scenario is shown by the solid line. For comparison, the dashed line is the
complexity associated with the single anomaly exhaustive search.

methods for detecting anomaly structures using the nonlinear physics governing the relationship
between the conductivity and the observed scattered electric �eld. The primary di�culty here is
maintaining or improving the detection/false-alarm performance of the current method while re-
taining the low computation complexity in an algorithm based upon a signi�cantly more complex
scattering model. In [38] we present preliminary results for one form of a scale-recursive anomaly
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(b) Reconstructed conductivity using
LLSE method of [40]

0

0.05

0.1

0.15

x

z

0 20 40 60 80 100

0

20

40

60

80

100

(c) Reconstructed conductivity using
(34)

Figure 16: Comparison of reconstructed conductivity pro�le using the LLSE of [40] and an estimate
based upon the output of the scale-recursive anomaly detection algorithm. The true conductivity
is shown in (a) and contains a two anomalies. The LLSE is shown in (b) and the estimate obtained
from (34) is illustrated in (c). Here we see that the use of the detection information allows for
the successful localization of both anomaly structures and o�ers a signi�cant improvement over the
LLSE in localizing the anomaly in the lower right.

characterization algorithm using the computationally e�cient, nonlinear Extended Born Approxi-
mation [48]. Further work remains in the exploration of detectability and distinguishability in the
nonlinear context and the extension of this approach to higher frequency (eg. microwave) problems.

Another avenue of research is in the use of alternate methods for progressively dividing the
region of interest. The problem of anomaly detection is similar to that of image segmentation in
that the goal of both is to partition a two-dimensional grid of pixels into disjoint regions. The
primary di�erence between these two problems is the data. In the segmentation case the data are
the pixels in the image whereas we wish to do the anomaly localization given the signi�cantly less
informative observations of scattered radiation. For the segmentation problem, signi�cant work has
been performed in the use of hierarchical methods for performing this decomposition. For example,



Accepted for publication in Multidimensional systems and signal processing 28

segmentation techniques have been developed where (a) small structures are merged into larger
regions [36, 42] and (b) both splitting as well as merging operations are used in the segmentation
process [28]. Examining the utility of merge- and split/merge-algorithms for the anomaly detection
problem would be of considerable interest especially as a means of overcoming the di�culties of
detecting small-scale structures using large scale hypotheses.
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In this paper we present an algorithm for the detection, localization, and characterization of
anomalous structures in an overall region of interest given observations of scattered electromag-
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1 Introduction

A common problem arising in a variety of application areas is the non-invasive detection, local-

ization, and characterization of anomalous areas in an overall region of interest given observations

of scattered acoustic or electromagnetic radiation collected along a portion of the region's bound-

ary [9, 15]. For example, tumor detection in otherwise healthy tissue arises frequently in many

areas of medical signal processing [1]. In geophysical exploration, particularly low values of elec-

trical conductivity in a region of the earth provide one indication as to the presence of oil [18].

Finally, there has been signi�cant interest recently in the use of ground penetrating radar for the

detection of buried objects such as land mines and metallic drums containing hazardous waste [14].

Typical methods for solving this anomaly detection problem proceed by �rst forming an image

of distribution of a particular physical quantity (eg. sound speed or electrical permittivity) internal

to the medium and subsequently post-processing the reconstructed pro�le to locate and classify

anomalous areas [9, 15]. The problem of image formation from scattered �eld measurements (also

known as the inverse scattering problem) presents a collection of di�culties which makes this image-

then-detect approach rather unattractive. First, because the reconstructions are obtained typically

over a �ne scale grid of pixels, these problems are computationally intensive. The complexity of

many practically interesting problems is further increased by the non-linear relationship between the

physical parameter of interest and the observed scattered �elds. The resulting imaging algorithms

require the solution of a large-scale, non-convex, non-linear optimization problem [18].

Additional problems arise from the fact that one often is restricted to probing the medium with

sources operating at only a few frequencies and observing the scattered �elds over a limited portion

of the region's periphery. As discussed in [11,13] under these circumstances the imaging problem is

highly ill-posed in that the information content in the the data does not support a stable �ne-scale

reconstruction of a pixelated representation of the physical parameter. Commonly, this problem
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of ill-posedness is solved through the use of a regularization scheme which enforces a degree of

smoothness in the reconstruction [10]. The use of such a regularizer for anomaly characterization

serves to increase the di�culty of detection and identi�cation after image formation. Typical targets

represent regions where the medium's structure is locally not smooth. Imaging with a smoothness

regularizer results in a low-pass image in which these distinguishing anomaly characteristics are

softened thereby increasing the di�culty of subsequent detection and identi�cation.

Over the past decade, signi�cant research has been performed on the detection of anomalies

directly from scattered �eld data. Rather than solving a large, ill-posed imaging problem, these

techniques employ statistical signal processing methods to extract from the data a relatively small

number of geometric parameters describing the distribution of anomalous structures. In [15], Rossi

and Willsky considered the use of estimation-theoretic analysis and algorithmic methods for deter-

mining the location of a single object of known size and structure given noisy and sparse computed

tomography (CT) measurements. Devaney and co-workers [3, 17] extended these results to di�rac-

tion tomography (DT) and exact scattering applications. In [2], Bressler, Fessler and Macovski pre-

sented an algorithm for determining the locations and geometric structures of an unknown number

of anomalies based on CT measurements. A similar problem is considered in [16, 20], where the

authors were concerned with the detection of an unknown number of circular objects of unknown

radii given noisy CT observations. The iterative algorithms in [16,20] began by identifying a large

collection of likely targets with subsequent steps (a) pruning away structures which were deemed

unlikely to be actual objects (b) re�ning the estimates of the radii and locations for the remaining

objects.

A decision-theoretic, multiscale algorithm based on a sequence of M-ary, hypothesis tests was

presented and analyzed in [11] for the characterization of an unknown number of anomalous regions

of unknown size, shape and amplitude for problem in which a linear model related the anomalies to
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the measurements. The approach in [11] began by identifying a small number of large sized regions

in which anomalies were likely to exist. Subsequent processing steps re�ned these estimates and

provided for the re-partitioning of each coarse scale region to account for the existence of multiple

structures. The application of interest was a di�raction tomography problem arising in geophysical

exploration.

In this paper, the problem of detecting and localizing an unknown number of anomalous areas

is addressed for problems where linear scattering models are not valid so that the full, nonlinear

physics must be incorporated into the processing. As in [11], the fundamental idea behind the

approach presented here is the use of a sequence of hypothesis tests which begin by localizing

anomalous behavior to a few, large sized areas and subsequently \zoom in" to better localize

the true target structures. It should be noted that the spatial subdivision process considered

here is quite di�erent from that in [11]. In addition to the use of a non-linear scattering model,

here we introduce a decision-theoretic regularization method which allows for the inclusion of

prior information speci�cally tailored to the anomaly detection problem. Expectations regarding

the number, sizes and shapes of anomalous areas are easily and naturally incorporated into the

hypothesis testing process. While we do not examine the issue extensively in this work, the anomaly

detection algorithm has a structure making it well tailored for a computationally e�cient, parallel

implementation. As in [11], we concentrate on a low-frequency geophysical inverse conductivity

problem.

In Section 2 of this paper the scattering model and problem of interest are presented. An

overview of the relevant detection methods is provided in Section 3. The multiscale anomaly

detection algorithm is described in Section 4 and examples provided in Section 5. Section 6 is

devoted to conclusions.
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2 Problem Formulation

2.1 The Scattering Model

We consider a two-dimensional inverse conductivity problem illustrated in Fig. 1 where there

exist a set of electromagnetic line-sources oriented perpendicularly to the page emitting time-

harmonic waves into a lossy medium. The medium is characterized by the free space values for

electric permittivity, �0, and magnetic permeability, �0 and a conductivity pro�le modeled as the

sum of a constant background, g0, and a collection of anomalies described by the function g(r). The

goal of the problem is to characterize g(r) from noisy, pointwise observations of the component of

the scattered electric �eld oriented perpendicularly to the page. These measurements are obtained

along receiver arrays positioned on the vertical edges of A from K scattering experiments. Each

experiment produces a vector of measurements, yi, comprised of the in-phase and quadrature

components of the scattered �eld obtained over a single receiver array due to energy put into the

medium from one of the sources operating at a frequency, fi = !i=2�.

As discussed in [18], the relationship between g(r) and the jth element of yi; that is, the

measured scattered �eld at position rj is

yi(rj) = {!i�0

Z
A

Gi(rj; r
0)Ei(r

0)g(r0)dr0 + ni(rj) (1)

where ni(rj) represents additive noise, Gi(r; r
0) is the Green's function for the problem and Ei(r)

is the component of the total electric �eld perpendicular to the page. From [18], Ei(r) satis�es

Ei(r) = �Ei(r) + {!i�0

Z
A

Gi(r; r
0)g(r0)Ei(r

0)dr0 (2)

with �Ei(r) = Ii{!i�0Gi(r; ri) the background �eld generated by a line source with current density

Ii positioned at ri. Finally Gi(r; r0) = {=4H(1)
0 (ki;0jr� r0j) is the Green's function for this problem

with k2i;0 = !2i �0(�0 + {g0=!i) and H
(1)
0 (z) the zeroth order Hankel function of the �rst kind.

A discrete representations of (1) is obtained using the method of moments (MOM) [8] where g(r)

and Ei(r) are expanded in pulse bases (i.e. zeroth order splines). A Galerkin scheme is employed
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to discretize (2) using the same same pulse bases. Upon discretization, (1) and (2) reduce to

yi = Gi;sD(Ei)g + ni (3a)

Ei = �Ei +GiD(g)Ei (3b)

where g is a lexicographically ordered vector of expansion coe�cients for g(r), Ei (resp. �Ei) is

a vector of coe�cients for Ei(r) (resp. �Ei(r)), Gi;s (resp. Gi) is a matrix representation of the

integral kernel in (1) (resp. (2)), and D(x) is the diagonal matrix whose (i; i)th element is the ith

component of the vector x. Solving for Ei in (3b) and substituting the result in (3a) gives

yi = Gi;sD

n
[I�GiD(g)]�1 �Ei

o
g + ni � hi(g) + ni: (4)

In this paper, ni is taken to be additive, white Gaussian noise uncorrelated from one observation

vector to the next. Thus, ni � N (0; riI) and E[nin
T
j ] = riI�(i � j) where I is an appropriately

sized identity matrix and �(n) is the Kronecker delta.1 Finally, we collect the data from the K

scattering experiments into a single vector, y so that the overall observation model is given by

y = h(g) + n (5)

where yT = [yT1 yT2 : : :yTK], h(g) and n are de�ned accordingly, and n � N (0;R) with R =

diag(r1I ; r2I; : : : ; rKI).

One di�culty with the use of (4) in the context of an inverse problem is that of computational

complexity. A basic component of any inverse problem is the evaluation of yi for various values

of g. According to (4), each such evaluation requires the inversion of the large, dense matrix

I �GiD(g). In fact, for a discretization of A into an Ng � Ng array of pixels, this matrix is of

size N2
g � N2

g . To overcome this computational burden, the algorithm discussed in Section 4 is

implemented using the nonlinear, extended Born approximation (EBA) [6] to the true scattering

model. That is, for all computations, hi(g) is replaced by hEBAi (g) where a detailed discussion

of hEBAi (g) may be found in [6, 13, 18]. Like the true scattering physics, the EBA is a nonlinear

1The notation x � N (m;P) indicates that the random vector Mx has a Gaussian probability distribution with
mean m and covariance matrix P.
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function of the conductivity. For the geophysical application of interest here, the EBA has been

shown to provide a highly accurate approximation of hi(g) even for conductivity pro�les where the

more common Born or Rytov linearized models are no longer valid [6,18]. The principle advantage

of the EBA is that the computational complexity of the approximation is a small fraction of that

associated with the exact scattering model [18].

2.2 The Anomaly Model

Because the MOM discretization procedure pixelates A into an array of rectangular cells and

because the algorithm in Section 4 performs anomaly localization through a process of spatial

subdivision, we are lead naturally to consider a representation for g in which anomalous regions

are de�ned to be superpositions of rectangular subsets of A. Referring to Fig. 2, the structure of

the ith anomaly in A is de�ned by its magnitude, its size, and its location in A. Mathematically,

the form for the anomalous behavior of the conductivity over the region A is

g =
NaX
j=1

bjaj = Ba: (6)

Here, Na is the number of anomalous regions located in A, aj is a scalar de�ning the magnitude of

each anomaly, and bj represents the discrete indicator function over the jth rectangular region. In

(6), the column vector a represents the collection of anomaly amplitude coe�cients while B is the

matrix whose jth column is the lexicographically ordered form of bj . We note that the algorithm

in Section 4 is not dependent upon the assumption of rectangular anomalies; rather structures with

arbitrary shapes and orientations can be employed in principle through the appropriate speci�cation

of the matrixB. Finally, the anomaly detection problem may now be stated in the followingmanner:

Given the data and the noise statistics, determine the structure of the matrix B and the vector a,

i.e. �nd the number, locations, sizes, and the amplitudes of the anomalous regions in A.
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3 M-Ary Hypothesis Testing

The anomaly detection algorithm to be presented and analyzed in Sections 4 and 5 is based

on a sequence of M-ary hypothesis tests [19] in which each hypothesis corresponds to a particular

anomaly distribution in A. That is, the mth hypothesis for one such test takes the form

Hm : g = Bmam (7)

for m = 0; 1; : : : ;M � 1. In (7) Bm describes the geometric characteristics of the hypothesized

anomaly con�guration and am is the associated amplitude vector.

Given a data vector, the hypothesis test itself may be viewed as a rule for selecting the \best"

anomaly con�guration from among the M possible choices. In this paper, the following maximum

a posteriori (MAP) procedure is employed

Choose Hm with m = argmax
j

log
h
pyjHj

(YjHj)
i
+ log (pj) (8)

where pyjHj
(YjHj) is the probability density function for the data under Hj and pj represents the

prior probability that Hj is in fact true. The Gaussian model for n allows (8) to be written as

Choose Hm with m = argmin
j

1

2
ky � h (Bjaj) k

2
R�1 + �j (9)

� argmin
j

`j(y) + �j

where kxkA � xTAx and �j = � log (pj).

For the anomaly detection algorithm in Section 4, the amplitude vectors, am, are assumed to

be deterministic, but unknown quantities. Thus, a generalized hypothesis test is employed in which

am in (7) is replaced by the following estimate of am given the data

bam = argmin
am>�g0

1

2
ky� h (Bmam) k

2
R�1 + �2kamk: (10)

The notation am > �g0 implies that each element of the vector am is greater than the negative of

the background conductivity and is required to ensure that the overall conductivity in region A, is

greater than zero [18]. As in [11], (10) represents a regularized, maximum likelihood estimate of the

amplitude vector where the second term is used to o�set any ill-posedness in the estimation problem.
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The solution to this constrained non-linear, least squares optimization problem is obtained using a

Gauss-Newton algorithm [4] modi�ed to account for the bound constraint in am.

The evaluation of the each likelihood statistic, `m(y), requires the solution of a non-linear

optimization problem; however, the dimension of each problem is equal to the number of anomalies

associated with Hm which is typically far less than the number degrees of freedom found in imaging

application [13, 18]. Thus, the computational burden of each optimization problem is quite small

relative to an image-then-detect approach. For all examples presented in Section 5, the Gauss-

Newton method typically converged in well under 10 iterations. Finally, while the hypothesis

test does require the solution of many small optimization problems, each `m(y) may be evaluated

independently so that complexity can in principle be kept low through a parallel implementation

of the test.

4 The Anomaly Characterization Algorithm

Here we present a multiscale algorithm for the detection and characterization of an unknown

number of anomalous areas in region A based on a sequence of MAP hypothesis tests. Two classes

of tests are employed in this algorithm where each test takes as input the current estimate of the

anomaly structures in the form of a geometry matrix, bB, and an estimated amplitude vector ba.
The overall algorithm is a sequence of localization hypothesis tests which \zoom in" on the true

anomalous regions coupled with pruning tests designed to eliminate false alarms thereby controlling

the amount of work required to identify true anomalous structures.

In Fig. 7, a pseudo-code listing of the algorithm is displayed. The algorithm begins with a

single localization test in which anomalous activity is identi�ed in a collection of relatively large

size areas in region A. After this coarse-scale detection procedure, the basic processing step is

comprised of a single localization-type test followed by a sequence of one or more pruning tests.
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The algorithm terminates when successive null hypotheses are chosen for both a localization test

and then a pruning test; that is, when it is determined that no further subdivision is warranted and

no structures should be removed from the current con�guration. Essentially, this approach grows

a tree of hypothesized anomaly con�gurations where the root of the tree is a single anomaly over

all of region A and the leaves are either new anomaly structures or increasingly localized estimates

of current anomalies.

A key feature of this procedure is the speci�cation of the non-negative penalty terms, �j , in

(9) (or equivalently the prior probabilities pj = e��j ) to control the manner in which the tree

is both grown (i.e. new anomalies are added or old ones further re�ned) as well as pruned (i.e.

structures are removed from processing.) For example, hypotheses may be penalized to a greater

or lesser degree depending on features such as the number of anomalies associated with Bm, the

spatial distribution of these structures, or geometric characteristics such as area or shape. Thus,

in their ability to mathematically capture prior expectations and constraints, the �j play the same

role in the hypothesis testing framework as that of a smoothness regularizer in a more traditional

imaging-type problem [10]. In the anomaly detection context, the property of smoothness is not of

concern, but rather geometric characteristics of the anomaly distribution are the natural features

for which prior models are required. The remainder of this section is devoted to a description of

both classes of hypothesis tests.

4.1 The Localization Hypothesis Test

Given an estimated con�guration of anomalies in region A, the spatial re�nement hypothesis

test used here indicates either that no further localization is deemed necessary or further re�nement

is warranted in which case only a single structure in the current anomaly collection is further sub-

divided. Formally, suppose that N regions in A have been identi�ed as containing anomalies so

that bB contains N columns, bbj , j = 1; 2; : : : ; N . Localization to smaller regions of A is obtained
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through the use of a test with 8N+1 hypotheses. The �rst hypothesis corresponds to retaining the

current bB indicating that no further localization is warranted. Under the next 8 hypotheses, the

�rst column of bB is replaced by one or more columns corresponding to anomalies with support over

a subset of the region corresponding to bb1. This same construction is repeated with bb1 replaced by

bbj for j = 2; 3; : : : ; N . Thus, the non-null hypotheses correspond to 8N ways in which anomalies

can be better localized by perturbing only one of the N elements of bB.
In Fig. 4, the decompositions of bbj of interest in this paper are displayed. The �rst six choices

correspond to the true anomaly being located in the top, bottom, left, right, vertical middle, and

horizontal middle of the region given by bbj . The last two decompositions allow for the presence of

two anomalies in bbj : one in the top and one in the bottom or one in the left and one in the right.

By choosing one of these last two hypotheses, we are able to identify multiple structures in A.

As discussed in Section 3, we associate with each hypothesis a matrix, Bm for m = 0; 1; : : : ; 8N

where B0 = bB and for m > 0, Bm is equal to bB with one column replaced either by a single

column, as is the case for the �rst six hypotheses in Fig. 4, or two column vectors for the last two

hypotheses. In either case, we de�ne ebm to be the column(s) in Bm di�erent from those in bB.
In addition to specifyingBm, the MAP test requires that the penalty terms �m, also be speci�ed.

For the cases where ebm contains one column, we begin by de�ning a collection of quantities ~�m as

~�0 = 10�f0

�
max
k
jbbkj� (11)

and for m > 0

~�m =

8>>>><>>>>:
+1 jebmj < 4 or �(ebm) > 4

10� card(ebm)f1 �jebmj� otherwise

(12)

where jebmj is the number of non-zero pixels in ebm; �(ebm) is the ratio of the length of longer to the

shorter side of the anomaly and provides a measure of the eccentricity of the structure; card(ebm)
is the number of columns in ebm (in this case one); and f0(jbmj) and f1(jbmj) are plotted in Fig. 5.
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When ebm contains two columns, the number of nonzero pixels in each column are equal and the

geometric structures of the underlying anomalies are the same (only their positions in A di�er), so

that there is no ambiguity in assuming that jebmj and �(ebm) refer to the �rst column in these cases.

Finally, �m are obtained from ~�m via

�m = ~�m � log

 
8NX
k=0

~�k

!
(13)

thereby ensuring that
P8N

m=0 pm =
P8N

m=0 e
��m = 1.

The parameter � in (11) and (12) determines the overall magnitude of the penalty terms in

the hypothesis test. Thus, selection of � is analogous to the determination of the regularization

parameter in many imaging type inverse problems [5, 7]. For � too small the prior information

will have negligible impact on the hypothesis test while an excessively large value of � negates the

inuence of the data. In this paper, � is chosen using the following somewhat ad hoc approach

� =

�
log10

1

2
ky� h(1ba)k2R�1

�
� 1 (14)

where 1 is the indicator function over all of region A, ba is the ML amplitude for an anomaly with

this structure, and bxc is the greatest integer less than or equal to x. Thus, � is selected so that

the largest of the ~�m is roughly an order of magnitude less than the size of the covariance weighted

error between the data and the initial estimated anomaly structure used in the algorithm.

Fig. 5 and eqs. (11) and (12) demonstrate that the penalty terms are chosen to reect prior

expectations regarding the sizes, shapes and number of anomalies in region A. The structure

of f0(jbmj) indicates that as the size of the largest structure in bB increases, the penalty for not

performing a decomposition increases thereby encouraging the decomposition of larger structures.

The �rst condition in (12) is used to ensure that no structures are identi�ed if they contain few than

four pixels or if they are too long and fat or tall and thin. That is, we require anomalies to have

a minimum area and not be excessively elongated. The second condition in (12) and the form of

f1(jbmj) indicate that the penalty increases as the number of columns in ebm increases and the size
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of the structures decreases. Thus, the prior expectations serve to prevent the identi�cation of many

small anomalies in region A. Clearly, depending on the application, other prior modeling choices are

both possible and interesting. The selection made here is useful for the inverse conductivity problem

under consideration and provides a successful demonstration of the utility of prior modeling in an

hypothesis testing framework for capturing information not commonly accessible to traditional

regularization schemes.

4.2 The Pruning-Type Hypothesis Test

The second class of hypothesis tests used here are designed to eliminate from consideration

previously identi�ed regions which are unlikely to actually contain anomalies. Given an estimated

geometry matrix bB with N columns, the anomaly removal hypothesis test consists of N + 1 hy-

potheses with B0 = bB and for m = 1; 2; : : : ; N ,Bm equals bB with the mth column removed. Thus,

at most one structure is eliminated per hypothesis test.

With bbm the column of bB removed for the mth test, ~�m for the pruning-type hypothesis test is

~�m =

8>>>><>>>>:
10�f2(N) m = 0

10�f3(jbbmj) m = 1; 2; : : : ; N

(15)

where f2(N) and f3(jbbmj) are shown in Figs. 5(a) and (b), � is chosen as in (14), and �m are

obtained from ~�m using (13). As seen in Fig. 5, the form of f2(N) indicates an increasing penalty

as the number of estimated structures rises. Also, Fig. 5(a) shows that ~�m increases as the size

of the anomaly being removed from consideration rises thereby penalizing against the premature

removal of large-scale structures.

4.3 Initial Localization

For the algorithm presented in this section to detect and localize relatively small anomalies,

during the initial processing stages the correct large scale structures which overlap the true, smaller

sized anomalies must be chosen for further processing. In [11], this coarse-scale localization issue
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was analyzed in depth for a decision-theoretic anomaly detection algorithm applied to a scattering

problem identical to the one considered here but using a linearized model rather than the non-linear

model of Section 2. There, it was shown that the probability of a coarse scale miss was unacceptably

high. In that case, performance was improved simply by retaining a greater number of coarse-scale

regions for further decomposition than would otherwise be the case.

With these results in mind, in this paper we address the problem of coarse scale localization

by modifying the hypothesis set used in the �rst localization test. Speci�cally, we supplement the

decompositions of region A presented in Fig. 4 with those shown in Fig. 6 making for a 15-ary initial

hypothesis test rather than the 8-ary test described in Section 4.1. Additionally, after performing

this expanded localization-type test, we retain for further processing all other areas in region A not

part of the chosen decomposition. For example, if the selection labeled \Horizontal middle two"

is chosen from Fig. 6, then four anomalies are identi�ed for further processing: the two square

structures in the middle of region A as well as the two long, narrow regions at the top and bottom.

While alternate means may be developed for addressing this issue of coarse scale localization, the

method described here balances the conicting requirements of an exhaustive, �ne scale search over

region A for likely targets and the desire to limit the computational overhead of the algorithm.

5 Examples

We consider the problem of characterizing conductivity anomalies given data from the scattering

experiments described in Table 1. Region A is 100 m� 100 m and discretized into a 16� 16 array

of pixels. The background conductivity is 0.1 S/m. The source frequencies are 100 Hz (used in

a cross-well con�guration) as well as 1 and 10 kHz (used to obtain information near the left edge

of A). Both receiver arrays consist of 32 equally spaced elements extending from z = �0:05 m to

z = 100:05 m. The left array is located at x = �0:05 m and the right at x = 100:05 m. The six
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sources are located along the line x = �0:05 m equally spaced from z = 0:05 m to z = 99:95 m.

The anomalies in all experiments are taken to have amplitudes of 1 S/m representing a 10:1

contrast against the background conductivity. Under conditions such as these, it is well known that

the Born and Rytov linearizations of the scattering physics fail to hold thereby necessitating the

use of a more complete, nonlinear scattering model. While the detection algorithm is based on the

extended Born approximation (EBA) described in Section 2.1, the data vectors for all simulations

are generated using the exact scattering model in (3a) and (3b).

The performance of the anomaly detection algorithm is assessed using a collection of di�erent

anomaly con�gurations under a variety of signal to noise conditions. For the model yi = hi(g)+ni

with yi 2 R
Ni and ni � N (0; r2i I), the signal-to-noise ratio (SNR) in decibels is de�ned as

SNRi = 10 log10

(
[hi(g)]

T [hi(g)]

Nir
2
i

)
: (16)

For each anomaly con�guration performance is examined at SNRs of 40, 20, 10, and 0 dB. Given an

anomaly and SNR combination, the detection algorithm is executed for 10 independent realizations

of the measurement noise process with the results of these runs forming the basis for our evaluation.

The information for each anomaly con�guration is analyzed both quantitatively as well as

qualitatively. From a quantitative perspective, we are concerned with the detection and false alarm

probabilities associated with the algorithm. An anomaly is classi�ed as having been detected if the

bB matrix produced at the last stage of the algorithm contains at least one structure which overlaps

the true anomaly structure. All structures in the �nal bB matrix not corresponding to detections are

taken to false alarms. The statistic of interest here is the rate of false alarms per unit area de�ned

as number of falsely identi�ed pixels divided the total number of pixel in A. Finally, the results of

the anomaly detection algorithm are compared against those of an imaging-type inverse scattering

algorithm described in [13]. This reconstruction procedure requires the solution of a nonlinear least

squares problem. The method of [13] is based on a form of the Levenburg-Marquardt algorithm
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and makes use of the EBA to lower the algorithm's computational complexity.

While it is not the objective of this paper to provide an exhaustive analysis of the computational

complexity of the anomaly detection algorithm, this approach is generally more e�cient than the

imaging technique of [13]. All algorithms in this paper have been implemented in Matlab and

executed on a dual processor, SparcStation 20 with 64Mb of internal RAM. The time required

for a single run of the anomaly detection algorithm varied from 4 to about 7 hours depending

on the underlying anomaly con�guration and the noise conditions. For the imaging algorithm, 50

iterations of the Levenburg-Marquardt technique were used to process each data set at which point

the algorithm had converged to a minimum of the least-squares cost function. In contrast to the

detection-based approach, the imaging algorithm required between 24 and 36 hours of processing.

5.1 Experiment I: A Single Anomaly

The �rst anomaly con�guration of interest here is shown in Fig. 7(a) and consists of a single

structure located near the middle of region A. As discussed in [11{13], for inverse problems of

the type considered in this paper, the ability to resolve anomalous behavior is greatest near either

vertical edge of region A where the sources and receivers are located. For locations in the middle

of the region, it becomes increasingly di�cult to detect structures or resolve �ne scale detail in

the conductivity pro�le. Finally, the structure in Fig. 7(a) is aligned on the underlying grid of

16� 16 pixels in such a manner that it is not possible for a decomposition scheme based upon the

hypotheses in Figs. 4 and 6 to produce an estimated anomaly which is exactly of the same shape

as the truth. Thus, this example represents a particularly challenging anomaly con�guration for

the algorithm.

In Fig. 7(b), the detection and false alarm probabilities are displayed for this case where the

error bars indicate plus and minus two standard deviations from the sample mean. For the 40,

20, and 10 dB SNR cases, the anomaly was detected 100% of the time. At 0 dB, the detection
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rate drops to 80%; however for the two cases in which the target was missed, the output of the

algorithm did include an estimated anomaly located directly above the true structure. Thus, the

target essentially was localized for all runs at all SNRs. Finally, the false alarm rate is at most

5% or 12 falsely identi�ed pixels out of the 256. Sample estimates of anomaly con�guration at

40dB and 10 dB SNR are presented in Fig. 8(a){(b). The dashed lines overlaying these images

indicate the region of A occupied by the true structure. We note that at both SNRs, the anomaly

is detected. At 40 dB, there is also a small amplitude, falsely identi�ed structure while the 10 dB

example is free of such false alarms.

In Fig. 9, we display intermediate results of the algorithm for one trial at 0 dB. In Fig. 9(a), the

estimated anomaly structure is shown after the �rst location test. Here we see that the algorithm

has chosen to examine the 4 quarters of region A. Even at this coarse processing stage the structure

with the largest amplitude is the quarter in which the true anomaly resides. In Figs. 9(b){(e), the

identi�ed anomaly con�guration is shown after one quarter, one half, three quarters and all of

the processing for this trial. It is evident that well before the algorithm has terminated, the true

anomaly is rather well localized. While there do exist falsely identi�ed structures in the left side

of Fig. 9(e) their amplitudes are far smaller than that of correctly identi�ed anomaly. Thus, post-

processing the results of the anomaly detection algorithm to remove structures whose magnitudes

are in some sense small would further lower the false alarm rate. Finally, in Fig. 9(f) the results

of the imaging algorithm are displayed for the same data set used to generate Figs. 9(a){(e). In

this case, the imaging algorithm does indicate the existence of a structure in the correct location.

However, the geometric and amplitude information in this image is inferior to that generated by

the detection algorithm, and as noted previously, the generation of this image took signi�cantly

longer than that of Fig. 9(e).
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5.2 Experiment II: Two anomalies close to the left edge

In Fig. 7(c), the second anomaly con�guration of interest in this paper is presented. Here we

are interested in recovering the composition of two structures both of which are located close to

the left vertical edge of region A. As discussed in Section 5.1, previous work has demonstrated that

anomalous behavior is most easily detected near the sources and receivers. Thus, the structures

in Fig. 7(c) are meant to test the ability of the detection algorithm to successfully isolate multiple

anomalies.

For all trials and at all SNRs, Fig. 7(c) indicates that both structures are detected with a false

alarm rate again less than 5%. Sample estimates are displayed for trials at 40 dB and 10 dB SNR

respectively in Fig. 8(c){(d). The reconstruction at 40 dB is basically identical to the true structures

both in terms of geometry as well as amplitude. For the 10 dB case, both structures are correctly

identi�ed with the geometry of the lower anomaly rotated relative to that of the true structure.

Again, the amplitudes are close to the true values of 1 S/m. In Fig. 10(a){(e), the results of the

detection algorithm at various stages of processing are displayed for one trial at 0 dB SNR. After

the opening localization test, the most likely region for further decomposition corresponds to a

subset of A containing both structures. As the algorithm proceeds, this area is further decomposed

to better localize the two individual structures. Like the previous example, the falsely identi�ed

regions at the end of the algorithm are also those with the smallest amplitudes. Finally, in Fig.

10(f), the results of the imaging algorithm are displayed. For this particular data set, the imaging

approach provides a severely degraded representation of the bottom structure and entirely misses

the top anomaly.

5.3 Experiment III: Two separated anomalies

The anomaly con�guration for the last example considered in this paper is shown in Fig. 7(e).

From the previous experiments, the anomaly located close to the left edge of A should be relatively
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easy to detect while the second structure positioned closer to the right vertical edge should be less

detectable. This intuition is born out by the curves in Fig. 7(f) which show that both structures

were detected for all trials at SNRs of 10, 20 and 40 dB. At 0 dB SNR, the smaller structure was

identi�ed in all 10 trials which the larger one was detected in 8 out of the 10 experiments. As in the

�rst example, for the two cases in which this structures was not detected there was an estimated

anomaly whose support was directly adjacent to that of the true structure. Finally, the false alarm

rate for this example is again below 5%.

Sample results of the algorithm at 40 and 10 dB SNR are displayed in Fig. 8(e){(f) where it

is seen that at both noise levels, the structures are well localized. The amplitude of of the smaller

structure is quite close to 1 while that of the second structure is about 1.5 for the 40 dB case

and 2 at 10 dB. In Fig. 11, the results of one experiment at 0 dB SNR are plotted. Unlike the

previous two cases, at the opening stages of the algorithm, the anomaly with the largest amplitude

is located in a region not containing one of the true structures. Nonetheless, in the �nal estimate,

the smaller structure is exactly identi�ed and one of the estimated anomalies fully overlaps the

second, larger structure. In contrast to the results of the detection algorithm, the imaging results

for this problem, shown in Fig. 11(f) demonstrate that only a severely blurred representation of

the left anomaly is available with essentially no information present regarding the structure on the

right of region A.

6 Conclusion

In this paper, we have developed and tested an algorithm for the detection, localization, and

characterization of a collection of anomalous areas in an overall region of interest from observations

of scattered radiation obtained along the region's boundary. Our approach employs a full, non-linear

measurement model relating the anomalous structures to the observed �elds and thus provides a
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method for solving the target detection problem in cases where more common models based on the

Born or Rytov linearizations are not valid. The algorithm makes no assumption concerning the

number of anomalies present in the region or the amplitudes of these structures. While the method

presented in this paper is adapted to the detection anomalies of which are rectangular in shape, as

discussed in Section 2.2 the rectangular assumption is not required.

The anomaly detection algorithm is structured as a sequential hypothesis testing procedure

which begins by localizing anomalous behavior to relatively large areas in the overall region. Sub-

sequent tests are used to spatially re�ne the coarse-scale regions and prune away structures which

are deemed unlikely to contain anomalies. Finally, we have developed a decision-theoretic scheme

for the easy incorporation of prior information directly relevant to the anomaly detection problem

into the spatial subdivision process. A MAP hypothesis testing framework was used to capture

expectations regarding issues such as the number, shapes, and sizes of structures in the region.

The algorithm has been tested on a low frequency inverse electrical conductivity problem arising

in geophysical exploration. The results in Section 5 demonstrate that high detection and low false

alarm rates are obtainable even in highly noisy environments where more conventional imaging-type

reconstruction algorithms fail to produce useful results. The decision-theoretic detection algorithm

considered in this paper was far more computationally e�cient than the full scale imaging algorithm

and has a structure making it well suited for implementation in a parallel or distributed processing

environment where these computational gains would be signi�cantly enhanced.
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7 Figure and Table Captions
Figure 1 Inverse conductivity problem of interest in this paper.

Figure 2 General structure of anomalous regions of interest in this paper. The magnitudes, a1
and a2 of the two anomalies shown here are proportional to the color of the corresponding
rectangles.

Figure 3 Pseudo-code for anomaly detection algorithm

Figure 4 Hypothesized regions of support used in localization-type hypothesis tests.

Figure 5 Penalty functions used in construction of prior models for anomaly detection algorithm.

Figure 6 Additional regions used in initial localization-type hypothesis test.

Figure 7 Anomaly structure to be reconstructed and associated performance curves for all exam-
ples in this paper.

Figure 8 Sample reconstructions for all anomaly con�gurations at 40 and 10 dB SNR. Dotted
lines indicate true positions of anomalies

Figure 9 Reconstructions for anomaly in Fig. 7(a) in (a){(e) and estimate obtained using imaging
algorithm of [13]. Dotted lines indicate true positions of anomalies

Figure 10 Reconstructions for anomaly in Fig. 7(c) in (a){(e) and estimate obtained using imaging
algorithm of [13]. Dotted lines indicate true positions of anomalies.

Figure 11 Reconstructions for anomaly in Fig. 7(e) in (a){(e) and estimate obtained using imaging
algorithm of [13]. Dotted lines indicate true positions of anomalies.

Table 1 Data set de�nitions for observation processes of interest in the paper.
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Figure 1:

Anomaly 1

Anomaly 2

Region A

Figure 2:

Experiment Source Frequency Receiver
number Position of source (kHz) Array
1{6 1{6 fLO = 0:1 Right
7{12 1{6 fMID = 1:0 Left
13{18 1{6 fHI = 10:0 Left

Table 1:
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INITIALIZE ANOMALY ESTIMATES
Bnew := 1; Bold := Bnew;
anew := 0; aold := 0;

PERFORM INITIAL LOCALIZATION
[Bnew; anew] := extended localization test(Bold; aold);
Bold := Bnew; aold := anew;

START PROCESSING LOOP
done all := false;
while (done all 6= true) do

PERFORM A LOCALIZATION TEST.
[Bnew; anew] := localization test(Bold ; aold);

IF NO MORE LOCALIZATION, THEN SET FLAG.
OTHERWISE UPDATE B AND CONTINUE.
if (identical anomalies(Bnew;Bold))

no localize := true ;
else

Bold := Bnew; aold := anew;
no localize := false;

endif

PRUNE AWAY FALSE ALARMS ONE STRUCTURE AT A TIME
done prune := false;
while (done prune 6= true) do

[Bnew; anew] := prune test(Bold ; aold);
if (identical anomalies(Bnew;Bold) _ (number anomalies(Bnew) == 0))

done prune := true;
no prune := true;

else

Bold := Bnew; aold := anew;
endif

end

IF NO NEW LOCALIZATION AND NO PRUNING THEN TERMINATE
if ((no localize == true) ^ (done prune == true))

all done == true;
endif

end

Figure 3:
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dB for anomaly in Fig. 7(e)
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Abstract

We present a new application of the recursive T-matrix algorithm to calculate the scattered

�eld from a single or multiple metallic cylinders of arbitrary shapes. Using the equivalence
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1 Introduction

The transition matrix (T-matrix) technique is known to be an e�cient electromagnetic for-

ward solver for scattering problems involving objects with simple shapes. Finite di�erence and

method of moments (MoM) techniques both discretize the entire region of interest resulting in a

large number of unknowns, whereas T-matrix methods replace this discretization with harmonic

expansions of the �elds thereby reducing the number of unknowns for numerous problems. Wa-

terman [1] developed the T-matrix technique for single metallic or dielectric scatterers. Peterson

et.al. [2] introduced an iterative algorithm which �nds the scattering due to multiple scatterers.

Recently Chew and co-workers have developed a number of fast, recursive T-matrix algorithms for

determining the scattered �elds in a variety of scenarios [3{9]. Among this work, in [4], problems

involving electrically large dielectric objects are considered. By tesselating the objects into many

small cylindrical sub-scatterers and using multipole expansions of the �elds for each sub-scatterer

the authors arrive at a highly e�cient, T-matrix based algorithm for computing the scattered

�elds. In [7], Chew et.al. consider a scattering problem involving a group of metallic strips. Here

the method of moments is used to compute the T-matrices for each, individual strip and the same

recursion as in [6] is employed to solve the overall, multi-object scattering problem. In [8] the

scattered �eld from an ogive shaped scatterer with metallic and dielectric parts is found using the

recursive T-matrix algorithm. In that paper, as in [7], the metallic scatterer is decomposed into

a collection of strips arrayed about the boundary and the T-matrices for the individual strips are

found using the method of moments.

In this letter we consider an alternative sub-scatterer discretization for metallic objects from

that in [7, 8]. Instead of using metallic strips to model the perimeter of scatterers, we use metallic

cylinders (similar to the concept in [4]) placed about the perimeter and employ the same recursive
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algorithm given in [4] to calculate the scattered �eld. As a result, we obtained an accurate, e�cient

forward solver which does not require the use of method of moments to form the single scatterer T-

matrices. Rather we obtained these quantities by using closed form, low order harmonic expansions

associated with the small metallic cylinders. We apply this method to single electrically large

metallic objects and verify the results with those in literature and analytical results. Additionally we

demonstrate the usefulness of the method for the multi-object case by verifying against previously

published results.

2 Recursive T-matrix Algorithm

The algorithms in [3, 4, 6, 7, 9] are order recursive methods for constructing the T-matrix for a

multi-object scattering problem given the T-matrices for each individual object. The algorithm uses

the basic principle of the single scatterer T-matrix formulas in that for each object, the scattered

�elds from others are assumed a part of a total incident �eld. The recursion starts with the T-

matrices of individual scatterers, then one by one scatterers are incorporated into the equation and

the T-matrices are updated until the �nal form of the T-matrix, including all multiple scattering

e�ects, is obtained.

Formally, for L scatterers, the harmonic expansion of scattered �eld can be written as [4]:

 sca(r) =
LX
i=1

 T (ri)Ti(L)�i;0a (1)

where Ti(L) is the T-matrix for ith object in the presence of L scatterers, a is the coe�cient vector

used in the expansion of the incident plane wave in terms of cylindrical basis functions and �i;0 is the

translationmatrix used to translate same type basis functions between reference coordinate systems.

(The translationmatrices �i;0 contain Bessel functions and complex exponentials. For details about

these matrices see [2, 3].) Expansion of the scattered �eld in (1) is valid if all observation points
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are outside the smallest circle enclosing all scatterers. Following Chew's derivation, the recursive

construction of Ti(L) can be written as [4, eq.10-11] :

Tn+1(n+1)�n+1;0 =

"
I� Tn+1(1)

nX
i=1

�n+1;iTi(n)�i;0�0;n+1

#
�1

Tn+1(1)

"
�n+1;0 +

nX
i=1

�n+1;iTi(n)�i;0

#

(2)

and

Ti(n+1)�i;0 = Ti(n)�i;0 +Ti(n)�i;0�0;n+1Tn+1(n+1)�n+1;0 (3)

where n = 1; 2; :::; L, i = 1; 2; :::; n and �n;i is another translation matrix [3].The recursion starts

with the individual T-matrices, Ti(1), of the scatterers, i.e. the T-matrix of the ith scatterer when

there are no other scatterers in the medium.

Theoretically the matrices �, �, T are of in�nite dimension. The T-matrix algorithms truncate

these matrices with �nite values N and M such that the residual error is below the machine

precision or acceptable levels. Here N represents the number of harmonics used to expand the

�elds at the scattering origin and M represents the number of harmonics used to expand the �elds

in the objects' local coordinate systems. Thus, the T-matrix is of size M � M , �i;0 is of size

M �N and �i;n+1 is of size M �M . It has been shown that computational complexity of (2)-(3)

is O(L2M2N) for L scatterers [4].

The contribution of this letter is to show that, based on the equivalence theorem, recursive

T-matrix algorithms can be used to calculate the scattered �elds from metallic objects by placing

small metallic cylinders on their perimeter. Traditionally, the recursive T-matrix algorithm has

been applied in one of two manners. In the case of dielectric scatterers, the whole object was

decomposed into small cylinders, low order harmonic expansions were used to represent the �elds

from each object, and the recursive algorithmwas used to solve the scattering problem. For metallic

objects, the equivalence theorem was used to decompose the surface of the scatterer into small
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strips, moment methods were then employed to �nd the individual T-matrices for each strip, and

the same T-matrix recursions were used to solve the overall scattering problem. The objective of

this letter is to show that one may make use of the cylinder approach (Fig.1) as well for the metallic

scattering problem and still obtain highly accurate solutions. In particular, by using cylinders, one

may employ the closed-form harmonic expansion method to �nd the individual scatterers thereby

avoiding the moment method computation. In the next section, we will give examples of scattering

from circular and rectangular cylinders and the results are veri�ed with those in the literature or

analytical calculations.

3 Examples and Discussions

In this section we verify that replacing metallic objects with small metallic cylinders along their

perimeters actually produces the results reported in the literature or results obtained analytically.

First we de�ne the terms used in this section. The normalized scattering �eld pattern is de�ned as:

F (�) = 10 log10

(
lim
r!1

2�r
j sca(r)j2

maxfj sca(r)j2g

)
: (4)

Normalized power density, or the \gain", is de�ned as:

GE(�) = lim
r!1

j sca(r)j2

1
2�

R 2�
0 j sca(r)j2d�

: (5)

In all examples the cylinders are embedded in free space with an Ez polarized plane wave incident

on them. The �rst example is the scattering from a single circular cylinder of radius 0:8� (ka = 5).

As seen in Fig. 2(a), the cylinder is approximated by 60 smaller cylinders along its circumference

which corresponds to a sampling 12 cylinders per wavelength. The normalized scattering �eld

pattern, F (�), obtained from the recursive algorithm is plotted against the analytical solution in

Fig. 2(b). The second example is the scattering from two circular cylinders with radii of 0:8�

(ka = 5) and separated by a distance 2:55� (kd = 16). As in previous example, each cylinder is
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approximated by 60 small metallic cylinders with 12 cylinders per wavelength. Fig. 3(a) shows

the scattering geometry and Fig. 3(b) compares the normalized scattering patterns obtained using

the recursive T-matrix algorithm with those given in [10]. The last example shows the normalized

power densities for a slanted rectangular cylinder for two di�erent sizes. The geometry is shown

in Fig. 4(a) and the far �eld power densities, GE(�), for ka = 3 and ka = 5 (a = 0:48� and

a = 0:8�, both with a = 2b) are depicted in Fig. 4(b). For both cases, the perimeter is sampled

at approximately 13 cylinders per wavelength. In this �gure, the scattering patterns are compared

with the results reported in [11]. As these plots have shown, the scattered �elds from metallic

objects can be found by replacing these objects with smaller cylinders along the perimeter and

then using the recursive T-matrix algorithm of [4].

4 Conclusion

In this letter an alternative discretization along the perimeter of metallic scatterers is used with

recursive T-matrix algorithm to calculate the scattered �eld. The results are veri�ed with previous

work.
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Figure Captions

Figure 1: Tessellation of metallic cylinders along their perimeters

Figure 2: Comparison of normalized scattering �eld pattern calculated using the recursive T-
matrix algorithm with the analytically calculated one.

Figure 3: Comparison of normalized scattering �eld pattern calculated using the recursive T-
matrix algorithm with [10].

Figure 4: Comparison of normalized power density calculated using the recursive T-matrix
algorithm with [11].
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Abstract−−We present the parallel, MPI−based implementation of the SDFMM computer code

using a thirty two−node Intel Pentium−based Beowulf cluster. The SDFMM is a fast algorithm that

is a hybridization of the Method of Moment (MoM), the Fast Multipole Method (FMM) and the

Steepest Descent Integration rule (SDP), which is used to solve large−scale linear systems of

equations produced electromagnetic scattering problems. An overall speedup of 7.2 has been

achieved on the 32−processor Beowulf cluster and a significant reduced runtime is achieved on the

4−processor 667MHz Alpha workstation.

I. INTRODUCTION

The SDFMM was originally developed at the University of Illinois at Urbana Champaign to

analyze large−scale three dimension (3−D) scattering problems [1]−[3]. Recently its computer code

has been successfully modified to handle subsurface sensing applications, in particular, the

scattering from a PEC and/or penetrable spheroid buried under a two dimensional randomly rough

ground surface [4]−[5]. The SDFMM has computational complexity for CPU time and memory

equal to only O(N) per iteration versus O(N2) for the MoM, where N is the total number of the



unknowns [1]. The significantly reduced complexity of the SDFMM over several other

computational electromagnetics techniques has enabled efficient Monte Carlo simulation studies

[5]. Additional speedup is desirable for increased Monte Carlo sample size or for inverse scattering

applications. In this work, we used the MPI library for the parallel implementation of the SDFMM

code [6]−[8].

II. PARALLELIZATION

The SDFMM is used to solve the linear system of equations given by [1]−[5]:

(1a)                                                                 VIZ =

where Z is the impedance matrix, I is the vector of unknown coefficients of the electric and

magnetic surface currents and V is associated with the incident waves on the rough ground surface.

The matrix Z , which is filled in MoM formulations, becomes sparse with SDFMM and the system

of equations in (1a) can be written as:

(1b)                                                                      VIZIZ =′′+′

The sparse matrix Z ′ has its non−zero elements calculated and stored using the conventional MoM,

which are then multiplied by the vector I (near field interactions) while the matrix−vector multiply

IZ  ′′ is computed in one step without calculating or storing any elements of the matrix Z ′′ . This is

achieved by using the FMM hybridized with the SDP integration rule. 

The following three bottlenecks in the SDFMM code can benefit from being parallelized: (i) the

subroutines that calculates the elements of the sparse matrix Z ′ ; (ii) the subroutines that execute the
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matrix vector multiplication IZ  ′ in each iteration of the solver; and (iii) the subroutines that

execute the fast multipole method for IZ  ′′  (far field interactions).  

The computer code has been parallelized by exploiting the underlying available data

parallelism. The key data structure in subroutine (i) is the sparse matrix Z ′ , which is stored as

blocks of nonzero elements. These blocks are distributed among all processors, and no additional

communication is needed. When this routine is parallelized we achieved near−linear speedups on

32 processors. In the matrix−vector multiplication IZ  ′ , the computation is parallelized by

distributing I to all processors in each iteration. The resulting vector components produced by the

multiplication are then distributed to all processors. For bottleneck (iii), there are two involved

subroutines to compute the far field interactions consisting of a series of loops with complex

interdependences. Each loop is separately parallelized, with collective communication used to

distribute the results to all processors after executing each subroutine. In addition these two

subroutines are executed in parallel, followed by subsequent distribution of the results to all

processors. Load balance between these two subroutines is achieved using a detailed performance

model based on the serial execution time of each routine, the time required for collective

communication operations, and the amount of communication overhead needed. The structure of

the parallelized SDFMM application is shown in Fig. 1.

We evaluated the parallel implementation of the SDFMM computer code on a 32−node Intel

Pentium−based Beowulf cluster. Thirty one nodes of the Beowulf cluster are 350MHz Intel

Pentium IIs with 256 MB of RAM and one node is a 4x450MHz Intel Pentium II Xeon shared

memory processor with 2GB of RAM. The nodes are connected to a 100 BaseTX Ethernet network

and they use the SuSE 6.1 operating system with Linux kernel 2.2.13, and the MPICH 1.2.1

implementation of the MPI library. We also tested the parallelized code on a 4−node shared
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memory Compaq Alpha−based workstation (667Mhz Alpha 21264) of 16GB total RAM. The

processor uses the UNIX OSF/1 V5.1 operating system with the MPICH 1.1.2 MPI library.

Our benchmark includes three small−scale cases executed on the 256MB Intel cluster, and in

addition one moderate−scale case that is executed on the Alpha workstation. All results obtained by

executing the parallel version of the code are validated with those computed by the serial version of

the code [4]−[5]. The scattering problem configurations used in [5] are employed here, but for only

one rough surface realization. The rough ground (characterized by Gaussian statistics with zero

mean for the height), is described by the rms height ( σ ) and the correlation length ( cl ). In all cases,

the relative dielectric constant of the ground soil (dry sand) and the penetrable buried object (TNT

in a land mine) are 18052 .j.r −=ε and 0092092 .j.r −=ε , respectively, and the ground correlation

length is 050 λ= .lc . A Gaussian beam with horizontal polarization is employed for the incident

waves [5]. In Case 2, the buried sphere has radius of 0160 λ= .a with burial depth equal to

0320 λ−= .z measured from its center to the mean plane of the ground while in Case 3 and 4 the

buried spheroid has dimensions 030 λ= .a and 0150 λ= .b , and is buried at 030 λ−= .z . The ground

dimensions are 00 33 λ×λ in Cases 1−3 and 00 88 λ×λ in Case 4. Table I summarizes the parameters

and output results for Cases 1−4. 

Table I

Case

#

# of

Unknowns

σ Object System # of

Processors

Serial/Par.

Time

(min.)

Speedup

(overall)

1 8,800 0.3λo None Cluster 32 99/14 7.1

2 8,800 0.1λo Sphere Cluster 32 90/14 6.2

3 8,800 0.04λo Spheroid Cluster 32 88/12 7.2
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4 60,320 0.04λo Spheroid Alpha

Server

4 96/37 2.5

The speedup of a parallelized application is defined as the ratio of the serial runtime to the

parallel runtime. In Fig. 2 the overall speedup and the speedup for the initialization routine (filling

matrix Z ′ ) are plotted versus the number of processors for Case 1. The speedup curves for Cases 2

and 3 are similar, with slightly different peak values of 6.2 and 7.2, respectively. The results show

the significant speedup in the initialization time that is needed to fill the sparse matrix Z ′ . This 

initialization speedup dramatically affects the overall speedup of the code as shown in Fig. 2. In

each case the peak overall speedup is observed when running on 32 processors, but most of this

speedup is achieved using only 12 processors.

The efficiency of an application for a given number of processors is defined as the ratio of the

speedup to the number of processors. Over Cases1−3, the average speedup on 32 processors is 6.8,

giving an efficiency of 0.21. Based on the serial runtimes, 88% of the code is executed in parallel.

Therefore by Amdahl’s Law [9], the peak speedup achievable for the current parallelization of the

code is 8.3. We conclude that communication overhead and load imbalance among the processors

accounts for the reduction in speedup from 8.3 to 6.8. 

A comparison between the speedups achieved in the other bottlenecks (i)−(iii) mentioned in

Section II is also shown in Fig 2. These results demonstrate that the overall speedup is almost the

same as that achieved in the matrix−vector multiplication IZ ′  which is the bottleneck in (ii). 

In the second set of experiments, we solved the moderate−scale problem of Case 4 (60,320

unknowns) on the Alpha SMP using all four available processors. The overall speedup in this case

is 2.5 which is close to the predicted peak speedup of 2.9. This implies that executing the parallel
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code on the 4−Alpha 667 MHz processor gives an impressive reduced absolute runtime for this

moderate−scale case. The serial version of the code requires 950MB of memory, while the parallel

version requires 1154MB of memory distributed over four processors (288, 290, 289 and 287MB

each). The results of the parallel solution were identical to those of the serial implementation

presented in [5].

The results described in this section demonstrate that by exploiting fine−grained parallelism

within a single surface realization (one run of the code), we have achieved significant speedups.

However, when the number of rough surface realizations is much larger than the number of

available processors, as with Monte Carlo simulations, larger speedups are possible. This situation

occurs when we need to run Monte Carlo simulations [5]. In this case we assign a group of these

realizations (runs of the code) to be executed in parallel on each processor. Since the computations

are independent and little communication is needed, this coarse−grained parallelism gives a perfect

speedup that is only limited by the number of available processors. In other subsurface scattering

configurations, we may need to obtain multiple views of a target buried under the same rough

surface realization [4], which requires running the code only few times. A combination of fine and

coarse−grained parallelism can make efficient use of all available processors.

III. CONCLUSIONS

MPI is successfully employed for the parallel implementation of the SDFMM. A significant

overall speedup of 7.2 has been achieved on the 32−processor Beowulf cluster and a dramatic

reduced runtime is gained using the 4−processor Alpha workstation. The greatest potential for

speedup occurs in the sparse matrix filling and far field interaction steps.
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I. INTRODUCTION

Through replacement of the real spatial or spatial-temporal source locations in the frequency domain
(FD) or time domain (TD) Maxwell �eld equations by locations in complex space or space-time,
respectively, one may generate a new class of exact �eld solutions which convert point-source-excited
�elds in any environment into �elds excited by Gaussian-beam-like wave objects in that environment
(Deschamps, 1971; Felsen, 1976). While most applications of this elegant and physically appealing
complex-source-point (CSP) technique have been concerned with "high frequency" tracking of well-
collimated "wide-waisted" beams, we shall be concerned here with utilizing a tight superposition
of narrow-waisted ray-like CSP beams (centered on a Gabor lattice) for synthesis of FD and TD
distributed aperture radiation, and the interaction of these radiated �elds with complex propagation
and scattering environments. Previous studies have employed this algorithm for FD distributed phased
apertures (Maciel and Felsen, 1989) and for transmission of these �elds through focal regions and
through plane or cylindrically strati�ed dielectrics (Maciel and Felsen, 1990a,b). Here, we extend this
algorithm to FD scattering by a moderately rough perfectly conducting boundary. We also extend the
FD aperture radiation algorithm to the short-pulse TD, utilizing CSP pulsed beam wavepackets. The
FD problem is considered �rst.

II. RADIATION AND SCATTERING IN THE FREQUENCY DOMAIN

The problem geometry is shown in Fig. 1a. A y-directed two-dimensional y-independent time-harmonic
electric �eld with suppressed exp(�i!t) dependence and spatial pro�le f(x) is assumed to occupy the
region jxj � d=2 in the aperture plane z = zA,

Ey(x; zA) = f(x); jxj � d=2: (1)

This �eld irradiates a perfectly conducting boundary with sinusoidal height pro�le

h(x) = A[1� cos(2�x=�)] (2)



Figure 1. Problem geometry and Gabor phase space lattice. (a) Boundary pro�le: hmax = 2A; �=period.

Aperture pro�le (inset): f(x) = cos(�x=d), jxj � d=2; f(x) = 0, jxj > d=2. (b) Gabor lattice: Lx=spatial

period; �x=spectral period.

measured from the z = 0 plane. We �rst consider the aperture problem.

II.a Radiation from aperture distributions

We summarize here essential results from previous publications (Bastiaans, 1980; Einziger and Shapira,
1986; Maciel and Felsen, 1989; Steinberg et al, 1991). The �eld radiated into the half-space z < zA
from the aperture in (1) can be expressed as a line-source superposition (Kirchho� integration)

Ey(x; z) =
@

@z
u(x; z); u(x; z) =

i

2

Z d=2

�d=2

f(x0)H
(1)
0 (kR)dx0; (3)

where k = !
p
�0�0 = 2�=� is the free space wavenumber; � is the free space wavelength; H

(1)
0 (�) is the

zeroth order Hankel function of the �rst kind; u is a scalar Debye potential; and

R =
p
(x� x0)2 + (z � zA)2: (4)

II.b Beam discretization

The aperture �eld f(x) is to be parameterized in terms of Gaussian beam basis functions via the
rigorous self-consistent Gabor series representation

f(x) =

1X
m;n=�1

Amnw(x �mLx) exp(in�xx); (5)

where w(x) represents the normalized Gaussian window

w(x) =

 p
2

Lx

!1=2

exp
���(x=Lx)

2
�
;

Z 1

�1

w2(x)dx = 1: (6)

With kx representing the x-domain wavenumber, this representation places the beams on a discretized
(x; kx) phase-space lattice (Fig. 1b), on which each lattice point gives rise to a Gaussian beam
whose spatial and spectral (tilting) shifts are tagged by the indexes m and n, respectively. Spatial
and spectral periods are related by the self-consistency relation (con�guration-spectrum tradeo�)
Lx�x = 2� (Bastiaans, 1980). The expansion coeÆcients can be computed by introducing an auxiliary
function (x) de�ned through the biorthogonality condition (Bastiaans, 1980),Z 1

�1

w(x)�(x�mLx) exp(�in�xx)dx = ÆmÆn; (7)

where � denotes the complex conjugate, while Æq = 1 for q = 0 and Æq = 0 for q 6= 0. Accordingly
(Bastiaans, 1980),

Amn =

Z 1

�1

f(x)�(x�mLx) exp(�in�xx)dx: (8)

For Gaussian windows, the biorthogonal function is given in (Bastiaans, 1980). For numerical compu-
tation of the Gabor coeÆcients, see (Einziger and Shapira, 1986). The radiated potential �eld in the
half-space z < zA (see (3)) can be represented as (Maciel and Felsen, 1989)



u(x; z) =
1X

m;n=�1

AmnBmn(x; z); (9)

where the beam functions Bmn(x; z) are synthesized by Gabor-weighted line-source superposition

Bmn(x; z) =
i

2

Z d=2

�d=2

w(x0 �mLx) exp(in�xx
0)H

(1)
0 (kR)dx0; (10)

R being de�ned in (4). The integral in (10) (or its spectral counterpart) can be evaluated asymptoti-
cally in the beam paraxial far zone, yielding the following complex source point (CSP) approximation
(Maciel and Felsen, 1990a)1,

Bmn(x; z) � 25=4
�

Lx

8�k ~Rmn

�1=2

exp
n
i
h
k
�
~Rmn + ib

�
+ �=4

io
; (11)

with ~Rmn representing the complex distance between the observer at P = (x; z) and the complex source

point (here and henceforth, the tilde � denotes a complex quantity),

~P 0
mn = (~x0mn; ~z

0
mn); ~x0mn = mLx + ib sin �n; ~z0mn = zA � ib cos �n; (12)

~Rmn = P ~P 0
mn =

p
(x� ~x0mn)

2 + (z � ~z0mn)
2: (13)

In accord with the radiation condition, the square root is de�ned by Re( ~Rmn) � 0. The displacement
parameter (Fresnel length) b is related to the beam lattice period Lx and the beam axis angle �n =
sin�1(n�=Lx) via b = (Lx cos �n)

2=� (Maciel and Felsen, 1990a), whence (11) is valid in the paraxial
far-zone of each beam, j ~Rmnj >> b. For large tilt angles with n > Lx=�, the beam tilt angle �n is
complex and the corresponding beams become evanescent.

II.c Narrow-waisted beams

For narrow-waisted beams (Lx � d), the Gabor coeÆcients can be e�ectively estimated by sampling

the aperture �eld distribution, without performing the integration in (8) (Maciel and Felsen, 1989),

Amn �
8<
:

(Lx=
p
2)1=2f(mLx); n = 0;

0; n 6= 0;
(14)

so that from (9) and (11)

u(x; z) �
X

jmj�(d=2Lx)

Am0Bm0(x; z); (15)

where Bm0 is obtained from (11) with n = 0. The tilted (n 6= 0) beams in the Gabor expansion, which
generate evanescent "far �elds", are ignored in this approximation.

II.d Linearly-phased aperture

Narrow-waisted beams work very well for nonphased apertures, but usually require �ner aperture
sampling in the presence of phasing (Maciel and Felsen, 1990a). Here we consider a linearly-phased
cosine aperture �eld,

f(x) = g(x) exp (ikx sin �A) ; g(x) = cos(�x=d); jxj � d=2; (16)

where �A is the tilt angle of the main radiation lobe with respect to the z axis. In this case, a
more e�ective discretization can be obtained by Gabor-expanding the real function g(x) only, and
including the linear phasing in the beam integral (10) for the Bm0 beam propagator. Accordingly, the
narrow-waisted (Lx � d) beam expansion can be recast as

u(x; z) �
X

jmj�(d=2Lx)

CmBm0(x; z); Cm = (Lx=
p
2)1=2g(mLx); (17)

Bm0(x; z) � 25=4
�

Lx

8�k ~Rm0

�1=2

exp
n
i
h
k
�
~Rm0 +mLx sin �A + ib

�
+ �=4

io
; (18)

1Note that there are some sign changes with respect to (Maciel and Felsen, 1990a), since here we assume propagation
into the half-space z < zA.



Figure 2. Linearly phased cosine aperture distribution f(x) = cos(�x=d) exp(ikx sin �A) (d = 10�; �A = 30o).

Near-zone radiated potential �eld u(x; z) at zA� z = 5� synthesized using narrow-waisted nontilted and tilted

beams (with Lx = 0:02d) is compared with the Kirchho� integration reference solution.

|{ Reference solution; - - - Nontilted beams; � � � � � � Tilted beams.

~Rm0 =
p
(x�mLx � ib sin �A)2 + (z � zA + ib cos �A)2; b = (Lx cos �A)

2=�: (19)

The beam propagator (18) di�ers from Bm0 in (15) by the phase shift (ikmLx sin �A) which produces
the propagation-matched tilt �A in the beam direction. In Fig. 2, the near-zone potential �eld
synthesized using the narrow-waisted tilted beam decomposition in (17) is compared with a calibrated
computation-intensive Kirchho� integration reference solution based on (3), and with the nontilted
formulation in (15) when applied to the entire aperture �eld in (16). The tilted beam synthesis is
hardly distinguishible from the reference solution, whereas the nontilted synthesis is less accurate in
the magnitude.

II.e Reection from a periodic perfectly conducting boundary

The �eld radiated by the aperture distribution in (16) is now assumed to impinge on a perfectly
conducting moderately rough periodic boundary described by the continuous function h(x) which
is assumed to vary slowly over a wavelength scale (Fig. 1a). Moderately rough irregular dielectric
interfaces separating two dielectric half-spaces are treated elsewhere (Galdi et al, 2000a).

The reected �eld can be constructed rigorously by complex ray tracing applied to each beam in
the aperture decomposition; this requires the analytic continuation, into a complex con�guration space,
of all geometrical parameters involved (with the exception of the observation point). However, narrow-
waisted beams can be tracked accurately and much more eÆciently via a beam-tracing paraxial almost

real ray-tracing scheme (Ruan and Felsen, 1986; Maciel and Felsen, 1990b)), valid in appropriately
calibrated observation ranges. For the new application to a periodic boundary, we �rst treat the
canonical problem of CSP Gaussian beam reection from a curved segment on a conducting boundary.
The problem geometry is illustrated in Fig. 3.

An incident Gaussian beam is generated by a CSP at

~Ps = (~xs; ~zs); ~xs = xs + ib cos�s; ~zs = zs + ib sin�s; (20)

�s being the beam axis real departure angle with respect to the x axis. For electrically large and
smooth scatterers, and when the observation point P = (x; z) lies in the paraxial region of a reected

beam (�� (j ~Fr0P0j2+ b2)1=2 in Fig. 3), the �eld can be approximated in terms of the on-axis �eld of
that beam (at P0) and a complex phase correction. Denoting the on-axis parameters by the subscript
zero, one �nds for the potential �eld (Ruan and Felsen, 1986)

urefl(P ) � urefl(P0)
��
~Pi=Pi0

exp(ik~Æp) = �uinc(Pi0)

 
~fr0
~R0

!1=2

exp
h
ik(Lr0 + ~Æp)

i
; (21)

~fr0 =
~Li0rc cos �i

2~Li0 + rc cos �i
; rc = �

�
1 + (h0(xi0))

2
�3=2

h00(xi0)
; 0 � d=dx: (22)



Figure 3. CSP beam reection at a curved conducting boundary described by the contour h(x).

Here (see Fig. 3): ~R0 = ~Fr0P0; ~R = ~Fr0P ; ~Li0 = ~PsPi0; Lr0 = Pi0P0; ~Æp = ~R � ~R0 is the complex

phase correction; ~Fr0 = (xi0 � ~fr0 cos�r; zi0 � ~fr0 sin�r) is the complex (virtual) focus obtained by
analytic continuation of the standard ray-optical formulas (Felsen and Marcuvitz, 1973, p. 168); the
complex incidence point ~Pi is approximated by the real beam-axis incidence point Pi0 = (xi0; zi0); �r
is the reected-beam-axis real departure angle with respect to the x axis; rc is the curvature radius at
Pi0; and � = 1 is the plane-wave potential �eld reection coeÆcient. As shown in (Ruan and Felsen,
1986), this scheme corresponds to tracing a ray along a complex trajectory from the CSP at ~Ps to
the intersection Pi0 of the real beam axis with the real surface; from there, the path to the observer
proceeds entirely in real con�guration space, along the beam axis. Multiple reections, which may
occur in the con�guration in Fig. 1a, can be incorporated by iterating (21), whereby the complex focus
(either virtual or real) associated with each iteration becomes the phase reference for the next iteration
(Galdi et al, 2000a). Apart from the complex ray connecting the CSP to the �rst real incidence point,
the multi-hop path to the observer proceeds entirely in real con�guration space along the beam axes,
and the phase correction is applied only on the last path segment leading to the observer.

II.f Application: in�nite sinusoidal boundary

For a �rst check on the applicability of the narrow-beam algorithm to surface scattering problems,
we have considered the sinusoidal boundary in Fig. 1a illuminated by a nonphased cosine aperture
distribution with wavelength �. Extensive numerical experiments have been performed for various
observation heights z and aperture heights zA; pro�les h(x) with various minumum curvature radii
rc; and various beam lattice spacings Lx. All of these numerical implementations for the scattered
potential �eld have been compared with a numerically integrated, computation intensive Physical
Optics-Kirchho� reference solution based on (3); by previous calibration, Physical Optics has been
con�rmed to apply to the pro�le parameters under consideration here. Typical results for the potential
urefl are displayed in Fig. 4. In general, we have found that the accuracy of the narrow-waisted beam
algorithm improves for greater observation distance (because of the far-zone paraxial approximation),
but even at moderate distances the agreement is satisfactory. We also found that the beam algorithm
is quite robust with respect to scramblings of the Gabor lattice. As discussed in (Maciel and Felsen,
1990b), this feature can be exploited to obtain a priori accuracy assessments when reference solutions
are not available. For the present nonphased aperture example, we found the best tradeo� between
accuracy and computational cost to occur for Lx � �. A �ner sampling may, however, be required for
phased aperture �eld distributions. On the other hand, the accuracy gets worse as the distance of the

aperture from the surface increases. We found that in order to get robust and accurate predictions,
we should have zA�hmax � �, where hmax is the maximum of the boundary pro�le. However, this is
not a very restrictive limitation since it is always possible (and computationally cheap because of the
simple determination of the Gabor coeÆcients via (14)) to perform a multi-step Gabor decomposition
for greater aperture-to-boundary distances, i.e., project the beam-computed radiated potential �eld
onto a virtual aperture suitably close to the surface and then again apply the narrow-waisted beam
algorithm. Concerning degradation of accuracy with increase in wavelentgh, we found that even
for relatively "low-frequency" geometries, i.e. moderate (minimum rc)/� as in Fig. 4b, the beam
algorithm, though no longer highly accurate, still provides reasonably good predictions (for details, see
(Galdi et al, 2000a)).



Figure 4. Beam-computed reected potential u(x; z) and Physical Optics (PO) reference solution. (a) Aper-

ture: width d = 100�; height zA = 11�. Boundary: period � = 50�; height hmax = 2A = 10�; minimum

rc = 12�; maximum slope �max = 32o. Beam lattice period: Lx = 0:01d = �. Observation plane at zobs = 50�.

(b) d = 20�; zA = 3�; � = 10�; hmax = 2A = 2�; minimum rc = 2:5�; �max = 32o; Lx = 0:05d = �;

zobs = 10�. Because the reected �eld is symmetric with respect to x = 0, only the x > 0 portion is shown

over the range 0 � x � 2�. |{ PO reference solution; - - - Beams.

III. TIME DOMAIN RADIATION FROM DISTRIBUTED APERTURES

We shall now explore the extension of the FD results for aperture radiation in Sec. II.a to time-
dependent excitation, in particular to short pulses. To this end, we consider a space-time aperture
�eld distribution at z = 0 with separable space-time dependence and linear time delay

ey(x; 0; t) = f(x; t); jxj � d=2; f(x; t) = g(x)p(t� c�1x sin �A); (23)

where c is the speed of light and p(t) is a pulse with characteristic width Tp. This distribution
represents the TD counterpart of the linearly-phased time-harmonic aperture in (16). The present
TD formulation is restricted to the radiated �eld only, and we analyze the propagation into the z > 0
halfspace, wherein (23) gives rise to a space-time pulse propagating in the �A direction (Fig. 5). It is
assumed that the normalized width of the pulse is much shorter than the aperture dimension d, i.e.,
cTp � d.

III.a Reference solution

Using the two-dimensional TD Green's function

G(x; z; t;x0; z0; t0) =
1

2�
p
(t� t0)2 � (s=c)2

H [(t� t0)� s=c]; s(z0) =
p
(x � x0)2 + (z � z0)2; (24)

whereH(�) is the Heaviside step function, the �eld radiated into the half-space z > 0 can be represented
as a space-time Kirchho� integration (Morse and Feshbach, 1973, Sec. 7.3; Kragalott et al, 1997),

ey(x; z; t) =
z

�

Z d=2

�d=2

dx0
1

s(0)2

Z t�s(0)=c

�1

(t� t0)
@f

@t0
(x0; t0)p

(t� t0)2 � (s(0)=c)2
dt0: (25)

Direct numerical integration of (25) is complicated by the square-root (integrable) singularity at the
upper limit t0 = t � s(0)=c, and requires special care. We have used the Newton-Cotes scheme
(Kragalott et al, 1997) for the numerical integration of (25), which represents our reference solution.

III.b Beam discretization

The formal extension of the Gabor-based time-harmonic aperture radiation to time-dependent exci-
tation involves a four-index Gabor series set on a discretized lattice in an eight-dimensional phase
space (space-wavenumber, time-frequency). For a rigorous treatment and computational issues, see
(Steinberg and Heyman, 1991). We shall explore to what extent the narrow-waisted beam approach,



Figure 5. Linear-delay space-time aperture �eld distribution and pulsed beam coordinates.

e�ective for time-harmonic excitation, can be generalized to TD (short-pulse) excitation. The linear-
delay aperture �eld distribution (23) admits the equivalent spectral representation

f̂(x; !) �
Z 1

�1

f(x; t) exp(i!t)dt = g(x)P (!) exp(ikx sin �A); P (!) =

Z 1

�1

p(t) exp(i!t)dt: (26)

A TD beam discretization can be obtained by Fourier-inverting the narrow-waisted tilted beam ex-
pansion (17) for the FD linearly-phased aperture presented in Sec. II.d. In order to accommodate the
evanescent spectra in the FD beam propagators (18), we use the analytic signal formulation instead
of the standard Fourier transform (Heyman and Melamed, 1998). Concerning the beam lattice dis-
cretization, one can choose a frequency-independent beam lattice period Lx (resulting in a frequency-
dependent beam parameter b), or a frequency-independent beam parameter b (resulting in a frequency-
dependent Lx). We choose Lx frequency-independent because it yields frequency-independent Gabor
coeÆcients (see (17)). The TD counterpart of the narrow-waisted FD beam expansion (17) for the
aperture �eld distribution (26), with reference to the y-directed electric �eld, can be thus written as

ey(x; z; t) �
X

jmj�(d=2Lx)

cmbm(x; z; t); cm = (Lx=
p
2)1=2g(mLx): (27)

The pulsed beam propagator bm is the TD counterpart of the FD paraxial, far-zone beam propagator
in (18), with (19)2 (for simplicity, the subscript "m0" is henceforth replaced by "m")

Bm(x; z; !) = �ik25=4
�
Lx

8�k

�1=2

exp
n
i
h
k
�
~Rm +mLx sin �A + ib

�
+ �=4

io (z � ib cos �A)

~R
3=2
m

; (28)

~Rm =
p
(x�mLx � ib sin �A)2 + (z � ib cos �A)2; b = (Lx cos �A)

2=�: (29)

Via the analytic signal formulation, one has (Re=real part)

bm(x; z; t) = Re

�
1

�

Z 1

0

Bm(x; z; !)P (!) exp(�i!t)d!
�
: (30)

While the integral in (30) cannot be evaluated explicitly in general, we have found useful closed-form
approximations for the important class of Gaussian pulses. In particular, we consider a Rayleigh
(four-times-di�erentiated Gaussian) pulse

p(t) = exp

�
�50(t� Tp=2)

2

T 2
p

�"
1 +

10000(t� Tp=2)
4 � 600(t� Tp=2)

2T 2
p

3T 4
p

#
; (31)

2Note that (28), (29) are slightly di�erent from (18), (19), since here the electric �eld is considered instead of the
potential, the aperture plane is located at zA = 0, and propagation is into the z > 0 halfspace.



but the procedure presented below can be applied to any kind of modulated or di�erentiated Gaussian.
Since the beam lattice period Lx has been chosen frequency independent, the beam parameter

b and hence the complex distance ~Rm in (29) are frequency dependent. For z � jb cos �Aj, we can
approximate in the amplitude factor of (28)

(z � ib cos �A)

~R
3=2
m

� z

R
3=2
m

; Rm =
p
(x�mLx)2 + z2; (32)

rendering the distance Rm real. In the phase, we retain the �rst order paraxial correction

~Rm � zbm � ib+
x2bm(zbm + ib)

2z2bm
; (33)

valid for jzbm � ibj � jxbmj and zbm � b; here xbm; zbm are the beam coordinates (see Fig. 5)�
xbm
zbm

�
=

�
cos �A � sin �A
sin �A cos �A

� �
x�mLx

z

�
: (34)

In the TD, the beam parameter b must be small over the entire bandwidth 
p of p(t) in (31),

b =
(Lx cos �A)

2!

2�c
� zbm; ! � 
p: (35)

With these assumptions, the integral in (30) can be reduced to the generic form (the spectrum P (!)
of p(t) in (31) is evaluated readily),Z 1

0

!9=2 exp
�
�! + �!2

�
d!; Re(�) < 0; (36)

which can be expressed in terms of conuent hypergeometric functions (Abramowitz and Stegun, 1964,
Sec. 13). Accordingly, the TD beam propagator can be written explicitly as

bm(x; z; t) = Re

�
�

�
13� �

�
11

4

�
G1

�
5

r
�

2

�

�

�
+ 20i

p
2�� �

�
17

4

�
G2

�
5

r
�

2

�

�

���
; (37)

� =
q
�(cTpzbm)2 + 50(Lxxbm cos �A)2; � = x2bm + zbm(2zbm + cTp � 2ct) + 2Lxmzbm sin �A; (38)

� =
4z
p
10Lx�

7=4T 5
p (czbm)

11=2 exp(�i�=4)
39
p
cR

3=2
m �13=2

; G1(v) = M

�
11

4
;
1

2
;�v2

�
; G2(v) = M

�
13

4
;
3

2
;�v2

�
;

(39)
where Rm, xbm and zbm are de�ned in (32) and (34); �(�) is the gamma function (Abramowitz and Ste-
gun, 1964, Sec. 6); and M(q; s; v) is the conuent hypergeometric function (Abramowitz and Stegun,
1964, Sec. 13). The above procedure can be applied to any Gaussian pulse; modulation or di�erentia-
tion only a�ects the q; s arguments of M. We found simple rapidly converging approximations for the
functions G1 and G2 in the form G1;2 � exp(�v2)� (power series in v2) (Galdi et al, 2000b). These
functions resemble the functional form of the time pulse excitation in (31). Using these approximations
the TD beam propagator in (37) can be computed eÆciently.

III.c Assessment of accuracy

The restriction in (35) is the most serious because, for speci�ed 
p, �A, and observation point, it
determines the maximum allowable lattice period (i.e., the minimum number of beams). The overall
constraint can be expressed as (Galdi et al, 2000b)

Q � Lx

d

s
� cos3 �A

�
� 1; (40)

where � = zobs=F is the distance of the observation plane scaled by the Fresnel distance of the aperture,
F = d2=(cTp); � = 
pTp=2� is the normalized bandwidth of the pulse p(t); and Lx=d determines the
number of beams in the expansion (27). The nondimensional estimator Q� 1 expresses the range of
validity of the algorithm in terms of all relevant parameters of the problem. For example, increasing
the lattice period Lx (i.e., decreasing the number of beams) can be compensated by a corresponding



Figure 6. Nonphased (�A = 0) sine aperture distribution with cTp = 0:5, d = 5 = 10cTp (arbitrary

units). TD narrow-waisted beam synthesis (for various values of the beam-lattice period) is compared with

space-time Kirchho� integration (reference solution). (a) Time evolution at a �xed observation point x = 1:25,

z = 5 = 0:1F (arbitrary units); (b) transverse cut (spatial pro�le) at z = 5, ct = 5:25.

|{ Reference solution; - - - Beams (Lx = d=20; Q = 0:45); � � � � � � Beams (Lx = d=50; Q = 0:18): -�-�-�- Beams

(Lx = d=100; Q = 0:09).

Figure 7. Parameters as in Fig. 6, but with linear delay (�A = 30o). (a) Time evolution at a �xed observation

point x = 4:14, z = 5 = 0:1F ; (b) transverse cut at z = 5, ct = 6:7.

|{ Reference solution; - - - Beams (Lx = d=20; Q = 0:36); � � � � � � Beams (Lx = d=50; Q = 0:14): -�-�-�- Beams

(Lx = d=100; Q = 0:07).

increase of (zobs)
1=2. In order to assess the accuracy of the proposed TD beam expansion, we have

performed computations for the linear-delay space-time aperture distribution (23) with a sine spatial
tapering, g(x) = sin(2�x=d); jxj � d=2, excited by the Rayleigh time pulse (31). Figure 6a shows
the time evolution of the y-directed electric �eld at a �xed observation point (x; z) in the near zone
(z = 0:1F ) of a large aperture (d = 10cTp) without phase delay (�A = 0), computed via the space-time
Kirchho� integration (25), and via the TD beam synthesis (27) with various beam lattice periods. As
expected, the agreement improves as the beam lattice period Lx decreases, and satisfactory accuracy
is achieved for Q � 0:1 (for this example � � 8). It is observed from the transverse cut in Fig. 6b
that, despite the use of the paraxial paraxial far-zone approximation, the TD beam synthesis is quite
accurate even in the near zone of the aperture (z = 0:1F ) and not only around the main radiation lobes.
We found that, as the observation distance increases, a coarser discretization can be used according
to (40); even at moderate distances, quite accurate syntheses can be achieved with a relatively small
number of beams (� 50) (Galdi et al, 2000b). The corresponding results for linear-delay (�A = 30o)
are shown in Fig. 7 and the same considerations apply.

IV. CONCLUSIONS

In many current forward and inverse scattering scenarios, there is a need for numerically eÆcient robust



forward solvers for �elds excited by distributed sources in the presence of complex environments.
This motivation has led us to re-visit the previously developed FD narrow-waisted Gaussian beam
algorithms (Maciel and Felsen, 1989; 1990a,b) and to extend them to new FD applications as well as
to the short-pulse TD. The outcomes from the rough sinusoidal scattering example here, as well as the
�rst results in the TD, are encouraging. Further FD extensions to irregularly rough interfaces between
dielectrics are already in progress, as are TD interactions with canonical scatterers to learn the new
rules.
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Abstract

In this paper, we present a new technique for determining the surface pro�le of a moderately rough

interface between air and a homogeneous dielectric half-space. Based on sparsely samp2led step-frequency

ground penetrating radar measurements, the proposed inversion scheme uses a quasi-ray Gaussian beam

fast forward model, coupled with a low-order parameterization of the surface pro�le in terms of B-splines.

The pro�le estimation problem is posed as a parameter optimization problem, which is solved using a

multiresolution continuation method via frequency hopping. Numerical experiments establish that the

algorithm is eÆcient, and yields accurate reconstructions throughout most of the illuminated region even

in noisy environments, losing accuracy only in regions with very weak illumination.

Keywords

Ground penetrating radars, rough surfaces, inverse scattering, Gaussian beams.

I. Introduction

The problem of determining the properties of rough surfaces from electromagnetic (EM)

reected �eld data arises in many important applications, ranging from nondestructive

testing to underground imaging. In this paper, we address underground imaging via

ground-penetrating radar (GPR). In GPR systems, arrays of above-ground transmitters

and receivers illuminate areas of interest, and receive backscattered signals from under-

ground objects and from surface reections. The shape of the air-ground interface is

unknown, and constitutes a principal corruptor of the backscattered signal from subsur-

face targets of interest. In order to enhance subsequent detection, classi�cation and inverse

scattering processing, it is important to compensate for the distortion introduced by the

air-ground interface.

One possible approach for this compensation is to characterize the statistics of the dis-

tortion caused by unknown rough surfaces, and then apply appropriate statistical signal

processing techniques. Such an approach was used in [1]{[4] for detection of buried mines

via both forward-looking and downward-looking GPR systems. However, this approach

fails to exploit deterministic information present in the received signals due to scattering

from the air-ground interface, and thus yields limited accuracy and robustness in classi�ca-

tion and reconstruction (see, e.g., [5]). In this paper, we address the problem of estimating

the pro�le of the air-ground interface from in-situ frequency-stepped GPR measurements,

for use in subsequent imaging and classi�cation processing.
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Estimation of rough surfaces from inverse scattering has received considerable attention

in the past decade. However, most of the available algorithms have focused on conduct-

ing surfaces. Wombell and DeSanto [6], [7] used Kirchho� approximation and Fourier

transform to estimate surface pro�les based on measurements of the reected �eld in all

spectral directions. Noguchi and his colleagues [8], [9] used nonlinear optimization tech-

niques for direct estimation of surfaces illuminated by monochromatic Gaussian beams,

based on the far-�eld scattering amplitude for all spectral directions. In a di�erent ap-

proach, Schatzberg and Devaney [10] used Rytov approximation and backpropagation to

estimate surface pro�les based on full measurements of the reected wave.

In contrast with the above contributions, our work in this paper is focused on estimating

surface pro�les based on reection from a moderately rough interface between air and a

homogeneous dielectric half-space (soil), as illustrated in Fig. 1. Furthermore, we assume

that the reected �eld is measured only at receivers with discrete spatial locations, using

a stepped-frequency GPR. We assume that the incident �eld arises from a discrete set of

transmitters, and thus has a �nite aperture.

First we employ a forward model relating the measured �elds at the receivers to the sur-

face pro�le. This model, detailed in [11], utilizes Gabor-based Gaussian beam algorithms

in conjunction with the complex source point (CSP) method for generating beam-like

wave objects [12]{[14]. With this model, together with a parametric representation of the

surface in terms of B-splines [15], the surface estimation problem is posed as a nonlinear

optimization problem, similar in spirit to the approach in [8]. We show that this optimiza-

tion problem has local minima, and exploit a multiresolution continuation strategy based

on frequency hopping [16]{[18], to approach convergence to globally optimal estimates of

surface pro�les.

The rest of this paper is organized as follows: Section II describes the problem of rough

surface reconstruction from frequency-stepped GPR measurements, and poses the esti-

mation problem as a nonlinear optimization problem. Section III describes the surface

parameterization, the Gabor-based Gaussian beam algorithm, the multiresolution contin-

uation algorithm, and the resulting optimization approach for determining the surface

pro�le. Section IV details the results of numerical experiments to illustrate the accuracy
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of the surface reconstructions under di�erent conditions. Section V provides concluding

remarks.

II. Statement of the Problem

The problem of interest is reconstructing the air-ground interface coarse-scale pro�le

from a limited number of spatially sampled reected �eld measurements, using a lim-

ited aperture illumination from a frequency-stepped GPR system. We consider a two-

dimensional (2D) model, as depicted in Fig. 1, where a TM-polarized EM �eld with im-

plicit time-harmonic dependence exp(�i!t) illuminates a dielectric half-space with known

relative permittivity �r and a moderately rough interface, whose coarse scale pro�le is

described by a continuous function h(x). The �eld is assumed to be generated by an

extended aperture distribution at z = zA,

E
inc(x; zA) = f(x)uy; jxj � d=2; z = zA; (1)

where uy denotes a y-directed unit vector.

In this preliminary investigation, we neglect the presence of any buried object; surface

estimation strategies in the presence of shallowly buried plastic mine-like targets, not very

di�erent in principle, are dealt with elsewhere [19]{[22]. Furthermore, we also neglect

the noisy (incoherent) contribution of �ner-scale roughness, and focus on estimation of

the coarse shape, acknowledging the implicit limits of retrievable information through

inverse scattering (see, e.g., [23], and the more relevant near-proximity extension [24]).

The y-directed reected electric �eld is sampled at a number Nr of �xed receiver locations

xr1; :::; x
r
Nr

at the observation plane z = zr. As common in many GPR systems, we assume

to work in a step-frequency regime with N� di�erent operating wavelengths (frequencies),

so that a set of Nr�N� complex (magnitude and phase) samples constitutes the observed

data of the problem. It is well-known that this inverse scattering problem is ill-posed,

and therefore a blind implementation of inverse scattering techniques would result in ill-

conditioned numerical algorithms. We refer the interested reader to [23], [24] for analysis

of the retrievable information from both theoretical and computational viewpoints.

Here, a robust inversion strategy via a well-posed inverse of the problem is achieved by
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i) Introducing a �nite-dimensional compact geometrical parameterization of the unknown

interface pro�le;

ii) Estimating the unknown parameters by �tting the model-based forward scattering pre-

diction to the available (measured/simulated) data, i.e., minimizing a suitable cost func-

tional.

A key issue in this robust strategy is selection of an appropriate interface pro�le param-

eterization. This requires tradeo� between versatility, compactness and computational

burden, bearing in mind that the number of unknown parameters to be estimated must

be smaller than the collected reected data size. Therefore, assuming that the collected

data are non-redundant [23], [24], the maximum number of parameters that can be reliably

estimated is � Nr�N�. For the purposes of this paper, we assume that the surface shape

can be approximated by a �nite set of basis functions with unknown coeÆcients,

h(x) �
NX
n=1

cnsn(x): (2)

Let Erefly (xrp; �q) denote the complex reected �eld measured at wavelength �q at receiver

location xrp. Let c denote the vector of coeÆcients cn; n = 1; : : : ; N . Given a vector of

coeÆcients c and the outgoing �eld from the aperture distribution in (1), we can use the

Gabor-based Gaussian beam algorithm in [11] (see also Sec. III-B) for the surface pro�le

in (2) to generate predictions of the reected �eld at each receiver. Let Erefl
y (xrp; �q; c)

denote the complex reected �eld predicted from c at (free-space) wavelength �q at receiver

location xrp. With this notation, we de�ne the weighted approximation error J(c) as follows:

J(c) = kErefl(c)� Ereflk2 =
NrX
p=1

N�X
q=1

�pq

���Erefl
y

�
xrp; �q; c

�
� Erefly

�
xrp; �q

����2 ; (3)

for receiver locations xr1; :::; x
r
Nr

and operating wavelengths �1; :::; �N�
, �pq > 0 being (ar-

bitrary) weight coeÆcients.

The regularized inverse scattering problem can now be formalized as �nding the coeÆ-

cient vector c in (2) which minimizes the cost functional (3), i.e., �nding ĉ such that

ĉ = argmin
c

J(c) (4)
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In general, the predictive model Erefl
y

�
xrp; �q; c

�
is a highly nonlinear function of the

coeÆcients c. Thus, the resulting minimization problem may have multiple local minima.

In the next section, we describe the choice of basis functions used in our representation,

the forward scattering model, and the optimization approach used for determining global

minima of the cost functional (3).

III. Algorithmic Aspects

A. Interface Pro�le Parameterization

As our choice of basis functions in (2), we used shifted B-splines [15] selected with a

�xed resolution matched to the coarse level of detail for the reconstruction. In particular,

we chose a quartic-spline basis function s(4)(x), where

s(4)(X) =

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

8
115

X4; 0 � X < 1;

� 8
115

(5� 20X + 30X2 � 20X3 + 4X4); 1 � X < 2;

8
115

(155� 300X + 210X2 � 60X3 + 6X4); 2 � X < 3;

� 8
115

(655� 780X + 330X2 � 60X3 + 4X4); 3 � X < 4;

8
115

(X � 5)4; 4 � X < 5;

(5)

and X = x=�x. This basis function has �nite support and di�erentiable second derivatives

(see Fig. 2). The surface pro�le is thus approximated as a linear combination of shifted

B-spline basis functions,

h(x) �
Nh�1X
n=�4

cns
(4)(x� xn); xmin � x � xmax; (6)

xn = xmin + n�x; �x = (xmax � xmin)=Nh: (7)

The resulting linear combination (6) is a triply di�erentiable function with Nh+4 degrees

of freedom. We tried using cubic splines, but did not obtain satisfactory accuracy for the
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forward (beam) solver. We can speculate that the di�erentiability of the second derivative

(and hence of the radius of curvature) is required by the beam algorithm. In this investi-

gation, we assume a priori knowledge of the scale parameter �x in (6) (i.e., the number

of B-spline basis functions), and focus on retrieving the unknown coeÆcients cn only. A

more general adaptive framework is presented in [25].

B. The Gabor-Based Gaussian Beam Algorithm

The forward scattering predictive model is detailed in [11]. It is based on a recently

developed Gabor-based narrow-waisted Gaussian beam (NW-GB) algorithm for reection

from, and transmission through, moderately rough dielectric interfaces. The main steps

of the algorithm can be summarized as follows:

1. The aperture �eld distribution in (1) is discretized self-consistently via Gabor expan-

sion in terms of narrow Gaussian basis functions, which generate narrow-waisted ray-like

Gaussian beams (GBs) launched from points on the aperture.

2. Each individual GB interaction with the rough interface is tracked via the complex-

source-point (CSP) paraxial scheme (quasi-real ray tracing) developed in [14] for circular

cylindrical dielectric layers, and generalized in [11] to rough surface geometries.

3. The various reected/transmitted GB contributions are recombined at the observer.

In [11], the NW-GB algorithm has been validated and calibrated against an indepen-

dently generated rigorous numerical solution [26], and has been shown to provide accurate

and robust predictions over a range of calibrated combinations of the problem parameters,

including moderate roughness with maximum slopes
<
� 40o, (average) curvature radii Rc

larger than a wavelength, incidence directions far from grazing (incidence angles
<
� 30o

relative to z), and dielectric contrasts with Re(�r) ranging from 1:2 to 10 and Im(�r) up

to 0:5. Though based on high-frequency asymptotics, the algorithm was found to provide

satisfactory accuracy even for relatively low-frequency geometries (Rc � 0:5�) and near-

zone observation distances (zr � �). We refer the interested reader to [11] for theoretical

and computational details, and to [27] for extension to pulsed excitation.

As noted earlier, the computational feasibility of the proposed nonlinear inverse scat-

tering algorithm is strongly tied to the eÆciency of the forward solver. In this connec-

tion, full-wave techniques are most likely not a�ordable in terms of computing time and
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resources. Conversely, NW-GB algorithms, though not su�ering from failures near caus-

tics and other ray-�eld transition regions, preserve the attractive computational features

of standard ray methods in the presence of large computational domains, with minimal

memory requirements and typical computing times (for a �eld sample at a single position)

of about 5 � 10ms on a 500 MHz PC, which are fairly shorter than those typical of full-

wave techniques. Application of GB algorithms to inverse scattering scenarios was also

suggested in [28], where they were found to provide a good tradeo� between accuracy and

computational burden.

C. Optimization Strategy

As discussed in Section II, we want a vector of coeÆcients c to minimize the weighted

error functional (3). As stated previously, this minimization is nontrivial since the cost

functional in (3) is likely non-convex with respect to c; therefore, unless an accurate

initial guess is available, standard descent-based optimization algorithms [29] are likely to

end in local minima, which correspond to spurious solutions. To illustrate this issue, we

considered a simpli�ed experiment where all unknown coeÆcients were set to their true

value, with the exception of two that are left variable. The resulting cost function has

two degrees of freedom, and can be easily displayed. The interface pro�le and experiment

parameters are shown in Fig. 3. A nonphased cosine tapered aperture illumination

f(x) =

8><
>:

cos(�x=d); jxj � d=2;

0; jxj > d=2;
(8)

was assumed, with the aperture width d chosen so as to irradiate the region of interest

while avoiding edge e�ects.

In this example, the surface pro�le was generated randomly by using 16 B-spline basis

functions (Nh = 12). We chose c2 and c6 as unknown and set the remaining 14 coeÆcients

to their true value. Figure 4 shows the resulting 2D cost function, as a function of c2

and c6 scaled with respect to their true values c
(true)
2 , c

(true)
6 , respectively. As the �gure

illustrates, the cost function has a deep global minimum at (c2; c6) � (c
(true)
2 ; c

(true)
6 ), but

also has a number of local minima. This behavior was veri�ed for multiple choices of

weight coeÆcients �pq, thus con�rming that standard descent optimization techniques
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(e.g., conjugate gradient [29]) may end up in local minima, and that some technique for

global optimization is needed. However, popular global optimizers based on stochastic

frameworks such as simulated annealing [30] and genetic algorithms [31] converge too

slowly to be successfully exploited in realistic applications.

Our approach to �nding global minima of (3) utilizes physics-based multiresolution, con-

ceptually analogous to what in the optimization community is known as the continuation

method [32]. The basic idea underlying continuation methods is illustrated in Fig. 5, with

reference to a simple one-dimensional problem. Once a suitable smoothing parameter in

the function to be minimized has been recognized, a smoothing procedure is applied in

order to �lter out the unwanted local minima. A standard descent minimization algorithm

can be applied to the smoothed problem, yielding a rough estimation of the sought global

minimum of the original problem. The smoothing is progressively relaxed, restoring the

original problem, and the solution is progressively re�ned, using at each stage a standard

descent optimizer and exploiting as initial guess the estimation obtained at the previous

stage.

As typical of many inverse scattering problems, the smoothness of the cost functional

(3) strongly depends on the choice of operating wavelength(s). In particular, using larger

wavelengths (i.e., lower frequencies) will result in a smoother functional. Furthermore,

using lower frequencies reduces the possibility of phase ambiguity, one of the major causes

of local minima. As an example, in Fig. 6 is shown the reduced 2D cost function ob-

tained using the same simulation parameters as in Fig. 4, but only the longer wavelength

(�1 = 0:2) data. The resulting function is considerably smoother. The function still has a

global minimum at (c2; c6) � (c
(true)
2 ; c

(true)
6 ) with a large basin of attraction, and no local

minima. In this case, standard descent optimizers (e.g. conjugate gradient [29]) can be

applied. The obtained estimate will need re�ning at other frequencies for two reasons:

at lower frequencies, i) a poorer resolution can be expected, and ii) the accuracy of the

beam forward solver is poorer [11]. Nonetheless, this �rst estimate provides a good initial

guess that can be further re�ned through progressively introducing the higher-frequency

information into the optimization, in the spirit of the continuation method [32]. The pro-

posed multiresolution strategy can be thus viewed as a continuation method, where the
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smoothing parameters are the weight coeÆcients �pq associated with the di�erent wave-

lengths. Among all possible ways of varying the weight coeÆcients �pq, which corresponds

to di�erent ways of controlling the smoothing and the convergence behavior, we chose

the simplest, i.e, an abrupt \on-o�" variation. At each resolution stage, the frequency

data to be included in the cost functional are selected by setting the corresponding weight

coeÆcients �pq to 0 or 1. This corresponds to what in the inverse scattering community

is usually known as frequency hopping [16]{[18].

In our implementation, the partial optimization at each resolution level is performed

using the Polak-Ribiere version of the conjugate gradient (CG) algorithm [29], particularly

suited for non-quadratic functions. Speci�cally, the needed gradient of J is computed using

a central di�erence formula, so that each gradient evaluation requires 2Nh + 8 functional

evaluations (i.e., 2Nh + 8 solutions of a forward scattering problem), Nh + 4 being the

number of unknown spline coeÆcients. The CG algorithm in [29] has been partially

modi�ed in order to enforce the consistency constraint

max
x

fh(x)g < zA; z
r; (9)

where zA and zr are the aperture and observation heights, respectively (see Fig. 1).

IV. Numerical Results

In order to test our surface pro�le estimation algorithms, we generated synthetic �eld

measurement data using a reliable full-wave solution of the forward scattering problem by

means of the multi�lament current method in [26], in conjunction with rigorous Kirchho�

aperture integration [33], for a variety of surfaces. For all numerical experiments presented

below, the accuracy of the NW-GB forward solver was preliminarily veri�ed. The sim-

ulation parameters are summarized in Fig. 3, with the dielectric half-space constitutive

parameters chosen so as to simulate a class of sandy soils in the GPR frequency range.

In this example, there are 16 unknown spline coeÆcients to be estimated, based on 40

complex (magnitude and phase) �eld samples. Reconstruction results are shown in Fig. 7.

Assuming as initial guess a at interface (cn = 0; n = �4; :::; Nh � 1), the cost functional

(3) was minimized using only the lowest frequency data (�1 = 0:2), obtaining the recon-
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struction shown in Fig. 7a. Subsequent re�nements of this reconstruction were obtained

by including higher frequency data, resulting in the improved approximations shown in

Figs. 7b-d. Speci�cally, each iterative improvement in Figs. 7b-d is obtained by using

only a single frequency at a time, and exploiting the reconstruction at the previous (lower)

frequency as initial guess. The more time-consuming alternative of using at each iteration

the current frequency plus the lower ones was found not to yield signi�cant improvement.

The example illustrates that the reconstruction is accurate throughout most of the inter-

val, except near the edges of the illuminated region; a similar phenomenon was observed

in [8]. The likely explanation for this loss of accuracy is due to the weak illumination

in these regions, corresponding to the aperture �eld tapering; the tapering is required to

avoid numerical artifacts attributed to edge e�ects.

We performed a thorough calibration of the proposed inversion algorithm, by recon-

structing a large number of randomly generated surface realizations with moderate rough-

ness both in height and slope (
<
� 40o). Representative results are shown in Fig. 8. For all

examples we used the four-stage frequency-hopping scheme as in Fig. 7. Again, except

near the edge regions, the reconstructions are quite accurate. As a general comment, we

found satisfactory reconstructions for problem parameters (roughness, permittivity, etc.)

in the range of validity of the forward model summarized in Sec. III-B.

We also investigated the numerical stability of the algorithm with respect to errors in

the reected �eld simulated/measured data. In order to simulate the unavoidable mea-

surement uncertainty, we added to the full-wave-computed reected �eld data a uniformly

distributed relative error. Furthermore, in order to roughly simulate the e�ect of possible

clutter sources neglected in the model, such as the incoherent scattering contribution from

�ne-scale roughness, we added a background noise with uniformly distributed amplitude

and phase. Reconstruction results are shown in Fig. 9, with the problem parameters as in

Fig. 3. As one can see, the reconstruction obtained from corrupted data with a relative

error of �5% in amplitude and �10o in phase, and a background noise of �20 dB, is

not very di�erent (apart from the edge regions) from that obtained using noise-free data,

thus indicating the robustness of the proposed algorithm. Increasing the noise strength

obviously results in a poorer reconstruction, especially in the edge regions whose weaker
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scattering contribution is more noise-sensitive. It is interesting to notice that even with a

considerably stronger background noise (�10 dB), the reconstruction of the central region

of the interface pro�le is still relatively accurate.

Concerning the convergence rate, in the above examples an average number of 20� 30

conjugate gradient iterations per resolution stage was typically required, resulting in an

overall computing time of � 1 min. on a 500 MHz PC; no particular e�ort was made to

optimize the numerical code.

V. Conclusions

We presented a new inversion algorithm for the reconstruction of moderately rough

dielectric interfaces using spatially sampled (multifrequency) reected �eld data. The

proposed approach is based on a compact parameterization of the unknown interface pro�le

in terms of quartic splines, whose unknown parameters are estimated by minimizing the

di�erence between model-based and measured reected �eld data. The approach uses a fast

forward model based on quasi-ray Gaussian beams [11]. In order to avoid local minima, a

frequency hopping multiresolution approach is used, exploiting reconstructions based only

on longer wavelengths to provide initial guesses for higher resolution reconstructions.

The proposed algorithm was evaluated on noisy data generated from simulated pro-

�les, illustrating that accurate and robust reconstructions can be obtained for moderate

roughness (maximum slopes
<
� 40o), with reasonable computing times. Thus, extensions

of the algorithmic approach to three-dimensional (3D) geometries should be feasible for

realistic situations where sparse (multifrequency) data and limited computing resources

are available, and near real-time estimates are required.

The approach presented in this paper is similar in spirit to that of [8], although based

on a di�erent forward solver and optimization schemes. In particular, our approach gen-

eralizes naturally to sparsely sampled data.

The surface estimation algorithm has been extended to time dependent (short pulse)

GPR excitation [25], and has been incorporated into adaptive techniques for subsurface

GPR image reconstruction of shallowly buried plastic mine-like targets in the presence

of unknown rough air-soil interfaces [19]{[22]; preliminary outcomes seem encouraging.

Extensions presently under investigation include generalization to fully 3D geometries.
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operating wavelengths: N� = 4, �1 = 0:2, �2 = 0:1, �3 = 0:067, �4 = 0:05; weight coeÆcients:

�pq = 1 8 p; q. Relative permittivity: �r = 3 + 0:05i.
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Fig. 7. Parameters as in Fig. 3. Convergence example for the proposed frequency-hopping strategy. (a):

Reconstruction using only the �1 = 0:2 data and a at interface (cn = 0; n = �4; :::; Nh � 1) initial
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|{ Actual pro�le; - - - Reconstruction.
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Fig. 8. Reconstruction of randomly chosen example pro�les via the four-stage frequency-hopping strategy

in Fig. 7. Spline parameters: Nh = 12, �x = 1=12, xmin = �0:5, xmax = 0:5; aperture parameters

(nonphased cosine distribution (8)): d = 0:8, zA = 0:6; observation points: Nr = 10, zr = 0:6,

xrp = �0:5 + (p � 1)=(Nr � 1); p = 1; :::; Nr; operating wavelengths: N� = 4, �1 = 0:2, �2 = 0:1,

�3 = 0:067, �4 = 0:05. |{ Actual pro�le; - - - Reconstruction.

-0.50 -0.25 0.00 0.25 0.50
-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06
 
 

h
(x

)

x
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(relative error: �5% in amplitude, �10o in phase; background noise: �20 dB); -�-�-�- Reconstruction
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Abstract

This paper deals with the short-pulse radiation of three-dimensional (3D) vector electromagnetic

�elds from arbitrarily polarized large two-dimensional (2D) truncated aperture distributions, which are

parameterized in terms of narrow-waisted ray-like pulsed Gaussian basis beams centered on a discretized

Gabor lattice in a four-dimensional con�guration-spectrum phase space. The study extends our previous

Gabor-based investigation of time domain (TD) short-pulse radiation of 2D �elds from 1D large truncated

apertures with nonphased, linearly phased (delayed) and nonlinearly phased focusing aperture �eld pro�les

[1]. We begin with, and summarize, a Gabor-based frequency domain (FD) formulation of the 2D aperture

problem which has been presented and tested elsewhere [2], [3], but we include additional numerical

examples for validation and quality assessment. As in [1], we access the time domain by Fourier inversion

from the FD, starting from the initial 3D space-time Kirchho� formulation (whose numerical integration

furnishes reference solutions), and then passing on to Gabor-parameterized �eld representations in terms

of pulsed beam (PB) wavepackets which are launched by linearly and nonlinearly phase-delayed focusing

aperture distributions. Example calculations and comparisons with numerically generated reference data

serve to calibrate the Gabor-PB algorithms and assess their domains of validity.

Keywords

Gaussian beams, pulsed beam wavepackets, Gabor lattice representations.

I. Introduction

In an ongoing series of recent investigations, we have revisited a previously formu-

lated discretized Gabor-based narrow-waisted Gaussian beam (GB) algorithm for two-

dimensional (2D) time-harmonic high-frequency radiation from truncated 1D planar aper-

ture distributions [4], which was then applied to the interaction of these GB-parameterized

radiated �elds with complex propagation environments [5], [6]. The algorithm had been

found to be robust, accurate, physically appealing, and numerically eÆcient when com-

pared with conventional Kirchho� Physical Optics integration procedures. Our recent

interest has been motivated in part by the need of robust forward solvers in forward and

inverse scattering (identi�cation and imaging) scenarios concerned with objects embedded

within an irregularly bounded penetrable semi-in�nite medium. In a stepwise approach

toward constructing the necessary algorithms, we have proceeded along two parallel routes:

1. extension of the frequency domain (FD) algorithms for the 1D aperture/2D �eld con�g-

uration to the new rough interface propagation environment, and to the new general case

of 2D aperture/3D vector �elds; 2. extension of the FD results to the short-pulse-excited
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time domain (TD). The FD interaction of the 1D aperture radiated �eld with a moder-

ately rough interface has been addressed in [7] and [8] for the forward problem and in [9]

and [10] for the inverse problem, whereas the 2D aperture/3D �eld radiation problem has

been addressed in [2] and [3]. The TD extension of the 1D aperture problem has been

carried out in [1], and the extension to 2D apertures is the subject of the present paper.

The contents of this paper having been summarized in the abstract, we pass on directly

to the problem formulation and its solution via the Gabor-based narrow-waisted beam

algorithm.

II. Formulation of the Problem

We consider the radiation of three-dimensional (3D) vector electromagnetic (EM) �elds

excited by pulsed arbitrarily polarized extended two-dimensional (2D) vector �eld distri-

butions in a truncated planar aperture of characteristic dimension dA on the z = 0 plane

of Fig. 1. We shall only deal with the vector electric �eld e(r; t), r = xux+ yuy+ zuz; the

vector magnetic �elds can be derived from Maxwell's equations. Here and henceforth, bold

face symbols denote vector quantities, and u� denotes a unit vector in the �-direction.

The 2D space-time aperture �eld distribution will be speci�ed as

e0(x; y; z = 0; t) = f(x; y; t); (x; y) 2 �A; uz � f = 0: (1)

The corresponding �eld radiated into the halfspace z > 0 can be obtained by space-time

superposition, using the 3D time-domain (TD) Green's function

g3D(r; t; r
0

0; t
0) =

Æ(t� t0 � R=c)

4�R
; R = jr� r00j ; (2)

where r00 = x0ux + y0uy, Æ(�) represents the Dirac delta function, and c is the ambient

propagation speed. The subscript \0" identi�es quantities in the z = 0 plane. The

resulting �eld radiated into the halfspace z > 0, synthesized by superposition of point

source contributions (Kirchho� integration), is given by [11, p. 175]

e(r; t) = � 1

2�

Z
1

�1

Z
1

�1

(r�r00)�
(
uz �

"
f(x0; y0; t� R=c)

R3
+

1

cR2

@

@t
f(x0; y0; t� R=c)

#)
dx0dy0:

(3)
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In Sec. IV-D, we shall be using a reference solution based on Gaussian quadrature nu-

merical integration [12] of (3). In what follows, the time domain is accessed by Fourier

inversion from the frequency domain (FD) via the Fourier transform pair

e(r; t) =
1

2�

Z
1

�1

E(r; !) exp(�i!t)d!; E(r; !) =
Z
1

�1

e(r; t) exp(i!t)dt: (4)

Capital letters identify FD �eld quantities.

III. Relevant FD Results

This section contains a brief summary of relevant frequency domain (FD) results from

[2], [3] and some new additions. The FD aperture �eld corresponding to (1) has an

implicit exp(�i!t) time dependence and a spatial distribution F(x; y; !) (related to f via

the Fourier transform pair in (4)) over the aperture �A in Fig. 1,

E0(x; y; z = 0; !) = F(x; y; !); (x; y) 2 �A; uz � F = 0: (5)

The resulting electric �eld in the halfspace z > 0, obtained by point-source (Kirchho�)

integration in con�guration space, is given by [11, p. 107]

E(r; !) = 2
Z
1

�1

Z
1

�1

rG3D(r; r
0

0;!)� [uz � F(x0; y0; !)] dx0dy0; (6)

where

G3D(r; r
0

0;!) = exp(ikR)=(4�R); R = jr� r00j ; (7)

is the 3D free-space FD Green's function, with k = !=c = 2�=� as the ambient wavenum-

ber and � as the wavelength. It can easily be veri�ed (see [11, p. 175]) that e(r; t) in (3)

and E(r; !) in (6) are related through the Fourier transform pair (4). In the remainder of

this section, the ! dependence in E and F will be omitted for simplicity of notation, and

the discussion relies heavily on references [1]{[3], with precise citations attached to each

of the results extracted from these papers. Notationally, we use (2.5) to identify eqn. (5)

in ref. [2], for example. We also call attention to the following di�erences between [2], [3]

and the present paper: 1. [2] and [3] deal with the calculation of the vector potential P

whereas here we calculate the vector �eld E. 2. The aperture potential �eld in [2] and [3]
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is denoted by f which should not be confused with the TD f in (1) here. These di�erences

do not a�ect the basic format of the Gabor expansions to which the citations refer.

A. Discretized Gabor-Based Field Representations in the Con�guration-Spectrum Phase

Space

A.1 Aperture Field

The vector aperture �eld F(x; y) can be expressed in the 2D Gabor Gaussian beam

(GB) basis as follows (see (2.4))

F(x; y) =
1X

m;n;p;q=�1

Amnpqw(x�mLx; y � pLy) exp [i (n�xx + q�yy)] ; (8)

with w(x; y) representing the normalized 2D Gaussian window in (2.10a),

w(x; y) =

 
2

LxLy

!1=2
exp

n
��

h
(x=Lx)

2 + (y=Ly)
2
io

;
Z
1

�1

Z
1

�1

w2(x; y)dx dy = 1: (9)

The representation in (8) is tied to a four-dimensional lattice in the (x; y; kx; ky) phase-

space (Fig. 2), kx; ky being the x and y-domain wavenumbers, respectively, which can be

expressed in terms of the spherical polar coordinate angles �; � (see Fig. 1) as

kx = k sin � cos�; ky = k sin � sin�; kz =
q
k2 � k2x � k2y = k cos �: (10)

In this Gabor basis, each lattice point locates a Gaussian beam, whose initial pro�le

matches the corresponding basis function. Indexes (m; p) tag x; y spatial shifts, respec-

tively, whereas (n; q) tag kx; ky spectral shifts (i.e., beam tilts �nq; �nq), respectively.

Spatial and spectral periods are related by the self-consistency relation (con�guration-

spectrum tradeo�) (2.4a),

Lx�x = Ly�y = 2�: (11)

From (10), as the spectral shifts increase, the corresponding (n; q) beam polar angles

�nq = sin�1[(k2x + k2y)
1=2=k]nq, i.e.,
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�nq = sin�1

2
4
q
(n�x)2 + (q�y)2

k

3
5 = sin�1

2
64
vuut n�

Lx

!2
+

 
q�

Ly

!2375 ; (12)

become complex for [(n�=Lx)
2 + (q�=Ly)

2] > 1, and therefore the corresponding beams

away from the aperture (see Sec. III-A.2) become evanescent. In the second equality of

(12), use has been made of (11) and k = 2�=�.

The expansion coeÆcients in (8) can be computed by introducing an auxiliary bi-

orthogonal function (x; y) (cf. (2.8)),

Amnpq =
Z
1

�1

Z
1

�1

F(x; y)�(x�mLx; y � pLy) exp [�i (n�xx + q�yy)] dxdy; (13)

where � denotes the complex conjugate. For the Gaussian window in (9), a closed-form

expression for (x; y) is derived in [2, App. C]. Alternatively, the Gabor coeÆcients can

be computed e�ectively by schemes employed in image processing [13]. However, we shall

avoid this calculation later on by specializing to narrow-waisted Gaussian basis functions

(see Sec. III-B).

A.2 Radiated Field

The Gabor lattice representation for the �eld radiated into the halfspace z > 0 follows

by combining (6) and (8),

E(r) =
1X

m;n;p;q=�1

(Amnpq � uz)�Bmnpq(r); (14)

with the (vector) beam propagator Bmnpq expressed by Gabor-weighted point-source su-

perposition as

Bmnpq(r) = 2
Z
1

�1

Z
1

�1

rG3D(r; r
0

0)w(x
0 �mLx; y

0 � pLy) exp [i (n�xx
0 + q�yy

0)] dx0dy0:

(15)

B. Narrow-Waisted Beams

When the observer is located in the paraxial far-zone of a beam, the integral in (15) can

be evaluated by saddle-point asymptotics. It is shown in [3, Sec. III], that the result can be
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expressed in an explicit closed form in terms of complex source point (CSP) propagators,

provided the beams are nontilted (n = q = 0), narrow-waisted (Lx;y
<� � � dA), and

distributed over a symmetric lattice (Lx = Ly = L). Narrow-waisted (ray-like) GBs have

been shown in a series of previous studies of 2D �elds excited by 1D apertures [5]{[8] to

yield highly eÆcient and accurate algorithms for synthesis of interactions with complex

propagation and scattering environments. The narrow-waisted nontilted GB can be related

to the 3D-CSP Green's function ~G3D as follows (cf. (3.14))

~Bm0p0(r) � 2
p
2L exp(�kb)r ~G3D(r; ~r

0

mp) (16)

� ikL
exp[ik( ~Rmp + ib)]p

2� ~R2
mp

�
r� ~r0mp

�
; (17)

where

~Rmp =
���r� ~r0mp

��� = q
(x� x0m)

2 + (y � y0p)
2 + (z � ~z0)2; Re( ~Rmp) � 0; (18)

is the complex distance between the real observation point r and the complex source point

~r0mp = x0mux + y0puy + ~z0uz = mLux + pLuy + ibuz: (19)

Here and henceforth the tilde � identi�es dependence on analytically continued spatial

source coordinates as well as the �eld produced thereby. The complex displacement pa-

rameter is given by (3.11c),

~z0 = ib; b = L2=�; (20)

one notes that b is the beam Fresnel length corresponding to an \e�ective" beam waist

L. Equations (16) and (17) are valid in the paraxial far-zone of each beam, j ~Rmnj � b,

and are restricted to symmetric and nontilted beams only. However, recalling (12), one

observes that these nontilted suÆciently narrow beams with n = q = 0, L
<� �� dA, yield

the dominant contribution to the radiated �eld because all other beams are evanescent.

An important attractive feature of narrow-waisted GBs is that their Gabor coeÆcients

can be estimated e�ectively by aperture sampling (see (3.19)), avoiding the time-consuming

operations required in (13) and (2.11a,b) or [13],
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Amnpq �
8><
>:

(L=
p
2)F(mL; pL); n; q = 0;

0; n; q 6= 0;
(21)

so that

~E(r) �X
m;p

(Am0p0 � uz)� ~Bm0p0(r): (22)

Due to the �nite extent of the aperture, the (m; p) summations in (22) include only a

�nite number of beams, given roughly by (dA=L)
2. The approximation in (21) and (22)

neglects the tilted (n; q 6= 0) beams in the Gabor expansion which, however, are evanescent

for [(n�=Lx)
2 + (q�=Ly)

2] > 1, as noted earlier. Subject to the constraints n = q = 0,

L
<� � � dA, the CSP paraxial far-zone approximation (17) can be invoked at moderate

distance, within and beyond the radiating near-zone of the aperture. The resulting beam

synthesis in (22), with (21) and (17), yields an eÆcient algorithm which has been tested

and validated in Sec. III-D.

C. Linearly Phased Aperture

For linearly-phased distributions, the aperture �eld becomes

F(x; y) = g(x; y) exp [ik sin �A (x cos�A + x sin�A)] ; (23)

where g(x; y) is a real function and �A, �A specify the direction of the main radiation lobe.

Now, a more e�ective implementation of the narrow-waisted beam discretization can be

achieved by exploiting propagation-matched tilted beams, which has not been investigated

in [3]. As for the 2D �eld/1D aperture problem in [1], this is achieved by Gabor-expanding

the real function g(x; y) only, and including the linear phasing in the beam integral (15)

for the Bm0p0 beam propagator. Accordingly, generalizing the 1D aperture expressions in

(1.18){(1.20) to the 2D aperture case, the narrow-waisted beam expansion (22) can be

recast as (for simplicity, the subscript \m0p0" is henceforth replaced by \mp")

~E(r) �X
m;p

(Cmp � uz)� ~Bmp(r); (24)

where
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Cmp � (L=
p
2)g(mL; pL); (25)

~Bmp(r) = ikL
exp[ik( ~Rmp + ib + Lmp)]p

2� ~R2
mp

�
r� ~r0mp

�
; (26)

Lmp = L sin �A (m cos�A + p sin�A) ; (27)

~Rmp =
���r� ~r0mp

��� ; (28)

~r0mp = ~x0mux + ~y0puy + ~z0uz =

= (mL + ib sin �A cos�A)ux + (pL+ ib sin �A sin�A)uy + ib cos �Auz; (29)

b = (L cos �A)
2=�: (30)

Instead of Amp, Cmp in (24) and (25) identi�es Gabor coeÆcients associated with the

tilt-matched linearly phased aperture formulation. The beam propagator (26) di�ers from

~Bm0p0 in (17) by the phase shift (ikLmp) and by the di�erent de�nitions of the CSP ~r0mp

and b in (29) and (30), respectively (see (1.21) and (1.22)), which produce the propagation-

matched tilt (�A; �A) in the beam direction. Equation (26) can be obtained by the same

procedure that leads to (17), or even by inspection, recalling the 1D aperture results [1]. As

shown in Sec. III-D below, for linearly phased apertures, the tilted beam expansion (24)

allows signi�cantly coarser lattice sampling than (22), for the same degree of accuracy.

For moderately nonlinear phasing it may still be convenient to split the phase function

into a linear term (included in the beam propagator as above) and a nonlinear remainder

(included in the Gabor-expanded function g), but no particular bene�t is expected for

strongly nonlinear phasing (e.g., strongly focused apertures).
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D. Numerical Results

In order to compare the nontilted and tilted formulations in (22) and (24), respectively,

we consider the linearly phased distribution in (23), with an x-polarized tapered square

cosine amplitude distribution

g(x; y) =

8><
>:

cos(�x=dA) cos(�y=dA)ux; jxj; jyj � dA=2;

0; jxj; jyj > dA=2:
(31)

It follows from (6) that the resulting vector electric �eld radiated into the z > 0 halfs-

pace has x, z components only. All other parameters used in our simulations are listed

in the �gure captions. In our simulations, we assume �A = 30o, �A = 45o, and a �xed

(symmetric) beam lattice period (Lx = Ly = L = 0:8�). In Figs. 3a and 3b, the x-

components of the radiated �elds synthesized under the same conditions with the same

number ((dA=L)
2 � 150) of narrow-waisted nontilted (22) and tilted (24) beams are com-

pared with the reference solution (Gaussian quadrature numerical integration of (6)),

showing representative x- and y-cuts, respectively, at a �xed value of z well within the

aperture near-zone. The tilted beam synthesis is barely distinguishable from the reference

solution, whereas the nontilted synthesis is noticeably more inaccurate. The accuracy is

more clearly quanti�ed in Figs. 3c and 3d, where the relative error magnitudes

�Ex;z �
���E(ref)

x;z � E(beam)
x;z

���
max

���E(ref)
x;z

��� ; (32)

are displayed as gray-scale plots. It is observed that the tilted beam synthesis attains a

maximum error < �30dB, whereas the nontilted beam synthesis error is evidently greater.

In order to obtain comparable accuracy with nontilted beams, a considerably smaller beam

lattice period (L � 0:1�) should be used, resulting in an overall computation time increase

of almost two orders of magnitude. The corresponding results for the z component are

shown in Fig. 4, and the same considerations apply. The nonphased case (�A = 0) yields

the same results as in [3].

As a further more challenging test, we consider a quadratically-phased, cosine-tapered

aperture �eld distribution
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F(x; y) = g(x; y) exp

"
�ik (x

2 + y2)

2Lf

#
; (33)

with g(x; y) de�ned in (31), which produces focusing (Lf > 0) or defocusing (Lf < 0),

with Lf representing the conventional focal length. Figure 5a shows the magnitude pro�le

plot of the x component of radiated electric �eld at the focal plane z = Lf > 0 (chosen

well within the aperture near-zone), computed via numerical Kirchho� integration of (6).

The wave�eld is peaked around the point (x; y) = (0; 0), clearly highlighting the focusing

e�ects. Figures 5b and 5c show representative x- and y-cuts, respectively, where the

reference solutions are compared with the narrow-waisted beam synthesis (22). Note

that, as compared with the linearly phased example, a smaller beam lattice period with

a correspondingly larger number of beams ((dA=L)
2 = 2500) is required for the strongly

nonlinear phasing in order to attain comparable accuracy. As shown in Fig. 5d, a value

L = 0:2� suÆces to keep the maximum error below �30dB. The corresponding results

for the z component are shown in Fig. 6, and the same conclusions hold. It should

be emphasized that the near-zone focal plane �eld poses a relatively strong challenge;

for moderate observation distances away from the focal plane, a coarser discretization is

adequate.

IV. TD Formulation

A. TD Narrow-Waisted Beam Discretization: Linear-Delay Aperture Fields

Rigorous extension, into the time domain (TD), of the Gaussian beam discretization for

the time-harmonic aperture distribution in Sec. III would require a six-index Gabor series

tied to a discretized lattice in the 6D (space-time, wavenumber-frequency) phase space.

However, for the narrow-waisted beams in Sec. III-B, which we shall use throughout,

implementation of the Gabor algorithm simpli�es substantially. In particular, we extend

the TD formulation for 2D �eld radiation by 1D pulsed aperture distributions in [1] to

pulsed radiation from 2D aperture distributions. As in [1, Sec. III-A], generalizing (1.28),

we �rst consider space-time separable aperture �elds with linear time delay and �A, �A

real,
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f(x; y; t) = g(x; y)p[t� c�1 sin �A(x cos�A + y sin�A)]; (34)

and its FD counterpart via (4),

F(x; y; !) = P (!)g(x; y) exp[ik sin �A(x cos�A + y sin�A)]: (35)

Here, p(t) is a pulse of short length with respect to the characteristic aperture width dA,

i.e., T � dA=c, and P (!) is its Fourier transform,

P (!) =
Z
1

�1

p(t) exp(i!t)dt: (36)

The results in this section are related to those in Sec. III through the Fourier transform in

(4) �ltered by the pulse spectrum P (!). When the aperture �eld is expressed in the Gabor

representation based on the CSP beam propagator in (26), the presence of its evanescent

spectra motivates use of the one-sided analytic transform [11, p. 222] as in [1],

+

f (t) =
1

�

Z
1

0
F (!) exp(�i!t)d!; Im(t) � 0; (37)

where F (!) is the conventional Fourier spectrum of the real signal f(t) (see (4)), and the

real signal for real t is recovered via

f(t) = Re
�
+

f (t)
�
: (38)

Then by FD inversion of (24),

+
e (r; t) �X

m;p

(cmp � uz)�
+

bmp (r; t); (39)

with cmp = Cmp in (25), and the analytic pulsed beam (PB) propagator
+

bmp expressed

via (37) in terms of the paraxial, far-zone FD propagator ~Bmp in (26) as

+

bmp (r; t) =
1

�

Z
1

0

~Bmp(r; !)P (!) exp(�i!t)d!; Im(t) � 0: (40)

To simplify the evaluation of the integral in (40), it has been customary to choose the

complex displacement ib in (26) to be frequency independent so as to yield \isodi�racting"



GALDI ET AL.: TIME-DOMAIN RADIATION FROM LARGE TWO-DIMENSIONAL APERTURES... 13

basis beam wavepackets which remain collimated over a range of frequencies [14]. Via

(30), the isodi�racting excitation requires a frequency-dependent beam lattice. However,

as noted before (see also [1]), this leads to frequency-dependent Gabor coeÆcients which

cannot be computed by aperture pro�le sampling when the narrow-waisted constraint is

imposed. We therefore choose L to be frequency independent, to obtain the approximate

Gabor coeÆcients

cmp = Cmp � (L=
p
2)g(mL; pL); (41)

but at the expense of a frequency-dependent b, which is dealt with below. From here

on, we continue by generalizing the 1D aperture algorithm in [1], and consider a class of

di�erentiated Gaussian pulses (cf. (1.37) and (1.38)),

p(t) = P0p
(j)
g (t� T=2; T ); (42)

P (!) = P0(�i!)j exp(i!T=2)Pg(!; T ); (43)

where P0 is a normalization constant, the superscript (j) indicates j-th order di�erentiation

with respect to t, and pg(t), Pg(!) denote the standard Gaussian pulse and its spectrum,

respectively,

pg(t; T ) = exp

"
�
�

t

�T

�2#
; Pg(!; T ) =

p
��T exp

 
��2T 2!2

4

!
; (44)

the variance � is chosen so that the pulse width of p(t) is � T .

To de-emphasize the e�ect of the frequency-dependent parameter b on the complex

distance ~Rmp in (28), we assume L=� (and therefore b) suÆciently small, so that the

resulting amplitude factor in the FD beam propagator (26) can be approximated by (see

(29) or (1.39))

r� ~r0mp

~Rmp

� r� r0mp

Rmp
; r0mp = mLux+pLuy; Rmp =

���r� r0mp

��� ; b=L = L(cos �A)
2=�� 1;

(45)
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where the source point r0mp and the distance Rmp are now real and frequency independent.

In the phase, under the same assumptions, we retain the �rst order paraxial correction

(extending (1.40)),

~Rmp � zbmp � ib+
�2bmp

2(zbmp � ib)
� zbmp � ib +

�2bmp(zbmp + ib)

2z2bmp

; (46)

subject to (see (1.42) and (1.43))

jzbmp � ibj � �bmp; b =
(L cos �A)

2!

2�c
� zbmp; ! � 
: (47)

Here, �bmp = (x2bmp + y2bmp)
1=2, 
 denotes the bandwidth of the pulse spectrum P (!), and

(xbmp; ybmp; zbmp) are the 3D beam coordinates (cf. (1.41))

2
6664
xbmp

ybmp

zbmp

3
7775 =

2
6664
cos �A cos�A cos �A sin�A � sin �A

� sin�A cos�A 0

sin �A cos �A sin �A sin�A cos �A

3
7775
2
6664
x�mL

y � pL

z

3
7775 : (48)

Applying (45){(48) to (26), the tilted beam propagator ~Bmp in (40) can be written concisely

as

~Bmp(r; !) � ��mpi! exp

 
�!2T 2

mp

4
+ i!�mp

!�
r� r0mp

�
; (49)

where

�mp(r) = � Lp
2�cR2

mp

; (50)

�mp(r) = c�1
"
zbmp +

�2bmp

2zbmp
+ L sin �A (m cos�A + p sin�A)

#
; (51)

Tmp(r) =
�bmpL cos �Ap

�czbmp
: (52)

In contrast with the 1D aperture problem [1], the beam propagator in (49) does not

contain fractional powers of the frequency; therefore, for the class of pulses in (42){(44),

the PB propagator can be evaluated more easily. In particular, by substituting (43), (44)
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and (49) into (40), and recallling basic properties (di�erentiation, time-shift) of analytic

signals, one obtains

bmp(r; t) = Re
�
+

bmp (r; t)
�
=

P0�mp�T

Tmp

p(j+1)g [(t� T=2� �mp)�; Tmp]
�
r� r0mp

�
; (53)

Tmp =
q
T 2
mp + �2T 2: (54)

Thus, the analytic TD narrow-waisted beam expansion in (39) reduces to an eÆciently

computable closed form in terms of simple analytic functions, with the real �eld obtained

from

e(r; t) = Re
�
+
e (r; t)

�
�X

m;p

(cmp � uz)� bmp(r; t); (55)

Modulated Gaussian pulses can be treated similarly, but require a slightly more complex

algebra involving error functions [15].

B. TD Narrow-Waisted Beam Discretization: Nonlinear-Delay Aperture Fields

We now extend the results in Sec. IV-A to the more general aperture �eld distribution

(c.f. (1.52))

f(x; y; t) = s(x; y)p
h
t� c�1�(x; y)

i
; (56)

obtained by Fourier inversion of

F(x; y; !) = P (!)s(x; y) exp
�
i
!

c
�(x; y)

�
; (57)

where s(x; y) and �(x; y) are real functions. For moderately nonlinear phasing �(x; y),

as discussed in Sec. III-C for the FD synthesis, it may be convenient to split the phase

(delay) function into a linear part plus a nonlinear remainder

�(x; y) = sin �A(x cos�A + y sin�A) + �NL(x; y); (58)

where �NL(x; y) does not contain linear terms. Referring to (23), g(x; y) is now given by
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g(x; y) = s(x; y) exp[ik�NL(x; y)]; (59)

with the complex Gabor coeÆcients (see (25)),

Cmp = (L=
p
2)s(mL; pL) exp[ik�NL(mL; pL)]: (60)

The corresponding TD beam expansion di�ers slightly from (39) (see (1.57)),

e(r; t) �X
m;p

(smp � uz)� bmp(r; t� tmp); (61)

with the PB propagator bmp taken from (53), and

smp = (L=
p
2)s(mL; pL); tmp = c�1�NL(mL; pL): (62)

For strongly nonlinear phasing, the splitting in (58) o�ers no computational advantages

over the nontilted version (i.e., �A = �A = 0 in (53)) applied to the entire phase function

�(x; y).

C. Assessment of Accuracy

The explicit closed form expressions developed in Sec. IV-A for the beam propagator

integral in (40) are based on a sequence of approximations which have been expressed

in terms of interdependent inequalities that involve all relevant problem parameters and

are stated in (45) and (47). To systematize estimates of the range of validity in this

multiscale problem, it is useful to de�ne a nondimensional (ND) estimator which embodies

all of the problem parameters and is structured around speci�cally scaled ND parameter

combinations containing quantities of special interest.

The most stringent overall constraint in (45) and (47) is the smallness of the beam

parameter b over the whole bandwidth of interest (the second inequality in (47)), which

actually determines the maximum allowable lattice period (i.e., the minimum number of

beams) for speci�ed 
, �A, and observation point. For speci�ed observation plane at

z = zobs, recalling that zbmp = zobs= cos �A, this constraint can be written as

(L cos �A)
2


2�c
� zobs

cos �A
: (63)
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Multiplying and dividing by d2AT on the right hand side, and introducing the auxiliary

ND parameters

Nb =

 
dA
L

!2
(number of beams in (39)); (64)

� =

T

2�
(normalized bandwidth of the pulse); (65)

Fd =
d2A
cT

(Fresnel distance of the aperture); (66)

� =
zobs
Fd

; (normalized distance from the aperture); (67)

the constraint in (63) can be written compactly in terms of the ND estimator Q,

Q � �(cos �A)
3

�Nb
� 1; (68)

which highlights the important role of Nb in the algorithm architecture. Actually, except

for square apertures, Nb does not represent the precise number of e�ective beams (i.e.,

those with nonzero Gabor coeÆcients) in the expansion (39), and it should be regarded

as a conservative estimate. For robustness, it is required that the number of beams, Nb, is

large enough to render the narrow-waisted beam synthesis insensitive to \scramblings" of

the beam-lattice parameters, i.e., to di�erent combinations of these parameters within the

narrow-waisted constraint. With this in mind, one observes from (68), for example, that

decreasing the number of beams Nb can be compensated for by a corresponding increase in

�, i.e., in the observation distance zobs when Fd is speci�ed. In principle, the ND estimator

Q in (68) can be used for linear as well as non-linear delay aperture �eld distributions (see

Sec. IV-D). However, the actual value of Q ensuring a prescribed accuracy may vary

for di�erent distributions. In particular, a �ner discretization (i.e., larger Nb) is usually

required in the presence of nonlinear phasing/delay, for the same degree of accuracy.

D. Numerical Results

Extensive numerical simulations have been performed in order to validate and calibrate

the PB syntheses introduced in Secs. IV-A and IV-B. Here we have selected some rep-
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resentative results, comparing the beam syntheses with a reference solution obtained via

Gaussian quadrature numerical integration [12] of (3). In all simulations, the aperture

�eld distributions are assumed to be x-polarized and therefore (see (3)) the radiated �elds

contain only x; z components. The assumed temporal excitation is the wideband Rayleigh

pulse (four-times di�erentiated Gaussian) shown in Fig. 7, obtained from (42)-(44) with

j = 4; P0 = T 4=30000; � = 1=
p
50: (69)

The examples presented below represent the TD counterparts of the FD cases discussed

in Sec. III-D. In all simulations, we used a pulse-bandwidth value 
T = 40 (see Fig. 7),

which sets the reference level for the ND estimator Q.

We �rst consider the linear-delay aperture �eld distribution in (34), with g(x; y) taken

as the x-polarized, cosine-tapered distribution in (31). Figure 8 shows typical results for

the x-component of the radiated �eld for �A = 30o; �A = 45o. The problem parameters

are listed in the caption. In Fig. 8a, a gray-scale snapshot of the reference �eld solution is

observed in the near-zone of the aperture at a �xed value of z and ct. To highlight details

of the PB synthesis in (55), various 1D cuts of the space-time wave�eld are displayed

in Figs. 8b{8d for a speci�ed beam lattice period, and are compared with the reference

solution . Excellent agreement has been obtained with a relatively small number (20�20)

of beams (the two solutions are almost indistinguishible on the scale of the plots); the

corresponding value of the nondimensional estimator in (68) is Q � 0:1. Similar results

are observed for the z-component in Fig. 9. The convergence of the PB synthesis and

the role of the nondimensional estimator Q are illustrated in Fig. 10, which displays as

a function of Q the r.m.s. (energy) error �ex;z at �xed observation points r in the near,

intermediate, and far zone of the aperture,

�ex;z �

1R
�1

���e(ref)x;z (r; t)� e(beam)x;z (r; t)
���2 dt

"
1R
�1

���e(ref)x;z (r; t)
���2 dt 1R

�1

���e(beam)x;z (r; t)
���2 dt

#1=2 : (70)

Each curve in Fig. 10 refers to a �xed observation point, and is parameterized in terms

of Q by varying the remaining free parameter in (68), i.e., the number of beams Nb. One

observes that the error decreases almost monotonically with decreasing Q (i.e., increasing
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Nb). Moreover, the error vs. Q is weakly dependent on the observation distance, con�rming

our previous experience that, for the same degree of accuracy, a coarser discretization can

be used as the observation distance increases, subject to (68). Quantitatively, values of

Q � 0:1 (as in Figs. 8 and 9) yield an error < �20 dB, which is usually acceptable.

As a �nal example, we consider an x-polarized, cosine tapered, aperture distribution

with quadratic delay

f(x; y; t) = g(x; y)p
h
t+ (x2 + y2)=(2cLf)

i
; (71)

where g(x; y) is de�ned in (31). The above distribution represents the TD counterpart of

the FD focusing/defocusing distribution in (33), and constitutes a particularly stringent

test for the nonlinear-delay aperture PB synthesis in (61). Figure 11 contains representa-

tive results for the x-component of the radiated �eld, observed in the critical focal plane

z = Lf which has been chosen at moderate distance from the aperture, Lf = 0:2Fd.

In particular, Fig. 11a shows a snapshot of the reference solution at the time instant

ct = 20:44, where the focusing e�ects are clearly evident. The PB synthesis in (61), for a

�xed value of the beam lattice period, is compared with the reference solution in a num-

ber of representative 1D cuts shown in Figs. 11b{11d, with excellent agreement. Similar

observations apply to the z-component of the radiated �eld in Fig. 12. Note that stan-

dard (non-uniform) ray asymptotics would fail due to the presence of caustic transition

regions. As in the FD case (cf. Sec. III-D), the narrow-waisted pulsed beams still yield

an accurate wave�eld synthesis, with an increase (in this example of a factor 16) in the

computational e�ort, as compared with the linear-delay distributions. In this example, we

used 80� 80 beams, yielding Q � 0:005. The r.m.s. errors in (70) vs. Q are shown in Fig.

13 for various observation points. It is observed, for both components, that away from the

focal plane z = Lf , the error and its numerical values behave similarly to those for the

linear-delay case in Fig. 10. In particular, the error behavior is weakly dependent on the

observation point. In the more critical focal plane, the error behavior is quite di�erent: it

is uniformly larger and reaches a plateau (< �20 dB) for Q <� 0:005, indicating an intrin-

sic lower bound independent of the discretization. Such behavior was not observed in the

FD, where the full CSP GB propagators are used, and therefore is probably related to the
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paraxial approximation in (46), whose implications are not accounted for in the ND esti-

mator Q (derived from (47)). For the moderate focusing in this example, this lower bound

still yields reasonably accurate syntheses in the focal plane (see Figs. 11 and 12), but for

considerably stronger focusing, decreased accuracy can be expected and has actually been

encountered in numerical experiments. For these near-zone focal-plane �eld observations,

our numerical simulations usually produced satisfactory accuracy (�ex;z < �15dB) for
focused distributions with Lf > 0:1Fd. As seen from Fig. 13, reasonable accuracy can

be achieved away from the focal plane within the Q
<� 0:1 constraint observed in the

linear-delay-case.

The above beam syntheses were obtained with computing times ranging from 2ms

(linearly-phased aperture with 400 beams in Figs. 8 and 9) to 32ms (focused aperture with

6400 beams in Figs. 11 and 12) per space-time sample on a 700 MHz PC. The reference

solution was obtained via numerical quadrature of the Kirchho� integration in (3), using

a 7-point Gaussian formula [12] with discretization steps �x = �y = dA=350 = cT=35,

resulting in computing times of about 600 ms per space-time �eld sample.

V. Conclusions

Referring for background to the abstract and introduction (Sec. I), we have developed

here a discretized Gabor-based narrow-waisted pulsed beam (PB) algorithm for synthesis

of 3D vector �elds radiated by truncated planar 2D aperture distributions with amplitude-

tapered coordinate-separable linearly and nonlinearly phased pro�le functions. Building

upon the frequency domain 2D aperture radiation analysis in [2], [3] and the time do-

main 1D aperture radiation study in [1], we have obtained the simple, readily computable,

robust, explicit asymptotic PB expansions in (55) and (61). Calibration against refer-

ence solutions for a variety of numerical test con�gurations have established the accuracy

and range of validity of the PB algorithms. The validity constraints have been formal-

ized through the nondimensional estimator in (68), which combines all relevant problem

parameters in terms of physically meaningful spatially and temporally scaled groupings.

Computationally, the proposed PB syntheses appear attractive when compared with nu-

merical Kirchho� integrations, with typical computing times from about 20 to 300 times

smaller.
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Our next goal is the interaction of the radiated PBs with complex propagation environ-

ments. In this connection, forward and inverse scattering applications to 1D aperture/2D

�eld con�gurations have been addressed in [16]{[18]. Extensions to 2D aperture/3D �eld

con�gurations, by combining the PB discretization algorithm in the present paper with

Kirchho� Physical Optics techniques, are currently under consideration.
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Fig. 1. Two-dimensional aperture �eld distribution and coordinate systems.
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Fig. 2. 2D projection of the 4D (x; y; kx; ky) discretized Gabor lattice onto 2D (�; �) subspaces, where �

stands for either x or y and � stands for either kx or ky, with � and � denoting the corresponding

spatial and spectral integer indexes (m; p) or (n; q), respectively. �=const.: spatially displaced beams

centered at �� = �L�, with �xed phase gradient (beam tilt) ���; �=const.: spectrally displaced beam

tilts (���) at �xed beam location ��.
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Fig. 3. x-polarized, linearly-phased, square cosine aperture distribution in (23) with (31) (dA = 10�; �A =

30o; �A = 45o): x-component of near-zone (z = 10�) radiated �eld synthesis using narrow-waisted

nontilted and tilted beams with a �xed beam lattice period (L = 0:8�) is compared with the reference

solution (numerical integration of (6)). The number of beams used is (dA=L)
2 � 150. (a): Cut at

y = 4�; (b): Cut at x = 2�; |{ Reference solution; - - - Nontilted beam synthesis; � � � � � �
Tilted beam synthesis. The reference solution and tilted beam synthesis coincide on the scale of

plots. (c), (d): Gray-scale plots of the relative error (32) (in dB) for nontilted and tilted beam

synthesis, respectively.
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Fig. 4. As in Fig. 3, but z-component.
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Fig. 5. x-polarized, focused, square cosine aperture distribution in (33) (dA = 10�; Lf = 10�): x-

component of radiated �eld at the focal plane z = Lf . (a): Magnitude pro�le plot of the reference

solution (numerical integration of (6)); (b),(c): Cuts at y = 0 and x = �, respectively, comparing

the reference solution with the narrow-waisted beam synthesis ((22) with L = 0:2�). (d): Gray-scale

plot of the relative error (32) (in dB) for the beam synthesis (L = 0:2�). The number of beams used

is (dA=L)
2 � 2500. |{ Reference solution; - - - Beam synthesis.
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Fig. 6. As in Fig. 5, but z-component.

0.0 10.0 20.0 30.0 40.0 50.0 60.0
0.00

0.05

0.10

0.15

0.20
t/T 

 

|
P
( ω

)|

ωT

0.0 0.2 0.4 0.6 0.8 1.0
-0.8

-0.4

0.0

0.4

0.8

1.2

 

(b)

(a)

 

p
(t

)

Fig. 7. Rayleigh pulse. (a): Temporal pro�le in (42). (b): Spectrum (magnitude) in (43) (j = 4,

P0 = T 4=30000, � = 1=
p
50).



GALDI ET AL.: TIME-DOMAIN RADIATION FROM LARGE TWO-DIMENSIONAL APERTURES... 28

-0.8

-0.4

0

0.4

0.8

-2 0 2 4 6 8 10 12
-2

0

2

4

6

8

10

12

4.0 5.0 6.0 7.0 8.0

-0.4

0.0

0.4

0.8 x=2, z=10, ct=12

 

e x(
x,

y,
z,

t)

y
11.0 11.5 12.0 12.5 13.0

-0.8

-0.4

0.0

0.4

0.8

1.2 x=y=4, z=10

 

e x(
x,

y,
z,

t)

ct

2.0 3.0 4.0 5.0 6.0
-0.8

-0.4

0.0

0.4

0.8

1.2

1.6
y=4, z=10, ct=12

 

e x(
x,

y,
z,

t)

x

(b)

(c) (d)

(a)

x

�

10, 12z ct= =
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comparing the reference solution with the PB beam synthesis (55) (L = dA=20, i.e., 400 beams). For

the above parameters, Q � 0:1. |{ Reference solution; - - - Beam synthesis.
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Fig. 9. As in Fig. 8, but z-component.
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Fig. 11. x-polarized, pulsed, focused, square cosine aperture distribution in (71), with cT = 1; dA =

10 = 10cT; Lf = 20 = 0:2Fd (arbitrary units). x-component of radiated �eld at the focal plane z =

Lf . (a): Snapshot of the reference solution (numerical integration of (3)) at ct = 20:44; (b),(c),(d):

Cuts at (y = 0; ct = 20:44), (x = 0:5; ct = 20:44), and (x = y = 0), respectively, comparing the

reference solution with the PB beam synthesis (61) (L = dA=80, i.e., 6400 beams). For the above

parameters, Q � 0:05. |{ Reference solution; - - - Beam synthesis.
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Fig. 12. Parameters as in Fig. 11: z-component. (a): Snapshot of the reference solution at ct =

20:5; (b),(c),(d): Cuts at (y = 0; ct = 20:5), (x = 0:5; ct = 20:5), and (x = 0:5; y = 0), respectively,

comparing the reference solution with the PB beam synthesis (61) (L = dA=80, i.e., 6400 beams,

Q � 0:05). |{ Reference solution; - - - Beam synthesis.
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Fig. 13. r.m.s error in (70) for x- and z-components, respectively, as a function of the nondimensional

estimator Q in (68), adjusted by varying Nb. Parameters as in Figs. 11 and 12: (a): x-component.

Observation points: |{ x = y = 0; z = 20 = Lf = 0:2Fd; - - - x = y = 0; z = 70 = 0:7Fd; � � � � � �
x = y = 0; z = 100 = Fd. (b): z-component. Observation points: |{ x = 0:5; y = 0; z = 20 = Lf ;

- - - x = 3:7; y = 0; z = 70; � � � � � � x = 4:7; y = 0; z = 100.
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Abstract

We consider short-pulse (SP) time domain (TD) two-dimensional (2D) scattering by moderately rough

dielectric interfaces excited by one-dimensional SP-TD aperture �eld distributions. This study extends

to the SP-TD our previous investigation of time-harmonic high frequency 2D-scattering of Gabor-based

quasi-ray Gaussian beam �elds excited by 1D aperture �eld distributions in the presence of moderately

rough dielectric interfaces [1]. The proposed approach is based on the Kirchho� Physical Optics (PO)

approximation in conjunction with the Gabor-based quasi-ray narrow-waisted Gaussian pulsed-beam (PB)

discretization [2], which is applied to the equivalent induced SP \surface currents" on the interface that

establish the TD reected/transmitted �elds. We show that, for well-collimated truncated SP incident

�elds, the PO-PB synthesis of the reected/transmitted �elds yields an approximate explicit physically

appealing, numerically eÆcient asymptotic algorithm, with well-de�ned domains of validity based on the

problem parameters. An extensive series of numerical experiments veri�es the accuracy of our method

by comparison with a rigorously based numerical reference solution. The algorithm is intended for use as

a rapid forward solver in SP-TD inverse scattering and imaging scenarios in the presence of moderately

rough dielectric interfaces.

Keywords

Rough surface scattering, Gaussian beams, short pulses.

I. Introduction

This paper is concerned with the short-pulse (SP) time domain (TD) scattering of two-

dimensional (2D) �elds by 1D moderately rough dielectric interfaces which separate two

semi-in�nite air and dielectric regions, respectively, and are excited by incident �elds from

SP planar 1D truncated aperture distributions. The aperture emits a well-collimated SP

which illuminates a portion of the interface and induces there local \equivalent SP surface

currents" which produce the TD reected and transmitted �elds. Restricting the analysis

to the high frequency range, the equivalent surface currents are approximated by their

local Physical Optics (PO) values, which renders the reection and transmission problem

equivalent to radiation from a locally varying time-delayed SP aperture �eld distribution

along the interface pro�le. This SP-PO current distribution is parameterized in terms

of Gabor-based narrow-waisted ray-like discretized Gaussian initial �elds on the interface

which generate reected/transmitted pulsed beam (PB) propagators. The �eld at the

observer in either half space is established by summation over the SP-PO basis beams.
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The problem strategy outlined above implements a further step in our planned se-

quential approach toward a robust physically incisive, accurate and numerically eÆcient

high frequency asymptotic algorithm that quanti�es SP scattering of 3D vector �elds by

2D moderately rough interface pro�les between di�erent dielectric media (which may be

lossy). The intended application is as a rapid forward solver in SP-TD inverse scattering

and imaging scenarios where a dielectric rough interface plays a critical role (our approach

di�ers from several numerical/statistical approaches that have been explored in the past

(see, e.g., [3]{[5] and the references therein)). The general problem of SP-TD �elds excited

by 1D planar aperture distributions parameterized in terms of SP Gaussian beams (GB)

has already been addressed in one of our previous investigations [2]. The new step in the

present problem is the inversion to the SP-TD of the scattered �elds in our previous study

that deals with the same complete 2D problem geometry but excited by time-harmonic

high frequency illumination; here the discretized Gabor basis for the 1D planar truncated

aperture distribution involves ray-like frequency domain GB propagators [1]. The coordi-

nation of [2] with the SP-TD inversion of the reected/transmitted �elds in [1] occupies the

remainder of this paper. After the problem statement in Sec. II, we re-examine in Sec. III

the high frequency solution in [1], and modify it by introducing the PO approximation for

the induced surface �elds on the interface in order to facilitate explicit analytic inversion to

the SP-TD later on; the corresponding PO-modi�ed asymptotic Gabor beam propagators

excited by illumination from a quasi-linearly-phased truncated aperture distribution are

developed here. The inversion to the SP-TD is treated in Sec. IV, with preliminary fre-

quency domain approximations for slightly lossy dielectrics as well as certain basis beam

parameters that adapt the inversion to the SP-TD aperture �eld parameterization in [2].

The numerical experiments in Sec. V, performed for a variety of di�erent problem pa-

rameters, assess and quantify the accuracy and range of validity of the explicit, compact,

physics-based computationally eÆcient algorithm in Sec. IV through comparison with a

rigorously-based numerical reference solution. Conclusions are briey stated in Sec. VI.

II. Statement of the Problem

The problem geometry is sketched in Fig. 1. All �elds and geometries are two-

dimensional (2D) in the y-independent (x; z) space. A transverse magnetic (TM) po-
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larized pulsed electromagnetic (EM) �eld is assumed to impinge from free space onto a

homogeneous lossy dielectric half-space bounded by an irregular interface described by a

continuous function h(x) (Fig. 1a).

A. Incident Field

We restrict our attention to the y-directed electric �eld e(x; z; t) from which all other

�eld quantities of interest can be computed via Maxwell's equations. The y-directed

incident �eld ei is generated by a large truncated 1D aperture of width d at z = zA, with

an assigned space-time electric �eld distribution f(x; t),

ei(x; z = zA; t) =

8><
>:

f(x; t); jx� xAj � d=2;

0; jx� xAj > d=2;
(1)

where xA is a spatial shift which can be used to adjust the illumination. In what follows,

we shall be concerned with pulsed well-collimated Gaussian beams (GBs) generated by

the separable linear-delay space-time �eld distributions

f(x; t) = g[(x� xA) cos �A]p[t� c�1(x� xA) sin �A]: (2)

In (2), g(x) is a Gaussian taper function and c = (�0�0)
�1=2 is the free-space wavespeed,

with �0, �0 denoting the free-space permittivity and permeability, respectively. Moreover,

p(t) is a short pulse of length T � d=c, and �A denotes the tilt angle of the radiated beam

relative to the z-axis (Fig. 1b). The variance of g(x) and the spatial shift xA are chosen

so that f(x; t) tapers to zero for jxj > d=2, as shown in Fig. 1b. The linear-delay aperture

�eld distribution in (2) generates a wide-waisted tilted GB which, in the collimation zone

of the aperture, can be approximated by a pulsed tapered plane wave,

ei(x; z; t) � g(xB)p(t� c�1zB); (3)

where (xB; zB) are beam centered coordinates (Fig. 1b)

"
xB

zB

#
=

"
cos �A sin �A

sin �A � cos �A

# "
x� xA

z � zA

#
: (4)
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The reference solutions employed later on are based on the incident �eld generated by

numerical evaluation of the rigorous Kirchho� aperture (line source Green's function)

integration using (1) and (2) (with (10)), whereas all subsequent beam-derived results rely

on the plane wave approximation in (3).

B. Reected and Transmitted Fields

The irradiated half-space is assumed to be nonmagnetic, i.e., with relative permeability

�r = 1, and characterized by the constant relative permittivity �r and electric conductivity

�, both being frequency independent. The interface pro�le is assumed to be moderately

rough (both in height and slope) with respect to the pulse length T , i.e., the undulations

in h(x) are assumed to be on the order of cT . The reected and transmitted �elds are

modeled via the Gabor-based narrow-waisted discretized pulsed beam (PB) algorithm in

[2], to which we shall refer frequently throughout the paper. Notationally, we shall use

(�.�) to denote eq. (�) in ref. [�]; for instance, (1.6) means eq. (6) in ref. [1].

III. Frequency Domain Formulation

A Gabor-based, narrow-waisted beam approach for time-harmonic scattering by, and

transmission through, moderately rough interfaces has been introduced in [1], [6], extend-

ing the results in [7], [8], and yielding a robust and eÆcient numerical algorithm. Although

extension of this approach to pulsed excitation, via analytic Fourier inversion, is possible in

principle, its implementation is indirect and cumbersome. In particular, multiple interac-

tions, which can be treated conveniently in the frequency domain (FD) (see Appendix A in

[1]), would involve substantial preliminary algebra in the time domain (TD). Accordingly,

we pursue here a simpli�ed approach based on the FD Kirchho� Physical Optics (PO)

approximation which, via the algorithm in [2], can be more easily inverted to the TD. In

this section, we briey review the FD PO formulation and its Gabor-based narrow-waisted

beam discretization. Capital letters identify FD �eld quantities.

A. Physical Optics Approximation

The Kirchho� PO approximation has been used extensively for scattering from smooth,

gently curved structures which are large on the wavelength scale [9]. Although most
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applications have been carried out for impenetrable structures, penetrable objects can

be handled as well (see, e.g., [10]). Applications to conducting rough surface scattering

have also received much attention (see, e.g., [11]{[14]). For penetrable rough interfaces, we

return to the geometry in Fig. 1a, subject to the pulsed tapered plane-wave illumination

in (3), with FD spectrum

Ei(x; z; !) � g(xB)P (!) exp(ik0zB): (5)

Here, (xB; zB) are the beam coordinates de�ned in (4), k0 = !=c = 2�=�0 is the free-space

wavenumber, �0 is the free-space wavelength, and P (!) is the spectrum of the pulse p(t),

P (!) =
Z 1

�1
p(t) exp(i!t)dt: (6)

The y-directed FD PO reected �eld in the half-space z > h(x) can be expressed as (see,

e.g., [15])

Er(x; z; !) � �
Z
CPO

JrPO(x
0; !)

@

@�
G2D(x; z; x

0; h(x0); k0)d`
0; (7)

where CPO extends over the illuminated portion of the 1D surface z = h(x), d`0 is the

incremental arc-length measured along the surface tangent,

d`0 =

vuut1 +

 
dh

dx
(x0)

!2
dx0;

dh

dx
(x0) � dh

dx
(x)

�����
x0

; (8)

and @=@� denotes the normal derivative (Fig. 2)

@

@�
�
2
41 +

 
dh

dx
(x0)

!235
�1=2 "

@

@z
� dh

dx
(x0)

@

@x

#
: (9)

As stated previously, the incident �eld tapering is chosen so that the illuminated portion

of the interface, CPO, is essentially con�ned to the interval jxj � d=2 (see Fig. 1b). In (7),

G2D is the FD line-source Green's function,

G2D(x; z; x
0; z0; k) =

i

4
H
(1)
0 (kR); R =

h
(x� x0)2 + (z � z0)2

i1=2
; (10)
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with H(1)
0 (�) denoting the zeroth order Hankel function of the �rst kind. The induced

PO \surface current" density JrPO is given by twice the tangential reected �eld at the

interface, obtained from the canonical solution of in�nite plane-wave scattering by a plane

dielectric boundary locally tangent to the rough surface pro�le (Fig. 2)

JrPO(x; !) = 2R(x; !)Ei(x; h(x); !): (11)

In (11), R denotes the local TM plane-wave Fresnel reection coeÆcient,

R(x; !) =
cos �i �

�
�er � sin2 �i

�1=2
cos �i +

�
�er � sin2 �i

�1=2 ; (12)

where

�er(!) = �r + i
�

!�0
(13)

is the e�ective complex relative permittivity, and �i is the local incidence angle relative to

the normal, which can be expressed in terms of the incident beam tilt angle �A and the

local slope � as (see Fig. 2)

�i(x) = �A � �(x); �(x) = tan�1
"
dh

dx
(x)

#
: (14)

The same considerations applied to the �eld transmitted into the half-space z < h(x)

yield

Et(x; z; !) �
Z
CPO

J tPO(x
0; !)

@

@�
G2D(x; z; x

0; h(x0); k)d`0; (15)

where k =
p
�erk0 and the PO surface current density J tPO is given by

J tPO(x; !) = 2[1 +R(x; !)]Ei(x; h(x); !): (16)

The limitations of the Kirchho� PO approximation have been thoroughly investigated in

the past and are well documented in the technical literature (for the case of conducting

rough surface scattering see, e.g., [11]). In general, this approximation works well for

large, smooth scatterers, and for observation directions not far from backscatter. The
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formulations in (7) and (15) neglect multiple interactions, which can be incorporated in

principle through higher-order models (see, e.g., [14]). Here, we restrict the range of

validity to moderate roughness (both in height and slope) and incidence directions far

from grazing, thereby avoiding multiple scattering.

B. Gabor-Based Narrow-Waisted Gaussian Beam Discretization

The FD PO integrals in (7), (15) are formally analogous to the FD Kirchho� aperture

radiation integrals in [2, Sec. II] (see (2.2)). The only di�erence is that the line inte-

gration in (7), (15) is performed along the 1D rough surface pro�le z = h(x) instead of

a 1D planar aperture as in (2.2). In [2], the assigned FD planar aperture �eld distribu-

tion is parameterized in terms of x-domain discretized m-indexed Gabor basis functions

with narrow width L, centered on the Gabor lattice points xm = mL on the aperture;

these initial conditions generate narrow-waisted, quasi-ray Gaussian beams (GB) which

can be approximated eÆciently in terms of complex source point (CSP) propagators (see

(2.14)). Nontilted beams, launched from the Gabor lattice points and propagating along

the direction normal to the aperture plane, are superposed to synthesize the radiated �eld

(see (2.13)), with the Gabor coeÆcients approximated eÆciently by sampling the aperture

�eld distribution (see (2.12)). All other tilted beams in the full Gabor GB expansion (2.8),

which are evanescent for L
<� �0 � d, are neglected. For linearly phased apertures (cf.

(2.17)), a more eÆcient parameterization is obtained by exploiting propagation-matched

tilted beams (cf. (2.18)-(2.22)). For plane dielectric interfaces, the plane-wave-excited PO

\surface currents" would be exactly linearly phased; therefore the tilted beam discretiza-

tion in (2.18)-(2.22) could be applied straightforwardly and, as shown in [2, Sec. II-C],

would be considerably more eÆcient than the nontilted algorithm in (2.13)-(2.16). For

moderately rough interfaces, the phasing in the PO surface currents is no longer globally

linear. However, for narrow-waisted beams, one can still exploit the locally linear behavior.

To this end, it is expedient to rewrite the PO currents by separating out the locally linear

phase term that the incident plane wave would induce on the locally tangent plane, i.e.,

(generalizing (2.17))

J�PO(x) = J �
PO(x) exp[ik0x sin �

i(x) cos�(x)]; � = r or t; (17)
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with �i(x) de�ned in (14). Here and henceforth the ! dependence is omitted for simplicity

of notation. The weakly phased reduced PO currents

J �
PO(x) = J�PO(x) exp[�ik0x sin �i(x) cos�(x)]; � = r or t (18)

can thus be parameterized approximately as (see (2.18)-(2.19))

J �
PO(x) �

X
jmj�(d=2L)

C�
mw(x� xm); � = r or t; (19)

where the subscript m tags the m-th GB in the discretization and w(�) represents the

normalized Gaussian window in (2.6),

w(x) =

 p
2

L

!1=2
exp

h
��(x=L)2

i
;

Z 1

�1
w2(x)dx = 1; (20)

with the Gabor coeÆcients C�
m given approximately by

C�
m =

 
Lp
2

!1=2
J �
PO(xm); � = r or t: (21)

The sum in (19) extends up to jmj � d=2L because the PO surface currents (subject to

veri�cation) are assumed to be negligible for jxj � d=2, outside the illumination window

(see Fig. 1b). By combining (7) and (15) with (17) and (19), the reected and transmitted

�elds can be discretized as (see also (2.18))

E�(x; z) � 1

2

X
jmj�(d=2L)

C�
mB�m(x; z); � = r or t; (22)

where the beam propagators Brm, Btm are given by

Brm(x; z) = �2
Z
CPO

w(x0 � xm)
@

@�
G2D(x; z; x

0; h(x0); k0) exp[ik0x
0 sin �i(x0) cos�(x0)]d`0;

(23)

Btm(x; z) = 2
Z
CPO

w(x0 � xm)
@

@�
G2D(x; z; x

0; h(x0); k) exp[ik0x
0 sin �i(x0) cos�(x0)]d`0:

(24)
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For narrow Gaussian windows, i.e., L
<� �0 � d, and moderate surface roughness, the

paraxial far zone approximation in [7] can be applied to (23) and (24). For the reected

�eld, one obtains the following complex source point (CSP) approximation which applies

(2.20) locally (see Appendix A for details)

Brm(x; z) � �ik025=4
�

L

8�k0

�1=2 (�m � ibrm cos �im)

( ~Rr
m)

3=2
�

� exp
n
i
h
k0
�
~Rr
m + xm sin �im cos�m + ibrm

�
+ �=4

io
; (25)

where (see Fig. 3) �im � �i(xm), �m � �(xm),

�m = �(x� xm) sin�m + [z � h(xm)] cos�m: (26)

Furthermore,

~Rr
m =

q
(xrbm)

2 + (zrbm � ibrm)
2; Re[ ~Rr

m] � 0; (27)

is the complex distance, in the beam coordinates of Fig. 3, between the observation point

"
xrbm

zrbm

#
=

"
cos rm � sin rm

sin rm cos rm

# "
x� xm

z � h(xm)

#
; rm = �im � �m = �A � 2�m; (28)

and the CSP (0; ibrm), with the complex displacement parameter brm given by (generalizing

(2.22)),

brm = (L cos�m cos �im)
2=�0: (29)

Here and henceforth, the tilde � identi�es dependence on analytically continued spatial

source coordinates. The beam discretization in (22) with the CSP propagators in (25) is

physically appealing because it represents a superposition of GBs launched from points

(xm; h(xm)) on the illuminated portion of the interface along the reection directions

rm (see Fig. 3), which are locally matched to the surface currents. Similarly, for the

transmitted �eld one obtains

Btm(x; z) � ik25=4
�

L

8�k

�1=2 (�m � ibtm cos �Rm)

( ~Rt
m)

3=2
�
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� exp
n
i
h
k
�
~Rt
m + xm sin �Rm cos�m + ibtm

�
+ �=4

io
; (30)

where �Rm is the local refraction angle (see Fig. 4), related to �im and �er via Snell's law

sin �im =
p
�er sin �

R
m: (31)

Moreover, in the beam coordinates of Fig. 4, ~Rt
m is the complex distance

~Rt
m =

q
(xtbm)

2 + (ztbm � ibtm)
2; Re[ ~Rt

m] � 0; (32)

with

"
xtbm

ztbm

#
=

"
cos tm sin tm

sin tm � cos tm

# "
x� xm

z � h(xm)

#
; tm = �Rm + �m; (33)

and the complex displacement parameter given by

btm =
p
�er(L cos�m cos �Rm)

2=�0: (34)

Like the reected �eld, the transmitted �eld is synthesized via (22) and (30) with surface

current-matched CSP GBs propagating along the local refraction direction tm (see Fig. 4).

Since the dielectric half-space is assumed to be lossy, �Rm, 
t
m and btm are complex.

IV. Time Domain Formulation

A. Preliminary Considerations

The FD beam propagators in (25) and (30) are nearly identical with that in (2.20).

Therefore, extension to the time domain (TD) for pulsed excitation can be pursued by

following the procedure in [2, Sec. III-A]. However, the TD inversion is now complicated

by the dispersive (Ohmic) properties of the dielectric half-space (cf. (13)). Although

analytic approaches to PB propagation in Ohmic-dispersive media are available [16], here

we use a simpler approach, restricted to slightly lossy materials, i.e.,

�

!�0�r
� 1; ! < 
; (35)

with 
 denoting the e�ective bandwidth of the pulse p(t). This condition is ful�lled for

a class of actual ground penetrating radar (GPR) applications which is of interest to us
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(see, e.g., the discussion in [17]), and which allows the complex wavenumber to be written

as [17]

k =
!

c

p
�er �

p
�r
!

c

�
1 + i

�

2!�0�r

�
=
p
�r
!

c
+ i

�

2c�0
p
�r
; (36)

i.e., with a frequency-independent imaginary part. This nondispersive approximation con-

siderably simpli�es the TD inversion. In what follows, we shall be using (36) for calculating

the transmitted �eld. Moreover, we approximate the frequency-dependent reection coef-

�cient in (12) by its value at the center angular frequency 
0 of the pulse,

R(x; !) � R0(x) � R(x;
0): (37)

As in [2], we assume a frequency-independent Gabor lattice parameter L in order to

conveniently estimate the TD Gabor coeÆcients by aperture sampling (see the discussion

in [2, Sec. III-A]). Anticipating Fourier inversion, recalling (5), (11), (16), (18) and (37),

the FD Gabor coeÆcients in (21) can be written as

C�
m � 2c�mP (!) exp(i!tm); � = r or t; (38)

where

crm = (L=
p
2)1=2g(xBm)R0(xm); ctm = (L=

p
2)1=2g(xBm) [1 +R0(xm)] (39)

are frequency independent, and

tm = c�1
�
zBm � xm sin �im cos�m

�
; (40)

with (xBm; zBm) denoting the lattice points (xm; h(xm)) in the incident-beam coordinates

(4),

"
xBm

zBm

#
=

"
cos �A sin �A

sin �A � cos �A

# "
xm � xA

h(xm)� zA

#
: (41)

The FD Gabor expansions in (22) can thus be rewritten as
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E�(x; z; !) � X
jmj�(d=2L)

c�mP (!)B�m(x; z; !) exp(i!tm); � = r or t: (42)

As in [2], in order to deal with the evanescent spectra in the beam propagators Brm and

Btm, the TD is accessed by Fourier inversion of (42) via the analytic signal formulation (cf.

(2.31), (2.32)) [18]

+

f (t) =
1

�

Z 1

0
F (!) exp(�i!t)d!; Im(t) � 0; (43)

where F (!) is the conventional Fourier spectrum of the real signal f(t), and the real signal

for real t is recovered via

f(t) = Re
�
+

f (t)
�
: (44)

Accordingly (cf. (2.33)),

+

e� (x; z; t) � X
jmj�(d=2L)

c�m
+

b
�
m (x; z; t� tm); � = r or t; (45)

with the analytic PB propagators
+

b
�
m given by

+

b
�
m (x; z; t) =

1

�

Z 1

0
B�m(x; z; !)P (!) exp(�i!t)d!; Im(t) � 0; � = r or t; (46)

and the real TD �elds obtained from

e�(x; z; t) = Re
�
+

e� (x; z; t)
�
; � = r or t: (47)

The analytic PB propagators
+

b
r
m and

+

b
t
m in (46) should not be confused with the complex

displacement parameters brm and btm in (29) and (34), respectively.

As in [2], we consider a class of Rayleigh (di�erentiated Gaussian) pulses (cf. (2.37),

(2.38)),

p(t) = �
dj

dtj
exp

2
4�

 
t� T=2

&T

!235 ; (48)
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P (!) =
p
��&T (�i!)j exp

 
�&2!2T 2

4
+ i

!T

2

!
; (49)

where � is a normalization constant, and the variance & is chosen so that the pulse width

of p(t) is � T . We now generalize the TD results in [2, Sec. III-A], starting with the

reected �eld.

B. Reected Field

As in [2], in order to evaluate the integral in (46) with (25) and (49), we �rst approximate

the complex distance ~Rr
m in (27), which is frequency dependent via (29). Assuming L=�0

(and therefore brm) suÆciently small in the amplitude factor of (25) we let (cf. (2.39))

(�m � ibrm cos �im)

( ~Rr
m)

3=2
� �m

(Rr
m)

3=2
; Rr

m =
q
(xrbm)

2 + (zrbm)
2; brm � �m; z

r
bm; (50)

where Rr
m is real and frequency-independent, with �m and (xrbm; z

r
bm) de�ned in (26) and

(28), respectively. In the phase factor, instead of the paraxial approximation in (2.40), we

use a perturbation (�rst-order McLaurin) approximation in terms of brm (see (29)),

~Rr
m(!) � Rr

m � ibrm
zrbm
Rr
m

= Rr
m � i!

zrbm(L cos�m cos �im)
2

2�cRr
m

; brm � zrbm; (51)

which was found to give better results. Using (50) and (51), the beam propagator in (25)

can be rewritten as

Brm(x; z; !) � �r
m!

1=2 exp[�(!T r
m)

2=4 + i!� rm]; (52)

where

�r
m = �i25=4 exp(i�=4)c�1

s
L

8�

�m
(Rr

m)
3=2

; (53)

� rm = c�1(Rr
m + xm sin �im cos�m + T=2); T r

m =
L cos�m cos �im

2c
p
2�

s
1� zrbm

Rr
m

: (54)

Substituting (49) and (52) into (46), one obtains a canonical integral [19],
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I(p; q; j) =
Z 1

0
!j+1=2 exp

�
ip! � q2!2=4

�
d! =

= 2j+1=2q�j�5=2
"
q�
�
3 + 2j

4

�
M

(j)
1

 
p

q

!
+ 2ip�

�
5 + 2j

4

�
M

(j)
2

 
p

q

!#
; q 2 R+; (55)

where �(�) is the gamma function [20], and

M
(j)
1 (t) = 1F1

�
3 + 2j

4
;
1

2
;�t2

�
; M

(j)
2 (t) = 1F1

�
5 + 2j

4
;
3

2
;�t2

�
; (56)

with 1F1(u; v; t) denoting the Kummer conuent hypergeometric function [20]. The re-

ected analytic PB propagator can be thus written as

+

b
r
m (x; z; t) = (�1)j�rm

"
T r
m�
�
3 + 2j

4

�
M(j)

1

 
t� � rm
T r
m

!
� 2i(t� � rm)�

�
5 + 2j

4

�
M(j)

2

 
t� � rm
T r
m

!#
;

(57)

where

�rm = 2j+1=2��1=2(T r
m)

�j�5=2�r
m�&T; T r

m =
q
(T r

m)
2 + &2T 2: (58)

Equation (57) generalizes (2.44) to arbitrary order j of the derivative in (48). The functions

M
(j)
1;2 can be eÆciently computed using the rapidly converging expansions in Appendix B.

C. Transmitted Field

The transmitted PB propagator can be obtained similarly. The only slight di�erence

is due to the complex wavenumber k and the complex parameters �Rm and btm in (30)

(see (31) and (34)). For slightly lossy materials as in (35), the complex wavenumber is

approximated via (36), whereas �Rm and btm are approximated by the real values

�Rm � �Rm0 � sin�1
�
sin �im=

p
�r
�
; btm � btm0 �

p
�r(L cos�m cos �Rm0)

2=�0: (59)

Accordingly,

+

b
t
m (x; z; t) = (�1)j�tm

"
T t
m�
�
3 + 2j

4

�
M

(j)
1

 
t� � tm
T t
m

!
� 2i(t� � tm)�

�
5 + 2j

4

�
M

(j)
2

 
t� � tm
T t
m

!#
;

(60)
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where

�tm = 2j+1=2��1=2(T t
m)

�j�5=2�t
m�&T; T t

m =
q
(T t

m)
2 + &2T 2; (61)

�t
m = i(�r)

1=425=4 exp(��Rt
m0 + i�=4)c�1

s
L

8�

�m
(Rt

m0)
3=2

; � =
�

2c�0
p
�r
; (62)

� tm = c�1
hp

�r
�
Rt
m0 + xm sin �Rm0 cos�m

�
+ T=2

i
; T t

m =
p
�r
L cos�m cos �Rm0

2c
p
2�

vuut1� ztbm0
Rt
m0

;

(63)

Rt
m0 =

q
(xtm0)

2 + (ztm0)
2;

"
xtbm0

ztbm0

#
=

"
cos tm0 sin tm0

sin tm0 � cos tm0

# "
x� xm

z � h(xm)

#
; tm0 = �Rm0+�m;

(64)

D. Limitations

The limitations of the proposed approach can be divided into two categories. The

�rst category includes the model constraints, i.e., the underlying PO approximation and

all other simplifying assumptions. These constraints are known a priori, and can be

summarized as follows

i) Moderately rough interfaces (both in height and slope) with local curvature radii large

compared to the pulse length cT ;

ii) Plane-wave excitation (cf. (3)) with incidence direction far from grazing;

iii) Slightly lossy dielectrics (cf. (35)).

Strong roughness and/or near-grazing incidence would require more sophisticated models

than the simple PO approximation in Sec. III-A. More general (e.g., focused) excitations

would require a two-step procedure: �rst discretizing the aperture �eld distribution in

terms of narrow-waisted GBs as in [2] and subsequently applying the PO algorithm to

each incident beam. More sophisticated loss/dispersion models could also be included in

principle [16].

The second type of constraint is related to the adequacy of the narrow-waisted PB

discretization in Secs. IV-B and IV-C, in terms of the number of beams required to guar-
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antee stability of the outcome. We have referred to this as the scrambling criterion, i.e., the

insensitivity of the result with respect to di�erent combinations of the beam/lattice con-

�guration. Overall reliability requires that both the model constraints and the scrambling

criterion are satis�ed.

V. Numerical Results

A. Reference Solution

The PB syntheses presented in Sec. IV have been validated and calibrated against an

independent reference solution based on the time-harmonic multi�lament current method

in [21], adapted to moderately rough interfaces (cf. App. B in [1]). The frequency spectra

of the reected and transmitted �elds were obtained by solving the FD problem at 100

di�erent frequencies within the pulse bandwidth. The incident FD �eld was computed

via numerical integration of the rigorous Kirchho� aperture distribution (the spectrum of

(2)), without resorting to the plane wave approximation, and with use of the full dispersive

permittivity model in (13) for the dielectric half-space. The resulting frequency samples

were smoothed through local Pad�e-approximation [22] and �ltered by the pulse spectrum

P (!) in (49). The TD solution was then obtained via standard inverse FFT routines [22].

B. Simulation Parameters

The numerical simulations that follow are based on the pulsed aperture �eld distribution

in (2) with the Gaussian taper

g(x) = exp[�18x2=(d cos �A)2]; (65)

and the wideband fourth-order Rayleigh pulse p(t), obtained from (48) with j = 4, � =

T 4=30000, & = 1=
p
50, and length cT = 0:08d (see Fig. 5a), which has a center angular

frequency 
0 = 20=T (see Fig. 5b). For the reected/transmitted �elds, the special

functions M
(4)
1;2 in (57) and (60) were computed via the rapidly converging expansions in

Appendix B with N = 5 (cf. (2.50) and (2.51)). The aperture height zA was chosen

so as to place the rough dielectric interface within the collimation zone of the aperture,

thereby justifying the plane-wave incidence approximation in (3); depending on the tilt
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angle �A, the spatial shift xA was adjusted so that the illuminated region was con�ned in

the interval [�d=2; d=2] (see Fig. 1b). In each of the examples below, it was veri�ed that

the illumination at the edges x = �d=2 was at least 30 dB below the maximum strength

so that numerical artifacts due to edge e�ects were negligible. The rough surface pro�le

was generated via the quartic spline model in [1]. For the GPR applications of interest

in our studies, the dielectric half-space parameters were chosen so as to simulate a class

of realistic soils (Puerto Rican clay loam [23]), with the frequency range chosen to satisfy

(35).

C. Results

We begin with the problem geometry in Fig. 6, with the relevant parameters speci�ed

in the �gure caption. For this con�guration, the roughness is moderate both in height

(hmax = 0:36cT ) and slope (�max = 31o), and the average radius of curvature �rc is large

with respect to the pulse length (�rc = 5:9cT ). The incident �eld direction is vertical

(�A = 0), and the constitutive parameters �r, � satisfy (35). The previously stated condi-

tions for validity of the proposed PB synthesis in (47) should be thus satis�ed, and good

accuracy should be expected with an \adequate" number of beams. The reected and

transmitted �elds have been computed via (47) with (57) and (60), respectively, at nine

observation points (three di�erent horizontal positions, spanning the illuminated region, on

three observation planes). The reected/transmitted temporal waveforms obtained via the

PB synthesis with 150 beams are shown in Figs. 7 and 8, respectively, and are compared

with the reference solution. Very good agreement is observed. The reected waveforms re-

veal details which can be tied to the space-time dependent scattering processes. At certain

observation points, especially at smaller observation distance (cf. Figs. 7a, 7c, 7f), the

dominant contributions turn out to be well separated and replicate the incident waveform

(inverted due to reection). This is not the case in the central region (x = 0), where the

almost simultaneous arrivals from the surface do not allow their separate resolution for

the speci�ed input pulse width, thereby resulting in the chirped oscillations in Figs. 7b,

7e, 7h. Separate (non-inverted) arrivals are also visible in the transmitted �eld (cf. Fig.

8i); at smaller observation distance (e.g., Figs. 8a, 8c), however, the transmitted �eld

waveforms coalesce into a close replication of the incident pulse. In all examples, the PB
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syntheses capture even the �ner details.

The number of beams in these examples was arrived at using the pragmatic stability

criterion discussed in Sec. IV-D. In order to better quantify the accuracy, and address

convergence issues, we have computed the r.m.s. (energy) errors

�e� =

1R
�1

je�r(x; z; t)� e�b (x; z; t)j2 dt"
1R
�1

je�r(x; z; t)(x; z; t)j2 dt
1R
�1

je�b (x; z; t)(x; z; t)j2 dt
#1=2 ; � = r or t; (66)

where the subscript r denotes the reference solution and b denotes the PB synthesis.

The r.m.s. errors for Figs. 7 and 8 are < �25 dB. The convergence of the algorithm

in Figs. 7 and 8 is illustrated in Fig. 9, where the r.m.s. errors for both reected

and transmitted �elds are plotted vs. the number of beams Nb = d=L. The various

curves pertain to di�erent observation points. It is noted that beyond a critical threshold,

the error becomes practically insensitive to a further increase in the number of beams,

indicating that convergence has been achieved. \Convergence" here implies that the PO

integral is adequately beam-discretized but, as noted in Sec. IV-D, this does not necessarily

imply that the overall solution is accurate; good overall accuracy requires that the model

constraints are likewise satis�ed. The test con�guration was chosen deliberately so that

this is the case. In this example, the convergence turns out to be weakly dependent on

the observation point, and a robust threshold for uniformly good accuracy (�er;t < �25
dB) can be set around Nb = 150. If the model constraints in Sec. IV-D were violated, the

PB synthesis, although stabilized, could be inaccurate. For illustration, we strained the

algorithm by selecting simulation parameters near the limit of their range of validity. The

results in Fig. 10 pertain to the pro�le in Fig. 6, conformally scaled so as to increase the

roughness up to a maximum height hmax = 0:6cT and a maximum slope �max = 46o, with

an average curvature radius �rc = 4:4cT . The number of beams was chosen to satisfy the

stability criterion. Remarkably, the PB synthesis still performs well, but now one observes

discrepancies with respect to the reference solution (particularly in one late-time peak (Fig.

10a)) which cannot be repaired by increasing the number of beams. Note that the increased

roughness admits multiple reections which are accounted for in the reference solution but
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ignored in the PO algorithm. This may contribute to the diminished accuracy, which now

yields r.m.s. errors �er = �10 dB, �et = �20 dB. The deterioration is aggravated further
for oblique incidence, where multiple interactions are more pronounced, as seen in Fig. 11,

where the pro�le of Fig. 10 is illuminated by a tilted beam with �A = 40o. For this example,

�er = �8 dB and �et = �9 dB. We also investigated the accuracy degradation in the

\low frequency" (i.e., long pulse) limit. As an illustration, the reected and transmitted

waveforms at various observation points in Fig. 12 pertain to the geometry in Fig. 6, but

using a ten-times longer excitation pulse (cT = 0:8). For this con�guration, cT = 0:8d and

�rc = 0:44cT ; the reduced radius of curvature stretches the validity of the asymptotics in

the PO model and in the CSP approximations (25) and (30). First, one notes from Fig. 12

that the reected/transmitted waveforms contain less structure than those in Figs. 7, 8,

10, 11, since the surface is now atter on the pulse length scale (hmax = 0:06cT ). Second,

due to the lower-frequency content of the pulse, recalling (29) and (51), a larger Gabor

lattice period L (i.e., fewer beams) should be adequate to stabilize the beam synthesis.

This was con�rmed in numerical simulations, where the beam syntheses were found to

stabilize around Nb = 30. As seen from Fig. 12, the beam syntheses, though reasonably

good, are no longer highly accurate, but have r.m.s. errors ranging from �25 dB to �5
dB. As in Figs. 10 and 11, the accuracy cannot be improved by increasing the number of

beams, indicating that the limit in range of validity of the PO/CSP asymptotics has been

reached.

From a practical viewpoint, we have found fairly accurate predictions (�er;t
<� �20dB)

for roughness with maximum height hmax
<� 0:5cT , (average) curvature radii �rc

>� 2cT ,

maximum slopes �max
<� 40o, for nearly-vertical incidence (�A

<� 30o), and for dielectrics

with �=(
0�0�r)
<� 0:05. For the examples in Figs. 7, 8, 10 and 11, 150{200 beams were

usually found to be suÆcient to reach convergence, resulting in an average computing time

Tc = 8 ms per �eld time-sample (at a �xed observation point) on a 500 MHz PC. Note

that the computing time scales linearly with the number of beams; accordingly, for the

examples in Fig. 12 (i.e., 30 beams) we found Tc = 2ms.
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VI. Conclusions

A Gabor-based, quasi-ray, pulsed beam (PB) algorithm has been presented for short-

pulse 2D reection by, and transmission through, a 1D moderately rough interface sep-

arating free space from a slightly lossy dielectric half-space. The approach is based on

the Kirchho� PO approximation and the PB 1D aperture �eld discretization in [2], and

has been validated and calibrated against an independently generated reference solution.

Numerical simulations show that the proposed algorithm yields fast, robust and accurate

predictions in a calibrated range of parameters, and therefore is promising as a useful for-

ward model for inverse scattering scenarios that involve buried objects. Extension to more

general dispersion/loss models and to non-collimated aperture excitations remain to be

investigated. Extension to 2D surfaces, and 3D �eld scattering, based on 2D aperture PB

discretization [24], is straightforward in principle, but its computational features remain

to be explored.

Appendix A

Details Pertaining to Eq. (25)

For narrow Gaussian windows, with L
<� �0 � d, the integrand in (23) is strongly

localized around x = xm. Thus, for moderate roughness, the integration path near xm can

be approximated by the local tangent plane, and the phase function can be assumed to

be linear. Accordingly, in the (�m; �m) coordinate system of Fig. 3,

"
�m

�m

#
=

"
cos�m sin�m

� sin�m cos�m

# "
x� xm

z � h(xm)

#
; �m � �(xm); (67)

the reected-beam integral in (23) can be approximated as

Brm(x; z) � �2
Z 1

�1
w�m(�

0
m)

@

@�m
G2D(�m; �m; �

0
m; 0; k0) exp[ik0(�

0
m+xm cos�m) sin �

i
m]d�

0
m;

(68)

where w�m(�) is the Gaussian window in (20) projected onto the local tangent plane (�m

axis in Fig. 3),
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w�m(x) = w(x= cos�m) =

 p
2

L

!1=2
exp

"
��

�
x

L cos�m

�2#
: (69)

The integral in (68) has the same form as (2.9). Therefore, straightforward application

of the paraxial far zone approximation detailed in the Appendix of [7] yields the result in

(25). Similar considerations applied to the transmitted beams in (24) yield (30) (see Fig.

4).

Appendix B

Rapidly Converging Expansions for M
(j)
1;2

As in [2, App. C], using the Kummer transformation and the truncated Taylor series

for the conuent hypergeometric function 1F1, one obtains [20]

M
(j)
1 (t) = exp(�t2) 1F1

�
�5 + j

4
;
1

2
; t2
�
� exp(�t2)

NX
n=0

�
�5+j

4

�
n�

1
2

�
n
n!

t2n; (70)

M(j)
2 (t) = exp(�t2) 1F1

�
�3 + j

4
;
3

2
; t2
�
� exp(�t2)

NX
n=0

�
�3+j

4

�
n�

3
2

�
n
n!

t2n; (71)

with (u)n denoting the Pochammer symbol [20],

(u)n = u(u+ 1)(u+ 2) � � � (u+ n� 1); (u)0 = 1: (72)

As shown in [2, Fig. 5], the expansions in (70) and (71) guarantee satisfactory accuracy

with few terms (N � 5).
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Fig. 1. (a): Problem geometry. An aperture-generated TM-polarized pulsed �eld impinges from free-space

onto a dielectric half-space with relative permittivity �r and conductivity �, bounded by a moderately

rough interface z = h(x). (b): Wide-waisted Gaussian beam excitation in (2), to be approximated as

in (3).
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Fig. 2. Global (x; z) and local surface-based tangent-normal (�; �) coordinates. �(x) = tan�1[dh(x)=dx]

is the local slope of the surface pro�le; �i(x) = �A � �(x) is the local incidence angle measured from

the surface normal.
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Fig. 3. Global and local coordinates for reected beams. (xrbm; zrbm) is them�th reected-beam coordinate

system; (�m; �m) is the local tangent-normal coordinate system of Fig. 2, centered at lattice points

(xm; h(xm)); �m � �(xm) = tan�1[dh(xm)=dx] is the local slope; �im = �A � �(xm) is the local

incidence angle; rm = �im � �m is the local reection angle measured from the z-axis.
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Fig. 4. As in Fig. 3, but for transmitted beams. (xtbm; ztbm) is the m�th transmitted-beam coordinate

system; �Rm is the local refraction angle measured from the surface normal; tm = �Rm+�m is the local

refraction angle measured from the z-axis. Note that for lossy materials, �Rm and tm are complex; for

slight losses, the real (lossless) refraction angles in the �gure are good approximations.
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Fig. 7. Reected �eld at various observation points. Parameters as in Fig. 6. (a), (b), (c): z = 0:25,
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Quasi-Ray Gaussian Beam Algorithm for
Time-Harmonic Two-Dimensional Scattering by

Moderately Rough Interfaces
Vincenzo Galdi, Member, IEEE, Leopold B. Felsen, Life Fellow, IEEE, and David A. Castañon, Senior Member, IEEE

Abstract—Gabor-based Gaussian beam (GB) algorithms, in
conjunction with the complex source point (CSP) method for gen-
erating beam-like wave objects, have found application in a variety
of high-frequency wave propagation and diffraction scenarios.
Of special interest for efficient numerical implementation is the
noncollimated narrow-waisted species of GB, which reduces the
computationally intensive complex ray tracing for collimated GB
propagation and scattering to quasi-real ray tracing, without the
failure of strictly real ray field algorithms in caustic and other
transition regions. The Gabor-based narrow-waisted CSP-GB
method has been applied previously [1]–[3] to two-dimensional
(2-D) propagation from extended nonfocused and focused aperture
distributions through arbitrarily curved 2-D layered environments.
In this 2-D study, the method is applied to aperture-excited field
scattering from, and transmission through, a moderately rough in-
terface between two dielectric media. It is shown that the algorithm
produces accurate and computationally efficient solutions for this
complex propagation environment, over a range of calibrated
combinations of the problem parameters. One of the potential
uses of the algorithm is as an efficient forward solver for inverse
problems concerned with profile and object reconstruction [4].

Index Terms—Gabor lattice representations, Gaussian beams,
rough surface scattering.

I. INTRODUCTION

REFLECTION from, and transmission through, a rough (ir-
regular) boundary separating two different material media

is of interest in many applications. One such application is the
detection and classification of buried objects using ground-pen-
etrating radar. This application involves above-ground transmit-
ters and receivers. The twice-traversed air–ground interface is
a principal corruptor of the signal on its way to and from the
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Fig. 1. Problem geometry. An incident field from an extended tapered aperture
field distribution atz = z is assumed to impinge on a moderately rough
interface, described by the continuous functionh(x), separating free space and
a dielectric half-space. Reflected and transmitted fields are observed atz = z

andz = z , respectively.

targets of interest. To enhance the detection and classification
processing, it is important to model the distortion introduced by
the air–ground interface.

As a first step toward this goal, we investigate in this paper the
reflection from, and transmission through, a moderately rough
(coarse-scale) interface between air and a homogeneous dielec-
tric (soil) half-space (see Fig. 1); this forward problem consti-
tutes an electromagnetic (EM) scattering problem, and inclu-
sion of the transmitted field anticipates the subsequent interest
in computing the scattering from buried objects. In a following
paper [4], we shall be concerned with the reconstruction (inverse
problem) of the interface profile under the realistic constraints
of spatially sampled data. A key ingredient in the reconstruc-
tion problem is a fast forward model that can relate descriptions
of potential interface profiles to the measured signals at the dif-
ferent receiver locations.

The analytic and numerical modeling of wave scattering from
rough surfaces constitutes a problem of longstanding interest
(see [5]–[13] for a sparse sampling). Our objective in this paper
is to develop a fast forward solver, using discretized Gabor-
based, high-frequency asymptotic, narrow-waisted Gaussian
beam (GB) basis fields in conjunction with the complex source
point (CSP) method for generating ray-like GB wave objects
[1]–[3]. The Gabor-based narrow-waisted CSP-GB method has
been applied previously [1]–[3] to two-dimensional (2-D) field
propagation from extended nonfocused and focused one-di-
mensional (1-D) planar aperture distributions through layered

0018–926X/01$10.00 © 2001 IEEE
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planar and cylindrical environments, and has been found to pro-
duce accurate, robust, and computationally efficient solutions
over a broad range of problem parameters, provided that these
do not violate the constraints imposed by the high-frequency
asymptotic assumptions. Briefly, the robustness and reliability
criteria arepragmatic,being based on the insensitivity of the
result to “scramblings” (i.e., to different combinations) of the
beam and lattice parameters within the constraint domain.
Here, we extend this method to 1-D-aperture-excited 2-D field
scattering from, and transmission through, a 1-D moderately
rough arbitrary interface between two dielectric media. The
resulting algorithm for radiated and scattered field synthesis by
GB recombination is found to perform as in [1]–[3], but now
subject to new restrictions that are stated, as necessary, in the
appropriate sections of this paper.

The rest of this paper is organized as follows. In Section II, we
summarize the rigorous, self-consistent Gabor-based Gaussian
beam algorithm for a general aperture field distribution and
the ensemble of paraxially approximated narrow-waisted CSP
beams that this excitation generates [1]. Section III deals with
the preliminary (canonical) problem of beam reflection from,
and transmission through, a curved interface between two
homogeneous dielectrics [14]. These constituents have been
used previously for beam tracking through planar and curved
layered dielectric configurations [2], [3]. In Section IV, we
extend the algorithm to the new and more challenging problem
of reflection and transmission of the plane-aperture-excited
field in the presence of a moderately rough interface separating
two homogeneous semi-infinite dielectric media. Extensive
numerical simulations calibrate the algorithm within clearly
stated constraints and highlight the role of certain critical
parameters. Conclusions follow in Section V.

II. I NCIDENT FIELD FROM AN EXTENDED APERTURE

A. Problem Statement

Consider a two-dimensional problem where a-directed elec-
tric field with implicit time-harmonic dependence
and spatial distribution is assumed to occupy the aperture
region at in free space, as depicted in Fig. 1

(1)

Boldface quantities denote vectors anddenotes a unit vector.
The resulting (TM polarized) EM field radiated into the half-
space can be expressed as a superposition of line-source
generated fields (Kirchhoff integration) [15]

(2)

(3)

where is the free-space wavenumber,
is the free-space wavelength, is the zeroth-order

Hankel function of the first kind (line source Green’s function),
and

(4)

Fig. 2. Discretized phase space lattice. Spatial shift indexesm identify GB
launch points atx = mL . Spectral shift indexesn identify linearly phased
GB tilts atk = n� .

Because of the polarization assumed in (1), all fields can be
generated from the scalar component, so that the vector
notation will be dropped from here on. Alternatively, by spectral
plane wave superposition, one obtains [15]

(5)

where

(6)

is the Fourier spectrum of , is the -domain
wavenumber, and

(7)

is the longitudinal (-domain) wavenumber.

B. Gabor Beam Discretization

1) Aperture Field: The aperture field is to be param-
eterized in terms of Gaussian basis functions via the rigorous
self-consistent Gabor series representation [1], [15]–[19]

(8)

where represents the normalized Gaussian window func-
tion

(9)
This representation places the aperture distribution on a dis-
cretized ( ) phase space lattice (see Fig. 2), with spatial and
spectral shifts tagged by the indexesand , respectively. Spa-
tial and spectral periods are related by the self-consistency rela-
tion (configuration-spectrum tradeoff) [16], [17]

(10)

As observed in [15] and [19], the Gaussian window provides
the best occupation of the phase space. The expansion coeffi-
cients in (8) can be computed by introducing an auxil-
iary function defined through thebiorthogonalitycondi-
tion [16], [17]

(11)
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where denotes the complex conjugate and for
and for . The expansion coefficients can be written
as [16], [17]

(12)

For Gaussian windows, the biorthogonal function can be
computed explicitly [16], [17] but will not be required in what
follows later on.

2) Radiated Field: The initial distribution surrounding each
lattice point in Fig. 2 generates a Gaussian beam that is launched
from -indexed locations and tilted according to-indexed lo-
cations. The radiated incident field in the half-space
[see (2)] therefore admits via (8) a similar discretized represen-
tation (we follow the notation in [1]; however, there are some
sign changes with respect to [1] since here we assume propaga-
tion into thenegativehalf-space )

(13)

where the beam functions are expressed by Gabor-
weighted line-source superposition

(14)

with being defined in (4). By saddle point methods, the inte-
gral in (14) (or its spectral counterpart) can be evaluated asymp-
totically in the beamparaxial far zone,yielding the following
complex source pointapproximation [2], [3]:

(15)

with representing thecomplex distancebetween the ob-
server at and the CSP

(16)

(17)

In accord with the radiation condition, the square root in (17)
is defined by . Here and henceforth, the tilde
identifies CSP-generated complex quantities. The displacement
parameter (equal to the Fresnel length) is related to the beam
lattice period and the beam axis angle via [2]

(18)

Equation (15) is valid in the paraxial far-zone of each beam,
. As the tilt index increases, the beam tilt angle

can become complex ( ), whence the corresponding
beams becomeevanescent.

C. Narrow-Waisted Beams

In the following, we shall focus on nontilted ( ) narrow-
waistedbeams ( ), which, as demonstrated in
[1]–[3], have several attractive features. First, the Gabor coeffi-
cients in (13) can be effectively estimated bysamplingthe
aperture field distribution at the lattice points , thus
avoiding the time-consuming integration in (12) [1]

.
(19)

Under this approximation, the tilted ( ) beams in the Gabor
expansion, which here generate evanescent “far fields” [com-
plex in (18)], are ignored. Second, for narrow-waisted beams,
the CSP paraxial far-zone approximation (15) can be invoked at
moderate distance; thus theirsuperpositioncan furnish accurate
results even in thenear zoneof theaperture. Third, as has been
shown in [2] and [3], interaction of narrow-waisted beams with
an environment can be implemented effectively by tracking the
complex rayfields and recombining them at the observer, sub-
ject to constraints that are elucidated in the examples below.

D. Illustrative Examples

A thorough analysis of the accuracy and computational fea-
tures of thenarrow-waistedbeam algorithm can be found in [1].
Here, we merely summarize relevant results. Referring to Fig. 1,
we consider a linearly phased cosine-tapered aperture field dis-
tribution

(20)

where is the aperture width and , with de-
noting the tilt angle of the main radiation lobe with respect
to the -axis. A special case (nonphased cosine, ) is
used in the rough interface simulation in Section IV-B. Fig. 3
shows the normalized magnitude of the exact Gabor coefficients
[computed through numerical integration of (12)] as a function
of the shift and tilt indexes ( ) for narrow-waisted beams
( ). As one can see, the essential contribution
comes from the nontilted beams, whose coefficient distribution
closely matches the aperture field profile.

The beam-computed and reference near-zoneradiatedfields,
which are obtained from (13) [with (15) and (19)], and via nu-
merical evaluation of the Kirchhoff integral in (2), respectively,
are shown in Fig. 4(a) for . Although based on the
paraxial far-zone approximation in (15) for the beam propaga-
tors, the accuracy is quite good even in the near zone of the
aperture (80 beams were used in this simulation). In the ab-
sence of phasing ( ), considerably coarser sampling is ad-
equate. As shown in Fig. 4(b), even a beam lattice period

(i.e., ten beams) yields accurate synthesis. Coarse sampling
also works for linearly phased apertures if propagation-matched
tilted basis beams are used [20]. The stated number of beams
in these simulations was arrived at via the pragmatic “scram-
blings” test, i.e., when the result remains insensitive to varia-
tions in the beam/lattice combinations.
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Fig. 3. Linearly phased cosine-tapered aperture field in (20) (d = 10� ; � =
0:5). Exact normalized Gabor coefficient magnitudesjA =A j in (12)
evaluated numerically (L = 0:0125d = 0:125� ). Tilted (n 6= 0) beams
are evanescent.

Fig. 4. Cosine-tapered aperture field in (20) (d = 10� ): Radiated near-zone
field with z = 10� ; z = 5� . (a)� = 0:5; L = 0:0125d= 0:125�
(i.e., 80 beams). (b)� = 0; L = 0:1d = � (i.e., ten beams). (—) Reference
solution [Kirchhoff integration in (2)]. (- - -) Beam-computed from (13), with
(15) and (19).

III. REFLECTIONFROM AND TRANSMISSIONSTHROUGH A

SMOOTHLY CURVED DIELECTRIC INTERFACE: CANONICAL

PROBLEM

A. Problem Strategy

Before considering the interaction of the beam-based incident
field in Section II with the rough surface profile sketched in

Fig. 5. Beam reflection from a curved dielectric interface.� = real
departure angle of incident beam axis with respect to thex-axis;� = real
departure angle of reflected beam axis with respect to thex-axis; and� =

real incidence/reflection angle with respect to the surface normalN at P ;
r = surface radius of curvature atP .

Fig. 1, we treat the canonical problem of interaction with a
smoothly curved portion of that profile as shown in Figs. 5 and 6.

The beam-based synthesis of the reflected and transmitted
fields can be constructed by propagating each of the incident
narrow-waisted basis beams in Sections II-B and -C through the
environment and recombining thereafter. Because the asymp-
totic basis beams are parameterized in terms of a source point in
the complex coordinate space, they propagate in complex space
alongcomplexray trajectories, which yield only asinglephysical
pointat the real space observer. This renders the field evaluation
computation intensive. However, for narrow-waisted beams, one
may utilize a paraxial approximation scheme, which leads to
almost realray tracing [3], [14] that is onlyslightlydifferent from
(and even computationally cheaper than) standard ray tracing
from the Kirchhoff integration (2) inreal configuration space.

B. Reflected Field

The problem geometry is illustrated in Fig. 5. An incident
Gaussian beam is generated by a CSP at

(21)

with being thereal departure angle of the incident beam axis
with respect to the -axis. As shown in [14], for electrically
large and smooth scatterers, and when the observation point

lies in the paraxial region of the reflected beam
[ in Fig. 5], the reflected field can be
approximated in terms of the on-axis field (at) and a com-
plex phase correction. Denoting the on-axis parameters by the
subscript zero, one finds for the-directed electric field [14]

(22)

where (see Fig. 5)

(23)
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and is the complex phase correction

(24)

Moreover, is thecomplexvirtual focus ob-
tained via analytic continuation of the standard ray-optical for-
mulas (see [21, p. 169]), but approximating thecomplexinci-
dence point by the real beam-axis incidence point

(25)

(26)

Here, is the real departure angle of the reflected beam axis
with respect to the -axis, is the curvature radius at

(27)

and is the TM plane-wave reflection coefficient

(28)

where is the dielectric relative permittivity and is the real
incidence angle with respect to the surface normalat .

As shown in [14], this corresponds to tracing a ray along a
complextrajectory from the CSP at to the intersection of the
real beam axis with thereal surface; from there, the path to the
observer proceeds entirely inrealconfiguration space, along the
beam axis. Also presented in [14] are further corrections, ob-
tained by expanding the analytic continuation of the reflection
coefficient in (28) and of the divergence coefficient

(29)

in Taylor series about their on-axis values. Actually, these cor-
rections are more cumbersome to generate; we obtained accept-
able results by using only the phase correction in (24). Multiple
reflections can be incorporated by iterating (22) whereby [with
proper definition of the square root in (17)] the complex focus
determined at each iteration becomes the phase reference for the
next iteration (see Appendix A). Again, apart from the complex
ray connecting the CSP to the first real incidence point, the mul-
tihop path to the observer proceeds entirely inrealconfiguration
space along the beam axes, and the phase correction is applied
only to the last beam segment that reaches the observer.

C. Transmitted Field

The same considerations applied to the transmitted field (see
Fig. 6) yield [14]

(30)

Fig. 6. Beam transmission through a curved dielectric interface.� and�
are the refracted (transmitted) real departure angles with respect to thex-axis
and the surface normalN atP , respectively.

where and

(31)

(32)

(33)

(34)

(35)

with denoting the real departure angle of the transmitted
beam axis with respect to the-axis and denoting the re-
fraction angle, with respect to the surface normalat , ac-
cording to Snell’s law

(36)

As before, this approximation corresponds to tracing a complex
ray from the CSP to the real incidence point and then a real ray
to the observer [14]. Note that in the presence of a slightly lossy
dielectric as in Fig. 8, the refraction angle becomes complex.
In that case, we still use a real refracted ray, propagating along
the direction . Multiple reflections/transmissions can be
handled by iterating and combining (22) and (30), following the
guidelines given in Section III-B.

IV. REFLECTION FROM AND TRANSMISSIONTHROUGH A

MODERATELY ROUGH DIELECTRIC INTERFACE

We now address the “real problem” geometry in Fig. 1, using
the building blocks of Sections II-B, II-C, and III.

A. The Multiply Reflected/Transmitted Beam Algorithm

The main steps of the proposed algorithm can be summarized
as follows.

1) Aperture Field Discretization.The narrow-waisted CSP
algorithm (15)–(19) in Sections II-B and -C is applied to
the given aperture field distribution and yields the Gabor-
weighted beam amplitudes.

2) Beam-Axes Tracing.The beam axes follow real-ray
trajectories in real configuration space. For each beam
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launched at the aperture plane, the axis trajectories after
intersection at an interface are governed by Snell’s laws
of reflection and transmission (see Figs. 5 and 6). The
hierarchy of possible multiple (reflection/transmission)
bifurcations at each encounter with therough interface
can be organized formally through use of a binary-tree
data structure [22], whosenodescontain the relevant data
(i.e., incidence point, departure angle, etc.). However, in
our applications here, we shall rely primarily on the first,
and possibly also the second, bifurcation.

3) Beam Parameter Computation.Having determined
the beam axis topology, the other relevant parameters
for each beam segment (e.g., reflection/transmission
coefficients, complex foci, phase lag) are computed
recursively, starting from the initial complex source
point and progressively scanning the binary tree (see
Appendix A).

4) Beam Field Computation.Each reflected/transmitted
Gabor-weighted beam field contribution at the observer
is computed via the quasiray paraxial approximations
(22)–(28) and (30)–(36) described in Section III. As al-
ready stated, in the presence of multiple interactions, the
complex phase correction is applied only to the last beam
segment that reaches the observer (see Appendix A).

5) Beam Summation for Total Field.The individual re-
flected/transmitted beam contributions are recombined
to yield the total field at the observer.

In principle, the above multiple interaction algorithm is able to
account for possible evanescent contributions (total reflection).
We have not explored this aspect so far and have, in fact, re-
stricted the problem conditions in the numerical tests of Sec-
tion IV-B so that total reflection does not occur. Also excluded
are near-grazing incidence contributions, which require more
sophisticated propagation models than those in Section III. Note
also that in [2], [3], the narrow-waisted beam algorithm is ap-
plied to propagation through planar and circular cylindrical di-
electric layers where the beam tracing can be performed analyt-
ically; in our problem, due to the irregular form of the interface
profile (see Fig. 1), a numerical procedure is required.

B. Example Problems and Numerical Results

In the problem geometry of Fig. 1, the TM-polarized field
generated by the nonphased cosine-tapered aperture field distri-
bution in (20) (with ) is assumed to impinge from free
space onto a moderately rough interface described by the con-
tinuous function , which in the examples below is parame-
terized by a quartic-spline [23]

(37)

(38)

with representing the standard quartic B-spline basis func-
tion (Fig. 7) [23]. Because of this parameterization, most of
the beam tracing computational tasks (solution of fourth-de-
gree algebraic equations) can be performedanalytically. The
aperture width is adjusted so as to illuminate most of the re-

Fig. 7. Quartic B-spline basis functions (x).

Fig. 8. Rough surface geometry and parameters. Relative permittivity:
� = 3 + i0:05; maximum slope: 34; minimum curvature radius:4:2� ;
maximum height:5:88� . The chosen permittivity models a class of realistic
soil conditions.

gion of interest, with edge effects deemphasized due to the aper-
ture profile tapering. Since we intend to apply the beam method
to detection and identification of buried objects, the dielectric
half-space parameters have been chosen to simulate soil con-
ditions [24]. The reflected and transmitted fields for this con-
figuration have been computed via the beam algorithm detailed
in Sections II and III and compared with a reference solution
obtained by the Leviatan–Boag multifilament current method
[25]. Although this method was introduced in [25] for cylin-
drical scatterers, its application to the rough surface geometry is
justified in Appendix B. Since beam superposition is a high-fre-
quency (HF) method, the rough surface parameters were ad-
justed so as to guarantee a minimum curvature radius of about
4.2 free-space wavelengths and a maximum slope of about 34
(see Fig. 8). This places the wave dynamics well within the
range for HF asymptotic localization. Note that the dielectric
is slightly lossy so that the remarks in Section III-C apply. It
should be mentioned that we have previously applied the algo-
rithm to reflection from a perfectly conducting sinusoidal profile
and have calibrated its range of validity there [26]. The results
from this test case have guided our choice of problem parame-
ters here.
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Fig. 9. Beam-computed reflected/transmitted fields and Leviatan–Boag reference solution in various observation planes. Parameters as in Fig. 8. Aperture width:
d = 80� ; aperture height:z = 6:4� (i.e., 0.52� above maximum profile height); beam lattice period:L = 0:0125d = � (i.e., 80 beams). (a) Reflected
field at z = 20� . (b) Reflected field atz = 40� . (c) Transmitted field atz = �20� . (d) Transmitted field atz = �40� . (—) Reference solution
and (- - -) beams.

In Fig. 9, for a fixed beam-lattice configuration and the
problem parameters in Fig. 8, the beam-computed reflected and
transmitted fields at various observation planes are compared
with the reference solution. Here, the aperture is located 0.52
away from the nearest portion of the interface profile, thereby
ensuring that theindividual narrow-waisted paraxial GBs are
collimated sufficiently to have them interactlocally with the
irregular surface. We found that in order to obtain robust and
accurate predictions, the aperture distance to the profile should
be no larger than a wavelength. As in [26], good agreement
is verified for the beam/lattice parameters listed in the figure
captions. The accuracy of the scattered/transmitted field syn-
thesis improves forgreater observation distancebecause of
the collectivebehavior of the beams in the far-zone paraxial
approximation. The agreement is satisfactory even at moderate
observation distances, despite some slight local deviations. As
in [1]–[3], numerical insensitivity to beam/lattice parameter
scramblings is taken as a pragmatic performance criterion for
robustness of the algorithm (see Fig. 10). This feature permits
a priori accuracy assessments when reference solutions are not
available; note that the pragmatic scrambling criterion used
here aims at anadequatenumber of beams, without any attempt
to minimize that number. For the nonphased aperture example,
we found the best tradeoff between accuracy and computational
cost for . A finer sampling may, however, be required
for phased aperture field distributions. It should be emphasized
that the accuracy deteriorates with increasing distance of the
aperture from the nearest point on the surface profile. As noted

Fig. 10. (a) As in Fig. 9(b), but with various beam lattice periods. (b) As
in Fig. 9(d), but with various beam lattice periods. (—) Reference solution;
(� � � � � �) 134 beams (L = 0:0075d); (- - -) 80 beams (L = 0:0125d); and
(-�-�-�-) 58 beams (L = 0:0175d).
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Fig. 11. As in Fig. 9, but with aperture plane atz = 35:9� . Multistep beam
algorithm: i) Narrow-waisted beam discretization atz = z with L = 0:01d

(i.e., 100 beams). ii) Beam-computed incident field projection onto avirtual
aperture atz = 6:4� as in Fig. 9, to restore the local sampling capability
of the surface profile by the individual basis beams. iii) Narrow-waisted beam
decomposition atz = z with L = 0:0125d = � (i.e., 80 beams) as in
Fig. 9. iv) Beam-tracing paraxial-approximation scheme. (a) Reflected field at
z = 30� . (b) Transmitted field atz = �30� . The maximum height of
the profile in Fig. 8 is 5.88� . (—) Reference solution and (- - -) beams.

above, toestablishthe scattered/transmitted field by local beam
sampling of the interface profile, the aperture must be close
enough to the surface so that the rapid spread of the beams at
greater distances has not yet taken place. However, this is not
a severe limitation, since, as shown in Fig. 11, it is possible to
perform a two-step Gabor decomposition, i.e., projecting the
beam-computed radiated field onto a virtual aperture (within a
wavelength above the surface so as to restore the local sampling
capability) and then again applying the (narrow-waisted) beam
algorithm. The additional cost is computationally minimal
because of the highly efficient evaluation of the Gabor coeffi-
cients for narrow-waisted beams [see (19)]. Even for relatively
“low-frequency” geometries with critical dimensions on the
order of a wavelength or less, the beam algorithm, though no
longerhighly accurate, may still be able to provide reasonably
good predictions. Forsmall radius of curvature portions on
the roughness profile, this is demonstrated in Fig. 12, with the
problem parameters given in the figure caption. Of course,
each such excursion into the “low-frequency” range must be
validated independently by the scrambling criterion, but it is
worth noting that such attempts need not to be doomed to failure
a priori. Although the beam algorithm performance assess-
ments here are based on the single example depicted in Figs. 7
and 8, we emphasize that confidence in these assessments has
been established by an extensive sequence of relevant prior

Fig. 12. Rough interface profile as in Fig. 8, but scaled so as to have
maximum slope: 34; minimum curvature radius:0:42� ; maximum height:
0:588� . Beam-computed reflected/transmitted fields and Leviatan–Boag
reference solutions. Aperture width:d = 8� ; aperture height:z = 0:8� ;
beam lattice period:L = 0:1d = 0:8� (i.e., ten beams). (a) Reflected field
at z = 8� . (b) Transmitted field atz = �8� . (—) Reference solution
and (- - -) beams.

numerical calibration experiments. In particular, we have found
accurate results for moderate roughness with maximum slopes

and (average) curvature radii larger than a wavelength,
and for indidence directions far from grazing [ in
(20)]. We have also performed simulations for very high and
low dielectric contrasts with ranging from 1.2 to 10 and

up to 0.5; the quality of results was found to be similar
to those for the case of Fig. 8. Concerning computing times,
for the most expensive (two-step) implementation described in
Fig. 11, we found about 9 ms to compute the field at a single
position on a 500-MHz laptop; no particular effort was made
to optimize the numerical code.

V. CONCLUDING REMARKS

A previously developed, rigorous, self-consistent, quasi-ray,
narrow-waisted beam algorithm [1]–[3] has been reexamined
and applied to the new problem of EM transmission and reflec-
tion in the presence of moderately rough surfaces.

The narrow-waisted beams are wave objects with very short
collimation lengths and therefore act likealmost realray fields.
The rigorous complex ray machinery that is required for arbi-
trary complex source point beams can thus be reduced toal-
most realray asymptotics, which, however, avoids failures near
caustics and other ray-field transition regions. Due to its rapid
spreading, the paraxial approximations described in Section III
are of little use for tracking asinglenarrow-waisted beam away
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from an aperture into the far zone. However, as observed in [2]
and [3], when treatedcollectivelyas anensemble, each paraxial
beam can be tracked locally to and from dielectric interfaces
with large radius of curvature. Apart from the paraxial beam-
tracing procedure, the computational complexity of the beam
algorithm is , with being the number of beams in
the expansion. In contrast to standard ray methods, time-con-
suming eigenray search for evaluating the field at a given obser-
vation point is avoided, and the beam tracing needs to be per-
formed only once(phrased in another way, we are interested
in reliably evaluating the actual field at the observer without
worrying about which appropriately weighted individual beam
contributions establish that field). The algorithm has been cali-
brated against a reference (full-wave) solution, and will be ex-
ploited as a fast forward solver in the interface profile estima-
tion problem [4]. A two-step beam decomposition may be re-
quired when the aperture is “sufficiently far” from the scatterer.
In this case, the computational complexity is of the same order
as the physical optics (PO) Kirchhoff approximation for a di-
electric interface. However, the beam algorithm usually allows
a coarser discretization, so that is typically smaller than the
corresponding number of PO integration points in the Kirch-
hoff integral [see (2), but applied to integration along the inter-
face profile] for specified accuracy. In addition, the beam algo-
rithm is potentially able to accommodate multiple interactions
in a simpler fashion. The algorithm can be extended to pulsed
excitations [27].

APPENDIX A
MULTIPLE REFLECTIONS

Consider an incident Gaussian beam generated by the CSP
in (21). Denoting by , the
real incidence points from which emerge the (real ray) reflected
beam axes, and by the orthogonal projection of
the observation point onto the axis of the th beam
that reaches the observer, the far-zone paraxial approximation
(22) can be generalized as follows (implementing the procedure
outlined at the end of Section III-B):

(39)

where

(40)

(41)

(42)

(43)

(44)

(45)

(46)

In the above expressions, and represent the real in-
cidence angle [with respect to the surface normal at ] and
the real reflected beam axis departure angle (with respect to the

-axis) at the th reflection, respectively.

APPENDIX B
REFERENCESOLUTION

The multifilament–current method in [25] has been applied
originally to scattering by, and transmission through, dielectric
cylinders, but it can be easily adapted to smoothly irregular scat-
terers or moderately rough interfaces. The extension is based
on the expansion of the internal and external unknown fields
in terms of basis functions generated by suitably placed line
sources. As in many numerical techniques, the unknown expan-
sion coefficients are determined by solving a linear system ob-
tained by enforcing the continuity boundary conditions of the
tangential fields at selected points on the dielectric interface. In
the resulting algorithm, the obtained numerical solution satis-
fies Maxwell’s equations by construction, and its convergence
and consistency are controlled by monitoring the error (discon-
tinuity) in the boundary conditions at the dielectric interface be-
tween the matching points [25]. In our simulations, we chose
the relevant parameters so as to ensure a 0.01% maximum error
in the boundary conditions.
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Short-Pulse Radiation From One-Dimensional
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Abstract—In this paper, we develop a Gabor-based Gaussian
Beam (GB) algorithm for representing two-dimensional (2-D) radi-
ation from finite aperture distributions with short-pulse excitation
in the time domain (TD). The work extends previous results using
2-D frequency-domain (FD) narrow-waisted Gaussian beams [1].
The FD algorithm evolves from the rigorous Kirchhoff integra-
tion over the aperture distribution, which is then parameterized
via the discrete Gabor basis and evaluated asymptotically for high
frequencies to furnish the GB propagators to the observer. The TD
results are obtained by Fourier inversion from the FD and yield
pulsed beams (PB). We describe the resulting TD algorithm for sev-
eral aperture distributions, ranging from simple linearly phased
(linear delay) to arbitrary time delay profiles; the latter accommo-
date the important case of focusing TD aperture fields. For modu-
lated pulses with Gaussian envelopes, we compute accurate closed
form analytic solutions, which have been calibrated against numer-
ical reference data. Our results confirm that the previously estab-
lished utility of the Gabor-based narrow-waisted FD-GB algorithm
for radiation from distributed apertures [1] remains intact in the
TD.

Index Terms—Gabor lattice representations, Gaussian beams
(GBs), pulsed beam wavepackets.

I. INTRODUCTION

GAUSSIAN beams (GBs) have been usedconventionally
as highly collimated basis elements in a variety of

frequency domain (FD) and time domain (TD) radiation, prop-
agation and scattering scenarios, especially in the asymptotic
high frequency (HF) regime. The bases can be continuous
or discrete, the latter being anchored to a Gabor lattice in
the (physical-domain)–(spectral domain) FD or TD phase
space [2]–[10]. When applied to radiation from extended
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GB-parameterized aperture distributions, the radiated fields at
the observer are synthesized by summation over the individual
basis beam contributions. When interacting with a complex
propagation or scattering environment, the (localization)
resolution capabilities of the GB algorithms are essentially on
the order of the collimation width of the basis beams, which
generally extends over many wavelengths. This is in contrast
to HF ray-based algorithms that explore local properties of the
environment, but have deficiencies due to failures in ray-optical
transition regions near shadow boundaries, caustics, etc. A
nonconventionalform of the Gabor algorithm, which uses
narrow-waisted poorly collimatedbasis beams, simulates
ray-like behavior without the transition region failures of ray
fields. In the FD, the collective effect of the narrow-waisted
nonconventional Gabor-stacked basis beams has been shown
capable of furnishing highly accurate and numerically efficient
solutions for scattering by, or transmission through, complex
environments irradiated by aperture distributions [11]–[14];
this renders the algorithm useful as an efficient forward solver
for inverse scattering and reconstruction [15].

In this paper, we extend the FD Gabor-based narrow-waisted
beam algorithm for radiation from extended apertures [1] to the
TD. The initial Kirchhoff integration over the FD aperture distri-
bution is parameterized via the discrete Gabor basis and reduced
by high frequency asymptotics to furnish the GB propagators to
the observer; the TD pulsed beam (PB) propagators are obtained
by Fourier inversion from the FD. For insight into the analytic
implications and physical interpretation of the FD-inverted inte-
grals, various aperture distributions are analyzed, starting from
linearly phased (linear delay) to arbitrary time delay profiles; the
latter are illustrated by the important example of focusing TD
aperture fields. Accurate and easily computable closed-form an-
alytic solutions are obtained for modulated pulses with Gaussian
envelopes and are calibrated against independently generated
numerical reference data. These results confirm that the pre-
viously established utility of the Gabor-based narrow-waisted
FD–GB algorithm for radiation from distributed apertures [1]
remains intact in the time domain.

In the FD, it has been established that the GB basis beams
can be tracked efficiently from the aperture through interac-
tions with complex scattering environments [11]–[14] and are
therefore useful forward solvers in inversion scenarios [15]. In-
teraction of the PB propagators with complex environments is
presently under consideration.

The rest of this paper is organized as follows. Section II has a
compact summary of the FD formulation and its asymptotic re-

0018–926X/01$10.00 © 2001 IEEE
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duction for narrow-waisted basis beams; the results are applied
to linearly phased apertures (which includes the nonphased spe-
cial case). Section III is concerned with the inversion to the
TD, treating in sequence space–time separable linear-delay and
nonlinear-delay aperture field profiles. The analytic reduction
of the GB inversion integrals for modulated Gaussian envelope
pulsed beams (PB) is presented succinctly, with details relegated
to several appendixes. Simplifying approximations are stated.
The resulting constraints on the range of validity of the algo-
rithms are assessed analytically and phrased concisely in terms
of critical nondimensional estimators. Calibration/confirmation
is implemented through a sequence of numerical tests and ex-
amples, including radiation from a cosine-tapered aperture dis-
tribution with nonlinear (quadratic) delay, which is tracked as
the wavefield approaches, reaches, and propagates beyond, the
focal plane. Snapshots in the examples are resolved in terms of
spatial and temporal cuts that depict the spatial and temporal de-
formations along the propagation path of the pulsed wavefield.
Conclusions are presented in Section IV.

II. FREQUENCYDOMAIN FORMULATION

We briefly summarize the frequency domain (FD) formula-
tion, and refer the interested reader to [1]–[4], [11], [12] for de-
tails. We restrict ourselves to the 2-D ( ) domain, with all
configurational quantities independent on. Excitation is spec-
ified as a -directed electric field with implicit time-harmonic
dependence and spatial distribution , which
occupies the aperture region at

(1)

The aperture geometry is shown in Fig. 1. The resulting (TM po-
larized) electromagnetic (EM) field radiated into the half-space

can be expressed by line-source superposition (Kirchhoff
integration) in physical space

(2)

(3)

where
free-space wavenumber, with as
the wavelength;
denotes a unit vector;
zeroth order Hankel function of the
first kind;

and (in accord with the radiation condition)

(4)

In the remainder of this section, thedependence in and
will be omitted in the notation. Equation (2) is derived using

the free-space 2-D Green’s function to simulate
an equivalent magnetic line dipole current distribution on an
electric wall boundary.

Fig. 1. Aperture geometry, global coordinates and beam coordinates
for a tapered linearly phased aperture field distribution. FD:F (x; !) =
P (!)g(x) exp(ikx sin � ) [see (29)]. TD: f(x; t) = g(x)p(t �
c x sin � ) [see (28)].

Fig. 2. Discretized Gabor lattice in the(x; k ) phase space, wherek is
thex-domain wavenumber.n = const:: spatially displaced beams centered
at x = mL , with fixed phase gradient (beam tilt) (n� ); m = const::
spectrally displaced beams with beam tilts (n� ) at fixed locationx .

A. FD Beam Discretization

1) Aperture Field: The aperture field is to be parame-
terized in terms of GB basis functions via the rigorous self-con-
sistent Gabor series representation [16], [17]

(5)

where represents the normalized Gaussian window (initial
beam profile)

(6)

This representation places the beam basis functions on a dis-
cretized ( ) phase-space lattice (see Fig. 2), on which each
lattice point gives rise to a GB, whose spatial and spectral (beam
tilt) shifts are tagged by the indexesand , respectively. Spa-
tial and spectral periods are related by the self-consistency rela-
tion (configuration-spectrum tradeoff) [16], [17].
The expansion coefficients in (5) can be computed by intro-
ducing an auxiliarybi-orthogonalfunction [16], [17]

(7)
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but as shown below, our subsequent use of narrow-waisted
beams avoids the cumbersome computation ofand numerical
implementation of (7). Combining (2) and (5) yields the Gabor
lattice representation of the aperture field.

2) Radiated Field: The corresponding Gabor lattice repre-
sentation for the field radiated into the half-space is given
by [1]

(8)

where the beam functions are expressed by Gabor-
weighted line-source superposition

(9)

being defined in (4). By saddle point methods, the integral in
(9) (or its spectral counterpart) can be evaluated asymptotically
in the beamparaxial far zone,yielding the followingcomplex
source point(CSP) approximation [11], [12]

(10)

with representing thecomplex distance

(11)

between the observer at and thecomplex source
point (CSP),

, where, in accord with the radiation condition
[see (4)], the square root is defined by . Here
and henceforth, the tilde denotes a complex quantity.
The CSP displacement parameter (Fresnel length)is re-
lated to the beam lattice period and the beam axis angle

via [11], and (10) is
valid in the paraxial far-zone of each beam, . As
the tilt index increases to , the beam tilt angle

becomes complex, and the corresponding beams become
evanescent.

B. Narrow-Waisted Beams

As emphasized in [1], [11], and [12],narrow-waistedbeams
( ) have several attractive features. First, the Gabor
coefficients can be estimated with good approximation by
samplingthe aperture field distribution, avoiding the time-con-
suming integration (7) [1]

(12)

so that

(13)

(14)

(15)

(16)

In this approximation, the tilted ( ) beams in the Gabor ex-
pansion, which generate evanescent “far fields” for ,
are ignored. Second, for narrow-waisted beams, the CSPparaxial
far-zoneapproximation (10) can be invokedatmoderatedistance
and, therefore, the paraxial beam superposition gives accurate re-
sults even in thenear zoneof theaperture. Third, as shown in
[11]–[14], interaction of narrow-waisted beams with an environ-
ment can be effectively tracked bycomplex ray asymptotics.

C. Linearly Phased Aperture

As shown in [1] and [11], narrow-waisted beams work very
well for nonphased apertures, but usually require finer aperture
sampling in the presence of phasing. There are, however, spe-
cial cases where more efficient implementations are possible.
In particular, we consider a linearly phased aperture, which will
efficiently parameterize the general case of nonlinear phasing
later on

(17)

where is a real function and denotes the real tilt angle
of the main radiation lobe with respect to theaxis. In this
case, a more effective discretization can be obtained by Gabor
expanding the real function only and including the linear
phasing in the beam integral (9) for the beam propagator.
Accordingly, the narrow-waisted ( ) beam ex-
pansion can be recast as (for simplicity, the subscript “” is,
henceforth, replaced by “”)

(18)

where

(19)

(20)

(21)

(22)

The beam propagator (20) differs from in (14) by the
phase shift ( ) and by the different definitions of



GALDI et al.: NARROW-WAISTED GAUSSIAN BEAM DISCRETIZATION FOR SHORT-PULSE RADIATION 1325

Fig. 3. Linearly phased cosine-tapered aperture distribution in (17), (23) (d =

10�; � = 30 ) (see Fig. 1). Near-zone (z = 5�) radiated field synthesized
using narrow-waisted nontilted and tilted beams is compared with the reference
solution [Kirchhoff integration in (2)]. — Reference solution; - - - Tilted beam
synthesis (L = 0:02d); � � � � � � Nontilted beam synthesis (L = 0:02d).

and in (21), (22), respectively, which produce the prop-
agation-matched tilt in the beam direction (see Fig. 1). For
comparison of the tilted and nontilted formulations, we consider
the linearly phased distribution (17) with cosine tapering

(23)

, and a fixed beam lattice period ( ). In
Fig. 3, the near-zone fields synthesized under the same condi-
tions with the same number of narrow-waisted nontilted (13) and
tilted (18) beams are compared with the reference solution [brute
force Kirchhoff integration in (2)]. The tilted beam synthesis is
hardly distinguishable from the reference solution, whereas the
nontilted synthesis is somewhat less accurate in magnitude.

III. TD FORMULATION

We shall now explore the extension of the FD results for aper-
ture radiation in Section II to time-dependent excitation, in par-
ticular to short pulses. To this end, we consider a space–time
aperture field distribution at

(24)

Using the 2D TD Green’s function [18, Sec. 7.3]

(25)

with defined in (4), representing the speed of light, and
representing the Heaviside step function, the field radiated

into the half-space can be expressed via the space–time
Kirchhoff integration [18], [19]

(26)

It is shown in Appendix A that the FD and TD fields
and in (2) and (26), respectively, are

related through the Fourier transform pair

(27)

Direct numerical integration of (26) is complicated by the (in-
tegrable) square-root singularity at the upper limit
and requires care in its execution. Here, we use the Newton-
Cotes scheme proposed in [19] for the numerical integration of
(26), which represents our reference solution.

A. TD Beam Discretization: Linear-Delay Aperture Fields

The GB discretization for the time-harmonic aperture distri-
bution in Section II can be generalized to arbitrary time-de-
pendent excitation by use of a four-index Gabor series, which
is set on a discretized lattice in the eight-dimensional (space-
wavenumber, time-frequency) phase space (see [6] for analytic
and computational issues). A condensed summary of the ana-
lytic results of section III-A has been given in [13], together
with one simple numerical example. In our presentation below
we give detailed derivations that were omitted in [13] but are re-
quired for complete understanding of the results. Moreover, we
have here a much more comprehensive set of numerical exam-
ples as well as calibration of accuracy, which are not contained
in [13]. The results in this section are used for the important gen-
eralization in Section III-B to nonlinear-delay profiles which is
entirely new.

For assessment of the extent to which the FD narrow-waisted
beam approach can be generalized to TD (short-pulse) excita-
tion, we begin by considering the case of a space–time separable
aperture field with linear time delay (assuming real)

(28)

and its FD counterpart via (27)

(29)

where is a time-pulse with characteristic width , and
is the Fourier transform of ,

(30)

Equation (29) differs from (17) by the (spatially independent)
frequency-dependent weight factor . This TD counterpart
of the linearly phased aperture in Section II-C generates a
space–time-resolved pulse propagating in thedirection (see
Fig. 1), with an assumed normalized pulse length much shorter
than the aperture dimension, i.e., .

Fourier inversion of the narrow-waisted tilted beam expan-
sion (18) for a FD linearly phased aperture field yields a pulsed
beam (PB) expansion for the corresponding TD aperture field in
(28). However, the evanescent spectrum content in the FD beam
propagator (20) motivates use of theanalytic signalformulation
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instead of the standard Fourier transform [5], [8]. The analytic

signal is defined via the one-sided Fourier transform

(31)

where is the conventional Fourier spectrum of the real
signal [see (27)]. The real signal for realis recovered via

(32)

The analytic TD counterpart of the narrow-waisted FD beam
expansion (18) for the aperture field distribution (29) may thus
be written as

(33)

where the analytic PB propagator is given in terms of the
paraxial, far-zone FD propagator in (20)

(34)

For implementation, one can choose a frequency-independent
beam lattice period (resulting in a frequency (i.e., wave-
length)-dependent beam parameter[see (22)], or a frequency-
independent beam parameter(resulting in a frequency-depen-
dent ). We consider frequency-independentpreferable be-
cause this yields frequency-independent Gabor coefficients [see
(19)]. The real TD field then follows from (33) and (34)

with

(35)

where the Gabor coefficients can be estimated through aper-
ture sampling when [see (19)]

(36)

For the important class of Gaussian time pulses, we have
found useful closed-form approximations for the integral in
(34). In particular, we use a Rayleigh (four-times-differentiated
Gaussian) pulse (see Fig. 4)

(37)

with spectrum

(38)

which has desirable wideband properties, being sufficiently
bounded away from and . However, the procedure
below can be applied to any kind of modulated or differentiated
Gaussian pulse.

The beam parameterand hence, the complex distance
(21) in (20) arefrequency dependentbecause the beam lattice
period has been chosen frequency independent. For

, the amplitude factor in the FD beam propagator (20)
can be approximated by

(39)

where the distance is real and frequency indepen-
dent. In the phase, under the same conditions, we retain the first
order paraxial correction

(40)

where ( ) are the beam coordinates (see Fig. 1)

(41)

The phase approximation (40) is valid in the paraxial region of
each beam

(42)

together with the constraint that the beam parameterremains
small over the bandwidth of the pulse spectrum

(43)

With these approximations, the integral in (34) can be evaluated
in closed form, and the analytic PB propagator can written ex-
plicitly as (see Appendix B for details)

(44)

with

(45)

(46)
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Fig. 4. Rayleigh pulse. (a) Temporal profile in (37). (b) Spectrum (magnitude)
in (38).

(47)

(48)

(49)

where , and are defined in (39) and (41),
is the gamma function [20, Sec. 6], and is the
Kummer confluent hypergeometric function [20, Sec. 13]. Since
modulation or differentiation operations affect only the argu-
ments of , the above reduction can be applied to
anyGaussian-envelope pulse.

The following simple approximations can be exploited for the
functions and (see Appendix C):

(50)

(51)

Fig. 5 shows comparisons between the exact functions (com-
puted via reliable numerical routines [21]) and the proposed ap-
proximations (50), (51). The results essentially overlap on the
scale of the plots. Since the functions resemble the form
and shape of the Rayleigh pulse in (37) and Fig. 4, then using
(50) and (51), the TD beam propagator (44) can be computed
very efficiently. Fig. 6 shows a number of instantaneous snap-
shots of . Note the rapid transverse spatial spreading
of the ray-like narrow-waisted PB, but its retention of the wave-
front behavior in the longitudinal (radial) direction.

B. TD Beam Discretization: Nonlinear-Delay Aperture Fields

Extension of the TD Gabor algorithm in Section III-A to non-
linear delay profiles is an important new generalization. Instead

Fig. 5. Comparison between the exact and approximated functionsM in
(48)–(51). — Exact; - - - Approximated.

Fig. 6. Instantaneous snapshots of the TD beam propagatorb (x; z; t)
(m = 0,L = d=20, � = 0, cT = 0:5). (a)ct = 1. (b)ct = 2. (c)ct = 3.
(d) ct = 4.

of the linear delay in (28), we now consider the aperture field
distribution

(52)

with its FD counterpart

(53)

where and are real functions. Recalling the efficient
treatment of the linear delay fields in Section III-A, we split the
phase (delay) function into a linear part plus a nonlinear
remainder

(54)

where does not contain linear terms. The FD narrow-
waisted tilted beam decomposition (18) of Section II-C can,
thus, be applied, with in (17) given by

(55)



1328 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 49, NO. 9, SEPTEMBER 2001

The corresponding FD Gabor coefficients [see (19)] are com-
plex

(56)

and the corresponding TD beam expansion differs only slightly
from (33)

(57)

where is the real part of the analytic PB propagator in (44),
and

(58)

C. Assessment of Accuracy

The explicit analytic results in (44) are based on the approx-
imations (39) and (40), which are valid in the paraxialfar-zone
(42). An additional condition is thesmallnessof the beam pa-
rameter over the whole bandwidth of interest [see (43)]. This
latter restriction, in turn, determines the maximum allowable
lattice period (i.e., the minimum number of beams) for speci-
fied , and observation point. A rough theoretical estimate
can be obtained from (43). For specified observation plane at

and recalling that (see Fig. 1) the
overall constraint can be expressed by the following inequality
in terms of the nondimensional estimator

(59)

where the integer represents the number of beams
in the expansion (33), is the normalized band-
width of the pulse , and is the distance to the
observation plane scaled by the Fresnel distance of the aperture,

. The nondimensional estimator con-
tains all relevant parameters of the problem. For example, de-
creasing the number of beams can be compensated by a cor-
responding increase of . However, a finer discretization
may be required in the presence of nonlinear phasing/delay for
the same degree of accuracy.

D. Numerical Results

The TD narrow-waisted beam expansions in (35), (57) have
been calibrated against a reference solution implemented by
space–time Kirchhoff integration of (26) in an extensive number
of numerical simulations. We present and discuss selected typ-
ical results, starting with the linear-delay space–time aperture
distribution (28) where is the cosine tapering in (23) and

is the time dependence of the Rayleigh pulse in (37). Figs. 7
and 8 show typical results for the nonphased case ( ).
Specifically, Fig. 7(a) depicts the time evolution of the-di-
rected scalar electric field at a fixed observation point in the

Fig. 7. Radiated field due to nonphased (� = 0) cosine-tapered aperture
distribution. Parameters:cT = 0:5, d = 5 = 10cT (arbitrary units).
Reference solution via space–time Kirchhoff integration of (26): solid curves.
TD narrow-waisted beam synthesis in (35): dashed and dotted curves.
Observation points for the temporal profile are on the beam axis (x = 0).
(a) Temporal profile atx = 0, z = 5 = 0:1F (arbitrary units); (b) Spatial
transverse profile atz = 5, ct = 5:25; - - - 5 beams (Q = 1:6, �e = �2

dB); � � � � � � 10 beams (Q = 0:8, �e = �14 dB), - � - � - 30 beams
(Q = 0:26,�e = �31 dB). The r.m.s. errors�e pertain to Fig. 7(a).

Fig. 8. Parameters as in Fig. 7. (a) Temporal profile atx = 0, z = 20 =

0:4F , 15 beams (Q = 0:27, �e = �32 dB). (b) Spatial transverse profile
atz = 20, ct = 20:25, 15 beams (Q = 0:27). (c) Temporal profile atx = 0,
z = 50 = F , 10 beams (Q = 0:25,�e = �34 dB). (d) Spatial transverse
profile at z = 50, ct = 50:25, 10 beams (Q = 0:25). Reference solutions
(solid curves) and beam solutions (dashed curves) coincide on the scale of the
plots.

near zone ( ) of a large aperture ( ); the ref-
erence space–time Kirchhoff integration (26) is compared with
the TD beam synthesis (35) for various numbers of beams. In all
simulations, we used a pulse-bandwidth value (see
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Fig. 9. Radiated field due to linearly phased (� = 30 ) cosine-tapered
aperture distribution. Parameters:cT = 0:5, d = 5 = 10cT (arbitrary
units). Observation points for the temporal profiles are on the tilted beam axis
� . (a) Temporal profile atx = 2:89, z = 5 = 0:1F (arbitrary units),
25 beams (Q = 0:26, �e = �32 dB). (b) Spatial transverse profile at
z = 5, ct = 6:05, 25 beams (Q = 0:26). (c) Temporal profile atx = 11:5,
z = 20 = 0:4F , 12 beams (Q = 0:27, �e = �33 dB). (d) Spatial
transverse profile atz = 20, ct = 23:3, 12 beams (Q = 0:27). (e) Temporal
profile at x = 28:9, z = 50 = F , 8 beams (Q = 0:25, �e = �33

dB). (f) Spatial transverse profile atz = 50, ct = 58, 8 beams (Q = 0:25).
Reference solutions (solid curves) and beam solutions (dashed curves) coincide
on the scale of the plots.

Fig. 4), which sets the reference level for the nondimensional
estimator in (59). As expected, the agreement improves with
increase in the number of beams, and satisfactory accuracy is
achieved for . In order to better quantify the accuracy
of the TD beam synthesis and the role of the nondimensional
estimator , we computed the r.m.s. (energy) error at a fixed
observation point

(60)

whose values are explicitly indicated in the figure captions. It
is observed that values of yield errors dB.
We shall use as a convenient calibrator of the accuracy in the
numerical experiments. It is observed from the transverse cut
shown in Fig. 7(b) that despite the use of the paraxial far-zone
approximation (42), the TD beam synthesis works quite well
even in the near zone of the aperture ( ) and not only
around the main radiation lobe. As the observation distance in-
creases, a coarser discretization can be used subject to (59). For

Fig. 10. Radiated field due to cosine-tapered focused aperture distribution in
(61), computed via space–time Kirchhoff integration of (26). Parameters:cT =

0:5, d = 5 = 10cT , L = 10 = 0:2F (arbitrary units). Instantaneous
snapshots at various times. (a)ct = 3:25; (c) ct = 10:235; (e) ct = 30:22.
(b), (d), (f) Gray-scale plots corresponding to (a), (c), (e), respectively. See also
the spatial profiles in Figs. 12(b), 11(b) and 12(d) for different visualization.

instance, Fig. 8(a) and (b) show results for a moderate obser-
vation distance ( ), whereas Fig. 8(c) and (d) show
far-zone ( ) results. In these examples, only one beam
synthesis is shown, with the beam lattice period chosen so as to
assure , according to the above calibration; accuracy
is confirmed. We conclude that even at moderate distances, ac-
ceptable results can be obtained with a relatively small number
of beams ( 20). The corresponding data for a linear-delay ex-
ample ( ) are shown in Fig. 9. The same conclusions
apply, except that the field maxima are tracked along the tilted
beam axis .

As our final and most important example, we consider a
nonlinearly phased aperture distribution. In particular, we have
chosen a cosine-tapered aperture field with quadratic delay

(61)

which represents the TD counterpart of a typical time-harmonic
focusing ( ) or defocusing ( ) distribution, with
representing the conventional focal length. The focusing case is
the most challenging, since standard (nonuniform) ray asymp-
totics would fail due to the presence of caustic transition regions.
Moreover, we have chosen numerical values so as to get fo-
cusing at moderate distance from the aperture ( ). A
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Fig. 11. Radiated field due to cosine-tapered focused aperture distribution in
(61), observed in the focal plane. Parameters:cT = 0:5, d = 5 = 10cT ,
L = 10 = 0:2F (arbitrary units). Reference solution via space–time
Kirchhoff integration of (26): solid curves. TD narrow-waisted beam
synthesis in (57): dashed and dotted curves. (a) Temporal profile atx = 0,
z = 10 = L = 0:2F . (b) Spatial transverse profile atz = 10, ct = 10:235;
- - - 10 beams (Q = 0:56, �e = �9 dB), � � � � � � 30 beams (Q = 0:19,
�e = �25 dB), - � - � - 60 beams (Q = 0:09,�e = �33 dB). The r.m.s.
errors�e pertain to Fig. 11(a).

sequence of instantaneous snapshots of the radiated field at dif-
ferent times, computed via the space–time Kirchhoff integration
in (26), is shown in Fig. 10. One observes how the space–time
wavepacket, starting from the initial distribution (61), has a con-
cave (focusing) wavefront on its way to the focal plane, i.e.,
for [Fig. 10(a) and (b)]; it experiences its maximum
space–time localization at the focal plane [Fig. 10(c)
and (d)], and spreads out beyond the focal plane with a convex
wavefront [Fig. 10(e) and (f)]. In order to assess the accuracy
of the PB expansion in (57), the comparison with the reference
solution is shown in Figs. 11 and 12 for representative temporal
and spatial cuts at various observation distances. Fig. 11(a) and
(b) show the convergence results at the focal plane (most
challenging test). A slightly finer discretization is needed than
in the linear-delay case, for the same degree of accuracy; accu-
rate syntheses ( dB) are obtained for , but
reasonable accuracy ( dB) is still within the less
stringent range. Fig. 12(a)–(d), show results for obser-
vation distances smaller ( ) and larger ( ) than
the focal length, with the number of beams chosen so as to as-
sure . The spatial profiles in Fig. 12(b) and (d) show the
broader spatial extent of the wavefront, with respect to the focal
plane pattern in Fig. 11(b), which is analogous to the snapshots
in Fig. 10(a) and (e). The temporal profile of the incident pulse
in Fig. 12(a) is distorted at [Fig. 11(a)] and beyond [Fig. 12(c)]
the focus due to caustic-induced phase shifts.

Fig. 12. Parameters as in Fig. 11, observed before and beyond the focal plane.
(a) Temporal profile atx = 0, z = 3 = 0:3L = 0:06F , 100 beams (Q =

0:1,�e = �33 dB); (b) Spatial transverse profile atz = 3, ct = 3:25, 100
beams (Q = 0:1); (c) Temporal profile atx = 0, z = 30 = 3L = 0:6F , 30
beams (Q = 0:1, �e = �37 dB); (d) Spatial transverse profile atz = 30,
ct = 30:22, 30 beams (Q = 0:1). Reference solutions (solid curves) and beam
solutions (dashed curves) coincide on the scale of the plots.

IV. CONCLUSION

By extending the time-harmonic approach presented in [1], a
2D narrow-waisted pulsed beam algorithm has been presented
which allows an effective discretization of short-pulse radiation
from one-dimensional (1-D) large apertures. Analytic approx-
imations in the form of readily computable functions have
been obtained for aperture field distributions with separable
space–time dependence, general phasing, and Gaussian pulse
excitation.

Accuracy assessments of the beam algorithm have been for-
malized theoretically in terms of the nondimensional estimator

, and calibrated numerically through a variety of simulations
involving phased and focused pulsed aperture field profiles;
independent calibration of the numerical data was achieved
by comparison with a rigorously based brute force space–time
Kirchhoff integration. The results are encouraging and confirm
that within the stated criteria, one can make fairly reliable
predictions of performance.

Overall, it appears that reasonably accurate syntheses can be
obtained with a moderate number of beams, within the con-
straint , thus making the algorithm a promising effi-
cient parameterizer for beam tracing in the presence of propa-
gation and scattering environments. Toward this goal, the TD
extension of the previously performed FD studies in [11]–[14]
is now under consideration [22]. For extension to two-dimen-
sional (2-D) apertures which generate three-dimensional (3-D)
(vector) fields, see [23].

APPENDIX A
PERTAINING TO (26)

By Fourier transforming the FD radiated field in (2), recalling
that and are related through the Fourier transform pair
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(27) [18], and applying the convolution theorem [24], the TD
field radiated into the halfspace can be written as

(62)

with being defined in (4), and with and being
related through the Fourier transform pair (27). The differenti-
ation of the temporal integral in (62) can be performed through
differentiation under the integral sign, coupled with a limiting
procedure to circumvent the singularity at the upper integration
limit (see [19] for details), yielding

(63)

from which (26) follows.

APPENDIX B
PERTAINING TO (44)

By substituting (20) and (38), with (22), (39), (40), into (34)
one obtains

(64)

with , defined in (45), (46), respectively. The frequency
integral in (64), in its canonical form

(65)

can be evaluated in closed form (we used Mathematica [21]) as

(66)

where is the gamma function [20, Sec. 6], and
is the Kummer confluent hypergeometric function [20, Sec. 13].
Equation (44) follows from (64), (66) after straightforward al-
gebra.

APPENDIX C
PERTAINING TO (50), (51)

The Kummer confluent hypergeometric function is defined
as [20, Sec. 13]

(67)

where is the Pochammer symbol [20]

(68)

A rapidly convergent approximation for the functions and
in (48), (49) can be obtained by exploiting the Kummer

transformation [20]

(69)

Accordingly

(70)

(71)

as shown in (50) and (51).
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Abstract

A new technique for estimating the coarse-scale pro�le of a moderately rough interface between air and

a homogeneous dielectric half-space is presented. The proposed approach is based on space-time sparsely

sampled reected �eld observations and uses a quasi-ray Gaussian beam fast forward model, coupled with

a compact parameterization of the surface pro�le in terms of B-splines, from which the pro�le estimation

problem is posed as a nonlinear optimization problem. Numerical experiments are presented to assess

accuracy, reliability and computational eÆciency. The proposed approach �nds application in adaptive

schemes for rough surface underground imaging of shallowly buried targets via ultra-wideband ground

penetrating radars.

Keywords

GPR, imaging, rough surfaces, Gaussian beams, short pulses.

I. Introduction

In ground penetrating radar (GPR) applications, the twice-traversed unknown rough

interface separating air and soil acts as a major source of clutter by distorting the interro-

gating signal on its way to and from the targets of interest, and by generating complicated

backscattered �eld patterns which may obscure the useful signals. Physics-based modeling

of such clutter, which could signi�cantly enhance the ultimate GPR performance, poses

challenging problems from both the electromagnetic (EM) and signal processing view-

points. Standard statistical approaches, which tend to model such distortion as additive

colored Gaussian noise, perform reasonably well in detection problems [1], [2]. However,

they have been found to yield limited accuracy and reliability in underground imaging

techniques for target localization and classi�cation (see, e.g., [3]), for which alternative

approaches need to be explored. In this connection, we have been investigating a novel

adaptive framework, based on quasi-deterministic compensation of the coarse-scale rough-

ness e�ect. This approach is based on prior estimation of the coarse-scale roughness

pro�le, which is accomplished by exploiting sparse reected �eld observation data and fast

forward scattering models. In this communication, we address this problem for the case

of short-pulse illumination, typical of current ultra-wideband (UWB) GPR systems. The

proposed approach is built on recently developed Gabor-based narrow-waisted quasi-ray

Gaussian beam (GB) algorithms for short-pulse scattering from moderately rough dielec-

tric interfaces [4]. By exploiting these fast forward models and a low-dimensional spline



GALDI ET AL.: MODERATELY ROUGH DIELECTRIC INTERFACE PROFILE RECONSTRUCTION... 3

interface parameterization, together with the (usually small) separation between the rough

interface and the target, the prior surface estimation is posed as a nonlinear optimization

problem by �tting the model-based prediction to the available early-time observation data.

The subsequent problem of quasi-deterministic compensation and underground imaging

via late-time response processing is addressed in a separate paper [5], with particular

reference to shallowly buried plastic mine-like targets.

II. Statement of the Problem

We consider the two-dimensional (2D) problem geometry sketched in the (x; z) coordi-

nate space of Fig. 1, where all quantities and �elds are assumed to be y-independent. A

homogeneous dielectric half-space (soil) of known relative permittivity �r1 and conductiv-

ity �1, bounded by a moderately rough interface with pro�le z = h(x), is illuminated by

a y-directed (TM-polarized) pulsed well-collimated electromagnetic (EM) �eld, generated

by a large truncated aperture �eld distribution of width d at z = zA, which is assumed to

be well approximated by a pulsed truncated tapered plane wave,

ei(r; t) � g(xB)p(t� c�1zB); (1)

where r � (x; z), c is the free-space wavespeed, p(t) is a short pulse of length T � d=c,

and (xB; zB) are beam centered coordinates,

"
xB

zB

#
=

"
cos �A sin �A

sin �A � cos �A

# "
x� xA

z � zA

#
: (2)

In (1) and (2), g(xB) is a spatial taper, while �A and xA denote the tilt angle of the

radiated beam relative to the z-axis and its spatial displacement, respectively; parameters

are chosen so that the illumination tapers to zero for jxj � d=2 and vanishes for jxj > d=2

(Fig. 1). At this stage of investigation, we ignore the presence of buried targets, which is

dealt with elsewhere [5]. Furthermore, we also neglect the noisy (incoherent) contribution

of �ner-scale roughness, and focus on estimating the coarse scale roughness pro�le h(x)

from sparse reected �eld observations. In [6], we addressed this problem for narrow-

band stepped-frequency sparse observations. This approach is extended here to pulsed

excitation. To proceed, the y-directed reected electric �eld is sampled at Nt time instants
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at Nr �xed receiver locations xr1; :::; x
r
Nr

at the observation plane z = zr; the known term

in the problem is given by the set of Nr � Nt samples. In our numerical experiments in

Sec. V, we shall use synthetic �eld observation data generated via a full-wave solution of

the forward scattering problem (see [4] for details).

III. Rough Surface Forward Scattering Model

The forward scattering model, detailed in [4], is based on the Kirchho� Physical Optics

(PO) approximation in conjunction with the Gabor-based narrow-waisted pulsed beam

(PB) discretization of 1D aperture �eld distributions in [7], and is restricted to moderate

roughness (both in height and slope) and slightly lossy soils.

The PO \equivalent current", which generates the reected �eld, is �rst parameterized

in the frequency domain in terms of x-domain discretizedm-indexed Gabor basis functions

with narrow width L, centered on the Gabor lattice points xm = mL; these initial con-

ditions generate narrow-waisted, quasi-ray, complex-source-point GBs propagating along

the local reection directions. For Rayleigh (i.e., di�erentiated Gaussian) pulses, the re-

sulting time-domain analytic Fourier inversion integral can be approximated by rapidly

computable closed form expressions, yielding the following approximate PO-PB expansion

for the reected �eld er(see [4] for details),

er(r; t) �
X

jmj�(d=2L)

crmb
r
m(r; t� tm); (3)

where the Gabor expansion coeÆcients crm and the time delays tm are approximated by

sampling the PO equivalent currents at the lattice points xm = mL, and the PB propaga-

tors brm are expressed in terms of rapidly computable conuent hypergeometric functions

[4, Sec. IV-B]. The approximate forward scattering model in (3) has been validated and

calibrated against a rigorous reference solution [4, Sec. V-A], and has been found to pro-

vide accurate and robust predictions for moderate roughness (both in height and slope),

non-grazing incidence, and slightly lossy soils (see [4, Sec. V-C] for details). Numerical

convergence is usually achieved with d=L � 30 to 100 (narrow-waisted) PBs, resulting in

minimal storage requirements and typical computing times of 2 ms per space-time �eld

sample on a 700 MHz PC. Moreover, for computing a number of �eld time samples at
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�xed receiver locations, as required in Sec. IV, one can take advantage of the structure of

the PB propagators in (3) (see [4, Sec. IV-B] for details) to compute the time-independent

parts only once, with resulting typical computing times of 20 ms for a whole 100-sample

waveform, as compared with about 240 secs. required by our full-wave reference solution.

This light computational burden, is essential for the overall computational feasibility of

the proposed surface estimation approach.

IV. Surface Profile Estimation

Due to the inherent ill-posedness of the surface estimation problem, it is necessary to ex-

ploit regularization strategies. Acknowledging the implicit limits of retrievable information

through inverse scattering, our regularization strategy is based on a compact parameter-

ization of the unknown pro�le function in a suitable �nite-dimensional space. As in [6],

we model the surface pro�le h(x) using a quartic B-spline parameterization [8] with �xed

resolution matched to the coarse level of detail for the reconstruction,

h(x) =
Nh�1X
n=�4

hns
(4)(x� xmin + n�x); xmin � x � xmax; (4)

whereby the coeÆcients fhng become the unknnows of the problem. In (4), s(4)(�) is

a standard quartic B-spline basis function [8] (see also [6, Eq. (5)]) with �nite spatial

support 5�x, where �x = (xmax � xmin)=Nh denotes a scale parameter whose choice can

be guided by possible prior information and re�ned adaptively (see Sec. V). To prevent ill-

conditioning, it is crucial that the number of unknown parameters to be retrieved does not

substantially exceed the essential dimension of the observation data set. For the problem

of interest in this paper, however, the intrinsic limitation in the retrievable information

does not pose serious quantitative restrictions, since our implementation allows the number

of unknowns to be kept fairly small (Nh
<
� 30). By exploiting our PO-PB fast forward

model in [4] and the spline interface pro�le parameterization in (4), the well-posedness of

the problem is restored by estimating the unknown parameters via �tting the model-based

forward scattering prediction to the available observation data, i.e., minimizing a suitable

cost functional. We use a simple least square formulation,



GALDI ET AL.: MODERATELY ROUGH DIELECTRIC INTERFACE PROFILE RECONSTRUCTION... 6

J(h) = ker(h)� ê
rk2 =

NrX
p=1

NtX
q=1

p
�
erpq � êrpq

�2
; (5)

where êrpq = êr(rrp; tpq) denotes the y-directed reected �eld observed at time tpq 2 [T (on)
p ; T (off)

p ]

at receiver locations rrp � (xrp; z
r) (Fig. 1), erpq = er(rrp; tpq; h) denotes the corresponding

forward prediction for the surface pro�le coeÆcients h = fh�4; :::; hNh�1g, and p are nor-

malization coeÆcients. Anticipating the possible presence of buried targets, dealt with in

[5], the observation intervals [T (on)
p ; T (off)

p ] are chosen so as to gate out the late-time re-

sponse (i.e., causal contributions from regions beyond a critical depth), in order to prevent

any possible bias in the surface pro�le estimation.

In general, the predictive forward model er
�
r
r
p; tpq; h

�
is a nonlinear function of the

coeÆcients h. Therefore, the cost functional in (5) is generally non-convex with respect

to h and may have multiple local minima which correspond to false solutions. Standard

descent-based optimization techniques (e.g., conjugate gradient [9]) can be trapped unless

an accurate initial guess is available. For the narrow-band step-frequency con�guration

in [6], the smoothness of the cost functional was found to be essentially dependent on the

frequency content of the excitation �eld, and a multi-resolution frequency-hopping strategy

[10] was devised to achieve the global optimization (see [6, Sec. III-C] for details). The

same guidelines can be exploited for the pulsed excitation of interest here, with the pulse

length cT now playing the key role. In particular, short pulses are desirable to enhance res-

olution and accuracy in the reconstruction, but an exceedingly wide-band excitation would

most likely yield a highly non-convex cost functional with many local minima, whose global

minimization could become computationally unfeasible. In our numerical investigation,

we found that values of cT
<
� 0:2d tend to ensure local minima in the cost functional,

whereas for cT
>
� 0:5d, the achieved resolution deteriorates. Moreover, for the eventual

underground imaging problem of interest (see [5]), it is also essential to achieve adequate

soil penetration, and therefore operate at suÆciently low frequencies. In principle, one

could gain more exibility by using di�erent sets of pulses for the surface estimation (e.g.,

implementing multi-resolution optimization strategies as in [6]) and for the underground

imaging, at the expense of hardware complexity. However, in our numerical experiments,

we found that a single pulse in the typical UWB GPR frequency range (e.g., cT � 0:4d,
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i.e., T � 1:3ns for d = 1m) can be used for both surface estimation and underground imag-

ing of shallowly buried targets (see [5]), thus having the potential of yielding a reasonable

trade-o� between the above contrasting requirements.

V. Numerical Results

As mentioned earlier, the needed reected �eld observation data in (5) were simulated

via a reliable full-wave solution of the forward scattering problem, based on the time-

harmonic multi�lament current method in [11] and the fast Fourier transform (see [4, Sec.

V-A] for details). Forward predictions in (5) were generated via the PO-PB model in (3)

with d=L = 40 beams, for which the accuracy was preliminarily veri�ed.

We begin with a simpli�ed con�guration where we use as a template for inversion the

same spline model that was used for generating the actual pro�le. In other words, we

assume a priori knowledge of the scale parameter �x in (4) (i.e., the number of B-spline

basis functions), and focus on retrieving the unknown coeÆcients hn only. This some-

what unrealistic assumption will be removed subsequently via an iterative adaptive frame-

work. In all simulations below, a cosine-tapered normally-incident excitation was used

with g(x) = cos(�x=d), �A = xA = 0, and a single fourth-order Rayleigh pulse with

cT = 0:4d (Fig. 2a), which was found to provide a good compromise between resolution

and smoothness in the cost functional. An observation time window [T (on)
p ; T (off)

p ] with

cT (on)
p = 0:3d and T (off)

p = 0:8d was used, so as to roughly gate out scattering contribu-

tions from possible targets buried deeper than � 8cm below nominal ground (z = 0). The

resulting cost functional in (5) was minimized via the Polak-Ribiere version of the conju-

gate gradient (CG) algorithm (particularly suited for non-quadratic functions [9]). The

needed gradient of J was computed using a central di�erence formula, resulting in 2Nh+8

functional evaluations (i.e., 2Nh + 8 solutions of a forward scattering problem), Nh + 4

being the number of unknown spline coeÆcients in (4). Loose a priori knowledge was

exploited by using as an initial guess a at interface at z = 0 (i.e., h = 0) and restricting

the surface pro�le search to �8cm around it.

A typical reconstruction example is shown in Fig. 2b. The surface pro�le realization

was generated using the quartic spline model in (4) with random coeÆcients. Although

no speci�c roughness model (e.g., Gaussian) was simulated, geometric and constitutive
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parameters were selected so as to mimic natural moderate roughness with maximum-

to-minimum height �4 cm and maximum slope � 32o for a class of realistic soils [12].

The reconstruction is reasonably accurate throughout most of the interval, except near

the edges of the illuminated region. The likely explanation for this loss of accuracy,

also observed in [6], is due to the weak illumination in these regions, attributed to the

aperture �eld (cosine) tapering which was, however, required to avoid numerical artifacts

(edge e�ects). This kind of accuracy was observed in many numerical experiments, with

numerical convergence of the minimization algorithm typically achieved within � 30 CG

iterations (see Fig. 2c), resulting in computing times of � 55 secs.

In order assess the reliability of the surface pro�le estimation algorithm, we performed a

number of sensitivity tests with respect to possible uncertainty in the prior knowledge as

well as corruption in the observed data. Figure 3 displays typical reconstructions obtained

by introducing a �10% error in the values of the soil parameters �r1 and �1 used in the

forward scattering model, and by using observation data corrupted by a �10% uniform

noise. As one can see, the surface estimation algorithm turns out to be remarkably robust.

Finally, to remove the unrealistic perfectly-matched-template assumption, we now in-

voke an adaptive iterative framework for estimating the surface pro�le in Fig. 2b, which

was generated via the B-spline model in (4) with Nh = 16, by postulating a mismatched

spline template (i.e., Nh 6= 16). Referring to Fig. 4, the procedure is started with a

tentative initial coarse parameterization (Nh = 6) and the usual at-interface (z = 0)

initial guess for the pro�le, which leads to the corresponding gross-scale reconstruction

in Fig. 4a. The resolution is gradually increased, utilizing at each stage the previous

stage reconstruction as the initial guess. Figures 4b-d, for instance, show the iterative

improvements obtained via the sequence Nh = 12; 18; 24 (deliberately chosen so as to

avoid the perfectly matched case Nh = 16), with the spline parameterization progressively

tuned so as to capture the various details in the surface pro�le. The accuracy in the last

stage reconstruction (Fig. 4d) is comparable to that achieved with a perfectly matched

template (Fig. 2b). In this example, a pragmatic stopping criterion was used, based on

the (in)sensitivity of the cost functional with respect to further increases in Nh (see Fig.

4 caption). More systematic approaches based, e.g., on the minimum description length
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principle, can be found in [13]. Also, more exible multi-scale parameterizations can be

exploited in principle to deal with more complex surface pro�les, but this is outside the

scope of the present paper.

VI. Conclusions

In this communication, we have presented a novel inversion algorithm for the reconstruc-

tion of moderately rough dielectric interfaces using space-time sparsely sampled reected

�eld data. The proposed algorithm was found to provide fast, accurate and robust esti-

mations for moderate roughness (� 4cm maximum-to-minimum, maximum slopes
<
� 30o),

even for noisy data and with imperfect knowledge of soil parameters. These results lay

the foundation for the adaptive techniques for subsurface GPR image reconstruction of

shallowly buried plastic mine-like targets in the presence of rough air-soil interfaces ad-

dressed in [5]. Extensions presently under investigation include generalization to fully 3D

geometries.
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Fig. 1. Problem geometry. An aperture-generated, quasi-plane-wave, TM-polarized pulsed �eld impinges

from free-space onto a dielectric half-space with known relative permittivity �r1 and conductivity �1,

bounded by a moderately rough interface pro�le z = h(x). The reected �eld is sampled at Nt time

instants at Nr �xed receiver locations xr1; :::; x
r
Nr

at the observation plane z = zr.
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Fig. 2. Rough surface pro�le reconstruction. Geometry as in Fig. 1, with g(x) = cos(�x=d), d = 1m,

�A = 0, xA = 0, zA = 0:1m. The rough surface pro�le realization was randomly generated via the

spline model in (4) with xmin = �0:55m, xmax = 0:55m, Nh = 16, so as to simulate typical moderate

roughness (maximum height � 4cm maximum-to-minimum, maximum slope � 32o) for a class of

realistic soils (�r1 = 4, �1 = 0:01 S/m). For the surface pro�le estimation, the reected �eld is sampled

at Nr = 11 receivers and Nt = 50 time instants at zr = 0:3m and xrp = �0:5m;�0:4m; :::; 0:5m, with

cT
(on)
p = 0:3d and cT

(off)
p = 0:8d, p = 1; :::; Nr. (a): Fouth-order Rayleigh pulsed excitation p(t)

(cT = 0:4d, i.e., T � 1:3ns). (b): |{ Actual pro�le; - - - Reconstruction; (c): Corresponding

cost function in (5) vs. number of conjugate gradient (CG) iterations.
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Fig. 3. Parameters as in Fig. 2. Surface pro�le reconstruction examples with uncertain or corrupted

data. |{ Actual pro�le; - - - Reconstruction with +10% error in �r1, �1; � � � � � � Reconstruction

with �10% error in �r1, �1; -�-�- Reconstruction with observation data corrupted by a �10% uniform

noise.
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Fig. 4. Parameters as in Fig. 2. Example of iterative adaptive spline parameterization. (a): Recon-

struction using a tentative initial coarse parameterization (Nh = 6) and a at interface initial guess

(number of CG iterations: NCG = 8; �nal value of cost function: J (min) = 70:4); (b), (c), (d):

Re�nements obtained by progressively increasing the number of basis functions, Nh = 12; 18; 24, re-

spectively, and using the previous stage reconstruction as initial guess (NCG = 12; 12; 23, respectively;

J (min) = 26; 3:7; 0:53, respectively). |{ Actual pro�le; - - - Reconstruction.
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Abstract

An adaptive framework is presented for ultra-wideband ground penetrating radar imaging of shallowly-

buried low-contrast dielectric objects in the presence of a moderately rough air-soil interface. The proposed

approach works with sparse data and relies on recently developed Gabor-based narrow-waisted Gaussian

beam algorithms as fast forward scattering predictive models. First, a nonlinear inverse scattering prob-

lem is solved to estimate the unknown coarse-scale roughness pro�le. This sets the stage for adaptive

compensation of clutter-induced distortion in the underground imaging problem, which is linearized via

Born approximation and subsequently solved via various pixel-based and object-based techniques. Numer-

ical simulations are presented to assess accuracy, robustness and computational eÆciency. The proposed

approach has potential applications to antipersonnel land mine remediation.

Keywords

Ground penetrating radars, rough surfaces, Gaussian beams, short pulses, total variation, curve evo-

lution.

I. Introduction

The problem of detecting and localizing buried objects via ground penetrating radar

(GPR) has received considerable attention in recent years, with potential applications

ranging from non-destructive testing to environmental remediation. In this context, one

of the most important and diÆcult applications is related to the clearance of buried unex-

ploded ordinance, such as plastic antipersonnel land mines [1]. Attacking such a problem

requires a judicious blend of eÆcient physics-based modeling and advanced signal process-

ing. The associated electromagnetic (EM) model involves wave propagation in inhomoge-

neous, lossy, dispersive media, and \near-�eld" scattering from irregularly-shaped objects

and interfaces. From a signal processing perspective, the main challenges are related to

the limited-viewing geometry, the low permittivity contrast of the target with respect to

the background soil (i.e., low signal-to-noise ratio), the imperfect knowledge of geometric

and constitutive properties of soil and targets, and the possible presence of clutter which

obscures the useful signals. In particular, the e�ect of the rough air-ground interface, in

terms of backscattered clutter and distortion introduced into the interrogating signal on

its way to and from the targets of interest, is a key issue from both the EM and signal pro-

cessing perspectives. In this connection, standard approaches tend to be fully statistical,
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modeling such e�ects as additive colored Gaussian noise whose features are typically esti-

mated via full-wave Monte Carlo simulations with many random soil realizations. These

approaches have been explored in [2]{[5], yielding reasonably good results for the detec-

tion problem in the presence of small roughness. However, their accuracy and reliability

turn out to be not completely satisfactory in underground imaging algorithms aimed at

localizing and possibly classifying a target (see, e.g., [6]).

In an ongoing series of recent investigations, so far restricted to two-dimensional (2D)

geometries and moderate roughness, we have been exploring a novel adaptive framework,

based on prior estimation of the unknown coarse scale roughness pro�le and subsequent

compensation for the deterministic features of the related clutter. In a stepwise approach

toward constructing the necessary tools, in both the frequency (FD) and time (TD) do-

mains, we �rst developed physics-based fast forward algorithms for scattering from, and

transmission through, moderately rough dielectric interfaces, generalizing previously de-

veloped Gabor-based narrow-waisted Gaussian beam (GB) methods [7]{[9]. The resulting

models [10], [11] have subsequently been incorporated in inverse scattering scenarios aimed

at enhancing the underground imaging by compensating for the coarse scale deterministic

features of the roughness pro�le. In particular, FD and TD surface estimation algorithms

working with sparse data have been explored in [12] and [13], respectively. These tech-

niques were found to provide reasonably accurate and robust estimations, even with noisy

data and imperfect knowledge of soil parameters, requiring modest computational e�ort.

Applications to frequency-stepped GPR subsurface imaging have been explored in [14].

The present paper is concerned with the application of the Gabor-based Physical-Optics

Pulsed-Beam (PO-PB) forward scattering model in [11] and the surface estimation tech-

nique in [13] to the problem of imaging of shallowly buried plastic mine-like targets in the

presence of rough air-soil interfaces, working with TD sparse data. Many GPR systems

operate with short-pulse excitation. Although one could still process the data in the FD

via Fourier transform, a direct approach in the TD o�ers potential advantages, including

the possibility of carrying out selective imaging via suitable time-windowing of the data.

Accordingly, in our problem, we shall exploit the (usually small) separation between the

rough interface and the target by performing �rst the surface estimation via early-time
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response processing (as discussed in [13]), with subsequent compensation for the roughness

e�ect and eventual target imaging via late-time response processing. In this connection,

we shall utilize the weak-scattering Born approximation to linearize the inversion problem,

and explore various regularization techniques to cope with its inherent ill-posedness.

The layout of the paper is as follows. Section II introduces the rough surface under-

ground imaging problem with TD GPR sparse data. Section III gives a short review

of the surface estimation algorithm in [13]. Section IV describes the linearized forward

scattering model in the presence of a known rough interface, and its narrow-waisted GB

implementation. Section V addresses the underground imaging inversion problem and the

various regularization techniques explored. Section VI details the outcomes of numerical

experiments to assess the accuracy and reliability of the proposed approach, as well as its

computational eÆciency. Conclusions follow in Section VII. Figure 1 shows a schematic

ow-chart of the proposed framework, coordinated with the paper layout, which illustrates

how the various models and techniques described in the paper are combined to attack the

end-to-end problem.

II. Statement of the Problem

The problem geometry is sketched in Fig. 2: in an (x; z) two-dimensional (2D) coordi-

nate space, a target with dielectric permittivity �r2 and negligible conductivity �2 is buried

in a lossy homogeneous dielectric halfspace (soil) of known relative permittivity �r1 and

weak conductivity �1, bounded by a moderately rough interface with pro�le z = h(x).

The target region in the halfspace z < h(x) is denoted by D. As stated previously, we

are mainly interested in shallowly buried plastic mine-like targets, which are essentially

lossless (�2 � 0) and may have dielectric properties very close to those of the background

soil, i.e., j�r2��r1j=�r1 � 1. In what follows, the wavenumbers in free space and soil will be

denoted by k0 = !
p
�0�0 and k1 = k0

q
�r1 + i�1=(!�0) , respectively, with ! representing

the angular frequency, and �0, �0 denoting the free-space permittivity and permeability,

respectively.

The soil is illuminated by a y-directed (TM-polarized) pulsed �eld generated by a (pro-

jected) large truncated aperture �eld distribution of width d at z = zA. As typical of many

ultra-wideband (UWB) GPR systems, we assume that the incident �eld is suÆciently well-
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collimated so that it can be approximated by a pulsed truncated tapered plane wave,

ei(r; t) � g(xB)p(t� c�1zB); (1)

with FD spectrum

Ei(r; !) � g(xB)P (!) exp(ik0zB): (2)

In (1) and (2), r � (x; z), p(t) is a short pulse of length T � d=c with FD spectrum P (!),

c = (�0�0)
�1=2 is the free-space wavespeed, g(xB) is a spatial taper and (xB; zB) are beam

centered coordinates,

"
xB

zB

#
=

"
cos �A sin �A

sin �A � cos �A

# "
x� xA

z � zA

#
; (3)

with �A and xA denoting the tilt angle of the radiated beam relative to the z-axis and its

spatial displacement, respectively. Parameters are chosen so that the illumination tapers

to zero for jxj � d=2 and vanishes for jxj > d=2 (Fig. 2). Here and henceforth, capital

letters identify FD quantities, whereas lower case letters are used for TD quantities; FD

and TD quantities are related through the following Fourier transform pair

f(r; t) =
1

2�

Z 1

�1
F (r; !) exp(�i!t)d!; F (r; !) =

Z 1

�1
f(r; t) exp(i!t)dt: (4)

Apart from the presence of the target, the geometry and notation are the same as in [11]

and [13], to which we shall refer frequently throughout the paper. Notationally, we shall

use (�.�) to denote eq. (�) in ref. [�]; for instance, (3.8) means eq. (8) in ref. [3]. As

in [11] and [13], the soil is assumed to be sligthly lossy, i.e., �1 � �r1=(
0�0), with 
0

denoting the center angular frequency of the pulse P (!).

The actual goal of this investigation is the imaging of an underground test domain (e.g.,

D(test) in Fig. 2), i.e., the estimation, from sparse TD scattered �eld observations, of

its dielectric properties in order to localize and classify possible anomalies. To this end,

the y-directed scattered electric �eld is sampled at Nt time instants at Nr �xed receiver

locations xr1; :::; x
r
Nr

on the plane z = zr (Fig. 2) to obtain a set of observations. The

known term in the problem is this set of Nr �Nt samples. In our numerical experiments



GALDI ET AL.: MODERATELY ROUGH SURFACE UNDERGROUND IMAGING... 6

in Sec. VI, we shall use synthetic �eld observation data generated via a rigorous full-wave

solution of the forward scattering problem (see Sec. VI-A).

III. Rough Surface Profile Estimation

In principle, the problem of estimating the coarse-scale roughness pro�le of the air-

ground interface can be addressed with various technologies (e.g., acoustics, laser, SAR,

etc.). In [13], we proposed a simple strategy based on the processing of the early-time

response of a UWB GPR system sampled at a limited number of receivers. Our approach

is based on a compact low-dimensional spline parameterization of the roughness pro�le,

which provides implicit regularization mitigating the inherent ill-posedness of the problem,

and on the Physical-Optics Pulsed-Beam (PO-PB) forward scattering model in [11] to

generate predictions of the reected �eld at the receivers. The estimation problem is

thus converted into a nonlinear optimization problem aimed at retrieving the unknown

spline coeÆcients via minimization of a least-square error functional that involves the PO-

PB forward scattering prediction and the available observed data. The observation time

windows are chosen so as to gate out the late-time response (i.e., causal contributions

from regions beyond a critical depth) due to the possible presence there of buried targets

which may produce a bias in the surface estimation. The resulting optimization problem

is generally non-convex, and therefore the possible presence of local minima renders its

numerical implementation non-trivial. Optimization strategies and computational issues

are discussed in [13]. The proposed approach was found to provide accurate and robust

estimations (even with noisy data and imperfect knowledge of soil parameters) with mild

computational e�ort (typical computing time � 55secs. on a 700 MHz PC).

Having established the possibility of estimating the coarse shape of the rough air-ground

interface via early-time response processing, we now turn to the problem of underground

imaging in the presence of a known moderately rough interface. In our investigation,

incoherent scattering contributions from �ner-scale roughness are not included. These

�ner-scale contributions are e�ectively dealt with through the use of additive noise models.
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IV. Forward Scattering Model

A. Formulation

Referring to Fig. 2, the TM-polarized total FD �eld observed in free space at r =

(x; z) can be conveniently expressed as a sum of two components { the target scattering

contribution Es and the background �eld Eb (i.e., the �eld in the absence of the target),

E(r; !) = Eb(r; !) + Es(r; !); (5)

with Es given by [15]

Es(r; !) =
!2

c2

ZZ
D
E(r0; !)Gb(r; r

0; !)O(r0; !)dr0: (6)

In (6), E is the total �eld in the target region, Gb represents the FD Green's function of

the rough-interface dielectric halfspace, and

O(r0; !) = [�r(r
0)� �r1] + i

[�(r0)� �1]

!�0
= ��r(r

0) + i
��(r0)

!�0
(7)

is usually referred to as the object function, with �r(r
0) and �(r0) denoting the local relative

dielectric permittivity and conductivity, respectively. Since the object function in (7)

vanishes outside the target region D, the integration in (6) is limited accordingly. The

corresponding TD results, of interest in this paper, are obtained by Fourier inversion of

(5) and (6),

e(r; t) = eb(r; t) + es(r; t); (8)

where

eb(r; t) =
1

2�

Z 1

�1
Eb(r; !) exp(�i!t)d!; (9)

es(r; t) =
ZZ

D
��r(r

0)u(r; r0; t)dr0 +
1

c�0

ZZ
D
��(r0)v(r; r0; t)dr0: (10)

The kernels u and v in (10) are given by
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u(r; r0; t) =
1

2�c2

Z 1

�1
!2E(r0; !)Gb(r; r

0; !) exp(�i!t)d!; (11)

v(r; r0; t) =
1

2�c

Z 1

�1
i!E(r0; !)Gb(r; r

0; !) exp(�i!t)d!: (12)

Thus, in the total backscattered �eld (8) observed at the receivers, es is the useful sig-

nal carrying the information needed for imaging the target, whereas eb is the interface-

generated clutter. Further distortion introduced in the useful signal by the twice-traversed

rough air-ground interface is accounted for in the �elds E and Gb in (11) and (12). As-

suming that an estimation of the rough interface pro�le is somehow available, one can use

a full-wave forward solver, or the more eÆcient PO-PB forward scattering model in [11],

to generate a prediction of the clutter eb in (8) for a given pulsed excitation, and therefore

isolate the target contribution es. Even removing the background clutter eb, the relation

in (10) between the scattered �eld at the receivers and the dielectric and conductivity

inhomogeneities ��r and �� is not easily invertible, due to the presence in (11) and (12)

of the total �eld E which is itself dependent on ��r and �� and consequently renders the

problem nonlinear. However, for the plastic anti-personnel land mines of interest here,

with dielectric properties close to those of the background soil, one can invoke the weak

scattering limit via use of the Born approximation [15], where the total �eld E inside the

target is replaced by the transmitted �eld Et in D, in the absence of the target. Moreover,

we shall neglect the conductivity contrast contribution in (10), thus arriving at a linear

model relating the scattered �eld at the receivers to the dielectric inhomogeneity ��r,

es(r; t) �
ZZ

D
��r(r

0)�u(r; r0; t)dr0; (13)

�u(r; r0; t) =
1

2�c2

Z 1

�1
!2Et(r0; !)Gb(r; r

0; !) exp(�i!t)d!: (14)

The robust inversion of this model will be discussed in Sec. V. The limitations of the

Born approximation, which neglects multibounce interactions inside the target, have been

thoroughly investigated and are well documented in the technical literature (see, e.g.,

[16]). More sophisticated and accurate nonlinear [17], [18], iterative [19] and distorted
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[20] variants could be exploited in principle, but this is oustide the scope of the present

investigation. For moderately lossy soils, once a �rst estimate of ��r (and hence of D)
is obtained by inverting the linear model in (13) (see Sec. V), one can iteratively re�ne

this estimate by re-introducing into (13) the neglected (Born-approximated) conductivity

contribution in (10) as a known term.

B. Narrow-Waisted Gaussian Beam Implementation

In order to implement, and eventually invert, the TD linear model in (13) for the pulsed

excitation in (1) and (2), one needs to compute the TD kernel �u in (14) at several obser-

vation points for a large number of source positions and time instants, with typical total

number � 106 (see Sec. VI-D). As a consequence, the availability of a fast forward solver

is a key ingredient for the overall computational feasibility of the proposed approach. In

this scenario, the computational burdens of typical full-wave solvers (e.g., moment meth-

ods or �nite di�erences) tend to be prohibitive, and it is therefore suggestive to resort to

approximate approaches. We found that the Gabor-based narrow-waisted Gaussian beam

algorithms in [11] are remarkably well-suited for this problem, and that they provide a

reasonable trade-o� between accuracy and computational burden. The PO-PB synthesis

of plane-wave-excited �elds transmitted into a rough-surface homogeneous halfspace de-

tailed in [11] can readily be extended to the deal with the subsequent irradiation from an

induced line-source in the dielectric halfspace, thereby yielding a closed form TD expres-

sion for the kernel in (14) similar to those in [11]. However, for reasons that will become

clear later on (Sec. IV-B.3), it is computationally cheaper to synthesize the transmitted

�eld Et and the rough-surface halfspace Green's function Gb in the FD, and then compute

the TD kernel in (14) via fast Fourier transform (FFT) algorithms [21].

B.1 Transmitted Field

The computation of the �eld transmitted into the halfspace z < h(x) in the absence

of the target, under the quasi-plane-wave pulsed illumination in (2), is a problem already

addressed in [11]. We therefore merely cite the �nal results, referring the reader to [11] for

theoretical and computational details. The FD PO \equivalent current", which generates

the transmitted �eld, is parameterized in terms of x-domain discretized m1-indexed Gabor
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basis functions with narrow width L1
<� j�1j � d, centered on the Gabor lattice points

xm1
= m1L1, with �1 = 2�=k1 denoting the wavelength in soil. These initial conditions

generate narrow-waisted quasi-ray GBs propagating along the local refraction directions

(Fig. 3). One obtains the following FD synthesis (cf. (11.21) and (11.22))

Et(r; !) � 1

2

X
jm1j�(d=2L1)

Ct
m1
(!) ~Btm1

(r; !); (15)

where the Gabor coeÆcients Ct
m1

can be estimated eÆciently by sampling the PO \equiv-

alent current" at the lattice points,

Ct
m1
(!) � 2(L1=

p
2)1=2g(xBm1

)
h
1 +R(1)

m1

i
P (!) exp[ik0(zBm1

� xm1
sin �im1

cos�m1
)]: (16)

In (16), (xBm1
; zBm1

) denote the lattice points (xm1
; h(xm1

)) in the incident-beam coor-

dinates (3), �m1
= tan�1[dh(xm1

)=dx] is the local surface slope, �im1
= �A � �m1

is the

local incidence angle (see Fig. 3), and R(1)
m1

is the local Fresnel TM plane-wave reection

coeÆcient for incidence from free space,

R(1)
m1

=
cos �im1

�
�
�r1 � sin2 �im1

�1=2
cos �im1

+
�
�r1 � sin2 �im1

�1=2 : (17)

The CSP GB propagator ~Btm1
in (15) is computed eÆciently via complex-source-point

(CSP) paraxial asymptotics (cf. (11.30)-(11.34)),

~Btm1
(r; !) � ik12

5=4
�

L1
8�k1

�1=2 (�m1
� ibtm1

cos �tm1
)

( ~Rt
m1
)3=2

� exp
n
i
h
k1
�
~Rt
m1

+ xm1
sin �tm1

cos�m1
+ ibtm1

�
+ �=4

io
; (18)

where �tm1
is the local refraction angle (see Fig. 3), related to �im1

and �r1 via Snell's law

sin �im1
=
p
�r1 sin �

t
m1
, �m1

= �(x � xm1
) sin�m1

+ [z � h(xm1
)] cos�m1

, and ~Rt
m1

denotes

the complex distance

~Rt
m1

=
q
(xtbm1

)2 + (ztbm1
� ibtm1

)2; Re( ~Rt
m1
) � 0; (19)

with



GALDI ET AL.: MODERATELY ROUGH SURFACE UNDERGROUND IMAGING... 11

"
xtbm1

ztbm1

#
=

"
cos tm1

sin tm1

sin tm1
� cos tm1

# "
x� xm1

z � h(xm1
)

#
; tm1

= �tm1
+ �m1

; (20)

btm1
=
p
�r1(L1 cos�m1

cos �tm1
)2=�0: (21)

The tilde � denotes quantities extended into complex coordinate space via the CSP

method. In our numerical implementation, we found reasonably accurate syntheses with

beam spacing L1 � 0:5j�1j, where �1 = 2�=k1 denotes the wavelength in soil. The result-

ing computational burden (see Sec. VI-E) was found to be about 2 times lower than the

quasi-real ray-tracing scheme in [10], and about 4 times lower than standard Kirchho�-PO

implementations.

B.2 Rough-Surface Halfspace Green's Function

The next step is the Gabor-based narrow-waisted GB synthesis of the rough-surface

halfspace Green's function Gb, which, in our TD-Born model in (13) and (14), represents

the scattering contribution from a (in�nitesimal) pixel in the target region of Fig. 2. Thus,

instead of a quasi-plane-wave pulsed illumination from free space as in Sec. IV-B.1, we

now have cylindrical waves impinging from underground induced source points r0,

G1(r; r
0; !) = � i

4
H
(1)
0 (k1jr� r

0j); r
0 2 D; (22)

with H
(1)
0 (�) denoting the zeroth order Hankel function of the �rst kind. As in [11, Sec. III-

A], the �eld radiated into the halfspace z > h(x) is generated by an induced PO \surface

current" (cf. (11.16))

JgPO(x; r
0; !) = 2G1(rh; r

0; !)
h
1 +R(2)(x)

i
; rh � (x; h(x)); (23)

where R(2)(x) denotes the local Fresnel TM plane-wave reection coeÆcient for incidence

from soil,

R(2)(x) =

p
�r1 cos�(x)�

h
1� �r1 sin

2 �(x)
i1=2

p
�r1 cos�(x) +

h
1� �r1 sin

2 �(x)
i1=2 ; (24)
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with �(x) = tan�1[dh(x)=dx] being the local slope (Fig. 4). As in [11, Sec. III-B], it is

expedient to rewrite the PO current by separating out the locally linear phase term that

an incident plane wave propagating along the positive z-direction would induce on the

locally tangent plane (cf. (11.17))

JgPO(x; r
0; !) = J g

PO(x; r
0; !) exp[�ik1x sin�(x) cos�(x)]: (25)

By Gabor-expanding the weakly phased reduced PO current (cf. (11.18)-(11.22))

J g
PO(x; r

0; !) = JgPO(x; r
0; !) exp[ik1x sin�(x) cos�(x)]; (26)

the resulting transmitted �eld is parameterized in terms of narrow-waisted GBs launched

from lattice points (xm2
; h(xm2

)), xm2
= m2L2, into the halfspace z > h(x), analogous to

what is done in (15). We obtain (see Fig. 4)

Gb(r; r
0; !) � 1

2

X
jm2j�(d=2L2)

Cg
m2
(r0; !) ~Bgm2

(r; !); (27)

Cg
m2
(r0; !) � (L2=

p
2)1=2JgPO(xm2

; r0; !) exp(ik1xm2
sin�m2

cos�m2
); (28)

~Bgm2
(r; !) � ik02

5=4
�

L2
8�k0

�1=2 (�m2
� ibgm2

cos �gm2
)

( ~Rg
m2)3=2

� exp
n
i
h
k0
�
~Rg
m2

+ xm2
sin �gm2

cos�m2
+ ibgm2

�
+ �=4

io
; (29)

�gm2
= sin�1 (

p
�r1 sin�m2

) ; �m2
= �(xm2

); (30)

�m2
= �(x� xm2

) sin�m2
+ [z � h(xm2

)] cos�m2
; (31)

~Rg
m2

=
q
(xgbm2

)2 + (zgbm2
� ibgm2)2; Re( ~Rg

m2
) � 0; (32)

"
xgbm2

zgbm2

#
=

"
cos gm2

� sin gm2

sin gm2
cos gm2

# "
x� xm2

z � h(xm2
)

#
; gm2

= �gm2
� �m2

; (33)
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bgm2
= (L2 cos�m2

cos �gm2
)2=�0: (34)

Note that possible evanescent contributions arising from total reection are not accounted

for in this simple model; in case sin �gm2
> 1, the corresponding GB is simply ignored. Also

note that, as in (15), the discretization in (27) is limited to the region jxj � d=2, although

now the line-source illumination does not necessarily vanish outside. However, in all nu-

merical simulations presented in Sec. VI, it was veri�ed that possible truncation-induced

(late-time) e�ects were essentially negligible in the useful observation time-window. Con-

cerning computational burden, the same considerations as in Sec. IV-B.1 apply.

B.3 Target-Scattered Field

Using the narrow-waisted GB syntheses in Secs. IV-B.1 and IV-B.2, the FD spectra of

the transmitted �eld Et and the rough-surface halfspace Green's function Gb are evaluated

over the bandwidth of interest, and the TD Born kernel in (14) is computed via FFT [21]

(see Sec. VI-B for details). Note that, in order to accommodate the evanescent spectra in

the CSP GB propagators (18) and (29), the analytic signal formulation (one-side Fourier

transform) should be used

�u(r; r0; t) =
1

2�c2
Re

�Z 1

0
!2Et(r0; !)Gb(r

r; r0; !) exp(�i!t)d!
�
; Im(t) � 0: (35)

Denoting by Nb1 = d=L1 and Nb2 = d=L2 the number of beams used in the GB synthe-

ses (15) and (27), respectively, the computational complexity for evaluating the kernel

waveform in (35), for �xed frequency and �xed observation and source locations, is thus

O(Nb1 + Nb2). As mentioned earlier, a direct TD closed-form synthesis could also be ob-

tained in terms of rapidly computable conuent hypergeometric functions, paralleling the

procedure in [11, Sec. IV]. However, in order to keep track of the frequency dependence,

this would require accounting for the element-by-element interaction between the beams in

(15) and those in (27), resulting in a double beam summation for each space-time sample

with a consequent computational complexity O(Nb1 � Nb2), which would be considerably

more expensive.
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V. Rough Surface Underground Imaging

Based on the linear forward scattering model in (13) and on a number of observations

of the scattered �eld waveforms at the receivers, an inversion scheme can be constructed

to retrieve the unknown dielectric contrast ��r in the test domain D(test) to be imaged

(Fig. 2). We recall that this problem is inherently ill-posed [22] and that only limited-

viewing observations and approximate forward modelings are available, in addition to the

unavoidable noise and measurement uncertainty of any practically conceivable implemen-

tation. As a consequence, classical linear approaches, such as di�raction tomography (see,

e.g., [23], [24]), are diÆcult to apply, and regularization techniques are needed to restore

well-posedness and achieve robust reconstructions. This type of problem is analogous to

those typically arising in image processing applications such as object boundary detection

and image segmentation [25], so that a whole arsenal of well-established tools is avail-

able. In this connection, we have been exploring two popular regularization approaches

with edge-preserving capabilities, based on di�erent parameterizations of the region under

investigation.

A. Pixel-Based Reconstruction: Lp Norm Regularization

One of the simplest reconstruction approaches is based on the parameterization of the

test domain to be imaged into a number of adequately small pixels, wherein the object

function ��r is assumed to be uniform. By discretizing the test domain D(test) into N

pixels centered at r0k, k = 1; :::; N , with area �s, the linear model in (13) can be discretized

accordingly as

es(r; t) �
NX
k=1

��r(r
0
k)�u(r; r

0
k; t)�s: (36)

Assuming that the scattered �eld es is sampled at Nr receiver locations r
r
i , i = 1; :::; Nr,

and Nt time instants tij, j = 1; :::; Nt (Fig. 2), the problem can be cast into matrix form

as

y = A � x+ n; (37)
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where the known term y is a column vector containing the Nr �Nt space-time samples of

es, A is a (Nr �Nt)�N matrix containing the space-time discretization of the TD kernel �u

in (14), x is a N -element column vector containing the unknown dielectric contrast ��r at

each pixel, and the noise vector n accounts for measurement uncertainty and unmodeled

e�ects. Speci�cally,

y = [ yT
1

� � � yT
Nr

]T ; yT
i
= [es(rri ; ti1); � � � ; es(rri ; tiNt

)] ; (38)

A =

2
6664
A11 � � � A1N

...
. . .

...

ANr1 � � � ANrN

3
7775 ; AT

ik = �s [�u(rri ; r
0
k; ti1); � � � ; �u(rri ; r0k; tiNt

)] ; (39)

x = [��(r01); � � � ;��(r0N)]T ; (40)

with k = 1; :::; N , i = 1; :::; Nr, and with T denoting the transpose. Typical regularization

approaches convert this inverse scattering problem into an optimization problem where a

cost functional, containing both data and model information from (37) and possible prior

information about the object function, is minimized. Among them, total variation (TV)

[26] is well-known for its edge-preserving capabilities and has found several applications

in EM inverse scattering scenarios (see, e.g., [6], [27], [28]). Here, we use a more general

approach, based on Lp norm regularization (LNR). The inversion of the linear model in

(37) is posed as the minimization of the cost functional [29]

JLNR(x) =
y � A � x

2
2
+ �1

D� � x
p
p
+ �2 kK (x)k22 ; (41)

where k k2 is the standard Euclidean norm and k kp (0 < p � 2) is an Lp norm [29]. In

(41), the �rst term penalizes lack of data �delity, while the other terms introduce some

loose a priori knowledge about the object geometry, with �1 and �2 denoting regularization

parameters. In particular, the second term highlights the expected piecewise smoothness in

the reconstructed object function by penalizing the Lp norm of a spatial gradient operator

D�. In our implementation we chose [6], [30]

D� � x
p
p
�

NX
k=1

n
�[Dx � x]2k + (2� �)[Dz � x]2k

op=2
; (42)
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where Dx and Dz denote standard �rst-order �nite-di�erence operators in the horizontal

and vertical direction, respectively, and the parameter � controls the orientation preference

of the smothness regularization (� = 1 yields no orientation preference) [30]. As will be

shown, a regularization with orientation preference may give better results, in view of

the limited-viewing con�guration of the problem, which gives rise to di�erent resolutions

achievable in the horizontal and vertical directions. The formulation in (42) reduces to

Tikhonov-like regularization [31] for p = 2, and to TV-like regularization [26] for p = 1. As

compared with the L2 norm in the standard Tikhonov regularization [31], Lp norms with

0 < p � 1 on the spatial gradient term in (42) penalize large jumps less, thus allowing

sharper edges to form in the reconstructed object function and yielding visually better

(less blurred) reconstructions.

The last term in (41) is related to possible prior information about the object function

sign. Assuming, for instance, a negative value for ��r in the target region, the L2 norm of

the operator K penalizes positive values (or viceversa) of the reconstructed object function

[K(x)]k =

8><
>:

xk; xk > 0;

0; xk � 0:
(43)

In our implementation, the cost functional in (41) is minimized via an iterative procedure

based on half-quadratic approximations (see [26] for details). The proper choice of the

regularization parameters �1 and �2 in (41) is an important issue, and several strategies

have been proposed (see, e.g., [32]), but this is not the focus here. Our choice of the

regularization parameters was done by trial and error.

B. Object-Based Reconstruction: Curve Evolution

Object-based techniques have been widely investigated in image processing, with many

important applications in problems like object boundary detection and image segmentation

[25]. The basic idea underlying these approaches is to exploit parametric deformable shape

models for the object function which incorporate possible a priori information about the

target geometry. Prominent among them are curve evolution (CE) techniques (see, e.g.,

[33], [34]), where a gradient ow is designed which attracts initial closed curves to the

target boundary. Applications of such approaches to EM inverse scattering problems have
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been proposed in [35]{[37]. In particular, in [37], a CE approach is applied to UWB GPR

underground imaging of shallowly buried low-contrast plastic targets in the presence of a

at air-ground interface. This approach is applied here to the more challenging problem

of a rough air-ground interface. The algorithm in [37] is briey reviewed. Assuming a

scenario with a single homogeneous target occupying the region D (Fig. 2) bounded by a

continuous curve ~C, the unknown permittivity contrast function can be expressed as

��r(r) = ��r�D(r); (44)

where ��r = �r2 � �r1, and �D is the characteristic function of the target region D,

�D(r) =

8><
>:

1; r 2 D;
0; r =2 D:

(45)

The more general case of multiple connected or unconnected components is addressed in

[37]. The parameterization in (44) contains implicit regularization, since the reconstructed

object must be homogeneous. In this connection, the reconstruction task consists in

estimating the target contour ~C and the permittivity contrast ��r. Using (44), the linear

model in (13) can be rewritten as

es(r; t) � ��r

ZZ
D
�u(r; r0; t)dr0: (46)

We assume, as in Sec. V-A, that a set of Nr �Nt samples of the scattered �eld is collected

at Nr receiver locations r
r
i , i = 1; :::; Nr, at Nt time instants tij, j = 1; :::; Nt (Fig. 2).

The problem of estimating target boundary and dielectric contrast is posed again as an

optimization problem involving minimization of the following quadratic functional [37]

JCE
�
~C;��r

�
=

1

2

NrX
i=1

NtX
j=1

�
esij ���rUij

�2
+ �

Z
~C
d`: (47)

As in (41), the cost functional in (47) contains a data �delity term, where esij = es(rri ; tij)

and

Uij =
ZZ

D
�u(rri ; r

0; tij)dr
0: (48)
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The second term serves as regularization by penalizing the arc-length of the estimated

curve, with the choice of the regularization parameter � in (47) a�ecting its smoothness.

Again, in our implementation, � is empirically selected by trial and error, taking into

account prior expectations about target geometry (e.g., convexity).

To minimize the cost functional in (47), we use a CE approach to design a gradient

ow that attracts an initial closed curve to the boundary of the target region D. Given a

family of smooth curves ~C(�) parameterized by � , we search for the curve in this family

and the contrast value ��r that minimize the cost functional in (47). For a given curve

~C(�), the contrast ��r must satisfy the following equation [37]

@JCE(�;��r)

@��r
= �

NrX
i=1

NtX
j=1

h
esij ���rUij(�)

i
Uij(�) = 0: (49)

Moreover, it can be shown (see [37] for details) that the gradient direction of JCE with

respect to the curve ~C(�) is given by

r�JCE(�;��r) = �
NrX
i=1

NtX
j=1

h
esij ���rUij(�)

i
��r�uij(r

0
c)n̂c + ��cn̂c; (50)

where �uij(r
0
c) = �u(rri ; r

0
c; tij), r

0
c denotes points on the curve ~C(�), and n̂c and �c indicate

the outward normal and the signed curvature of the curve at r0c, respectively [37]. To

minimize the cost functional in (47), the curve ~C(�) is evolved along the direction of

steepest descent, i.e., along the negative gradient of JCE with respect to ~C(�),

d~C(�)

d�
= �r�JCE(�;��r) =

NrX
i=1

NtX
j=1

h
esij ���rUij(�)

i
��r�uij(r

0
c)n̂c � ��cn̂c; (51)

where, for each � , the optimal value of the contrast ��r is given by (49). For numerical

implementation, the evolution in (51) is discretized in � and stepped forward, alternatively

updating the curve ~C(�) and the contrast ��r (via (49)). In our implementation, we use

the level set method [38], [39] which yields a numericallly eÆcient and stable evolution

(see [37]).

As compared with pixel-based reconstruction techniques, object-based approaches like

curve evolution (CE) o�er several computational advantages. First is the natural incor-

poration of a priori information about target constitutive and geometric features, such
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as homogeneity and shape smoothness. This allows use of eÆcient parametric models to

describe target shape and permittivity contrast, with consequent implicit regularization

which mitigates the ill-posedness of the problem and possibly reduces the data size re-

quired. Furthermore, it focuses on the key features of the target, which are estimated

directly rather than extracted via postprocessing of a pixel-based image. Finally, the evo-

lution in (51) depends on local properties, and the estimation of the contrast value in (49)

is computationally inexpensive, resulting in an overall computational burden that tends

to be lower than those of standard pixel-based approaches like LNR.

VI. Numerical Results

A. Reference Solution

The backscattered �eld observation data used as observations are simulated via a full-

wave solution of the forward scattering problem. As in [11], this reference solution is

based on the time-harmonic multi�lament current method in [40], adapted to moderately

rough interfaces. Speci�cally, the frequency domain (FD) spectrum of the �eld is eval-

uated at 100 di�erent frequencies within the pulse bandwidth, without resorting to the

plane wave approximation in (1) for the incident �eld, and with use of the full dispersive

permittivity model for the soil. The sampled spectrum is �rst smoothed through local

Pad�e-approximation [21] and then transformed via standard inverse fast Fourier trans-

form (FFT) routines [21] to obtain the desired TD solution. In our numerical simulation

we used a 1024-point FFT; the required TD samples were obtained by linear interpolation

of the returned time series.

B. Gaussian Beam Algorithm Parameters

The Born TD kernel �u in (35), needed for computing the data �delity term in both LNR

and CE cost functionals, is �rst synthesized in the FD via narrow-waisted GB superposition

(cf. (15) and (27)) and subsequently transformed to the TD via a 512-point FFT. In this

case, the spectrum is sampled at 50 frequencies within the pulse bandwidth. All other

needed frequency samples, as well as the output time waveform, are obtained via linear

interpolation. The GB spacings L1 and L2 in (15) and (27), respectively, are chosen as

half a (ambient) wavelength, i.e., L1 = j�1j=2, L2 = �0=2, with �0 = 2�=k0 denoting
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the free-space wavelength. This con�guration was arrived at using a pragmatic stability

criterion based on the (in)sensitivity of the outcome to further decreases of the GB spacing

(i.e., increases in the number of GBs). To further improve computational eÆciency, for a

�xed observation point, one can rewrite the CSP GB propagators in (18) and (29) (see,

e.g., (11.52)-(11.54)) to isolate frequency-independent parts that need to be computed

only once.

C. Simulation Parameters

The numerical simulations that follow are based on the con�guration and parameters

described in Fig. 5. In this scenario (Fig. 5a), although no speci�c data model is used

for soil, target and roughness, geometric and constitutive parameters were adjusted so as

to be consistent with typical moderate roughness (maximum-to-minimum height � 4cm,

maximum slope � 32o), slightly lossy soil characteristics [41] (�r1 = 4, �1 = 0:01 S/m), and

shallowly-buried plastic mine-like targets (10cm � 6cm ellipse with �r2 = 3:5 and �2 = 0,

and with center at 10cm below nominal ground). The roughness pro�le was randomly

generated via the quartic spline model in [13, Sec. IV]. The illumination �eld in (1) was

chosen as a vertically incident fourth-order Rayleigh UWB pulse with T = 1:3ns (Fig. 5c)

and cosine tapering (Fig. 5b). This pulse length was found by trial and error to provide

a good trade-o� between the contrasting high-frequency requirements for good resolution

(for both surface estimation and target localization) and low-frequency requirements for

adequate soil penetration. Such UWB pulses typically work well for shallow burial depths

and slightly lossy soils, as in our example, but may be not suitable for larger burial depths

and/or soil losses.

The test domain to be imaged consists of a 20cm�20cm domain surrounding the tar-

get, with top side at 5cm below nominal ground. The backscattered �eld observation

data needed for inversion are collected at Nr = 11 receivers at zr = 0:3m and xri =

�0:5m, �0:4m,...,0:5m. Note that the relatively low permittivity contrast in this ex-

ample (j��rj=�r1 = 0:125), which justi�es the Born approximation in (13), renders the

test particularly challenging in view of the weak target scattering as compared with the

interface-generated clutter. The burial depth was chosen so as to avoid the relatively clean

case where ground-scattered and target-scattered signals are well time-resolved (see Sec.
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VI-D).

D. Reconstruction Examples

Before testing the various underground imaging strategies, it is useful to look at the scat-

tered waveforms at the receivers, in order to identify the various contributions and to check

the accuracy of the Born-GB forward scattering model. Figure 6a shows the comparison

between the total �eld e (soil+target) and the background �eld eb (soil only) waveforms

at a �xed receiver location, computed via the full-wave technique described in Sec. VI-A.

The two waveforms are practically indistinguishible in the plot scale. Their di�erence

(the target contribution es) is displayed in Fig. 6b and is compared with the Born-GB

synthesis described in Sec. VI-B. Reasonably good agreement is observed. Looking at

the di�erent scales in the two plots, it is noted that background �eld removal is crucial for

achieving reasonable signal-to-noise ratio in the inverse scattering procedure. For rough

interfaces and shallowly-buried targets, as in this example, this cannot usually be accom-

plished by mere time-windowing of the data since ground-scattered and target-scattered

signals are not well time-resolved. In this connection, the availability of rough interface

pro�le estimations (and hence background �eld predictions) is of great importance.

Another important issue is the choice of the actual number of unknowns in the object

parameterization. This requires trade-o� between resolution, robustness and computa-

tional burden. Aside from computational considerations, it is understood that beyond a

critical level, related to the essential dimension of the available information, any attempt

at further re�nement in the object discretization will increase the sensitivity to noise, with-

out actually improving the resolution. The essential information entailed in the forward

scattering model can be estimated roughly, for instance, via singular value decomposition

(SVD) [21] of the (discretized) scattering kernel in (14), whereas the prior information

introduced with the various regularization techniques cannot be easily quanti�ed. We

did not attempt to address optimal strategies for object discretization and data acquisi-

tion. The data and unknown con�gurations used in the examples, though not necessarily

optimal, were found to provide a reasonable trade-o� between the above contrasting re-

quirements. In particular, to account for possible redundancy in the observed data, in all

examples below we retain a data-to-unknown ratio � 3.
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For pixel-based reconstruction with Lp norm regularization (LNR), the test domain to

be imaged was discretized into 30�30 square pixels (900 unknowns), and we used Nt = 300

time samples of the late-time response (causally related to the test domain) at each of the

Nr = 11 receivers in Fig. 5. The observation vector y in (38) was obtained by subtracting

the PO-PB-computed background �eld eb (see [11]) from the full-wave-computed total �eld

e at each receiver; the (3300� 900) data matrix A in (39) was computed via the Born-GB

algorithm (see Sec. VI-B). In all examples below, the various regularization parameters

were selected pragmatically via trial and error, and the results reported correspond to the

best reconstruction obtained. Reconstruction results, however, were found to be relatively

insensitive to variation of these parameters within a calibrated range.

We now move on to presenting various examples of underground imaging results.

D.1 Perfectly Known Roughness Pro�le and Soil Parameters, and Noiseless Data

We start with the simplest, though somewhat unrealistic, case of perfectly known rough-

ness pro�le and soil parameters, and noiseless observation data, on which we test the var-

ious reconstruction techniques presented so far. A number of representative pixel-based

reconstruction examples are shown in Fig. 7. Speci�cally, the true object function (ground

truth) is shown in Fig. 7a, while Figs. 7b-d display a number of LNR reconstructions

with p = 1, i.e., total-variation-like (TVL), with various combinations of the regularization

parameters, namely, i) gradient penalty without directional preference, i.e., �2 = 0 in (41)

and � = 1 in (42) (Fig. 7b); ii) gradient penalty with directional preference, i.e., �2 = 0

and � = 0:1 (Fig. 7c); and iii) gradient penalty with directional preference and \positivity

penalty", i.e., �2 > 0 and � = 0:1 (Fig. 7d). It is observed that all TVL images, though

not yielding highly accurate point-wise reconstructions, provide reasonably accurate tar-

get localization. Note that the limited-viewing geometry (vertical illumination) renders

the problem more ill-posed in the horizontal direction, resulting in higher vertical than

horizontal resolution in all cases. In this connection, gradient penalty with directional

preference turns out to be more e�ective, since the data �delity term is less sensitive to

horizontal than vertical blurring. If the gradient penalty is equally imposed on both direc-

tions (as in Fig. 7b), it is possible that the vertical direction is under-regularized while the

horizontal direction is over-regularized. Therefore, a gradient penalty with � < 1 (smaller
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in the horizontal direction, as in Fig. 7c) may help in compensating for this imbalance,

and yield visually better reconstructions. Looking at Fig. 7d, it is realized that prior

knowledge of the object function sign, and consequent positivity (or negativity) penalty

in the cost functional, may further improve the reconstruction.

For more quantitative accuracy assessments, we introduced two simple r.m.s. error

metrics in both target and background regions,

�et �

X
r
0

k
2D

h
�r2 � �

(est)
r2 (r0k)

i2

N2�2r2
; �eb �

X
r
0

k
=2D

h
�r1 � �

(est)
r1 (r0k)

i2

N1�2r1
; (52)

where �
(est)
r1 and �

(est)
r2 denote the estimated relative permittivity in the background and

target regions, respectively, while N1 and N2 indicate the corresponding number of pixels.

These errors are speci�ed (in dB) in the �gure captions. It is observed from Fig. 7 that

gradient penalty with directional preference coupled with positivity penalty (Fig. 7d)

yields the smallest errors (�et = �22dB, �eb = �37dB).
Reconstruction examples for p = 0:5; 1:5 and 2 (with directional preference and positiv-

ity penalty) are shown in Fig. 8. By comparing these reconstructions, together with that

for the corresponding TVL (i.e., p = 1) in Fig. 7d, one notes progressive blurring toward

the Tikhonov-like (p = 2, Fig. 8c) reconstruction. However, LNR with p < 1 (e.g., p = 0:5

in Fig. 8a) was found not to yield signi�cant improvement as compared with TVL, and

the corresponding results are omitted henceforth.

Figure 9 shows a reconstruction obtained via CE, which provides good estimation of

both target boundary and permittivity (only 0:6% error in �r2). The reconstruction looks

visually better than the corresponding TVL one in Fig. 7d, as also witnessed by the

smaller r.m.s. errors, �et = �25dB, �eb = �39dB, computed from (52) with the same

pixelization used for LNR. Again, due to the limited-viewing con�guration, localization

is more accurate vertically than horizontally. For this reconstruction, a reduced data set

was used, with only 6 receivers (#1, 3, 5, 7, 9, and 11, in Fig. 5) and 100 time samples

each, taking advantage of the more compact object parameterization entailed in CE as

compared with pixel-based reconstruction techniques.



GALDI ET AL.: MODERATELY ROUGH SURFACE UNDERGROUND IMAGING... 24

D.2 Imperfectly Known Roughness Pro�le and Soil Parameters, and Noisy Data

We now explore more realistic con�gurations by removing the assumption of perfect

knowledge of the air-soil rough interface as well as soil parameters and observation data.

First, to highlight the e�ect of the air-ground interface roughness, so far assumed to be per-

fectly known, we show in Fig. 10 a TVL reconstruction obtained by erroneously assuming

a at air-ground interface at z = 0 in the forward scattering model. Image deterioration,

mainly due to poor background �eld removal, is dramatic and renders the reconstruction

practically meaningless. For this con�guration, CE likewise gave meaningless results, ex-

hibiting strong sensitivity to initial conditions and regularization parameters. Results can

be improved via statistical processing, as shown in [6], but will not become comparable to

those in Figs. 7{9.

Now, we use the algorithm in [13] (see also Sec. III) to generate estimations of the

rough interface to be used in the subsequent underground imaging problem. We also

investigate the e�ect of measurement uncertainty in the observation data as well as soil

parameters. Figure 11 shows the rough interface reconstructions obtained with two dif-

ferent data con�gurations: i) corruption of the observation data with an additive uniform

noise (�10% in amplitude) that accounts for measurement uncertainty and unmodeled ef-

fects (e.g., �ner-scale roughness scattering), and ii) assumption of a �5% error in �r1 and

�1 in the forward scattering model. For these reconstructions, as discussed in [13], we used

Nt = 50 time samples of the early-time response at each of the 11 receivers in Fig. 5; the

observation time-windows were chosen so as to roughly gate out scattering contributions

from possible regions deeper than � 8cm below nominal ground (z = 0), thus avoiding

any possible bias due to target scattering. Interface estimates are reasonably accurate,

apart from the weakly-illuminated edge regions, as also observed in [13]. We repeat that,

for the underground imaging problem, these con�gurations are particularly challenging.

The �5% relative permittivity mismatch in the second example is on the same order as

the actual dielectric contrast ��r = �0:5 to be estimated. The corresponding TVL and

CE target reconstructions are shown in Fig. 12, where a slightly narrower illumination

(d = 0:8m) is used in order to de-emphasize the e�ect of the poorly estimated side regions

in Fig. 11. Speci�cally, Figs. 12a and 12b show TLV and CE reconstructions, respec-
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tively, for the case of noisy data (with perfectly known soil parameters), whereas Figs. 12c

and 12d show the corresponding results for the case of imperfectly known soil parameters

(with noiseless data). In these examples, the corresponding estimated air-soil interface

pro�les in Fig. 11 are used in the forward scattering model. As seen from Figs. 12a

and 12b, reconstructions turn out to be robust with respect to noise in the observation

data. In particular, CE still yields good target localization and permittivity estimation

(1:7% error in �r2; �et = �23dB, �eb = �39dB). For the TVL reconstruction, r.m.s.

errors (�et = �21dB, �eb = �31dB) are still comparable to those obtained in the ideal

case (Fig. 7d). For the more challenging soil-parameter-mismatch test in Figs. 12c and

12d, although the target shape is not as accurately captured as before, localization and

permittivity estimation (1:7% error in �r2, and �et = �26dB, �eb = �25dB with CE;

�et = �15dB, �eb = �22dB with TVL) are still acceptable for classi�cation purposes.

We stress that this latter test is particularly meaningful since the assumed mismatch in

the soil parameters reduces the e�ective visibility of the (already low-contrast) target,

thus also emphasizing the e�ect of imperfect background �eld removal. However, it is

understood that for such low-contrast target scattering scenarios, stronger uncertainty in

the soil parameters may render the target practically invisible.

E. Computational Aspects

The overall computational features of the proposed approach are detailed in Table I for

each of the separate tasks required, with speci�c reference to a 700 MHz PC benchmark

implementation. The computational burdens of the �rst four tasks are strongly tied to

those of the narrow-waisted GB forward solvers in [11] and Secs. IV-B and VI-B. In this

connection, the reported (average) computing times were found to be about four times and

two times smaller than those achievable with standard PO implementations the quasi-real

ray tracing in [10], respectively. Meaningful comparisons with full-wave forward solvers are

not easy since computational features may be strongly implementation-dependent. To give

a rough idea, the (estimated) computing times for estimating the air-soil interface and for

building up the forward model (data matrix �lling up) when using our full-wave reference

solution in the forward scattering models would have been on the order of eight and four

hours, respectively. These rough estimates are based on forward scattering benchmark
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simulations.

As seen from Table I, the only memory-demanding tasks are those involving the manip-

ulation of the LNR data matrix A in (41) and a similar (but smaller) data matrix used in

the CE (51) via the level set method.

Overall, CE tends to be computationally cheaper than LNR. Although the numerical

codes are not fully optimized, overall computing times are on the order of a few minutes,

thus leaving room for optimism that extensions of the algorithmic approach to more realis-

tic three-dimensional (3D) scenarios will remain computationally a�ordable for real-world

applications.

VII. Conclusions

An adaptive approach for undergound imaging via ultrawide-band ground penetrating

radar in the presence of a moderately rough air-soil interface has been presented. The

proposed approach is based on short-pulse Gabor-based narrow-waisted Gaussian beam

algorithms as fast forward scattering models, through which the coarse-scale deterministic

features of the air-ground interface are �rst estimated and subsequently exploited to com-

pensate for background clutter and distortion in the interrogating signal. Preliminary 2D

results, restricted to slightly lossy soils and shallowly-buried low-contrast dielectric tar-

gets, indicate that quite accurate and robust target reconstructions can be obtained with

reasonable computing times and resources, even with sparse and corrupted data and im-

perfect knowledge of soil parameters. The proposed approach looks promising from both

the computational and accuracy viewpoints, with potential application to antipersonnel

land mine clearance. In this connection, the necessary extension to more realistic 3D con-

�gurations, currently under investigation, is fairly straightforward theoretically, but its

computational features remain to be explored. Also under investigation are more robust

strategies for background �eld removal.
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TABLE I

Summary of computational features. Reported computing times are intended as

average values for a benchmark implementation on a 700 MHz PC.

Task Implementation Computing time [secs.] Memory [Mbytes]

LNR CE LNR CE

Interface estimation C++ 55 - -

Background �eld removal C++ 1 0.4 - -

Data matrix �lling up C++ 120 62 - -

Target imaging Matlab 185 127 22.6 4.1
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late-time

interface
target 
scattering

target image
(Sec. VI)

Regularization
(Sec. V)

early-time

Observation data

Soil
parameters

Fig. 1. Schematic ow-chart of the proposed adaptive approach, coordinated with the paper layout.
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Fig. 2. Problem geometry. An aperture-generated, quasi-plane-wave, TM-polarized pulsed �eld impinges

from free space onto a dielectric halfspace with known relative permittivity �r1 and conductivity �1,

bounded by a moderately rough interface pro�le z = h(x), wherein a target with dielectric permittivity

�r2 and conductivity �2 � 0 occupies the region D. In order to image the test domain D(test), the

reected �eld is sampled atNt time instants atNr �xed receiver locations x
r
1; :::; x

r
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on the observation

plane z = zr.
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Fig. 5. Simulation geometry and parameters (cf. Fig. 2). (a): An elliptic (10cm � 6cm) dielectric mine-

like target with �r2 = 3:5 and �2 = 0 is buried with center at 10cm below the nominal ground (z = 0).

The rough surface pro�le realization was randomly generated so as to simulate typical moderate

roughness (maximum-to-minimum height � 4cm, maximum slope � 32o) for a class of realistic soils

(�r1 = 4, �1 = 0:01 S/m). A 20cm�20cm test domain surrounding the target (with top side at 5cm

below nominal ground) is to be imaged. The reected �eld is sampled at Nr = 11 receivers located

at zr = 0:3m and xri = �0:5m, �0:4m,...,0:5m. (b): Incident �eld tapering g(x) = cos(�x=d).

Parameters: d = 1m, �A = 0, xA = 0, zA = 0:1m. (c): Fourth-order Rayleigh pulsed excitation p(t)

(cT = 0:4d, i.e., T � 1:3ns).
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Fig. 6. Parameters as in Fig. 5. Field observed at receiver #8 (xr8 = 0:3m, zr = 0:3m) (a): |{ Total

�eld e (reference solution); - - - Background �eld eb (reference solution). Both are coincident on

this drawing. (b): Target-scattered �eld es = e � eb. |{ Reference solution; - - - Beam-Born

approximation in (13) (parameters as in Sec. VI-B).
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Fig. 7. Parameters as in Fig. 5. (a): Ground truth (��r reference con�guration). (b): TVL (p = 1)

reconstruction (�1 = 1:6 �10�6, � = 1, �2 = 0; �et = �19dB, �eb = �35dB). (c): TVL reconstruction

with directional preference (�1 = 4:6 � 10�6, � = 0:1, �2 = 0; �et = �19dB, �eb = �35dB). (d):

TVL reconstruction with directional preference and positivity penalty (�1 = 3:4 � 10�6, � = 0:1,

�2 = 2 �10�3; �et = �22dB, �eb = �37dB). The exact air-soil interface pro�le is used in the forward

scattering model.
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Fig. 8. As in Fig. 7, but using LNR with p 6= 1, directional preference and positivity penalty (�1 =

3:4 � 10�6, � = 0:1, �2 = 2 � 10�3). (a): p = 0:5 (�et = �22dB, �eb = �40dB). (b): p = 1:5

(�et = �23dB, �eb = �33dB). (c): p = 2 (Tikhonov, �et = �24dB, �eb = �27dB). The case p = 1

(TVL) is displayed in Fig. 7d.
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Fig. 9. Parameters as in Fig. 5. Curve evolution reconstruction (white curve) is superposed on ground

truth. Curve initial conditions are displayed by dashed lines. Evolution parameters: 150 steps with

� = 3:5 � 10�5 plus 620 steps with � = 0:3 � 10�5. The estimated target relative permittivity is

�r2 = 3:52 (0.6% error). The r.m.s. errors in target and background regions are �et = �25dB and

�eb = �37dB, respectively. The exact air-soil interface pro�le is used in the forward scattering model.
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Fig. 10. As in Fig. 6d (�1 = 3:4 � 10�6, � = 0:1, �2 = 2 � 10�3), but assuming a at interface at z = 0 in

the forward scattering model (�et = 27dB, �eb = 28dB).
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Fig. 11. Parameters as in Fig. 5. Rough surface pro�le reconstruction via early-time response processing

(cf. Sec. III and [13]). The early-time �eld at the receivers is sampled at Nt = 50 time instants

with the observation windows chosen so as to roughly gate out causal scattering contributions from

regions deeper than � 8cm below nominal ground. |{ Actual pro�le; - - - Reconstruction with

observation data corrupted by a �10% additive uniform noise; � � � � � � Reconstruction with �5%

error in �r1 and �1.
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Fig. 12. Parameters as in Fig. 5, but with d = 0:8. Reconstruction examples with corrupted data

via TVL regularization and CE. (a): TVL reconstruction with �eld data observations corrupted by

�10% additive uniform noise (�1 = 3:4 � 10�6, � = 0:1, �2 = 2 � 10�3, �et = �21dB, �eb = �31dB).

(b): As in Fig. 12a, but CE reconstruction (white curve) superposed on ground truth (150 steps

with � = 3:5 � 10�5 plus 627 steps with � = 0:3 � 10�5; estimated target permittivity: �r2 = 3:56,

i.e., 1:7% error; �et = �23dB, �eb = �39dB). (c): TVL reconstruction with �5% error in �r1 and

�1 (�1 = 3:4 � 10�6, � = 0:1, �2 = 2 � 10�3, �et = �15dB, �eb = �22dB). (d): As in Fig. 12c, but

CE reconstruction (white curve) superposed on ground truth (150 steps with � = 3:5 � 10�5 plus 640

steps with � = 0:21 � 10�5; estimated target permittivity: �r2 = 3:56, i.e., 1:7% error; �et = �26dB,

�eb = �25dB). The estimated air-soil interface pro�les in Fig. 11 are used in the forward scattering

model.
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ABSTRACT

In this paper, we work towards a robust approach for imaging weak-contrast objects buried under a rough soil/air
interface using data from an electromagnetic GPR (ground penetrating radar) array. A major source of variability
in observed GPR signals is due to reflection from a rough and random ground. Our approach to imaging is based on
use of physical and statistical modeling techniques to estimate and compensate for this rough soil/air interface. An
approximate physical model based on Gaussian beams is used to model the interaction of the illumination with the
ground and estimate the surface profile. This estimated surface profile is then used to correct the raw data for the
effects of the rough surface. The corrected data may subsequently be used to reconstruct the subsurface region and
localize anomalies. In this stage, statistical models can be used to account for both noise and residual unmodeled
effects.

Keywords: Ground penetrating radars, rough surfaces, Gaussian beams

1. INTRODUCTION

In applications such as humanitarian demining, one is interested in detecting shallowly buried small objects with
conductivity properties which differ slightly from the surrounding medium. When using ground penetrating radar
(GPR) signals, a major source of variability in the received signals is due to reflections from the variable, unknown
surface profile. Since the objects of interest are shallowly buried, the backscattered signals from the subsurface
objects are difficult to separate from the stronger surface reflections.

In this paper, we work towards a robust approach for imaging weak-contrast objects buried under a rough soil/air
interface using data from an electromagnetic GPR array. In particular, we are interested in the use of physical and
statistical modeling techniques to estimate and compensate for the effects of unknowl air/soil interfaces. We propose
to estimate the nature of this interface, and use the estimated characteristics to isolate the return obtained by
subsurface scattering. We use an approximate physical model based on Gaussian beams to model the reflected and
transmitted fields at the air/soil interface parametrically, in terms of an unknown ground shape. The Gaussian beam
model is fast, which allows for real-time generation of parameter estimates. Based on the received signals at the
GPR array and the field models, we obtain an estimated surface profile, which is then used to correct the received
data to compensate for the effects of the rough surface.

The corrected data may subsequently be used to reconstruct the subsurface region and localize anomalies. In
this stage, statistical models can be used to account for noise, estimation error and residual unmodeled effects. In
the present paper we present the Gaussian beam air/soil interaction model, and the resulting estimation algorithm
for surface profile. We outline the subsequent steps on how the subsurface imaging process would proceed. We plan
to evaluate this algorithm on experimental data collected at Northeastern University’s subsurface test facility using
both a forward-looking and a downward-looking GPR array.

The rest of this paper is organized as follows: In the next section, we overview the formulation and solution
of the rough surface reconstruction problem using our proposed Gaussian beam models. To simplify the notation
and exposition, we restrict our discussions to a 2-D geometry. Extensions of the results to 3-D geometries are
included in our references. In Section 3, we present the approach for constructing subsurface images using diffraction
tomography ideas integrated with the Gaussian Beam models. Section 4 presents a summary and future directions
for investigation.



2. ROUGH SURFACE RECONSTRUCTION

2.1. Statement of the Problem
Most available algorithms for rough surface estimation have concentrated on conducting surfaces and time-harmonic
excitation, and usually require densely sampled measurements. For instance, Wombell and DeSanto1 used Kirch-
hoff approximations and Fourier transforms to estimate surface profiles based on measurements of the scattered
field in all spectral directions. Ying and Noguchi2 used nonlinear optimization techniques for direct estimation of
surfaces illuminated by monochromatic Gaussian beams, based on the far-field scattering amplitude for all spectral
directions. In a different approach, Schatzberg and Devaney3 used the Rytov approximation and backpropagation
to estimate surface profiles based on full measurements (amplitude and phase) of the scattered wave. In contrast
with the above contributions, our investigation here is concerned with moderately rough interfaces between air and
a homogeneous dielectric half space (soil), and with the estimation of the interface profile from a limited number
of spatially/temporally sampled reflected field measurements, using limited aperture illumination, as is typical for
realistic ground penetrating radar (GPR) configurations. In a recent investigation4 we addressed this problem for
narrow-band stepped-frequency GPR configurations by exploiting the time-harmonic Gabor-based Gaussian beam
forward scattering model in Ref. 5. Here, we extend the approach to wide-band pulsed illumination, typical of many
realistic GPR systems.

The proposed extension is based on a recently developed Gabor-based narrow-waisted pulsed-beam (PB) repre-
sentation of short-pulse scattering by moderately rough dielectric interfaces.6 The problem geometry is sketched in
Fig. 1: in an (x, z) two-dimensional (2D) coordinate space, a pulsed field with transverse magnetic (TM) polariza-
tion is assumed to impinge vertically from free-space onto a lossy, homogeneous dielectric half-space (soil) of known
relative permittivity εr and conductivity σ, bounded by a moderately rough interface described by the continuous
function h(x). We assume that the transmitting array generates a y-directed tapered well-collimated pulsed field
with transverse aperture width d, which can be approximated by a pulsed truncated tapered plane wave propagating
in the negative z-direction (see Fig. 1),

ei(x, z, t) ∼ g(x)p(t− c−1z), (1)

where p(t) is a pulse of length T � d/c, with c representing the speed of light, and g(x) is the taper profile.

The 2D y-directed reflected field er is sampled at Nt time instants at Nr receiver locations (at z = zr). To
begin with, we ignore the presence of buried objects and the noisy (incoherent) contribution of finer-scale roughness,
and we seek to estimate the coarse shape of the surface, acknowledging the implicit limits of retrievable information
through inverse scattering. As in Ref. 4, due to the inherent ill-posedness of this inverse scattering problem, we
exploit a robust inversion strategy based on an appropriate compact low-dimensional representation of the surface,
which provides an “implicit” regularization. The surface estimation problem is thus posed as a nonlinear optimization
problem, whose solution requires repeated evaluations of the reflected field at the receiver locations. The efficiency of
such an approach strongly relies on the availability of a fast forward scattering model. An efficient forward solver is
necessary also for computing the field transmitted into the soil, as required in Born-approximation-based techniques
for underground imaging later on (see Sec. 3.1).

2.2. Forward Scattering Model
The forward scattering model is detailed in Ref. 6. It is based on the Kirchhoff Physical Optics (PO) approximation
in conjunction with the Gabor-based narrow-waisted PB discretization of 1D aperture field distributions in Ref. 7.
In this section, we briefly review the basic theory underlying the algorithm.

In the asymptotic high-frequency range, and for smooth roughness over all wavelength scales in the pulse spectrum,
the reflected field spectrum is approximated by the PO integral

Er(x, z, ω) ∼ −
∫

CPO

Jr
PO(x′, ω)

∂

∂ζ
G(x, z;x′, h(x′); k0)d�′, (2)

where CPO extends over the illuminated portion of the 1D interface z = h(x), d�′ is the incremental arc-length
measured along the surface tangent, and ∂/∂ζ denotes the normal derivative. The incident field tapering is chosen
so that the illuminated portion of the interface, CPO, is essentially confined to the interval |x| ≤ d/2. Furthermore,
G is the frequency-domain (FD) line-source free-space Green’s function,
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Figure 1. Setup geometry for the inverse scattering problem. A TM polarized pulsed EM field illuminates a
homogeneous dielectric half-space with known relative permittivity εr and conductivity σ and with a moderately
rough interface whose coarse scale profile is described by the continuous function h(x). The reflected field is sampled
at Nr receiver locations and Nt time instants, at z = zr.

G(x, z;x′, z′; k) =
i

4
H(1)

0 (kR), R =
[
(x− x′)2 + (z − z′)2

]1/2
, (3)

with H(1)
0 (·) denoting the zeroth order Hankel function of the first kind. The induced PO “surface current” density

Jr
PO is given by twice the tangential reflected field at the interface, obtained from the canonical solution of infinite

plane-wave scattering by a plane dielectric boundary locally tangent to the rough surface profile

Jr
PO(x, ω) = 2R(x, ω)Ei(x, h(x), ω). (4)

In (4), Ei is the frequency spectrum of (1), and R denotes the local TM plane-wave Fresnel reflection coefficient,

R(x, ω) =
cos θi −

(
εer − sin2 θi

)1/2

cos θi +
(
εer − sin2 θi

)1/2
, (5)

where θi(x) = − tan−1[h′(x)], ′ ≡ d/dx, is the local incident angle relative to the normal, and εer(ω) = εr + iσ/(ωε0)
is the complex, frequency dependent, effective permittivity of the soil. In the following, we restrict consideration to
slightly lossy soils, i.e.,

σ

ωε0εr
� 1, ω < Ω, (6)

with Ω denoting the effective bandwidth of the pulse p(t). This condition is typically fulfilled in many GPR appli-
cations8,9 and significantly simplifies the time domain (TD) inversion.6

The PO radiation integral in (2) is not very different from the Kirchhoff aperture integrals analyzed in Ref. 7,
except that the line integration in (2) is performed along a rough surface profile instead of on a projected equivalent
planar aperture. In Ref. 7, the 1D space-time aperture field distribution is first parameterized in the FD in terms
of x-domain discretized m-indexed Gabor basis functions with narrow width L, centered on the Gabor lattice points
xm = mL; these initial conditions generate narrow-waisted, quasi-ray, complex-source-point Gaussian beams. For
Rayleigh pulses,

p(t) = Ξ
dj

dtj
exp

[
−
(
t− T/2
ςT

)2
]
, (7)



the resulting TD analytic Fourier inversion integral can be approximated by rapidly computable closed form ex-
pressions. The same approach can be applied to discretizing PO integrals as in (2). One obtains the following
approximate pulsed beam (PB) expansion for the reflected field (see Ref. 6 for details)

er(x, z, t) ∼
∑

|m|≤(d/2L)

crmb
r
m(x, z, t− trm), (8)

where the Gabor expansion coefficients crm and the time delay trm are approximated by sampling the TD-PO surface
current at the lattice points xm = mL,

crm = (L/
√

2)1/2g(xm)R0(xm), tm = c−1
(
zA − zm − xm sin θi

m cos θi
m

)
, (9)

where zm = h(xm), θi
m ≡ θi(xm) is the local incidence angle, and R0(xm) is the local Fresnel reflection coefficient

evaluated at the center angular frequency Ω0 of the pulse. The PB propagator in (8) is given by6

brm(x, z, t) = Re
{

(−1)jβr
m

[
T r

mΓ
(

3 + 2j
4

)
M

(j)
1

(
t− τr

m

T r
m

)
− 2i(t− τr

m)Γ
(

5 + 2j
4

)
M

(j)
2

(
t− τr

m

T r
m

)]}
, (10)

where

βr
m = 2j+1/2π−1/2(T r

m)−j−5/2Λr
mΞςT, Λr

m = −i25/4 exp(iπ/4)c−1

√
L

8π
ζm

(Rr
m)3/2

, (11)

ζm = (x− xm) sin θi
m + (z − zm) cos θi

m, (12)

τr
m = c−1(Rr

m + xm sin θi
m cos θi

m + T/2), T r
m =

L cos2 θi
m

2c
√

2π

√
1− zr

bm

Rr
m

, T r
m =

√
(T r

m)2 + ς2T 2, (13)

and (xr
bm, z

r
bm) are beam-centered coordinates,

[
xr

bm

zr
bm

]
=
[

cos(2θi
m) − sin(2θi

m)
sin(2θi

m) cos(2θi
m)

][
x− xm

z − zm

]
, Rm =

[
(xr

bm)2 + (zr
bm)2

]1/2

. (14)

Moreover, in (10), Γ(·) denotes the gamma function,10 and

M
(j)
1 (t) = 1F1

(
3 + 2j

4
,
1
2
,−t2

)
, M

(j)
2 (t) = 1F1

(
5 + 2j

4
,

3
2
,−t2

)
, (15)

with 1F1(u, v, t) denoting the Kummer confluent hypergeometric function.10 The functions M (j)
1,2 can be computed

efficiently using a rapidly converging power series expansion derived in Ref. 6. The propagator in (10) is a pulsed
Gaussian beam, whose collimation is controlled by the discretization period L. The expansion in (8) has been
thoroughly calibrated against a rigorous reference solution,6 and has been found to provide accurate and robust
syntheses for L � d, i.e., for narrow-waisted, poorly collimated PB propagators. The corresponding PB expansion
for the transmitted field can be obtained similarly (see Sec. 3.1), as can results for oblique incidence.6 Extension to
2D surfaces, and 3D field scattering can be derived based on 2D aperture PB discretization.11

2.3. Surface Estimation

As noted earlier, the proposed robust inversion strategy is based on a low-dimensional compact geometrical param-
eterization of the unknown interface profile, whose unknown parameters are estimated by fitting the model-based
forward scattering prediction to the available (measured/simulated) data, i.e., minimizing a suitable cost functional.
The choice of the interface profile parameterization requires tradeoff between compactness and versatility, keeping
in mind that the number of unknown parameters N to be estimated must be smaller than the collected scattered
field data size, i.e., N ∼ Nr ×Nt. As in Ref. 4, we parameterize the rough surface coarse shape in terms of quartic
splines,12



h(x) ≈
N∑

n=1

cns
(4)
n (x), (16)

where cn are unknown coefficients, and s(4)n represents a quartic B-spline basis function.12

Let êr
pq = êr(xr

p, z
r, tq) denote the y-directed reflected field measured at time tq at sensor position xr

p. Given a
vector of spline coefficients c = {c1, ..., cN} and the incident field in (1), we use the PB algorithm in Sec. 2.2 for the
surface profile in (16) to generate predictions of the reflected field waveforms at each receiver. Let er

pq = er(xr
p, z

r, tq; c)
denote the model-based prediction of the reflected field at time tq at sensor position xr

p, for surface profile coefficients
c . Accordingly, we define the cost functional as follows

J(c) = ‖er(c)− êr‖2 =
Nr∑
p=1

Nt∑
q=1

γp

(
er

pq − êr
pq

)2
, γp =

[
max

q

{
êr

pq

}]−2

. (17)

As in Ref. 4, the regularized inverse scattering problem is formalized as finding the coefficient vector c in (16) which
minimizes the cost functional J(c) in (17), i.e. finding ĉ such that

ĉ = arg min
c
J(c). (18)

The cost functional in (18) is generally non-convex with respect to c, and therefore its optimization requires particular
care due to the possible presence of local minima. In the narrow-band frequency range investigated in Ref. 4, it was
found that the smoothness of the cost functional was strongly dependent on the frequency content of the excitation
field, and the global optimization was achieved via a continuation method based on the selected use of the data at
the various available frequencies. For the pulsed excitation of interest here, the pulse length cT plays the key role.
In particular, to enhance resolution in the reconstruction, the pulse should be as short as possible. However, an
exceedingly wide-band excitation would most likely result in a highly non-convex cost functional with many local
minima, whose global minimization would be very expensive from the computational viewpoint. Furthermore, for
underground imaging, it is also important to operate at sufficiently low frequencies for adequate soil penetration. In
our numerical experiments, we found that a suitable trade-off between these contrasting requirements can be actually
achieved by using typical wide-band pulses in the GPR frequency range.

2.4. Results
In order to test our surface profile estimation strategy, we generated synthetic field measurement data using a rigorous
reference solution of the forward scattering problem (see Ref. 6 for details), with the (fourth-order Rayleigh) wide-
band pulse excitation in Fig. 2 (2.45 GHz center frequency) and a cosine-tapered transverse field distribution,

g(x) =
{

cos(πx/d), |x| ≤ d/2,
0, |x| > d/2, (19)

on an aperture of width d = 1m. The chosen excitation, typical of realistic GPR applications, was found to yield
relatively smooth cost functionals, whose minimization was performed via the Polak-Ribiere version of the conjugate
gradient (CG) algorithm,13 assuming as initial guess a flat interface at z = 0. A typical reconstruction example is
shown in Fig. 3, for the simulation parameters listed in the figure caption. The soil parameters were chosen so as to
simulate a class of realistic soils (Puerto Rican clay loam9). The surface realization, parameterized in this experiment
with 20 B-spline basis functions, was generated randomly so as to mimic typical (∼ 2− 3 cm peak-to-peak) natural
roughness. In this experiment, Nr = 11 equispaced receivers were used, with Nt = 100 time samples, and convergence
of the CG minimization was achieved in 20 iterations. As one can see, the reconstruction is reasonably accurate
throughout most of the interval, except near the edges of the illumination region. This kind of accuracy was observed
in many numerical experiments, with typical overall computing times of 1 min. on a laptop PC.

3. SUBSURFACE IMAGING

Having established the possibility of estimating the coarse shape of the rough air-ground interface, we now turn to
the problem of subsurface imaging in the presence of a known moderately rough interface.
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Figure 3. Rough-surface reconstruction example. Soil parameters: εr = 4.5, σ = 0.012 S/m. Incident field in (1),
with g(x) in (19), and p(t) as in Fig. 2, and with zA = 0.2m and d = 1m. Collected data: Nr = 11 receivers at
zobs = 0.3m, equispaced within [−0.5m,0.5m]; Nt = 100 time samples at each receiver.
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3.1. Forward Scattering Model

We refer to the problem geometry in Fig. 1, but now include a buried target with dielectric permittivity ε(tar)
r and

conductivity σ(tar) occupying the regionD(tar) in the half-space z < h(x). In the frequency domain, the TM-polarized
total field observed at the receiver location rr = (xr, zr) can be written as

E(rr, ω) = Eb(rr, ω) +Es(rr , ω), (20)

where Eb represents the background field (i.e., the field in the absence of the target), and

Es(rr , ω) =
ω2

c2

∫ ∫
D(tar)

Gb(rr, r′, ω)E(r′, ω)O(r′, ω)dr′ (21)

is the field scattered by the target. In (21), Gb represents the FD Green’s function of the rough-interface dielectric
half-space, E is the total field in the target region, and

O(r′, ω) =
[
ε(tar)(r′)− εr

]
+ i

[
σ(tar)(r′)− σ

]
ωε0

= ∆εr(r′) + i
∆σ(r′)
ωε0

(22)

is referred to as the object function. The integration in (21) is limited over the region D(tar) in which the object
function is nonzero. For pulsed excitation, with time dependence p(t), by Fourier inversion of (20) and (21) one
obtains

e(rr, t) = eb(rr, t) + es(rr, t), (23)

es(rr, t) = −
∫ ∫

D(tar)

{
∆εr(r′)

∂2

∂t2
[gb(rr , r′, t)⊗ e(r′, t)] +

∆σ(r′)
ε0

∂

∂t
[gb(rr, r′, t)⊗ e(r′, t)]

}
dr′, (24)

where gb represents the space-time Green’s function of the rough-interface dielectric half-space (i.e., the Fourier
inverse transform of Gb in (21)), e is the total field in the target region for pulsed excitation p(t), and ⊗ indicates
time convolution. Assuming that the rough interface profile is known, one can employ the pulsed beam synthesis in
(8) to generate prediction of the background field contribution eb in (23) for a given pulsed excitation, and therefore
isolate the contribution es from the buried target. The relation in (24) between the scattered field at the receivers
and the dielectric/conductivity inhomogeneities ∆εr and ∆σ is nonlinear, due to the presence of the total field e
which is itself dependent on ∆εr and ∆σ. However, for plastic anti-personnel land mines, of particular interest in
our investigation, the dielectric properties of the buried target are typically close to those of the background soil,
i.e., ε(tar)

r ≈ εr, σ(tar) ≈ 0; therefore one can resort to approximate linearized approaches valid in the weak scattering
limit. The simplest such approach is the Born approximation,14 where one replaces the total field e inside the target
with the transmitted field et in the target region, in the absence of the inhomogeneity. For nonconducting targets
(σ(tar) ≈ 0, i.e., ∆σ(r′) ≈ σ), this yields a linear model relating the scattered field at the receivers to the dielectric
inhomogeneity ∆εr,

es(rr , t) ≈ −
∫ ∫

D(tar)

{
∆εr(r′)

∂2

∂t2
[
gb(rr , r′, t)⊗ et(r′, t)

]
+
σ

ε0

∂

∂t

[
gb(rr, r′, t)⊗ et(r′, t)

]}
dr′. (25)

The limitations of this approximation, which neglects multibounce interactions inside the target, have been thoroughly
investigated and are well documented in the technical literature (see, e.g., Ref. 15). Moreover, more sophisticated
and accurate nonlinear versions have been proposed (see, e.g., Refs. 16,17).

To implement the linear model in (25) for a given pulsed excitation, one needs to compute the transmitted field
et in the target region (in the absence of the target), and the space-time Green’s function gb of the soil. As shown in
Sec. 2.2, the computation of the field transmitted through moderately rough dielectric interfaces can be carried out
efficiently through the PB algorithm in Ref. 6. The transmitted field PB synthesis is formally analogous to that in
(8)–(14) for the reflected field. One obtains (see Ref. 6 for details)



et(x, z, t) ∼
∑

|m|≤(d/2L)

ctmb
t
m(x, z, t− ttm), (26)

with

btm(x, z, t) = Re
{

(−1)jβt
m

[
T t

mΓ
(

3 + 2j
4

)
M

(j)
1

(
t− τ t

m

T t
m

)
− 2i(t− τ t

m)Γ
(

5 + 2j
4

)
M

(j)
2

(
t− τ t

m

T t
m

)]}
, (27)

where

βt
m = 2j+1/2π−1/2(T t

m)−j−5/2Λt
mΞςT, τ t

m = c−1
[√
εr
(
Rt

m0 + xm sin θR
m0 cosαm

)
+ T/2

]
, (28)

Λt
m = i(εr)1/425/4 exp(−κRt

m0 + iπ/4)c−1

√
L

8π
ζm

(Rt
m0)3/2

, κ =
σ

2cε0
√
εr
, (29)

T t
m =

√
εr
L cosαm cos θR

m0

2c
√

2π

√
1− zt

bm0

Rt
m0

, T t
m =

√
(T t

m)2 + ς2T 2, (30)

Rt
m0 =

√
(xt

m0)2 + (zt
m0)2,

[
xt

bm0

zt
bm0

]
=
[

cos γt
m0 sin γt

m0

sin γt
m0 − cos γt

m0

][
x− xm

z − h(xm)

]
, (31)

θR
m0 ≡ sin−1

(
sin θi

m/
√
εr
)
, γt

m0 = θR
m0 + αm. (32)

Figure 4 shows a typical transmitted field waveform, for the excitation and specified rough surface geometry in Fig.
3, computed via the PB synthesis in (26)–(32) (with 50 beams) and via the rigorous reference solution detailed in
Ref. 6. As for the reflected field, the PB synthesis provides a robust, fast and reasonably accurate approximation
for the transmitted field, which can be fruitfully exploited for efficient implementation of (25).

The computation of the space-time Green’s function gb for the rough-interface dielectric half-space geometry
could be accomplished by generalizing the transmitted field PB synthesis in (26)–(32) to the case of cylindrical
incident wavefronts and impulsive time excitation. However, for the present, we are interested in a more efficient
approach to the PB expansion of the whole convolution gb ⊗ et and its time derivatives in (25). This approach,
now under investigation, involves more cumbersome algebra, but would substantially increase the computational
efficiency, avoiding the time-consuming numerical convolution.

3.2. Subsurface Reconstruction
We now discuss how to use the forward scattering model to invert GPR data and generate estimates of the subsurface
property distribution – i.e. how to do imaging. Such an inversion scheme can be constructed by discretizing the test
domain D(test) to be imaged into a number of adequately small pixels and relating these values to the observations
of the scattered field waveforms at the receivers through the linear forward scattering model in (25). Assuming that
Nt time samples of the scattered field es are collected at Nr receivers, and that the test domain is discretized into
Np pixels, the forward model in (25) can be discretized accordingly and cast into matrix form as:

y = A · x+ n, (33)

where y is a column vector containing the Nr ·Nt time samples of the known term in (25),

es(rr, t) +
σ

ε0

∫ ∫
D(test)

∂

∂t

[
gb(rr , r′, t)⊗ et(r′, t)

]
dr′, (34)

x is a Np-element column vector containing the unknown dielectric contrast ∆εr at each pixel, A is a (Nr ·Nt)×Np

matrix containing the space-time discretization of the integral

−
∫ ∫

D(test)

∂2

∂t2
[
gb(rr , r′, t)⊗ et(r′, t)

]
dr′, (35)
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Figure 4. Parameters as in Fig. 3. Transmitted field through the true rough interface profile observed at x = 0,
z = −0.1m. —– Reference solution; - - - PB synthesis in (26)–(32) (50 beams).

and the noise vector n accounts for measurement uncertainty and unmodeled small scale clutter. Due to the inherent
ill-posedness of this inverse scattering problem, and the various approximations in our model, the reconstruction
cannot be simply accomplished via the (pseudo-)inverse of the matrix A. In order to obtain reasonably accurate
reconstructions, it is essential to incorporate stabilization steps, known as regularization. In a number of recent
investigations restricted to flat air-ground interfaces,18,19 we have explored various object-based regularization ap-
proaches, such as total variation18 and curve evolution,19 which have been found to provide quite accurate and
robust reconstructions. We are currently working on extending these approaches to the more challenging case of
rough interfaces.

4. CONCLUSIONS

We have presented an approach for imaging objects buried under a rough air/soil interface from ground penetrating
radar data. Our approach is based on estimation of the rough surface followed by subsurface imaging. We have
a Gaussian-beam approximate physical model for the scattering problem that is efficient and well matched to the
estimation/inversion problem. This model was demonstrated for the problem of surface profile estimation. We
presented an approach to the subsequent subsurface estimation problem based on an approximate Greens function
for the subsurface scattering.

We are currently pursuing several extensions to the present work. We are considering extensions to include sensor
fusion, particularly using sensors which provide surface information such as optical range sensors. This information
would improve the surface estimates, and allow for more accurate isolation of subsurface scattering signals. We are
also extending our models to represent two different physical GPR systems for which we have experimental data: a
downward-looking GPR array and a forward-looking GPR array. Once these models are complete, we will evaluate
their performance on the collected GPR data.
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Abstract: For one-dimensional aperture excitations, a two-dimensional Gabor-based Gaussian beam (GB) algorithm is presented which 
describes field scattering by, and transmission through, a moderately rough interface between two dielectric media. The proposed 
algorithm extends the results in Maciel and Felsen[1], and is shown to produce accurate and computationally efficient solutions for this 
complex propagation environment, over a range of calibrated combinations of the problem parameters.  
 
INTRODUCTION AND PROBLEM FORMULATION 
Gabor-based Gaussian beam (GB) algorithms, in conjunction with the complex source point (CSP) method for 
generating beam-like wave objects, have found application in a variety of high frequency wave propagation and 
diffraction scenarios. Of special interest for efficient numerical implementation is the non-collimated narrow-
waisted species of GB which reduces the computationally intensive complex ray tracing for collimated GB 
propagation and scattering to quasi-real ray tracing, without the failure of strictly real ray field algorithms in 
caustic and other transition regions. The Gabor-based narrow-waisted CSP-GB method has been applied 
previously (Maciel and Felsen[1]) to two-dimensional (2D) propagation from extended nonfocused and focused 
aperture distributions through arbitrarily curved 2D layered environments. In the present 2D study, the method 
is applied to 1D-aperture-excited field scattering from, and transmission through, a moderately rough interface 
between two dielectric media, as depicted in Fig. 1. In the 2D coordinate space ( ),x z , a y-directed electric field 
with time-harmonic dependence ( )exp i tω−  and spatial distribution ( )f x is assumed to occupy the aperture 
region 2x d≤  at Az z=  in free space, i.e., ( ) ( ), , 2;inc

AE x z f x x d= ≤  ( ), 0, 2inc
AE x z x d= > . The 

aperture-radiated field illuminates a homogeneous dielectric half-space, with relative permittivity rε , bounded 
by a moderately rough (both in height and slope) interface described by a continuous function ( )z h x= . Our 
ultimate goal is to develop an efficient forward scattering solver for inverse problems concerned with profile and 
object reconstruction (Galdi et al.[2]). 
 
GABOR-BASED GAUSSIAN BEAM DISCRETIZATION 
 

Aperture-Radiated Field. The Gabor-based CSP-GBs are generated by Gaussian initial fields in the x-domain 
( Az z= ) aperture plane. The initial fields are centered on a discretized Gabor lattice in the ( , xx k ) phase space 
indexed by ( ,m xnx k ), with ( ), 0, 1, 2, ,m n = ± ± … where xk is the x-domain spectral wavenumber; xL  and 

xβ denote the spatial and spectral lattice periods, respectively, subject to the constraint 2x xL β π= . Thus, m tags 
the spatial displacement m xx mL= , while n tags the spectral displacement (tilt) xn xk nβ= of the Gabor-GBs. As 
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shown in Maciel and Felsen[1], for narrow-waisted (NW) GBs with 0xL dλ≤ , 0λ  being the free-space 
wavelength, the 0n ≠  tilted GBs are evanescent (i.e, non-contributing) sufficiently far from the Az z=  plane. 
Coupled with high frequency asymptotics, this property allows the conventional computationally intensive 
determination of the exact excitation amplitudes due to a Gabor-discretized large aperture distribution to be 
avoided and replaced with adequate accuracy by sampling the aperture profile at the mx  lattice point locations 
(Maciel and Felsen[1]). Field synthesis at the observer is accomplished by adding contributions from the ray-
like 0n = nontilted NW-CSP-GBs. The incident field is thus written as (Galdi et al.[3]) 
 

 ( ) ( ) ( ) ( )
1/ 2

2
, , , 2 ,

x

inc
m m m x m

m L d
E x z A B x z A L f x

≤

≈ =∑  (1) 

 

where the CSP beam propagator mB is given by 
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0 0
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, 2 exp 4 ,
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m m
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z ibLB x z ik i k R ib
k R R

π
π
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∼  (2) 

 

with 0 02k π λ=  being the free-space wavenumber, ( ) ( )
1/ 22 2

m mR x x z ib = − + +   (with ( ) 0me Rℜ ≥ ) denoting 

the complex distance between the observation point ( ),x z  and the CSP ( ),mx ib− , and 2
0xb L λ=  representing 

the Fresnel length of the beam. Here and henceforth, the tilde ~ identifies CSP complex quantities. 
 

Reflected and Transmitted Fields. In the presence of the rough dielectric interface environment, the NW-GBs 
launched from the aperture plane can be tracked like quasi-real rays, as shown in Maciel and Felsen[1].  We 
begin with the canonical problem of CSP Gaussian beam reflection from a curved segment of a dielectric 
boundary, as depicted in Fig. 2, which furnishes the building-blocks for the rough surface scattering algorithm 
(whose complete description can be found in Galdi et al.[3]). Referring to Fig. 2, an incident Gaussian beam is 
generated by a CSP at ( )cos , sins s s s sP x ib z ibα α≡ + + , sα being the real departure angle of the beam axis 
relative to the x-axis. For electrically large and smooth scatterers, and when the observation point ( ),P x z≡ lies 
in the paraxial region of a reflected beam, the reflected field can be approximated in terms of the on-axis field of 
that beam (i.e., a real ray) and a complex phase correction (Maciel and Felsen[1]). Denoting the on-axis 
parameters by the subscript zero, one finds (Galdi et al.[3])  
 

 ( ) ( ) ( ) ( ) ( )
0
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0
0 0 0 0 0

0

exp exp .
i i

refl refl inc r
p i r pP P

fE P E P ik E P ik L
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δ δ
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Here (see Fig. 2): 0 0 0rR F P= ; 0rR F P= ; 0 0i s iL P P= ; 0 0 0r iL P P= ; 0p R Rδ = −  is the complex phase correction; 

( )0 0 0 0 0cos , sinr i r r i r rF x f z fα α= − −  is the complex (virtual) focus obtained by analytic continuation of the 

standard ray-optical formulas, with ( )0 0 0cos 2 cosr i c i i c if L r L rθ θ= + ; the complex incidence point iP  is 

approximated by the real beam-axis incidence point ( )0 0, 0,i i iP x z≡ ; rα  is the real departure angle of the 
reflected beam axis relative to the x-axis; cr is the curvature radius at 0iP ; and Γ is the relevant TM plane-wave 
Fresnel reflection coefficient.  As shown in (Maciel and Felsen[1]), this corresponds to tracing a ray along a 
complex trajectory from the CSP to the intersection of the real beam axis with the real surface; from there the 
path to the observer proceeds entirely in real configuration space, along the beam axis. Transmitted fields and 
possible multiple interactions can be modeled in a similar fashion (see Galdi et al.[3] for details). 
 
 



RESULTS AND CONCLUSIONS 
From an extensive set of reflected/transmitted field examples for different choices of problem parameters, 
calibrating each through comparison with an independent numerical reference solution (Galdi et al.[3], Leviatan 
and Boag[4]), we have chosen the lossy interface profile ( )h x  in Fig. 3, excited by a nonphased cosine aperture 

field distribution ( ) ( )( )cosf x x dπ= of width 080d λ= , located at 06.4Az λ=  on the height scale of Fig. 3, i.e., 
very close to the maximum profile height of 06λ . The Fresnel zone reflected field observed at 020orz λ=  is 
shown in Fig. 4. Here, 0/80xL d λ= = . On the plot, the beam-generated solution (dashed) agrees very well with 
the reference solution (solid) in this typical example. In our numerical experiments, we have found accurate 
results for moderate roughness with maximum slopes 040≤  and (average) curvature radii larger than a 
wavelength, and for incidence directions far from grazing, with typical computing times of about 9 ms per point 
on a 500 MHz laptop. These results suggest that our algorithm is promising as a fast forward solver in complex 
wave scattering scenarios. 
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Figure 3 – Rough surface geometry and parameters 

rε is the relative (to 0ε ) permittivity. 
Figure 4  – Beam-computed (dashed) and reference 
(solid) reflected fields. 
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Abstract: In this paper, we present a computationally efficient and physically appealing discretized Gabor-based algorithm constructed 
with narrow-waisted ray-like pulsed Gaussian beams, for the two-dimensional (2D) electromagnetic fields radiated from short-pulsed 
large 1D truncated aperture distributions. This analysis extends the time-harmonic results in Maciel and Felsen[1] to the time domain.  
 
INTRODUCTION AND PROBLEM FORMULATION 
Narrow-waisted, ray-like, Gabor-based Gaussian beam (GB) algorithms have been shown capable of providing 
robust and efficient syntheses for radiation from finite one-dimensional (1D) aperture distributions (Maciel and 
Felsen[1]) and the interaction of these 2D fields with complex 2D environments (Maciel and Felsen[2], Galdi et 
al.[3]). The investigations have been restricted to time-harmonic excitation, whereby the complex source point 
(CSP) method can be exploited effectively for tracking each basis beam. Here, we present the extension of the 
frequency domain (FD) results for aperture radiation in Maciel and Felsen[1] to short-pulse time-dependent 
(TD) excitation. Referring to the problem geometry in Fig. 1, we consider a 1D (y-directed) space-time aperture 
field distribution of width d  at 0z = , with separable space-time dependence and linear time delay 
 

 ( ) ( ) ( ) ( ) ( )1, 0, , , 2, , sin ,y Ae x z t f x t x d f x t g x p t c x θ−= = ≤ = −  (1) 
 

where c  is the speed of the light and ( )p t  is a pulse with characteristic width pT d c . This distribution gives 
rise to a space-time pulse propagating in the Aθ direction (see Fig. 1). The FD algorithm in Maciel and Felsen[1] 
evolves from the rigorous Kirchhoff integration over the aperture distribution, which is then parameterized via 
the discrete Gabor basis and evaluated asymptotically for high frequencies to furnish the GB propagators to the 
observer. The TD results here are obtained by Fourier inversion from the FD and yield pulsed beams (PB). 
 

NARROW-WAISTED GAUSSIAN BEAM DISCRETIZATION 
 

Frequency Domain. In the 2D domain ( )zx, , the high-frequency narrow-waisted (NW) basis beams are excited 
by Gaussian initial field profiles which, in the 1D aperture plane 0=z , are centered on the Gabor lattice points 

xm mLx = , xxn nk β= , with ( ) ,,2,1,0, …±±=nm in the ( xkx, ) phase space ( xk is the is the x-domain spectral 
wavenumber). The spatial and spectral periods xL  and xβ , respectively, are constrained by πβ 2=xxL . For 
NW beams with xL d , the spectral displacement (tilt) 2 1x xLβ π= , thereby making the 0≠n  basis 
beams evanescent and therefore negligible “sufficiently far” from the aperture plane (Maciel and Felsen[1]). By 
high frequency asymptotics, the NW-GB propagators can be modeled via the complex-source-point (CSP) 
                                                 
* Work supported by ODDR&E under MURI grants ARO DAAG55-97-1-0013 and AFOSR F49620-96-1-0028, and by the Engineering 
Research Centers Program of the National Science Foundation under award number EEC-9986821. The work of V. Galdi was also 
supported by a European Union postdoctoral fellowship through the University of Sannio, Benevento, Italy. L.B. Felsen also 
acknowledges partial support from Grant No. 9900448 by the US-Israel Binational Science Foundation, Jerusalem, Israel, and from 
Polytechnic University, Brooklyn, NY 11201, USA. 



method, with their excitation amplitudes determined approximately from sampling of the aperture profile at the 
spatial lattice points mx .  Accordingly, for time-harmonic ( )exp i tω−  excitation, the radiated field can be 
represented by beam superposition as (Galdi et al.[4]), 
 

 ( ) ( ) ( ) ( )
1/ 2

2
, , , , , 2 ,

x

y m m m x m
m d L

E x z C B x z C L g xω ω
≤

≈ =∑  (2) 

 

 ( ) ( ){ }( )1/ 2
5 / 4

3/ 2

cos
, , 2 exp sin 4 .

8
Ax

m m m A
m

z ibLB x z ik i k R x ib
R

θ
ω θ π

π
−   − + + +    

∼  (3) 

 

Here, 2k cω π λ= =  is the ambient wavenumber with λ as the wavelength, ( )sin , cosm m A AP x ib ibθ θ≡ +  is 

the CSP, the complex displacement magnitude ( )2cosx Ab L θ λ=  is the Fresnel length of the beam, 

and ( ) ( )
1/ 22 2sin cosm m A AR x x ib z ibθ θ = − − + −   (with ( ) 0me Rℜ ≥ ), is a complex distance; through 

2x xL π β= , mC  is λ-dependent. 
 

Time Domain. When Fourier-inverting to the short-pulse TD to generate pulsed beams, we choose xL  to be λ-
independent because this renders the aperture-sampled TD-Gabor PB-excitation coefficients λ -independent.  
Specifically, via the analytic signal formulation (one-sided Fourier transform), one has (Galdi et al.[4]), 
 

 ( ) ( ) ( ) ( )
1/ 2

2
, , , , , 2 ,

x

y m m m x m
m d L

e x z t c x z t c L g x
≤

≈ =∑ b  (4) 

 

 ( ) ( ) ( ) ( )
0

1, , , , exp ,m mx z t e B x z P i t dω ω ω ω
π

∞ = ℜ −  ∫b  (5) 

 

where ( )P ω  represents the spectrum of  the pulse ( )p t . We then find that, subject to certain constraints which 
are validated subsequently by numerical experimentations, the approximate inversion integrals in (5) for 
Gaussian-envelope-modulated pulses can be evaluated in closed form in terms of efficiently computable 
hypergeometric functions (Galdi et al.[4]). The constraints are formalized through nondimensional critical 
estimators which contain all relevant problem parameters, and show how changes in one parameter can be 
compensated by corresponding changes in the other parameters so as to remain in the legitimized range. The 
results can be generalized to arbitrarily phased (e.g., focused) aperture distributions (Galdi et al.[4]). 
 
RESULTS AND CONCLUSIONS 
For illustration, we consider a non-phased (i.e., 0Aθ = ) cosine-tapered distribution with a fourth-order Rayleigh 
pulse excitation, 
 

 ( ) ( ) ( ) ( )4 4

4 2

50 2
cos , exp .

30000
pp

p

t TT dg x x d p t
dt T

π
 − 

= = −        
 (6) 

 

Figure 2 shows typical temporal and spatial profiles, computed via the PB algorithm (dashed curves) and a 
reference solution obtained by rigorous space-time Kirchhoff aperture numerical integration (solid curves). The 
two results coincide on the scale of the drawings.  The same type of agreement is observed for more complex 
(phased, focused) aperture field distributions (Galdi et al.[4]). These results confirm that the previously 
established utility of the Gabor-based narrow-waisted FD-GB algorithm for radiation from distributed apertures 
in Maciel and Felsen[1] remains intact in the TD. In the FD, it has been established that the GB basis beams can 
be tracked efficiently from the aperture through interactions with complex scattering environments (Maciel and 



Felsen[2]), and are therefore useful forward solvers in inversion scenarios (Galdi et al.[5]). Interaction of the PB 
propagators with complex environments is presently under consideration (Galdi et al.[6).  
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Figure 1 – Problem geometry and coordinate system. 
 
Figure 2 – Beam-computed (dashed) and reference (solid) radiated field due to cosine-tapered focused aperture 
distribution in with 0.5pcT = , 5d =  (arbitrary units).  (a): Temporal profiles at 0x =  and 5z = (30 beams); 

 (b): Corresponding spatial profile at 5.25ct = . The adequacy of the number of beams retained in the algorithm is 
determined by the insensitivity of the outcome to variations (scramblings) of the beam/lattice parameters (cf. Maciel and 
Felsen[1], [2]). 
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Abstract: In this paper, we present a new technique for determining the surface profile of a one-dimensional moderately rough interface 
between air and a homogeneous dielectric half space. Based on sparsely sampled step-frequency ground penetrating radar measurements, 
the proposed inversion scheme uses a quasi-ray Gaussian beam fast forward model, coupled with a low-order parameterization of the 
surface profile in terms of B-splines.  The profile estimation problem is posed as a parameter optimization problem, which is solved using 
a multiresolution continuation method.  Numerical experiments establish that the algorithm is efficient, and computes very accurate 
profiles throughout most of the illuminated region even in noisy environments, loosing accuracy only in regions with very weak 
illumination.    

 
INTRODUCTION AND PROBLEM FORMULATION 
Estimation of rough surfaces from inverse scattering has received considerable attention in the past decade.  
However, most of the available algorithms have focused on conducting surfaces.  Wombell and DeSanto[1] used 
Kirchhoff approximations and Fourier transforms to estimate surface profiles based on measurements of the 
scattered field in all spectral directions.  Ying and Noguchi[2] used nonlinear optimization techniques for direct 
estimation of surfaces illuminated by monochromatic Gaussian beams, based on the far-field scattering 
amplitude for all spectral directions.  In a different approach, Schatzberg and Devaney[3] used Rytov 
approximation and backpropagation to estimate surface profiles based on full measurements of the scattered 
wave. In contrast with the above contributions, our work in this paper is focused on estimating surface profiles 
based on reflection from a moderately rough interface between air and a homogeneous dielectric half space 
(soil). The problem geometry is illustrated in Fig. 1: in a y-independent ( ),x z  coordinate system, a y-directed 
field generated by an aperture field distribution at Az z= , ( ) ( ), , 2,inc

AE x z f x x d= ≤  is assumed to illuminate 
a homogeneous dielectric half-space, with known relative permittivity rε , bounded by an irregular interface 
described by the continuous function ( )z h x= . We assume that the reflected field is measured at rN receivers 
with discrete spatial locations ( 1, ,

rNx x… at obsz z= ), using a stepped-frequency ground penetrating radar (GPR) 
with Nλ operating wavelengths (frequencies). 
 
ALGORITHMIC ASPECTS 
 

Surface Parameterization. The proposed inversion strategy is based on a low-dimensional compact geometrical 
parameterization of the unknown interface profile, whose unknown parameters are estimated by fitting the 
model-based forward scattering prediction to the available (measured/simulated) data, i.e., minimizing a suitable 
cost functional. The choice of the interface profile parameterization is a key issue, and requires tradeoff between 
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compactness and versatility. We assume that the surface shape can be approximated by a finite set of quartic B-
spline basis functions with unknown coefficients, 

 

 ( ) ( ) ( )4

1
,

N

n n
n

h x c s x
=

≈ ∑  (1) 

where ( )4
ns  indicates a quartic B-spline basis function. 

 
Forward Scattering Model. We exploit a computationally efficient forward model relating the reflected field at 
the receivers to the surface profile.  This model, detailed in Galdi et al.[4], utilizes Gabor-based Gaussian beam 
algorithms in conjunction with the complex source point (CSP) method for generating beam-like wave objects 
(Maciel and Felsen[5]).  The algorithm has previously been validated and calibrated for the range of parameters 
involved in this inverse scattering scenario. 
 
Surface Estimation. The surface estimation problem is posed as a nonlinear optimization problem, similar in 
spirit to the work of Ying and Noguchi[2].  Let ,

r
p qE denote the y-directed reflected field measured at wavelength 

qλ  at sensor position px . Given a vector of spline coefficients { }1, , Nc c c= … and the aperture-excited incident 
field, we can use the above beam algorithm for the surface profile in (1) to generate predictions of the reflected 
field waveforms at each receiver, i.e., ( ), , ; ;r r

p q p obs qE E x z cλ≡ . Accordingly, we define the error functional as 
follows 

 
 ( ) ( )

2
,r rc E cΦ ≡ −E  (2) 

 
where ( ) { },

r r
p qE c E= , { }r = r

p,qE E , 1, , rp N= … , 1, ,q Nλ= … . The measured data are simulated via the 
multifilament current method (Galdi et al.[4], Leviatan and Boag[6]). The regularized inverse scattering is 
formalized as finding the coefficient vector { }1, , Nc c c= …  in (1) which minimizes the cost functional in (2), i.e. 
finding ĉ such that 
 

 ( )ˆ arg min .
c

c c= Φ  (3) 
 

We show that this optimization problem has local minima, and develop a multiresolution continuation strategy 
based on selective use of temporal frequency information to approach convergence to globally optimal estimates 
of surface profiles (see Galdi et al.[4] for details). 

 
 
RESULTS AND CONCLUSIONS 
From an extensive set of numerical experiments for a broad range of problem parameters, we have chosen the 
typical reconstruction example in Fig. 2. The surface and soil parameters are specified in the figure caption. The 
incident field is generated by a cosine-tapered aperture field distribution (i.e., ( ) ( )cosf x x dπ= ) of width 

0.8d =  located at 0.6Az = . The complex reflected field is measured at 10 equispaced observation points at 
0.6obsz =  spanning the illuminated region, and at four operating wavelengths ( )0.2, 0.1, 0.067, 0.05λ = . The 

length scales are normalized with respect to the smallest radius of curvature of the local interface profile 
maxima. The multiresolution optimization strategy detailed in Galdi et al.[4] is exploited to minimize the 
obtained cost functional. 



It can be observed that, with the exception of the poorly illuminated edge regions, the reconstruction is 
reasonably accurate. This kind of accuracy was confirmed in other numerical experiments, even in noisy 
environments, with computing time of 1-2 minutes on a 400 MHz laptop (Galdi et al.[4]).  We are currently 
working on extending the algorithm to short-pulse excitation (Pavlovich et al.[7]). 
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Figure 1 - Setup geometry for the inverse scattering problem. 
An aperture-excited, time-harmonic, TM-polarized EM field 
illuminates a homogeneous dielectric half-space with known 
relative permittivity rε  and with a moderately rough 
interface whose coarse scale profile is described by the 
continuous function ( )h x . The scattered field is sampled at 

rN  receiver locations at obsz z= . 
 

Figure 2 – Reconstruction example.  
Profile parameters (arbitrary units): 3 0.05r iε = + , 
maximum slope 34°; aperture parameters (nonphased 
cosine distribution): 8.0=d , 6.0=Az ; 10 equispaced 
observation points at 6.0=obsz ; operating wavelengths: 

.05.0,067.0,1.0,2.0=λ  
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EH ULJRURXVO\ V\QWKHVL]HG E\ .LUFKKRm LQWHJUDWLRQ >�� S� ���@�
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�  [�X[ � \�X\� 5  MUb U��M� DQG F LV WKH DPELHQW
SURSDJDWLRQ VSHHG� ,Q ZKDW IROORZV� ZH VKDOO EH GHDOLQJ ZLWK WKH VLPSOH FDVH RI
VSDFH�WLPH VHSDUDEOH DSHUWXUH nHOGV KDYLQJ OLQHDU WLPH GHOD\�
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)���������������� DQG E\ WKH (QJLQHHULQJ 5HVHDUFK &HQWHUV 3URJUDP RI WKH 1DWLRQDO 6FLHQFH

)RXQGDWLRQ XQGHU DZDUG QXPEHU ((&��������� 7KH ZRUN RI 9� *DOGL ZDV DOVR VXSSRUWHG E\ D

(XURSHDQ 8QLRQ SRVWGRFWRUDO IHOORZVKLS WKURXJK WKH 8QLYHUVLW\ RI 6DQQLR� %HQHYHQWR� ,WDO\� /�%�

)HOVHQ DOVR DFNQRZOHGJHV SDUWLDO VXSSRUW IURP D *UDQW E\ WKH 86�,VUDHO %LQDWLRQDO 6FLHQFH )RXQ�

GDWLRQ� -HUXVDOHP� ,VUDHO� DQG IURP 3RO\WHFKQLF 8QLYHUVLW\�
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ZLWK VSHFWUXP �FDSLWDO OHWWHUV LGHQWI\ IUHTXHQF\ GRPDLQ TXDQWLWLHV��
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ZKHUH S�W� LV D VKRUW SXOVH RI OHQJWK 7 ~ G$ F ZLWK VSHFWUXP 3 ���� 'XH WR VSDFH
OLPLWDWLRQV� ZH RPLW WKH WHFKQLFDO GHWDLOV DQG FRQFHQWUDWH RQ SUHVHQWLQJ WKH PDLQ
UHVXOWV� 7KH LQWHUHVWHG UHDGHU LV UHIHUUHG WR WR >�@ IRU D FRPSUHKHQVLYH WUHDWPHQW�

,,� )5(48(1&< '20$,1 %($0 ',6&5(7,=$7,21

:H nUVW UHFDOO UHOHYDQW UHVXOWV RI RXU SUHYLRXV IUHTXHQF\ GRPDLQ �)'� LQYHVWL�
JDWLRQ LQ >�@� EHIRUH SURFHGLQJ WR WKHLU LQYHUVLRQ �YLD DQDO\WLF VLJQDO WUDQVIRUP� LQWR
WKH WLPH GRPDLQ� )RU DQ LPSOLHG H[S�bL�W� GHSHQGHQFH� WKH )' FRXQWHUSDUW RI ���
IRU WKH UDGLDWHG �' nHOG� XVLQJ WKH OLQHDUO\�SKDVHG DSHUWXUH GLVWULEXWLRQ LQ ���� LV
JLYHQ E\ >�� S� ���@
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ZKHUH *�'�U� U
�

�
�  H[S�LN5� ��{5� LV WKH �'�)' *UHHQ
V IXQFWLRQ ZLWK N  � F  

�{ w DV WKH DPELHQW ZDYHQXPEHU� DQG w DV WKH ZDYHOHQJWK� $V VKRZQ LQ >�@� >�@�
WKH UDGLDWHG nHOG LQ ��� FDQ EH SDUDPHWHUL]HG HmHFWLYHO\ LQ WHUPV RI *DERU�EDVHG
QDUURZ�ZDLVWHG FRPSOH[ VRXUFH SRLQW �&63� *DXVVLDQ EHDPV
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ZKHUH aU�PS LV WKH &63 DW WKH �P� S��LQGH[HG �[� \� SODQH ODWWLFH SRLQW� &PS DUH

*DERU H[SDQVLRQ FRHpFLHQWV �REWDLQHG E\ DSHUWXUH SURnOH VDPSOLQJ�� DQG a%PS LV
WKH UD\�OLNH *% SURSDJDWRU LQ WKH �t$� �$� GLUHFWLRQ� REWDLQHG IURP WKH �'�)'
*UHHQ
V IXQFWLRQ E\ DQDO\WLF FRQWLQXDWLRQ RI WKH VSDWLDO FRRUGLQDWHV LQWR FRPSOH[
VSDFH �VHH ����� 7KH H[SDQVLRQ LQ ��� LV D KLJK IUHTXHQF\ DV\PSWRWLF UD\�OLNH DSSUR[�
LPDWLRQ RI WKH ULJRURXV� *DERU�EDVHG� *DXVVLDQ EHDP �*%� GLVFUHWL]DWLRQ SUHVHQWHG
LQ >�@� ZKLFK LV WLHG WR D GLVFUHWL]HG ODWWLFH LQ D IRXU�GLPHQVLRQDO �[� \� N[� N\� VSDFH�
VSHFWUXP SKDVH VSDFH� ZKHUH N[� N\ DUH WKH VSHFWUDO ZDYHQXPEHUV� (TXDWLRQ ���
KDV EHHQ IRXQG WR \LHOG DFFXUDWH V\QWKHVHV IRU VXpFLHQWO\ VPDOO YDOXHV RI WKH VSDWLDO

ODWWLFH SHULRG /
�z w ~ G$� L�H�� IRU QDUURZ�ZDLVWHG EHDPV� ,Q ���^���� WKH WLOGH

z LGHQWLnHV GHSHQGHQFH RQ DQDO\WLFDOO\ FRQWLQXHG &63 FRRUGLQDWHV DV ZHOO DV WKH
nHOG SURGXFHG WKHUHE\� 'XH WR WKH nQLWH H[WHQW RI WKH DSHUWXUH� L�H�� J�[� \�  � IRU
�[� \�  � b$� WKH VXPPDWLRQ LQ ��� LV VHOI�WUXQFDWLQJ XS WR D QXPEHU RI EHDPV JLYHQ
URXJKO\ E\ �G$ /�
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7KH FRUUHVSRQGLQJ SXOVHG EHDP �3%� H[SDQVLRQ IRU WKH nHOG UDGLDWHG E\ WKH
VSDFH�WLPH DSHUWXUH GLVWULEXWLRQ LQ ��� FDQ EH IRUPDOO\ REWDLQHG E\ )RXULHU LQYHUVLRQ
RI ��� nOWHUHG E\ WKH SXOVH VSHFWUXP 3 ���� $OWKRXJK WKLV FDQQRW EH DFFRPSOLVKHG
DQDO\WLFDOO\ IRU WKH PRVW JHQHUDO SXOVH VKDSH� ZH KDYH IRXQG UDSLGO\ FRPSXWDEOH
FORVHG IRUP DSSUR[LPDWLRQV IRU WKH LPSRUWDQW FODVV RI 5D\OHLJK SXOVHV

S�W�  fS�M�J �Wb 7 �� 7 �� 3 ���  f�bL��M H[S�L�7 ��3J��� 7 �� ����

ZKHUH WKH VXSHUVFULSW �M� LQGLFDWHV M�WK RUGHU GLmHUHQWLDWLRQ� f LV DQ DPSOLWXGH FR�
HpFLHQW� DQG
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)ROORZLQJ D SURFHGXUH DQDORJRXV WR WKDW SUHVHQWHG LQ >�@ �VHH >�@ IRU GHWDLOV�� RQH
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nnn� 7KH 3% H[SDQVLRQ LQ ���� LQYROYHV
UDSLGO\ FRPSXWDEOH DQDO\WLF IXQFWLRQV� DQG WKHUHIRUH FDQ EH HYDOXDWHG YHU\ Hp�
FLHQWO\�

,9� 5(68/76 $1' &21&/86,216

7KH 3% V\QWKHVLV LQ ���� KDV EHHQ YDOLGDWHG DQG FDOLEUDWHG DJDLQVW D UHIHUHQFH VR�
OXWLRQ JHQHUDWHG E\ *DXVVLDQ TXDGUDWXUH QXPHULFDO LQWHJUDWLRQ RI ���� &RQYHUJHQFH
LVVXHV KDYH EHHQ DGGUHVVHG DQDO\WLFDOO\ LQ >�@ DQG IRUPDOL]HG LQ WHUPV RI QRQGLPHQ�
VLRQDO HVWLPDWRUV� 7\SLFDO UHVXOWV IURP D EURDG UDQJH RI QXPHULFDO H[SHULPHQWV DUH
VKRZQ LQ )LJ� �� IRU DQ [�SRODUL]HG� VTXDUH� FRVLQH�WDSHUHG DSHUWXUH nHOG GLVWULEXWLRQ
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DQG D IRXUWK�RUGHU 5D\OHLJK SXOVH �M  �� f  7 � ������ }  � 
S
���� )LJXUH

� FRPSDUHV WKH UHIHUHQFH VROXWLRQ DQG WKH 3% V\QWKHVLV ��� d �� EHDPV� IRU WKH
[�FRPSRQHQW RI UDGLDWHG nHOG DW D n[HG REVHUYDWLRQ SRLQW LQ WKH QHDU ]RQH RI WKH
DSHUWXUH� ([FHOOHQW DJUHHPHQW LV REVHUYHG ZLWK WKH LQGLFDWHG QXPEHU RI EHDPV�
ZKRVH XVH LV IDU PRUH HpFLHQW WKDQ WKH .LUFKKRm QXPHULFDO LQWHJUDWLRQ� 6LPLODU
UHVXOWV DUH REWDLQHG IRU WKH ]�FRPSRQHQW� DQG DOVR IRU PRUH FRPSOLFDWHG SKDVLQJ �DV
LQ UHFWDQJXODU IRFXVHG DSHUWXUH GLVWULEXWLRQV� >�@� 7KLV UHQGHUV WKH SURSRVHG SXOVHG
EHDP V\QWKHVLV DWWUDFWLYH DV D QXPHULFDOO\ HpFLHQW� DFFXUDWH� UREXVW DOJRULWKP IRU
IXWXUH VFDWWHULQJ VFHQDULRV�
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)LJ� � � 7ZR�GLPHQVLRQDO DSHUWXUH nHOG GLVWULEXWLRQ DQG FRRUGLQDWH V\VWHPV�

)LJ� � � [�SRODUL]HG� SXOVHG� OLQHDU�GHOD\� VTXDUH FRVLQH DSHUWXUH GLVWULEXWLRQ LQ ���������

ZLWK F7  �� G  ��  ��F7 �DUELWUDU\ XQLWV�� t$  ��
R� �$  ��

R� 7HPSRUDO EHKDYLRU RI

WKH [�FRPSRQHQW RI UDGLDWHG nHOG REVHUYHG DW �[  \  �� ]  ���� _^ 5HIHUHQFH VROXWLRQ�

� � � 3XOVHG EHDP V\QWKHVLV �/  G ��� L�H�� ��� EHDPV��

5()(5(1&(6

>�@ -�-� 0DFLHO DQG /�%� )HOVHQ� ?'LVFUHWL]HG *DERU�EDVHG EHDP DOJRULWKP IRU
WLPH�KDUPRQLF UDGLDWLRQ IURP WZR�GLPHQVLRQDO WUXQFDWHG SODQDU DSHUWXUH GLV�
WULEXWLRQV � ,� )RUPXODWLRQ DQG VROXWLRQ�� LELG� ?,,� $V\PSWRWLFV DQG QXPHULFDO
WHVWV�� VXEPLWWHG WR ,((( 7UDQV� $QWHQQDV 3URSDJDW�� 'HF� �����

>�@ 9� *DOGL� /�%� )HOVHQ� DQG '�$� &DVWDaQRQ� ?1DUURZ�ZDLVWHG *DXVVLDQ EHDP
GLVFUHWL]DWLRQ IRU WZR�GLPHQVLRQDO WLPH�GHSHQGHQW UDGLDWLRQ IURP ODUJH RQH�
GLPHQVLRQDO SODQH DSHUWXUHV�� VXEPLWWHG WR ,((( 7UDQV� $QWHQQDV 3URSDJDW��
6HSW� �����

>�@ 7�%� +DQVHQ DQG $�'� <DJKMLDQ� 3ODQH�:DYH 7KHRU\ RI 7LPH�'RPDLQ )LHOGV�

1HDU�)LHOG 6FDQQLQJ $SSOLFDWLRQV� 3LVFDWDZD\ �1-�� ,((( 3UHVV� �����

>�@ 9� *DOGL� /�%� )HOVHQ� DQG '�$� &DVWDaQRQ� ?7LPH�GRPDLQ UDGLDWLRQ IURP ODUJH
WZR�GLPHQVLRQDO DSHUWXUHV YLD QDUURZ�ZDLVWHG *DXVVLDQ EHDPV�� VXEPLWWHG WR
,((( 7UDQV� $QWHQQDV 3URSDJDW�� 'HF� �����
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9LQFHQ]R *DOGL������ /HRSROG %� )HOVHQ������ DQG 'DYLG $� &DVWDaQRQ���

��� 'HSDUWPHQW RI (OHFWULFDO DQG &RPSXWHU (QJLQHHULQJ

%RVWRQ 8QLYHUVLW\� %RVWRQ� 0$ ������ 86$

(�PDLO� YJDOGL#EX�HGX� OIHOVHQ#EX�HGX� GDF#EX�HGX
��� 'HSDUWPHQW RI $HURVSDFH DQG 0HFKDQLFDO (QJLQHHULQJ

%RVWRQ 8QLYHUVLW\� %RVWRQ� 0$ ������ 86$

$OVR� 8QLYHUVLW\ 3URIHVVRU (PHULWXV�

3RO\WHFKQLF 8QLYHUVLW\� %URRNO\Q� 1< ������ 86$
��� :DYHV *URXS� 8QLYHUVLW\ RI 6DQQLR� %HQHYHQWR� ,WDO\
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7KLV SDSHU WUHDWV WKH LQWHUDFWLRQ RI VKRUW�SXOVH HOHFWURPDJQHWLF UDGLDWLRQ ZLWK
RQH�GLPHQVLRQDO ��'� PRGHUDWHO\ URXJK GLHOHFWULF LQWHUIDFHV� ZKLFK DULVH LQ PDQ\
UHDOLVWLF SUREOHPV� VXFK DV EXULHG REMHFW LPDJLQJ� 2XU XOWLPDWH JRDO LV WR LQFRUSR�
UDWH SK\VLFV�EDVHG� FRPSXWDWLRQDOO\ HpFLHQW� IRUZDUG PRGHOV LQ VXFK LQYHUVH VFDW�
WHULQJ VFHQDULRV� LQ RUGHU WR LPSURYH WKH RYHUDOO FRPSXWDWLRQDO SHUIRUPDQFH� ,Q
WKLV FRQQHFWLRQ� ZH UHFHQWO\ DQDO\]HG WLPH�KDUPRQLF IRUZDUG DQG LQYHUVH VFDWWHU�
LQJ IURP PRGHUDWHO\ URXJK VXUIDFHV� XVLQJ D *DERU�EDVHG *DXVVLDQ EHDP DOJRULWKP
>�@� >�@� +HUH� ZH H[WHQG WKLV IRUZDUG VFDWWHULQJ DOJRULWKP WR SXOVHG H[FLWDWLRQ�
YLD D 3K\VLFDO�2SWLFV�32��EDVHG DSSURDFK LQ FRQMXQFWLRQ ZLWK WKH SXOVHG EHDP
GLVFUHWL]DWLRQ LQ >�@� 7KH SUREOHP JHRPHWU\ LV VKRZQ LQ )LJ� �� D 70�SRODUL]HG
LQFLGHQW nHOG JHQHUDWHG E\ D SXOVHG DSHUWXUH nHOG GLVWULEXWLRQ RI ZLGWK G DW ]  ]$
LV DVVXPHG WR LPSLQJH IURP IUHH�VSDFH RQWR D ORVVOHVV� QRQGLVSHUVLYH� KRPRJHQHRXV
GLHOHFWULF KDOI�VSDFH RI UHODWLYH SHUPLWWLYLW\ qU� ERXQGHG E\ D PRGHUDWHO\ URXJK LQ�
WHUIDFH GHVFULEHG E\ WKH FRQWLQXRXV IXQFWLRQ K�[�� :H DVVXPH D WDSHUHG� VHSDUDEOH�
QRQSKDVHG VSDFH�WLPH nHOG GLVWULEXWLRQ
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ZKHUH S�W� LV D SXOVH RI OHQJWK 7 ~ G F� ZLWK F UHSUHVHQWLQJ WKH VSHHG RI OLJKW� DQG
I�[� LV WKH DPSOLWXGH WDSHU SURnOH� 7KH LQWHUIDFH LV DVVXPHG WR EH ORFDWHG LQ WKH
FROOLPDWLRQ ]RQH RI WKH DSHUWXUH VR WKDW WKH LQFLGHQW nHOG FDQ EH DSSUR[LPDWHG E\
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)���������������� DQG E\ WKH (QJLQHHULQJ 5HVHDUFK &HQWHUV 3URJUDP RI WKH 1DWLRQDO 6FLHQFH

)RXQGDWLRQ XQGHU DZDUG QXPEHU ((&��������� 7KH ZRUN RI 9� *DOGL ZDV DOVR VXSSRUWHG E\ D

(XURSHDQ 8QLRQ SRVWGRFWRUDO IHOORZVKLS WKURXJK WKH 8QLYHUVLW\ RI 6DQQLR� %HQHYHQWR� ,WDO\� /�%�

)HOVHQ DOVR DFNQRZOHGJHV SDUWLDO VXSSRUW IURP D *UDQW E\ WKH 86�,VUDHO %LQDWLRQDO 6FLHQFH )RXQ�

GDWLRQ� -HUXVDOHP� ,VUDHO� DQG IURP 3RO\WHFKQLF 8QLYHUVLW\�



D SXOVHG WUXQFDWHG WDSHUHG SODQH ZDYH SURSDJDWLQJ LQ WKH QHJDWLYH ]�GLUHFWLRQ �VHH
)LJ� ��� 'XH WR VSDFH OLPLWDWLRQV� ZH SUHVHQW RQO\ WKH PDLQ UHVXOWV IRU WKH VFDWWHUHG
nHOG� RPLWWLQJ WHFKQLFDO GHWDLOV ZKLFK FDQ EH IRXQG LQ >�@�
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,Q WKH SURSRVHG DSSURDFK� WKH WLPH GRPDLQ �7'� LV DFFHVVHG E\ )RXULHU LQYHUVLRQ
IURP WKH IUHTXHQF\ GRPDLQ �)'� YLD WKH DQDO\WLF WUDQVIRUP �ZLWK � w ��� ,Q WKH
DV\PSWRWLF KLJK�IUHTXHQF\ UDQJH� DQG IRU VPRRWK URXJKQHVV RYHU DOO ZDYHOHQJWK
VFDOHV LQ WKH SXOVH VSHFWUXP� WKH VFDWWHUHG nHOG FDQ EH DSSUR[LPDWHG E\ LQWHJUDWLRQ
RI WKH 32 ?FXUUHQW� RYHU WKH LQWHUIDFH SURnOH
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ZKHUH &32 H[WHQGV RYHU WKH LOOXPLQDWHG SRUWLRQ RI WKH VXUIDFH� 3 ��� LV WKH SXOVH
VSHFWUXP� XQ LV WKH RXWZDUG QRUPDO XQLW YHFWRU� DQG GO� LV WKH LQFUHPHQWDO DUF�
OHQJWK� )XUWKHUPRUH� *�' LV WKH )' OLQH�VRXUFH *UHHQ
V IXQFWLRQ�
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DQG -32 LV WKH 32 VXUIDFH FXUUHQW GHQVLW\
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ZLWK 5 GHQRWLQJ WKH 70 SODQH�ZDYH )UHVQHO UHoHFWLRQ FRHpFLHQW� DQG (LQF
\ UHSUH�

VHQWLQJ WKH LQFLGHQW nHOG�
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7KH 32 UDGLDWLRQ LQWHJUDO LQ ��� LV QRW YHU\ GLmHUHQW IURP WKH .LUFKKRm DSHUWXUH
LQWHJUDOV DQDO\]HG LQ >�@� H[FHSW WKDW WKH OLQH LQWHJUDWLRQ LQ ��� LV SHUIRUPHG DORQJ
D URXJK VXUIDFH SURnOH LQVWHDG RI RQ D SURMHFWHG HTXLYDOHQW SODQDU DSHUWXUH� ,Q >�@�
WKH �' VSDFH�WLPH DSHUWXUH nHOG GLVWULEXWLRQ LV nUVW SDUDPHWHUL]HG LQ WKH )' LQ
WHUPV RI [�GRPDLQ GLVFUHWL]HG P�LQGH[HG *DERU EDVLV IXQFWLRQV ZLWK QDUURZ ZLGWK
/� FHQWHUHG RQ WKH *DERU ODWWLFH SRLQWV [P  P/� WKHVH LQLWLDO FRQGLWLRQV JHQHU�
DWH QDUURZ�ZDLVWHG� TXDVL�UD\� FRPSOH[�VRXUFH�SRLQW *DXVVLDQ EHDPV� )RU 5D\OHLJK
SXOVHV� WKH UHVXOWLQJ 7' DQDO\WLF )RXULHU LQYHUVLRQ LQWHJUDO FDQ EH DSSUR[LPDWHG E\
UDSLGO\ FRPSXWDEOH FORVHG IRUP H[SUHVVLRQV� 7KH VDPH DSSURDFK FDQ EH DSSOLHG WR
GLVFUHWL]LQJ 32 LQWHJUDOV DV LQ ���� 7KXV� IRU IRXUWK�RUGHU 5D\OHLJK SXOVHV
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RQH REWDLQV WKH IROORZLQJ SXOVHG EHDP �3%� H[SDQVLRQ IRU WKH VFDWWHUHG nHOG �VHH
>�@ IRU GHWDLOV�
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ZKHUH WKH LQWHUYDO >b' ��' �@ VSDQV WKH [�GRPDLQ SURMHFWLRQ RI WKH LOOXPLQDWHG
SRUWLRQ RI WKH VXUIDFH� 7KH *DERU H[SDQVLRQ FRHpFLHQWV FP DQG WKH WLPH GHOD\
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ZKHUH �)��X� Y� W� LV WKH .XPPHU FRQoXHQW K\SHUJHRPHWULF IXQFWLRQ >�@� 7KH IXQF�
WLRQV 0� DQG 0� FDQ EH HpFLHQWO\ FRPSXWHG XVLQJ D UDSLGO\ FRQYHUJLQJ SRZHU
VHULHV H[SDQVLRQV GHULYHG LQ >�@� 7KH SURSDJDWRU LQ ��� LV D SXOVHG *DXVVLDQ EHDP�
ZKRVH FROOLPDWLRQ LV FRQWUROOHG E\ WKH GLVFUHWL]DWLRQ SHULRG /� 7KH H[SDQVLRQ LQ ���
\LHOGV DFFXUDWH V\QWKHVHV IRU /~ '� L�H�� IRU QDUURZ�ZDLVWHG� SRRUO\ FROOLPDWHG 3%
SURSDJDWRUV�
7KH FRUUHVSRQGLQJ H[SDQVLRQ IRU WKH WUDQVPLWWHG nHOG FDQ EH REWDLQHG VLPLODUO\�

DV FDQ UHVXOWV IRU REOLTXH LQFLGHQFH DQG VOLJKW 2KPLF ORVVHV >�@�

,9� 5(68/76 $1' &21&/86,216

,Q RUGHU WR YDOLGDWH DQG FDOLEUDWH WKH DERYH DOJRULWKP� ZH GHYHORSHG DQ LQGHSHQ�
GHQW UHIHUHQFH VROXWLRQ� EDVHG RQ WKH WLPH�KDUPRQLF PXOWLnODPHQW FXUUHQW PHWKRG
H[SORLWHG LQ >�@� 7KH VSHFWUXP RI WKH VFDWWHUHG nHOG ZDV REWDLQHG E\ VROYLQJ WKH
VFDWWHULQJ SUREOHP DW ��� GLmHUHQW IUHTXHQFLHV ZLWKLQ WKH SXOVH EDQGZLGWK� 7KH



UHVXOWLQJ IUHTXHQF\ VDPSOHV ZHUH VPRRWKHG WKURXJK ORFDO 3DGuH�DSSUR[LPDWLRQ DQG
nOWHUHG E\ WKH SXOVH VSHFWUXP 3 ���� 7KH 7' VROXWLRQ ZDV WKHQ REWDLQHG E\ VWDQGDUG
LQYHUVH ))7 DOJRULWKPV� 7\SLFDO UHVXOWV DUH VKRZQ LQ )LJ� �� 6SHFLnFDOO\� IRU WKH
WHPSRUDO EHKDYLRU RI WKH VFDWWHUHG nHOG DW D n[HG REVHUYDWLRQ SRLQW LQ WKH SUHVHQFH
RI WKH WKH LQWHUIDFH SURnOH LQ )LJ� �D� )LJ� �E VKRZV WKH FRPSDULVRQ EHWZHHQ WKH
UHIHUHQFH VROXWLRQ DQG WKH 3% V\QWKHVLV ���� EHDPV� LQ ���� ZKLFK LQYROYHV D PRGHVW
FRPSXWDWLRQDO HmRUW ZKHQ FRPSDUHG ZLWK FRQYHQWLRQDO .LUFKKRm�32 LQWHJUDWLRQ�
*RRG DJUHHPHQW LV REVHUYHG HYHQ LQ WKH nQHU GHWDLOV� &RQYHUJHQFH DQG DFFXUDF\
LVVXHV DUH GLVFXVVHG LQ >�@� 6LPLODU UHVXOWV KDYH EHHQ REWDLQHG IRU WKH WUDQVPLWWHG
nHOG� $SSOLFDWLRQV WR LQYHUVH�VFDWWHULQJ VFHQDULRV DUH SUHVHQWO\ XQGHU FRQVLGHUDWLRQ�
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)LJ� � � 3UREOHP JHRPHWU\ DQG FRRUGLQDWH V\VWHP�

)LJ� � � �D�� 5RXJK VXUIDFH SURnOH �DUELWUDU\ XQLWV�� �E�� 7HPSRUDO EHKDYLRU RI VFDWWHUHG

nHOG DW [  �� ]  ���� $SHUWXUH WDSHULQJ� I�[�  H[S�b��[� �{G���� G  ���� 6LPXODWLRQ
SDUDPHWHUV� qU  �� '  �� ]$  ���� F7  ����� f  7 � ������ }  � 

S
���

_^ 5HIHUHQFH VROXWLRQ� � � � 3XOVHG EHDP V\QWKHVLV �/  ' ���� L�H�� ��� EHDPV��

5()(5(1&(6

>�@ 9� *DOGL� /�%� )HOVHQ� DQG '�$� &DVWDaQRQ� ?4XDVL�UD\ *DXVVLDQ EHDP DOJRULWKP
IRU WLPH�KDUPRQLF VFDWWHULQJ E\ PRGHUDWHO\ URXJK LQWHUIDFHV�� ,((( 7UDQV�

$QWHQQDV 3URSDJDW�� ���� �LQ SULQW��

>�@ 9� *DOGL� '�$� &DVWDaQRQ� DQG /�%� )HOVHQ� ?5HFRQVWUXFWLRQ RI PRGHUDWHO\ URXJK
LQWHUIDFHV YLD TXDVL�UD\ *DXVVLDQ EHDPV�� VXEPLWWHG WR ,((( 7UDQV� *HRVFL�

5HPRWH 6HQVLQJ� 6HSW� �����

>�@ 9� *DOGL� /�%� )HOVHQ� DQG '�$� &DVWDaQRQ� ?1DUURZ�ZDLVWHG *DXVVLDQ EHDP
GLVFUHWL]DWLRQ IRU WZR�GLPHQVLRQDO WLPH�GHSHQGHQW UDGLDWLRQ IURP ODUJH DSHU�
WXUHV�� VXEPLWWHG WR ,((( 7UDQV� $QWHQQDV 3URSDJDW�� 6HSW� �����

>�@ 9� *DOGL� /�%� )HOVHQ� DQG '�$� &DVWDaQRQ� ?7LPH�GRPDLQ WZR�GLPHQVLRQDO VFDW�
WHULQJ E\ PRGHUDWHO\ URXJK GLHOHFWULF LQWHUIDFHV YLD QDUURZ�ZDLVWHG *DXVVLDQ
EHDPV�� VXEPLWWHG WR ,((( 7UDQV� $QWHQQDV 3URSDJDW�� -DQ� �����

>�@ 0� $EUDPRZLW] DQG ,�$� 6WHJXQ� +DQGERRN RI 0DWKHPDWLFDO )XQFWLRQV� 1HZ
<RUN �1<�� 'RYHU� �����
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��� 0XOWLGLPHQVLRQDO 6LJQDO 3URFHVVLQJ /DERUDWRU\

'HSDUWPHQW RI (OHFWULFDO DQG &RPSXWHU (QJLQHHULQJ

%RVWRQ 8QLYHUVLW\� %RVWRQ� 0$ ������ 86$
��� :DYHV *URXS� 8QLYHUVLW\ RI 6DQQLR� %HQHYHQWR� ,WDO\
��� 'HSDUWPHQW RI $HURVSDFH DQG 0HFKDQLFDO (QJLQHHULQJ

DQG 'HSDUWPHQW RI (OHFWULFDO DQG &RPSXWHU (QJLQHHULQJ

%RVWRQ 8QLYHUVLW\� %RVWRQ� 0$ ������ 86$

$OVR� 8QLYHUVLW\ 3URIHVVRU (PHULWXV�

3RO\WHFKQLF 8QLYHUVLW\� %URRNO\Q� 1< ������ 86$

(�PDLO� RVND#EX�HGX� YJDOGL#EX�HGX� ZFNDUO#EX�HGX� GDF#EX�HGX� OIHOVHQ#EX�HGX

,� 352%/(0 )2508/$7,21

7KH SUREOHP RI GHWHUPLQLQJ WKH SURSHUWLHV RI URXJK VXUIDFHV IURP HOHFWURPDJ�
QHWLF VFDWWHUHG nHOG GDWD DULVHV LQ PDQ\ LPSRUWDQW VXEVXUIDFH VHQVLQJ SUREOHPV VXFK
DV XQGHUJURXQG LPDJLQJ XVLQJ GDWD IURP D *URXQG 3HQHWUDWLQJ 5DGDU �*35�� ,Q
*35 V\VWHPV� DUUD\V RI DERYH�JURXQG WUDQVPLWWHUV DQG UHFHLYHUV LOOXPLQDWH DUHDV RI
LQWHUHVW DQG UHFHLYH EDFNVFDWWHUHG VLJQDOV IURP VKDOORZO\ EXULHG REMHFWV DQG IURP
VXUIDFH UHoHFWLRQV� 7KH VKDSH RI WKH DLU�JURXQG LQWHUIDFH LV XQNQRZQ� DQG LW LV
D SULQFLSDO FRUUXSWRU RI WKH EDFNVFDWWHUHG VLJQDO IURP VXEVXUIDFH WDUJHWV RI LQWHU�
HVW� ,Q RUGHU WR HQKDQFH VXEVHTXHQW GHWHFWLRQ� FODVVLnFDWLRQ DQG LQYHUVH VFDWWHULQJ
SURFHVVLQJ� LW LV LPSRUWDQW WR FRPSHQVDWH IRU WKH GLVWRUWLRQ LQWURGXFHG E\ WKH DLU�
JURXQG LQWHUIDFH� $V D nUVW VWHS WRZDUG WKLV JRDO� LQ D UHFHQW LQYHVWLJDWLRQ >�@ ZH
DGGUHVVHG WKH SUREOHP RI HVWLPDWLQJ WKH SURnOH RI RQH�GLPHQVLRQDO ��'� PRGHUDWHO\
URXJK GLHOHFWULF LQWHUIDFHV IURP D OLPLWHG QXPEHU RI PXOWLIUHTXHQF\ PHDVXUHPHQWV
XQGHU WLPH�KDUPRQLF H[FLWDWLRQ� ,Q WKLV SDSHU� ZH H[WHQG WKH DSSURDFK WR WKH FDVH
RI WLPH�GHSHQGHQW �VKRUW SXOVH� H[FLWDWLRQ� 7KH SURSRVHG H[WHQVLRQ LV EDVHG RQ D
UHFHQWO\ GHYHORSHG *DERU�EDVHG QDUURZ�ZDLVWHG SXOVHG�EHDP �3%� UHSUHVHQWDWLRQ
RI VKRUW�SXOVH VFDWWHULQJ E\ PRGHUDWHO\ URXJK VXUIDFHV >�@�

7KH SUREOHP JHRPHWU\ LV GHSLFWHG LQ )LJ� �� LQ DQ �[� ]� �' FRRUGLQDWH VSDFH� D
70�SRODUL]HG LQFLGHQW nHOG JHQHUDWHG E\ D SXOVHG DSHUWXUH nHOG GLVWULEXWLRQ RI ZLGWK

e:RUN VXSSRUWHG E\ 2''5	( XQGHU 085, JUDQWV $52 '$$*������������ DQG $)265

)���������������� DQG E\ WKH (QJLQHHULQJ 5HVHDUFK &HQWHUV 3URJUDP RI WKH 1DWLRQDO 6FLHQFH )RXQ�

GDWLRQ XQGHU DZDUG QXPEHU ((&��������� 7KH ZRUN RI 9� *DOGL ZDV DOVR VXSSRUWHG E\ D (XURSHDQ

8QLRQ SRVWGRFWRUDO IHOORZ VKLS WKURXJK WKH 8QLYHUVLW\ RI 6DQQLR� %HQHYHQWR� ,WDO\� /�%� )HOVHQ

DOVR DFNQRZOHGJHV SDUWLDO VXSSRUW IURP D *UDQW E\ WKH 86�,VUDHO %LQDWLRQDO 6FLHQFH )RXQGDWLRQ�

-HUXVDOHP� ,VUDHO� DQG IURP 3RO\WHFKQLF 8QLYHUVLW\�



G DW ]  ]$ LV DVVXPHG WR LPSLQJH IURP IUHH�VSDFH RQWR D ORVVOHVV� QRQGLVSHUVLYH�
KRPRJHQHRXV GLHOHFWULF KDOI�VSDFH RI NQRZQ UHODWLYH SHUPLWWLYLW\ qU� ERXQGHG E\ D
PRGHUDWHO\ URXJK LQWHUIDFH GHVFULEHG E\ WKH FRQWLQXRXV IXQFWLRQ K�[�� :H DVVXPH
D WDSHUHG� VHSDUDEOH� QRQSKDVHG VSDFH�WLPH DSHUWXUH nHOG GLVWULEXWLRQ

HLQF\ �[� ]  ]$� W�  

�
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���

ZKHUH S�W� LV D SXOVH RI OHQJWK 7 ~ G F� ZLWK F UHSUHVHQWLQJ WKH VSHHG RI OLJKW�
DQG I�[� LV WKH DPSOLWXGH WDSHU SURnOH� 7KH LQWHUIDFH LV ORFDWHG LQ WKH FROOLPDWLRQ
]RQH RI WKH DSHUWXUH VR WKDW WKH LQFLGHQW nHOG FDQ EH DSSUR[LPDWHG E\ D SXOVHG
WUXQFDWHG WDSHUHG SODQH ZDYH SURSDJDWLQJ LQ WKH QHJDWLYH ]�GLUHFWLRQ �VHH )LJ� ���
7KH \�GLUHFWHG VFDWWHUHG nHOG HV\ LV VDPSOHG DW 1W WLPH LQVWDQWV DW 1U UHFHLYHU OR�
FDWLRQV �DW ]  ]REV�� 7KLV VHWXS LV W\SLFDO RI *35 V\VWHPV IRU GHWHFWLQJ VKDOORZO\
EXULHG DQWL�SHUVRQQHO PLQHV� RI LQWHUHVW IRU KXPDQLWDULDQ GHPLQLQJ� +RZHYHU� LQ
WKLV LQYHVWLJDWLRQ ZH LJQRUH WKH SUHVHQFH RI DQ\ EXULHG REMHFWV� )XUWKHUPRUH� ZH DUH
QRW WDNLQJ LQWR DFFRXQW WKH QRLV\ �LQFRKHUHQW� FRQWULEXWLRQ RI nQHU�VFDOH URXJKQHVV�
DQG ZH DLP WR HVWLPDWH WKH FRDUVH VKDSH RI WKH VXUIDFH� DFNQRZOHGJLQJ WKH LPSOLFLW
OLPLWV RI UHWULHYDEOH LQIRUPDWLRQ WKURXJK LQYHUVH VFDWWHULQJ� 'XH WR WKH LQKHUHQW
LOO�SRVHGQHVV RI WKLV NLQG RI LQYHUVH VFDWWHULQJ SUREOHPV� LW LV HVVHQWLDO WR LQFRUSR�
UDWH VWDELOL]DWLRQ VWHSV� NQRZQ DV UHJXODUL]DWLRQ PHWKRGV� $V LQ >�@� ZH LQWURGXFHG
DQ ?LPSOLFLW� UHJXODUL]DWLRQ E\ H[SORLWLQJ DQ DSSURSULDWH GLVFUHWH UHSUHVHQWDWLRQ RI
WKH VXUIDFH� $FFRUGLQJO\� WKH VXUIDFH HVWLPDWLRQ SUREOHP LV SRVHG DV D QRQOLQHDU
RSWLPL]DWLRQ SUREOHP� ZKRVH VROXWLRQ UHTXLUHV UHSHDWHG HYDOXDWLRQV RI WKH VFDWWHUHG
nHOG DW WKH UHFHLYHU ORFDWLRQV� 7KH HpFLHQF\ RI VXFK DQ DSSURDFK WKXV VWURQJO\ UHOLHV
RQ WKH DYDLODELOLW\ RI D IDVW IRUZDUG VFDWWHULQJ PRGHO�

,,� )25:$5' 02'(/

2XU IRUZDUG VFDWWHULQJ PRGHO LV GHWDLOHG LQ >�@� 7HFKQLFDOO\� LW LV EDVHG RQ WKH
.LUFKKRm 3K\VLFDO 2SWLFV �32� DSSUR[LPDWLRQ DQG RQ WKH *DERU�EDVHG QDUURZ�
ZDLVWHG 3% GLVFUHWL]DWLRQ RI �' DSHUWXUH nHOG GLVWULEXWLRQV LQ >�@� 7KH WLPH GRPDLQ
LV DFFHVVHG E\ DQDO\WLF )RXULHU LQYHUVLRQ� VWDUWLQJ IURP WKH IUHTXHQF\ GRPDLQ 32
PRGHO GLVFUHWL]HG LQ WHUPV RI FRPSOH[ VRXUFH SRLQW QDUURZ�ZDLVWHG TXDVL�UD\ *DXV�
VLDQ EHDPV� )RU WKH FODVV RI 5D\OHLJK �GLmHUHQWLDWHG *DXVVLDQ� WLPH SXOVHV ZH RE�
WDLQHG FORVHG IRUP VROXWLRQV LQ WHUPV RI UDSLGO\ FRPSXWDEOH DQDO\WLF IXQFWLRQV >�@�
7KH DOJRULWKP KDV EHHQ YDOLGDWHG DQG FDOLEUDWHG DJDLQVW DQ LQGHSHQGHQWO\ JHQHU�
DWHG UHIHUHQFH VROXWLRQ EDVHG RQ DQ H[WHQVLRQ >�@ RI WKH PXOWLnODPHQW FXUUHQW PHWKRG
>�@� 7KLV UHIHUHQFH VROXWLRQ LV DOVR XVHG WR VLPXODWH WKH PHDVXUHG GDWD QHHGHG LQ
WKH LQYHUVLRQ SURFHGXUH �VHH 6HF� ,,,�� 7KH SURSRVHG IRUZDUG VFDWWHULQJ PRGHO KDV
EHHQ VKRZQ FDSDEOH RI IXUQLVKLQJ DFFXUDWH DQG QXPHULFDOO\ HpFLHQW SUHGLFWLRQV LQ
D FDOLEUDWHG UDQJH RI SDUDPHWHUV� VR WKDW LW DSSHDUV WR EH VXLWDEOH IRU WKH LQYHUVH
VFDWWHULQJ VFHQDULR GHVFULEHG LQ 6HF� ,�

,,,� 7,0( '20$,1 ,19(56,21 $3352$&+

$V VWDWHG SUHYLRXVO\� WKH SURSRVHG UREXVW LQYHUVLRQ VWUDWHJ\ LV EDVHG RQ D ORZ�
GLPHQVLRQDO FRPSDFW JHRPHWULFDO SDUDPHWHUL]DWLRQ RI WKH XQNQRZQ LQWHUIDFH SUR�
nOH� ZKRVH XQNQRZQ SDUDPHWHUV DUH HVWLPDWHG E\ nWWLQJ WKH PRGHO�EDVHG IRUZDUG



VFDWWHULQJ SUHGLFWLRQ WR WKH DYDLODEOH �PHDVXUHG�VLPXODWHG� GDWD� L�H�� PLQLPL]LQJ
D VXLWDEOH HUURU IXQFWLRQDO� 7KH FKRLFH RI WKH LQWHUIDFH SURnOH SDUDPHWHUL]DWLRQ UH�
TXLUHV WUDGHRm EHWZHHQ FRPSDFWQHVV DQG YHUVDOLW\� NHHSLQJ LQ PLQG WKDW WKH QXPEHU
RI XQNQRZQ SDUDPHWHUV 1 WR EH HVWLPDWHG PXVW EH VPDOOHU WKDQ WKH FROOHFWHG VFDW�
WHUHG nHOG GDWD VL]H� L�H�� 1 z 1U d 1W� :H DVVXPH WKDW WKH VXUIDFH VKDSH FDQ
EH DSSUR[LPDWHG E\ D nQLWH VHW RI TXDUWLF %�VSOLQH EDVLV IXQFWLRQV ZLWK XQNQRZQ
FRHpFLHQWV�

K�[� {
1;

Q �

FQV��[�� ���

/HW (V
ST  (V

\�[S� WT� GHQRWH WKH \�GLUHFWHG VFDWWHUHG nHOG PHDVXUHG DW WLPH WT
DW VHQVRU SRVLWLRQ [S� *LYHQ D YHFWRU RI VSOLQH FRHpFLHQWV F  IF�� ���� F1J DQG WKH
RXWJRLQJ nHOG IURP WKH DSHUWXUH GLVWULEXWLRQ LQ ���� ZH FDQ XVH WKH 3% DOJRULWKP
LQ >�@ IRU WKH VXUIDFH SURnOH LQ ��� WR JHQHUDWH SUHGLFWLRQV RI WKH VFDWWHUHG nHOG
ZDYHIRUPV DW HDFK UHFHLYHU� /HW HVST  HV\�[S� WT� F� GHQRWH WKH PRGHO�EDVHG SUHGLFWLRQ

RI WKH VFDWWHUHG nHOG DW WLPH WT DW VHQVRU SRVLWLRQ [S� IRU VXUIDFH SURnOH FRHpFLHQWV
F � :LWK WKLV QRWDWLRQ� ZH GHnQH WKH HUURU IXQFWLRQDO DV IROORZV

-�F�  NHV�F�b(VN�� ���

ZKHUH HV  IHVSTJ� (
V  I(V

STJ� S  �� ���� 1U� T  �� ���� 1W� $V DQWLFLSDWHG� WKH PHD�
VXUHG GDWD DUH VLPXODWHG YLD WKH UHIHUHQFH VROXWLRQ GHVFULEHG LQ >�@� 7KH UHJXODUL]HG
LQYHUVH VFDWWHULQJ SUREOHP FDQ QRZ EH IRUPDOL]HG DV nQGLQJ WKH FRHpFLHQW YHFWRU F
LQ ��� ZKLFK PLQLPL]HV WKH HUURU IXQFWLRQDO -�F� LQ ���� L�H� nQGLQJ AF VXFK WKDW

AF  DUJPLQ
F

-�F�� ���

7KLV PLQLPL]DWLRQ LV QRQWULYLDO VLQFH WKH FRVW IXQFWLRQDO LQ ��� LV OLNHO\ QRQ�FRQYH[
ZLWK UHVSHFW WR F� 7KHUHIRUH� VWDQGDUG GHVFHQW�EDVHG RSWLPL]DWLRQ DOJRULWKPV DUH
SURQH WR JHW VWXFN LQ ORFDO PLQLPD� DQG JOREDO RSWLPL]DWLRQ WHFKQLTXHV DUH QHHGHG� ,Q
WKH IUHTXHQF\ GRPDLQ DSSURDFK� L�H�� IRU IUHTXHQF\�VWHSSHG WLPH�KDUPRQLF H[FLWDWLRQ
>�@� ZH XVHG D FRQWLQXDWLRQ PHWKRG EDVHG RQ WKH VHOHFWHG XVH RI WKH GDWD DW WKH
YDULRXV DYDLODEOH IUHTXHQFLHV� :H DUH SUHVHQWO\ ZRUNLQJ RQ WKH H[WHQVLRQ RI WKLV
PXOWLUHVROXWLRQ RSWLPL]DWLRQ VWUDWHJ\ WR WKH FDVH RI VKRUW�SXOVH H[FLWDWLRQ�

,9� 5(68/76 $1' &21&/86,216

7R LOOXVWUDWH WKH UHVXOWV DFKLHYDEOH ZLWK RXU WHFKQLTXH ZH VKRZ LQ )LJ� � D
UHFRQVWUXFWLRQ H[DPSOH IRU VWHSSHG IUHTXHQF\ *35 PHDVXUHPHQWV� REWDLQHG XVLQJ
WKH DOJRULWKP LQ >�@� 7KH VRLO ZDV PRGHOHG DV ORVVOHVV� QRQGLVSHUVLYH� ZLWK UHODWLYH
SHUPLWLYLW\ qU  �� 7KH PD[LPXP VORSH RI WKH URXJK VXUIDFH SURnOH LV ��R� 7KH
LQWHUURJDWLQJ nHOG LV JHQHUDWHG E\ D FRVLQH�WDSHUHG DSHUWXUH nHOG GLVWULEXWLRQ RI
ZLGWK G  ��� ORFDWHG DW ]$  ���� 7KH FRPSOH[ VFDWWHUHG nHOG LV PHDVXUHG DW
�� HTXLVSDFHG REVHUYDWLRQ SRLQWV DW ]REV  ��� VSDQQLQJ WKH LOOXPLQDWHG UHJLRQ�
DQG DW IRXU RSHUDWLQJ ZDYHOHQJWKV �w  ���� ���� ������ ������ 7KH OHQJWK VFDOHV
DUH QRUPDOL]HG ZLWK UHVSHFW WR WKH VPDOOHVW UDGLXV RI FXUYDWXUH 5F RI WKH ORFDO
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Abstract| An adaptive framework is presented

for wide-band ground penetrating radar imag-

ing of low-contrast buried objects in the pres-

ence of a moderately rough air-soil interface. The

proposed approach relies on recently developed

Gabor-based narrow-waisted Gaussian beam algo-

rithms as fast forward scattering predictive mod-

els. A prior nonlinear inverse scattering problem

is solved to estimate the unknown coarse scale

roughness pro�le. The Born-linearized under-

ground imaging problem is subsequently solved

compensating for the clutter e�ect produced by

the estimated roughness pro�le. Preliminary out-

comes indicate that the proposed framework is

attractive as compared to standard statistical ap-

proaches.

I. Introduction

In ground penetrating radar (GPR) applications,
modelling the distortion, introduced by a twice-
traversed rough air-ground interface, in the interro-
gating signal on its way to and from the targets of in-
terest is a key issue. Standard statistical approaches,
which tend to model such distortion as an additive
colored Gaussian noise, perform reasonably well in
detection problems [1], but have been found to yield
limited accuracy and robustness in classi�cation and
reconstruction (see, e.g., [2]).

In this paper, with particular reference to the
problem of anti-personnel plastic land mine detec-
tion/classi�cation via wide-band GPR, we present a
novel adaptive approach, based on a prior estimation
of the unknown coarse scale roughness pro�le and a
subsequent quasi-deterministic compensation of the
related clutter. The proposed approach is built on re-
cently developed Gabor-based narrow-waisted Gaus-
sian beam (GB) algorithms for short-pulse scattering
from, and transmission through, moderately rough
dielectric interfaces [3]. By exploiting these fast for-
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Fig. 1. Problem geometry.

ward models, the prior surface estimation is posed
as a nonlinear optimization problem [4]. A beam-
computed Green's function accounting for the distor-
tion introduced by the estimated roughness pro�le
is exploited in the subsequent underground imaging
problem, which is linearized via Born approximation
[5] and solved for the unknown dielectric permittiv-
ity contrast, using various point-wise and object-based

reconstruction techniques.

II. Rough surface forward scattering

The problem geometry is sketched in Fig. 1: in an
(x; z) two-dimensional (2D) coordinate space, a lossy
homogeneous dielectric half-space (soil) of known rel-
ative permittivity �r and conductivity �, bounded by
a moderately rough interface z = h(x), is illuminated
by a y-directed (TM-polarized) pulsed �eld generated
by a truncated aperture �eld distribution of width d
at z = zA. We assume that the incident �eld can
be approximated by a pulsed truncated tapered plane
wave propagating in the negative z-direction (Fig. 1),

ei(r; t) � g(x)p[t� c�1(z � zA)]; (1)

where r � (x; z), p(t) is a pulse of length T � d=c,
with c representing the speed of light, and g(x) is the
taper pro�le. In this preliminary investigation, we
ignore the presence of buried targets.



The forward scattering model, detailed in [3], is
based on the Kirchho� Physical Optics (PO) approx-
imation in conjunction with the Gabor-based narrow-
waisted pulsed beam (PB) discretization of 1D aper-
ture �eld distributions in [6], and is restricted to
moderate roughness (both in height and slope) and
slightly lossy soils. The PO equivalent currents,
which generate reected and transmitted �elds, are
�rst parameterized in the frequency domain in terms
of x-domain discretized m-indexed Gabor basis func-
tions with narrow width L, centered on the Gabor lat-
tice points xm = mL; these initial conditions generate
narrow-waisted, quasi-ray, complex-source-point GBs
propagating along the local reection/refraction di-
rections. For Rayleigh (i.e., di�erentiated Gaussian)
pulses, the resulting time domain analytic Fourier in-
version integral can be approximated by rapidly com-
putable closed form expressions. One obtains the fol-
lowing approximate PO-PB expansions for reected
and transmitted �elds er and et, respectively (see [3]
for details),

e�(r; t) �
X

jmj�(d=2L)

a�mb
�
m(r; t�tm); � = r or t; (2)

where the Gabor expansion coeÆcients a�m and the
time delays tm are approximated by sampling the PO
equivalent currents at the lattice points xm = mL,
and the PB propagators brm and btm are expressed in
terms of rapidly computable conuent hypergeomet-
ric functions [3].

III. Inverse scattering

A. Rough interface estimation

The interface estimation problem has been ad-
dressed in [7] for frequency-stepped time-harmonic
excitation and sparse data, and has been extended
in [4] to pulsed excitation. Here, we briey review
the pulsed case. Due to the inherent ill-posedness of
the problem, we exploit a robust inversion strategy
based on an appropriate compact low-dimensional
representation of the roughness pro�le, whose un-
known parameters are estimated by �tting the PO-
PB forward scattering prediction to the available
(measured/simulated) data, i.e., minimizing a suit-
able cost functional. The resulting nonlinear opti-
mization problem requires repeated evaluations of the
reected �eld at the receiver locations, and therefore
its computational eÆciency is strongly tied to the ef-
�ciency of the PO-PB algorithm. We found that a
quartic spline parameterization

h(x) �
NX
n=1

cns
(4)
n (x); (3)

provides a good tradeo� between versatility and com-
putational burden. In (3), cn are unknown coeÆ-

cients, and s
(4)
n represents a quartic B-spline basis

function. With êrpq = êr(xrp; z
r; tq) denoting the y-

directed reected �eld measured at time tq at receiver

location (xrp; z
r) (Fig. 1), and erpq = er(xrp; z

r; tq; c)
denoting the corresponding PO-PB forward predic-

tion for surface pro�le coeÆcients c = fc1; :::; cNg,
we formalize the regularized inverse scattering prob-
lem as �nding the coeÆcient vector c in (3) which
minimizes the cost functional

J(c) = ker(c)� ê
rk2 =

NrX
p=1

NtX
q=1

p
�
erpq � êrpq

�2
; (4)

where Nr is the number of receivers, Nt the num-
ber of time samples at each receiver, and p are nor-
malization coeÆcients. The cost functional in (4) is
generally non-convex with respect to c, and therefore
the possible presence of local minima renders its min-
imization non-trivial. The resulting global optimiza-
tion strategies and computational issues are discussed
in [4].

B. Underground imaging

We again refer to the problem geometry in Fig. 1,
but now include a buried plastic target with dielectric

permittivity �
(tar)
r and conductivity �(tar) � 0 occu-

pying the region D(tar) in the half-space z < h(x).
The TM-polarized total �eld observed at the receiver
location r

r = (xr; zr) can be written as

e(rr; t) = eb(rr ; t) + es(rr ; t); (5)

where eb represents the background �eld (the �eld in
the absence of the target, i.e., er in (2)), and

es(rr; t)=�

ZZ
D(tar)

�
��r(r

0)

c2
@2t [gb(r

r; r0; t; t0)
e(r0; t0)]

+
�

c�0
@t [gb(r

r; r0; t; t0)
 e(r0; t0)]

�
dr0 (6)

is the �eld scattered by the target. In (6), the ob-

ject function ��r � (�
(tar)
r � �r) represents the un-

known relative permittivity contrast, c is the speed
of light, gb denotes the space-time Green's function of
the rough-interface dielectric half-space, e is the total
�eld in the target region for pulsed excitation p(t),
and 
 indicates time convolution. Assuming that an
estimation of the rough interface pro�le is available,
one can generate prediction of the background �eld
contribution eb in (5) for a given pulsed excitation,
and hence isolate the contribution es from the target.
For plastic anti-personnel land mines, of particular
interest in our investigation, the dielectric properties
of the target are typically close to those of the back-

ground soil, i.e., �
(tar)
r � �r. Accordingly, one can

exploit the weak-scattering Born approximation [5],

e(r0; t0) � et(r0; t0); r
0 2 D(tar); (7)

where the total �eld e inside the target is approxi-
mated by the transmitted �eld et in the target region
in the absence of the target, thus yielding in (6) a lin-

ear model relating the scattered �eld at the receivers
to the dielectric contrast ��r. The needed convolu-
tions gb
et and their time derivatives in (6) with (7)



can be eÆciently computed using PO-PB expansions
similar to (2).
Based on the linear forward scattering model in (6)

and (7), and on a number of observations of the scat-
tered �eld waveforms at the receivers, an inversion
scheme can be constructed by discretizing the test
domain D(test) to be imaged into a number of ade-
quately small pixels. Assuming that Nt time samples
of the scattered �eld es are collected at Nr receivers,
and that the test domain is discretized into Np pix-
els, the linear forward model in (6) and (7) can be
discretized accordingly and cast into matrix form as

y = A � x+ n; (8)

where y is a column vector containing the Nr �Nt time
samples of the known term in (6) and (7),

es(rr ; t)+
�

c�0

ZZ
D(test)

@t
�
gb(r

r; r0; t; t0)
et(r0; t0)
�
dr0;

(9)

x is a Np-element column vector containing the un-

known dielectric contrast ��r at each pixel, A is a
(Nr �Nt)�Np matrix containing the space-time dis-
cretization of the integral

�c�2

ZZ
D(test)

@2t
�
gb(r

r; r0; t; t0)
 et(r0; t0)
�
dr0; (10)

and the noise vector n accounts for measurement un-
certainty and unmodeled e�ects. Due to the inherent
ill-posedness of this inverse scattering problem, and
the various approximations in our model, it is essen-
tial to introduce some regularization. In this connec-
tion, we have explored various edge-preserving regu-
larization approaches such as such as total variation

[2] and curve evolution [8]. In total variation regular-
ization, the problem is posed as the minimization of
the functional

�(x)=
y�A � x2+�1 K � x

2+�2
D � x

1 ; (11)
where the parameters �1 and �2 are usually deter-
mined empirically, D is a spatial gradient operator,
and the operator K penalizes negative values of the
reconstructed object function (the sign of the object
function ��r is assumed to be known a priori)

�
K � x

�
i
=

�
xi; xi < 0;
0; xi � 0:

(12)

In (11), the L1 norm on the spatial gradient term en-
courages piecewise smoothness in the reconstructed
object function and, unlike the L2 norm in standard
Tikhonov regularization, allows sharp edges to form,
yielding visually better (less blurred) reconstructions.
Alternatively, one can exploit object-based reconstruc-
tion approaches, applicable to piece-wise smooth ob-
ject functions, where instead of a point-wise recon-
struction one focuses on the direct estimation of the
target boundary and the dielectric contrast value,
with a considerable saving in the number of unknowns
and a consequent better conditioning of the problem.
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Fig. 2. Simulation geometry and parameters. Soil: �r = 3,
� = 0:01 S/m. Target: 10cm� 6cm ellipse with center

at 10cm below nominal ground, �
(tar)
r = 3:3. Excitation:

cosine-tapered aperture �eld distribution (zA = 30cm, d =
80cm), fourth-order Rayleigh wide-band excitation (2:45
GHz center frequency, 1:4 GHz bandwidth). Test domain:
20cm�20cm square (30� 30 pixels, i.e., Np = 900). Nr =
11 equispaced receivers at 20cm above nominal ground.

This is usually accomplished via curve evolution tech-
niques, i.e., by designing a gradient ow which at-
tracts initial closed curves to the target boundary (see
[8] for details).

IV. Results

The simulation geometry and parameters are illus-
trated in Fig. 2. We consider a plastic mine-like
10cm� 6cm elliptic target with relative permittivity

�
(tar)
r = 3:3 shallowly buried in a homogeneous di-
electric half-space with constitutive parameters cho-
sen so as to simulate a class of realistic sandy soils
(�r = 3, � = 0:01S/m). The rough surface realiza-
tion, parameterized in this experiment with 20 B-
spline basis functions, was generated randomly so as
to mimic typical (� 3 � 4 cm peak-to-peak, maxi-
mum slope � 30o) natural (moderate) roughness. A
cosine-tapered transverse �eld distribution of aper-
ture width d = 80cm was chosen, with a fourth-order
Rayleigh wide-band excitation (2:45 GHz center fre-
quency, 1:4 GHz bandwidth). Synthetic �eld mea-
surement data were generated via full-wave solution
of the forward scattering problem (see [3] for details).
A 20cm�20cm square test domain surrounding the
target to be imaged was discretized in 30� 30 pixels.
In this experiment, Nr = 11 equispaced receivers at
20cm above nominal ground were used.
For the interface estimation problem, Nt = 100

time samples of the early-time response (i.e., exclud-
ing causal contributions from the test domain) at each
receiver were used in the cost functional (4), thus
avoiding any possible bias due to target scattering.
The cost functional (4) was minimized using the con-
jugate gradient (CG) strategy described in [4], assum-
ing as initial guess a at interface at z = 0. A typ-
ical reconstruction example is shown in Fig. 3. The
reconstruction is quite accurate throughout most of
the interval, except near the edges of the illumina-
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Fig. 3. Parameters as in Fig. 2. Rough interface pro�le
reconstruction example (Nt = 100).
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Fig. 4. Parameters as in Fig. 2. Underground imaging exam-
ples (Nt = 300). (a): Ground truth (��r = 0:3). (b):
Total variation reconstruction with adaptive compensa-
tion. (c): Curve evolution reconstruction with adaptive
compensation; estimated target boundary (white curve) is
superposed on ground truth; estimated dielectric contrast:
��r = 0:32. (d): Total variation reconstruction without
compensation (at interface at z = 0).

tion region. This kind of accuracy was observed in
many numerical experiments, with CG convergence
typically achieved in 30� 40 iterations.
The obtained interface estimation was used to com-

pute the background �eld eb in (5), and hence iso-
late the target contribution es. For the underground
imaging problem, Nt = 300 time samples of the late-

time response (i.e., causally related to the test do-
main) were used. The data matrix A and the known
term y in (8) were computed using a PO-PB algo-
rithm similar to (2). Both total variation (via the
iterative scheme in [2]) and curve evolution (using
the algorithm in [8]) reconstructions were attempted.
The underground imaging algorithms are still under
investigation, and are not yet fully optimized and cali-
brated. Some preliminary results are shown in Fig. 4.
Speci�cally, the true object function (ground truth)
is shown in Fig. 4a, and the corresponding total vari-
ation and curve evolution reconstructions are shown
in Figs. 4b and 4c, respectively. It is observed that
total variation, though not yielding a highly accurate

point-wise reconstruction, provides a reasonably ac-
curate target localization. On the other hand, curve
evolution provides rather accurate direct estimations
of both target boundary and dielectric contrast. Note
that the limited viewing geometry renders the prob-
lem more ill-posed in the horizontal direction, result-
ing in less accurate horizontal localization in both
cases. The e�ect of the interface roughness and the
importance of adaptive compensation is highlighted
in Fig. 4d, where a total variation reconstruction
without any compensation (i.e., assuming a at in-
terface at z = 0) is shown. The poor quality of the
reconstruction can be only slightly improved using
statistical processing, as shown in [2], but is still not
comparable to that of Figs. 4b,c.

V. Conclusions

An adaptive approach for rough surface under-
gound imaging has been presented, which exploits
short-pulse Gabor-based narrow-waisted Gaussian
beam algorithms as fast forward scattering models.
Preliminary 2D results, restricted to slightly lossy
soils with moderate roughness and low-contrast tar-
gets, show that quite accurate estimations of the
coarse scale roughness pro�le can be obtained from
reected �eld sparse data, and can be fruitfully ex-
ploited to enhance underground imaging, with rea-
sonable computing time and resources.
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Abstract

This paper develops new approaches for imaging weak-contrast buried objects using data from a ground
penetrating radar array. An approximate physical model relating the collected data to the underground objects
is developed. This model uses ray optics to represent the air/soil interface, and a Born approximation to
model the weak contrast back-scattering from buried objects. In order to address both modeling errors and
ill-posedness, the proposed image reconstruction algorithms use regularization based on a total variation norm
with orientation preference. The algorithms are tested on data generated by nonlinear finite difference time
domain electromagnetic simulations.

1 Introduction

Problems of locating and reconstructing physically inaccessible objects arise in many different applications
such as landmine detection and removal, seismic imaging, archaeological surveying, and hydrology. Many
of these applications require techniques for accurate imaging that provide reliable information about buried
objects’ physical properties. This is particularly difficult when there is weak contrast between the properties
of the buried object and the surrounding soil.

This paper focuses on underground imaging techniques for weak contrast buried objects using electro-
magnetic Ground Penetrating Radar(GPR). GPR is the preferred approach for detection and localization of
plastic mines [4], where the traditional metal detectors fail. The approach proposed in this paper is based
on the principles of diffraction tomography [5][6] for imaging weak-contrast dielectric objects. In diffraction
tomography, the imaging problem is posed as an inverse scattering problem, and a physically-based linear
model is used to define the relationship between collected data and buried objects’ properties. Reconstruct-
ing an estimate of the objects’ profiles is thus a linear inversion problem, for which many techniques have
been developed based on singular value decompositions, regularization and optimization methods [7].

For the problems of interest in this paper, there are two major physical effects to consider: propagation
through an air-ground interface, and backscattering from objects buried underground. The air/soil interface
is modeled using ray optics. For backscattering, the physical models are based on the Born approximation in
inverse scattering. This is because there is low contrast between the soil and mine permitivities (εsoil = 2.6,
εmine = 2.9), resulting in weak scattering. The resulting linear models relate the received signals to the
transmitted signals and the underlying underground objects. This linear transformation is approximate and
ill-conditioned, requiring algorithms which are robust to modeling errors and sensor noise.

Our proposed approach for inversion is based on robust regularization. Since edge information is impor-
tant for delineating buried objects, we use total variation regularization [9], instead of conventional regu-
larization techniques such as Tikhonov and singular value decomposition methods which result in blurred
edges. Furthermore, we exploit the structure of the vertical illumination geometry for buried objects to
introduce different levels of horizontal and vertical regularization. The rest of this paper is organized as

1



follows. Section 2 introduces the configuration of the underground imaging system. Section 3 contains the
model of the backscattering through a flat air/soil surface. Section 4 describes the total variation based reg-
ularization method. Section 5 compares the performance of the proposed algorithms with that of standard
regularization techniques on examples generated using high-fidelity nonlinear simulations.

2 Imaging System Configuration

The underground imaging system of interest consists of an array of GPR transmitters and a different array
of receivers, both located above ground. Fig. 1 shows the geometry of the sensor and object configuration.
To simplify the analysis, we consider a two-dimensional problem with transverse magnetic(TM) polarization
mode for the signal, a flat interface between air and soil, and uniform relative permitivity for the background
soil. The combined GPR transmitters generate a short pulse TM wave, approximated by a plane wave in the
region of interest, propagating perpendicular to the soil. The pulse width is approximately 0.8 nanoseconds,
corresponding to a 1.25 GHz bandwidth.

Interactions between the transmitted wave and the soil result in part of the plane wave penetrating the
underground soil. This wave interacts with the buried object, generating backscattered signals which must
propagate through the ground/air interface and up to the receivers.

The region enclosed by the dash lines is the region of interest for reconstruction. Since the TM mode
is used, the magnetic field orientation is perpendicular to the planar geometry, so only its Hz component
is non-zero. Similarly, the electric field has components only in the plane, so only Ex and Ey are non-zero.
Although the transmitted signal has negligible Ey component because of its plane wave orientation, the
backscattered signal will have both Ex and Ey components. We assume that the receivers are polarized, and
receive only the contribution of the Ex field.
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Figure 1: Geometry of the sensor and mine configuration

3 Problem Formulation

The basic mechanism for backscattering is due to a difference in the relative permitivities of the objects
of interest and the surrounding background soil. We assume that the object of interest is described by the
“object function” at position �r as

O(�r) = n(�r)2/n2
soil − 1 (1)

where n(�r) =
√

µ(�r)ε(�r) is the square root of the product of the relative permeability and permitivity at
�r. For the imaging problems of interest, the relative permeabilities of the object and background are close:
µ(�r) ≈ µsoil ≈ 1. Thus,

O(�r) = n(�r)2/n2
soil − 1 = ε(�r)/εsoil − 1 (2)
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The field u(�r, t) satisfies the wave equation[
�2 − 1

v(�r)2
∂2

t

]
u(�r, t) = 0 (3)

where v(�r) is the wave propagation speed at position �r, which is related to the relative permitivity by

v(�r) = vsoil

√
εsoil

ε(�r)
(4)

where vsoil is the wave propagation speed in soil. Under the time-dependent Born approximation, the field
scattered by the buried object can be expressed in the form

u(�r, t) ∝ −∂2
t

∫
d�r

∫
dt′O(�r)ui(�r′, t′)G(�r, t;�r′, t′) (5)

where ui(�r′, t′) is the incident pulsed plane wave, and G(�r, t;�r′, t′) is the time-dependent Green’s function
in the presence of the air/soil interface determining the field strength at �r, t from a point source at �r′, t′.
Note that, although the buried object is assumed to be in weak contrast with the soil, the air properties are
strongly in contrast with that of the soil, and thus some care is required to compute the Green’s function
G. Fig 2 shows the reflection and refraction of the TM mode at the air/soil interface. Given source position
a and destination position c, according to Snell’s law, sinθ1

sinθ2
=
√

µ2ε2
µ1ε1

≈
√

ε2
ε1
, so we can determine the

position b on the air/soil interface. Since the received measurement consists of E′
x, the field of interest

u(�r, t) = E′
x(�r, t) in our problem. The refraction coefficient of E′

x is given by

Γ =
E′

x

E
=

2cosθ1sinθ2cosθ2

sin(θ1 + θ2)cos(θ1 − θ2)
(6)

Using this model, the time-dependent Green’s function in the presence of an air/soil interface can be
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Figure 2: Reflection and refraction in TM mode

expressed as

G(�r, t;�r′, t′) =
Γδ(t− t′ − ab/vsoil − bc/vair)

2π(
√
εsoilab+ bc)

(7)

where ab and bc are the distances between a, b, and b, c respectively.
Based on the Born approximation presented in (5), we build the inversion scheme by sampling the

measured Ex fields at each receiver and discretizing the object function. Including observation noise, the
resulting model from (5) can be put into a matrix form as

y = Ax+ n (8)

where y = [yT
1 |yT

2 | · · · |yT
N ]T , and yi is a column vector containing the sampled time signal collected by the

ith receiver. The area of interest is discretized into M cells and x denotes a column vector which represents
the object function in the area of interest. The matrix A is the discretized integral of (5), and n represents
noise due to discretization or measurement error.
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4 Regularization Method

The matrix A is both ill-conditioned, and based only on an approximation of the true physics. In order to
obtain accurate reconstructions, we use regularization techniques to introduce additional information in the
reconstruction algorithms. Since the object function is piecewise smooth and the mine’s relative permitivity
is larger than that of the soil, we use two different regularization functionals to encourage smoothness
and positivity of the reconstructed object function. With the conventional Tikhonov regularization, the
reconstruction problem minimizes the following objective:

x̂ = argmin
x
‖y −Ax‖22 + λ1‖Kx‖22 + λ2‖Dx‖22 (9)

where D is the spatial gradient operator and K is defined by

[Kx]i =
{xi if xi<0

0 otherwise
(10)

which penalizes negative values of the reconstructed object function.
To accurately locate a buried object, precise edge information is desired. However, with the conventional

Tikhonov regularization (8), the edges in the reconstructed mine profiles tend to be blurred. As an alterna-
tive, we propose to use total variation regularization, which has better edge-preserving properties. In total
variation regularization, the original L2 norm on the piecewise smoothness penalty term is replaced with
an L1 norm, which penalizes large jumps less than the L2 norm and thus allows sharp edges to form in
reconstructed object profiles. The total variation based regularization objective is:

x̂ = argmin
x
‖y −Ax‖22 + λ1‖Kx‖22

(11)

+ λ2

M∑
i=1

√
α[Dxx]2i + (2− α)[Dyx]2i

where Dx and Dy denote the first derivative operators in the horizontal and vertical directions respectively,
and α controls the orientation preference of the smoothness regularization term. When α = 1, there is no
orientation preference. A regularization with orientation preference is desirable because the limited viewing
geometry results in higher resolution in the vertical direction than in the horizontal direction. Thus, the
problem is more “ill-posed” in the horizontal direction, and needs stronger regularization in that direction.

Equation (11) can be solved iteratively based on “half-quadratic” approximations[9], as follows. Let x(k)

denotes the solution in the kth iteration step. Let

G(k) = diag
[ 1√

α[Dxx(k)]2i + (2− α)[Dyx(k)]2i + β2

]
(12)

where β is a small smoothing parameter, which controls the the closeness to the true L1 norm solution and

the convergence speed. Let P (k) = diag
[
p
(k)
i

]
, where p

(k)
i =

{1 if x
(k)
i

<0

0 otherwise
. Then, the next solution x(k+1) is

obtained by solving the following linear equation:

[
ATA + λ1P

(k) +
λ2

2
αDT

x G(k)Dx
(13)

+
λ2

2
(2− α)DT

y G(k)Dy

]
x(k+1) = AT y

5 Simulation Results

We use an accurate electromagnetic simulation software package, which uses the FDTD algorithm[8],
to generate data. For the simulation presented in this paper, a flat air/soil interface is used; the soil was
modeled as lossless, non-dispersive, and has uniform relative permitivity(εsoil = 2.6). A plastic mine was
buried in the soil, with relative permitivity of 2.9. Both the soil and the mine’s relative permeabilities are 1.
The mine’s upper surface is at a depth of 10cm below ground, and the mine is 6 cm thick, with a diameter

4



of 10cm. The region of interest is a 20cm by 20cm square, which is 5cm below the ground surface(see Fig.
1).

In the computation experiments, the full nonlinear simulation code is used to generate collected signals
for two conditions: the case where the mine is present, and the case where only soil is present. The signals
collected when no mine is present consists entirely of the ground reflection; these signals are used to subtract
the ground reflection from the signals collected when the mine is present, leaving primarily the signals due
to backscattering from the mine. Fig. 3 shows the signal collected by the middle receiver(after subtracting
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Figure 3: Data collected by the middle receiver

the ground reflection signal) and the signal predicted by the discrete Born approximation model. Fig. 4
and Fig. 5 illustrate how the data collected by different receivers decays with the receiver’s offset from the
central axis. To obtain the measured data, we corrupted the simulation outputs with 10dB of additional
white Gaussian noise. The resulting signals were processed using the algorithms of the previous section to
obtain the buried object profiles.

The reconstruction results are shown in Fig. 6. The total variation method with no orientation preference(α =
1) produces visually better results than the Tikhonov regularization, but lacks horizontal resolution. The
total variation method with orientation preference(α = 1.8) gives the best reconstruction result, which
significantly improves the horizontal resolution compared to the other two methods.
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6 Conclusion

We have developed an efficient reconstruction algorithm for weak-contrast buried objects based on the
Born approximationmodel and edge-preserving regularization techniques. We have illustrated the advantages
of this algorithm for an example including buried plastic mines imaged using ground-penetrating radar arrays.

The particular model used in this paper made important simplifying assumptions such as a flat air/soil
interface and lossless, non-dispersive soil propagation. Our current research directions are exploring alter-
natives for incorporation of these effects into the reconstruction algorithms.
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ABSTRACT 
 
This paper attempts to investigate hypothesis test performance in mine detection, based 
on numerically simulating the wideband scattering of experimentally measured GPR 
signals by realistic, dispersive soil interfaces. We employ a 2D finite difference time 
domain (FDTD) method to analyze the delay and amplitude characteristics of ground-
scattered waves as a function of roughness parameters. In addition, we apply binary 
hypothesis tests to the signals obtained using physics-based signal processing techniques 
to investigate the presence of the target at certain depth. We quantify the detection 
performance in terms of the spatial distribution of transmitter and receiver. 
 
INTRODUCTION 
 
Detecting buried dielectric targets—such as nonmetallic antipersonnel mines–-with 
ground penetrating radar (GPR) is important and difficult, because the dielectric constant 
of nonmetallic mine targets are similar to those of the surrounding soil, and because their 
size is comparable to the thickness of soil layer above it. In addition, the soil dielectric 
constant may not be well characterized, and the ground surface will usually be rough, 
often with roughness of the order of the target burial depth. We simulate the effects of 
random rough ground surface on the GPR signal using multiple Monte Carlo runs of 2D 
TM FDTD calculations. A typical bistatic geometry (Fig. 1a) is used along with a 
measured excitation signal generated by the Geo-Centers TEMR GPR antenna (Fig. 1b).  
 
  Transmitter        24.5 cm        Receiver                                                                                                                                                           
      
          
     Z=0 
 
                        depth 

 
                          
                       
      
(a)                                L=294 cm                   (b) 

 
Figure 1: (a) Rough surface computational geometry; (b) incident measured waveform 

 

In the FDTD code, the time step is ∆t = 20ps and ∆ = 1.22cm. Simulations are done for 
500 surface realizations with and without a mine target at various depths below the 
nominal surface level for a variety of roughness statistics. The probability density 
function for the height and the surface profiles spectrum are both assumed Gaussian 
[1,2].  The soil model is Puerto Rican clay loam with 10% moisture and 1.4g/cc density, 
with average dielectric constant 2.6' =ε [3]. 
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SIGNAL AND CLUTTER SEPARATION MODELING AND PROCESSING 
 
The background averaging procedure is used to remove the ground clutter signal, when 
the target is small, shallow, and of low contrast, [2,4]. The cross-correlation function and 
relative scaling factor are introduced. The cross-correlation function between reference 
signal ‘f ’ and any realization signal ‘i’ is: 
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The relative scaling is defined as: 
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Where i = 1, 2, …M is the rough surface realization index, M is the size of Monte Carlo 
sample, and N is the total number of time steps. Compared to the scaling definition that is 
relative to the signal energy, the background averaging process will end up with a better 
output signals using the definition in (1c).  The nominal background signal is found by 
aligning the time index of its maximum cross-correlation mmax i, scaling by Ai, and 
averaging.  To reduce ground clutter, this nominal background signal is again shifted 
back by mmax i, scaled by Ai, and subtracted from each Si signal.  These background-
subtracted signals are once again realigned to the expected target position [2,4]. Fig. 2 
shows the average of 500 aligned background-subtracted signals (solid line) and the ± 1.0 
standard deviation confidence interval (dotted lines).  
 
 
SIMPLE BINARY HYPOTHESIS TESTING 

 
We simplify the mine detection problem to be: whether there is mine at certain depth 
with acknowledgement of the roughness of the surface. Each of the two answers 
corresponds to a hypothesis: 
 

H1 corresponds to the presence of a target (i.e. mine presence) 
H0 corresponds to no target (i.e. no mine) 
 

Applying the likelihood ratio test, which is derived to be [5]: 

 2
1 ( RT - m0

T ) Q0 ( R - m0
 ) - 2

1  ( RT – m1
T ) Q1 ( R – m1

 ) <
>

1

0

H

H

 threshold    (2a) 

where R, m0, and m1 are vectors with N elements, Q0 and Q1 are N x N covariance 
matrices. R represents the individual background-subtracted (target) signals. m1 is the 
average of background-subtracted (target) signals shown in Fig. 2, and m0 is the average 
of unaligned no target (clutter) signals, i.e. the no-target signal. The covariance matrices 
Q0 and Q1 are the inverses of the diagonal matrices of standard deviations of the target 
and clutter signals. 100 out of 500 target signals and 100 out of 500 clutter signals are 
grouped as test signals. The mean signals m0 and m1, and standard deviations are 
obtained from the remaining 400 target signals and 400 clutter signals. The likelihood 
ratio test is applied to each individual test signal associated with a set of trial thresholds. 



Sequentially, the probability of false alarm PF (i.e. we say the target is present when it is 
not) and the probability of detection alarm PD (i.e. we say the target is present when it is) 
are obtained. The sample performances of the detections for several rough surfaces with 
Gaussian height σc and correlation length Lh parameters, and depths are shown in Fig. 3.  
 
As the depth of buried mine increases within some region and the surface becomes more 
flat, the performance improves. By relating signals associated with certain depth to 
several mean signals for different depths, it has been found that the best performance 
always occurs for the correct depth estimate. An example is shown in Fig. 4. The test 
signals with depth 8.5cm were related to the mean signals belonging to the same 
roughness group.  Thus, the correct target depth will be obtained by testing sample 
signals with stored mean signals for a given ground surface roughness. Interestingly, the 
ROC curves for close but not exact depths are worse than those for much deeper or 
shallower depth estimates.  
 
The previous results are based on the geometry shown in Fig. 1a, with the target centered 
beneath the transmitter-receiver (TR) pair. As the pair moves away from the mine, the 
test performance degrades.  Also, the amplitude of the mean target signal will drop, as 
shown in Fig. 5.  However, the combination of several TR views improves the detection 
performance. Although performance increases with the number of views, the combination 
of three TR positions, each spaced 10 spatial steps apart (i.e. 10*1.22 cm = 12.2 cm) to 
the left and right, appear to give excellent results. The improvements of using three and 
five bistatic TR pairs are shown in Fig. 6.  
 
CONCLUSION  
 
Using the physics-based signal processing, the background-subtracted and clutter signals 
have been analyzed. Applying binary hypothesis tests on these signals, the mine can be 
localized at certain depths even under rough ground surfaces. Furthermore, the detection 
performance is improved by combining multiple TR pair combinations.  
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Figure 2:  Average aligned background-subtracted 
signal with ± 1.0 standard deviation confidence 
interval for σh = 1 cm, Lc = 10 cm. 

Figure 3:  Receiver Operating Characteristic (ROC) 
curves, for (σh, Lc, depth) = (1, 10, 4.8), (1, 10, 6.1), 
(1, 10, 8.5), (1, 10, 9.8), and (3, 10, 8.5) cm. 

Figure 4:  ROC curves, for (σh, Lc) = (1, 10) cm, 
with target at depth 8.5 cm, using various depth test 
hypothesis. 

Figure 5:  Average aligned background-subtracted 
signals for centered, ± 12.2 cm, and ± 24.4 cm TR 
pair positions. 

Figure 6:  ROC curves for combinations of 1, 3 and 
5 TR pairs  
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Clutter Modeling: Rough Ground Surface
Outline

• Necessity of modeling soil background 
environment in mine detection

• Frequency domain discrimination of non-
metallic target shapes for smooth/rough 
ground 

• Dispersion in the time domain
• Monte Carlo FDTD modeling of rough 

ground effects.



Numerically Modeling EM Wave 
Propagation in Soil to Aid Sensor Design

• Only with knowledge of the environment surrounding mines 
can efficient advanced sensors be developed.

• Soil environment is extremely varied and inhomogeneous.
• Propagation is quite different in different soils.
• Numerical modeling is the only viable means of testing 

candidate sensing concepts on the wide variety of conditions.
• Simple flexible models that capture the essential electrical 

characteristics are best.
• Visualization of wave propagation assists in sensor synthesis.



FDFD Model of Plane Wave Incidence on 
Various Buried Non-Metallic Target Shapes
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Different Buried Test Target Shapes
H

ei
gh

t (
cm

)

Horizontal Position (cm)

-10 -5 0 5 10

-15

-10

-5

0
square

-20
-10 -5 0 5 10

-15

-10

-5

0
circle

-20
-10 -5 0 5 10

-15

-10

-5

0
diamond

-20

blob

-10 -5 0 5 10

-15

-10

-5

0

-20
-10 -5 0 5 10

-15

-10

-5

0
star

-20



500 MHz, depth = 5 cm
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Scattered Field - Real Part
1000 MHz, depth = 5 cm
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Propagation in Soil is Frequency Dependent
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Non-Metallic Mine Scattered Field  (10 cm depth)
a) Smooth Surface, b) Rough Surface
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Rough Surface Sensing GeometryRough Surface Sensing Geometry
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Flat Ground ScatteringFlat Ground Scattering
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Rough Surface CharacterizationRough Surface Characterization

éé Gaussian joint PDF for surface heights with Gaussian joint PDF for surface heights with 
zero mean and r.m.s = zero mean and r.m.s = σσhh::

éé Surface height autoSurface height auto--correlation function: correlation function: 
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Rough Surface ParametersRough Surface Parameters

Z = 0Z = 0
Z = Z = σσhh

Z = 0Z = 0

Z = Z = σσhh

llcc

llcc

éé σσhh=10.5cm, =10.5cm, llcc==30cm:30cm:

éé σσh h = 6cm, = 6cm, llcc = = 7.5cm:7.5cm:



Rough Surface Scattering (1)Rough Surface Scattering (1)
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Rough Surface Scattering (2)Rough Surface Scattering (2)
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CrossCross--Correlation FunctionCorrelation Function
éé Normalized CrossNormalized Cross--Correlation Functions between Correlation Functions between 

Flat ‘Flat ‘f f ’ and Rough ‘’ and Rough ‘ii’ Surface:’ Surface:
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NN = number of time steps in each signal.= number of time steps in each signal.
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Ground Surface ScatteringGround Surface Scattering
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Scattering Signal StatisticsScattering Signal Statistics
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Ground Surface TransmissionGround Surface Transmission
σσhh=10.5cm, =10.5cm, llcc==30cm30cm σσhh= 6cm, = 6cm, llcc==7.5cm7.5cm

Time StepTime Step Time StepTime Step
0 1 0 0 2 0 0 3 0 0

-1

-0.5

0

0 .5

0 100 200 300
-1

-0.5

0

0.5

D
el

ay
ed

 S
ig

na
l A

m
pl

it
ud

e
D

el
ay

ed
 S

ig
na

l A
m

pl
it

ud
e

-300 -200 -100 0 100 200 300
-1

-0.5

0

0.5

1

Time OffsetTime Offset

C
ro

ss
 C

or
re

la
ti

on
C

ro
ss

 C
or

re
la

ti
on

-300 -200 -100 0 100 200 300
-1

-0.5

0

0.5

1

Time OffsetTime Offset



Transmission Signal StatisticsTransmission Signal Statistics
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PMN-1A Non-Metallic AP Mine

From MineFacts, version 1.2, National Ground Intelligence Center
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Conclusions
• Rough ground surface is the main difficulty with GPR detection/ 

discrimination of mines
• For a single frequency, extraction of target signal from rough ground 

scattering is extremely difficult, even with ideal detectors
• Increasing sensing frequency improves detection resolution, but also 

greatly increases clutter signal
• Dispersion is an important effect for time domain modeling, and can be 

included with supplemental difference equation.
• Monte Carlo FDTD modeling of rough scattering indicates wide 

variety of signal corruption:  time shifting, scaling, distortion, which 
depend considerably with roughness statistics

• With shifting and scaling, expected value of ground scattered signals 
can be well characterized



 
 

Physics-based forward models for mine detection signal processing 
 

Carey Rappaport and Eric Miller 
Northeastern University 

Boston, MA  02115 
 
 
 
 

To effectively detect non-metallic buried antipersonnel mines, sophisticated 
signal processing that identifies possible target anomalies in the presence of 
widely varying artificial and environmental clutter are essential.  These methods 
rely on precise, yet robust models of wave propagation and field distribution.  The 
competing requirements of flexibility of including inhomogeneities in background 
soil and ground surface, wide frequency ranges for sensing, and computational 
efficiency demand careful model specification.  
 
A key issue in this effort is the synthesis of computational forward models that 
are well suited for the processing task at hand.  Ideally these models should be 
explicitly parameterized in terms of the information one wishes to extract from the 
data.  If the goal of the algorithm is the determination of the locations, shapes, 
and electrical properties of an object in the receiver's field of view, then it is 
generally best to employ a model in which these parameters appear explicitly.  In 
particular, for such a problem a T matrix based method would be ideal as this 
class of forward model exploits heavily the geometry of the scattering objects.   
However, T matrix methods model inhomogeneiities poorly.  Alternatively, a high 
dimensional finite difference scheme could include a rough ground surface and 
buried rocks, but is less effective for target recognition since the sampling points 
have no easily defined relationship to the objects' geometric characteristics.   
 
In addition to the parameterization of the model, it is also of import that the model 
possess low computational complexity.  Generally, any inversion scheme 
requires repeated use of the forward model to evaluate the suitability of the 
current estimate and determine how best to improve this guess.  When the 
number of such evaluations is of the order of hundreds or thousands, clearly it is 
critical that the underlying model be as fast as possible.  Continuing the previous 
example, because the T matrix approach admits a recursive implementation for 
multi-object scattering problems, in general it is far more efficient than a finite 
difference or finite element approach which requires the solution of a large 
system of linear equations. 
 
 



Mine Detection Using a 
Handheld Parabolic Antenna: 
Analysis of Experimental Data

Bo Yang and Carey Rappaport                               
Center for Subsurface Sensing and Imaging Systems  

Northeastern University                                         
Boston MA

PIERS, Cambridge MA, July 5 2000



Outline

• Novel parabolic mine detector
• Result of the 2-D FDTD simulation of 

parabolic reflector in mine detection
• Experiment and data analysis
• Conclusion

Demining MURI Supported by ARO



Problem:  Rough Ground Surface is 
Greatest Contributor to GPR Clutter

• For standoff GPR detection of small antipersonnel 
mines, the largest scattered signal comes from the 
ground surface.

• In the real world, the ground is never flat, the soil 
type is never known exactly, and the height of the 
antenna is never fixed.

• This clutter can be reduced by:
– Time gating
– Signal processing (matched filtering, deconvolving)
– Spatially separating target/clutter signals



Advantages of Plane Wave Excitation Over 
Currently Used Mine Detection Technology

• Specular reflection from the ground depends only on 
incidence angle, frequency content, and wave 
polarization, not position or source.

• For flat ground with non-normal incidence, reflection 
scatters in forward direction.

• Transmitted waves obey Snell’s law, the wavefronts
remain parallel,  and the signal arrives at a given 
target with the same delay and attenuation due to soil.

• Plane wave excitation generates scattered signals that 
are easier to distinguish from rough surface clutter.



Paraboloidal Reflector Transmitter

• Parabolas convert circular waves to plane waves.  
• GeoCenters, Inc. TEMR wideband antenna 

element (700 MHz to 1.3 GHz)used to feed offset 
parabola.

• Collimated beam in the nearfield, is a (non-
uniform) plane wave across its aperture.

• Trade-offs between reflector size and grazing 
incidence angle, -- and height above ground versus 
forward look -- must be made.
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Multistatic Receiving Array

• Collimating transmitter is coupled with a four element 
receiving array.

• 2 X 2 array gives four times the received power of a 
monostatic radar, as well as temporal focusing left to 
right and forward to back.

• By comparing time differences of received scattered 
signals, approach and localization information can be 
extracted.

• By measuring overall time delay, depth of burial 
information is available.
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“Handheld” Offset Parabolic / Multistatic Array 
Detector Using Geo-Centers TEMR GPR Elements:  

Outdoor Data Collection at NEU Dedham  Test Track



Outdoor Measurements at NEU Dedham Test 
Track with Dry Loam / Vegetation



Mine Target Placement Map of  
Experimental Test Track
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EM-6: Cylindrical, 150mm diameter, 50 mm high.
VS-50: Cylindrical, 90mm diameter, 45mm high, plastic cased.
PML: Cylindrical, 112mm diameter, 56mm high, plastic/bakelite/rubber.
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Data Analysis

1. Remove soil clutter from the total field to obtain 
mine signals.

• Ideal ground signal
• Total average ground signal
• Moving average ground signal

1. Evaluate the performance of different receivers.
2. Synchronize the mine signals at different receivers 

to obtain strong mine signals.



Mine Signals Synchronization and Summation
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Mine Signals



Low Intensity Feature with Distinctive Shape 
(to be exploited with future processing)
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Mine Signals at Specific Depths
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Factors that Effect Performance

• Mines are of different types.
• Mine burial depth and orientation vary.
• Soil moisture and ground surface roughness 

change along the track.
• Radar pulse width and sensing time window 

are limited.



Conclusions

Initial experiments indicate that the parabolic 
antenna mine detector performs very well in 
detecting shallow buried nonmetallic mines in 
relatively dry soil. 

The sensor gives strong mine signals at 
locations that agree with the locations of the 
buried targets with only a few false alarms 
and detection failures.



FDTD Simulation of a Parabolic 
Antenna GPR Transmitter

PIERS Cambridge MA, July 7, 2000

Dongping Jin and Carey Rappaport                  
ECE Dept.                                              

Northeastern University                                  
Boston MA



Outline

• Forward-looking, light-weight AP mine 
detector.

• Plane wave vs. point source impulse excitation 
for rough ground clutter minimization.

• Offset paraboloidal reflector as wideband 
collimator for handheld detector.

• FDTD modeling.
• Experimental results.

*  Demining MURI Supported by ARO



Problem:  Rough Ground Surface is 
Greatest Contributor to GPR Clutter

• For standoff GPR detection of small antipersonnel 
mines, the largest scattered signal comes from the 
ground surface.

• In the real world, the ground is never flat, the soil 
type is never known exactly, and the height of the 
antenna is never fixed.

• This clutter can be reduced by:
– Time gating
– Signal processing (matched filtering, deconvolving)
– Spatially separating target/signal



Plane Wave Impulse Excitation

• Specular reflection from the ground depends only on 
incidence angle, frequency content, and wave 
polarization, not position or source.

• For flat ground with non-normal incidence, reflection 
scatters in forward direction.

• Transmitted waves obey Snell’s law, the wavefronts
remain parallel,  and the signal arrives at a given 
target with the same delay and attenuation due to soil.

• Plane wave excitation generates scattered signals that 
are easier to distinguish from rough surface clutter.



Paraboloidal Reflector Transmitter

• Parabolas convert circular waves to plane waves.  
• Collimation is based on parabolic geometry, 

independent of frequency.
• In the nearfield, a paraboloidal reflector generates a 

(non-uniform) plane wave across its aperture.
• An offset paraboloidal section must be used to avoid 

blockage and scattering by transmitting feed.
• Trade-offs between reflector size and grazing 

incidence angle, -- and height above ground versus 
forward look -- must be made.
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Portion of Paraboloid of Revolution



Top View

Side View

Front View



Propagation in Soil is Frequency Dependent

k( f )= ( f )- jα ( f ) =β
2π
c

fÖε' ( f )- j
π2 fε o

( f )σ

Neglecting the frequency 
dependence gives inaccurate results.
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Dielectric Constant and Conductivity for 
Puerto Rican Clay Loam (1.2 g/cc)-1
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Real and Imaginary Wave Number for     
Puerto Rican Clay Loam (1.2g/cc)
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Non-Metallic Mine Scattered Field (about 10 cm 
burial) - Smooth Surface
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Non-Metallic Mine Scattered Field (about 10 cm 
burial) - Rough Surface
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Non-Metallic Mine Scattered Field  (10 cm depth)
a) Smooth Surface, b) Rough Surface
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Numerically Modeling  the Experiment:           
LLNL Micro-power Impulse Radar Transmitted Pulse
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TM: with mine 10 cm below Smooth surface
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TM: with mine 10 cm below Rough surface
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TE: with mine 10 cm below Smooth surface
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2-D FDTD Simulation of Parabolic Reflector Generated 
H-Pol. Planar Incident Wave: Non-Metallic Mine 10 cm 

Below Rough Surface
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2-D FDTD Simulation of Parabolic Reflector Generated 
V-Pol. Planar Incident Wave: Non-Metallic Mine 10 cm 

Below Rough Surface



Multistatic Receiving Array

• Collimating transmitter is coupled with a four element 
receiving array.

• 2 X 2 array gives four times the received power of a 
monostatic radar, as well as temporal focusing left to 
right and forward to back.

• By comparing time differences of received scattered 
signals, approach and localization information can be 
extracted.

• By measuring overall time delay, depth of burial 
information is available.



Offset Parabolic Reflector Transmitter with 
Multistatic Array Receiver Using LLNL MIR Elements



Forward-Looking AP Array GPR:  
Operational Configuration



Forward-Looking AP Array GPR:  Mounted for 
Outdoor Testing at LLNL Mine Test Facility



Anti-Personnel Nonmetallic Mine Simulant 
and Calibration Target



Rough Sand Surface Testing at LLNL



Processed Signal from Non-Metallic Antipersonnel Mine 
Buried 1 inch Deep in Dry Sand with Rough Ground Surface
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Conclusions

• Plane wave excitation decreases scattering confusion.
• Forward looking radar takes advantage of specular 

ground reflection.
• Offset Paraboloid creates unblocked forward 

propagating plane wave.
• FDTD predicts distinct scattered and surface 

reflected signals, even for rough surfaces.
• Experimental results indicate that even small, 

nonmetallic AP mines are detectable in sand



An Efficient Mur-Type ABC 
for Lossy Scattering Media
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Outline:

• Motivation
• Contrasts of Mur and Mur-Type formulations
• Numerical Code Implementation
• Case Models
• Conclusions



Motivations:
• Mur-Type ABC vs. PML:

– PML:
• Multilayered PML loss coefficients must be recomputed 

at each sublayer for lossy media.
• Code becomes increasingly complex at multiple 

boundary limits for 2-D or 3-D geometry.

– Mur-Type ABC:
• ABC computations are single-celled at all bounding grid 

points.
• Only minor adjustments to the code are required as the 

dimensions of the computational space are selected.



Mur-Type ABC Contrast #1

• Ampere’s Law has added conductivity term for 
lossy soil:



Propagation in Soil is Frequency Dependent

k( f )= ( f )- jα ( f ) =β
2π
c

fÖε' ( f )- j
π2 fε o

( f )σ

Neglecting the frequency 
dependence gives inaccurate results.
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Dielectric Constant and Conductivity for 
Puerto Rican Clay Loam (1.2 g/cc)-1
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Real and Imaginary Wave Number for     
Puerto Rican Clay Loam (1.2g/cc)
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Difficulty with PML ABC for Lossy, 
Dispersive Media in Time Domain

Must maintain 
impedance match

Must gradually increase 
conductivity
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Mur-Type ABC Contrast #2

• Wave equation for boundary condition has 
additional term for conductivity:



Mur-Type ABC Contrast #3

• Pre-approximation equation has conductivity 
term added to Mur approximation:

Using:



Mur-Type ABC Contrast #4

• New approximation retains extra term to 
account for conductivity:



Mur-Type ABC Contrast #5
• Conversion to FDTD is accomplished using a 

Z-transform:

• Where the conductivity is represented by the 
Pade’ approximant:



Mur-Type ABC Contrast #6
Second Order Approximation:

For 2-D Ez (x, y):



Numerical Code Implementation 
of Second-Order Approximation

The Z-Transform of the second-order Mur-Type 
approximation is incorporated into FDTD code with the 
following guidelines for stability:

•All spatial-derivatives (d/dx) are backward-averaged in time.

•All time-derivatives (d/dt) are forward-averaged spatially.

•All non-derivative terms are forward-averaged spatially.



Numerical Implementation of 
Second-Order Approximation

where:



1-D Case Models:
Post Wave Reflection at X=0
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Reflection Coefficient vs. Incidence Angle
Mur-Type ABC , 5% moist PRCL, 1 GHz Modulated Gaussian Pulse 
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3-D FDTD Boundary Reflection Comparison

Free Space
1.4% max 
reflection

Lossy Soil
6% max 
reflection
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reflection



Conclusions

• Additional conductivity considerations can 
satisfy the wave equation more appropriately 
for boundary conditions in lossy media.

• Improved performance by reducing back-
scatter from ABC to less than 1% for normal 
incidence.

• Mur-Type calculations rely on a single-layer 
boundary thickness:  simple, robust, fast.
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ABSTRACT 
 

The finite difference time domain technique, FDTD, is used to calculate the scattered field in the near 
zone from one-dimensional random rough surfaces. Different statistics for the random surface will be 
assumed in this work. First, the random rough surface will be characterized by one-scale roughness with 
Gaussian distribution for the heights and Gaussian auto-correlation function. In the second part, the 
surface will be assumed to have two-scale roughness (composite) with the same Gaussian statistics as 
before. The statistics of the scattered fields are calculated in this work using Monte Carlo simulations. 
Numerical results comparing scattered fields from one-scale roughness and two-scale roughness are 
shown. The results obtained indicate that the distortion in the scattered signals is primarily due to the 
small-scale roughness while the two-scale roughness (composite) causes more time delay in the 
scattered signals. Different rough surface parameters will be used to quantify their effect on the statistics 
of scattered signals. 
 
Key words: rough surface statistics, composite rough surface, scatter, FDTD, mine detection. 

 
 

1. INTRODUCTION 
 

A realistic rough ground does not necessarily have a single scale of roughness. In fact, it is more 
accurate and practical to assume that the rough surface has multi-scale roughness. An investigation 
about the effect of roughness scale on the statistics of the scattered field is conducted in this work. The 
probability density function of the surface heights is assumed to be Gaussian for all scale-roughness. 
The surface profile spectrum (autocorrelation function) is also assumed to be Gaussian. For a composite 
rough surface (two-scale roughness), the small-scale random rough surface will be imposed on the large-
scale rough surface given that each single-scale roughness is generated independently. For the large-
scale roughness surface, the correlation length is assumed to be much larger than it in the small-scale 
roughness surface. This enforces the length of the one-dimensional surface to be sufficiently large, at 
least ten times the larger correlation length. The statistics of the scattered signals are computed in this 
work using Monte Carlo simulations. The effect of surface roughness parameters, root mean square 
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heights and slopes, and surface statistics assumptions on the scattered signals will be investigated as 
well. The geometry of the problem is shown in Fig.1a, in which the transmitter and receiver antennas are 
located above the rough soil ground. Fig. 1b shows the magnitude of the measured incident pulse used in 
this work. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.1a   Rough surface sensing geometry.    Fig.1b   Measured incident pulse. 
 
 

2. FORMULATIONS 
 
2.1 Metric Measure for Signal Statistics 
 
Three factors will be considered here as metric measure for the signal statistics. They are the average time shift, 
the average scaling, and the average distortion of the signal. The Monte Carlo simulations and the cross-
correlation function will be used to calculate these statistics. 
 
2.1.1 Cross-Correlation Function 
 
The cross-correlation function, by definition, indicates the inter-dependence of the values of two 
different processes at two different times. The normalized cross-correlation functions between signal ‘f’’ 
and signal ‘i’ is given by 
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where, i =1, 2, 3, … M, is the rough surface realization index, M is the size of Monte Carlo Sample (total 
number of generated random realizations for the rough surface). And N is the total number of time steps 
in each signal. The above definitions are pictorially described in Fig.2. Numerical illustrative examples 
for these definitions will be shown in section 3. 
 
 
 
 
 
 
 
 

Fig.2a   Signals So and S1.                Fig.2b   Signal S1 shifted by τ.  Fig.2c   S1 scaled by A. 
 
 
2.2 Rough Surface Characterization 
 
The one-dimensional rough surface is described here by z = f(x), where z is the height of any point on 
the surface. Since the rough surface is assumed to be random, two functions are needed to fully 
characterize it. They are the probability density function of the surface random heights and the auto-
correlation function (surface profile power spectral density function). 
 
2.2.1 Gaussian Random Rough Surfaces 
 
Assuming that the random height of the surface has a Gaussian distribution with zero mean and standard 
deviation equal to σh, the probability density function of the height is [1] 
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Note that the statistical distribution of the height provides no information about the distances between 
the hills and the valleys of the surface, i.e., about the density of the surface irregularities [1]. Thus the 
rough surface can not be described uniquely by the probability density function of the surface height. 
Another function is needed to complete the description of the rough surface. This function is the 
autocorrelation function or its Fourier Transform, the surface profile power spectral density function. 
The autocorrelation function R(xd) gives the correlation between the random heights at two different 
points on the surface, x1 and x2. It is defined by [1], [2] 
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For full correlation, ( ) 1 lim
0xd

=
→ dxR , and for independence, ( ) 0 lim

dx
=

∞→ dxR . Moreover, if the surface 

profile spectral density function W(Kx) is given, then the auto-correlation function R(xd) can be obtained 
by the inverse Fourier Transform as 
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Thus, the Gaussian joint probability density function for two heights on the surface, z1 and z2, with zero 
mean and standard deviation σh is given by [1],[3] 
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If the surface spectral density W(Kx) is assumed to be Gaussian as [2] 
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in which Kx is the surface profile wave number. Thus from (3), the auto-correlation function will also be 
Gaussian given by 
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Where lc is the correlation distance for which R(xd) will drop to the value e-1. 
 
2.2.2 Composite Random Rough Surfaces (two-scale roughness) 
 
It is very rare if not impossible to characterize a realistic rough ground soil by only one scale of 
roughness. In practice, the rough soil is composed of several roughness scales. In this work we will 
characterize the soil surface by two-scale roughness (composite surface). This two-scale roughness 
surface is composed of two single-scale independently generated surfaces. The first surface has small 
roughness parameters, root mean square height and correlation length, and the second surface has large-
scale roughness parameters [4]. In other words, the correlation length in the large-scale surface should 
be at least ten times larger than the correlation length in the small-scale surface [4] and [5]. This requires 
the length of the 1-D rough surface to be sufficiently large, several correlation lengths. Examples of 
small-scale, large-scale, and composite rough surfaces are shown in Fig.3. The three random rough 
surfaces in Fig.3 are assumed to have zero-mean as shown in the small-roughness surface (upper trace). 
Both the large-roughness (middle trace) and composite surfaces (bottom trace) are shifted in this figure 
for the purpose of clarification. 
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Fig.3   Small (σh =1cm, lc =3cm), large (σh=3cm and lc =30cm) and composite roughness surfaces 
 
2.4 Monte Carlo Simulations 
 
The Monte Carlo simulation is the process of taking the ensemble average of several independent 
random variables. The random variables here are the near fields scattered from several independently 
generated random rough surfaces. There are several methods to conduct Monte Carlo simulations for the 
scattered signals, in this work it will be defined as 
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where Si  is the amplitude of the scattered near field signal from rough surface realization ’i’. Ideally M 
should be equal to infinity to assure the application of the central limit theorem. Thus, M will be chosen 
large enough and each rough surface realization will be generated independently using the computer 
random number generator. 
 
 

3. NUMERICAL RESULTS 
 

In all presented results in this work, the ground is assumed to be dispersive soil [6] and the scattered 
electric field is in the normal direction to the plane of incidence (TM polarization for 2D FDTD 
calculations). Moreover, the signal that propagates directly from transmitter to receiver has been 
removed from scattered signals. The nominal frequency of the incident signal is 1Ghz 
(wavelength=30cm). The FDTD time step is ∆t=20ps and the space step is ∆=1.219cm. Numerical 
results for the definitions of the metric measure for signal statistics, given in section 2.1, are shown in 
Figs.4-6. The amplitudes of the scattered signal from flat ground and from one rough surface realization 
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are shown in Figs.4a and 5a, respectively. The roughness parameters in these figures are σh=3cm and 
lc=10cm. Figs.4b and 5b show the normalized signals of Figs.4a and 5a according to the scaling 
definition of Eq. 1c. The cross correlation functions, given in Eq.1, for this one rough surface realization 
with the flat surface signal and for the flat surface with itself are shown in Fig.6a. Notice that the cross 
correlation function of the flat surface with itself is symmetric around the zero, which is not the case for 
the rough surface as shown in Fig.6a. Moreover, that there is a time shift τi between the flat and rough 
surface cross correlation functions. These parameters, scaling Ai and time shifting τi, will be obtained 
for each rough surface realization ‘i’ in the Monte Carlo sample and their average values will be 
calculated, as will be shown later in this section. Fig.6b shows the scaled and time shifted scattered 
signals of Figs.4a and 5a. 
 
In Figs.7-10, different statistics for the scattered fields from small-, large-, and composite roughness 
surfaces, Fig. 3, will be shown. The roughness parameters for the small-scale surface are σh=1cm and 
lc=3cm, while they are σh=3cm and lc=30cm for the large-scale surface. The composite surface is 
obtained by algebraically adding the small- and large- scale surfaces as explained in section 2.2.2. The 
obtained statistics for the scattered fields are based on the Monte Carlo simulations as given by Eq. 8. In 
this work, the size of each Monte Carlo sample is chosen to be 500 realizations. In Figs. 7, 8, 9 the 
histograms for the scaling and time shifting parameters are shown for the small-, large- and composite 
rough surfaces, respectively. In Fig.10a-c, the scattered signals from the flat surface are compared with 
the mean value of the scattered signals from these three rough surfaces. The signal scattered from the 
small-scale roughness surface, Fig10a, is more distorted than the one scattered from the large-scale 
roughness surface, Fig.10b. Almost no difference is observed in Fig.10b between the two signals. As a 
result the scattered signal from the composite surface is more distorted than the one scattered from the 
large-scale roughness surface, Fig.10c. Table 1 shows the comparison between the average values of the 
time shift and scaling values for these surfaces. As might be expected, large-scale roughness does not 
appreciably affect the average scaling, where small-scale roughness distorts and spreads the signal in 
time as well as space. The scaling for the composite surface is dominated by the small-scale roughness 
value. Interestingly, the similar average time shift for the two single scale roughness add for the 
composite surface. 
 
The effect of different surface roughness parameters on the statistics of scaling and time shifting values 
is shown in Table 2. These results are for single-scale roughness surfaces. The first column pair of the 
table shows the surface roughness parameters, root mean square height and correlation length. The 
second column pair shows the average scaling and time shifting values of scattered signals. The results 
show that the time delay and scaling average values increase with the increase of the surface roughness. 
All these results are obtained using Monte Carlo simulations of 500-sample size each. 
 

4. CONCLUSIONS 
 
Signals scattered from the rough ground are received at the receiver with amount of distortion and time 
delay compared with those scattered from the flat ground. This amount of the signal distortion and the 
time delay depend primarily on the surface roughness. Moreover they depend on the roughness scale of 
the surface as it has been shown here that the surface small-scale roughness affects the amount of 
distortion while the surface composite surface affects the amount of time delay. The significance of this 
work is to fully understand the effect of different rough surface statistics on the scattered signals and 
consequently from the buried mines under these surfaces. 
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Fig.4a.  Amplitude of scattered signal from flat surface. Fig.4b.  Normalized Signal for Fig. 4a. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5a.  Amplitude of signal scattered from rough surface. Fig.5b.  Normalized Signal for Fig. 5a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6a.  Cross correlation functions.    Fig.6b.  Signals of Figs.4b and 5b shifted by τi.  
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Fig.7a.  Scaling for small roughness surface.   Fig.7b.  Time shift for small roughness surface 
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Fig.8a.  Scaling for large roughness surface.   Fig.8b.  Time shift for large roughness surface 
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Fig.9a.  Scaling for composite surface.   Fig.9b.  Time shift for composite surface. 
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Fig.10a. Average signal for small roughness surface.        Fig.10b. Average signal for large roughness surface. 
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Fig.10c.  Mean signal for composite surface. 

 
 
 

Table 1 Shifting and scaling statistics for different scale roughness surfaces 
 

Statistics Small roughness Large roughness Composite roughness 
Average shifting τ (ps) 52.2 53.28 105.84 

Average scaling A 0.9327 0.996 0.9348 
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Table 2 Effect of surface roughness parameters on signal statistics 
 

Rough surface parameters Signal statistics 
σh (cm) lc (cm) τ (ps) A 

2 10 -67.2 0.944 
2 9 -61.4 0.942 
2 8 -66.8 0.935 
2 7 -81.4 0.933 
2 6 -105.8 0.937 
2 5 -95.2 0.93 
2 4 -109.6 0.94 
2 3 -104.6 0.99 
3 10 -70.6 0.9 
3 9 -105.4 0.901 
3 8 -106.6 0.897 
3 7 -146.8 0.92 
3 6 -139.0 0.89 
3 5 -185.6 0.93 
3 4 -190.8 0.94 
3 3 -198.4 0.99 

 
 
 

ACKNOWLEDGEMENTS 
 

This work is supported by the Army Research office grant No. DAAG55-97-0013. All computations 
were conducted using the High Performance Computer Center at Northeastern University, Boston. 

 
 

REFERENCES 
 

1. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough 
Surfaces, New York, 1963. 

2. E. Thorsos, "The validity of the Kirchhoff approximation for rough surface scattering using a 
Gaussian roughness spectrum," J. Acoust. Soc. Am. 83 (1), 1988. 

3. A. M. Mood, F. A. Graybill, and D. C. Boes, Introduction to the Theory of Statistics, McGraw-
Hill, 1974. 

4. L. Tsang, C. H. Chan, K. Pak, H. Sangani, A. Ishimaru and P. Phu, "Monte Carlo simulations of 
large-scale composite random rough-surface scattering based on the banded-matrix iterative 
approach," J. Optical Society of America, Vol. 11, No. 2, pp.691-696, 1994. 

5. E. Bahar, "Scattering cross sections for composite rough surfaces: full wave analysis," Radio 
Science, Vol. 16, No. 6, pp.1327-1335, 1981. 

6.  W. H. Weeden and C. M. Rappaport, "A general method for FDTD modeling of wave 
propagation in arbitrary frequency-dispersive media," IEEE Trans. on Antenn. and Prop., Vol. 
45, No. 3, pp. 401-410, March 1997. 



Analysis of Three Dimensional Scattering from Random 
Rough Surfaces with Buried Penetrable Objects for Mine 

Detection Applications 
 
 

M. El-Shenawee*, E. Miller and C. Rappaport 
Center for Electromagnetics Research 

Department of Electrical and Computer Engineering 
Northeastern University 

360 Huntington Ave., Room 235 Forsyth Bld 
Boston, MA 02115 

magda@cer.neu.edu 
 
 
 

The analysis of scattering and transmission of electromagnetic waves in the presence of a 
random rough dielectric interface and in the nearfield of the sensing systems is a crucial 
step for subsurface object detection problems in general and landmine remediation 
applications in particular. Generally, this fully three dimensional problem must be treated 
numerically, however the calculation of the required fields using conventional techniques 
(e.g. moment method, finite elements, or finite differences) is a computationally intensive 
undertaking especially for large dielectric constants. The complexity of the problem 
dramatically increases upon inserting objects under the rough interface especially when 
these objects are penetrable. Therefore a fast and accurate computational technique is 
needed for such applications. 
 
The integral equation-based Fast Multipole Steepest Descent Method (SDFMM), that 
was originally developed at the University of Illinois (UIUC), will be modified and 
expanded here to analyze this intensive scattering problem. The rough surface is assumed 
a random one characterized with Gaussian statistics for the height with zero mean. A 
single penetrable object is buried at less than one wavelength beneath the mean plane of 
the rough interface. The incident wave, which is located above the surface, is assumed to 
be a Gaussian beam that is carefully tapered to minimize surface edge excitations. The 
PMCHW (Poggio, Miller, Chang, Harrington, and Wu) integral equations are 
implemented in this work for three regions; air, soil, and buried object. Upon applying 
the appropriate boundary conditions of the electric and magnetic fields on the air-soil 
interface, four integral equations are obtained. Both the rough surface and the buried 
object are discretized into triangular patches. The moment method surface currents are 
approximated using the RWG (Rao, Wilton, and Glisson) vector basis functions. The 
interactions between the rough surface and the buried object are fully taken into account 
here. Thorough investigation will be conducted to test several approximations to ignore 
some of these interactions aiming to simplify the involved intensive calculations. 
 
Results for the near field complex vectors will be shown. Monte Carlo simulations will 
be conducted to obtain the statistics of both scattered and transmitted near fields as 
functions of receiver position, frequency, and incident angle. This work can be extended 
to include several buried objects of different dielectric constants and/or perfectly 
conducting ones. The ultimate objective of this research is to analyze, understand and 
consequently to be able to differentiate between scattering from buried objects and 
scattering from rough surfaces, clutter in this case. 
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The Steepest Descent Fast Multipole Method (SDFMM), a fast multipole inspired 
integral equation solver for quasi-planar structures, has been used successfully to analyze 
low grazing angles (LGA) scattering from perfectly conducting rough surfaces.  As 
demonstrated in our previous work, at LGA the length of the finite simulated surface 
should be at least ten times larger than the width of the surface to adequately project the 
incident beam onto the surface.  As a result, the number of the moment method surface 
current unknowns becomes excessively large.  The SDFMM has been successfully and 
efficiently used to solve for more than a million surface current unknowns.  In our 
previous work, the random rough surface was assumed to have a single scale roughness 
with Gaussian statistics.  In reality, many rough surfaces exhibit multi-scale roughness, 
e.g. ocean like surfaces.   In this work, we assume that the rough surface is characterized 
by two-scale roughness, i.e., two root mean square heights and correlation lengths  
characterize the surface.  The rough surface is still assumed to adhere to Gaussian 
statistics for both the random heights and the auto-correlation functions.  The small- and 
large-scale random surfaces are independently generated using the random Gaussian 
generator.  The composite two-scale surface is obtained by imposing the small-scale 
surface on the large-scale one.  The incident wave is assumed to be a Gaussian beam with 
incident angle equal to 80 degrees from the normal to the surface and the rough surface is 
assumed to be perfectly conducting. The goal here is to investigate the effect of the small-
scale roughness versus the large-scale roughness on the RCS at low grazing angles.  
Monte Carlo simulations are used to calculate both the coherent as well as the incoherent 
RCS as function of the scatter angle.  As shown before, for single-scale rough surfaces, 
the RCS has a peak in the specular direction at LGA.  There are still several studies 
related to the LGA scattering phenomena that need an efficient, fast and accurate 
algorithm such as the SDFMM to be solved. 
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Scattering of electromagnetic waves from two-dimensional penetrable rough surfaces (3-
D scattering) with different characteristics will be presented here. The integral equation-
based fast algorithm, Steepest Descent Fast Multipole Method, will be used to analyze 
this intensive computational problem. The objective is to investigate the scattering 
phenomena of electromagnetic waves from typical Bosnian, Puerto Rican, and A.P. Hill 
soils. Soil moisture level, frequency band and surface roughness parameters are 
considered major factors that affect the scattered fields. For example, the range of volume 
moisture level in a typical Bosnian soil will be chosen from 3.8 to 25.3% for a frequency 
range 600Mhz-2Ghz. Thus the relative dielectric constant will range approximately from 
3 to 10 and from 0.04 to 1.3 for the real and imaginary parts, respectively. As well 
known, for larger soil water content, the relative dielectric constant becomes larger, and 
as a result the problem becomes more computationally expensive. Different soil samples 
from Puerto Rican clay loam and A.P. Hill, Firing Point will be used in this work as well. 
The rough surface is characterized with Gaussian statistics for the random heights and 
also for the auto-correlation function. The roughness parameters (root mean square height 
and correlation length) are chosen to be in the moderate roughness range for the current 
application. For example, the root mean square height will range from 0.1 to 
0.2wavelength and the correlation length will range from 0.5 to 1.5wavelength. The 
scattered near field E-patterns of an incident Gaussain beam will be calculated at 
different locations above the dielectric interface. The receiver locations are chosen to 
simulate GPR measurement protocols. Moreover, the transmitted E-patterns will be 
computed at locations below the rough dielectric interface. 
 
The goal of this paper is to fully understand the effect of different soil properties on the 
scattering phenomena as an a priori phase of investigating scattering from buried mines 
under the same types of soil. 
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Abstract 
 

The Steepest Descent Fast Multilevel Multipole Method (SDFMM) is used to 
analyze the distorting effects of random rough ground surfaces on scattered 
electromagnetic waves from buried TNT mines. The SDFMM method is an integral 
equation-based fast algorithm that is well suited for two-dimensional penetrable rough 
surfaces (3-D scattering) in the frequency domain, and it is used to calculate the unknown 
surface currents on both the rough ground and the buried target as well.  In this study all 
interactions between the rough interface and the buried target are taken into account. The 
scattered near field E-patterns of an incident Gaussian beam are calculated at different 
locations above the mean plane of the dielectric rough interface. The receiver locations 
are chosen to simulate GPR measurement protocols. The dimensions and burial depth of 
the TNT mine are smaller than the free space wavelength with material slightly different 
from the surrounding soil. The average and the standard deviation of the scattered fields 
for just the target are calculated and results showed that the presence of the rough 
interface tremendously distorts the target signal even for the small roughness parameters. 
Moreover, results showed the degradation of signal as the TNT mine is located away from 
incident beam. This knowledge can significantly contribute to inventing better sensing 
systems for less false alarm detection strategies. 
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1. Introduction 
 

The integral equation-based Steepest Descent Fast Multipole Method (SDFMM), 
that was originally developed at UIUC [1], [2], has been modified to handle the AP-mine 
detection application as shown in Fig. 1. The significant potential of the SDFMM code is 
that it calculates the unknown moment method surface electric and magnetic currents on 
the scatterer in a dramatically fast, efficient and accurate manner. The random rough 
ground surface was characterized with Gaussian statistics for surface height and for 
surface autocorrelation function [3]. New formulations of integral equations were 
obtained and presented in [4]. These new formulations had taken into account all 
interactions between the rough surface interface and the buried TNT mine. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure1. Cross section of 2-D rough surface ground with 3-D object buried under the interface. 

 
 
As an a priori phase, the SDFMM was used to analyze the distorting effects of 

random rough ground surface alone (no buried targets) on the scattered and transmitted 
electromagnetic waves as presented in [5].  Two well-measured loamy soils [6]: Bosnian 
and Puerto Rican clay loam were investigated, each with a variety of surface roughness.  
This study is important in understanding the effects of different soil properties before 
investigating scattering from buried targets. A specialized fast algorithm was necessary, 
since multiple calculations of this realistic, but computationally intensive, model were 
needed for many different realizations of surface roughness. The scattered and 
transmitted nearfield E-patterns of an incident Gaussian beam [7] were calculated at 
different locations above and below the mean plane of the dielectric rough interface.  The 
receiver locations above were chosen to simulate GPR measurement protocols. The 
obtained numerical results showed that the scattered field undergoes more distortion than 
the transmitted field from both soil types.  Moreover, the transmitted fields into the 
higher dielectric constant Puerto Rican soil experienced more distortion than those 
transmitted into Bosnian soil [5]. 
 
 Due to the observed distorting effects of the random rough surface in [5], Monte 
Carlo simulations are needed to estimate the statistics, average and standard deviation, of 
the AP-mine signature. The SDFMM has been modified to calculate the fields scattered 
from a shallow TNT mine, buried under the two-dimensional random rough ground. The 
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buried target is assumed to have size and burial depth comparable to the free space 
wavelength 0λ . The scattered electric fields from the rough ground with the buried target 
are calculated in the near zone and their complex vector average over many rough surface 
realizations are computed. The target signature was obtained by subtracting the electric 
fields scattered from the rough ground only from those scattered from the ground with the 
buried TNT mine.  The average and standard deviation of the electric fields are calculated 
as 
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where, iE  represents the complex vector electric field scattered from the ith rough surface 
realization where i=1, 2,…M, where the size of Monte Carlo set (M) is assumed to be 65 
in all results here. 
 
 

2. Numerical Results 
 

Excellent agreements are obtained upon comparing the modified SDFMM 
computer code with other published techniques. In our previous work [4], the SDFMM 
code has been validated with the SMCG method (sparse canonical conjugate gradient 
method) where the scatterer is a PEC sphere buried under a random rough surface and 
very good agreement is presented. More validations of the SDFMM code are presented in 
this section; first, the SDFMM code is used to compute the bistatic scattering cross 
section of penetrable sphere with dielectric constant ( 3.075.1 ir −=ε ) and radius 
( 02.0 λ=a ) due to an incident plane wave on the sphere as shown in Fig. 2. The scatterer 
is just the penetrable sphere immersed in air (no rough surface) and only the MoM part of 
the SDFMM code is used. The comparison shows very good agreement between the 
MoM part in the SDFMM code and both the Mie and MoM solutions published in 
Medgyesi-Mitschang et al [8]. Moreover, Excellent agreement between the SDFMM and 
the MoM is presented in Fig. 3, where the bistatic scattering cross section σ of the buried 
spheroid under an individual rough surface realization is shown. To be able to calculate 
the surface currents using the MOM, the ground dimensions are assumed (in this 
example) to be 00 96.296.2 λ×λ . Results in Fig. 3 are obtained at incident angle ϑ i =0o 
and for the VV–polarization. For these results, the total CPU time (filling the impedance 
matrix, convergence f iterative solver, and calculating near fields and radar cross 
sections) is 59 minutes for the MoM with 511MB required computer memory, while they 
are only 31 minutes and 140MB, respectively, for the SDFMM.  



 4

0 20 40 60 80 100 120 140 160 180
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

 
 
Figure 2. Validation of the SDFMM code (target only) for bistatic scattering cross section 0σ  of penetrable 

sphere ( 3.075.1 ir −=ε , and 02.0 λ=a ). Comparison between current results and both Mie and MoM 
solutions as published in [8]. 
 
 

 
 
Figure 3. Validation of the SDFMM with the MOM for bistatic scattering cross section 0σ  of penetrable 

oblate spheroid ( 072.09.2 ir −=ε , 03.0 λ=a , 015.0 λ=b ) buried at depth 03.0 λ=d  under rough 

ground of dielectric constant 18.05.2 ir −=ε , rms height 004.0 λ=σ  and correlation length 

05.0 λ=cl  (one realization) at incident angle ϑ i =0o for VV – polarization. 
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The dimensions of the ground are assumed 00 88 λ×λ  with roughness parameters as 
rms height 004.0 λ=σ  and correlation length 05.0 λ=cl . The ground is a typical Bosnian 
soil with 3.8% moisture and dielectric constant 18.05.2 ir −=ε  at 1GHz [6]. The 
dielectric constant of the TNT mine is 072.09.2 ir −=ε  which is modeled as an oblate 
spheroid with  a=2b=0.3 0λ  (top view is a circle). The TNT mine is buried at 03.0 λ=d  
from its center to the mean plane of the rough ground. The incident Gaussian beam is 
pointing normally at the center of the ground. The difference in the near electric fields 
scattered from the rough ground without buried target and those scattered from the same 
ground but with buried target, are the scattered fields due just to the buried target. We 
repeated this subtraction process for each of the 65 rough surface realizations, and took 
the statistical average of the all scattered fields using Eq. 1. Thus the average signature of 
the target is obtained and plotted in Fig. 4a. The results show that the TNT mine has 
signature almost equal to 5% of the total scattered fields [5]. Similar results to Fig. 4a are 
obtained at different locations of the buried target as 00.5 λ== yx  and shown in Fig. 4b 
and 00 0.4,5.6 λ=λ= yx  as shown in Fig. 4c. These results show the degradation of 
object signature as function of its closeness to the center of the incident Gaussian beam. 
Using Eq. 2, the standard deviation (STD) of the 65 scattered electric fields due just to the 
target is calculated and plotted in Fig. 5. The results show that the STD of the target 
signal is almost 30% of the target signature shown in Fig. 4a. 
 

 
 
Figure 4a. Average near electric field scattered due to only buried object obtained by subtracting scattered 
from rough ground without buried target from those scattered from rough ground with buried target, then 
take the statistical average. Incident angle ϑ i =0o for horizontal polarization. The target is buried at 

00 3.0,0.4 λλ −=== zyx . 
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Figure 4b. Average near electric field scattered due just to the object for the same data in Fig. 4a except for 

the target is buried at 00 3.0,0.5 λ−=λ== zyx . 
 

 
 

Figure 4c. Average near electric field scattered due just to the buried object for the same data as in Fig. 4a 
except for the target is buried at 000 3.0,0.4,5.6 λ−=λ=λ= zyx . 
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Figure 5. Standard deviation (STD) of near electric fields scattered due to just buried spheroid for the same 
data in Fig. 4a. 

 
 

3. Conclusions 
 

In this work, the statistics of the scattered fields due just to the buried TNT mine 
are obtained using the modified fast code SDFMM. Monte Carlo simulations are 
conducted to obtain the scattered fields from the two-dimensional random rough ground 
once with the target and once without the target. The average and standard deviation of 
the scattered fields due to just the target are calculated by subtraction. The results showed 
the significant distorting effect of the rough ground. Moreover, this study showed the 
degradation of the TNT mine signal if it is located away from incident beam.  
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In anti-personnel mine detection applications, explosive objects buried under  
ground with rough soil surface could be surrounded by different clutter objects such as 
rocks, roots, sticks, metallic nails, vegetation, etc. Target discrimination between the AP 
mine and any sort of object clutter is necessary to minimize false alarms. 
 
In this work, we present the analysis of the electromagnetic wave scattered from two 
objects buried under a 2-D random rough surface. These two buried objects could both be 
perfect electric conductors (PEC), one plastic object and one PEC, or two plastic objects. 
The random height variation of the rough ground is assumed to have Gaussian probability 
density function and the surface autocorrelation function is assumed Gaussian as well. A 
carefully tapered Gaussian beam is assumed for incident waves. 
 
The integral equation-based fast algorithm, the Steepest Descent Fast Multipole Method 
(SDFMM), will be implemented in this work to calculate the electric and magnetic 
surface currents on the soil/ground interface and the multiple objects. The great 
advantage of the SDFMM lies in its O(N) computational complexity versus the O(N2) for 
the Method of Moment (MOM) to solve N linear system of equations using an iterative 
solver. The SDFMM was originally developed at UIUC. 
 
In our previous work, we used the SDFMM to analyze the near electric field scattered 
from single plastic object buried under the rough ground. The rough ground surface was 
the only source of clutter in the surrounding environment. Here, we are adding another 
source of clutter that is the proximity of an un-explosive object to the AP mine. The 
effect of the proximity and orientation of clutter object on target signature will be 
investigated here. Our objective is to understand the physics behind the mechanism of 
scattering from these two buried objects and hence to be able to discriminate between the 
explosive target and the clutter object. 
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Abstract 

The computational solution of large-scale linear systems of equations necessitates the use of 

fast algorithms, but is also greatly enhanced by employing parallelization tachniques. The 

objective of this work is to demonstrate the speedup achieved by the MPI-based parallel 

implementation of the Steepest Descent Fast Multipole Method (SDFMM). Although this 

algorithm has already been optimized to take advantage of the structure of the physics of 

scattering problems, there is still the opportunity to speed up the calculation by dividing 

component tasks into pieces and using multiple processors to solve them in parallel. The 

SDFMM has three bottlenecks ordered as (1) filling the sparse impedance matrix associated with 

the near field moment method interactions, (2) the matrix vector multiplications associated with 

this sparse matrix (3) the far field interactions associated with the fast multipole method. The 

parallel implementation task is accomplished basically using a thirty-one node Intel Pentium 

Beowulf cluster and is also validated on a 4-processor Alpha workstation. The Beowulf cluster 

consists of thirty-one nodes of 350MHz Intel Pentium IIs with 256 MB of RAM and one node of 

a 4x450MHz Intel Pentium II Xeon shared memory processor with 2GB of RAM with all nodes 
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connected to a 100 BaseTX Ethernet network. The Alpha workstation has a maximum of four 

667MHz processors. The parallelized computer code is tested for different cases of the anti-

personnel landmine detection application. Our numerical results show linear speedup in filling 

the sparse impedance matrix that tremendously reduced the overall code’s runtime. Using the 32-

processors on the Beowulf cluster lead to achieve a 7.2 overall speedup and significant reduction 

in the runtime is gained using the 4-processors on the Alpha workstation. 

 

I. Introduction 

The SDFMM is an integral equation-based fast algorithm that is a hybridyzation of (1) the 

Method of Moment (MoM), (2) the Fast Multipole Method (FMM), (3) the Steepest Descent 

Integration rule (SDP) [1]-[3]. Recently the SDFMM computer code has been successfully 

modified to handle subsurface sensing applications, in particular, the scattering from a landmine 

modeled as a PEC and/or penetrable spheroid buried under a two dimensional randomly rough 

ground [4]-[5]. The SDFMM has computational complexity for the CPU time and for the 

memory requirement equal to only O(N) per iteration versus O(N2) for the MoM, where N is the 

total number of the unknowns [1]-[3]. The significant reduced complexity of the SDFMM over 

several other computational electromagnetics techniques has helped in achieving a fast and 

successful running for the Monte Carlo simulations [5]. However, the Monte Carlo sample needs 

in some cases to be greatly increased, e.g. when the ground random roughness increases the size 

of the Monte Carlo sample needs to be increased to achieve a converging solution. This could 

dramatically increase the required run time, especially when the dielectric constant of the ground 

is large and/or the penetrable buried object is electrically large. This necessitates a parallel 
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implementation of the SDFMM code to further reduce the overall runtime of large-scale 3-D 

scattering problems. 

In this work, we used the MPI library for the parallel implementation of the SDFMM code 

[6]. The advantage of using the Beowulf cluster is that the system can be completely dedicated 

for the parallelization task, which is demonstrated in this work by executing small-scale cases 

due to memory limitations. Our emphasis is to demonstrate the overall speedup that can be 

achieved using the thirty-two processors [7]. Porting the parallelized code to the national 

supercomputers, where hundreds of processors and adequate RAM are available, will potentially 

facilitate the computations of large-scale problems [7]-[9]. 

The parallelization technique will be described in Section II, the numerical results will be 

shown in Section III and concluding remarks will be given in Section IV. 

 

II. Parallelization Methodology 

The SDFMM makes use of the equivalence theorem to calculate the electric and magnetic 

fields inside and outside a 3-D penetrable object buried under the rough surface interface [4]-[5]. 

The 3-D arbitrary object is modeled by scatterer 3R  that is immersed in scatterer 2R  which 

represents the rough ground which is immersed in the free space region represented by 1R . The 

three regions, 1R , 2R  and 3R  have permittivity and permeability given by 1ε  and 1µ , 2ε  and 

2µ , and 3ε  and 3µ , respectively, representing free space, soil medium and penetrable buried 

object. There are two final sets of unknown equivalent electric and magnetic surface currents in 

the following formulations. They are 11, MJ  on the exterior of the rough ground interface 

between 1R  and 2R , and 33 , MJ  on the exterior of the buried object interface between 2R  and 
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3R . Upon applying the boundary conditions, continuity of tangential components of the electric 

and magnetic fields on these interfaces, new integral equation formulations are obtained as [4]-

[5]: 
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In which the integro-differential operators iL  and iK , i =1, 2, 3 and 4, are given in detailed in 

[5]. In Eqs. 1a-d, the unknown surface electric and magnetic currents are 1J , 1M , 3J , and 3M , 

while the tangential component of the incident electric and magnetic fields on the rough surface 

are given by ( )
.tang

rE inc  and ( )
.tang

rH inc , respectively. The intrinsic impedance in each region is 

iii εµ=η / , i=1, 2, and 3, where the dielectric permittivity and permeability in each region are 

iε  and iµ , respectively. The equivalent electric and magnetic currents are approximated using 

the RWG vector basis functions [10]-[11]. Upon applying Galerkin’s method for testing and 

substituting the RWG surface current approximations in 1a-d, the original integral equations are 

transformed into a set of linear system of equations given by [4]-[5]: 

(2a)                                                                VIZ =  
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The impedance matrix Z  has order of ( ) ( )PNPN +×+ 22 . The vector V  is a matrix of order 

( ) 12 ×+ PN  and composed of a submatrix of the tested tangential incident electric field incE  of 

order 1×N  and a submatrix of the tested normalized magnetic field incH1η  of order 1×N , and 

a null submatrix of order 12 ×P . The quantities N and P are the number of basis functions (total 

number of edges of the triangular patches) on the surfaces of the rough ground and the buried 

object, respectively. If the MoM is used to solve Eq. (2a), it requires computing and storing all 

elements of the matrix Z  and then multiplying them by the vector I , which is considered a very 

expensive computational process that will prohibit solving (2a) for large-scale problems. 

However, upon using the SDFMM [1]-[5], the matrix Z  becomes sparse and the system of 

equations in (2a) can be written as: 

(2b)                                                                 VIZIZ =′′+′  

where the matrix Z ′  is a sparse matrix whose non-zero elements need to be calculated and 

stored using the conventional MoM and then multiplying them by the vector I  (near field 

interactions) while the matrix-vector multiply IZ ′′  is computed in one step without calculating 

or storing any elements of the matrix Z ′′ . This is achieved by using the FMM hybridized with 

the SDP integration rule. This implies that there are three bottlenecks in the SDFMM code that 

can significantly enhance its performance by parallelization: (i) the subroutines that calculates 

the elements of the sparse matrix Z ′ ; (ii) the subroutine that executes the matrix vector 

multiplication IZ  ′  in each iteration of the solver; (iii) the subroutine that execute the fast 

multipole method for IZ  ′′  (far field fast multipole interactions).  
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The computer code has been parallelized by exploiting the underlying available data 

parallelism. The key data structure in subroutine (i) is the sparse matrix Z ′ , which is stored as 

blocks of nonzero elements. These blocks are distributed among all processors, and no additional 

communication is needed. When this routine is parallelized we achieved near-linear speedups on 

32 processors. In the matrix-vector multiplication IZ ′ , the computation is parallelized by 

distributing I  to all processors in each iteration. The resulting vector components produced by 

the multiplication are then distributed to all processors. For bottleneck (iii), there are two 

involved subroutines to compute the far field interactions and they consist of a series of loops 

with complex interdependences. Each loop is separately parallelized, with collective 

communication used to distribute the results to all processors after executing each subroutine. In 

addition these two subroutines are executed in parallel, followed by another distribution of the 

results to all processors. Load balance between these two subroutines is achieved using a detailed 

performance model based on the serial execution time of each routine, the time required for 

collective communication operations, and the amount of communication overhead needed. 

Processors are assigned to these two subroutines such that the predicted maximum runtime for 

the two of them is minimized. The structure of the parallelized SDFMM application is shown in 

Fig. 1. 

 

II. Numerical Results 

We evaluated the parallel implementation of the SDFMM computer code on a 32-node Intel 

Pentium-based Beowulf cluster. Thirty one nodes of the Beowulf cluster are 350MHz Intel 

Pentium IIs with 256 MB of RAM in addition to one node of a 4x450MHz Intel Pentium II Xeon 

shared memory processor with 2GB of RAM. The nodes are connected to a 100 BaseTX 
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Ethernet network and they use the SuSE 6.1 operating system with Linux kernel 2.2.13, and the 

MPICH 1.2.1 implementation of the MPI library. Moreover, we tested the parallelized code on a 

4-node shared memory Compaq Alpha-based workstation (667Mhz Alpha 21264) of 16GB total 

RAM. The processor uses the UNIX OSF/1 V5.1 operating system with the MPICH 1.1.2 MPI 

library. 

Our benchmark includes three small-scale cases executed on the 256MB Intel cluster, and in 

addition one moderate-scale case that is executed on the Alpha workstation. To evaluate the 

speedup achieved by the parallel code, we considered a range of values for the ground roughness 

and/or for the buried object. All results obtained by executing the parallel version of the code are 

validated with those computed by the serial version of the code [4]-[5]. In all computations a 

0.1% tolerance is assumed for the TFQMR iterative solver. The scattering problem 

configurations used in [5] are employed here, but for only one rough surface realization. The 

rough ground is characterized by Gaussian statistics with zero mean for the height, thus the 

roughness parameters can be described by the rms height ( σ ) and the correlation length ( cl ). In 

all cases, the relative dielectric constant of the ground soil and the penetrable buried object (anti-

personnel mine) are 18052 .j.r −=ε  and 0092092 .j.r −=ε , respectively. A Gaussian beam 

with horizontal polarization is employed for the incident waves at normal incidence for Cases 1-

3 and at 10o from normal direction for Case 4 [5]. 

In the small-scale Cases 1-3, the dimensions of the modeled ground are assumed to be 

00 33 λ×λ  leading to almost 8,800 of total number of surface current unknowns, while these 

dimensions are increased to be 00 88 λ×λ for the moderate-scale Case 4 leading to 60,320 

unknowns, where 0λ  is the free space wavelength. In Case 1, the scattered electric fields from a 

rough ground alone (no buried target) with 030 λ=σ . and 050 λ= .lc  are calculated at height of 
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021 λ.  above the ground. In Case 2, the scattered electric fields from a rough ground with a 

buried penetrable sphere are calculated at height of 050 λ.  above the ground. The ground 

roughness are assumed to be 010 λ=σ .  and 050 λ= .lc  and the sphere has radius of 0160 λ= .a  

with burial depth equal to 0320 λ−= .z  measured from its center to the mean plane of the ground. 

The sphere in Case 2 is replaced by a spheroid of dimensions 030 λ= .a  and 0150 λ= .b  in Case 

3 that is buried at 030 λ−= .z  with ground roughness equal to 0040 λ=σ .  and 050 λ= .lc . 

Both the overall speedup and the initial speedup (filling matrix Z ′ ) are plotted versus the 

number of processors for Cases 1, 2 and 3 in Figs. 2a, 2b and 2c, respectively. The speedup is 

defined as the ratio of the serial runtime to the parallel runtime. The results in these figures show 

the significant speedup in the initial time (set up) that is consumed to fill the sparse matrix Z ′  as 

explained in Section II. This initial speedup dramatically affects the overall speedup of the code 

as shown in these figures. In addition, the results show that almost the same overall speedup can 

be achieved by employing only twelve instead of thirty-two processors. 

The efficiency for a given number of processors is defined as the ratio of the speedup to the 

number of processors. In each case, the peak speedup is achieved when running on 32 

processors, where for case 1, the peak speedup is 7.1 as shown in Fig. 2a, with a reduction in 

runtime from 99 minutes on one processor to 14 minutes on 32 processors. For Case 2, the peak 

speedup is 6.2 as shown in Fig. 2b, with a reduction in runtime from 90 minutes to 14 minutes 

while for Case 3, the peak speedup is 7.2 as shown in Fig. 2c, with a reduction in runtime from 

88 minutes to 12 minutes. Over these three cases, the average speedup on 32 processors is 6.8, 

giving an efficiency of 0.21. Based on the serial runtimes, 88% of the code is executed in 

parallel. Therefore by Amdahl's Law [12], the peak speedup achievable is 8.3. We conclude that 
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communication overhead and load imbalance among the processors accounts for the reduction in 

speedup from 8.3 to 6.8. An interesting comparison between the speedup achieved in each one of 

the bottlenecks (i)-(iii) mentioned in Section II, is shown in Fig. 3. These results show that 

overall speedup is almost the same as the speedup achieved in the matrix-vector multiplication 

IZ ′  that is the bottleneck (ii). 

In the second set of experiments, we solved the moderate-scale problem of Case 4 (60,320 

unknowns) on the Alpha SMP using all four available processors. The penetrable spheroid of 

dimensions 030 λ= .a  and 0150 λ= .b  is buried at 030 λ−= .z  under the 00 88 λ×λ  rough ground 

with 0040 λ=σ .  and 050 λ= .lc . The magnitude of the total scattered electric filed from the 

ground with the buried target is shown in Fig. 4a. However, the magnitude of the scattered 

electric fields for just the buried spheroid is computed by subtracting the return from the rough 

ground using complex vector representation from the total return from the ground with the buried 

target [4]-[5]. The output is shown in Fig. 4b. The results of Fig. 4a and 4b clearly demonstrates 

that the signature of the buried plastic landmine is relatively small compared with the return from 

the ground which is considered a major source of clutter in landmine detection application. 

Moreover, the distortion observed in Fig. 4b is due to the roughness of the ground which is 

modeled here as only one random rough surface realization, however the Monte Carlo 

simulations case was presented in [5]. The serial version took 96 minutes to run this case while 

the parallel version took 37 minutes, giving a speedup of 2.5 and an efficiency of 0.63. The 

predicted peak speedup on the four processors is 2.9. This implies that executing the parallel 

code on the 4-Alpha 667MHz processor gives a remarkable reduced absolute runtime for this 

moderate-scale case. This achievement can be exploited to execute large-scale scattering 

problem as mentioned in Section II. For the memory requirements, the serial version of the code 
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requires 950MB of RAM while the parallel version requires 1154MB of RAM distributed over 

the four processors as 288, 290, 289 and 287MB, respectively. Table I summarizes the 

parameters and output results for all cases presented in this section. 

Table I 

Case 

# 

# of 

Unknowns 

σσσσ Object System # of 

Processors 

Serial/Par. 

Time (min.) 

Speedup 

(overall) 

1 8,800 0.3λo None Cluster 32 99/14 7.1 

2 8,800 0.1λo Sphere Cluster 32 90/14 6.2 

3 8,800 0.04λo Spheroid Cluster 32 88/12 7.2 

4 60,320 0.04λo Spheroid Alpha Server 4 96/37 2.5 

 

The results described in this section demonstrate that by implementing the fine grained 

parallelism, we have achieved significant speedups when using a single rough surface realization 

(one run of the code). However, when the number of rough surface realizations is much larger 

than the number of available processors, larger speedups are possible. In this case we assign a 

group of these realizations (runs of the code) to be executed in parallel on each processor. Since 

the computations are independent, this coarse grained parallelism gives a perfect speedup that is 

only limited by the number of available processors with the advantage that no communication is 

required. This situation occurs when we need to run Monte Carlo simulations [5]. In other 

subsurface scattering configurations, we may need to obtain multiple views of a target buried 

under the same rough surface realization [4], which requires running the code only few times. A 

combination of the fine-grained parallelism and coarse-grained parallelism can make efficient 

use of all available processors. Reasonable speedup can be achieved in this case where the 

number of needed runs is comparable to, or smaller than, the number of the available processors. 
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IV. Conclusions 

Remarkable speedup has been achieved as the SDFMM is parallelized using the MPI library. 

The linear speedup obtained for the bottleneck associated with filling the impedance sparse 

matrix indicates a significant accomplishment as it dramatically affects the overall speed of the 

computer code. Reasonable speedups are obtained for the second and third bottlenecks 

associated with the matrix vector multiplication and the far field approximations, respectively. 

However, both speedups saturate upon using a number of processors less than the total number 

of nodes available on the system. This mechanism causes the overall runtime of the code to be 

larger than what we anticipated. Thus more parallelization effort is needed especially for the 

second bottleneck (matrix vector multiplication for the sparse matrix) in order to achieve as 

much linear overall speedup as possible. 
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Fig. 4  The near electric field scattered above the rough ground at z = 0.5λo for the spheroid 
of Case 4 ( 030 λ= .a , 0150 λ= .b , buried at 030 λ−= .z  in conductive clay loam soil), 
computed using the 4-processor Alpha Server: (a) the rough ground with the buried spheroid 
(total field), (b) just the spheroid obtained by subtraction. 
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Abstract: 

The Steepest Descent Fast Multipole Method (SDFMM) is used to analyze the distorting effect 

of random rough ground surfaces on scattered and transmitted electromagnetic waves. Two well-

measured loamy soils: Bosnian and Puerto Rican clay loam are investigated, each with a variety 

of surface roughness. This study is important in understanding the effects of different soil 

properties and is meant to be an a priori phase of investigating scattering from buried targets 

under the rough ground.  In this work, we investigated the scattering from rough soil ground 

without buried objects. The SDFMM is an integral equation-based fast algorithm that is well 

suited for two-dimensional penetrable rough surfaces (3-D scattering) in the frequency domain. 

The scattered and transmitted near electric field of an incident Gaussian beam are calculated at 

different locations above and below the mean plane of the dielectric rough interface.  The 
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receiver locations above are chosen to simulate GPR measurement protocols.  The obtained 

numerical results show that the scattered field undergoes more distortion than the transmitted 

field from both soil types.  Moreover, the transmitted fields into the higher dielectric constant 

Puerto Rican soil experience more distortion than those transmitted into Bosnian soil. 

 

Key words: Rough surface scattering, GPR, EM modeling, fast algorithms. 

 

I. INTRODUCTION 

When electromagnetic waves are used to sense buried objects, the effect of the random rough 

air/ground interface on both the transmitted and scattered fields is great, and must be carefully 

considered.  In many cases, the scattering from the air/ground interface is larger than the 

scattering of a buried target especially when the ground surface roughness is comparable to the 

height and the burial depth of the target. Accurate modeling of the clutter is necessary to enable 

signal-processing algorithms to perform optimally in detecting buried targets. In this work, we 

investigate the clutter of different types of soil, which is scattering from rough surface without 

any buried targets. 

 

The rough surface causes two types of distorting effects on a probing plane wave: a defocused 

scattered wave reflected back into the air, and a distorted transmitted wave that would continue 

until it encounters a target. Uncertainty is generated in both waves, and it is important to 

understand the relative amounts of distortion between the two, as well as its dependence on soil 

type. While there has been much published work on far field rough surface scattering [1]-[8], the 

near field effects— which are essential in inverse scattering and object sensing applications— 
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have not been well studied. However, there is published work for modeling near field from 

targets buried under planar surface [9]. As an effort to study the scattered fields in the near zone, 

we assumed that the incident waves are still far fields while point receivers are located in the 

near zone above and below the rough ground. No interactions between scattered fields and the 

transmitting antenna are accounted for in this work. 

 

The surface scattering depends on the frequency dependent complex dielectric constant of the 

soil, which in turn depends on its composition, moisture and density, and also on the roughness 

of the surface.  As moisture increases, so does the dielectric constant.  And with a larger 

dielectric constant, the wavelength in soil decreases. For a given illuminated portion of ground, 

wetter soil will require finer computational discretization, and greater computational expense. 

However, using special-purpose numerical methods, the fast computation of wave interaction 

with a rough surface is feasible. We study two types of experimentally measured soil:  Bosnian 

loam from the Alicia test site [10], and Puerto Rican clay loam [11]. 

 

The rough surface is characterized with Gaussian statistics in terms of random heights and auto-

correlation function [12]. The roughness parameters (root mean square height and correlation 

length) are chosen to be in the moderate roughness range, with root mean square height ranging 

from 0.1 to 0.2 free space wavelengths and the correlation length kept constant at one free space 

wavelength. 

 

In this work, a specialized fast algorithm is necessary, since multiple calculations of this realistic, 

but computationally intensive, model are needed for many different realizations of surface 
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roughness. There for we used the SDFMM, which is a hybridization of the Method of Moments 

(MOM), the Steepest Descent Path (SDP) method, and the Fast Multipole Method (FMM) [13], 

[14], to calculate the unknown surface current coefficients. The details of the SDFMM can be 

found in [15]-[18]. 

 

II. FORMULATION 

In this work, the well-known PMCHW (Poggio, Miller, Chang, Harrington, and Wu) integral 

equations are implemented to calculate the electric and magnetic surface currents [16], [19]. For 

convenience, the integral equation are summarized here as: 

( ) ( ) ( )[ ] (1)                        tan.121121 tan.
MKKJLLrE inc +−+=  

and 

( ) ( ) (2)                         
tan.

12
2

2
2
1

1
121tan.




















+++= M
η
L

η
LJKKrH inc  

in which ( )rE inc  and ( )rH inc  are the incident electric and magnetic fields on the interface 

between air and soil as shown in Figure (1). The subscript tan means the tangential component. 

The differentio-integral operators 121 ,, KLL  and 2K  are defined as [19]: 

( ) ( ) (3a)                                2,1
2,1

2,12,12,1 sdrXirXiXL
S

′












Φ′⋅∇ ′∇
ωε

+′Φωµ= ∫
 

( ) (3b)                                          2,12,1 sdrXXK
S

′Φ∇×′= ∫  

where, the vector X  represents the surface electric current J or the surface magnetic current M  

on the interface S . The dielectric permittivity and permeability in each region are iε  and iµ , i=1 

and 2. The 3-D scalar Green's function in ( )riΦ  is given by : 
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( ) ( )
(3c)                                                          
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′−−
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in which r  is the field point, r ′  is the source point, iiik µεω=  is the wave number in each 

region, i=1 and 2. The equivalent electric and magnetic currents J  and M  on S , are 

approximated using the RWG vector basis functions ( )rj  [19], [20] as follows 

 

( ) ( ) (4a)                                                          ,
1

1 Sr rjIrJ n

N

n
n ∈=∑

=  

( ) ( ) (4b)                                            
1

21 Sr  ,      rjIηrM n

N
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=  

where 1η  is the intrinsic impedance of the free space. Upon substituting Eq. 3-4 in Eqs. (1) and 

(2) and testing with the same basis functions, we get the NN 22 ×  system of equations as  

(5)                                                                   VIZ =  

 

in which V  represents the tangential component of the electric and magnetic fields, I  represents 

the unknown coefficients, and Z  is the impedance matrix [19]. Solving Eq.(5) using the method 

of moments is extremely expensive (computer memory and CPU time) when the size of the 

scatterer (the rough interface, in this case) is much larger than the free space wavelength. In 

reality, the size of the ground is infinite but for computational consideration the rough ground is 

assumed to be adequately larger than the footprint of the incident Gaussian beam [21]. As the 

number of unknown coefficients is very large, special computational procedures must be used 

such as the SDFMM, which is discussed in [15]-[18] and recently was implemented in [22]. 
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III. NUMERICAL RESULTS 

We consider the scatterer S  to be a penetrable random rough surface with dimensions equal to 

LL × , where 08λ=L , and 0λ  is the free space wavelength. Exciting the surface with a carefully 

tapered incident Gaussian beam minimizes the edge effect of the surface S  on the surface 

currents [21]. Thus, infinitely large rough surfaces are sampled over a manageable region. The 

random rough surface is characterized with Gaussian statistics for the random heights and for the 

autocorrelation function, and is generated using the computer random number generator 

following the technique in [12].  Sixty Monte Carlo rough surface simulations were calculated 

for each pair of Gaussian parameters: root mean square height σ and correlation length lc. For 

cases considered here, the electric field is assumed to be x-directed, and normally incident 

( 0=θi ) on the nominal ground surface. 

 

Similar to the work in [16], which implemented the SDFMM to calculate the radar cross section 

of a penetrable random rough surface, we also are using the SDFMM but to calculate the near 

electromagnetic fields scattered above and transmitted into the ground.  

Point receivers are located in the near zone at one wavelength above and below the mean ground 

with resolution equal to 01.0 λ== yx . The electric field is calculated using the nearfield 

formulas in [23]. The SDFMM is compared with the sparse matrix canonical grid (SMCG) 

method [1] and excellent agreement is observed as shown in Fig. 2. The incident angle is 

=θi 20o, soil relative dielectric constant is εr =2.0-i0.2, and surface roughness parameters are 

rms height σ = 0.02 0λ  and correlation length lc = 0.5 0λ . The comparison in Fig. 2 shows the 

normalized radar cross section (RCS) for the HH-polarization case with horizontal axis to be the 

scatter angle θ  (elevation angle in degrees) measured from the z-axis.  
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In this work, two types of soils have been studied:  Bosnian soil with density 1.4g/cm3 and 3.8% 

moisture level with complex dielectric constant 18.03 ir −=ε  at 1 Ghz [10], and Puerto Rican 

clay loam with density 1.2 g/cm3 and 10% moisture with dielectric constant 04.04.5 ir −=ε  at 

frequency f = 960 Mhz [11]. Three values of the rough ground rms height are assumed: 

01.0 λ=σ , ,12.0 0λ and 017.0 λ  along with constant correlation length 01λ=cl . 

 

In Figs. 3a-c, the mean scattered fields in air from Bosnian soil with different rms random 

heights are shown, while Figs. 3d-f shows the transmitted fields.  Note that for a perfectly flat 

ground surface, 0=σ ; the contours would be perfect circles.  In fact, with enough Monte Carlo 

runs, the mean scattered and transmitted field would be expected to be circularly symmetric for 

normal incidence.  However, these mean fields show significant asymmetry and distortion, 

indicating that the random rough surface causes so much variation in the scattered fields that 60 

runs is insufficient for convergence.  As the rms height of the rough surface increases, the 

distortion in both the mean scattered and transmitted field increases as well.  The asymmetry of 

the mean scattered and transmitted wave patterns give a qualitative sense of the distorting effects 

of the rough surface.  Moreover, the results show that the waves transmitted into the ground, 

Figs. 3d-f, are less distorted than the scattered fields above the ground. This could be explained 

by noting that for rays incident on locally tilted surface patches (the sides of small hills and 

valleys), the reflected rays are bent further away from the nominal surface normal than the 

transmitted rays.  As the surface roughness increases, the slopes of the surface patches increase, 

and the reflected rays diverge more.  In Figs. 4a-c and 4d-f, the scattered and transmitted fields 

from Puerto Rican soil with the same three rms random heights are shown.  Comparing results of 

Fig. 3 and Fig. 4, the magnitude of the scattered fields from the Puerto Rican soil is observed to 
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be larger--and the transmitted fields smaller--than that of the Bosnian soil.  This is consistent 

with the fact that the dielectric constant for Puerto Rican soil is almost double that of Bosnian 

soil. Greater distortion in the transmitted fields in the Puerto Rican soil is observed as compared 

with the Bosnian soil case (Figs. 4d-f versus Figs. 3d-f).  This results from the larger electrical 

distance in the former medium from the rough surface scattering centers to the observation plane 

one wavelength in air below the ground.  The destructive interference of the transmitted 

Gaussian beam is enhanced when the phase differences from various parts of the surface 

proportionally increase. 

 

Although the conductivity in soil plays an important role in subsurface sensing, it does not 

appear to have a dominant effect in the distortion of the transmitted Gaussian beam.  A test of 60 

Monte Carlo SDFMM runs of a fictious soil medium with the real dielectric constant of Bosnian 

soil, but with the loss of the Puerto Rican clay loam indicates that the transmitted field has about 

the same distortion as for the actual Bosnian soil. 

 

The total CPU time needed for filling the impedance matrix, for the iterative solution using the 

transpose free quasi-minimal residual solver (TFQMR) [24], and for calculating scattered and 

transmitted near fields is plotted versus the rough surface rms height and shown in Fig. 5.  The 

discretization rate of the surface current, number of electric and magnetic surface current 

unknowns, and the required computer memory to run the SDFMM code are given in Table 1.  As 

expected, running the SDFMM code for the Puerto Rican soil required more CPU time and 

computer memory due to its larger relative dielectric constant requiring a finer discretization. 
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The NCSA SGI/CRAY Origin 2000 machines are used for the Puerto Rican case due its larger 

memory requirement, but the Compaq GS140 EV6 machine at Northeastern University is used 

for the Bosnian case, which reflects the results shown in Fig. 5. 

 

III. CONCLUSIONS 

The SDFMM fast algorithm is used to calculate the nearfield scattered from and transmitted into 

two types of rough ground soils. Bosnian and Puerto Rican soils were chosen for this study as a 

priori phase of our investigation of scattering from buried mines under the same types of soils 

[22]. The results show that the distortion in both the scattered and the transmitted fields increases 

as the ground roughness increases. We observed that the scattered fields experience more 

distortion than the transmitted ones. This suggests a future research to investigate how will the 

transmitted fields be changing with the increase of the incident angle. This result indicates that 

although rough surfaces randomly distort both the scattered and transmitted waves, the distortion 

is greater for the former. Thus the uncertainty of the surface clutter signal is greater than that of 

the probing signal, suggesting the relative importance of careful characterization of the scattered 

waves. 
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Table 1 

 Bosnian soil Puerto Rican soil 

Discretization rate 0/14 λ  0/5.18 λ  

Number of surface current unknowns 73,382 132,610 

Required computer memory 800MB 1.76GB 
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Figure 1 Cross section of rough soil ground with Gaussian beam incident at iθ . 
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Figure 2. Normalized RCS for a rough surface of root mean square height σ=0.02 0λ  and 

correlation length lc=0.5 0λ , at incident angle =θi 20o. HH polarization. 
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Figure 3a Near field scattered at 01λ=z  above the mean ground of Bosnian soil rough 

surface of root mean square height 01.0 λ=σ  and correlation length lc=1 0λ , and incident angle 

0=θi . 
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Figure 3b Near field scattered at 01λ=z  above the mean ground of Bosnian soil rough 

surface of root mean square height 012.0 λ=σ  and correlation length lc=1 0λ , and incident angle 

0=θi . 
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Figure 3c Near field scattered at z =1 Oλ  above the mean ground of Bosnian soil rough 

surface of root mean square height 017.0 λ=σ  and correlation length lc=1 0λ , and incident angle 

0=θi . 
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Figure 3d Near field transmitted at 01λ−=z  below the mean ground of Bosnian soil rough 

surface of root mean square height 01.0 λ=σ  and correlation length lc=1 0λ , and incident angle 

0=θi . 
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Figure 3e Near field transmitted at 01λ−=z  below the mean ground of Bosnian soil rough 

surface of root mean square height 012.0 λ=σ  and correlation length lc=1 0λ , and incident angle 

0=θi . 
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Figure 3f Near field transmitted at 01λ−=z  below the mean ground of Bosnian soil rough 

surface of root mean square height 017.0 λ=σ  and correlation length lc=1 0λ , and incident angle 

0=θi  
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Figure 4a Near field scattered at 01λ=z  above the mean ground of Puerto Rican soil rough 

surface of root mean square height 01.0 λ=σ  and correlation length lc=1 0λ , and incident angle 

0=θi . 
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Figure 4b Near field scattered at 01λ=z  above the mean ground of Puerto Rican soil rough 

surface of root mean square height 012.0 λ=σ  and correlation length lc=1 0λ , and incident angle 

0=θi . 
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Figure 4c Near field scattered at 01λ=z  above the mean ground of Puerto Rican soil rough 

surface of root mean square height 017.0 λ=σ  and correlation length lc=1 0λ , and incident angle 

0=θi . 

X-dimension / λo 

Y
-d

im
en

si
on

 / 
λ o

 



 29

 

 

Figure 4d Near field transmitted at 01λ−=z  below the mean ground of Puerto Rican soil 

rough surface of root mean square height 01.0 λ=σ  and correlation length lc=1 0λ , and incident 

angle 0=θi . 
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Figure 4e Near field transmitted at 01λ−=z  below the mean ground of Puerto Rican soil 

rough surface of root mean square height 012.0 λ=σ  and correlation length lc=1 0λ , and incident 

angle 0=θi . 
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Figure 4f Near field transmitted at 01λ−=z  below the mean ground of Puerto Rican soil 

rough surface of root mean square height 017.0 λ=σ  and correlation length lc=1 0λ , and incident 

angle 0=θi . 
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Figure 5 Total CPU time versus the rms height of the rough surface. 
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Abstract 

The multiple interaction model is hybridized with the robust Steepest Descent Fast Multipole 

Method (SDFMM) to compute the signature of non-shallow penetrable scatterers buried beneath 

2-D random rough surfaces. The most attractive feature of the multiple interaction model with 

using the SDFMM is removing the quasi-planar structure constraint for analyzing non-quasi-

planar scatterers. The results show that the buried object’s signature is largely due to the first 

interaction mechanism; however, the contribution of each additional interaction is explicitly 

calculated, though they may become insignificant especially for lossy background soil. 

I. INTRODUCTION 

Modeling electromagnetic scattering from realistic three-dimensional subsurface sensing 

applications requires huge number of computational operations that necessitates the use of fast 

algorithms [1]-[6]. Recently, the SDFMM [3] has been adopted to analyze the scattering from 

penetrable shallow objects buried beneath two-dimensional random rough ground [7],[8]. The 

SDFMM has the great advantage of O(K) computational complexity for both the CPU time and 

computer memory [3] compared with the O(K2) for the MoM, where K is the total number of 

electric and magnetic surface current unknowns. However, there is a barrier that limits using the 

SDFMM in some applications; the whole scatterer should have a quasi-planar structure with total 

height equal to a fraction of a free-space wavelength. On the other hand, there are several 
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potential applications that have non-quasi-planar geometries; e.g., the multi-layered rough 

ground where the burial depth of the underground layer is larger than the wavelength. 

The multiple interaction approach was previously used in investigating electromagnetic 

scattering problems either analytically from rough surfaces only (no buried objects), e.g. [9] and 

[10], or computationally from rough surfaces with buried objects, e.g. [11], [12]-[14]. In [9] and 

[10], each scattering element on the rough surface was assumed to be a second source for all 

scattering elements either on the same surface leading to the double scattering mechanism [9], or 

on the underground rough-layer as presented in [10]. On the other hand, in [11] a PEC sphere 

was buried beneath the rough ground while in [12],[13] a penetrable object was buried under or 

located above the rough ground. In addition, the multiple interaction approach is used with the 

Multilevel Fast Multipole Algorithm (MLFMA) for multiple targets located above the half space 

is presented in [14]. In these models, the coupling between the rough ground and the object is 

expressed as interaction matrices. 

The multiple interaction approach with using the SDFMM is presented in this work. The 

basic idea is to decompose the 3-D non-quasi-planar structure (e.g., the rough ground with a 

buried scatterer) into two quasi-planar scatterers as shown in Fig. 1 where the SDFMM can be 

used separately for each scatterer. However, the interactions between the ground and the buried 

scatterer are not expressed in matrices (or submatrices) but are calculated concurrently using pre-

computed and pre-stored information that facilitated the numerical evaluating of the near-field 

expressions given in [15]. In general, using the multiple interaction approach (with and/or 

without the SDFMM) enables investigating the contribution of each individual interaction 

mechanism between the ground and the buried object. This will greatly help in understanding the 

physics involved in subsurface sensing applications. It is necessary to distinguish between the 

multiple interaction model upon using the SDFMM, presented in this work, and our previous 
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complete SDFMM model, presented in [7] and [8]. All the self and mutual interactions between 

the rough ground and the buried object were expressed as submatrices in the total impedance 

matrix of the whole scatterer in [7]-[8]. 

II. FORMULATION 

The four integral equations describing the unknown equivalent electric and magnetic surface 

currents for the problem of a single object buried beneath two-dimensional rough ground were 

derived and discussed in [7], [8]. The surfaces of the ground and the buried object were 

discretized using the RWG triangular patches [16]; and the set of linear system of equations was 

obtained [7]-[8]: 

(1)                                                 
0 ..

 . .     
V

I
I

ZZ
ZZ g

obj

g

objobjgobj

objggg










=



























 

where ggZ   .  represents the interactions between elements only on the ground surface; objgZ   .  

represents interactions between elements on the ground surface and elements on the object 

surface; gobjZ   .  represents interactions between elements on the object surface and elements on 

the ground surface; and objobjZ   .  represents interactions between elements only on the object 

surface. As discussed in [7], the total impedance matrix Z  has order of ( ) ( )PNPN +×+ 22 , 

where N is the number of vector basis functions on the ground and P is the number of vector 

basis functions on the buried object. The factor of two accounts for both the electric and 

magnetic surface currents. The vector gV  represents the tested tangential incident electric and 

magnetic fields on the ground surface. The unknown coefficients gI  and objI  were solved for in 

[7] and [8] by completely applying the SDFMM to (1) leading to converting the dense matrix Z  

into a sparse one. Conversely, in this work, the multiple interaction approach will be used to 
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solve two separate linear systems of equations for the unknown current coefficients and then 

iteratively update the incident fields on both the ground and the buried object as 

( ) ( ) (2a)                                                                           .  VIZ n
g

n
ggg =  

( ) ( ) (2b)                                                                         .  VIZ n
obj

n
objobjobj =  

where n = 1, 2, 3, … is the number of the interactions between the ground and the buried object 

as depicted in Fig. 2. The algorithm begins with solving (2a) for ( )0
gI , updating ( )1

objV  in (2b) by 

numerically evaluating the near-field surface integrations given by Eqs. 107-111 in Chapter 6 

[15], solving (2b) for ( )1
objI , updating ( )1

gV  in (2a), and finally solving (2a) for ( )1
gI . These steps 

represent one interaction mechanism (i.e., ground-object-ground) that should be repeated until 

convergence of surface current solutions is achieved. The final updated electric and magnetic 

surface currents on the ground will be ( ) ( ) ( )n
ggggg JJJJJ ++++= �

21)0(  and 

( ) ( ) ( )n
ggggg MMMMM ++++= �

21)0( , respectively, and on the object 

( ) ( ) ( )n
objobjobjobjobj JJJJJ ++++= m

32)1(  and ( ) ( ) ( )n
objobjobjobjobj MMMMM ++++= m

21)1( , respectively. In order 

to accelerate the computations, the SDFMM can be used separately in (2a) and in (2b) to convert 

each dense impedance matrix ggZ  .  and objobjZ   .  into sparse one leading to the multiple interaction 

model with the SDFMM. However, the efficient use of the SDFMM is contingent on the 

geometry of each scatterer separately, i.e., both the rough ground and the buried object should be 

quasi-planar structures. In this case, one interaction mechanism between the ground and the 

buried scatterer requires solving (2a) two times, solving (2b) only once, and numerically 

evaluating the near field expressions in [15] once for the object’s and once for the ground’s 

incident fields. This implies that SDFMM is not used in the near-field interaction computations 

given in [15]. Thus if K1 and K2 are the number of the RWG triangular patches on the rough 
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ground and on the object, respectively, then evaluating the near-field expressions in [15] using 

patch-patch interactions requires 2K1K2 operations [16]. Moreover, all the information needed to 

evaluate these surface integrations are pre-calculated and pre-stored during the computations of 

ggZ   .  and objobjZ   . . Thus the overall number of operations for the multiple interaction model with 

the SDFMM is proportional to 2N + 2N + 2P + 4K1K2 = (4N + 2P+ 4K1K2). The quantity (4K1K2) 

can be approximated by (16NP/9 ≈ 2NP) [16]. However, it is crucial to indicate that these (2NP) 

operations are conducted only once in each interaction mechanism and they are not conducted in 

every iteration of the iterative solver like the (4N+2P) operations. The Transpose Free Quasi 

Minimal Residual (TFQMR) iterative solver is used in this work [17]. The memory requirements 

in the multiple interaction model with the SDFMM is O(2N+2P). On the other hand, the 

computational complexity of the complete SDFMM is O(2N+2P) [3],[7],[8], the conventional 

MoM is of O((2N+2P)2), and the multiple interaction model is of O(4N2 +4P2) for both the CPU 

time and computer memory. In the case where the buried scatterer has a non-quasi-planar 

structure but instead has a small electrical size, the multiple interaction model can still be used 

by solving (2a) using the SDFMM while solving (2b) using the MoM (i.e. the multiple 

interaction model with partial use of the SDFMM). This scenario will slightly increase the total 

computational operations. However, if the non-quasi-planar buried scatterer has a very large 

electrical size, then using the MoM to solve (2b) will lead to a significant increase in the 

computational operations. In addition, the coupling (2NP) operations per interaction will increase 

as well which limits the use of the multiple interaction model for this case. 

III. NUMERICAL RESULTS 

Basically we are interested in subsurface sensing problems where calculating the surface 

currents on the rough ground dominates the overall computations. In all results presented in this 
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section, the incident wave is assumed a Gaussian beam tapered towards the edges of the ground 

[18] with horizontally polarized incident electric field (i.e., in the y-direction). The half-beam 

width is L/5 where the ground has dimensions LL × .  

A variety of geometries represented by seven examples are used in this section. For 

Examples 1-5, the geometries are described in Fig. 2a-f where the ground media is lossy with 

relative dielectric constant assumed as 180522 .j.r −=ε . However, to investigate the case of a 

shallow scatterer buried in a lossless medium, Example 6 uses the geometry in Fig. 2c but for 

larger dimensions of the ground given by 00 08.408.4 λ×λ  with 5.22 =ε r  while the underground 

layer is assumed to have 2.07.63 jr −=ε  and is buried at 01.0 λ−=z . The same geometry is also 

used in Example 7, but with even larger dimensions of the ground given by 00 88 λ×λ , same 

lossless soil of 5.22 =ε r , and lossy underground layer of 0.17.63 jr −=ε  buried at 01.0 λ−=z . 

The accuracy of the near-field expressions in [15] deteriorates for burial depths smaller 

than 01.0 λ  since the source and observation points become very close to each other. 

A qualitative comparison (not presented here) showed excellent agreement between the 

surface currents obtained using the multiple interaction model with those obtained using the 

conventional MoM. Moreover, the convergence of the surface current solutions in Examples 1-7, 

is quantitatively demonstrated by plotting the normalized change in the currents ||C(n)||/||C(0)|| 

versus the number of interactions between the ground and the buried scatterer. This is shown in 

Fig. 3. The vector C has dimensions of (2N+2P) and it contains all the electric and magnetic 

surface currents on both the air/ground interface and the buried scatterer. The results show that a 

significant change occurs in the currents after one interaction (n = 1); however, much less 

significant change in the currents is observed after two interactions (n = 2), as shown for 

Examples 6 and 7, where the maximum relative change in the currents is less than 5%. However, 
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insignificant changes are observed for all cases at the third or higher interaction. This indicates 

that the contributions from the higher interactions depend on the physical properties of the 

scatterer, and in some cases, larger changes in the currents may occur at the second interaction. 

In Fig. 4, the error in the norm of the surface currents obtained using the multiple interaction 

model ||C||Model and those obtained using the conventional MoM (||C||MoM) are plotted versus the 

number of interactions for Examples 1-4. The results clearly validate the multiple interaction 

model. 

In Fig. 5a, the scattered electric fields received above the ground at 050 λ= .z  and due just to 

the buried sphere are plotted versus the x-direction for 0042 λ= .y  using the data of Example 4 

(Fig. 2e). Three solutions are obtained for this example (i) the conventional MoM for the whole 

scatterer, (ii) the multiple interaction model (MIM), and (iii) the multiple interaction model with 

the SDFMM (MIM with SDFMM). The observed slight differences are attributed to the 

difference in defining the scattered fields due to just the buried sphere in both the conventional 

MoM and the multiple interaction model. Using the conventional MoM, we calculated the total 

scattered electric fields twice; with and without the buried sphere, then the results are subtracted 

from each other with complex vectors [7],[8]. On the other hand, using the multiple interaction 

model we use the obtained surface currents on the ground due to only the presence of the sphere, 

i.e., ( )1
gJ + ( )2

gJ + ( )3
gJ  and ( )1

gM + ( )2
gM + ( )3

gM , and incorporate them into the near field expressions in 

[15] to compute the scattered electric fields above the ground. Notice that the quantities ( )0
gJ  and 

( )0
gM , the surface currents on the ground without a buried object, are not used in the calculations 

of the object signature. In Fig. 5b, the scattered electric fields received above the ground at 

05.0 λ=z  are plotted versus the y-direction for 0042 λ= .x  using the data of Example 5 (Fig. 2f). 

The scattered fields due to just the air/ground rough interface are calculated using only the 
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ground surface currents without the presence of the buried layer, i.e., ( )0
gJ  and ( )0

gM , while the 

scattered fields due to just the underground rough layer are calculated using only the ground 

surface currents ( )1
gJ + ( )2

gJ + ( )3
gJ  and ( )1

gM + ( )2
gM + ( )3

gM . As expected, the signature of the 

air/ground rough interface is significantly larger than that of the underground rough layer. Table 

1 summarizes all examples considered in this section obtained using the conventional MoM, the 

MIM, and the MIM with the SDFMM. All these three models are calculating the surface currents 

on the air/ground interface and on the buried object. The overall computer memory and CPU 

time are given for one interaction mechanism (i.e., ground-object-ground). In Example 7, the 

total CPU time is 192 min   177 min for the TFQMR iterative solver and only 15 min for 

updating the incident fields on both the ground and the underground layer (interactions). This 

represents less than 8% of the total CPU time.  

Table 1. CPU time and computer memory requirements for Examples 1-5. 

Examples # Unknowns # Patches CPU (min.) 
 

Memory (MB) 
 

 2N 2P K1 K2 MoM 
(conv.)

MIM MIM with 
SDFMM 

MoM 
(conv.) 

MIM 
 

MIM with 
SDFMM 

1 (Fig. 2a) 8512 8352 2888 2808 118 49 † 1280 850 † 
2 (Fig. 2c) 8512 8512 2888 2888 72 37 † 1305 880 † 
3 (Fig. 2d) 8512 8512 2888 2888 78 38 † 1305 880 † 
4 (Fig. 2e) 15402 2292 5202 764 93 66 38 1848 1467 225 
5 (Fig. 2f) 15402 15402 5202 5202 ‡ 130 45 >6000 3256 395 
7 (Fig. 2c) 59600 59600 20000 20000 ‡ ‡ 192 ‡ ‡ 1818 

†  The emphasis is to validate the MIM with the MoM for these small cases. 
‡  The MoM could not be used for this case due to the large memory requirements (> 6 GB). 

 
In all results presented in this section, a relative residual error of 10-5 is used in the TFQMR 

iterative solver [17] and the smallest FMM block size is assumed to be 00 32.032.0 λ×λ . In 

Examples 1-4, upon comparing the use of the MIM with the conventional MoM, the reductions 

in the total CPU time and computer memory, range from 30% to 60% and from 20% to 35%, 

respectively. On the other hand, the CPU time and computer memory are reduced by almost 65% 
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and 88%, respectively, when the MIM with the SDFMM is used versus the MIM as shown in 

Example 5. Moreover, in Example 7, only the MIM with the SDFMM could be used due to the 

huge required computer memory (>6GB) for both the MoM and the MIM. 

It is necessary to emphasize that the most attractive feature of the MIM with the SDFMM is 

removing the quasi-planar structure constraint to enable its use in the non-quasi-planar 

applications described in Fig. 2. Moreover, there are no overlapping applications that require 

choosing between the MIM with the SDFMM which works more efficiently for non-shallow 

scatterers and the complete SDFMM in [7],[8] which works more efficiently for shallow 

scatterers. However, to obtain the signature of the buried scatterer, the complete SDFMM in 

[7],[8] requires executing the computer code twice, with and without the buried object, while the 

MIM with the SDFMM computes the object signature by running the computer code only once. 

Even thought no convergence problems were encountered in any of the tested cases, even when a 

very shallow underground layer is buried in lossless soil, however for shallow scatterers, the 

complete SDFMM in [7],[8] should be used since it represents a potentially non-stationary 

algorithm for the whole matrix as discussed in [19] in addition to its superior computational 

complexity when used for the whole scatterer. 

 

IV. CONCLUSIONS 

The multiple interaction approach is used with the robust SDFMM to remove the quasi-

planar structure constraint to enable analyzing non-shallow objects buried beneath the 2-D 

random rough ground. The results show that the first interaction mechanism between the ground 

and the buried scatterer significantly contributes to the surface current solutions while the 

contributions of additional interactions become insignificant especially when the non-shallow 

object is buried in lossy background soil. 
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Figure 1.  Non-quasi-planar structure decomposition into two quasi-planar structures showing 
their multiple interactions. 
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(a) a cylinder of length 004.3 λ=b , radius 015.0 λ=a  and 00290973 .j.r −=ε  buried at 

065.0 λ−=z  under a flat ground of dimensions 00 04.304.3 λ×λ  with 180522 .j.r −=ε

for �0=iϑ  (Example 1), showing one ground-object-ground mechanism n = 1, (b) the same data 
of (a) showing four ground-object-ground mechanisms n = 4. 

(c)

Multi-layered flat ground 
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(c) the same flat air/ground interface of (a) and a flat under ground layer buried at 045.0 λ−=z with 
290243 .j.r −=ε  for �10=ϑ i  (Example 2), (d) the same data of (c) but with rough air/ground

interface with rms height 0080 λ=σ .  and correlation length 050 λ= .lc  (Example 3). 

(e) a sphere of radius of 05.0 λ=a  with 0290543 .j.r −=ε  buried at 075.0 λ−=z  (measured from its
center) under a flat air/ground interface of dimensions 00 08.408.4 λ×λ  with 180522 .j.r −=ε

for �0=iϑ  (Example 4), (f) the same data of (e) but with rough air/ground ( 01 060 λ=σ . , 01 50 λ= .lc )
and underground interface ( 02 050 λ=σ . , 02 40 λ= .lc ) buried at 095.0 λ−=z (measured between the
two mean planes) with 20733 .j.r −=ε  (Example 5).  
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Figure 3.  The normalized change in the surface currents ||C(n)||/||C(0)|| versus the number of 
interactions for Examples 1-7, where the vector C contains all electric and magnetic surface 
currents.  

 
 

Figure 4.  The error in the norm of the surface currents obtained using the multiple interaction 
model ||C||Model and those obtained using the conventional MoM (||C||MoM ) versus the number of 
interactions for Examples 1-4, where the vector C contains all electric and magnetic surface 
currents. 
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Figure 5.  Magnitude of scattered electric field E  received at 050 λ= .z  above the ground due to 
(a) just the buried sphere in Example 4 (Fig. 2e shown at 0042 λ= .y ) and (b) due to (i) just the 
rough air/ground interface and (ii) just the rough underground layer, in Example 5 (Fig. 2f. 
shown at 0042 λ= .x ). 
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ABSTRACT 

In this work, we present a statistical study of the electric field scattered from a 3-D penetrable 

object buried under a 2-D random rough surface. Monte Carlo simulations using the Steepest 

Descent Fast Multipole Method (SDFMM) are conducted to calculate the average and the 

standard deviation of the near zone scattered fields. The SDFMM, originally developed at UIUC 

has been modified to calculate the unknown surface currents both on the rough ground and on 

the buried object due to excitation by a tapered Gaussian beam. The rough ground medium used 

in this study is an experimentally measured typical dry Bosnian soil with 3.8% moisture, while 

the buried object represents a plastic land mine modeled as an oblate spheroid with dimensions 
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and burial depth smaller than the free space wavelength. Both vertical and horizontal 

polarizations for the incident waves are studied. The numerical results show that the TNT mine 

signature is almost 5% of the total field scattered from the ground. Moreover, relatively 

recognizable object signatures are observed even when the object is buried under the tail of the 

incident beam. Interestingly, even for the small surface roughness parameters considered here, 

the standard deviation of the object signature is almost 30% of the signal itself, indicating 

significant clutter distortion due to the roughness of the ground. 

 

I. INTRODUCTION 

For subsurface sensing applications such as indicated in Fig. 1, electromagnetic wave scattering 

from rough ground is a major source of clutter for the measurements. Analyzing and 

characterizing this clutter is vital in the development of more efficient radar sensing systems. 

This random scattering of the electromagnetic fields necessitates the use of Monte Carlo 

simulations and makes it a key stochastic process to obtain the statistics of the scattered fields, 

and hence to extract information and draw meaningful conclusions from the numerical results. 

There is much published work on electromagnetic scattering from one- or two-dimensional 

random rough surfaces only (without buried objects) using Monte Carlo simulations, e.g., [1]-

[5]. Moreover, there are several publications that model electromagnetic waves from objects 

buried under one-dimensional random rough surfaces, e.g., [6]-[8], or objects buried under flat 

half-spaces [9]. However, there are very few published works for an object buried under a two-

dimensional random rough surface; [10], which attempts to model a perfect electrically 

conducting (PEC) buried object and, to the author’s knowledge, only [11] attempts to model the 

case of a penetrable buried object. 
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The computational expenses, the CPU time and computer memory required to calculate the 

scattering fields from 3-D penetrable scatterers become excessive for either an electrically large 

scatterer and/or a scatterer with large dielectric constant. In addition, Monte Carlo simulations 

require that the calculations must be repeated for many rough surface realizations (depending on 

the ground roughness) until results converge. As it is known, solving a 3-D scattering problem is 

expensive even for one surface realization, so conducting Monte Carlo simulations with 

hundreds of realizations without using fast algorithms is prohibitive even using supercomputers. 

Implementing the fast multipole method (FMM) [12]-[16] makes the solution of a 3-D problem 

tractable with significant reduction in CPU time and computer memory. The integral equation-

based Steepest Descent Fast Multipole Method (SDFMM), a hybridization of the Moment 

Method (MOM), the Fast Multipole Method (FMM) and the Steepest Descent Path integration 

rule (SDP), is used to calculate the unknown surface currents. The details of the SDFMM are 

published in [17]-[20]. 

 

In this work, we are using the same formulations we developed in [11], with primary emphasis 

on conducting efficient and fast Monte Carlo simulations to obtain the statistics of the scattered 

near fields. In Section II, the problem formulations are briefly summarized. Numerical results 

using the SDFMM are presented in Section III. Conclusions and future work are stated in Section 

IV. 

 

II. PROBLEM FORMULATION 

The SDFMM makes use of the equivalence theorem to calculate the electric and magnetic fields 

inside and outside a 3-D penetrable object buried under the rough surface interface, details are 



 4

presented in [11]. The 3-D arbitrary object is modeled by scatterer 3R  that is immersed in 

scatterer 2R  which represents the rough ground. The scatterer 2R  is immersed in the free space 

region represented by 1R , as shown in Fig. 2. The three regions, 1R , 2R  and 3R  have 

permittivity and permeability given by 1ε  and 1µ , 2ε  and 2µ , and 3ε  and 3µ , respectively, 

representing free space, soil medium and penetrable buried object. There are two final sets of 

unknown equivalent electric and magnetic surface currents in the following formulations. They 

are 11, MJ , on the exterior of 1S , interface between 1R  and 2R , and 33 , MJ  on the exterior of 

2S , interface between 2R  and 3R . Upon applying the boundary conditions, continuity of 

tangential components of the electric and magnetic fields on 1S  and 2S , new integral equation 

formulations are obtained as [11]: 
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In which the integro-differential operators iL  and iK , i =1, 2, 3 and 4, are given in detailed in 

[11]. In Eqs. 1-4, the unknown surface electric and magnetic currents are 1J , 1M , 3J , and 3M , 

while the tangential component of the incident electric and magnetic fields on the rough surface 

are given by ( )
.tang

rE inc  and ( )
.tang

rH inc , respectively. The intrinsic impedance in each region is 
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iii εµ=η / , i=1, 2, and 3, where the dielectric permittivity and permeability in each region are 

iε  and iµ , respectively. Equations 1-4 are considered the extension of the PMCHW 

formulations that has been shown to yield a unique solution at internal resonances associated 

with the corresponding conducting scatterer [21]-[23]. The equivalent electric and magnetic 

currents are approximated using the RWG vector basis functions ( )rj [21], [24]
 
as:  
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2111
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==
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where surfaces 1S  and 2S  are discretized into triangular patches with total number of edges  

(number of unknown coefficients) equal to N on 1S  and equal to P on 2S . As shown in Eqs. (5a) 

and (5b), both the electric and  magnetic surface currents has the same number of unknown 

coefficients (edges) on each surface. Upon applying Galerkin’s method and substituting the 

above current approximations in Eqs. (1-4), the original integral equations are transformed into a 

set of linear system of equations given by: 

(6)                                                                 VZI =  

 

Notice that the matrix Z  has order of ( ) ( )PNPN +×+ 22 , the vector V  is a matrix of order 

( ) 12 ×+ PN  and composed of a submatrix of the tested tangential incident electric field incE  of 

order 1×N  and a submatrix of the tested normalized magnetic field incH1η  of order 1×N , and a 

null submatrix of order 12 ×P . Finally, the SDFMM is implemented in Eq. 6 reducing the 
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computational complexity for the CPU time and computer memory requirements from O(K2), for 

the MOM, to only O(K) per iteration of iterative solver using the SDFMM [17]-[19], where 

K=2(P+N) is the total number of the electric and magnetic surface current unknowns. 

 
 
III. NUMERICAL RESULTS 

The SDFMM code has been validated with the SMCG method (sparse canonical conjugate 

gradient method) [10] where the scatterer is a PEC sphere buried under a random rough surface 

and very good agreement is presented in [11]. More validations of the SDFMM code (not 

presented here) are conducted showing excellent agreement between the SDFMM code and both 

the Mie and MOM solutions for the case of just a penetrable sphere immersed in air (no rough 

surface) and excited by incident plane wave [21]. 

 

In all results presented in this section, the incident wave is assumed to be a Gaussian beam [25] 

located in the plane of incidence as shown in Fig.1. The half beam width of the Gaussian beam is 

assumed to be L/5, where the simulated rough ground has dimensions equal to LL × , with 

08λ=L  in this work. This leads to plane wave illumination of a spot size of diameter 02.3 λ  on 

the ground with tapered illumination towards the edges of the finite modeled ground. The rough 

surface is characterized with Gaussian statistics for the random heights and for the 

autocorrelation function. In this work, we are interested at the anti-personnel mine detection 

application which justifies the assumption of small roughness parameters of the ground given by 

the root mean square height 004.0 λ=σ  and the correlation length 05.0 λ=cl . The dielectric 

constant of a typical Bosnian soil with 3.8% moisture is 18.05.2 ir −=ε  at 1GHz [26], while the 

dielectric constant of the buried object (TNT material) is 072.09.2 ir −=ε . The buried object is 
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modeled as an oblate spheroid with top view as a circle of radius a=0.3 0λ  and both front and 

side views are ellipses of dimensions a=0.3 0λ  and b=0.15 0λ . The burial depth of the object is 

03.0 λ=d and is measured from its center to the mean plane of the rough surface. In this work 

the incident Gaussian beam is always pointing at the center of the rough ground with plane wave 

illumination spot of diameter equal to 3.2 0λ  compared with 0.6 0λ  diameter of the buried 

spheroid. Moreover, all results here represent near scattered electric fields and all subtraction 

processes are conducted with complex vectors. 

 

In all results in this section, the discretization length of the surface current on the rough ground is 

assumed to be 008.0 λ  producing a total number of surface current unknowns as 2N =59,600 

[11]. The number of nodes and patches on the buried penetrable oblate spheroid are 122 and 240, 

respectively, producing a total number of surface current unknowns as 2P=720 [11]. The 

dimensions of the SDFMM finest block are assumed 00 32.032.0 λ×λ  with two blocks separating 

the near field (MOM) from the far field (SDFMM) interactions on the scatterer [17]-[19]. 

 

As mentioned earlier, we are primarily interested at scattered electric fields in the near zone, 

which can be calculated using the solved electric and magnetic surface currents [27] and are 

obtained at point receivers located 0.5 0λ  above the nominal rough surface with resolution 

0.1 0λ , as shown in Fig. 1. The magnitude of the average scattered electric field and the standard 

deviation are calculated as: 
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where, iE  represents the complex vector electric field scattered from the ith rough surface 

realization where i=1, 2,…M, where the size of Monte Carlo set (M) is assumed to be 65 in all 

results in this section. 

 

In Figs. 3-7, two incident elevation angles with one azimuth angle 0=ϕ i , will be considered; 

0=ϑ i  for the horizontally polarized incident waves where the electric field is in the y-direction 

(Figs. 3-6) and �10=ϑ i for both polarizations (Figs. 7a-d). 

 

In Figs. 3a and 3b, the magnitude of the average near scattered electric fields at 05.0 λ=z , using 

Monte Carlo simulations, from the rough surface alone and from the rough surface with the 

buried spheroid, located at 00.4 λ== yx , are shown, respectively. Notice the slight difference 

between results in Fig. 3a and Fig. 3b, which is due to the small size of the buried object 

compared with the free space wavelength. Our objective is to analyze and extract information 

about the buried object that caused this slight difference. In Fig. 4a, the near scattered electric 

fields from the buried spheroid under two individual rough surface realizations selected from the 

65 ones used in Fig. 3b, the average of the 65 surface realizations of rough surface with buried 

object (Fig. 3b), the average of the 65 surface realizations of rough surface alone (Fig. 3a), and 

the scattered electric field from flat ground with and without buried object are plotted at 

00.4 λ=Y . The results of Fig. 4a show the oscillations in the scattered electric fields from these 

individual rough surface realizations compared with the smooth curve obtained upon averaging 

the fields using Monte Carlo simulations. Notice that the average fields shown in Fig. 4a (solid 
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and dotted lines) are not perfectly symmetric around the point 00.4 λ=X  compared with the 

symmetrical results of the flat ground. This can be attributed to the relatively small size of the 

Monte Carlo sample (65 realizations) and to the edge effect of the finite modeled rough ground. 

This qualitative comparison shown in Fig. 4a indicates the significant effect of the rough ground 

on the scattered signals even with the small roughness parameters chosen in this application. In 

order to obtain the scattered fields due just to the buried object, four types of subtractions are 

conducted with complex vectors and results are shown in Figs. 4b-e. First, we subtract the 

electric field scattered from flat ground alone from those scattered from flat ground with buried 

spheroid and results are shown in Fig. 4b. Second, we subtract the average scattered field from 

rough surface alone (solid curve in Fig. 4a) from the fields scattered from one rough surface 

realization with the buried object (surface #1 in Fig. 4a). The outcome is plotted in Fig. 4c, 

which shows very noisy results compared with Fig. 4b. Instead, the near electric fields scattered 

from only one surface realization is subtracted from those scattered from the same surface 

realization with buried spheroid, and results are plotted in Fig. 4d. Significant enhancement in 

results is shown in Fig. 4d compared with Fig. 4c giving more information about the object 

signature. Finally upon repeating the subtraction process of Fig. 4d for each of the 65 rough 

surface realizations, and then taking the statistical average of the outcome, results shown in Fig. 

4e are obtained. Thus conducting Monte Carlo simulations of the 65 object signals obtained by 

subtraction, gives ideal image as clearly shown in Fig. 4e compared with Fig. 4b versus Figs. 4c 

and 4d. In practice signals scattered from a target buried under only one rough ground are 

measured. However the statistics shown in Fig. 4e are used to conclude that the TNT spheroid 

has signature almost equal to 5% of the total scattered fields. In reality, neither the profile of the 

rough ground or its soil dielectric constant is precisely known. However, if these parameters can 



 10

be estimated, then our fast model can be used to compute the scattered fields from the rough 

ground alone. As a result it can be used to remove the clutter from the measurement data by 

subtraction, as shown earlier, aiming to obtain results similar to Fig. 4d. Signal-processing 

techniques could be applied to this output rather than directly to the more noisy measurement 

data.  

 

Upon keeping the incident Gaussian beam pointing at the center of the ground and changing the 

location of the buried spheroid from the center of the ground at 00.4 λ== yx  to 00.5 λ== yx  

and to 00 0.4,5.6 λ=λ= yx , similar results to Fig. 4e are obtained at these locations. A 

qualitative comparison between the scattered electric fields from the buried spheroid versus the 

object location is shown in Fig. 5. As expected, these results show the degradation of object 

signature with respect to its closeness to the center of the incident Gaussian beam. Although the 

maximum excitation is not over the target, computing the difference fields clearly shows the 

target position. The standard deviation (STD) of the 65 scattered electric fields due just to the 

spheroid is calculated using Eq. 7b and plotted in Fig. 6 show that it is equal to almost 30% of 

the object signature shown in Fig. 4e. In Figs. 7a and 7b, the elevation angle of the incident 

Gaussian beam is varied to be �10=ϑ i , and the average scattered fields using Monte Carlo 

simulations are plotted for the vertical polarization from surface only and from surface with 

buried spheroid, respectively. Also, slight distortion is observed in the object signature at this 

oblique incident angle for both polarizations as shown in Figs. 7c and 7d. 

  

The CPU time required for the SDFMM to calculate the surface current unknowns for each 

rough surface realization are 38 minutes to fill in the impedance matrix, 72 minutes for the 
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TFQMR (transpose-free quasi-minimal residual) iterative solver [28], and 3 minutes to calculate 

the near field scattered above the ground with 01.0 λ  resolution. The computer memory required 

to run the SDFMM is 950MB. These computations were conducted using one processor on 

Compaq GS140 EV6 machine. 

 

As known, the size of Monte Carlo sample (number of rough surface realizations) increases 

dramatically with the increase of ground roughness parameters. For flat ground only one surface 

is needed while for very rough ground, hundreds of realizations are needed for efficient 

conduction of Monte Carlo simulations. The adequate sample size can be obtained by gradually 

increasing the number of realizations used in the calculations till no change is observed in 

numerical results. The CPU time dramatically increases with the increase of Monte Carlo sample 

size. This barrier can be eliminated by the possible parallel implementation of the SDFMM code 

similar to the SMCG method [29]. 

 

IV. CONCLUSIONS 

We demonstrated the implementation of the SDFMM to calculate the unknown surface currents 

on a random rough surface with buried 3-D penetrable object. The significant speed of this 

algorithm allowed an efficient conduction of the Monte Carlo simulations. The average and the 

standard deviation of the near fields scattered from the ground with the buried object are 

calculated. Our results showed that the presence of the rough interface distorts the scattered 

fields from the buried object even for the small roughness parameters considered here. 

Interestingly, we also showed that the standard deviation statistic of the object signals is large 

relative to the signal itself. Recognizable object signature is observed even when the object is not 
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buried under the center of the ground where the incident Gaussian beam is pointing. Having 

determined some of the statistics of both clutter and target signals, it is possible to apply 

statistical signal processing for target detection, which is the subject of future work. 

 

ACKNOWLEDGEMENTS 

The authors would like to thank Prof. W. Chew, Prof. E. Michielssen and Dr. V. Jandhyala at 

UIUC for allowing them the use and modification of the SDFMM computer code for the current 

application. This research was sponsored by the Army Research Office Demining MURI grant # 

DAA 0-55-97-0013 and in part by the Engineering Research Centers Program of the National 

Science Foundation under award number EEC-9986821. This work benefited from the allocation 

of time at the Northeastern University Advanced Scientific Computation Center (NU-ASCC). 



 13

REFERENCES 

[1]  L. Tsang, C. H. Chan, K. Pak, H. Sangani, A. Ishimaru and P. Phu, “Monte Carlo 

simulations of large-scale composite random rough-surface scattering based on the banded-

matrix iterative approach,” J. Opt. Soc. Am. A, vol. 11, no. 2, pp. 691-696, February 1994. 

[2] R. L. Wagner, J. Song and W. C. Chew, “Monte Carlo simulation of electromagnetic 

scattering from two-dimensional random rough surfaces,” IEEE Trans. Antennas 

Propagat., vol. 45, no. 2, pp. 235-245, February 1997. 

[3] C. H. Chan, L. Tsang, and Q. Li, "Monte Carlo simulations of large-scale one dimensional 

random rough-surface scattering at near grazing incidence: penetrable case," IEEE Trans. 

on Anten. and Prop., vol. 46, no. 1, pp. 142-149, January 1998. 

[4] F. D. Hastings, J. B. Schneider and S. L. Broschat, “A Monte Carlo FDTD technique for 

rough surface scattering,” IEEE Trans. Antennas Propagat., vol. 43, no. 1183-1191, 

November 1995.  

[5] J. T. Johnson, L. Tsang, R. T. Shin, K. Pak, C. H. Chan, A. Ishimaru and Y. Kuga, 

“Backscattering enhancement of electromagnetic waves from two-dimensional perfectly 

conducting random rough surfaces: A comparison of Monte Carlo simulations with 

experimental data,” IEEE Trans. Antennas Propagat., vol. 44, no. 5, pp. 748-756, May 

1996.  

 [6] K. O’Neill, R. F. Lussky Jr. and K. D. Paulsen, “Scattering from a metallic object 

embedded near the randomly rough surface of a lossy dielectric,” IEEE Trans. Geosci. 

Remote Sensing, vol. 34, no. 2, pp. 367-376, March 1996. 



 14

[7] G. Zhang, L. Tsang and Y. Kuga, “Studies of the angular correlation function of scattering 

by random rough surfaces with and without a buried object,” IEEE Trans. Geosci. Remote 

Sensing, vol. 35, no. 2, pp. 444-453, March 1997. 

[8]  A. Madrazo and M. Nieto-Vesperinas, “Scattering of light and other electromagnetic waves 

from a body buried beneath a highly rough random surface,” J. Opt. Soc. Am. A, vol. 14, 

no. 8, pp. 1859-1866, August 1997. 

[9]  N. Geng, A. Sullivan and L. Carin, “Multilevel fast-multipole algorithm for scattering from 

conducting targets above or embedded in a lossy half space,” IEEE Trans. Geosci. Remote 

Sensing, vol. 38, no. 4, pp. 1561-1573, July 2000. 

[10]  G. Zhang, L. Tsang and K. Pak, “Angular correlation function and scattering coefficient of 

electromagnetic waves scattered by a buried object under a two-dimensional rough 

surface,” J. Opt. Soc. Am. A, vol. 15, no. 12, pp. 2995-3002, December 1998. 

 [11] M. El-Shenawee, C. Rappaport, E. Miller and M. Silevitch, “3-D subsurface analysis of 

electromagnetic scattering from penetrable/PEC objects buried under rough surfaces: Use 

of the steepest descent fast multipole method (SDFMM),” IEEE Trans. Geosci. Remote 

Sensing, to be published in June 2001. 

 [12] V. Rokhlin, “Rapid solution of integral equations of scattering theory in two dimensions,” 

J. Comput. Phys., vol. 36, pp. 414-439, 1990. 

 [13] R. Coifman, V. Rokhlin and S. Wandzura, “The fast multipole method for the wave 

equation: A pedestrian description,” IEEE Antennas Propagat. Mag., vol. 35, no. 3, pp. 7-

12, June 1993. 

 [14] C. C. Lu and W. C. Chew, "Fast algorithm for solving hybrid integral equations," IEE 

Proceedings-H, vol. 140, no.6, December 1993. 



 15

[15] C. C. Lu and W. C. Chew, "A multilevel fast-algorithm for solving a boundary integral 

equation of wave scattering," Microwave Opt. Tech. Let., vol. 7, pp.466-470, July, 1994. 

[16] J. M .Song and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined 

field integral equations of electromagnetic scattering," Microwave Opt. Tech. Lett., vol. 10, 

pp.14-19, 1995. 

[17] V. Jandhyala, Fast Multilevel Algorithms for the Efficient Electromagnetic Analysis of 

Quasi-Planar Structures, Ph.D. Thesis, Department of Electrical and Computer 

Engineering, University of Illinois at Urbana-Champaign, 1998. 

[18] V. Jandhyala, E. Michielssen, B. Shanker and W.C. Chew, “A combined steepest descent-

fast multipole algorithm for the fast analysis of three-dimensional scattering by rough 

surfaces,” IEEE Trans. Geosci. Remote Sensing, vol. 36, no. 3, pp. 738-748, May 1998. 

[19] V. Jandhyala, B. Shanker, E. Michielssen, and W. C. Chew, "A fast algorithm for the 

analysis of scattering by dielectric rough surfaces," J. Opt. Soc. Am. A, vol. 15, no. 7, pp. 

1877-1885, July 1998. 

[20] M. El-Shenawee, V. Jandhyala, E. Michielssen and W. C. Chew, “The steepest descent fast 

multipole method (SDFMM) for solving combined field integral equation pertinent to 

rough surface scattering,” Proc. of the IEEE APS/URSI '99 conf., Orlando, Florida, pp. 

534-537, July 1999. 

[21] L. Medgyesi-Mitschang, J. Putnam, and M. Gedera, "Generalized method of moments for 

three–dimensional penetrable scatterers," J. Opt. Soc. Am. A, vol. 11, no. 4, pp. 1383-1398, 

April 1994. 

[22] J. R. Mautz and R. F. Harrington, "H-field, E-field, and combined field solutions for 

conducting bodies of revolutions," Arch. Elek. Ubertrang., vol. 32, pp.157-164, 1978. 



 16

[23] P. L. Huddleston, L. N. Medgyesi-Mitschang, and J. M. Putnam, “Combined field integral 

equation formulation for scattering from dielectrically coated conducting bodies,” IEEE 

Trans. Antennas and Propag., vol. Ap-34, pp. 510-520, 1986. 

[24] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of 

arbitrary shape,” IEEE Trans. on Anten. and Prop., vol. AP 30, no. 3, pp.409-418, May 

1982. 

[25] P. Tran and A. A. Maradudin, "Scattering of a scalar beam from a two-dimensional 

randomly rough hard wall: enhanced backscatter," Phy. Rev. B, vol. 45, no. 7, pp. 3936-

3939, February 1992. 

[26] J. Curtis, "Dielectric properties pf soils; various sites in Bosnia," US Army Corp. of Eng., 

Waterways Experim., Station Data Rep., 1996. 

 [27] C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons Inc, ch. 6, 

pp.254-309.  

[28] R. W. Freund, “A transpose-free quasi-minimal residual algorithm for non-hermitian linear 

systems,” SIAM J. Sci. Comput., vol. 14, no. 2, pp. 470-482, March 1993. 

[29] S. Li, C. H. Chan, L. Tsang, Q. Li, and L. Zhou, "Parallel implementation of the sparse 

matrix/canonical grid method for the analysis of two-dimensional random rough surfaces 

(three-dimensional scattering problem) on a Beowulf system," IEEE Trans. Geoscience 

Rem. Sensing, vol. 38, no. 4, pp.1600-1608, July 2000. 



 17

List of figures 

Figure1. Cross section of 2-D rough surface ground with 3-D object buried under the interface. 

Figure 2. Penetrable 3-D scatterer 3R  immersed in scatterer 2R  immersed in region 1R . 

Figure 3a. Average of near electric field scattered at 05.0 λ=z  above rough ground of rms 

height 004.0 λ=σ  and correlation length 05.0 λ=cl , incident angle ϑ i =0o, for vertical 

polarization. 

Figure 3b. Average of near electric field scattered at 05.0 λ=z  above rough ground of rms 

height 004.0 λ=σ  and correlation length 05.0 λ=cl , incident angle ϑ i =0o, for vertical 

polarization. The oblate spheroid object has dimensions 03.0 λ=a  and 015.0 λ=b  and is buried 

at depth 03.0 λ=d  under the mean plane of the surface. 

Figure 4a. Near electric field scattered at 05.0 λ=z  from two individual rough surface 

realizations with buried spheroid selected from Fig. 3b (surface #1 and #2), the average of 65 

electric fields scattered from rough surface with and without the buried spheroid, Fig. 3b and Fig. 

3a, respectively, and the scattered electric field from flat ground with and without the buried 

spheroid. All plotted at 00.4 λ=Y , where the spheroid is located at 00 3.0,0.4 λ−=λ== zyx . 

Figure 4b. Scattered near electric field due to just the buried object under a flat ground obtained 

by subtraction. Incident angle ϑ i =0o for horizontal polarization and the spheroid is buried at 

00 3.0,0.4 λ−=λ== zyx . 

Figure 4c. Scattered near electric field due to just the buried object obtained by subtracting the 

average electric field of Fig. 3a from the field scattered from only one surface (with buried 

spheroid) selected from the 65 realizations used to obtain Fig. 3b. Incident angle ϑ i=0o for 

horizontal polarization and the spheroid is buried at 00 3.0,0.4 λ−=λ== zyx . 



 18

Figure 4d. Scattered near electric field due to just the buried object obtained by subtracting fields 

scattered from only one surface selected from the 65 realizations used to obtain Fig. 3a (surface 

only) from fields scattered from the same surface (with buried spheroid) selected from the 65 

realizations used to obtain Fig. 3b. Incident angle ϑ i =0o for horizontal polarization and the 

spheroid is buried at 00 3.0,0.4 λ−=λ== zyx . 

Figure 4e. Average near electric field scattered due to only buried object obtained by subtracting 

fields scattered from the 65 realizations used to obtain Fig. 3a from fields scattered from the 

same 65 realizations and used to obtain Fig. 3b then take the statistical average. Incident angle ϑ i 

=0o for horizontal polarization. The spheroid is buried at 00 3.0,0.4 λ−=λ== zyx . 

Figure 5. Comparison between signatures of three objects located at 00.4 λ== yx , 

00.5 λ== yx , and to 00 0.4,5.6 λ=λ= yx , respectively. 

Figure 6. The standard deviation (STD) of near electric fields scattered due to just buried 

spheroid for the same data in Fig. 4e. 

Figure 7a. Average of near electric field scattered at 05.0 λ=z  above rough ground of rms height 

004.0 λ=σ  and correlation length 05.0 λ=cl , incident angle ϑ i =10o for vertical polarization. 

Figure 7b.  Average of near electric field scattered at 05.0 λ=z  above rough ground of rms 

height 004.0 λ=σ  and correlation length 05.0 λ=cl , incident angle ϑ i =10o, and vertical 

polarization. The object has dimensions 03.0 λ=a  and 015.0 λ=b  and is buried at depth 

03.0 λ=d  under the mean plane of the surface. 



 19

Figure 7c. Average near electric field scattered due to just the buried object obtained by 

subtracting fields scattered from the 65 realizations used to obtain Fig. 7a from fields scattered 

from the same 65 realizations and used to obtain Fig. 7b and then take the statistical average. 

Incident angle ϑ i =10o for vertical polarization. 

Figure 7d. Average near electric field scattered due to just the buried object for similar data 

shown in Fig. 7c but for horizontal polarization. 



 20

 

 

 

 

 

 

 

 

 

 

Figure1. Cross section of 2-D rough surface ground with 3-D object buried under the interface. 
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Figure 2. 3-D penetrable scatterer 3R  immersed in scatterer 2R  immersed in region 1R . 
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Figure 3a. Average of near electric field scattered at 05.0 λ=z  above rough ground of rms 

height 004.0 λ=σ  and correlation length 05.0 λ=cl , incident angle ϑ i =0o, and horizontal 

polarization. 
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Figure 3b. Average of near electric field scattered at 05.0 λ=z  above rough ground of rms 

height 004.0 λ=σ  and correlation length 05.0 λ=cl , incident angle ϑ i =0o, and horizontal 

polarization. The oblate spheroid has dimensions 03.0 λ=a  and 015.0 λ=b  and is buried at 

00 3.0,0.4 λ−=λ== zyx . 
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Figure 4a. Near electric field scattered at 05.0 λ=z  from two individual rough surface 

realizations with buried spheroid selected from Fig. 3b (surface #1 and #2), the average of 65 

electric fields scattered from rough surface with and without the buried spheroid, Fig. 3b and Fig. 

3a, respectively, and the scattered electric field from flat ground with and without the buried 

spheroid. All plotted at 00.4 λ=Y , where the spheroid is located at 00 3.0,0.4 λ−=λ== zyx . 
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Figure 4b. Scattered near electric field due to just the buried object under a flat ground 

obtained by subtraction. Incident angle ϑ i =0o for horizontal polarization and the spheroid is 

buried at 00 3.0,0.4 λ−=λ== zyx . 
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Figure 4c. Scattered near electric field due to just the buried object obtained by subtracting the 

average electric field of Fig. 3a from the field scattered from only one surface (with buried 

spheroid) selected from the 65 realizations used to obtain Fig. 3b. Incident angle ϑ i=0o for 

horizontal polarization and the spheroid is buried at 00 3.0,0.4 λ−=λ== zyx .
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Figure 4d. Scattered near electric field due to just the buried object obtained by subtracting fields 

scattered from only one surface selected from the 65 realizations used to obtain Fig. 3a (surface 

only) from fields scattered from the same surface (with buried spheroid) selected from the 65 

realizations used to obtain Fig. 3b. Incident angle ϑ i =0o for horizontal polarization and the 

spheroid is buried at 00 3.0,0.4 λ−=λ== zyx . 
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Figure 4e. Average near electric field scattered due to only buried object obtained by subtracting 

fields scattered from the 65 realizations used to obtain Fig. 3a from fields scattered from the 

same 65 realizations and used to obtain Fig. 3b then take the statistical average. Incident angle ϑ i 

=0o for horizontal polarization. The spheroid is buried at 00 3.0,0.4 λ−=λ== zyx . 

X-dimension / λ0 

Y
-d

im
en

si
on

 / 
λ 0

 

V/m 



 29

 

0 1 2 3 4 5 6 7 8
0

0.002

0.004

0.006

0.008

0.01

0.012

 

 

Figure 5. Comparison between signatures of three objects located at 00.4 λ== yx , 

00.5 λ== yx , and to 00 0.4,5.6 λ=λ= yx , respectively. 
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Figure 6. The standard deviation (STD) of near electric fields scattered due to just buried 

spheroid for the same data in Fig. 4e. 
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Figure 7a. Average of near electric field scattered at 05.0 λ=z  above rough ground of rms 

height 004.0 λ=σ  and correlation length 05.0 λ=cl , incident angle ϑ i =10o for vertical 

polarization. 
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Figure 7b. Average of near electric field scattered at 05.0 λ=z  above rough ground of rms 

height 004.0 λ=σ  and correlation length 05.0 λ=cl , incident angle ϑ i =10o, and vertical 

polarization. The object has dimensions 03.0 λ=a  and 015.0 λ=b  and is buried at depth 

03.0 λ=d  under the mean plane of the surface. 
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Figure 7c. Average near electric field scattered due to just the buried object obtained by 

subtracting fields scattered from the 65 realizations used to obtain Fig. 7a from fields scattered 

from the same 65 realizations and used to obtain Fig. 7b and then take the statistical average. 

Incident angle ϑ i =10o for vertical polarization. 
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Figure 7d. Average near electric field scattered due to just the buried object for data shown 

in Fig. 7c but for horizontal polarization. 
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ABSTRACT 

The electromagnetic scattering from a three-dimensional shallow object buried under a two-

dimensional random rough dielectric surface is analyzed in this work. The buried object can be a 

perfect electric conductor (PEC) or can be a penetrable dielectric with size and burial depth 

comparable to the free space wavelength. The random rough ground surface is characterized with 

Gaussian statistics for surface height and for surface autocorrelation function. The PMCHW 

(Poggio, Miller, Chang, Harrington, and Wu) integral equations are implemented and extended 

in this work. The integral equation-based Steepest Descent Fast Multipole Method (SDFMM), 

that was originally developed at UIUC, has been used and the computer code based on this 
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algorithm has been successfully modified to handle the current application. The significant 

potential of the SDFMM code is that it calculates the unknown moment method surface electric 

and magnetic currents on the scatterer in a dramatically fast, efficient and accurate manner. 

Interactions between the rough surface interface and the buried object are fully taken into 

account with this new formulation. Ten incident Gaussian beams with same elevation angle and 

different azimuth angles are generated for excitation as a one possible way of having multiple 

views of a given target. 

 

The scattered electric fields due to these ten incident beams are calculated in the near zone and 

their complex vector average over the multiple views is computed. The target signature is 

obtained by subtracting the electric fields scattered from the rough ground only from those 

scattered from the ground with the buried anti-personnel mine. Significant polarization 

dependency is observed for the PEC object signature compared with that of the penetrable 

object, which can be used in target discrimination. Moreover, fields scattered above the rough 

ground experience significantly more distortion than fields transmitted into the ground.  

 

I. INTRODUCTION 

Subsurface sensing of buried electromagnetically penetrable objects under random rough 

surfaces has many important applications, such as detection of mines, underground water, buried 

hazardous environmental waste, and underground petroleum. Modeling the wave scattering is 

essential for efficient sensor design and for inverse scattering and target reconstruction 

processing. Of particular interest here is the topic of anti-personnel landmine detection, as shown 

schematically in Fig. 1. The analysis of scattering and transmission of the electromagnetic waves 
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in the presence of a random rough dielectric interface and in the near field of the sensing systems 

is a crucial step for subsurface object detection problems in general and landmine remediation 

applications in particular. Generally, this fully three dimensional problem must be treated 

numerically. However the calculation of the required fields using conventional techniques (e.g. 

moment method, finite elements, or finite differences) is a computationally intensive undertaking 

especially for large dielectric constant soil. The computational complexity of the problem 

dramatically increases upon inserting objects under the rough interface, especially when these 

objects are penetrable. 

 

To deal with this complex scenario, we apply the SDFMM, originally developed by V. 

Jandhyala, E. Michielssen, and W. Chew [1]-[3] to analyze 3-D scattering problems of quasi-

planar structures, which is well suited to handle large computational domains of this sort. In 

particular, the SDFMM computer code has been successfully modified to handle objects with 

burial depth comparable to the wavelength and varieties of ground soil characteristics. Mine 

fields are located in different places all over the world where the dielectric constant of the soil 

significantly varies, for example, εr =2.5-i0.18 for Bosnian soil with 3.8% moisture at 1GHz, εr 

=5.4-i0.04 for Puerto Rican soil with 10% moisture at 960MHz, while εr =9.18-i1.26 for 

Bosnian soil with 25% moisture at 1GHz. These modifications and their use in calculating 

scattering simulations are presented in this work. The SDFMM is a hybridization of three 

methods: the Method of Moments (MOM), the Steepest Descent Path (SDP) method, and the 

Fast Multipole Method (FMM). The basic concept of the SDFMM is to subdivide the rough 

surface and the buried object scatterers into small groups and each group includes some of the 

moment method surface current unknowns. The interactions between these current unknowns in 
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a given group or in nearby groups are calculated using the standard MOM, which incorporates 

multiplying the elements of the impedance matrix by the current coefficient vector. All other 

interactions are calculated in one step without conducting matrix vector multiplication by using 

the fast multipole method, which is also hybridized with the SDP integration rule. The details of 

the SDFMM can be found in [1]-[6]. 

 

In section II, we present the analysis of the problem based on extending the implementation of 

the PMCHW [7] integral equations for the three regions; air, soil, and buried object. The object 

can either be penetrable, as characterized by its dielectric constant, or a PEC. In section III, the 

numerical results for the electric fields in the near zone are shown. Conclusions and future work 

will be summarized in Section IV. The proof of an important and useful identity used in the 

computations is given in Appendix A. 

 
II. FORMULATION 

In this section, we formulate the problem of a penetrable arbitrary 3-D scatterer 2R  immersed in 

1R  with an interior scatterer of different material 3R  as shown in Fig. 2a. The three regions, 1R , 

2R  and 3R  have permittivity and permeability given by 1ε  and 1µ , 2ε  and 2µ , and 3ε  and 3µ , 

respectively. As shown in Figs. 2a-d, the region 2R  is bounded by surfaces 1S  (exterior) and 2S  

(interior) with normal vectors 1n  and 2n  on 1S  and, 3n  and 4n on 2S . The region 3R  is bounded 

by surface 2S . The normal vectors 1n , 2n  and 3n , and 4n  are chosen to point toward regions 1R , 

2R , and 3R , respectively. The electric and magnetic fields in regions 1R , 2R , and 3R  are 11 , HE , 

due to equivalent currents 11, MJ , as shown in Fig. 2b, 22 , HE  due to equivalent currents 
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22 , MJ  and 33 , MJ , as shown in Fig. 2c, and 33 , HE , due to equivalent currents 44 , MJ , as 

shown in Fig. 2d. Following the analysis in [7], [9], [10] with time dependence ( )ti  exp ω  

assumed, the electric and magnetic fields at an arbitrary point r in region 1R  are: 

( ) ( ) ( ) ( ) ( ) ( )( ) (1a)                  
1

111111111111 sdEnEnHnirErEr
S

inc ′Φ∇ ′⋅−Φ∇ ′××−Φ×ωµ−=θ ∫  

( ) ( ) ( ) ( ) ( ) ( )( ) (1b)                  
1

111111111111 sdHnHnEnirHrHr
S

inc ′Φ∇ ′⋅+Φ∇ ′××+Φ×ωε+=θ ∫  

Similarly, the electric and magnetic fields in region 2R  are: 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) (1c)                  

    

2

1

S
2232232232

222222222222

sdEnEnHni

sdEnEnHnirEr
S

′Φ∇ ′⋅−Φ∇ ′××−Φ×ωµ−

′Φ∇ ′⋅−Φ∇ ′××−Φ×ωµ−=θ

∫

∫
 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( )∫

∫
′Φ∇ ′⋅+Φ∇ ′××+Φ×ωε+

′Φ∇ ′⋅+Φ∇ ′××+Φ×ωε=θ

2

1

S
2232232232

222222222222

1d                      

    

sdHnHnEni

sdHnHnEnirHr
S  

Finally, the electric and magnetic fields in region 3R , are: 

( ) ( ) ( ) ( ) ( )( ) ( )1e                  
2

334334334333 sdEnEnHnirEr
S

′Φ∇ ′⋅−Φ∇ ′××−Φ×ωµ−=θ ∫  

( ) ( ) ( ) ( ) ( )( ) ( )1f                  
2

334334334333 sdHnHnEnirHr
S

′Φ∇ ′⋅+Φ∇ ′××+Φ×ωε=θ ∫  

In Eqs. 1a-f, r  is the field point, r ′  is the source point, and iΦ  is the 3-D scalar Green's function 

( ) rr/rrikexp i ′−′−− π4  in which iiik µεω=  is the wave number in each region, i=1, 2 and 

3. The symbol ( )riθ  is the Heaviside function that gives the jump condition at surface S , 

( ( ) otherwise   ,Rr for . ,Rr for r iii 0501 ∂∈∈=θ ) [7], [9], [10], where the symbol iR∂  

represents the boundary of region iR . The equivalent currents 1J  and 1M  are related to the 
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tangential electric and magnetic field components in region 1R  as 
1

111 S
HnJ ×=  and 

1
111 

S
nEM ×= . Similarly, the equivalent currents 2J , 3J , 4J , 2M , 3M , and 4M  can be related 

to tangential electric and magnetic fields on 1S  and 2S . Moreover, the normal electric and 

magnetic field components in region 1R  are related to the equivalent currents as 

1111 / ωε⋅−∇=⋅ iJEn  and 1111 /  ωµ⋅−∇=⋅ iMHn . Similarly, the normal electric and magnetic 

field components in regions 2R  and 3R  can be expressed as functions of their associated 

equivalent currents. Applying the boundary conditions for the tangential electric and magnetic 

field components on surface 1S  leads to 21 JJ −=  and 21 MM −= , and on surface 2S  leads to 

43 JJ −=  and 43 MM −= . Thus, upon equating the tangential component of the electric fields 

( 1E  and 2E ) and magnetic fields ( 1H  and 2H ), on surface 1S , we get: 

( ) ( ) ( )[ ] (2)                       tang.3333121121tang.
MKJLMKKJLLrE inc +−+−+=  

( ) ( ) (3)                        
tang.

32
2

3
3312

2

2
2
1

1
121tang. 











−−





+++= M

η
L

JKM
η
L

η
LJKKrH inc  

and on surface 2S , we get: 

( ) ( )[ ] (4)                        0 tang.3433431212 MKKJLLMKJ-L +−+++=  

( ) (5)                        0
.tang

32
3

4
2
2

3
3432

2

12
12


















η

+
η

+++
η

−−= MLL
JKKMLJK  

where, operators jL  and jK , j=1, 2, 3 and 4, are given by: 

( ) ( ) (6a)                                
1

2,1
2,1

2,12,12,1 sdrXirXiXL
S

′












Φ′⋅∇ ′∇
ωε

+′Φωµ= ∫  
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( ) ( ) (6b)                                
2

3,2
3,2

3,23,24,3 sdrXirXiXL
S

′












Φ′⋅∇ ′∇
ωε

+′Φωµ= ∫  

( ) (6c)                                          
1

2,12,1 sdrXXK
S

′Φ∇×′= ∫  

( ) (6d)                                          
2

3,24,3 sdrXXK
S

′Φ∇×′= ∫  

The vector X  represents the surface electric current J and/or the surface magnetic current M  

on surface 1S  or on surface 2S . The intrinsic impedance in each region is iii εµη /= , where 

the dielectric permittivity and permeability are iε  and iµ , respectively. Equations 2-5 are 

considered the extension of the PMCHW formulation which has been shown to yield a unique 

solution at internal resonances associated with the corresponding conducting scatterer [7], [11], 

[12]. 

 

The equivalent electric and magnetic currents 3,1J  and 3,1M  on 1S  and on 2S , are approximated 

in Eqs. 2-5 using the RWG vector basis functions ( )rj  [7], [8] as follows 

( ) ( ) ( ) ( ) (7a)                                      , 11
1

2111
1

11 Sr ,        rjIηrM  rjIrJ n

N

n
nn

N

n
n ∈== ∑∑

==  

( ) ( ) ( ) ( ) (7b)                                      , 22
1

4132
1

33 Sr ,        rjIηrM  rjIrJ m

P

m
mm

P

m
m ∈== ∑∑

==

 

where 1η  is the intrinsic impedance of region 1R , which is the free space in this work. For the 

sake of computational efficiency, both magnetic currents 1M  and 3M  are normalized with the 

same value of 1η  as shown in Eqs.7a and 7b. The number of the unknown coefficients on surface 

1S  with coefficient vectors 1I  and 2I , which are associated with 1J  and 1M , is denoted by N , 
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while the number of the unknown coefficients on surface 2S  with coefficient vectors 3I  and 4I , 

associated with 3J  and 3M , is denoted by P , in Eqs. 7a and 7b. Next, we substitute Eqs. 7a and 

7b in Eqs. 2-5, along with multiplying the H-field equations, Eqs. 3 and 5, by the same 

normalizing intrinsic impedance 1η . Upon applying Galerkin’s method for testing the E- and H-

field equations, the original integral equations are thus transformed into a set of linear equations 

VIZ =  given by: 

(8)                                                 
0

1
2

1

2221

1211     
V

I
I

ZZ
ZZ







=











 

where, 11Z  is a submatrix of order NN 22 ×  which represents interactions between elements 

only on surface 1S , 12Z  is a submatrix of order PN 22 ×  which represents interactions between 

elements on surface 1S  and elements on surface 2S , 21Z  is a submatrix of order NP 22 ×  which 

represents interactions between elements on surface 2S  and elements on surface 1S , and 22Z  is a 

submatrix of order PP 22 ×  which represents interactions between elements only on surface 2S . 

Thus the total matrix Z  has order of ( ) ( )PNPN +×+ 22 . Note that the vector 1V  is a submatrix 

of order 12 ×N  and composed of the tested tangential incident electric field incE  and the tested 

normalized magnetic field incH1η  on surface 1S . The unknown current coefficients 1I  and 2I  

are submatrices of order 12 ×N  and 12 ×P . The elements of the submatrix 11Z  are given by 

( ) ( )

( ) ( )a 
jLLjjKKj

jKKjjLLj

Z

S
S

SS

9                                   
,,

,,

1

1

11

12
2

2
2
1

12
1112111

121111211

11

























η

+
η

η+η

+η−+

=  
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in which ∫ ⋅=
S

S
dsBABA *,  denotes the complex inner product between vector functions A  

and B  on a surface S  [7]. Similarly, the elements of the submatrices 12Z , 21Z , and 22Z are: 

(9b)                                               
,,

,,

1

1

11

22
2

32
112311

2311231

12

























η

η−η−

η−

=

S
S

SS

j
L

jjKj

jKjjLj

Z

 

9c) (                                           
,,

,,

2

2

22
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2

22
121212

1212122

21

























η

η−η−

η−

=

S
S

Ss

jLjjKj

jKjjLj

Z  

( ) ( )

( ) (9d)                          
,,

,,

2

2

22

22
3

4
2
2

32
1224312

243122432

22
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Notice that there are symmetrical relationships between some of the sixteen submatrices in Eqs. 

(9a-d), for example, it can be proven that (Appendix A): 

( )10                                  ,,
21 S12122311 jKjjKj

S
η−−=η  

This leads to computing and storing elements of only nine out of the above sixteen submatrices, 

to gain significant reduction in CPU time and computer memory requirements for the MOM part. 

 

To obtain the formulations for a PEC interior scatterer 2S , we delete P rows and P columns from 

the total matrix Z  starting from index (2N+P+1) up to index (2N+2P). Moreover, P rows should 

be deleted from vectors I  and V  starting from index (2N+P+1) up to index (2N+2P). This leads 

to a new matrix Z  that has an order of ( ) ( )PNPN +×+ 22 . 
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The objective of the above analysis is to solve Eq. 8 for the unknown current coefficients 1I  and 

2I . Upon substituting the obtained coefficients into Eq. 7a and b, the surface electric and 

magnetic currents can be obtained on the exterior scatterer 1S  and on the interior scatterer 2S . 

Thus complex vector electric fields in the near zone can be obtained [13]. 

 

As is well known, solving the system of equations in Eq. 8 by using the MOM requires 

computing, storing and multiplying a full dense matrix of order ( ) ( )PNPN +×+ 22  by a vector 

of order ( )PN +2 , which is computationally prohibitive for large-scale scatterers even using 

supercomputers. This necessitates the need for the SDFMM, which makes these computations 

significantly tractable. Applying the SDFMM to Eq. 8, the matrix Z  is divided as FFNF ZZ + , 

where NFZ  represents the dense near field part, and FFZ  represents the sparse far field part of 

matrix Z . The entries of NFZ  are computed directly, and then the matrix vector multiply is 

conducted following the conventional MOM method. The entries of FFZ  are not directly 

computed nor stored as before, but the matrix vector multiply is conducted in one step using the 

inhomogeneous plane wave expansions. The interaction decomposition into near field, NF, and 

far field, FF, is assumed according to the distance, in wavelength, between those interacting 

elements on the scatterer. We should mention that the computational complexity of the SDFMM 

for the CPU time and the memory requirement are of O(K) per iteration of the iterative solver, 

while they are of order O(K2) for the MOM method, where K is the total number of the surface 

current unknowns and it is equal to ( )PN +2  for the buried penetrable object case [1]-[6]. 
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III. NUMERICAL RESULTS 

In this work, the exterior closed scatterer 1S  is excited with an incident Gaussian beam that 

induces stronger surface currents on a localized area of the surface and weaker currents away 

from that area [14], [15]. As a result, these surface currents become negligible on the back of the 

closed surface 1S , which makes it possible to approximate 1S  by an open rough surface with 

dimensions LL × . In all results here, L  is chosen to be 08λ  where 0λ  is the free space 

wavelength. In reality, the rough surface is an infinite surface, but by using a carefully tapered 

incident Gaussian beam, the edge effect of the modeled finite surface can be eliminated. The 

random rough surface, characterized by Gaussian statistics for the random heights and for the 

autocorrelation function, is generated using the computer random number generator [16] and will 

be described by the root mean square height σ and the correlation length lc. The interior scatterer 

2S  is representing the object, which is always buried at the center of the ground with burial 

depth measured from its center to the mean plane of the rough surface. 

 

In Figs. 3a and b, the SDFMM computer code is compared with the sparse matrix canonical grid 

(SMCG) method published in [14]. The buried object is assumed to be a PEC sphere of radius r 

=0.3 0λ  at burial depth d = 0.6 0λ , where the incident angle is ϑ i =20o and the relative dielectric 

constant of the soil is εr =2.0-i0.2. The HH-polarization results for the normalized radar cross 

section (RCS) is shown for the rough surface (σ = 0.02 0λ  and lc = 0.5 0λ ) without the buried 

PEC sphere in Fig. 3a and with the buried PEC sphere in Fig. 3b. The horizontal axis in Fig. 3 is 

the scatter angle θ  (elevation angle in degrees) measured from the z-axis. For comparison 

purpose with [14], the rough surface is sampled at 8 points per 0λ  leading to a number of surface 
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current unknowns N =12,160 as in [14]. The PEC sphere is sampled at 20 points in the φ–

direction (0-360o) and 10 points in the ϑ–direction (0-90o) leading to a number of surface current 

unknowns P =480. The normalized RCS is calculated by taking the average of those values 

produced using ten azimuth angles. The excellent agreement shown in these figures validates the 

SDFMM code for the buried PEC object under the rough ground. 

 

Next, new analysis of a buried penetrable or PEC oblate spheroid of dimensions a=0.3 0λ  and 

b=0.15 0λ , as shown in Fig. 1, is presented. To assure accuracy, the rough surface is sampled at 

12.5 points per 0λ  with a number of surface current unknowns equal to N=29,800. The spheroid 

is sampled at 20 points in the φ–direction and 8 points in the ϑ–direction corresponding to P=360 

surface current unknowns. 

 

In Figs. 4a-d, the magnitude of the complex vector electric field in the near zone is calculated at 

height z=0.5 0λ  above and below the nominal ground and at (x, y) grid points of resolution equal 

to 0.1 0λ . The ground surface is rough with σ =0.04 0λ , lc= 0.5 0λ , and relative dielectric 

constant εr =2.5-i0.18 which is a typical Bosnian dry (3.8% moisture) clay loam at 1GHz [17]. 

To enhance target detection, the near scattered electric field is computed and averaged over 

multiple views each pointed to the same ground point directly over the target. Ten incident 

Gaussian beams with same elevation angle 10=ϑ i o and different azimuth angles 

324,...72 ,36 ,0=φi o, are simulated as suggested by Zhang, Tsang and Pak [14]. The rational of 

averaging over these multiple views is that this process minimizes the clutter effect of the rough 

surface on individual scattered beams. In Figs. 4a and 4b, the magnitude of the near electric field 
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scattered from the rough surface only is plotted for the H- and V- incident polarization, 

respectively, while in Figs. 4c and 4d, the near electric field transmitted into the same rough 

ground is plotted for the H- and V- polarizations, respectively. The shown results in Figs. 4a and 

4b indicate the difference in the scattered electric fields upon changing the polarization of the 

incident Gaussian beam (H and V). Notice that in the H-polarization at oblique incident angle 

10=ϑ i o, the incident electric field always has a single component perpendicular to the plane of 

incidence (y-component for π=φ ,0i ), while it has two components (x- and z- for π=φ ,0i ) in 

the V-polarization. Accordingly, the local reflection and transmission coefficients on each point 

on the rough surface are different, giving rise to the difference observed between Figs. 4a and 4b 

and between Figs. 4c and 4d. As seen in Figs. 4a and 4b, the scattered electric fields for each 

polarization appear to have ten lobes, one every 36o in azimuth direction (as seen clearly at the 

0.062 V/m contour level). For a perfectly flat surface, the scattered pattern would have ten-

folded symmetry, but for the rough surface, the random variations distort this pattern. As 

expected, the transmitted electric fields shown in Figs. 4c and 4d are larger than the scattered 

electric fields shown in Figs. 4a and 4b due to the relatively small value of the dielectric constant 

(εr =2.5-i0.18). Moreover, the results show that the electric fields transmitted into the ground are 

less distorted than the scattered electric fields. This is because the local transmitted angle is 

smaller than the local incident angle. 

 

The near electric field scattered from the oblate PEC spheroid buried at depth d=0.3λo is 

calculated for the H- and V-incident polarizations. The results obtained are only slightly different 

from those presented in Figs. 4a and 4b, therefore they are not presented here. The near electric 

field scattered due just to the object, obtained by subtracting the electric fields scattered from the 
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surface only (Figs. 4a and 4b) from the electric fields scattered from the surface with the buried 

object, is shown in Figs. 5a and 5b for H- and V-polarization, respectively. The results indicate 

that the signature of the buried oblate PEC spheroid is smaller than the ground scattered field, 

since the target is small compared with the wavelength, and is a polarization dependent, as 

expected, with almost four times larger magnitude V-polarization than H-polarization. 

 

The oblate penetrable spheroid with the relative dielectric constant of TNT εr=2.9-i0.07, is 

buried under the same rough surface as before at the same depth d=0.3 0λ . The near electric 

scattered fields due just to the oblate penetrable spheroid are shown in Figs. 6a and 6b for H- and 

V- polarization, respectively. These results indicate that the signature of the oblate penetrable 

spheroid is not as polarization dependent as that of the oblate PEC spheroid shown in Figs. 5a 

and 5b. Since the Gaussian beams on opposite sides of the object are oppositely polarized, 

electric fields scattered from the centered object tend to cancel. It is interestingly to note that the 

rough ground surface perturbs this destructive interference. The average scattered electric field 

from the PEC object illuminated by V-polarized beams (Fig. 5b) is greater than for the H-

polarized beams (Fig. 5a), due to constructive interference of the z-components. If a progressive 

phase of 10/2π  is successively applied to each of the scattered electric fields to focus the field at 

the center, stronger but almost equal signatures of the PEC object are observed in both 

polarizations providing a stronger but less discriminative detecting technique. 

 

The iterative solver TFQMR [18] has been used with tolerance 1% for all obtained results. Five 

levels in the fast multilevel multipole part of the SDFMM with finest block size equal to 

0.5025 0λ  were employed here. For the oblate penetrable spheroid case, the SDFMM code 
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needed two CPU hours, using one processor on Compaq GS140 EV6 machine, for the iterative 

solver to converge for each incident beam and additional thirty-five minutes for the set up time. 

Thus the total required CPU time, for ten multiple views, is 20.6 CPU hours. The required 

computer memory is 800MB. For the oblate PEC buried spheroid, the SDFMM code needed 1.6 

CPU hours per view for the iterative solver and almost the same set up time as before leading to 

total time of 16.5 CPU hours in this case. The required computer memory in later case was 

600MB. For the rough surface only, the SDFMM code needed 0.9 CPU hours for the iterative 

solver, half an hour for set up time, and 500MB computer memory. 

 

IV. CONCLUSIONS 

In this paper, a study has been presented for 3-D electromagnetic scattering from shallow objects 

buried under the random rough surface. Our analysis in not limited to any particular incident 

waves, transmitter position, near or far field zone, object’s geometry, nor to the Gaussian 

statistics characterization of the rough surface. There is a limitation, however, on the rough 

surface root mean square height and on the burial depth of the object due to the constraint of the 

SDFMM to quasi-planar structures. In the current application, this is not a major limitation since 

the surface root mean square height and the burial depth of the object are comparable to the free 

space wavelength as a typical case for antipersonnel mine detection application. The ultimate 

objective of our research is to distinguish between the target signal scattered from the buried 

object and the clutter signal scattered from the rough ground. As our numerical results show, 

only a slight difference can be observed between these two signals because of the small size and 

dielectric contrast of the buried target with respect to the surrounding soil. Even though 

subtracting the two signals could clearly lead to the target signal, it is not a practical detection 
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method. With the insight gained from the numerical simulations, we aim to derive methods to 

remove the clutter signal to achieve target detection with minimum "false alarms". Ongoing 

research using these numerical simulations tests advanced and robust signal processing 

techniques and provides a basis to optimize transmitter/receiver positions for best target 

detection. Interestingly, our results show that the scattered electric fields above the ground 

undergoes strong distortion compared with the electric fields transmitted into the ground. 

Moreover, employing multiple views of the target using ten simultaneous incident Gaussian 

beams has lead to strong polarization dependency only for the PEC object, which can be used in 

target discrimination. 
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Appendix A 

The LHS of Eq. 10 can be written as 

( ) ( ) ( )
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1 2

1 2
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where r ′  is the vector position on S2 and r  is the vector position on 1S . From the RHS of Eq. 

10, with using Φ∇ ′−=Φ∇ , we get 
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where r ′  is the vector position on S1 and r  is the vector position on 2S . Upon renaming r ′  by 

r , and vise versa, and exchanging the order of integrations in Eq. A2, we get  

 

( ) ( ) ( )( )

( ) ( ) ( )( ) ( )A3                           

 ,

1 2

2 1
2

2121
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S S

S S
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Notice that Eq. A3 is equivalent to Eq. A1, which proves Eq. 10. Thus the only nine submatrices 

computed and stored here are: three submatrices in 11Z , three submatrices in 22Z , two 

submatrices in 12Z , and one submatrix in 21Z . 
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Figure1. Cross section of 3-D object buried under the rough surface ground. The object is 

modeled as oblate spheroid as: ( ) ( )φϑ cossinax = , ( ) ( )φϑ sinsinay = , and ( )ϑcosbz = . 

Buried Object 

Rough Surface 

Incident Waves Received Waves 

x 

z 

2b 

2a 

2a 

2b 

2a 

Object 

iθ  

z 



 24 

 

 

 

 

 

 

 

 

 
(a) General penetrable 3-D scatterers 2R  and 3R . 

 

 

 

 

 

 

 

 

 

 

(b) Equivalent problem exterior to 1S . 
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(c) Equivalent problem interior to 1S  and exterior to 2S . 
 

 

 

 

 

 

 

 

 

 

(d) Equivalent problem interior to 2S  
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Figure 3a. Normalized RCS for a rough surface of root mean square height σ=0.02 0λ  and 

correlation length lc=0.5 0λ , at incident angle ϑ i =20o. HH polarization. 
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Figure 3b. Normalized RCS for a PEC sphere buried under a rough surface of root mean square 

height σ=0.02 0λ  and correlation length lc=0.5 0λ , with burial depth (from the center) d=0.6 0λ , 

and sphere radius r = 0.3 0λ , at incident angle ϑ i =20o. HH polarization. 
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Figure 4a. Near scattered electric field at z =0.5 0λ  for H- incident polarization from a rough 

surface of root mean square height σ =0.04 0λ  and correlation length lc=0.5 0λ , at incident 

angle ϑ i =10o. 
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Figure 4b. Near scattered electric field at z =0.5 0λ  for V- incident polarization from a rough 

surface of root mean square height σ =0.04 0λ  and correlation length lc=0.5 0λ , at incident 

angle ϑ i =10o. 
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Figure 4c. Near transmitted electric field at z = -0.5 0λ  for H- incident polarization from a 

rough surface of root mean square height σ =0.04 0λ  and correlation length lc=0.5 0λ , at 

incident angle ϑ i =10o. 
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Figure 4d. Near transmitted electric field at z = -0.5 0λ  for V- incident polarization from a rough 

surface of root mean square height σ =0.04 0λ  and correlation length lc=0.5 0λ , at incident 

angle ϑ i =10o. 
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Figure 5a. Near scattered electric field at z =0.5 0λ  for H- incident polarization due only to the 

PEC spheroid (obtained by subtraction). 
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Figure 5b. Near scattered electric field at z =0.5 0λ  for V- incident polarization due only to the 

PEC spheroid (obtained by subtraction). 
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Figure 6a. Near scattered electric field at z =0.5 0λ  for H- incident polarization due only to the 

penetrable spheroid (obtained by subtraction). 
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Figure 6b. Near scattered electric field at z = 0.5 0λ  for V- incident polarization due only to the 

penetrable spheroid (obtained by subtraction). 
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ABSTRACT 

New formulations are presented to analyze the near electric field scattered from two 

penetrable shallow objects buried under two-dimensional randomly rough surface. These two 

objects could have different materials, shapes and/or orientations; in addition their separation 

distance may range from a fraction of a wavelength to several wavelengths. The fast algorithm, 

Steepest Descent Fast Multipole Method (SDFMM), is used to compute the unknown electric 

and magnetic surface currents on the rough air-ground interface and on both the buried objects. 

Parametric investigation is presented to study the effect of the objects proximity, orientations, 

materials, shapes, the polarization of the incident waves, and the roughness of the ground on the 

scattered fields. A significant interference is observed between the two objects when they are 

separated by less than one free space wavelength. Moreover, even when the clutter due to the 

rough ground is removed, the return from the second object, can be dominating causing a 

possible false alarm in detecting the target. However, when all sources of clutter are removed, by 

removing the return from both the rough ground and the second object, the signature of the target 

can be clearly observed and analyzed. Our results show that the observed distortion in the target 

signature significantly increases with the increase of the ground roughness. 

Keywords: Rough surface scattering, computational electromagnetics, buried objects. 
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INTRODUCTION 

Several research works, in the frequency and/or in the time domain, have been published in 

the area of sensing objects buried under and/or above the Earth’s surface. Some of the published 

work is related to objects buried in random media to simulate the clutter (no presence of a rough 

or planar interface) [1], in other work, the air-ground interface has been completely ignored 

justified by the very nearby position of the transmitting/receiving antennas to the ground [2], and 

in other several publications the roughness of the Earth’s surface has been completely ignored by 

assuming a planar half space, where the objects are either buried under the interface [3]-[9], 

partially immersed in a semi-infinite dielectric medium [10] or located above the half space [11]. 

Interesting radar images for targets buried under planar and or rough ground are published in 

[12]-[15]. It is known that the roughness of the ground is a major source of clutter for target 

detection, however, due to its complicated analysis, several researchers have assumed that the 

interface is rough only in one-dimension (i.e., 2-D scattering problem) [16]-[23] where there was 

either a PEC (perfectly electric conducting) or a penetrable (dielectric) cylindrical target buried 

under the rough interface. In reality, the Earth’s surface is rough in two-dimensions, which added 

more complexity to the analysis of the problem as in [24] where the buried target is a PEC 

sphere, in [25]-[26] where the object is located above the interface, and in [27]-[28] where the 

buried target is a penetrable and/or PEC spheroid. Recent experimental work is conducted [29] to 

discriminate landmines from various clutter items using EMI (electromagnetic induction). Even 

though, the author in [29] has concentrated his investigations on using the EMI, however the 

concept of discrimination between targets (not only landmines) and clutter items is the 

motivation of this work, which can benefit several electromagnetic subsurface sensing 

applications. For example, but not limited to, detection of cancerous tumors in the human breast, 



 3

plastic anti-personnel or metallic anti-tank mines, or the location of hazardous environmental 

waste, etc. In reality, these targets may be located next to other objects, either a second target or 

a clutter item. In this work, the emphasis will be on sensing two dielectric objects buried under a 

two-dimensional random rough ground, see Fig. 1. To the best of our knowledge, this application 

has not been analyzed before due its computational complexity that lead to excessive 

computational requirements. Therefore the Steepest Descent Fast Multipole Method (SDFMM), 

originally was developed at the University of Illinois at Urbana-Champaign [30]-[33], is used in 

this work to make these computations tractable. The new mathematical formulations are derived 

in Section II, numerical results are presented in Section III and concluding remarks are given in 

Section IV. More details are given in Appendices A and B. 

 

II. FORMULATION 

The electromagnetic waves are used to excite electric and magnetic surface currents on an 

exterior surface (e.g. rough ground) and consequently, due to wave penetration into the surface, 

currents are excited on the two interior surfaces (e.g. buried objects). The equivalence theorem is 

applied to express the electric and the magnetic fields as functions of surface electric and 

magnetic currents. There are four different regions involved in the current problem as 1R , 2R , 3R  

and 4R  with permittivity and permeability given by 1ε  and 1µ , 2ε  and 2µ , 3ε  and 3µ , and 4ε  

and 4µ , respectively, as shown in Fig.2a-e. Two interior scatterers of different materials 3R  and 

4R  are immersed in the arbitrary penetrable 3-D scatterer 2R , which is immersed in region 1R  as 

shown in Fig. 2a. The region 2R  is bounded by surfaces 1S  (exterior), and 2S  and 3S  (interiors) 

with normal vectors 1n  and 2n  on 1S , 3n  and 4n on 2S , and 5n  and 6n  on 3S , see Fig. 2a-e. 
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While regions 3R  and 4R  are bounded by surfaces 2S  and 3S , respectively, as shown in Figs. 

2d-e. The normal vectors ( 1n ), ( 2n , 3n  and 4n ), ( 5n ) and ( 6n ) are assumed to point into regions 

1R , 2R , 3R , and 4R  respectively. The electric and magnetic fields in regions 1R , 2R , 3R  and 4R  

are ( 11 , HE ), ( 22 , HE ), ( 33 , HE ) and ( 44 , HE ) which are due to equivalent currents ( 11, MJ ), 

( 22 , MJ , 33 , MJ , 5J  and 5M ), ( 44 , MJ ) and ( 66 , MJ ), respectively, as shown in Figs. 2b-2e. 

Assuming time dependence as ( )ti  exp ω , the electric and magnetic fields at an arbitrary point r 

in region 1R  are [27], [34]:  

( ) ( ) ( ) ( ) ( ) ( )( ) (1a)                  
1

111111111111 sdEnEnHnirErEr
S

inc ′Φ∇ ′⋅−Φ∇ ′××−Φ×ωµ−=θ ∫  

( ) ( ) ( ) ( ) ( ) ( )( ) (1b)                  
1

111111111111 sdHnHnEnirHrHr
S

inc ′Φ∇ ′⋅+Φ∇ ′××+Φ×ωε+=θ ∫  

Similarly, the electric and magnetic fields in region 2R  are: 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( ) (1c)                

   

    

3

2

1

S
2252252252

S
2232232232

222222222222

sdEnEnHni

sdEnEnHni

sdEnEnHnirEr
S

′Φ∇ ′⋅−Φ∇ ′××−Φ×−

′Φ∇ ′⋅−Φ∇ ′××−Φ×−

′Φ∇ ′⋅−Φ∇ ′××−Φ×−=

∫

∫

∫

ωµ

ωµ

ωµθ

 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( ) (1d)                      

    

    

3

2

1

S
2252252252

S
2232232232

222222222222

∫

∫

∫

′Φ∇ ′⋅+Φ∇ ′××+Φ×+

′Φ∇ ′⋅+Φ∇ ′××+Φ×+

′Φ∇ ′⋅+Φ∇ ′××+Φ×=

sdHnHnEni

sdHnHnEni

sdHnHnEnirHr
S

ωε

ωε
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Similarly, the electric and magnetic fields in region 3R , are: 

( ) ( ) ( ) ( ) ( )( ) ( )1e                  
2

334334334333 sdEnEnHnirEr
S

′Φ∇ ′⋅−Φ∇ ′××−Φ×−= ∫ ωµθ  
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( ) ( ) ( ) ( ) ( )( ) ( )1f                  
2

334334334333 sdHnHnEnirHr
S

′Φ∇ ′⋅+Φ∇ ′××+Φ×ωε=θ ∫
 

Finally, the electric and magnetic fields in region 4R , are: 

( ) ( ) ( ) ( ) ( )( ) ( )1g                  
3

446446444444 sdEnEnHnirEr
S

′Φ∇ ′⋅−Φ∇ ′××−Φ×−= ∫ ωµθ
 

( ) ( ) ( ) ( ) ( )( ) ( )1h                  
3

446446446444 sdHnHnEnirHr
S

′Φ∇ ′⋅+Φ∇ ′××+Φ×= ∫ ωεθ
 

The 3-D scalar Green's function is given by iΦ = ( ) rr/rrikexp i ′−′−− π4 , where r  is the field 

point, r ′  is the source point, and iiik µεω=  is the wave number in each region, i=1, 2, 3 and 

4. The symbol ( )riθ  is the Heaviside function that gives the jump condition at surface S  [34]. 

Applying the boundary conditions for the tangential electric and magnetic field components on 

surfaces 1S , 2S , and 3S  lead to continuity of equivalent surface currents as ( 21 JJ −=  and 

21 MM −= ), ( 43 JJ −=  and 43 MM −= ) and ( 65 JJ −=  and 65 MM −= ), respectively. 

Equating the tangential component of the electric and magnetic fields on surface 1S , we get: 

( ) ( ) ( )[ ] (2)                    tang.54543333121121tang.
MKJLMKJLMKKJLLrE inc +−+−+−+=  

( ) ( ) (3)           
tang.
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4
5432
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3
3312

2

2
2
1

1
121tang. 
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( ) ( )[ ] (4)                                  0 tang.54543533531212 MKJLMKKJLLMKJ-L −++−+++=  

( ) (5)                         0
.tang
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( ) ( )[ ] (6)                         0 . tang56456433331212 MKKJLLMKJLMKJL +−++−++−=
 

( ) (7)                         0 tang.52
4
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2
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4
56432

2

3
3312

2

2
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+++++++= M

LLJKKM
L

JKMLJ-K
ηηηη

 

in which the intrinsic impedance is iii εµη /= , in region iR  with 4,...2,1=i  and jL  and jK , 

j=1, 2, … 6 are the integro-differential operators as given in Appendix A. The surfaces 1S , 2S  

and 3S  are discretized into triangular patches where the unknown equivalent electric and 

magnetic currents in Eqs. 2-7 are approximated by using the RWG vector basis functions ( )rj  

[35] as: 

( ) ( ) ( ) ( ) ( ) (8)              5 and 3 1,for      , ,
1

11
1

=∈== ∑∑
=

+
=

iSr,    rjIηrM  rjIrJ kkn

N

n
niikn

N

n
ini

kk

 

in which k =1 for i =1, k =2 for i =3 and k =3 fro i =5. Upon substituting Eq. 8 into Eq. 2-7, 

normalizing the H-field equations by 1η , and applying Galerkin’s method for testing the E- and 

H-field equations, the linear system of equations is obtained: 

                  ⇒=VIZ (9)                                
0
0
1

3

2

1

333231

232221

131211

    
V

I
I
I

ZZZ
ZZZ
ZZZ

















=
































 

The submatrix 11Z  has order of 11 22 NN ×  and represents interactions between elements only on 

surface 1S , the submatrix 22Z  has order of 22 22 NN ×  and represents interactions between 

elements only on surface 2S , and the submatrix 33Z  has order of 33 22 NN ×  and represents 

interactions between elements only on surface 3S . The other submatrices in Eq. 9 represent 

interactions between different surfaces, e.g., 12Z  represents interactions between elements on 

surface 1S  and elements on surface 2S , etc. The details of these submatrices are given in 
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Appendix B. This implies that the total matrix Z  has order of 

( ) ( )321321 22 NNNNNN ++×++  and it accounts for all interactions between different 

surfaces. The tested tangential incident electric field incE  and the tested normalized magnetic 

field incH1η  on the exterior surface 1S  are represented by vector 1V . Solving the system of 

equations in Eq. 9 by using the MoM (Method of Moments) requires computing and storing the 

full dense matrix Z and then multiplying it by the vector V , which leads to a very 

computational expensive process. Therefore, the SDFMM is used to solve Eq. 9 leading to 

reduce the computational complexity for the CPU time and the computer memory to be only of 

O(K) per iteration instead of O(K2) using the MoM [30]-[33], where ( )3212 NNNK ++=  is the 

total number of the current unknowns. 

 

I. NUMERICAL RESULTS 

In all results, the incident wave is assumed to be a Gaussian beam [36] that is carefully 

tapered to eliminate the effects of the artificial edges of the ground surface that has dimensions 

of 00 88 λ×λ  [27]. The half beam width of the Gaussian beam is assumed to be 061 λ.  which 

illuminates the ground with plane waves over a spot of diameter 023 λ.  centered at 

00 44 λ=λ= y,x  (same as ground center). The beam is incident normally towards the ground, 

with either horizontal or vertical polarization, i.e. the incident electric field will be in the y-

direction or in the x-direction, respectively, see Fig. 1. Point receivers are located at height 050 λ.  

above the mean ground with resolution equal to 0040 λ. . The rough ground characterized with 

Gaussian random heights and Gaussian autocorrelation function such that the roughness will be 

described by the standard deviation of the height σ and the correlation length lc, with assuming 
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zero mean height. The relative dielectric constant of the ground is assumed to be 

18052 .j.r −=ε  [37] while the dielectric constant of each object will be stated for each in this 

section. The used discretization distance on the ground surface is 0080 λ.  leading to 60,000 

electric and magnetic surface current unknowns, while using almost the same discretization rate 

for the two objects generates approximately 600 unknowns for each one. 

In this section, images for the two penetrable objects that are buried under the ground will be 

presented. These images are based on the magnitude of the scattered electric fields which are 

received in the near zone above the ground [38], see Fig. 1. In Figs. 3 and 4, the ground is 

assumed to be flat in order to demonstrate the clutter due only to the second object (without the 

clutter due to presence of the rough ground). The scattered fields due to just the two objects are 

obtained by subtracting the ground returns from the total scattered fields in complex vector 

representation. Excellent agreement between the results of the SDFMM and those of the MoM is 

obtained which is used to validate the current computer code. Our parametric investigation 

includes studying the effect on the scattered fields due to proximity between the two objects, 

their materials, shapes and orientations, incidence polarization and ground roughness. The 

images shown in Figs. 3a-c are for two oblate spheroids both have dimensions 

00 30 150 λ=λ= .b,.a , material of 072092 .j.r −=ε  and buried at 030 λ−= .z . They are located 

diagonally at 00 5354 λ=λ= .y,.x  and 00 5453 λ=λ= .y,.x  in Fig. 3a, at 00 35 λ=λ= y,x  and 

00 53 λ=λ= y,x  in Fig. 3b, and at 00 5255 λ=λ= .y,.x  and 00 5552 λ=λ= .y,.x  in Fig. 3c. This 

implies that the separation distance from the center of the first object to the center of the second 

object is , ,DD yx 00 21 λλ==  and 03λ  in Fig. 3a, 3b and 3c, respectively, where Dx and Dy are 

the distance in the x- and y-direction. A significant interference between the two objects is 

observed in Fig. 3a where the separation distance is equal to one free space wavelength 
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( 01λ== yx DD ). This coupling between the two objects decreases with the increase of the 

separation distance as shown in Fig. 3b and 3c. This implies that if these two objects are 

separated by three wavelengths of free space or more, then each object can be detected separately 

from the other one, e.g. by narrowing the width of the incident beam. Moreover, the results in 

Figs. 3a-c show the degradation of the signature of both objects as their positions are moved 

away from the center of the ground where the incident beam is centered, which agrees with our 

finding in [28]. 

Next, we change the shape of the objects, which consequently affects the scattered electric 

fields as shown in Figs. 4a-c. In these figures, the shape of one object is assumed to be the same 

spheroid as used in Fig. 3 while the second object is changed to be a sphere of radius 0150 λ= .a  

in Fig. 4a, an ellipsoid of dimensions 000 150 30 150 λ=λ=λ= .c,.b,.a  in Fig. 4b and a vertical 

cylinder of radius 0150 λ= .a  and height 0150 λ= .h in Fig. 4c. The two objects in Fig. 4a-c are 

located similar to those in Fig. 3a where the separation distance between them (from center to 

center) is also 01λ== yx DD . The scattered fields from just both the spheroid and the sphere, 

both the spheroid and the ellipsoid and both the spheroid and the cylinder are shown in Fig. 4a, 

4b and 4c, respectively. The results show that the signature of the spheroid (located in the upper 

left quadrant) is much larger than the signature of the sphere, ellipsoid or the vertical cylinder 

(located in the lower right quadrant). However, the signature of the spheroid with the presence of 

the ellipsoid has slightly larger value than it with the presence of either the sphere or the vertical 

cylinder. Moreover, because the two objects have different shapes and sizes, the interference 

between them is clearly not symmetric, contrary to the results of Figs. 3a-c. In Fig. 3 and 4, the 

two objects are assumed to have the same material ( 072092 .j.r −=ε ) and they are buried under 

a flat ground. To simulate a more realistic case, different material for the second object will be 
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assumed with also incorporating the ground roughness in the model. In this case, the spheroid is 

assumed to have the same material and dimensions as in Fig. 3 and it will be located at 

00 53 54 λ=λ= .y,.x  and 030 λ−= .z  (lower right quadrant). The second object is assumed to be 

a horizontal cylinder of radius 0150 λ= .a , height 090 λ= .h  with its axis tilted at angle 30o with 

the x-direction (see Fig. 1). The material of this horizontal cylinder is assumed to be lossless with 

4=ε r  and its center is located at 00 3754 014 λ=λ= .y,.x  and 030 λ−= .z  (upper right 

quadrant) which implies that the separation distance will be 0490 λ= .Dx  and 08750 λ= .Dy . 

The rms height of the random rough ground is assumed to be 0040 λ=σ .  with the correlation 

length of 050 λ= .lc . The results in Fig. 5a and 5b are for the incident H- and V-polarization, 

respectively. These results show that the signature of the horizontal cylinder (upper left quadrant) 

is dominating the image with maximum amplitude of almost three times larger than that of the 

spheroid (lower right quadrant). This is due to the larger size and dielectric constant of the 

cylinder than those of the spheroid. Moreover, the tilted position of the horizontal cylinder could 

have contributed to this observation as well. Polarization dependency of the scattered electric 

fields is clearly observed upon comparing Fig. 5a (horizontal polarization) with Fig. 5b (vertical 

polarization), with slight increase in the maximum amplitude in the later case. Moreover, the 

results in Figs. 5a and 5b indicate that the presence of the cylinder (clutter item) can easily cause 

a false alarm in detecting the spheroid (target) in both polarizations. In order to analyze the 

image of the spheroid alone, all sources of clutter should be removed, i.e. removing the return 

from both the cylinder and the rough ground. The output, for incident H-polarization, is 

presented in Fig. 5c where a clear image of just the spheroid is shown. Similar results for the 

case of incident V-polarization is observed. Then, for the incident H-polarization, the roughness 
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of the ground is increased to be 010 λ=σ .  with the same correlation length as before where the 

image of the just spheroid is shown in Fig. 5d. All data in Fig. 5d are the same as in Fig. 5a 

except that the burial depth is increased to be 040 λ−= .z  in this case. Comparing Fig. 5d with 

Fig. 5c, it is clear that increasing the ground roughness has increased the distortion in the image. 

The decrease in the amplitude in Fig. 5d compared with that in Fig. 5c could mainly be due to 

the larger burial depth of the spheroid in the later case that causes more attenuation in the 

transmitting waves. The same spheroid and cylinder used in Figs. 5a are buried under a flat 

ground instead of the rough ground as shown in Fig. 6a where the image of the spheroid alone is 

obtained also by removing the return from both the cylinder and the flat ground. Moreover, the 

same spheroid used in Fig. 5a is buried as a single object (no nearby buried cylinder) under the 

flat ground as shown in Fig. 6b where the image of the spheroid alone is obtained. Comparing 

Fig. 6a with Fig. 6b show the distortion due to only the presence of the nearby cylinder, while 

comparing Fig. 5c and 5d with Fig. 6a show the distortion due to the ground roughness. 

However, comparing Fig. 5c and 5d with Fig. 6b show the distortion due to the presence of both 

the rough ground and the nearby cylinder. Moreover, the image in Fig. 5c is slightly different 

from that in Fig. 6a due to the small roughness in this case but the image in Fig. 5d is more 

distorted due to the increase in ground roughness. In all previous results, the clutters are removed 

by subtraction using complex vector representation, but when the subtraction is processed using 

only the magnitude of the fields (i.e. ignoring the phase), the images of the spheroid looked more 

distorted as the ground roughness increases. 

In all results, the SDFMM code required 850MB computer memory, 25 CPU minutes to fill 

the near field matrix, 23 CPU minutes to calculate the near scattered fields with 0040 λ. , and 4.6 

CPU hours to obtain relative error equal to 10-5 for the TFQMR iterative solver. 
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CONCLUSIONS 

In this work, we analyzed the 3-D scattering problem of the two dielectric shallow objects 

buried under the two-dimensional random rough ground. The fast algorithm, SDFMM, is used to 

solve the obtained linear system of equations for the electric and magnetic surface current 

unknown coefficients. Our parametric investigation results show the significant effect of the 

separation distance between the two objects and the ground roughness on the target signature. 

The numerical results show clear distortion due to the ground roughness and, more interestingly, 

they show the possible false alarm in detecting the target due to the presence of the second object 

(clutter item). The SDFMM has efficiently made the current 3-D computations tractable in an 

accurate and fast manner. 
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Appendix A 

With representing the surface electric and magnetic currents J and M  on 1S , 2S  and 3S  by the 

vector X , the integro-differential operators jL  and jK , j=1, 2, … 6, are [27], [34]: 

( ) ( ) ( ) (A1)              ,  
11

212121
21

212121 sdrXXKsdrXirXiXL
S

,,
S

,
,

,,, ′Φ∇×′=′








Φ′⋅∇ ′∇
ωε

+′Φωµ= ∫∫  

( ) ( ) ( ) (A2)            ,  
22

325332
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323253 sdrXXKsdrXirXiXL
S

,,
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,,, ′Φ∇×′=′








Φ′⋅∇ ′∇
ωε

+′Φωµ= ∫∫
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ωε

+′Φωµ= ∫∫  

 

Appendix B 

The elements of the submatrix 11Z  in (9) are given by 
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in which 
S

BA,  denotes the complex inner product between vector functions A  and B  on a 

surface S  [27], [34]. Similarly, the elements of the submatrices 22Z  and 33Z  are given by 
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While submatrices 12Z , 13Z , 21Z , 31Z  23Z  and 32Z  are given by 
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in which there are nice symmetrical relationships that leads to computing and storing elements of 

only eighteen out of the thirty six submatrices to gain significant reduction in CPU time and 

computer memory requirements for the dense matrix Z  [27]. 
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Fig. 1. Cross section of two penetrable objects buried under the rough surface ground. 

 

 

 

 

 

 

 

 

 

 

Fig. 2a. General penetrable 3-D scatterers 2R  and 3R . 

 

 

 

 

 

 

 

 

 

Fig. 2b. Equivalent problem exterior to 1S . 
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Fig. 2c. Equivalent problem interior to 1S  and exterior to 2S  and 3S . 
 

 

 

 

 

 

 

 

 

 

Fig. 2d. Equivalent problem interior to 2S . 
 

 

 

 

 

 

 

 

 

Fig. 2e Equivalent problem interior to 3S . 
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Fig. 3. Scattered electric field above a flat ground at 050 λ= .z  due to just the two penetrable 
spheroids with separating distance equal to (a) 01λ== yx DD , (b) 02λ== yx DD , 
(c) 03λ== yx DD . H-polarization. 
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Fig. 4. Scattered electric field above a flat ground at 050 λ= .z  due to just (a) the spheroid and 
the sphere, (b) the spheroid and the ellipsoid, (c) The spheroid and the vertical cylinder. The 
separation distance is 01λ== yx DD . H-polarization. 
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Fig. 5. Scattered electric field at 050 λ= .z  above the rough ground due to just (a) both the 
spheroid and the horizontal cylinder for 0040 λ=σ . ; H-polarization, (b) both the spheroid and 
the horizontal cylinder for same data of (a) but for V-polarization (c) the spheroid alone for same 
data of (a), (d) the spheroid alone for same data of (a) except 010 λ=σ . . All results have 

0490 λ= .Dx  and 08750 λ= .Dy , and 050 λ= .lc . 
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(b) 

 
Fig. 6. Scattered electric field above a flat ground at 050 λ= .z  due to just the spheroid alone (a) 
originally buried under the flat ground and nearby the cylinder as in Fig. 5a, (b) originally buried 
under the flat ground as a single object (no nearby cylinder). H-polarization. 
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The scattering of electromagnetic waves from a penetrable shallow target buried beneath 2-D 
multilayered random rough surfaces will be presented. There are several applications for this 
work, e.g. detection of anti-personnel mines, anti-tank mines, water and/or gas pipes, location of 
underground water, etc. In reality, these targets are buried under the Earth’s surface, which is a 
randomly rough interface and also is not simply composed of a single layer, but is a multilayered 
media. The closer the real environment is incorporated into the electromagnetic model, the more 
accurate and practical inferences can be gained from the numerical results. Without modeling the 
multiple ground layers, many targets cannot be detected. One unobtrusive way these buried 
targets can be detected is by bombarding the Earth’s surface with electromagnetic waves, and 
comparing the scattered signature of the ground alone with that of the ground with the buried 
target. 

 
A rigorous electromagnetic model based on the equivalence theorem and the method of 

moments (MoM) is developed to analyze this 3-D scattering problem. Three layers are 
considered in this work; air, dry-soil and wet-soil. The penetrable target is buried between the 
air/dry-soil interface and the dry/wet-soil interface. The Steepest Descent Fast Multipole Method 
(SDFMM) is implemented to significantly accelerate the computations of the unknown electric 
and magnetic surface currents. The effect of the lossy underground rough layer (wet soil) on the 
target signature will be investigated. Moreover, images based on the scattered electric fields for 
the buried target will be presented. 
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A rigorous electromagnetic model has been developed to analyze the scattering 

mechanism of a target buried near a clutter-object under the two-dimensional random 
rough ground (3-D scattering problem). In realistic landmine fields, the anti-personnel 
(AP) nonmetallic mine is often buried nearby a rock, tree root, etc. The presence of a 
second object buried near the nonmetallic mine can easily obscure the target and/or cause 
a false alarm during the detection process. 

The rigorous model is based on the classical electromagnetic equivalence theorem 
leading to producing six new integral equations. Using the Method of Moment (MoM), 
the new integral equations are transformed into a linear system of equations to be solved 
for the unknown electric and magnetic currents on the surface of three scatterers; rough 
ground, target and clutter-object. The MoM impedance matrix completely represents 
every interaction between these three scatterers. The Steepest Descent Fast Multipole 
Method (SDFMM) is used to tremendously accelerate the computations of the unknown 
MoM surface currents. 

In previous work, we thoroughly investigated the effect of ground roughness on the 
signature of the target when it is buried alone under the ground. In this work, we will 
present numerical results for parametric investigations of the objects proximity, 
orientations, materials, and shapes. The results show that in certain situations, the target 
can be completely obscured due to the presence of the nearby clutter-object (e.g., tree 
root). In other cases a false indication of presence of a third buried object is observed. 
When the sources of clutter (e.g. the rough ground and the clutter object) are removed, by 
subtracting the return from both the rough ground and the clutter-object, the signature of 
the target can be clearly observed and analyzed. The numerical results show that the 
ground roughness along with the separation distance, between the target and the clutter-
object, play a significant role on the probability of true or false alarm in the detection 
process.  

 
Topics: #21 Rough Surface Scattering, #2 computational electromagnetics, or # 18 
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The multiple interaction approach is used with the robust Steepest Descent Fast 
Multipole Method (SDFMM) to compute the signature of non-shallow penetrable 
scatterers buried beneath 2-D random rough surfaces. The most attractive feature of the 
proposed model is removing the quasi-planar structure constraint of the Steepest Descent 
Fast Multipole Method (SDFMM) when used in analyzing non-quasi-planar scatterers. 
The basic idea of the multiple interaction model is to decompose certain non-quasi-planar 
structures into two quasi-planar scatterers where the conventional SDFMM can be 
applied separately to each one. The interactions between the sub-quasi-planar scatterers 
are calculated directly using the electromagnetic vector potentials near-field expressions. 
Significant reductions in the CPU time and computer memory are achieved by using the 
SDFMM in the model. A variety of geometries are used to test the model and their 
numerical results are validated with the conventional MoM. 

The results show that the buried object’s signature is largely due to the first 
interaction mechanism (i.e. ground-object-ground). However, the contribution of each 
additional interaction is explicitly calculated using the model. Interestingly, the 
contributions from repeating this mechanism become insignificant especially for lossy 
background soil. This conclusion depends on the physical properties of the scatterer. 

The multiple interaction model successfully demonstrates the exploitation of the 
SDFMM robustness when applied to the multilayered rough ground where the burial 
depth of the underground rough layer is on the order of a wavelength. 
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Abstract 

Scattering of electromagnetic waves from multilayered random rough surfaces is 
crucial for subsurface sensing applications. A multiple interaction method of moments 
(MoM) model is used in this work to analyze scattering from two-dimensional 
multilayered random rough ground (3-D scattering problem) especially when the 
underground layer is deeply buried under the air/ground interface. The presented model 
removes a barrier and enables the application of the Steepest Descent Fast Multipole 
Method (SDFMM) to certain 3-D non-quasi-planar structures. The conventional SDFMM 
has been used to analyze electromagnetic wave scattering from quasi-planar structures 
where the scatterer’s height is a fraction of a free-space wavelength. The presented model 
is based on a multiple interactions mechanism between the rough air/ground interface and 
the underground rough layer. The basic idea of the proposed model is to decompose the 
non-quasi-planar multilayered structure into two quasi-planar scatterers where the 
conventional SDFMM can be applied separately to each one. The interactions between 
the sub-quasi-planar scatterers are calculated using the electromagnetic vector potentials 
near-field expressions. This model is tested and validated with the MoM on a variety of 
geometries. The results show that the strongest signature of the buried scatterer is mainly 
due to the first multiple interaction mechanism (ground-object-ground) while the 
contributions from repeating this mechanism become insignificant even for lossless 
and/or slightly lossy soil. 
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In realistic landmine fields, the anti-personnel plastic mine is often buried nearby a clutter-
object under the ground. The presence of a second object buried near the mine under a two-
dimensional (2-D) rough ground can easily obscure the target and/or cause a false alarm. The 
separation distance between the AP mine and clutter-object plays a significant role on the 
probability of true or false alarm in this situation. A rigorous electromagnetic model has been 
developed to analyze the scattering mechanism between the target and the clutter-object, 
between the target and the rough ground, between the clutter-object and the rough ground and 
the multiple scattering between different spots on the rough ground itself. The new rigorous 
model is based on the classical electromagnetic equivalence theorem leading to producing six 
new integral equations. Using the Method of Moment (MoM), the new integral equations are 
transformed into a linear system of equations to be solved for the unknown electric and magnetic 
currents on the surface of three scatterers; (1) rough ground, (2) target and (3) clutter-object. The 
MoM impedance matrix completely represents every interaction between these three scatterers. 
The superior Steepest Descent Fast Multipole Method (SDFMM) is used to tremendously speed 
up the computations of the unknown MoM surface currents. 

In previous work, we thoroughly investigated the significant effect of ground roughness on 
the signature of the target buried alone under the ground. Recently, we conducted a generalized 
parametric investigation on the objects proximity, orientations, materials, and shapes. In certain 
situations, the target is completely obscured due to the presence of the nearby clutter-object (e.g., 
tree root), and in other cases a false indication of the presence of a third buried object is 
observed. However, when all considered sources of clutter; (1) rough ground and (2) clutter 
object, are removed, by removing the return from both the rough ground and the clutter-object, 
the signature of the target can be clearly observed and analyzed. 

In this work we will emphasize on investigating the association between the ground 
roughness parameters and the separation distance between the two objects and its influence on 
the possibility of false alarms. 
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Full-wave solutions are given for the single- and double-scatter radar cross sections for two-dimensional ran
dom rough surfaces. High-frequency approximation$ are used for the double-scatter cross sections in order to 
express them as numerically tractable four-dimensifnal integrals. The major contributions to the double
scatter cross sections are associated with the quasi-pajrallel and quasi-antiparallel double-scatter paths. They 
come from the neighborhoOOs of specular points. Th~ enhancement of the backscatter cross sections, which is 
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1. INTRODUCTION 
In this work, full-wave solutions for the single- and 
double-scatter radar cross sections for two-dimensional 
random rough surfaces are given. The solutions are ex
pressed as multidimensional integrals. The high
frequency, physical optics approximations are used tore
duce 12-dimensional integral expressions for the double
scatter cross sections, and the large-radius-of-curvature 
approximation is used. The associated single-scatter 
cross sections are expressed in closed form. The incident 
waves are assumed to be plane waves. 

Similar to the case for scattering from one-dimensional 
random rough surfaces, 1 the major contributions to the 
double-scatter cross sections are associated with two dif
ferent pairs of propagation paths. They are the quasi
parallel double-scatter paths and the quasi-antiparallel 
double-scatter paths. The total incoherent double
scatter cross section is the sum of the incoherent quasi
parallel and quasi-antiparallel double-scatter cross sec* 
tions. 

In the high-frequency limit, the major contributions to 
the single- and double-scatter cross sections come from 
the neighborhoods of the specular points on the rough 
surface. Thus, upon integration with respect to the , 
random-rough-surface slopes, the surface element scat
tering coefficients are evaluated at the specular points. 
The probability density functions for the slopes and the 
heights are assumed to be Gaussian. Shadow functions · 
are included in the analysis. Physical interpretations of 
the analytical results are provided here. 

The effects of changing the rough-surface parameters 
[such as mean square height and mean square slope 
(mss)] on the double-scatter cross sections are studied. 

07 40-3232120011010108-09$15.00 

The level and the width of the enhancement in the back
scatter direction depend on the mean square height and 
slope of the rough surface. The sharp backscatter en
hancement, which is observed for both the like- and cross
polarized cross sections and for both normal and oblique 
incident angles, is associated with the quasi-anti parallel 
double-scatter paths. The medium below the rough in
terface is characterized by a complex dielectric coefficient. 
This work is an extension of earlier work that is restricted 
to scattering in the incident plane by one-dimensional 
rough surfaces.1 Thus depolarization is not considered in 
the earlier work. It is relevant to work in remote sensing 
and to the design of targets with unusually large back
scatter cross sections, such as traffic signs and decoys (re
versed stealth). 

2. FORMULATION OF THE PROBLEM 
The full-wave solutions for the double-scatter electromag
netic far fields G~(T) from two-dimensional rough sur
faces [y = h(x 5 , z 5 )] are given by1 

( 
k 0 )

3 exp(-jk 0r) f D 2,(fl,:fi') 
G~(:i') = -. r , 

21TJ r ny ny 

X exp(Jkofl · rs2') 

X exp[ -jk 0:fi' 

X exp( -jk 0:fii 

X U(rs~,)U(rs2' )dxsl ,dzsl 'dxs2'dzs2'G;(O), 

ill 
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ill which the time-harmonic excitations expUwt) are as• i 

sumed and the free-space wave number is ko = wJEo!J-o· . 
The integration in Eq. (1) is over the radar footprint A : 
"' 4l,)z and components offt'. The incident waves are: 
in the direction of the unit vector ii, and the scattered , 
waves are in the direction of the unit vector D/ from the 
rough surface to the receiver at r. Thus, in terms of the, 
cartesian unit vectors C; (i = x, y, z), 

(2a). 

(2b) 

(2c) 

(2d)' 

The scattering matrices at points 1' and 2' on the 
rough surface are D 1 ,(ft', D') and D 2 ,(n!, ft') [see Fig. 
l(a)]. The elements of the scattering matrices depend on: 
the local slope of the rough surface.1.2 Moreover, they de-! 
pend on the polarization of the incident and scattered! 
waves and the media on both sides of the rough interface. i 
The incident fields are assumed to be plane waves, and: 
the receiver is located in the far field. The wave vectors! 
of the scattered waves from the point 1' on the surface! 
are in the direction of the unit vector ii' [see Fig. 1(a)].: 
The position vecWrs to points 1' and 2' on the rough sur- I 
face are given by ' 

(3a)i 

At high frequencies, the shadow function U(r81 ,) is equa~ 
to unity if point 1 1 is illuminated by the incident plane: 
wave and visible at point 2', and it is zero otherwise; an~ 
U(r82 .) is equal to unity if point 2' is illuminated by ai 
point source at 1 I and visible from the receiver,3 and it i~ 
zero otherwise. The double-scatter cross section is ob~ 
tained on multiplying Eq. (1) by its complex conjugaW 
[see Fig. l(b)]. The radar cross section for the two· 
dimensional rough surface is defined as 

a- , 4n-r
2 1a'l' 

T A G' ' 
(4) 
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D (,, "')D ("' "')D'("'ii")D'("" "'I 

I 2.n,n 1,n,n 2.n, 1 .. n,n 

X ( f ')( f ")( ; ')( i ") ny - ny ny - ny -ny + ny -ny + ny 

X U{rsl.)U(r81,)U(r.2,)U(r.2 .. ) 

X exp{Jko[n,(xs2' - Xs2") + n~(h2' - h2•l 

+ n~(zs2'- Zs2")]}exp{-Jko[n~(Xs2'- Xst•l 

+ n;(h2'- ht•l + n;(zs2'- Zst')]} 

X exp{Jko[n;Cxs2"- Xsi•) + n;(hz·- ht•l 

+ n;(z82n- Zst")]}exp{-Jko[n~(Xst•- x.d 

+ n~(ht'- hl',) + n~(Z8 t• - Zst")]} 

In Eq. (5) the superscript * denotes the complex conju
gate. For the quasi-parallel double-scatter paths, be
tween points 1' and 2' and points 1" and 2" [see Fig. 1(c)] 
(n~, n~ < 0 and n~, n~ > 0; a= x, z), the following 
transformations of variables are used: 

Xdt = Xs1•- xd"• xd2 = X8 z• - Xsz", (6a) 

Zdt = Zst'- Zst0 > Zdz = Zsz' - Zs2", (6b) 

Xal = (Xst• + Xst")/2, Xaz = (Xsz' + X8 z•)/2g, (7a) 

Zat = (Zsl' + Zs~n)/2, Za2 = (zs2' + Z8 zn)l2. (7b) 

Thus, from Eqs. (5)-(7), one gets the following for the 
quasi-parallel case: 

kg 
UT = 16A'lT5 

X I D2r(i/, fi')Dz,(fi' 1 fi')D;.(fif, ft")D;n(ii" 1 fti) 

(n~ n;)(n~ n;)( n~ + n;)( n; + n;) 

X U(r .. 1)U(r .. 2)exp{Jko[n~d2 

- n~(0.5xd2 - 0.5xd1 + Xaz - Xatl 

+ n;(-0.5xd2 + 0.5xdl + Xaz- Xatl-n~dd} 

x exp{jk 0[n~d2 - n;co.5zd2 - 0.5zdt 

+ Za2 - Zal) + n;( -0.5zd2 + 0.5zdl + Zaz - Zall 

- n~zdt]}exp{Jko[n~(hz' - h2•l 

- n;(hz·- ht,)+n;Chz"- ht")-n~(ht'- ht")]} 

dn;dn; dn;dn: 
X c( 1::--_-nc;~,----'n-;"'c) ,.,;-;; ( 1 _ n ;2 _ n;2) 112 

X dxdldzdtdxd2dzdzdxaldza1dxazdza2· (8) 

For the quasi-parallel case [see Fig. l(c)], the integrand 
in Eq. (8) becomes stationary as the points 1' and 1" as 
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(a) (b) 

(o) (d) 
Fig. L (a) Double-scatter electromagnetic wave, (b) double-scatf;er intensity for two-dimensional random rough surfaces, (c) double
scatter quasi-parallel case, (d) double-scatter quasi-antiparallel11ase. 

well as 2' and 2" approach each other. Thus, to simplify 
the 12-dimensional integral (8), we use the Taylor-series, 
expansion for the heights at the pair of points 1 ', 1" and 
2', 2" in terms of the heights and their derivatives at the 
midpoints (X at, z,1) and (x,2, z,2l- Upon using Eqs. (6) 
and (7), we introduce the following approximations in Eq .. 
(8)o · 

(9a) 

in which 

hxat = ah/ax, 

hzal = Jh/Jz atx = Xat and Z = Zat> (9b) 

(9c) 

thus 

(9d) 

Similar expressions are introduced in Eq. (8) for h 2 , 

and h'l:'. The integration with respect to xd1xa 1 is over 
the diamond-shaped area with corners at (xd1 = 0, x .. 1 
= lx), (xdi = 2!"', Xai = 0), (xdl = 0, Xal = -lx), and 
(xd1 = -21"', x" 1 = 0). Similarly, diamond-shaped ar
eas represent the limits of integration for XdzXaz, ZdJZai, 

and ZdzZa2· Since kolx ~kola P 1 and kolz P kolc P 1 
a. is the correlation length for the rough surface), the lim-

its of integration for the variables xd1 , xd2 , zdi, and Zdz 
in Eq. (1) are assumed to be infinite. 

The integral representation of the Dirac delta function ,, 
(10) 

On integration with respect to xd1 , Xdz, zdi, and zd2• 
the 12-dimensional integral in Eq. (8) reduces Wan eight· 
dimensional integral containing the following product of 
four Dirac delta functions: 

~ 8(Vh.,1 - Vhatsl8(Vh.,z- Vhazs), (11) 

in which Vis the symbol for gradient and the slopes at the 
specular points (xals, Zais), and (Xazs, Zazs) are given by 

hxals = -( -n~ + n;: n;) I ( -n~ + ' ") ny + ny 
2 ' 

(12a) 

( n; + n;) I ( hxa2s = - -n~ + 
2 

-n~ + ' ") ny + ny 
2 ' 

(12b) 
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h ~ -( -n' + zals z 

h = - -n' + -n1 + ( n; + n;) I ( 
za2s z 2 y 

n' + n") , , 
2 ' 

(12c) 

n;: n;). 
(12dl 

Thus, in the high-frequency (physical optics) limit, the 
major contributions to the double-scatter cross sections 
come from the neighborhoods of the specular pointS. 
Equation (8) reduces to 

where ra 1 and ra2 are position vectors to the midpoints 
[Eqs. (7)J, i.e., 

(i = 1,2). (14) 

The vectors D.' and D." are defined in Eqs. (2). Further
more, for i = 1,2, 

Vhai•(x,z) = hxai•ex + hzaisez. (15:) 

The statistical average of err over the random heights 
hai and slopes Vhai is obtained on multiplying Eq. (13) by 
the probability density functions for the heights and the 
slopes at the midpoints and integrating over the heights 
and the slopes. Thus Eq. (13) reduces to 

ces DPQ become vanishingly small for the quasi-parallel 
case (0' = ii"), since [(ft' + :fi") · Vh .. tl, [(ii' + ft") 
· Vh .. 2l---+ 0. Furthermore, in Eq. (16), the surface ele
ment scattering coefficients DPQ are evaluated at the 
specular points, P2 is the shadow function,3 and P 2(ii') 
and P2Cil) are the probabilities that the rough surface is 
not in the shadow for the incident and scattered waves, 
respectively, while [1 - P 2(in,j)J is the probability that a 
double-scatter event will occur. Furthermore, for i 
= 1,2, 

(17a) 

(13) 

andp(Vhats, Vha'l.s) is the probability density function of 
the slopes at specular points. In Eq. (16) a Gaussian 
probability density function with mean square height 
(h 2) has been assumed for the height of the random rough 
surface. To integrate with respect to the horizontal com
ponents of the midpoint position vectors, we make the fol
lowing transfonnations: 

Pal- Pa'l."" Padt (Pal+ Pa2)/2;;;;;; Paa • (17b) 

The range of the integration variables Xaa and z"" is 
-lx < Xaa < lx and -lz < Zaa < lz. The integration 
with respect to Xaa and Zaa yields the radar footprint A 
= 4lJz, since the integrand is independent of Paa. Fur
thennore, the integration with respect to the components 
of Pad (xad and Zadl yields a product of two sine functions, 

Q kg i ~ f [D~~(Jif,ii')D~~(:D.',ft')D;.;R(iif,ii")D~.fQ(ft",il1 ) l ( <?, ) ~ -P,(fi )P,CD'i -L r r . . 
1TA P,Q=V,H (ny n;)(ny n;)(n~ n;)(n~ n;) 

8 

X exp[jko(Pal - Pd (ii' - il")]exp[ -kg(hl!)(n;- n;)2)p(Vhats, Vha2s)[1 - P2(1n;IJ] 

For the derivation of Eq. (16), it has been assumed that 
the distance between the midpoints of the pairs of point$ 
1', 1" and 2', 2!' (namely, lra 1 - ra21l is larger than the 
correlation length lc of the surface height autocorrelatiolil 
function, such that 

(exp[iko(n;- n;)(hat- hd]) 

""(exp[iko(n;- n;)had)(exp[ -iko(n;- n;)ha2]) 

= lx2[k 0(n;- n;)]l. (16b) 

When the distance between the midpoints is small com· 
pared with lc, the elements of the four scattering matri-

since the range of the variables Xad and Zad is -Lm 
..;:; Xad < Lm and -Lm < Zad < Lm' respectively. Thus 

= 2Lm sinc(koLm(n~ - n;)]2Lm sinc(koLmCn; - n;)], 

(18) 

in which Lm is the mean width of a typical depression on 
the rough surface. 1

•4•5 The above analytical procedures 
reduce the 12-d.imensional integral (5) (not including av
eraging over the random heights and slopes at two differ-
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t Po'
.nts on the rough surface) into a tractable four· en 'bl'"'d dimensional integral over the vana es ny, ny, nz, an 

n;Upon changing the integration variables n;, n;, n;, 
and n; to the spherical coordinate variables 0 and ¢,one 
gets 

(~~) = 

X 
[n~ 

It is useful to determine a priori the regions (defined by 
the four variables n;, n;, n;, and n;) that contribute 
most significantly to the like-polarized (P = Q = V or Hl 
and cross-polarized (P * Q "" V or H) bistatic double
scatter cross sections. In view of the two sine functions 
and the characteristic function x[k 0(n; - n~)] in the in
tegral expression for the double-scatter cross sections [Eq. 
(19)], the major contribution to the integral is from there
gion :fi' --. fi" (quasi parallel). Furthermore, because of 
the shadow function (1 - P 2), when these quasi-parallel 
paths are also quasi horizontal en;""' 0, n; = 0), the 
value of the integrand in Eq. (19) peaks. To facilitate the 
numerical integration of relation (16), in view of the inte
grable singularity associated with n;n; in the denomina
tor of relation (16), the following transformations to polar 
coordinates are implemented for both :fi' and D.": 

n:x:"" sin Ocos ¢, ny "" cos 8, nz = sin8sin¢, 

O<O<n, .Po<¢< 2n + ¢o, (20) 

where ¢ 0 is an arbitrary constant. The product of the Ja
cobians of these transformations is 

J'J" = sin2 8' cos¢' sin2 8" cos¢". (21a) 

The ranges of the variables are 0 < 8', B'' < '" and ¢ 0 < ¢', ¢" < 2n + ¢ 0 . For the quasi-parallel case, ¢ 0 
0 is a suitable choice. Thus 

dn;dn;dn;dn;ln~n; = sin 8' sin 8" dO' dB''d¢' d¢". 
(21b) 

Since the scattering coefficients [JPQ vanish for grazing 
incident and scatter angles, there are no singularities 
that are due to the product appearing below the scatter
ing coefficients DPQ in Eq. (19). For n; --. 0, nr --> 0 
grazing incident and scatter angles, the shadow functions 
Pz(iii) and P 2(r/) vanish. Furthermore, when n;--> 0 
and n; --. 0, the probability for a double-scatter event ( 1 
- P 2 ) --. 1. Thus Eq. (19) is not singular when the 
product appearing below the probability density function 
for the slopes (at the specular points) vanishes. It takes 
1-2 CPU hours to evaluate the four-dimensional integrals 
in Eq. (19) for all four cross sections uPQ on a Silicon 
Graphics Computer model 4D/380VGX in the Center for 
Electro-Optics at the University of Nebraska-Lincoln. To 
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make sure that the integration subroutine does not miss 
the very narrow region around (I' = 8' = rr/2 and ¢" 
= ¢/, where the integrand peaks for the quasi-parallel 
case, and to reduce the regions of integration in Eq. (19), 
we subdivide the limits of integration (0 ;;;; 8', (}'' ;;;; 1r 
and 0 < ¢', ¢".;; 21T) as follows for the quasi-parallel 

case: 

0 , {)'' .;; 8'' 8' .;; (}" .;; 'Tr, 

0.;; 1>".;; ¢', (22a) 
It can be shown that if the medium below the rough in

terface (y < h(x,z); ~J- 1 , e1] is finitely conducting, the 
complex value of the integral ( a{Q) corresponding to 0 
,;: B'' .;; 8' is equal to the complex conjugate of the value 
of the integral ( a{Q) corresponding to 8' ,;: 8" .;; 1r. 
Thus it is necessary to evaluate only the real part of the 
integral [Eq. (19)] over half the total region of integration 
in Eq. (19), since 

( .?,~) ~ ( <{Q) + ( u{Q) ~ 2 Re( <{0). (22b) 

As noted above, this scheme not only increases the ac~ 
curacy of the numerical integration of ( u{;~) (since the 
most significant part of the integral is never missed) but 
also reduces the amount of computation needed to evalu
ate the integrals. However, no attempt has been made to 
parallelize the computer codes in order to decrease the 
computation time for parallel-processing supercompuffirs. 

For the quasi-antiparallel double-scatter paths be
tween points 1' and 2' and points 1" and 2" [see Fig. 
1(d)], the following transformations of variables are used 
in Eq. (5): 

Xdt = Xsl'- Xs2"• Xd2 = Xs2' - Xst•, (23a) 

Zdl = Zst' - Zsz•, Zd2 = Z8z• - Zst", (23b) 

Xat = (Xst' + Xs2")/2, Xa2 = (Xs2' + Xst")/2, (23c) 

Zal = (zsl' + Zsz")/2, Za2 = (zs2' + Zst•)/2. (23d) 

Furthermore, in addition to Eqs. (9a) and (9b) (un
changed), Eqs. (9c) and (9d) are replaced by 

h2" = haz - (xd2h:x:a2 + Zd::hu,z)l2; (24a) 
thW< 

hl'- hz" = Xdthxa! + Zdth~al· (24b) 
Equations (17) (unchanged) are also used to reduce the 
12-dimensional integral into a four-dimensional integral. 
Thus, on following the same procedures as those for the 
quasi-parallel case, one gets the following integral expres-
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sioO for the (high-frequency) quasi-antiparallel (n: < 0, n: > 0 or n: > 0, n: < 0,) double-scatter cross sections: 

(2koLml 2 . J [D~fcnr, ii')Df~cn', iii)D;,:ncnt, ii")D:!Q(ii", »-'>] 
( if,JI ~ P,(n')P,(N) L r 'I( r "I( ' 'I( ' "I 

1r R,s~v,H (ny- ny ny- ny -ny + ny -ny + ny s 

X p(hxa1s•hxa2s•hzals•hza2s)l6/(n~- n~ + n;- n;) (n~- n~- n; + n;) 2[1- P2Cin;l)][l- P2Cin;i)] 

X sinc[koLmCn~ + n~- n~- n;)]sinc{k 0Lm(n~ + n~- n; - n;)]exp[ -(h 2}k~(n~- n;- n; + n~) 2 ] 

X sin (J' sin B" dO'd(;l"drj.>'drj.>". 

For the quasi-antiparallel case, the arguments of the sine 
functions and the characteristic function vanish (and the 
integrand peaks) when ii' = -fi" only for backscatter 
(fl = -ii;)_ In Eq. (25a) the vectors ii' and ii" are ex
pressed in terms of their polar coordinates as in Eqs. (20), 
except that for the quasi-antiparallel case, ii' = -ii" (8" 

"' -rr-8', f" = ¢' + 1T). In relations (22a), it is conve
nient to choose .Po= --rr for f' and ¢ 0 = 0 for¢" for the 
quasi-antiparallel case, such that --rr ,; ¢' < 1T and 0 
,.:; ¢",.:; 27T. In this case, the limits of integration are 
subdivided as follows: 

O<S(}",;n-8', 1T- (}' "" fl', 1T, 

0 ,; ¢" , ¢' + 1T, 

The slopes at the specular points for the quasi
antiparallel case are given by 

h ( { i+' ")l(f '+' ") -b~-~-~ ~-~ ~-~ ~-~, 

(26a) 

h ( f i + " ')/( f i + " ') xa2s = - nx - nx nx - n"' ny - ny ny - ny , 
(26b) 

h ( { i I ")l(f i I") 
wb~-~-~·~-~ ~-~+~-~· 

(26c) 

hxa2s = -(n~- n~ + n~- n~)l(n~- n; + n; - n;), 
(26d) 

The sharp enhancement in the backscatter direction 
( -:fi' = D.f) is associated with the quasi-antiparallel (ii' 
= -ii") double-scatter cross section [Eq. (25a)].1•4•6•7 

Note the differences in the expressions for the slopes at 
the specular points for the quasi-parallel and quasi
antiparallel cases (12) and (26), respectively. Equations. 
(12) and (26) can be readily interpreted. The vectors nor
mal to the surface at the specular points 1', 1 ", 2 1

, and 
2" areiJ,. 1,, ft.t"• ii,2 ., andii.2,, respectively, where 

- - -' -i n.1.-n -n, 

n.2' = n.r- ii', n.2" = fl- ii". (27) 

For the quasi-parallel case ii' = fi", the vectors ft31 • and 
fi, 2., are also quasi parallel to the vectors ft. 1 .. and n.2 .. , 
respectively, and the slopes at the midpoints between 1 ', 
1" and 2', 2" [see Fig. l(c)] are given by the vectors 

fisap2 = (fis2' + iis2")/2, 
(28) 

corresponding to the slopes in Eqs. (12). Similarly, for 
the antiparallel case ft' = -ii", the slopes at the mid
points between 1', 2" and 1", 2' [see Fig. l(d)] are given 
by the components of the vectors 

(25a) 

frsae<2 = (fi..sl" + J.i.,.2,)/2, 
(29) 

corresponding to the slopes in Eqs. (26). Furthermore, 
the integrand in Eq. (19) peaks when the pairs of vectors 
n.,., n.,, and fis2'. fis2" are parallel to each other, 
namely, 

J.i.,.dp = fisl'- fisl" = iis2'- fis2" = fi1 - ft" = 0. (30) 

The integrand in Eq. (25a) peaks when the pairs of vec
tors ft,,,, fts2"• and n., .. , ft. 2., are parallel, namely, 

:ii.da =fist,- J.i.,.2" = fi..t"- fis2' 

= n.· + fi"- n.r- nf--+ o. (31) 

Note that for Eq. (30) to be satisfied, the paths must be 
parallel; however, for Eq. (31) to be satisfied, the paths 
must be antiparallel for backscatter only. This distinc
tion between the quasi-parallel case and the quasi
antiparallel case explains why the enhanced backscatter 
is associated only with the quasi-antiparallel case. 

For backscatter at normal incidence, the major contri
butions to the double-scatter cross sections are associated 
with the quasi-horizontal paths between points 1 and 2 
[see Fig. l(d)], and the slopes at the stationary points are 
approximately ::!::45 °. The integrands in the final expres
sions for the double-scatter cross sections [Eqs. (19) and 
(25)] peak for a very small range of angles at which fi' 
and d" are quasi horizontal (n; = 0 and n; "'" 0 ), as a re
sult of the presence of 1 - P 2 in the integrand. The 
characteristic functions 

= exp[ -(h 2)k~(n~ + n;- n;- n;) 2/2] 

in Eqs. (19) and (25) peak for (n; - n;) -+ 0 (quasi par
allel) and (n~ + n~ - n; - n;) --+ 0 (quasi antiparallel 
and backscatter), respectively. For the illustrative ex
amples, Eqs. (19) and (25) are used to evaluate the hi
static double-scatter cross sections. The corresponding 
high-frequency single-scatter cross sections are 

p * Q, (32) 

since the incident waves are not depolarized at the specu
lar points in the plane of incidence. 
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3. ILLUSTRATIVE EXAMPLES 
The incoherent single- and double-scatter cross sections 
(quasi parallel+quasi antiparallei), as well as the total 
(single+ double) cross sections, for two-dimensional rough 
surfaces are plotted in Figs. 2-10 as functions of the 
scatter angles of cos 1>' (where ¢' = 0, 7T). The two
dimensional rough surface is assumed to be coated with 
gold permittivity €, = -9.888312 - j1.051766 at A 

0.633 p.m. The incident angles are (}; = 10°, ¢i 
= 0. The Rayleigh roughness parameter is f3 
= 4k~(h 2). In Figs. 2-4, the single-scatter cross sec
tions are plotted as functions of the scatter angles 
of cos.;/, ¢ 1 = 0 and 7T. In Fig. 2 the polarizations of the 
incident and scattered waves are vertical (parallel). The 
Rayleigh roughness parameter f3 = 4k~(h 2) varies from 
10 to 394, and the mean square slope is mss = 0.5. The 
single-scatter incoherent cross sections are insensitive to 
\h 2), since, for the entire range of the parameters consid
ered, [3 }> L They are sensitive to (h2) when [3 < 1. 
They are proportional to (h 2

) for [3 <l1 1 where the coher
ent scatter cross sections are not small. For [3 }> 1 the 
coherent cross sections are negligible. 

In Fig. 3 the polarizations of the incident and scattered 
waves are vertical (parallel), and the mss varies from 0.25 
to 1.0 and [3 = 394. For the range of parameters consid-

" 
' " 0 
0 

" , 

\ 
, 
• 

I i 
g "' 
~ 

"" -oo "" '" " " " '" scatter angle 

Fig. 2. Single-scatter vertical-to-vertical radar cross section. 
Mean square height (Rayleigh parameter /3) is the variable pa
rameter 110 ,; f3 ,; 394. The mean square slope (mss) value is 
0.5. The following parameters apply to Figs. 2-10: incident 
angle of 10°, relations permittivity of -9.888312/jl.051766, and 
wavelength of 0.633 ~m. 
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Fig. 3. Single-scatter vertical-to-vertical radar cross section. 
Mean square slope (mss} is the variable parameter, and the 
curves from top to bottom correspond to mss values of 0.25, 0.4, 
0.5, 0.65, 0.75, 0.85, and 1.0. The value of {3 is 394. 
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Fig. 4. Single-scatter like-polarized radar cross section for vertical to vertical (lower cun~e) and horizontal-to-horizontal (upper 
curve) polarization. The mss and f3 values are 0.5 and 394, re
spectively. 
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Fig. 5. Double-scatter radar cross section. Mean square height 
(Rayleigh parameter {3) is the variable parameter (quasi-parallel 
and quasi-antiparallel contributions added). The polarization is 
vertical to vertical. The mss value is 0.5. Lowest cun~e, {3 
= 10. Data saturate as f3 increases. 

ered, the single-scatter cross sections decrease as the mss 
increases, while the double-scatter cross sections increase 
with increasing mss. As the mss becomes larger than 
unity, the values of both the single- and double-scatter 
cross sections saturate. 

In Fig. 4 the single-scatter cross sections are plotted for 
·both vertical (parallel) and horizontal (perpendicular) po
larizations. The results indicate that for the given val
ues of [3 = 394 and mss = 0.5, the single-scatter cross 
sections are practically the same for both like polariza
tions. 

In Figs. 5-7 the double-scatter cross sections are plot
ted as functions of the scatter angles of cos ¢1, .pf = 0 or 
'IT. These three illustrations correspond to the cases con
sidered in Figs. 2-4. 

In Fig. 5 the polarizations of the incident and scatter 
waves are vertical (parallel). The roughness parameter 
[3 increases from 10 to 394, and mss = 0.5. The double
scatter cross sections (unlike the single-scatter cross sec
tions) are sensitive to variations in [3. The cross sections 
increase as [3 increases, and they practically merge for [3 
> 100. For [3 ~ 100 higher-order multiple-scatter cross 
section are not negligible. 

In Fig. 6 the polarizations of the incident and scattered 
waves are vertical (parallel). The roughness parameter 
[3 = 394, and the mss varies from 0.25 to 1. Both [3 and 
the mss are dimensionless quantities, since the slope is 
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dimensionless and k 0 = 27r/A is measured in units of in
verse meters. The double-scatter cross sections are more 
sensitive to variations in mss than to those in {3. Unlike 
the single-scatter cross sections, the double-scatter cross 
sections increase rather than decrease as mss increases, 
and they begin to merge for mss > 0. 75. The level of the 
enhanced backscatter increases as both the roughness pa
rameter f3 and mss increase. However, they merge for 
f3 > lOOandmss > 0.75. Theangularwidthoftheback
scatter cross sections decreases as f3 increases; however, 
the angular width is practically insensitive to variations 
in the mss for the range of parameters considered. 

In Fig. 7 all four like- and cross-polarized double
scatter cross sections are plotted as functions of the scat
ter angles of cos ,pf, ,pf = 0. The level and the angular 
width of the backscatter enhancement for all four cross 
sections are practically the same, except that the values 
of the cross-polarized cross sections decrease somewhat 
faster as (Jf--> 90° (grazing angles). For the illustrative 
examples, the first and second letters (P = V, H; Q 
= V, H) correspond to the polarizations of the scattered 
and incident waves, respectively. 

In Figs. 8-10, the total (single+double) scatter cross 
sections are plotted as functions of the scatter angles. 
These three illustrations correspond to the cases consid
ered in Figs. 2-4 and 5-7. In Fig. 8 the total cross sec-

'' 

' " l 
0 " ' ' 00 

i "" 
~ "' ' 

"" 
M 

-00 -00 -00 " 

m.s.s:O 25 
m s s=0.4 
m.s s =0.5 

m •.s=0.65 
mss=0.75 

m •-•=0.85 
m.s s= 1.0 

Fig. 6. Double-scatter radar cross section. The variable pa
rameter is the mss (quasi-parallel and quasi-antiparallel contri
butions added). The polarization is vertical to vertical. The 
value of /3 is 394. Lowest curve, mss = 0.25. Data saturate as 
mss increases. 
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Fig. 7. Double-scatter radar cross sections for both like
polarized and both cross-polarized cases (quasi-parallel and 
quasi-antipara!lel contributions added). The mss and /3 values 
are 0.5 and 394.105, respe<:tively. Cross-polarized data are 
lower near grazing angles . 
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Fig. 8. Single- and double-scatter radar cross sections added. 
The variable parameter is /3. The polarization is vertical to ver
tical. The mss value is 0.5. Lowest curve, /3 = 10. Data satu
rate as f3 increases. 
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Fig. 9. Single- and double-scatter radar cross sections added. 
The variable parameter is the mss, and the curves from top to 
bottom correspond to mss values of0.25, 0.4, 0.5, 0.65, 0. 75, 0.85, 
and 1.0. The value of f3 is 394. The polarization is vertical to 
vertical. 
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Fig. 10. Single- and double-scatter radar cross sections added 
for both like-polarized and both cross-polarized cases. The mss 
and /3 values are 0.5 and 394, respectively. Upper curves, HH 
followed by VV. Lowest curves, VH and HV merge. 

tion, for the vertically polarized case, is plotted with f3 as 
the variable parameter, from f3 = 10 to f3 = 394, while 
mss = 0.5. The total scatter cross sections increase as f3 
increases, and the results merge for f3 > 50. The angu~ 
lar width of the enhancement decreases as f3 increases. 
As noted above, the results saturate for f3 t> 1. 

In Fig. 9 the total cross sections for the vertically polar
ized case are plotted as functions of the scatter angles, 
with mss as the variable parameter, from mss = 0.25 to 

...., ________ ......d._~····=·~····•.· 
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mss = 1.0. For the cases considered, the total cross sec
tions decrease as the mss increases because the contribu
tions of the single-scatter cross sections dominate the re
sults. The level of the backscatter enhancement 
increases as mss increases. However, the angular width 
of the enhancement does not vary significantly with 
changing mss. Also, as noted above, the results saturate 
for mss greater than unity. 

In the last illustration, Fig. 10, the total scatter cross 
sections are plotted for all four (like and cross) polariza
tions. The fixed parameters are t3 = 394 and mss 
= 0.5. The like-polarized cross sections (W and Hl[) 
are significantly larger than the corresponding cross
polarized cross sections (VH and HV). This is because 
the stationary-phase (high-frequency) approximations for 
the cross-polarized, single-scatter cross sections are neg
ligible for scatter angles in the plane of incidence.1·4·5 At 
the specular points in the plane of incidence ( q,t 
= 0, 7T), the scattered waves are not depolarized.8 For 
scattering out of the incident plane, the scattered waves 
do depolarize. This results in nonvanishing cross
polarized, double-scatter cross sections, even in the plane 
of incidence. 9 There are two mechanism's for the genera
tion of the cross-polarized, double-scatter cross sections. 
Schematically, these are given by 

V-->V--->H, 

H ..... H ...... V, 

V--->H--->H, 

H___.y....., V. 

In the above the first letter corresponds to the polariza
tion of the incident wave, the second is the polarization of 
the single-scatter wave, and the third is the polarization 
of the double-scatter wave. 

4. CONCLUSIONS 
The results for the double-scatter radar cross sections ex
hibit sharp enhancements in the backscatter direction at 
normal and oblique incident angles. This sharp enhance
ment is associated with the quasi-antiparallel double
scatter path. The height and the width ofthe peak in the 
backscatter direction depend on the mean square height 
and slope of the two-dimensional random rough surface. 
The high-frequency approximations make the computa
tions numerically tractable; however, the polarization de
pendence of the cross section is less obvious.1 ·4 
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Abstract

We consider the use of high resolution array processing methods for detecting and localizing
near-�eld extended targets for measurement geometries in which an array of electromagnetic re-
ceivers observes the �elds scattered by the objects in response to a plane wave illumination. The
algorithms presented here modify the conventional direction �nding array processing techniques
and use the spatial complexities of �elds to determine both the range and the bearing of the
targets in the region of interest. In contrast to previous source localization problems, we employ
electromagnetic scattering models parameterized explicitly in terms of the target positions and
which account for all multiple scattering e�ects.

These models play an integral role in allowing us to compute explicitly the analytical expres-
sions for the Cram�er-Rao bounds (CRB) for position estimates. The Cram�er-Rao bound gives
the lower bound for the estimates, and thus, speci�es the lowest possible error variance that can
be attained with an unbiased estimator. The theoretical Cram�er-Rao bounds are then veri�ed
using Monte-Carlo simulated error variances.
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1 Introduction

Non-invasive detection and localization of objects in the near �eld of a receiver array have been

of interest to many researchers in recent years. Some of the most promising application areas for

this technology include landmine remediation, where relatively small metallic or plastic objects

are located a few centimeters from the sensors, and hazardous waste remediation, where relatively

large metallic objects (eg. steel metal drums) are located on the order of meters from the sensor

array [1{3]. In this paper we consider a form of this problem shown in Fig. 1. A plane wave

illuminates the region of interest assumed to be a homogeneous, possibly lossy medium containing

one or more targets located in the near �eld of an array of receivers. The goal of the processing is

the localization of objects with known structures.

The inherent array structure of the measurement geometry suggests that high resolution array

processing techniques [4, 5] quite popular in the signal processing community would be well suited

for the near-�eld detection problem. Typically, these techniques assume the targets are in the

far �eld of the array so that the measured wavefronts are all planar in nature. The goal then

is to determine the directions of arrival (DOA) of these wavefronts to characterize the bearing

angles of the associated targets. In the case of near �eld target localization however, we must

process scattered �eld data with distinctly non-planar wavefronts to determine both the range and

the bearing angles of the objects. For far �eld range and bearing angle estimation problems, the

matched �eld processing (MFP) approach has been successfully used for localization of typically

point sources in ocean acoustics [6] and stratospherical electromagnetics [7]. MFP is an array

processing technique that uses the spatial complexities of the �elds to localize sources, and thus

allows for estimation of both the range and the bearing of the objects.

In terms of near-�eld source localization, previous work has been concentrated on independently
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radiating point sources [8{12] and the localization of a single extended object of unknown size

and material [13]. The coherent source issue in near �eld localization is also dealt with in [9].

In [8, 9], independent, spherical sound and noise sources are located using MUSIC based array

processing methods. In [10] and [11], a similar near-�eld source localization scenario is considered,

and performance bounds for coordinate estimates were derived for MUSIC and higher order ESPRIT

based algorithms, respectively. Localization of distributed sources is reported in [14] where Valaee

et al. introduced a MUSIC-based algorithm that parametrically localizes far �eld sources modeled

with bell shaped distributions characterized by their peak position and 3 dB beamwidth. Finally,

in [13] the authors employ a T-matrix type forward model as the basis for a non-linear least squares

parameter estimation approach to determine the location, size, and material properties of a single

object in the �eld of view of an array.

We present two MFP-based algorithms that localize multiple, extended scatterers placed in

the near �eld of a receiver array. Furthermore, instead of independently radiating point sources,

or sources with predetermined distribution characteristics, the radiators in this paper scatter the

incident plane wave, and the physics of the multiple scattering is exactly accounted for using full

scattering models. We have also determined geometries for which simpler forward scattering models

can be utilized to reduce the computational complexity of the localization algorithm. At the end,

we derive and verify the Cramer-Rao performance bounds for multiple, extended, near �eld objects.

We begin by describing a simple modi�cation of the MUSIC algorithm in which the electromag-

netic interactions between targets are ignored, and the problem is approached as if a number of

spatially extended objects are independently scattering the incident electromagnetic �eld. While

the resulting method has relatively low computational complexity, there are two issues in need

of some analysis to characterize its performance. First, there is a signal coherence issue arising
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from our frequency domain formulation of the problem. Second, it is necessary to determine in

a quantitative manner conditions under which one may safely ignore the interactions among the

scatterers. Both of these issues are addressed in Section 3.2.

In Section 3.3 we describe a second option for localizing multiple objects in which all multiple

scattering e�ects are taken into consideration. While this approach is more computationally costly

than the former, by modeling the non-trivial interactions of wave�elds among scatterers, we improve

our ability to resolve closely spaced scatterers. We demonstrate that this technique can easily

localize the targets in geometries where the former approach fails to resolve the target positions.

Finally, we derive the Cram�er-Rao bounds on variances of estimation errors for multiple object

detection scenario. Our Cram�er-Rao bound derivation adapts the results in [15], and accounts for

near �eld observations. Analytical bounds of estimated object coordinates are then validated by

running Monte-Carlo experiments for the estimator presented in this paper.

While our long term interests are in application of these ideas to the localization of buried

objects (i.e. targets located in a halfspace), in this work, we concentrate on the simpler problem

of localization when the objects are embedded in a homogeneous medium. It is our intent that

the insight and experience gained from studying the homogeneous medium case will be of use

when considering the more complicated half-space problem. Moreover, by considering this simpler

physical problem, we are able to make extensive use of the T-matrix method [16{18] both in the

localization algorithms as well as in the performance analysis. Indeed, the analytical structure

of the T-matrix approach provides for the e�cient computation of certain gradient information

required for the method of Section 3.3 and for computing the Cramer-Rao bound in Section 4.

Given the strong results in this paper, an interesting and non-trivial avenue of future research

is the adaptation of the single object, half-space T-matrix approach of [19] to the multi-object
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problem of interest here and the use of this forward model in an MFP-type inversion algorithm.

The remainder of the paper is organized as follows. In Section 2, we introduce the problem

geometry and describe plane wave MUSIC. Section 3 is devoted to an exposition of the MFP-

based algorithms. The Cram�er-Rao lower bound is derived in Section 4. Numerical examples are

presented in Section 5, and in Section 6, conclusions will be drawn.

2 Background

The measurement scheme depicted in Fig. 1 is considered in this paper. The objects are located

in a background for which the constant electrical characteristics (relative permittivity and conduc-

tivity) are assumed known. A transverse magnetic (TM) polarized plane wave, Ei(r), impinges on

the objects, inducing surface and volume currents which in turn radiate a scattered �eld, Es(r)
1.

In this work, we are interested only in the object localization problem, thus material properties,

shapes and the number of objects are assumed known.

The scattered electric �eld from N objects is spatially sampled by a uniformly spaced, linear

array with M isotropic receivers, M > N . When the multiple scattering e�ects are taken into

consideration, the measured data at the sensor outputs can be written as:

y = Amsx+ n; (1)

where Ams = [Es1(r1; : : : ; rN) Es2(r1; : : : ; rN) : : : EsN (r1; : : : ; rN)] and Esi(r1; : : : ; rN) denotes

the scattered �eld observed at the array due to the ith object, in the presence of all other (N �

1) scatterers, i = 1; 2; : : : ; N . For time domain applications, the vector x contains the narrow

band time variations. Since we do our analysis in the frequency domain and suppress ej!t, x =

[1 1 � � �1]T . The ith column of matrix Ams depends not only on the position of the ith object,

but also that of (N � 1) other objects. Therefore, we may replace Amsx in (1) with M � 1 vector

1All analysis is in the frequency domain, thus the e
j!t time dependence will be dropped.
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B = Es(r1; r2 � � �rN) = Es1(r1; : : : ; rN) +Es2(r1; : : : ; rN) + : : :+EsN (r1; : : : ; rN), which denotes

the total scattered �eld at the receiver array.

The recursive T matrix algorithm [16{18] is used to calculate the exact scattered �eld Esi due

to the ith object in the presence of other objects. The algorithm reported in [18] is designed for

the e�cient solution of near �eld scattering problems with heterogeneous collection of metallic and

dielectric objects. In addition, using the recursive T-matrix algorithm the solution to the scattering

problem can be written in a closed form. This property is especially useful in obtaining analytical

expressions for gradients and derivatives in multi-dimensional parameter search in Section 3.3 and

in Cram�er-Rao bound analysis in Section 4.

Electromagnetic interactions between the objects may be ignored in favor of reducing the com-

putational complexity of the localization process. For the method presented in Section 3.2, we use

the same data model as in (1), except that the matrix Ams is replaced by

Ass = [Es(r1) Es(r2) � � �Es(rN)]: (2)

The M � 1 vector Es(ri) denotes the scattered �eld due to a single object located at ri, i =

1; 2; � � � ; N , and it is calculated using the Mie series [20]. Therefore, each column of Ass contains

the scattered �eld that is a function of position of only one particular object. In fact, in this

de�nition of matrix Ass, each column is equivalent to those of Ams in (1) when all other scatterers

are in�nitely far away. The vector x is the same as before, x = [1 1 � � �1]T .

2.1 Review of Plane wave MUSIC

For plane wave MUSIC, the data model is in the following form:

y =Apwx+ n; (3)

whereApw = [a(�1) a(�2) � � � a(�N )], and a(�i) = [1 ejkd cos �i ej2kd cos �i � � � ej(M�1)kd cos �i ]T .

Here a(�i) is known as the direction vector, �i is the direction of arrival (DOA) of the ith plane
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wave, k is the wave number in the medium of propagation, and d is the distance between two

sensors. The experiment as represented by the data model in (3) is repeated many times in order

to determine the statistics of y. In particular, if L experiments are performed, then the maximum

likelihood estimate of the spatial autocovariance matrix R = EfyyHg is given by [4]:

R̂ =
1

L

LX
l=1

yly
H
l (4)

where yl is the data measured at the lth experiment, and superscript H denotes the complex

conjugate transpose. The sample covariance matrix R̂ is used in MUSIC algorithm to separate

signal and noise subspaces through the eigenspace decomposition [4]:

R̂ = Ûs�̂sÛ
H
s + Ûn[�̂

2I]ÛH
n (5)

where Ûs is the estimated signal subspace matrix and contains the N signal eigenvectors, and Ûn

is the estimated noise subspace matrix and contains M � N noise eigenvectors of multiple noise

eigenvalue �̂2. The projection operator onto the noise subspace is de�ned as [4]:

�̂n = ÛnÛ
H
n : (6)

The basic idea behind the planewave MUSIC algorithm is that the reciprocal of the \distance"

between the estimated noise subspace and the true noise subspace has sharp peaks around the

DOAs. Thus, if one plots this quantity versus all possible angles, estimates of DOAs can be

determined by the maxima of the angular spectrum. The spatial spectrum of the MUSIC algorithm

is given by [4]:

PMUSIC(�) =
a(�)Ha(�)

a(�)H�̂na(�)
(7)

where a(�) = [1 ejkd cos � ej2kd cos � � � � ej(M�1)kd cos � ]T is the direction vector that accounts for

a plane wave impinging on the array from the direction �.

It is important to realize that the formulation of the array processing problem presented in

this section implicitly assumes that the radiator is in�nitely distant so that the scattered �eld has

planar wavefronts at the sensor array. Thus, the elements of the direction vector a(�) are complex
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exponentials indicative of plane wave signals. However in many applications, including near �eld

object detection, the receivers are in the near-�eld region of the radiating sources, resulting in non-

planar wavefronts. The target localization problem, therefore, not only requires the DOA relative

to the array but also the range of the target from a point on the array.

3 Matched Field Processing for Object Localization

As mentioned in the introduction, matched �eld processing [6] uses the spatial complexities of

the �elds to localize sources in underwater acoustics. In a similar manner, plane wave MUSIC

outlined in Section 2 can be modi�ed so that the direction vector is �lled with the type of the

wavefront impinging on the array [2, 3, 8{10]. We divided this section into three parts. In the

�rst part we will describe the single object localization. Even though single object localization is a

subset of multiple object localization, we present it separately in order to explain the multiple object

case clearly. The second part will deal with multiple objects, but the electromagnetic interaction

between objects will be ignored. In the last part, we will treat multiple object detection problem

when the multiple scattering e�ects are taken into account.

3.1 Single Object Localization

By using the spatial distribution of the scattered �eld, we can �ll the direction vector in plane

wave MUSIC with non-planar scattered �elds to locate the near �eld objects. By modifying the

spatial MUSIC spectrum in (7), we form the following spectrum:

PMUSIC(r; �) =
Es(r; �)

HEs(r; �)

Es(r; �)H�̂nEs(r; �)
(8)

where the new \direction" vector (actually, the locus vector in r and � space) Es(r; �) is now �lled

with the scattered �eld observed for an object located at r = (r; �). Then, the location (r̂; �̂)

maximizing the MUSIC spectrum in (8) is selected as the estimated object center.
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Because a two dimensional search requires that the exact scattered �eld be calculated at each

point of the parameter mesh, this technique is in general computationally intensive. When the

objects to be detected are modeled as simple shapes, computing the exact scattered �eld can be

relatively simple. Here we consider the case of in�nitely long cylinders so that the scattered �eld

due to a plane wave can be calculated using the Mie series:

Es(�; �) =
1X

n=�1

cnH
(2)
n (k�)ejn(�+���inc) (9)

where H
(2)
n (:) is the Hankel function of the second kind of order n representing cylindrical outgoing

waves, k is the wavenumber in the homogeneous, possibly lossy, background, and �inc is the inci-

dence angle of the plane wave. The coe�cients cn are determined from the boundary conditions

when � is equal to the radius of the cylinder. For computer implementations, the in�nite sum in

(9) is truncated at a �nite value beyond which the coe�cients cn are below machine precision. Here

� and � denote the coordinates of the receivers since (9) assumes that the center of the cylinder is

located at the origin. In implementing (8), translations from object-to-receiver coordinate system

(�; �) to array-to-object-position coordinate system (r; �) are required. These translations do not

signi�cantly alter the computational load or functional form implied by (9).

Fig. 2(b) shows the MUSIC spectrum for a localization scenario when a small metallic object

in 7.5 cm diameter is placed 15 cm below the array as depicted in Fig. 2(a). The 33-element

linear, uniform receiver array spans an aperture of 1.5 meters. All sensors are assumed to be ideal,

isotropic receivers. The operating frequency is 1.0 GHz and the plane wave is incident with 90

degrees. The lossy, homogeneous background has the same electrical characteristics of 5% moist

San Antonio clay loam or 10% moist Puerto Rico clay loam (�b = 6�0, �b = 5 � 10�2 S=m) at

around 1.0 GHz [21]. The signal to noise ratio (SNR) is �xed at 0 decibels. As Fig. 2(b) depicts,

the location of the object (r = 15cm, � = 90o) is indicated with a very sharp peak. We note that
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the prominent peak structure of the spectrum in this example is representative of a wide range of

other cases for which the background electrical properties, target electrical characteristics and the

signal to noise ratios are varied [2].

3.2 Multiple Object Localization: No Interaction

In this section, we describe multiple object localization assuming that the objects are located

su�ciently far apart, so that the interactions among them can be ignored. For this case, multiple

object localization is equivalent to having a superposition of cylindrical waves of the form in (9)

incident on the array. Since the interactions are ignored, the scattered �eld due to one object is

independent of the positions of the other objects, and thus we can use the single object localization

approach described in previous section to search for multiple peaks in MUSIC spectrum given in

(8) to determine positions of multiple objects. As in Section 3.1, the scattered �eld due to a single

scatterer is calculated using the Mie series in (9), and a two-dimensional search is carried out to

�nd N peaks corresponding to estimated target locations (r̂1; �̂1), (r̂2; �̂2); : : : ; (r̂N ; �̂N).

The use of MUSIC in this manner raises two issues which are considered in the following

paragraphs. First, because we are operating in the frequency domain, there are signal coherence

di�culties which we address through the use of frequency diversity. The second issue is the need to

develop a quantitative means of understanding the circumstances under which the no-interaction

approximation is valid. In analyzing both of these issues, we present closed form analytical results

valid for near �eld objects of in�nitesimal radius and verify through numerical calculation that the

insight provided by these expressions carries over for objects of �nite size.

Because of the structure of x in (1), the rank of P = EfxxHg, is one and so is the rank of R.

Thus, the signals impinging on the array are coherent. To increase the rank ofR (i.e. to decorrelate

the signals) we repeat the scattering experiment as represented by (1) at N di�erent frequencies
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where N is the number of objects whose locations are to be determined. Thus (4) becomes:

R̂i =
1

L

LX
l=1

yliy
H
li (10)

where yli is the lth data vector observed at the ith operating frequency, fi, and R̂i is the spatial

autocovariance matrix at fi, i = 1; 2; � � � ; N . Then, the rank enhanced autocovariance matrix R̂d

is obtained by

R̂d =
1

N

NX
i=1

R̂i: (11)

In Appendix A, we prove forN = 2 that in the limiting case of in�nitesimal object radius, frequency

diversity does, in fact, increase the rank of the autocovariance matrix R̂d to two. In addition, for

objects with �nite radii, we can computationally demonstrate that using frequency diversity we

obtain a full rank autocovariance matrix. Having decorrelated the signals, the projector onto the

noise subspace, �̂n in (8), is found from eigendecomposition of R̂d.

While neglecting the interactions reduces the computational demand of localization consider-

ably, it may introduce large estimation errors if the interactions are in fact sizeable. To analyze

this issue we consider a scenario in which two objects are located a �xed distance beneath a re-

ceiver array and separated by a distance d.2 We de�ne the following normalized interaction term

to measure the relative import of the multiple scattering between the two objects

�(d) =
kE

(2)
s1 �Es1k22

maxd2[dmin;dmax] kE
(2)
s1 � Es1k22

(12)

where E
(2)
s1 is the scattered �eld vector observed at the array due to the �rst object in the presence of

the second object, Es1 is the scattered �eld from the �rst object when there are no other scatterers,

and dmin and dmax are limits over which we want to perform the analysis as dictated by the nature

of the underlying application. In Appendix B we provide a closed form expression for � in the

case of two in�nitesimally thin scatterers and show in Section 5.1, that (a) the � for �lamentary

2While not the most general setup, this con�guration is representative of the types of application of interest in
this paper (eg. mine detection) in which at most a couple of objects are in the array's �eld of view at about the same
depth. Moreover, this simpli�ed problem provides insight which may well be of use in more complex situations.
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objects bounds those for the extended objects for a wide range of distances and (b) the error in

the localization procedure tracks closely the value of �. Thus, the expression in Appendix B can be

used to determine the degree of interaction between two scatterers in terms of spacing and electrical

properties of medium of propagation. By selecting a desired interaction level, we may calculate

the minimum distance between scatterers that satisfy this a priori level. If for a given scenario we

suspect that the actual distance is smaller than the minimum distance, then we should not ignore

the interactions, and use the technique in Section 3.3 to localize the objects.

3.3 Multiple Object Localization: With Interaction

In this section, we describe multiple object localization using MUSIC when the electromag-

netic interactions between objects are completely taken into consideration. In a sense, this is the

multi-dimensional equivalent of single object detection where we aggregate all scatterers into one,

large scatterer whose electrical characteristics are de�ned by the 2N co-ordinates of the individual

objects. For object localization, then, we form the following MUSIC spectrum:

PMUSIC(r1; �1; r2; �2; : : : ; rN ; �N ) =
Es(r1; r2; : : : ; rN)

HEs(r1; r2; : : : ; rN)

Es(r1; r2; : : : ; rN)H�̂nEs(r1; r2; : : : ; rN)
(13)

where Es(r1; r2; : : : ; rN) denotes the total scattered �eld due to objects located at ri, i = 1; 2; : : : ; N

and is �lled using the recursive T-matrix algorithm [16{18]. In order to �nd the positions of the

objects, then, we perform a 2N -dimensional search in location space of all objects, (r1; �1); (r2; �2)

; : : : ; (rN ; �N ). The coordinates (r̂1; �̂1); (r̂2; �̂2); : : : ; (r̂N ; �̂N) at which the spectrum (13) reaches

maximum give us the estimated target locations. Finally we note that since there is only a single

signal vector de�ned by the position of all the objects, we have no signal coherence issue here.

The computational complexity of this approach is considerably larger than the no interaction

case for two inter-related reasons: the repeated use of the forward scattering model many times for

the 2N -dimensional search, and the extra cost of taking electromagnetic interactions into account

12



in the exact forward model. To keep the computational load at reasonable levels, we used the

recursive T-matrix algorithm given in [18] to calculate the scattered �elds due to multiple objects.

This variant of T matrix algorithm is speci�cally designed for the e�cient solution of near �eld

scattering problems involving heterogeneous collections of metallic and dielectric objects. Finally,

to further reduce the computational load, we employ a variable step-size steepest ascent approach

to maximize (13) which, for the problems of interest here typically converges to the neighborhood of

the maximum in 7-10 iterations after which point we use a less costly simplex search [22] to locate

the exact maximum. Explicit, closed form expressions for the gradient of the MUSIC spectrum

with respect to the target coordinates are provided through the use of the T matrix forward model.

The associated long and tedious formulae are provided in [23].

4 Cram�er-Rao Performance Bounds on Object Localization

The Cramer-Rao Bound (CRB) provides very valuable information about the lower limit for

the variance of any unbiased estimator. In order to �nd CRB, however, one should have a closed

form expression of the log-likelihood function. In this section, we will extend the results in [15]

to �nd the Cram�er-Rao bounds for the near �eld, multiple object detection geometries. Since the

additive noise in (1) is white and Gaussian, the log-likelihood function can be written as [15]:

lnL = constant� 2ML ln� �
1

�2

LX
l=1

[y�Amsx]
H [y�Amsx] (14)

where �2 is the noise variance, M is the number of receivers and L is the number of data vectors

used for estimating the covariance matrix R̂ in (4).

Given the log-likelihood function, the Fisher Information Matrix (FIM) can be written as:

J = Ef  Tg (15)

where  = [@ lnL
@r1

@ lnL
@�1

: : : @ lnL
@rN

@ lnL
@�N

]T . The FIM is then expressed in matrix form as:
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J =

2
6666666666664

�r1r1 �r1�1 � � � �r1rN �r1�N

��1r1 ��1�1 � � � ��1rN ��1�N
...

...
. . .

...
...

�rN r1 �rN �1 � � � �rN rN �rN �N

��N r1 ��N �1 � � � ��N rN ��N �N

3
7777777777775

(16)

where �pq = E[@
2 lnL
@p@q

], fp; qg = fr1; �1; r2; �2 : : : rN ; �Ng. The entries of FIM are [15]:

�pq =
2

�2

LX
l=1

RefxHDH
p Dqxg; (17)

where Dp = @Ams

@p
and Dq = @Ams

@q
. The columns of matrix Ams contain the scattered �elds as

de�ned in (1), and since the scattered �elds are calculated using the recursive T-matrix algorithm,

derivatives of A with respect to object positions, Dp and Dq, can be easily obtained [23]. Since x

is constant over L experiments, (17) can be further reduced to:

�pq =
2L

�2
RefxHDH

p Dqxg: (18)

The Cram�er-Rao bound by de�nition is, then, the inverse of the FIM:

CRB(r1; �1; : : : ; rN ; �N) = J�1: (19)

The ith diagonal entry in the Cram�er-Rao bound expression in (19) gives the Cram�er-Rao lower

bound for the ith variable in the parameter set fr1; �1; r2; �2 : : :rN ; �Ng. In Section 5, we will verify

the analytical expressions given by (19) with the Monte-Carlo simulated error variances.

5 Examples

In this section, we present numerical examples on localization of multiple objects and veri�ca-

tion of Cram�er-Rao lower bounds with Monte-Carlo simulations. In order to simplify the scattering

phenomenon associated with the detection problem, the targets are modeled as simple, circular ob-

jects with diameters of 7.5 cm. The system parameters are kept constant throughout the examples

to allow meaningful comparisons. The scattered �eld due to an incident plane wave is observed
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along a 33-element, uniform, linear receiver array which spans an aperture of 1.5 m. The sensors

are assumed to be ideal, isotropic receivers. Unless otherwise noted, the operating frequency is

set to 1.0 GHz. The objects are placed in a lossy, homogeneous background which has the same

electrical characteristics of 5% moist San Antonio clay loam (�b = 6�0, �b = 5�10�2S=m) at around

1.0 GHz [21]. In all examples the scattering simulations are repeated 250 times to estimate the

autocovariance matrices, i.e. L = 250 in (4) and (10).

In order to show the performance of the algorithms, we consider two objects geometries. In the

�rst case (Fig. 3(a)), the objects are located quite far from each other. For this object geometry,

due to the lossy background, the interactions between the targets are very weak. In the second

case (Fig. 3(b)), the objects are located closely, and the electromagnetic interactions between the

objects are considerably stronger.

For the simulations, the de�nition of signal to noise ratio (SNR) is not obvious. In practical

problems, SNR is imposed by the nature of the system noise. However, in computer simulations

we want to reference the noise power to a �xed quantity that does not change as the positions of

the objects change. For this purpose SNR is referenced to the scattered �eld strength of a single,

cylindrical, metallic object placed at the same depth as the objects, in the same lossy medium.

The radius of the reference scatterer is the same as the radii of the targets. With this de�nition,

the noise power is always proportional to the power of reference scattered �eld.

5.1 Multiple Object Localization: No Interaction

As described in Section 3.2, all scatterers are assumed to be scattering the incident plane wave

independently. Therefore, we used the Mie series to generate the MUSIC spectrum in (8). The

issue of signal coherence is solved by using two operating frequencies, 1.0 and 1.2 GHz. The

autocovariance matrix at each frequency is estimated using (10), and the full rank autocovariance
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matrix is calculated using (11). For a wide range of target locations, we have veri�ed that the

autocovariance matrix R̂d has two distinct signal eigenvalues that are quite di�erent from the noise

eigenvalues. The order of magnitude di�erence, of course, depends on the signal-to-noise ratio.

At the 20 dB SNR level used in this example, the smallest signal eigenvalue is approximately two

orders of magnitude larger than the largest noise eigenvalue.

In Fig. 4, we plot the MUSIC spectrum in (8) for the case of well separated objects. As the

�gure depicts, the target locations are indicated by two peaks that are easy to distinguish from the

background. The spectrum for the closely packed object case is shown in Fig. 5. It is clear from the

�gure that the no-interaction approach fails for this case. This is expected, since the no interaction

model ignores the multiscattering e�ects that are very strong for closely spaced scatterers.

Since ignoring electromagnetic interactions may result in estimation errors, or even prevent

resolution of targets as in Fig. 5, we investigated the interaction between two extended objects and

compared the results with �lamentary objects. Consider a problem where two objects are located

15 cm below the array. The position of one is kept �xed at (125, -15) cm (i.e. about 1/4 of the

way from the right edge of the array) while the second is moved from left to right such that the

inter-object distance, d, varies from eight centimeters to one meter. The interaction term given by

(12) for both extended objects (computed using the T matrix method) and the �lamentary objects

(obtained from (28)) are shown as a function of d in Fig. 6(a). It is clear from this �gure that for

both extended and in�nitesimally thin objects, the interaction terms decay very similarly.

The link between estimation error and object separation is shown in Fig. 6(b). A comparison

of Figs. 6(a) and (b) reveals the expected result that both estimation errors and interaction terms

decay as the objects are located farther apart. Figs. 6(c) and (d) show the same comparisons

in (a) and (b) when the objects are located 25 cm below the array, further indicating that the
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simple interaction term of Appendix B clearly provides a good measure of the level of interaction

between extended objects, and one may use this simple interaction criterion to decide whether the

no-interaction case would result in acceptable estimation errors. In fact, we can use Figs. 6(a) and

(b) to estimate how the no-interaction case would perform for geometries given in Fig. 3. When

the objects are 1 meter apart, Fig. 6 indicates that the interaction term is insigni�cant, so is the

estimation error. As seen from Fig. 4, for this case the object centers are clearly de�ned by two

peaks around the true center coordinates. When the objects are separated by 10 cm, however,

there is a considerable electromagnetic coupling between objects, and the estimation errors are so

large that the objects centers cannot be resolved as veri�ed in Fig. 5.

5.2 Multiple Object Localization: With Interaction

We have applied the algorithm given in Section 3.3 to localize the targets for the two geometries:

well separated and closely spaced objects. The signal to noise ratio is �xed at 20 dB and the

autocovariance matrix, and the projection operator onto the noise subspace is calculated.

To determine the positions of the two targets, we searched for the maximum of the spectrum

PMUSIC(r1; �1; r2; �2) given by (13) in (r1; �1; r2; �2) space. To �nd this maximum we use the

steepest descend algorithm described in Section 3.3. Fig. 7 shows the intermediate object positions

at each iteration during the multi-dimensional search. The objects are located 1 meter apart,

and the initial guesses are denoted with *'s 3. Large circles indicate the support of the objects.

Although not clear from this �gure, as the number of iterations increase, the location estimates

get closer to the true estimates at (25;�15) and (125;�15) cm. Fig. 8 shows the object positions

at each iteration during the multi-dimensional search when the objects are closely spaced. The

3Here we have initialized the search method by hand to illustrate the manner in which the search process functions.
As described below, to verify the Cramer-Rao bound analysis, we employ an automatic method for initializing the
nonlinear optimization.
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distance between the targets for this case is 10 cm. Again the initial guesses are indicated with *'s,

and as the number of iterations increase, the location estimates get closer to the true estimates at

(70;�15) and (80;�15) cm. For both cases, we observed that this approach quickly converges to

the general maximum area in 7-10 iterations using the steepest decent algorithm. After the initial

quick convergence, we switch to a simplex search [22] to locate the precise maximum.

5.3 Veri�cation of Cram�er-Rao bounds

In this section, we will compare the analytical Cram�er-Rao bound results obtained in Section 4

with the Monte-Carlo simulated error variances. For this purpose, the algorithms described in

Sections 3.1 and 3.3 are repeated 500 times at di�erent signal to noise ratios. For each Monte-

Carlo simulation, the multi-dimensional search routine requires initial values for the positions of the

targets. Thus, to supply the algorithmwith an initial value, we used the subarray processing method

described in [1]. This approach can e�ciently provide rough estimates of the object locations. Once

we initialize the object positions with subarray processing, we perform the multi-dimensional search

described in the previous section. The position vector maximizing the spectrum is declared as the

position estimates and the error variances are calculated from the estimates.

Fig. 9 shows the comparison of analytical CRB calculated for single object geometry of Fig. 2

using (19) with 500 Monte-Carlo simulations of the algorithm described in Section 3.1. The solid line

is the CRB for the radial position of the object and measured in squared meters. The dashed line

denotes the CRB for the angular position and measured in squared radians. The radial and angular

positions are referenced to the center point of the array. Monte-Carlo simulated error variances for

range and bearing variables are shown on the same plot with � and � symbols, respectively.

Fig. 10 compares the Cram�er-Rao bounds with simulated error variances for multiple object

geometries of Fig. 3 using the algorithm of Section 3.3. Fig. 10(a) shows the comparison for two
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objects located one meter from each other, and Fig. 10(b) show the comparison when the objects

are 10 centimeters apart. Again, the solid and dashed lines are the CRBs for radial and angular

positions of the objects, respectively. The range variables have the unit of squared meters, and the

bearing variables have the unit of squared radians. As before, both coordinate variables are de�ned

with respect to the center point of the array. The symbols � and � show the Monte-Carlo simulated

error variances for the range and bearing variables, respectively. For this case, since there are two

targets present in the region, there are two symbols at each SNR value. The problem geometry

is symmetric, thus, one would expect that the error variances should be the same. Indeed, for

analytical Cram�er-Rao bounds calculated from (19), the bounds for coordinates of both objects

are the same. For the simulated error variances, however, we can notice the di�erent values for

the range variables in Fig. 10(a) and for the bearing variables in Fig. 10(b). The di�erence in

simulated variances pronounced for low signal to noise ratios, which, we believe, implies that more

Monte-Carlo simulations are needed at those SNR values.

In both Fig. 9 and Fig. 10, we observe that the simulated error variances approach the lower

limit provided by the Cram�er-Rao bounds as the signal to noise ratio increases. This is expected

by the results reported in [15] which states that MUSIC is an e�cient estimator for large SNR

values. The results presented here, therefore, reveal that at high signal to noise ratios MUSIC is

an e�cient estimator for near �eld object localization problems, too.

6 Conclusions

In this paper we presented a matched �eld based high resolution array processing technique

for localization of near �eld targets. The algorithm is presented in three parts: single object

localization, multiple object localization ignoring the interactions between objects, and multiple

object localization taking multiple scattering into account. When the interactions are ignored,
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the computational load is alleviated since the electromagnetic model is a simple Mie series, and a

two-dimensional search in parameter space su�ces to localize all objects. The drawbacks, on the

other hand, are the necessity to take care of the coherent signal issue, and the failure to resolve

and localize closely spaced targets. When the electromagnetic interactions are accounted for, these

drawbacks are remedied, but the computational load due to multi-dimensional search, and complex,

multiple scattering forward model increases.

We have also calculated the analytical Cram�er-Rao bound expressions for coordinates of multiple

objects when the interactions are taken into consideration. These lower bounds are then veri�ed

with Monte-Carlo simulated error variances. We have shown that as the signal to noise ratio

increases, simulated error variances approach the lower limit set by the Cram�er-Rao bounds.

In terms of future work, our primary interest is the extension of this method to three dimensional

buried objects for problems in which the halfspace between the air and the earth is explicitly

modeled. This will require the generalization of the single object, half-space T matrix method

of Kristensson and Strom [19] to the multi-object case as well as the development of MFP-type

methods which are built around this new forward model.

Appendices

A Frequency Diversity

In this appendix, we will show that under simplifying assumptions the frequency diversity

described by (10) and (11) increases the rank of the autocovariance matrix. Consider the data

model yi = si + ni where si is the noise-free scattered �eld due to a scatterer at frequency fi,

ni is the white, Gaussian noise as before, and yi is the observed data vector at frequency fi,

i = 1; 2; � � � ; N . To simplify the problem, we will assume that the number of scatterers is limited
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to two (N = 2), and the scatterers are in�nitesimally thin.

The exact expression for the rank enhanced autocovariance matrix, Rd is:

Rd =
1

2
E
�
y1y

H
1 + y2y

H
2

	
=

1

2

�
s1s

H
1 + s2s

H
2 + 2�2I

�
: (20)

For two scatterers, the frequency diversity should ensure that the signal subspace of Rd is two

dimensional. To see the conditions for which the signal subspace of Rd is two dimensional, we

rewrite (20) as:

Rd =
1

2
[s1s2]

2
64 1 0

0 1

3
75
2
64 sH1

sH2

3
75

| {z }
S

+�2I: (21)

For the signal subspace of Rd to be two dimensional, the matrix S should have rank two which is

possible if vectors s1 and s2 are linearly independent. Since the maximum likelihood estimate of

the rank enhanced autocovariance matrix R̂d in (11) is asymptotically equal to Rd, the proof for

Rd is valid for R̂d for large snapshots, i.e. L ! 1. In the rest of the appendix, we show that Rd

has a two dimensional signal subspace, by proving that s1 and s2 are independent.

For this purpose, we show that the scattered �elds due to the �lament scatterers observed at

two points, A and B, in space at two distinct frequencies, f1 and f2, are independent. Thus, the

data vectors measured over an array at more than two points will also be independent. The general

Mie scattering series given in (9), is reduced to the following expressions for �lament scatterers:

EA
s1 = c0H

(2)
0 (k1rA) EA

s2 = d0H
(2)
0 (k1rA)

EB
s1 = c0H

(2)
0 (k1rB) EB

s2 = d0H
(2)
0 (k2rB)

(22)

where rA and rB denote the observation points, coe�cients c0 and d0 are dependent on the fre-

quency and object properties, H
(2)
0 (:) is the zeroth order outgoing Hankel function, and ki is the

wavenumber at fi, i = 1; 2. We will show that the vectors

s1 =

2
64 EA

s1

EB
s1

3
75 and s2 =

2
64 EA

s2

EB
s2

3
75 (23)
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are independent, i.e. equations

EA
s1 = �EA

s2 and EB
s1 = �EB

s2
(24)

cannot be satis�ed as long as f1 6= f2.

Equations (22) and (24) imply that:

c0H
(2)
0 (k1rA) = �d0H

(2)
0 (k2rA) and c0H

(2)
0 (k1rB) = �d0H

(2)
0 (k2rB) (25)

which can be written as

 =
�d0
c0

=
H

(2)
0 (k1rA)

H
(2)
0 (k2rA)

=
H

(2)
0 (k1rB)

H
(2)
0 (k2rB)

: (26)

Properties of Hankel functions require that jH
(2)
0 (k1r)j and jH

(2)
0 (k2r)j are monotonically de-

creasing, and do not intersect at any r. These two properties and the fact that H
(2)
0 (k1r)=H

(2)
0 (k2r)

is not a constant imply that if we choose a  such that H
(2)
0 (k1rA) = H

(2)
0 (k2rA), then there would

be no rB which satis�esH
(2)
0 (k1rB) = H

(2)
0 (k2rB) unless k1 = k2 and  = 1. Therefore, the vectors

in (23) are mutually dependent only when k1 = k2, i.e. f1 = f2.

B Bound on Electromagnetic Interactions

In this appendix, we derive the interaction terms between two in�nitesimally thin scatterers.

Using the de�nition of the interaction term in (12), we calculate the electromagnetic interactions

between two in�nitesimal scatterers here, and then compare these simple interaction terms with

those of extended objects in Section 5.1.

First we derive the scattered �eld from two �lamentary objects separated by a distance d, when

they are excited with a plane wave, ejk:r. With a simple approach, schematically shown in Fig. 11,

we account for the multiple scattering between these objects iteratively. The �eld scattered from

the �rst object due to the plane wave is obtained by setting n = 0 in (9) and is Es1 = c0H
(2)
0 (kjrj)

where c0 depends on the object radius, and jrj is the distance between the scatterer and the receivers
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in the array. Thus, the value of Es1 at the location of the second object is c0H
(2)
0 (kd), where d is

the distance between the two objects.

Still assuming no interaction, we use c0H
(2)
0 (kd) as incident �eld on the second object, and

�nd the scattered �eld due to the wave scattered from the �rst object as: Es12 = d0H
(2)
0 (kjrj)

where d0 = c0[c0H
(2)
0 (kd)]. When this �eld arrives at the location of the �rst object, it becomes

d0H
(2)
0 (kd). Using this as the incident �eld on the �rst object, we calculate the third term in

our scattering series as Es121 = e0H
(2)
0 (kjrj) with e0 = c0[d0H

(2)
0 (kd)]. By carrying no-interaction

scattered �elds between scatterers in this manner, the scattered �eld due to the �rst object, in the

presence of the second is given in the form of an in�nite sum:

Es1
(2) = Es1 + Es12 +Es121 + Es1212 + : : :

= c0

n
1 + c0H

(2)
0 (kd) + [c0H

(2)
0 (kd)]2 + [c0H

(2)
0 (kd)]3 + : : :

o
H

(2)
0 (kjrj): (27)

The di�erence between with-interaction and no-interaction �elds can now be expressed as:

Es1
(2) � Es1 = c0fc0H

(2)
0 (kd) + [c0H

(2)
0 (kd)]2 + [c0H

(2)
0 (kd)]3 + : : :gH

(2)
0 (kjrj);

which can be written concisely as:

Es1
(2) � Es1 =

c20H
(2)
0 (kd)

1� c0H
(2)
0 (kd)

H
(2)
0 (kjrj): (28)

Expression in (28) is warranted since jc0H
(2)
0 (kd)j < 1, where c0 =

J0(ka)

H
(2)
0 (ka)

and a is the radius of

the object, a < d. Evaluation of (28) for r equal to the positions of the receivers then provides the

means of determining �(d) in (12).
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Figure 2: MFP localization example: single metallic object in a lossy, homogeneous background
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Figure 11: Finding the scattered �eld due to a �lamentary object by incorporating the electromag-
netic interactions between two scatterers step by step. Steps 2 and 3 are repeated in�nitely many
times successively to account for all interactions
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ABSTRACT

We consider the problem of detecting and localizing buried landmines from a ground penetrating radar
(GPR) array. A simpli�ed, ray-optics-based physical model for time domain GPR returns is presented.
Under this model in the absence of an object from the �eld of view of the array, there exist well de�ned
symmetries in the structure of the radar returns. In particular, for a bistatic system composed of one
length M transmit array and a second length M array of receivers, we identify M subsets of signals from
the M2 total transmitter/receiver pairs such that the mean value of the signals within each subset should
be the same when no object is present. This relationship then forms the basis for a modi�ed Hotelling's
T 2-test to detect the presence of objects when there is noise in the signal. Simulation results demonstrate
the validity of these methods.

1. INTRODUCTION

Mines kill or maim hundreds of people every week, mostly innocent and defenseless civilians. Among the
various demining methods developed in recent years, ground penetrating radar (GPR) holds substantial
promise because of its sensitivity to non-metallic, plastic objects which traditional metal detectors are
largely incapable of �nding. Nevertheless, using GPR to detect and localize mines is both di�cult and
complex. One key problem is the rejection of interference caused by the signal arising from scatter o� the
air-earth interface. Both the magnitude of the ground bounce and its timing are such that they can easily
swamp the relatively small signal arising from the interaction of the transmitted GPR waveform with the
buried mine. To help overcome this di�culty, we consider the use of a GPR array to provide a richer
and more diverse set of data thereby making accurate detection and localization possible in circumstances
where a single GPR is unable to perform well.

In this paper we discuss a method to detect mines which exploits both the physics of the problem as well
as the geometry of the array system. We assume that the GPR array is deployed as shown in Fig. 3 with
one linear array of transmitters and a second array of receivers both traveling down a track. As described
in Section 3, the geometric symmetry inherent in this con�guration introduces a \statistical symmetry"
in the received signals. In particular, this symmetry is preserved precisely when there is no mine. On the
other hand, the presence of a mine will break this symmetry and therefore provide information as to the
existence of an object. Based on this relationship, we develop a statistical test of homogeneity to ascertain
the presence of an object in the �eld of view of the array.

The organization of this paper is as follows. Section 2 introduces the physical model of GPR signals
and the con�guration of the GPR array. In Section 3 we present the detection algorithm, using a modi�ed

Other author information: XX: xxu@cdsp.neu.edu, ELM: elmiller@ece.neu.ed, CR: rappaport@neu.edu. This work was
supported by the Army Research O�ce Demining MURI under Grant DAAG55-97-1-0013



form of Hotelling's T 2-test. Examples are given in Section 4 to demonstrate validity of the algorithm.
Section 5 summarizes present work and points out future research direction.

2. PHYSICAL MODEL AND PROBLEM FORMULATION

2.1. A Single GPR System

To detect and localize mines, a ground penetrating radar array is implemented. Fig. 1 shows a typical
single GPR system with the signals it generates.1 In this paper we assume a simpli�ed model where the
signal seen by the receiver is composed of at most two components. The �rst signal is the reected signal
from the ground and is always present in the data. The second component (if it exists) is the reected
contribution from an object in the �eld of view of the array.

G

M

Mine

Transmitter Receiver

Air

Ground

Figure 1. Schematic drawing of a single GPR, transmitter and receiver.

The received signal, �(t), is taken to be the sum of delayed and attenuated versions of two \template"
signals indicating the nominal behavior of the ground bounce signal and the nominal behavior of a signal
arising from scattering from a mine. Mathematically we have

�(t) = a g(t� �g) + b m(t� �m) (1)

where  g and  m are the nominal ground bounce and mine reected signal, a and b are attenuation factors,
�g is the delay of the ground reection, and �m is the delay of the mine signal. Note that if no mine is
present, � is just equal to the �rst term of (1).

To �nd the delays and the attenuation factors we assume that the propagation of the signal from the
transmitter to the receiver can be described using a ray-optics-type model shown in Fig. 1. That is, the
ground bounce is composed of signal reected from the interface at the specular point midway between the
transmitter and receiver while the four-part path of the mine component of the signal can be determined
via the judicious use of Snell's law.

To begin, the �g and �m are determined by the travel time of two-way paths and can be calculated as

Delay =
2-way path length

velocity of the wave
: (2)

To �nd �g and �m, we need to locate reecting point and refracting point shown in Fig. 2. Let media 1 be
air and media 2 be soil, with electric permittivity �0 and �1, respectively, Fig. 2.(a), the reecting point
on the boundary between two points (x1; y1) and (x2; y1) in media 1 is simply the mid-point (x4; 0), where
x4 =

x1+x2
2 .
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Figure 2. Geometries for determining (a) the reecting point and (b) the refracting point, �1 > �0.

For the refracting point, according to Snell's law, for a source located at (x1; y1) in media 1 and target
at (x3; y3) in media 2, the refracted ray from source to target must intersect the boundary at a point
(x5; 0), Fig. 2.(b), such that2

Ref�1g
�0

=

(x1�x5)2
(x1�x5)2+y21
(x3�x5)2

(x3�x5)2+y23

: (3)

Solution of this quartic equation has four roots. By Fermat's principle, which states that of all possible
paths joining two given points on a wave path, the wave path has actual least travel time, we can discard
three physically impossible roots and retain the true refracting point. Once the reecting point and the
refracting point are established, the delay �g and �m can be found as,

�g = 2

p
(x1 � x4)2 + y21

c
(4)

�m = 2

p
(x1 � x5)2 + y21

c
+ 2

p
(x3 � x5)2 + y23
c=Re

p
�1

(5)

where c is the speed of light in air and c
Refp�1g is the speed of the wave in soil.

In addition to the time delays, the received signal �(t) has an amplitude reduction caused by propagation
through the soil as well as geometric spreading as it traverses both the air and the earth. In soil, the wave
attenuates exponentially with the distance it travels, e��sd. The quantity �s is the attenuation constant
of the soil which is related to the conductivity and permittivity of the medium3 while d is the distance
the wave travels in the earth. We assume geometric spreading results in an inverse path length amplitude
reduction. Referring to the setup of Fig. 2, then we have the overall amplitude reduction factors given by

a =
1

2
p
(x1 � x4)2 + y21

and b =

�
e��s

p
(x3�x5)2+y23p

(x1 � x5)2 + y21 +
p
(x3 � x5)2 + y23

�2

:

2.2. GPR Array

In this work, the GPR array is assumed to consist of M pairs of transmitters and receivers. Data are
collected by the GPR array as it travels step by step down track, Fig. 3. At each stop of the array, M2

signals (time-traces) are collected; one for each transmitter/receiver pair.
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Figure 3. Array of GPR, moves in x-direction(down-track).

Using the model developed in the previous section and assuming that the GPR array is at its k-th stop,
the signal seen at receiver j due to input from transmitter i is written as

�kij(t) = aij g(t� �g;ij) + bkij m(t� �km;ij); i; j = 1; � � � ;M; k = 1; � � � ; K: (6)

Note that a and �g do not depend on k, the down-track GPR array position. This is easy to understand
because the ground-reected signal only depends on the relative position of transmitter and receiver�. To
simplify matters, in the future we use the following shorthand

gij(t) = aij g(t � �g;ij) skij(t) = bkij m(t� �km;ij):

Each �ij(t) is densely sampled P times over a time interval. The interval is chosen to be long enough to
embrace both ground bounce and mine signal. When no ambiguity will arise, we refer to the vector of
samples, �k

ij
, rather than the temporal signal, �kij(t) with a similar interpretation holding for g

ij
and skij .

Note �k
ij
, g

ij
, and skij are column vectors of size P .

For a given location of the GPR array, to detect mines, we carry out a binary hypothesis test. Under
the null hypothesis, H0, the received signal �k

ij
is comprised of ground bounce g

ij
plus measurement noise,

which is assumed to be a white Gaussian vector, w � N(0; �2I). Under the alternate hypothesis, H1, �
k

ij

consists of ground bounce, noise, and mine signal, skij . Mathematically we have

Hk
0 : �k

ij
= g

ij
+ w

Hk
1 : �k

ij
= g

ij
+ skij + w: (7)

Our processing method is based on the observation that under H0, the M
2 received signal should

display certain symmetries, as illustrated by Fig. 4. For example if no mine is present then �
12

should be
\statistically equal" to �

21
, �

23
, �

32
, �

34
, and �

43
because the ground bounce in each case depends only on

the relative spacing of the sensors which is identical for these six pairs. Similarly, �
13

should be statistically
equal to �

31
, and so on. By \statistically equal" we mean that any variations in these signal are caused by

random sensor noise. In other words, signals from these sets will, on average, possess the same means with
some variability (variance) caused by the noise. Thus statistical tests designed to determine homogeneity
of a population (i.e. equality of mean vectors) can be used to test whether an object is present (lack of
homogeneity) or absent (all the data vectors are about the same). Finally, for the M2 received signals it
is not hard to show that there are only M sets of statistically di�erent signals because of this symmetry.
Note the M sets of signals are not of equal size, some sets consist of more signals than the others.

�Here we are assuming that the ground is locally at over the extent of the sensing system. Extension of the results in this
work to smoothly changing ground is an area of current work.
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3. INFORMATION EXTRACTION ALGORITHM

From the above discussion, we know that if a mine is present, the symmetry of received signals will be
disrupted. Therefore, to detect mines, we can look for asymmetry of received signals. Basically, our
approach is to sequentially detect any changes in the means of the received signals. For the purpose of
illustration, we use M = 4 pairs of transmitter and receiver. At each stop k of the GPR array, we then
have 4 sets of statistically di�erent signals, S1 = f�k

11
; �k

22
; �k

33
; �k

44
g, S2 = f�k

12
; �k

21
; �k

23
; �k

32
; �k

34
; �k

43
g,

S3 = f�k
13
; �k

31
; �k

24
; �k

42
g, and S4 = f�k

14
; �k

41
g.

3.1. Homogeneity Test of Single Set

Here we discuss the homogeneity test of a single set, say S1 =
n
�k
11
; �k

22
; �k

33
; �k

44

o
. We consider the

acceptance test of the hypothesis

H0: �k
ii
in the set are from same multivariate Gaussian distribution, with equal and known

covariance matrices, and identical, unknown means; i = 1; � � � ; 4:
Because the test is identically the same at each stop k for the remainder of this subsection we drop the k
notation.

As the problem currently stands, we do not assume that the ground bounce signals are known. In fact,
a simple transformation of the data allows us to perform the test without ever having to know the ground
bounces or estimate them. To see this, we begin by forming the collection of all pairwise di�erences of the
signals within the set under consideration. For S1 we get the set D1 de�ned as

D1 =
n
�
11
� �

22
; �

11
� �

33
; �

11
� �

44
; �

22
� �

33
; �

22
� �

44
; �

33
� �

44

o
� f�1; �2; �3; �4; �5; �6g :

Testing H0 using the original set of �
ii
signals then is equivalent to testing the following hypothesis using

the �n vectors:

H 0
0: �n in the set are from same multivariate Gaussian distribution, with equal and known

covariance matrices and means equal to zero



To test this equality of means, we carry out a Hotelling's T 2-test.4 As described more fully in [5], this
test amounts to the following comparison

�1 =
6X

n=1

1

2
�TnR

�1�n 7 threshold (8)

with R(= �2I) is the covariance matrix of the measurement noise and threshold is chosen to ensure an a

priori speci�ed probability of false acceptance. The hypothesis is accepted if the left hand side is less than
or equal to threshold and rejected otherwise. Noting that R is diagonal, we write �1 as

�1 =
1

2�2
�1

TA1�1 =
1

2�2

h
�T
1
�T
2
�T
3
�T
4

i 2664
3I �I �I �I
�I 3I �I �I
�I �I 3I �I
�I �I �I 3I

3
775
2
664
�
1
�
2
�
3
�
4

3
775 : (9)

For a set Si of size Ni, it is easy to show that Ai is an Ni �Ni block matrix. Its block diagonal elements
are (Ni � 1)IP�P and the o� diagonal elements are �IP�P .

3.2. Homogeneity Test of Multiple Sets

For the application of interest in this paper, we have multiple sets (four for our sample system) for which
we wish to test homogeneity. Here we adopt a simple, generalized form of the T 2 test in which the four
�i's are weighted and added to yield one �nal test statistic,

� = �1�1 + �2�2 + �3�3 + �4�4: (10)

The �i are weight factors, de�ned by

�i =
1

li
(

4X
j=1

l�1j )�1 (11)

where lj are the path lengths of ground bounces for set Sj . More will be said about this weight factor in
Section 3.3. Stacking all the 16 signals �ij to form a long column vector, we obtain a new vector

�T =
�
�T
1 �T

2 �T
3 �T

4

�
and

� =
1

2�2
�TA� =

1

2�2
�
�T
1 �T

2 �T
3 �T

4

�
2
664
A1�1 0 0 0
0 A2�2 0 0
0 0 A3�3 0
0 0 0 A4�4

3
775
2
664
�1

�2

�3

�4

3
775 :

(12)

Matrix A is a block diagonal matrix. Obviously, A is symmetric. Note A is positive semide�nite by its
buildup. According to Mathai,6 the �rst two moments of � are given by,

�� = (6�1 + 15�2 + 6�3 + �4)P

�2� = (24�21 + 90�22 + 24�23 + 2�24)P:
y (13)



It has been shown that � asymptotically has a Gaussian distribution6 for large NP , i.e., � � N(��; �
2
�).

The generalized T 2-test amounts to � 7 � where � is the threshold chosen to ensure an a priori speci�ed
probability Pfa of false acceptance. The � is determined by

Pfa =

Z 1

�

1q
2��2

�

e
� (����)

2

2�2
� d�: (14)

3.3. Sequential Detection

Now we consider the actual GPR array operation as the array moves down-track. At each stop k, we
calculate a corresponding �k. When there is no mine in the �eld of view of the array, we record �k only.
That is, �k = �k under hypothesis H0. When there is a mine, the mine signal skij adds to the ground

bounce. Passing skij to the generalized Hotelling's T 2-test produces an output signal, denoted by �k . So

the problem is to detect signal �k , given the observed signal sequence �k and known \noise" �k, using the
additive noise model �k = �k + �k under the alternate hypothesis H1. Though �

k is unknown and changes
with k, it is always positive because of the very nature of quadratic form of the generalized T 2-test. Fig. 5
shows separate �ki and �ki + �ki . Signals on the left side of Fig. 5 are typical \noise" sequences, taken from
four di�erent sets of transmitter-receiver combinations. Signals on the right side are \noise" and mine
signals, corresponding to the respective sets of transmitter-receiver combinations. It is seen that �ki are
much weaker in set S3 and S4. This observation can be explained by the increased attenuation associated
with the longer distances the mine signals in sets S3 and S4 travel. For this reason, we introduced the
weight factors in Eq. 11.

When the mine is buried deep, the mine signal attenuates exponentially as explained in Section 2.1.
Detecting this unknown low power signal can be aided quite a bit using sequential detection methods which
retain information from previous scans to improve the SNR. We therefore employ a sequential detector as
the GPR array moves down track. At each stop k, the detector makes one of two decisions7: (1) Hypothesis
H0 is true, no mine signal is present, (2) Reject H0. Because �

k causes a positive displacement of the mean
of �k, we choose a running average of �k as a statistical test8,9

gk =
1

N

kX
j=k�N+1

�k; k = N;N + 1; � � � ; K (15)

and make a decision by checking gk 7 � where � is a threshold. At each stop k, gk is compared to
the threshold to make a declaration of mine presence. Fig. 6 illustrates relationship between threshold
settings and declaration of mine presence as the GPR arrays move down-track. Each �lled dot indicates a
location of the array where we say that a mine is present. Such a declaration is made when gk is above the
threshold for consecutive 5 stops of k. A lower threshold allows us to make early declaration of mine. The
disadvantage is a high false-acceptance rate. The false-acceptance probability Pfa equals the probability
under hypothesis H0 that the g

k crosses the threshold. The detection probability Pd equals to 1�Pfa. By
virtue of the generalized T 2-test, �k are statistically independent. Hence, gk has the Gaussian distribution,
N(��;

1
N
�2�). Thus, in principle, for a given Pfa, � can be determined similarly as in Eq. 14.

ySee appendix
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4. EXAMPLES

In this section we consider some examples of the above procedure. Monte-Carlo runs were used to determine
the probability of detection and probability of false-alarm for various noise levels and depth of buried mines.
In this work, the signal to interference plus noise ratio is de�ned as

SINR = 10 log10
sT s

gT g + P�2
: (16)

In all cases, we generate synthetic data with an object located around the 50th stops of the GPR array and
buried 10 cm underground. The GPR array is composed of four pairs of transmitters and receivers evenly
spaced along a baseline width of 80 cm. A transmitter and its corresponding receiver (e.g. transmitter 1
and receiver 1) are 20 cm apart. The GPR array is 40 cm above the ground. For simplicity we assume
that the nominal ground bounce and mine-bounce signal take the form of a second derivative of a Gaussian
shown in Fig. 7(a). Current work in our group is aimed at developing more sophisticated models for these
signals. Fig. 7(b) and (c) show the received signals of two pairs of T/R combinations. Because of the
domination of the ground bounce, it is di�cult to see any mine signature. Even after pairwise subtraction,
the mine signal can hardly be observed in Fig. 7(d). But the generalized T 2-test can pick up this di�erence
and declare a mine.

Fig. 8(a) shows the receiver operating characteristics of detecting a mine buried 10 cm underground.
Fig. 8(b) shows two ROC's for mines buried at di�erent depth under the same noise power. Because of
the fast attenuation in soil, the deeper buried mine has a signi�cantly smaller SINR thereby leading to the
degradation in performance.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we discuss a statistical approach to detect mines using a GPR array. Exploiting the geometric
symmetry of GPR array setting, we have looked into tests for statistical homogeneity of GPR returns as
a tool for performing detection. Basically, by treating the received signal as a multivariate Gaussian
distribution we test its statistical homogeneity using a generalized, sequential Hotelling's T 2-test.

Future work will take into consideration of rough ground-air interface and time-delay estimation to
actually localize detected mines. An assumption of this work is that the soil conditions are known. Sen-
sitivity analysis involving mismatch in soil parameters will be valuable to apply this method to realistic
scenario. Moreover, the additive white Gaussian noise mode will be lifted as we explore issues associated
with the modeling of clutter, the incorporation of these models into our processing, and the development
of test which are robust (or invariant) to uncertainty in these models.

6. APPENDIX

From Mathai's6 work, for X � N(�;�), the �rst two moments of quadratic XTAX can be found by

E[�] = tr(A�)+ �TA�

V ar[�] = 2tr(A�)2 + 4�TA�A�: (17)

For the generalized T 2-test, we have

�T =

"
�T
11
; � � � ; �T

44
; �T

12
; � � � ; �T

34
; �T

13
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#
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Next, we note that 4�TA�A� = 0 under the condition of Eq. 19,

4�TA�A� = 4
4X
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h
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i
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...
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75 (20)

where h
�(i)

T � � � �(i)
T
i
Ai = 0 (21)

because of the semide�niteness of Ai. Similarly, �TA� = 0. The mean of � is then given by 1
2�2 [tr(A�)].

For A = block diag fA1�1;A2�2;A3�3;A4�4g we have

E[�] =
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4X
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Here I is of size P � P and Ai is of size NiP �NiP . We then have

tr(Ai)
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Abstract

A wavelet domain, non-linear inverse scattering approach is presented for imaging sub-surface defects in a material
sample based on observations of scattered thermal waves. We use newly developed wavelet-based regularization
methods to resolve better the edge structures of defects relative to reconstructions obtained with smoothness-type
regularizers. A non-linear approximation to the exact forward scattering model is introduced to simplify the inversion
with little loss in accuracy. We demonstrate this approach on cross-section imaging problems using synthetically
generated scattering data from transmission and backprojection geometries.

Keywords: Thermal wave slice tomography, inverse scattering, wavelet transform, edge preserving
regularization

1. Introduction

Thermal wave slice tomography (TWST) has evolved in recent years as a useful tool for non-invasively
imaging and detecting defects in the bulk properties of a material sample [1, 2]. This non-destructive
evaluation (NDE) technique makes use of a modulated laser source illuminating an external surface of the
material under test to induce internal thermal waves. Interaction of the thermal wave field with material
inhomogeneities gives rise to scattered fields which propagate and are ultimately measured at the surface
of the material. The problem of interest in this paper is, given knowledge of the applied thermal wave field
and the observed scattered fields, to produce a reconstruction of the internal structure which reproduces
as faithfully as possible features of interest such as defects.

The techniques we use to solve this inverse problem are based on the results of Mandelis who has
shown that the thermal wavefield obeys a scalar Helmholtz equation with a complex valued, space varying
propagation constant [3]. The spatial structure of this constant is related to the thermal diffusivity of
the material. Because defects are reflected in changes in the thermal diffusivity, a reconstruction of the
propagation constant, or a normalized form known as the object function [1], yields quantitative information
about the material's bulk structure.

In this work, we extend the use of linearized wavefield inversion methods initially developed in [1, 2]
for the TWST problem in a number of ways. First, a full, non-linear inverse scattering approach is used
to generate the reconstruction. The resulting inversion method is iterative in nature and may allow for
the more accurate reconstruction of defects whose structure falls outside of the bounds where the Born
approximation is valid. We also build on our previous efforts in wavelet-based non-linear inverse scatter-
ing techniques [4, 5]. First, the TWST inverse problem is highly ill-posed in the sense discussed in [6].
That is, small perturbations in the data, as would come from noise, can result in reconstructions with
high amplitude, oscillatory structure. We introduce and demonstrate the utility of a class of wavelet regu-
larization schemes which are appropriate for the reconstruction of objects (defects) with sharply defined
boundaries. Tikhonov type regularizers typically are designed to produce smooth, low-pass reconstruc-



tions which blur important features such as edges in the image [6]. Using certain mathematical results
stating that wavelets are bases for a wide range of function spaces including spaces containing “edgy”
objects [7], we develop a new scale-space regularization method which produces significantly sharper
reconstructions.

Additionally, we employ wavelet methods to lower the computational burden of the inversion procedure.
The wavelet transform is known to make sparse the matrix representations of many integral operators
including those arising in the TWST scattering problem [8]. Thus, a transform domain formulation can
build on this sparsity to reduce the computational burden of generating a reconstruction. We also develop
a wavelet-based, reduced complexity approximation to the forward TWST problem. At each stage of the
iterative solution method we must compute explicitly the inverse of a large, dense matrix, a computationally
intensive task. This matrix is related to the solution of the thermal-wave forward scattering problem for an
object function equal to the reconstruction obtained at the previous iteration plus a small correction. By
linearizing the expression for this matrix about this correction we obtain a recursive formula in which the
inverse matrix at the current iteration is equal to the one from the last iteration plus an easily-constructed
increment due to the change in the material properties.

The remainder of this paper is organized as follows. In Section 2. the mathematical model for the TWST
problem is defined. Section 3. is devoted to the application of the wavelet transform to the TWST problem.
The non-linear inverse scattering algorithm is developed in Section 4. with examples of its application to
synthetic problems provided in Section 5.. In Section 6., conclusions are discussed.

2. Physical Model for TWST

As illustrated in Fig. 1, we consider TWST problems in which a modulated laser illuminates a point at
the top of the material sample inducing thermal waves in the bulk. Upon scattering from inhomogeneities,
whose spatial structure is defined by the real-valued object function the field is measured along an array
of points either at the top (backpropagation geometry) or the bottom (transmission mode). The inversion
routines are based on K such scattering experiments. The data for the ith experiment form the vector of
in-phase and quadrature components of the scattered thermal-wave field measurements obtained along
one of the arrays due to illumination by the laser at a given point on the top surface.

As discussed in [1], the object function is related to the measured data non-linearly through a pair of
coupled integral equations. Our algorithms are based on discrete representations of these equations ob-
tained using the method of moments [9] with a pulse basis and Dirac testing functions. Upon discretization
the model takes the form

yi = LiD(Ti)g + ni (1)
Ti = �Ti +GD(g)Ti (2)

where yi is the vector of observations along the array for the ith experiment, g and Ti are vectors con-
taining the lexicographically ordered pulse basis expansion coefficients for the object function and the
thermal fields internal to the medium respectively, �Ti is the discrete representation of the thermal field in
the absence of defects, D(x) is a diagonal matrix whose entries are the elements of the vector x, and Li
and G are the matrices obtained by discretizing the integral kernels in the underlying continuous model.
ni are taken to be mutually uncorrelated, zero mean, white Gaussian noise vectors. By solving for Ti in
(2), and substituting the result into (1), the data are related to the object function via the non-linear model

yi = hi(g) + ni with hi(g) = LiD
�
(I�GD(g))�1 �Ti

�
g: (3)
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Figure 1: Experimental setup for thermal wave slice tomography.

Given the model in (3), the TWST problem is to determine g based on the data, yi from K scattering
experiments.

3. Wavelet Domain Model

Here we employ discrete, orthonormal wavelet transforms to take the inverse problem from physical to
scale space. As described more fully in [10], given a signal or image a, we obtain its wavelet transform,
denoted � via multiplication by a unitary wavelet transform matrix,Wa. That is, � =Waa and a =WT

a�.
The transform of a is composed of wavelet coefficients over the scales and dyadic shifts of interest in
the particular problem under investigation. We subscript the matrix Wa to make explicit that this is the
transform for a. We will use different wavelet transforms for the different variables.

We use the discrete wavelet transform to take (1) and (2) from physical space to scale space. Defining
Wg as the 2D transform for g and Wi for i = 1; 2; : : : ; K as the 1D transforms for yi yields:

Wiyi =
�
WiLiW

T
g

� �
WgD (Ti)W

T
g

�
(Wgg) +Wini

WiTi =Wi
�Ti +

�
WiGW

T
g

� �
WgD(g)W

T
i

�
(WiTi)

which, upon making the obvious definitions become

�i = �i� (�i) + �i (4)
�i = ��i + �� () �i (5)

where, �() is a function of  since �() = WgD(WT
g )W

T
i . From (4) and (5), the complete model

relating the transform of the object to those of the data is

�i = �i() + � i with �i() = �i�
h
(I� �� ())�1 ��i

i
: (6)

Finally, we aggregate the �i into a single data vector and define the stacked system � = �() + � with
� = [�T1 : : :�TK ] and �() and � defined accordingly. Thus, the TWST inverse problem is the recovery of
, the DWT of g, from measurements �, knowledge of �, and the statistics of � .



4. Inversion Algorithm

In this paper, the reconstruction of , denoted by ̂, given the data, �, is defined to be the solution to
the following non-linear least squares type of optimization problem

̂ = argmin

C() (7)

C() =
1

2
k� ��()k2

R�1
+ �2�T ()�() (8)

where kxkA � xTAx, R is a diagonal weighting matrix whose entries reflect the noise levels in the data,
�T ()�() is used to regularize the problem, and �2 is the regularization parameter. We employ a form
of the Levenberg-Marquardt algorithm (LMA) for finding ̂. This iterative technique defines a sequence
of reconstructions, ̂n, whose costs as measured by (8) are steadily decreasing. Starting from an initial
guess, ̂0, the form of the LMA used here is

̂n+1 = ̂n + sn (9)
sn = argmin

�2
C(̂n + s)

s =
�
J

T (̂n)R
�1
J

T (̂n) + �2
L
T (̂n)L(̂n)

��1
�

J
T (̂n)R

�1 [� ��(̂n)]� L
T (̂n)L(̂n): (10)

In (10), J (̂n) (resp. L(̂n)) is the Jacobian matrix of � (resp. �) evaluated at the vector ̂n and � is a
regularization parameter whose value is determined adaptively at each iteration of the algorithm.

4.1. Edge Preserving Wavelet Regularization

In our previous work [4, 5], we have concentrated on the use of wavelet domain regularizers with
�() = D where the matrix D was diagonal with

[D]ii � di = 2�(�xjx;i+�yjy;i): (11)

In (11) jx;i and jy;i are the horizontal and vertical scale indices for the ith wavelet coefficient and �x and �y
are constants. For this regularization approach, �T (̂n)�(̂n) is a weighted two-norm of ̂n and functions
in much the same way as traditional smoothness type regularizers [4,5]. One consequence of this choice
is that edges tend to be blurred in the reconstruction.

Recently, there has been considerable work performed in the area of “edge-preserving” regulariz-
ers [11]. The idea is to construct a physical-space regularization scheme which results in reconstructions
whose discontinuities are better preserved as compared to a Tikhonov approach [12]. One way of im-
plementing this regularization technique is to choose an expression for �T� which is a norm in a function
space containing “edgy” objects. Adding this as the second term in (8) produces an object which lies in
such a space and therefore retains the desired edge-like structure.

It is the case that, in addition to spanning the space of square integrable functions, orthonormal
wavelets are also bases for these more exotic function spaces [7]. Here we make use of the fact that the
norm in such a space may be computed in terms of the wavelet coefficients via

P
i dijij

p with 1 � p � 2
and di as in (12). With this motivation, we make the following choice for �()

�T () =
h
d
1=2
1 j1j

p=2 d
1=2
2 j2j

p=2 : : : d
1=2
N jN j

p=2
i
: (12)



4.2. Approximate Physical Model

A large computational burden associated with the LMA is the need to invert the matrix I� ��(̂n) for
numerous ̂n. This operation amounts to explicitly inverting the generally large and dense system matrix
for the forward scattering problem. To bypass this operation we note that at the beginning of stage n + 1
of the LMA, we require

�n+1 �
�
I� ��(̂n+1)

�
�1

= [I� ��(̂n + sn)]
�1 :

Making use of the fact that � is a linear operator [5],

�n+1 = [I� ��(̂n + sn)]
�1 = [I� ��(̂n)� ��(sn)]

�1 = �n [I� ��(sn)�n]
�1 (13)

� �n +�n��(sn)�n (14)

where (14) follows from (13) under the assumption that ��(sn)�n is “small” relative to I. We note that,
unlike the Born approximation, this is not a linearization of the physics about the current estimate of the
object function. Additionally, our approximation provides a recursive method for updating �n from one
iteration of the LMA to the next.

5. Example of Thermal-Wave Tomographic Imaging

To illustrate the inversion algorithm developed in the previous sections, we consider the imaging of
a square hole centered near the top of a 3 mm by 3 mm block of aluminum (thermal diffusivity of 0.82
cm2s�1). The object function for this case is shown in Fig. 2(a) is of amplitude (�Al=�air)� 1 � 3 [3] and
the SNR is 50dB. The reconstruction obtained under the Born approximation is displayed in Fig. 2(b). For
this case, the Born approximation yields coarse-scale localization of the defect. That is, the reconstruction
is non-zero over a region of space which includes the area of the true defect. However, the amplitude of
the reconstruction is at best a third of the true amplitude and the shape of the reconstructed defect is in
fact larger than that of the true structure.

The final results of the LMA using p = 2 (which corresponds to a traditional Tikhonov smoothness reg-
ularization scheme) and p = 1:2 (an edge preserving case) are shown in Figs. 2, (c), and (d) respectively.
In Fig. 2(e), the value of k̂n � k2 is plotted for both regularization schemes as a function of iteration. It
is evident that both regularization schemes produce reconstructions which are better localized with more
accurate amplitude information than the Born inversion. The p = 1:2 case is a slightly better than the p = 2
reconstruction both from a quantitative and qualitative perspective. Quantitatively, the error in the p = 1:2
estimate is somewhat lower than that of the p = 2 case after 10 iterations. This improvement is due to
the fact that the p = 2 case overestimates the amplitudes in a couple of pixels, while the amplitude of the
p = 1:2 version is quite accurate. Visually, as we expect, the edges on the p = 1:2 reconstruction are
sharper and the overall reconstruction looks much more like a box than a smoothed blob as in Fig. 2(c).

6. Conclusions

We have presented a new approach to image formation from scattered thermal waves based on the
use of non-linear inverse scattering methods and wavelet-domain techniques. We build our inversion rou-
tine on the full wavefield physics developed by Mandelis in [3] resulting in a highly non-linear relationship
between the data on which a reconstruction is to be based and the desired image of the object func-
tion. The reconstruction problem was formulated as a solution to a non-linear least-squares optimization
problem in the wavelet transform domain. We chose to work in a multiscale setting for a number of rea-
sons. First, the matrices comprising the physical model are sparse in this domain thereby lowering the



computational cost of generating a reconstruction. Second, we were able to make use of a new class of
edge-preserving regularization methods which are easily specified and implemented in the wavelet trans-
form domain. Finally, the computational burden was further reduced by employing the methods of [5] for
rapidly solving non-linear inverse scattering problems in a multiscale domain.
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Figure 2: True object function, inversion results and error vs. iteration for single defect located near the
top of the material. The laser source position is assumed to be along the line x = 0.
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ABSTRACT

The problem of mine detection and localization from array-based electromagnetic induction data is ad-
dressed. An e�cient forward scattering model based on the Born approximation is employed. Using insight
obtained from this model, a clutter model in the form of a state space system is developed which describes
the correlation of the noise both across the sensing array and from one position of the array to the next as
the measurement device proceeds down track. A multiple-model detection scheme based on the whitening
properties of the Kalman �lter is employed to perform the actual mine detection. This approach allows
for the detection and localization of buried objects well before the array physically moves over mines.
Examples are provided for mines buried directly in front and o� to one side of the array.

Keywords: Mine detection, EMI arrays, Kalman �lter

1. INTRODUCTION

The problem of detecting and localizing buried landmines from indirect observations of scattered electro-
magnetic radiation has received considerable attention in recent years. Of interest in this paper is the
development of statistical signal processing methods for solving such problems based on data collected us-
ing an array of very low frequency electromagnetic induction sensors. From a signal processing perspective,
the physics of this problem represents an unusual challenge. The majority of array processing algorithms
are based on the assumption that the observed waves are propagating in free space and the unknown
sources are in the far �eld. The resulting planewave model for the radiation incident on the sensors serves
as the basis for all beamforming and high-resolution localization methods. For the applications of interest
here, the objects are in the near�eld of the array and while the sensors are in freespace, the targets are
located in a lossy halfspace. The typical array approaches are therefore not applicable.

In addition to the basic physics describing these problems, the data are typically obtained by sweeping
the array in a �xed direction over a region of interest, as illustrated in Figure 1. The result is an \image"
acquired over time whose number of rows is equal to the number of sensors in the array and whose number
of columns is determined by the number of stops the array makes as it sweeps over the area. This implied
temporal structure is the second unique image processing element present in this problem. In particular,
it is imperative to detect the mine before the sensor array actually passes over the its location. This
requirement implies that any algorithm must process the image data in a real-time, column-by-column
manner, continuously updating its decision as to mine presence and its estimate concerning the object's
location as new data are obtained by the scanning procedure.

Other author information: ELM: elmiller@ece.neu.edu WCK: wckarl@bu.edu. SJN nortonsj@ornl.gov. This work was
supported by the Army Research O�ce Demining MURI under Grant DAAG55-97-1-0013 and the Air Force O�ce of Scienti�c
Research under Grant F49620-96-1-0028
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The �nal challenging characteristic of this problem is the need to process data contaminated by \clut-
ter." Physically, such clutter can arise from a variety of inhomogeneities present in the soil including a
random distribution of rocks and other discrete structures as well as the continuous, natural changes in
the electromagnetic characteristics of the earth. From a signal processing perspective, we regard clutter
as a correlated noise source present in the data. The correlation is evident �rst along the array from one
sensor to the next and second along the collection track from one array position to the next. To adequately
detect mines whose signals are obscured by such noise requires both careful modeling of the clutter and
the development of processing methods explicitly based on these models.

Air-Earth
Interface

j = j0

yz

x

Mine

Moving Down Track
ArraySensor

j = 1 j = 2

Figure 1. Data Acquisition Method for Subsurface Detection Problem

In this paper, we consider statistical signal processing methods for solving the mine detection problem
outlined in the previous paragraphs. Our focus is on shallowly buried metallic anti-personal mines arising
in the case of humanitarian demining. In Section 2, we describe a physical model relating the characteristics
of the buried mine to the observations obtained over an array. We next use this physical model as the basis
for a simple, analytical, stochastic model describing the distribution of clutter. In particular, the clutter
model takes the form of a so-called \state-space" system. This system accounts both for the inter-element
and inter-array correlation of the noise. In Section 4, we take advantage of the fact that the Kalman
�lter can be used to decorrelate (or whiten) such noise processes to obtain a method for detecting mines.
At each stop of the array, we perform a series of hypothesis tests. Under the null hypothesis for each
test, no mine is present. Under the alternative, there is a mine located at one of a number of positions
over a coarse scale grid. The whitening properties signi�cantly simplify the formulation of the tests while
retaining the optimality property of the procedure. We stop the array and declare the presence of a mine
when the sequence of tests for a mine at a hypothesized location are \su�ciently convincing." We show
in the examples in Section 5 that this process is capable of detecting mines reliably (a) up to 20cm before
the array actually passes over the mine and (b) under low clutter conditions, when the mine is located
up to 30 cm from one side or another of the array. Finally, conclusions and future work are described in
Section 6.

2. FORWARD MODEL

To �x notation, we assume that the array is situated in the x � y plane and proceeds from x = 0 to
x = xmax stopping at Ns equally spaced locations to obtain data. The array is composed of a single
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transmitter at y = 0 and Nr receivers equally spaced on either side of the array. All transducers are taken
to be small current loops of radii rp located zp above the air-earth interface carrying I A of current with
an e�i!t time dependence. We de�ne dm;n to be the �eld measured by the mth element of the array at
the nth stop between x = 0 and x = xmax. In this paper, we assume that the mine represents a small
perturbation of constant conductivity � S/m in the electromagnetic properties of the earth so that the �rst
Born approximation1 can be used to obtain a tractable physical model. For the case of a single mine, it
can be shown that the relationship between the physical properties of the mine and ymn is given by1

dnm = ��(!�Irp)
2

4

Z
V
A(r� r0 + rn)A(r� r0 + rm)dr (1)

where the quantityA represents the Green's function for the problem of a loop over a half-space, r = [x y z]T

is a point in three space represented in either Cartesian or polar coordinates, r0 is the position of the center
of the mine, rn (rm) is the position of the transmitter (receiver), � is the magnetic permeability and the
integral is taken over the volume, V , of the prototypical mine centered at the origin. In [1], it is shown
that the Green's function A can be well approximated as

A(r) =
2

�k(r)
p
rrp

��
1� 1

2
k(r)2

�
K (k(r)� E (k(r))

�
(2)

k(r) =
4rrp

(z + zp)
2 + (r + rp)

2 (3)

where r = jjrjj is the distance to the physical point, K(x) is the complete elliptic integral of the �rst kind,
E(x) is the complete elliptic integral of the second kind and the parameter k(r) is in the range 0 to 1.

For the problem of interest in this paper, we have found by direct evaluation that k(r) 2 [0; 0:6]. Under
this restriction, we have developed the following highly accurate, yet simple approximation to (2):

A(r) =
2

�k(r)
p
rrp

�
�4k

4(r) + �6k
6(r)

�
(4)

with �4 = 0:0882, �6 = 0:1321 and k(r) as in (3). The particular values of the � parameters are obtained
by a least squares �t and the use of the fourth and sixth powers of k is motivated by the Taylor series
expansion for the right hand side of (2). A semilogarithmic comparison of the right hand sides of (2)
and (4) is shown in Figure 2. The solid line represents the exact combination of elliptic integrals while
the dashed line is the polynomial approximation. It is clear that the approximation is, for all intents and
purposes, the same as the exact expression. From a computational perspective however, (4) o�ers de�nite
advantages over (2) in terms of speed of evaluation and ease of manipulation.

Given this model, the goals of the processing in this paper are the detection of the presence of a mine
from noisy observations of dij and determination of r0 once a detection has been declared.

3. CLUTTER MODEL

Typically, white Gaussian noise is used as the clutter model for mine detection problems due to its tractabil-
ity. Unfortunately, this simpli�ed assumption leads to a degradation in detection performance. In this
work we instead explicitly model the clutter or background process, leading to more robust performance.
In particular, we develop a tractable yet realistic stochastic model describing the distribution of the data
obtained over our receiver in the absence of a target. This statistical model then forms the basis for a
decision-theoretic procedure for the localization of buried mines discussed in the remainder of this paper.
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Figure 2. Comparison of exact and polynomial approximation to forward scattering model

The motivation for the mathematical form of our clutter model is actually provided by the nature of
the signal observed over the array due only to a mine buried some distance away. The wave�eld over the
aperture of the array is rather smooth when a mine does in fact exist near the array. In Fig. 3, noiseless
simulated data is shown for the case of a :05� :05� :05 m3 mine located at r0 = fx0; y0; z0g = f2; :1;�:05g
m where an 8 element array of length :6m is positioned at x 2 f0; :5; 1; 1:5g m. These plots indicate the
more general feature that the data over the array can be well modeled by a low order polynomial in yi,
the y position of the ith sensor in the array. In other words we can write

dm;n =
JX

j=0

�j;ny
j
m: (5)

By de�ning the vectors dT (n) = [d1;n d2;n : : : dNr;n] and �
T (n) = [�0;n �1;n : : :�J;n], (5) is rewritten as

d(n) = C�(n): (6)

where the (m; j)th element of C is yjm.

The clutter model we employ in this work is based on the assumption that the random signal over the
array in the absence of a mine is the sum of two components. The �rst portion is an additive zero mean,
white Gaussian component of variance 2 representing sensor noise. The second component is intended to
capture the e�ects due to the statistical distribution of the environmental factors not of primary interest in
the detection problem. Here we assume that this signal will display the same basic smoothness as that seen
in Fig. 3. That is it will be described by a low order polynomial. In the case of a mine, the coe�cients of
the polynomial are deterministically related to the position of the object relative to the array. For clutter
however, these coe�cients are taken to be random quantities. That is, �(n) is a random vector. Such a
model arises if we assume that the clutter represents the average e�ect on the sensor array of a random
distribution of small scatterers. If each such scatterer results in a smooth signal over the array then so
too will their sum. We note here that this choice of model certainly satis�es the criteria set forth in the
Introduction that clutter essentially represents noise which is correlated from one array element to the
next.

The second criteria is that the clutter should be correlated from one position of the array to the next.
For example, a clutter vector at position n should be correlated to that at position n + 1. This implies
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Figure 3. Data vectors, dj , obtained as array proceeds toward buried mine. Note the scale change in the
plots.

the need to specify a dynamic model describing the evolution of �(n). Toward this end, we employ the
following model of the spatial evolution of �(n):

�(n+ 1) = �(n) +B(n)w(n) (7)

where B = � diag
h
�J=2; �(J�1)=2; : : : 1

i
, � > 0, � 2 (0; 1), and w(n) is a zero mean, unit variance,

uncorrelated vector of Gaussian random variables. Finally, �(0) is taken to be a zero mean Gaussian
random vector with covariance matrix given by BTB. Eq. (7) represents a random walk model for the
vector �(n). The matrix B is such that variance of the additive noise is greatest for the higher order
coe�cients in (5) and decreases for the lower order �'s representing lower frequency components. The
constant � controls the overall power in the process and � determines the relative variances among the
coe�cients.

To summarize, in the absence of a mine, the overall signal model we use for the remainder of the work
is described by the following state-space model with �(n) representing the state of the system:

�(n+ 1) = �(n) +Bw(n) (8)

d(n) = C�(n) + v(n) (9)

where v(n) � N(0; 2I) is the additive white, sensor noise.

Sample paths of these clutter models are shown in Figs. 5(a) and 7(a) for an array consisting of 20
receiver elements for parameter choices described in greater depth in Section 5. In both cases, the variance
of the w(n) is greater than that of v(n) so that the background \clutter to noise" ratio is assumed to
be relatively large. These images indicate that our model of clutter possesses the desired features. As
functions of y, they are quite smooth. As x (and hence n) increases, they display gradual changes except
at a few points where the random walk model results in a sharp alteration of the \shape" of the pro�le.
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In closing this section, we wish to emphasize that the clutter model described above is neither the only
nor even necessarily the best such model for the processing of real data. Rather the precise model based
on the underlying polynomial regression is intended more as a vehicle for demonstrating the e�cacy of the
detection algorithm described and tested in subsequent sections. Indeed, our approach towards detection
is based only on the reasonable and generally unrestrictive assumption that one can describe the clutter
using some state space model to capture the temporal correlation of the process. Any valid state space
model will work and the problem of �tting �eld data to such a modeling structure represents an interesting
and very worthwhile piece of future research.

4. DETECTION ALGORITHM

In this section, we develop our approach to the detection of buried mines from progressively obtained array
EMI data. We begin by solving a simpler problem in which we assume that the mine can exist only at
a known point in space and want only to determine whether the mine is present. The solution to this
problem then allows for the solution to the problem where we lift the assumption of known location.

4.1. Case I: Known mine location

Assuming that the mine may only be located at position r0, the �rst problem of interest is to determine
whether the data we observe as the array proceeds down the track is just clutter or is comprised of
clutter plus mine. From a statistical signal processing perspective, this amounts to a binary hypothesis
test. Under the null hypothesis, H0, the data d(n) is comprised only of clutter and is therefore modeled
using (8) and (9). Under the alternate hypothesis, the data are described by combining (8) and a modi�ed
observation equation:

d(n) = s0(n) +C�(n) + v(n) (10)

where s0(n) is the signal over the array at time n arising from the mine at position r0 which can be
computed using the model of Section 2.

A key di�culty in solving this binary decision problem is that the clutter is correlated. To overcome
this problem, we employ a Kalman �lter to \whiten" the data. In most cases, the Kalman �lter is used
to track the state of a stochastically evolving system. It is well known however that a bi-product of the
minimum mean square error property of the �lter is that it may be interpreted as a means of de-correlating
a non-white noise sequence. Speci�cally, the Kalman �lter takes as input the sequence d(n) and produces
as output a new sequence q(n) termed the innovations. When there is no mine present, q(n) is a zero
mean, unit variance, white Gaussian noise sequence. In the event that a mine is present, q(n) is again unit
variance, white, and Gaussian, but now there is an added mean vector, �(n) (also known as a signature),
which can be computed directly from s(n) and the matrices in the state space model for the noise.2

Mathematically we have:

Under H0 q(n) � N(0; I) (11)

Under H1 q(n) � N(�(n); I) (12)

That is, the detection problem now is one of determining whether or not there exists a known mean in a
sequence of independent, unit covariance Gaussian random vectors.

In the case where the two hypotheses are to be distinguished based on a batch of data obtained between
n = 0 and n = N , the problem stated in the previous paragraph has a well known solution given in the
form of a likelihood ratio test. First, the following likelihood statistic is computed

l(N) =
NX
j=0

�
T (j)q(j)� 0:5�T (j)�(j): (13)
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Next, we compare l(N) with a threshold �(N). If l(N) > �(N) we say that the mine is present otherwise,
we continue to collect data. Typically, �(N) is chosen such that the probability of false alarm Pfa (that
is the probability of rejecting H0 when H0 is in fact true) is less than or equal to a prede�ned threshold.3

Under our Gaussian assumptions on the innovations, this threshold is3

�(N) = d(N) erfc�1
�

(Pfa)� d2(N)=2 (14)

with

erfc�(x) =
1p
2�

Z
1

x
e�x

2=2dx and d2(N) =
NX
j=0

�
T (j)�(j)

For the demining application, we want the ability to declare the presence of a mine before the array actually
passes the object. That is, we want to solve a sequential detection problem wherein at each n we decide
whether to declare a mine, declare no mine, or move the array and collect more data. While well known
methods exists for optimally solving this problem when � is independent of n, the solution to the problem
for a time varying mean is less well studied. The algorithm in this paper represents a �rst attempt to solve
this problem for the demining application.

Since we know where the mine is located, we can, in principle, take data up to but not including the
time the sensor passes the mine. Thus, at each n we compute l(n) as in (13) and for a �xed Pfa, perform
the comparison to �(n). We do not stop taking data until that point, n0, when the x coordinate of the
array is such that at step n0 + 1 the array would pass the mine. At that time we look at the sequence of
decisions made for all previous n. If H1 has been accepted more than Q times (in this paper Q = 3, that
hypothesis is declared to be true.

We observe that we could have chosen the simpler approach of collecting data until time n0 and then
solving the �xed size binary hypothesis test. The methods described in the previous paragraph though are
more easily generalized and provide greater insight into the more complex problem where we cannot wait
until n0 but must make the mine/no mine decision as rapidly as possible.

4.2. Case II: Unknown mine location

In the more realistic event that we know neither whether a mine is in a region of interest nor where it
may be, we employ a \multiple model"2 approach to the detection problem. As illustrated in Fig. 4, we
hypothesize the existence of mines over a coarse grid extending in front of the moving array. Associated
with the ith such mine location is a separate signature sequence �i(n). At each n, we perform a separate
binary likelihood ratio test for each location in the grid. When the array is set to pass those possible mine
locations with a given x coordinate, we look to see if any of the hypotheses in that collection have been
chosen more than M times. If none satis�es this criteria, we continue moving the array. If one location
passes, we declare a mine. If more than one has been passed more than M times, we take as the actual
mine detection that hypotheses which has exceeded its threshold by the widest margin at any time during
the scan. Essentially, we take the most likely target if there are multiple possibilities.

The implementation of this procedure can be made quite e�cient. Rather than keeping track of a large
number of mine locations extending over the entire track of the array, we perform this procedure using a
sliding window of hypothesized target positions. Let �x be the distance the array moves from n to n+ 1.
We choose as the coarse grid of possible mine locations the points at the center of the squares on a grid of
size M�x. That is, it takes the array M steps to proceed through one column of the coarse scale grid. As
shown in Fig. 4, assuming the array has been moving for a su�ciently long time so that the Kalman �lter is
operating in the steady state, there is a certain shift invariance to the detection problem. In particular, the
mathematical forms of the hypotheses generated when the array is in column 1 and the mines in column
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Column 1 Column 2 Column 3

Array

Hypothesized mine location

Figure 4. Relationship of moving array to coarse grid of possible mine locations. Rectangles represent
positions of the array as it moves down the track. Circles represent hypothesized mine locations. There
are M = 4 array positions per coarse grid cell.

2 (represented by the open boxes and circles) are identical to those obtained when the array is in column
2 and the mines are postulated to lie in column 3 (the darkened rectangles and circles). Clearly this holds
for any array/mine combinations with identical relative spacings in the along-track direction.

We use this observation in the following manner. We begin by postulating mines over a P � P coarse
grid in front of the array where P is chosen such that the response of the array when it is PM�x meters
away is negligible. This grid (i.e. these hypotheses) are retained for the �rst M steps of the array. At the
M +1st step, when the array is entering the second column, the grid looks very similar as in step 1 except
the columns need to be renumbered. The �rst column, of the grid is removed since the array is leaving it.
Each of the remaining columns are shifted to the left by one and a new column of hypotheses is added to
the rightmost edge of the grid so that the overall array is still P � P only now looking further down track
than was the case before. This procedure is repeated every M moves of the array.

This sliding window testing process is advantageous because it requires the storage of a �xed and
relatively small number of signature vectors. Rather than having to maintain a �(n) sequence for every
conceivable combination of array locations and mine positions, we need only compute and store P 2M such
sequences. For the EMI problems of interest here, excellent results are obtained in Section 5 for P = 10
and M = 4. The computation, storage, and manipulation of only 400 �(n) sequences is relatively easy
making this processing methodology quite amenable to real time implementation.

5. EXAMPLES

In this section, the performance of the detection approach is demonstrated and analyzed under a variety of
noise conditions and mine placements. In all cases, the array is composed of a single transmitter located at
x = 0 and 20 receivers with half equally spaced between y = 5 cm and y = 50 cm and the other half spaced
between y = �5 cm and y = �50 cm. Thus, the overall length of the array is 1 meter. The transmitters
and receivers are modeled as small circular loops of radius 2 cm located 10 cm above the air-earth interface
and operating at 3 kHz. The array starts at x = 0 meters and proceeds in 75 equally spaced steps to
x = 3:7 meters. The rolling grid of coarse scale hypothesized mine locations is composed of a 10 by 10
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array of square cells stretching from about -90 cm to 90 cm in the y direction and extending about 2 meters
in front of the array in the x direction. Finally, the mine-like target used in these simulations is modeled
as a 5 � 5 � 5 cm3 parallelepiped of contrast 1 S/m above the surrounding soil. Further, it is assumed
that the burial depth of the mine is known a priori. Thus, the signature vectors are generated using this
information. In practice, this assumption is not overly restrictive as range of burial depths is generally
quite limited for a given demining application. Our scenario is meant to model the case of a shallowly
buried anti-personnel mine, of interest for humanitarian demining.

For the low-frequency, Born-based inductive model discussed in Sec. 2, the electrical conductivity of
the soil is approximated as zero. Moreover, the frequency and conductivity contrast of the mine enter
the model only as multiplicative constants scaling the amplitude of the data. At higher frequencies and
when an exact scattering model is employed, these various parameters will indeed play a larger role on the
performance of the algorithm. For the work in this paper, however the key determination of performance
is the relative strengths of the noise, clutter and target signatures. The measure used here is the signal to
clutter plus noise ratio (SCNR) taken to be 20 times the base 10 logarithm of the ratio of the signal power
to the noise plus clutter power taken over the entire data set obtained from x = 0 to x = 3:7m.

As a �rst example, we consider the detection of a mine located at (x; y; z) = (2:2;�0:22;�0:05) m
under a variety of SCNR. In Fig. 5(a) we display a sample data set. The mine, located in the image at
(x; y) = (2:2;�0:22) m, is barely discernible at this SCNR. In Fig. 5(b) the detection performance as a
function of SCNR is shown. Each point represents the fraction of times the mine was detected in 100 runs
of the algorithm using independent realizations of the clutter and noise processes for each run. The SCNR
was changed by setting the variance of v(n) in (9) to 0.01 and increasing the variance of w(n) in (7) from
0.01 to 0.25 in steps of 0.02. It is clear, that strong performance is seen down to a SCNR of about -20
dB with a gradual decline in detection as the SCNR further degrades. At an SCNR of -15 dB the mine is
detected essentially 100% of the time. Finally, since the mine was not located at one of the coarse scale
grid points, a detection was declared if the estimated mine location was one of the four neighbors nearest
the true mine location on the hypothesis grid.

In Fig. 6, we display the average value of the likelihood statistic less the threshold (i.e. l� � from (13)
and (14)) as a function of the position of the sensing array as the array proceeds toward the mine. The
average is taken over all noise realizations and all experiments where the mine was in fact detected according
to the criterion described previously. The SCNR for this problem was about 2.6 dB and the x coordinate
of the mine is again 2.2 m. The plot does not reach 2.2 m because of the coarse scale gridding of the
mine hypotheses, which for this problem tests for mines located at x = 2:1 m and x = 2:3 m. Fig. 6
clearly shows that the relevant decision statistic rises to a signi�cant level above the detection threshold
of zero well before the array actually passes over the buried object. In particular, these statistics become
substantial when the array is located at x = 1:95 m which is over 25 cm from the location of the buried
mine.

As a second example, we consider the problem of detecting a mine at (x; y; z) = (2:2;�0:7;�0:05).
This placement of the mine is interesting because, unlike the �rst case, the mine is located outside of the
direct �eld of view of the EMI array. In particular, the array extends to y = �50 cm; however the mine
is located at y = �70 cm. A sample data set at an SCNR of about 1.8 dB is shown in Fig. 7(a) and the
detection results are given in Fig. 7(b). As in the �rst problem, the signature of the mine, which should
be evident at around x = 2:2 m and y 2 (�:3;�:5) m, is obscured by the clutter; however the detection
rate is quite high even to an SCNR of about -20dB. In Fig. 8, the plot of average likelihood statistics less
threshold are shown for this problem at at SCNR of about 1. These plots show that even when the mine is
located signi�cantly o� the axis of the array, we still retain a strong degree of forward looking, predictive
capability. In particular, non-negligible test statistics are reliably observed for this scenario when the array
is located at x = 1:9 m which is about 30 cm from the mine.
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(a) Sample data set at about -15 dB SCNR. The
mine is located atx = 2:2, and y = �0:22
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(b) Detection performance for �rst example as a
function of SCNR.

Figure 5. Sample data set and detection results for �rst example
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Figure 6. Average value of likelihood statistic in excess of threshold as array approaches mine location
for �rst problem. Detection requires this value to exceed zero. The dashed line indicates the x coordinate
of the mine.

10



0 0.5 1 1.5 2 2.5 3 3.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x (m)

y 
(m

)

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

(a) Sample data set at -18 dB SCNR. The mine is
located at x = 2:2, and y = �0:70
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(b) Detection performance for second example as
a function of SCNR.

Figure 7. Sample data set and detection results for second example
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Figure 8. Average value of likelihood statistic in excess of threshold as array approaches mine location for
second problem. Detection requires this value to exceed zero. The dashed line indicates the x coordinate
of the mine.
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6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an approach for the detection and localization of buried landmines from
EMI sensor data. Our statistical signal processing approach is tailored both to the sensor (an array of EMI
transducers) and the data collection method (progressive acquisition as the array proceeds down track).
The approach we have taken casts the detection problem in the form of a statistical hypothesis test. Using
a novel state-space model for the clutter, we employ a Kalman �lter to whiten the data and use a rolling
window, multiple-model approach to ascertain the location of a mine. Preliminary simulations indicate
that this approach can provide signi�cant forward and side looking capability thereby increasing the area
over which an EMI sensor can reliable detect buried mines.

While the work in this paper has been directed towards an EMI sensing device, the general detection
methodology can be extended and applied to any scheme in which an array of sensors collects data in a
progressive manner. All that is required is a forward model to generate the rather modest sized library
of target signatures and a state-space or other recursive model for the clutter. With this in mind, future
research e�orts stemming from this project include the following:

1. Development of an estimation-based methods to better localize the detected object. Here we are
interested in developing a non-linear least squares method which takes the coarse grid estimates
generated by the algorithm in this paper and provides a more accurate determination of the mine's
true position.

2. Development of methods for \discounting" detected mines from the data set. After the mine has
been detected, we want to remove its e�ects from the data thereby allowing the array to continue
down track looking for other buried objects. Failure to perform such discounting generally degrades
subsequent performance.

3. Development of a full EMI scattering model for use in generation of target signatures.

4. Identi�cation of state space type model for EMI array from real �eld data.

5. Extension and adaptation of these methods to ground penetrating radar (GPR) sensor.

6. Use of Kalman �ltering ideas for fusion of GPR and EMI sensor data.
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Abstract

The problem of near �eld object detection from
array-based electromagnetic induction data is ad-
dressed. A forward scattering model based on the
Born approximation is employed. Using insight ob-
tained from this model, a clutter model in the form of
a state space system is developed which describes the
correlation of the noise both across the sensing array
and from one position of the array to the next as the
measurement device proceeds down track. A multiple-
model detection scheme based on the whitening prop-
erties of the Kalman �lter is employed to perform the
actual object detection. This approach is applied to
the detection and localization of buried objects. Ex-
amples are provided for land mines buried directly in
front and o� to one side of the array.

1 Introduction
The problem of detecting and localizing highly ob-

scured objects from indirect observations of scattered
electromagnetic (EM) radiation has received consider-
able attention in recent years. In environmental reme-
diation, one is often wants to determine the existence
and positions of metallic drums �lled with hazardous
waste materials. There has been a great deal of at-
tention paid to the problem of �nding and remov-
ing buried unexploded ordinance using EM sensing
technologies. On a smaller scale, the non-destructive
testing problem of aw detection using eddy current
sensors possesses essentially the same structure (and
physics) as the waste and mine removal applications.

From a signal processing perspective, the physics of
these problems represents an unusual challenge to de-

�This work was supportedby theArmy ResearchO�ce Dem-
ining MURI under Grant DAAG55-97-1-0013 and the Air Force
O�ce of Scienti�c Research under Grant F49620-96-1-0028

tection and localization tasks. The vast majority of ar-
ray processing algorithms are based on the assumption
that the observed waves are propagating in free space
and the unknown sources are in the far �eld. The re-
sulting planewave model for the radiation incident on
the sensors serves as the basis for all beamforming and
high-resolution localization methods. For the applica-
tions of interest here, the objects are in the near�eld
of the array and while the sensors are in freespace,
the targets are located in a lossy halfspace. The typi-
cal array approaches are therefore not applicable. The
problem of information extraction from such data then
requires careful modeling of the physics coupled with
judicious approximations required for computational
e�ciency. In this paper we will focus on the problem
of detecting buried objects from such array data.

The data for these problems are typically obtained
by sweeping an array of transducers in a �xed direction
over a region of interest, as illustrated in Figure 1, The
result is an \image" whose number of rows is equal to
the number of sensors in the array and whose num-
ber of columns is determined by the number of stops
the array makes. This implied temporal structure is
the second unique \image processing" element present
in this problem. In applications such as buried land-
mine detection it is imperative to detect the object
(i.e. the mine) before the sensor array actually passes
over the its location. More generally, there is often a
desire in these problem to process the data in a \real
time" manner (i.e. as the data is being acquired). This
requirement implies that any algorithm must process
the image data in a column-by-column manner.

The �nal challenging characteristic of this problem
is the need to process data contaminated by \clut-
ter." Physically, such clutter can arise from a variety



of inhomogeneities and man-made non-target discrete
structures present in the observed medium as well as
the continuous, natural changes in its electromagnetic
characteristics. From a signal processing perspective,
we regard clutter as a correlated noise source present
in the data. The correlation is evident �rst along the
array from one sensor to the next and second along the
collection track from one array position to the next.

Air-Earth
Interface

j = j0

yz

x

Mine

Moving Down Track
ArraySensor

j = 1 j = 2

Figure 1: Data Acquisition Method for Subsurface De-
tection Problem

We consider statistical signal processing methods
for solving the object detection problem outlined in
the previous paragraphs. In x2, we describe a physical
model relating the characteristics of the buried object
to the observations obtained over an array. We next
use this physical model as the basis for a simple, ana-
lytical, stochastic model describing the distribution of
clutter. This model takes the form of a state-space sys-
tem accounting both for the inter-element and inter-
array correlation of the noise. In x4, we take advan-
tage of the fact that the Kalman �lter can be used to
decorrelate (or whiten) such noise processes to obtain
a method for detecting objects. We show in the ex-
amples in x5 that this process is capable of detecting
shallowly buried mine-like objects reliably (a) up to
20cm before the array actually passes over the mine
and (b) under low clutter conditions, when the mine
is located up to 30 cm from one side or another of the
array. Finally, conclusions are described in x6.

2 Forward Model
We assume that the array is situated in the x � y

plane and proceeds from x = 0 to x = xmax stopping
at Ns equally spaced locations to obtain data. The
array is composed of a single transmitter at y = 0 and
Nr receivers equally spaced on either side of the array.
All transducers are taken to be small current loops of
radii rp located zp above the air-earth interface carry-
ing I A of current with an e�i!t time dependence. We
de�ne dm;n to be the �eld measured by the mth ele-
ment of the array at the nth stop between x = 0 and

x = xmax. In this paper, we assume that the object
represents a small perturbation of constant conduc-
tivity � S/m in the electromagnetic properties of the
earth so that the �rst Born approximation [2] can be
used to obtain the following, tractable physical model

dnm = �
�(!�Irp)

2

4
�Z

V

A(r � r0 + rn)A(r � r0 + rm)dr
(1)

where the quantity A represents the Green's function
for the problem of a loop over a half-space [2], r =
[x y z]T is a point in three space represented in either
Cartesian or polar coordinates, r0 is the position of
the center of the object, rn (rm) is the position of the
transmitter (receiver), � is the magnetic permeability
and the integral is taken over the volume, V , of the
prototypical object centered at the origin. Given this
model, the goals of the processing in this paper are the
detection and localization of the presence of an object
from noisy observations of dij.

3 Clutter Model
The motivation for the mathematical form of the

clutter model is provided by the nature of the signal
observed over the array due only to an object buried
some distance away. For the problems of interest here,
the wave�eld over the aperture of the array is rather
smooth when an object does in fact exist near the ar-
ray and can be well modeled by a low order polynomial
in ym, the y position of the mth sensor in the array
[3]. In other words we can write

dm;n =
JX

j=0

�j;ny
j
m: (2)

By de�ning the vectors dT (n) = [d1;n d2;n : : :dNr;n]
and �T (n) = [�0;n�1;n : : : �J;n], (2) is rewritten as

d(n) = C�(n): (3)

where the (m; j)th element of C is yjm.
The clutter model we employ in this work is based

on the assumption that the random signal over the ar-
ray in the absence of an object is the sum of two com-
ponents. The �rst portion is an additive zero mean,
white Gaussian component of variance 2 represent-
ing sensor noise. The second component is intended
to capture the e�ects due to the statistical distribu-
tion of the environmental factors not of interest in the
detection problem. Here we assume that this signal
can also be described by a model of the form (3). In
the case of an object, the coe�cients of the polynomial



are deterministically related to the position of the ob-
ject relative to the array. For clutter however, these
coe�cients are taken to be random quantities. That
is, �(n) is a random vector. Such a model arises if we
assume that the clutter represents the average e�ect
on the sensor array of a random distribution of small
scatterers.

To account for the fact that the clutter seen at po-
sition n of the array should be correlated to that at
position n + 1, we employ the following model of the
spatial evolution of �(n):

�(n + 1) = �(n) +B(n)w(n) (4)

where B = � diag
�
�J=2; �(J�1)=2; : : : 1

�
, � > 0, � 2

(0; 1), and w(n) is a zero mean, unit variance, uncor-
related vector of Gaussian random variables. Finally,
�(0) is taken to be a zero mean Gaussian random vec-
tor with covariance matrix given byBTB. Eq. (4) rep-
resents a random walk model for the vector �(n). The
matrix B is such that variance of the additive noise is
greatest for the higher order coe�cients in (2) and
decreases for the lower order �'s representing lower
frequency components. The constant � controls the
overall power in the process and � determines the rel-
ative variances among the coe�cients.

To summarize, in the absence of an object, the over-
all signal model we use for the remainder of the work
is described by the following state-space model with
�(n) representing the state of the system:

�(n+ 1) = �(n) +Bw(n) (5)

d(n) = C�(n) + v(n) (6)

where v(n) � N (0; 2I) is the white sensor noise.

4 Detection algorithm
We begin by assuming that the object may only

be located at position r0 so that the �rst problem of
interest is to determine whether the data we observe
as the array proceeds down the track are just clutter
or are comprised of clutter plus object. From a sta-
tistical signal processing perspective, this amounts to
a binary hypothesis test. Under the null hypothesis,
H0, the data d(n) are comprised only of clutter and
is therefore modeled using (5) and (6). Under the hy-
pothesis that a mine is present, the data are described
by:

�(n+ 1) = �(n) +Bw(n) (7)

d(n) = s0(n) +C�(n) + v(n) (8)

where s0(n) is the signal over the array at time n aris-
ing from the object at position r0 which can be com-
puted using the model of x2.

A key di�culty in solving this binary decision prob-
lem is that the clutter is correlated. To overcome this
problem, we employ a Kalman �lter to \whiten" the
data. Speci�cally, the Kalman �lter takes as input the
sequence d(n) and produces as output a new sequence
q(n) termed the innovations [1]. When there is no ob-
ject present, q(n) is a zero mean, unit variance, white
Gaussian noise sequence. In the event that an object is
present, q(n) is again unit variance, white, and Gaus-
sian, but now there is an added mean vector, �(n)
(also known as a signature), which can be computed
directly from s(n) and the matrices in the state space
model for the noise [1]. Thus, the detection problem
now is one of determining whether or not there ex-
ists a known mean in a sequence of independent, unit
covariance Gaussian random vectors.

In the case where the two hypotheses are to be dis-
tinguished based on a batch of data obtained between
n = 0 and n = N , the problem stated in the previ-
ous paragraph has a well known solution given in the
form of a likelihood ratio test. First, the following
likelihood statistic is computed

l(N ) =
NX
j=0

�
T (j)q(j) � 0:5�T (j)�(j): (9)

Next, we compare l(N ) with a threshold � (N ). If
l(N ) > � (N ) we say that the object is present other-
wise, we continue to collect data. Typically, � (N ) is
chosen such that the probability of false alarm Pfa is
less than or equal to a prede�ned threshold [4]. For
the application here, we want the ability to declare the
presence of an object before the array actually passes
the object. That is, we want to solve a sequential de-
tection problem wherein at each n we decide whether
to declare an object, declare no object, or move the
array and collect more data. While well known meth-
ods exists for optimally solving this problem when �
is independent of n, the solution to the problem for a
time varying mean is less well studied. The algorithm
here represents a �rst attempt to solve this problem
for our object detection application.

Since we know the object location, we can, in prin-
ciple, take data up to but not including the time the
sensor passes the object. Thus, at each n we compute
l(n) as in (9) and for a �xed Pfa, perform the compar-
ison to � (n). We do not stop taking data until that
point, n0, when the x coordinate of the array is such
that at step n0+1 the array would pass the object. At
that time we look at the sequence of decisions made
for n � n0. If H1 has been accepted more than Q

times (here Q = 3), that hypothesis is declared to be
true.



In the more realistic event that we know neither
whether an object is in a region of interest nor where it
may be, we employ a \multiple model" [1] approach to
the detection problem. We hypothesize the existence
of objects over a coarse grid extending in front of the
moving array. Associated with the ith such object
location is a separate signature sequence �i(n). At
each n, we perform a separate binary likelihood ratio
test for each location in the grid. When the array is
set to pass those possible object locations with a given
x coordinate, we look to see if any of the hypotheses in
that collection have been chosen more than M times.
If none satis�es this criteria, we continue moving the
array. If one location passes, we declare an object. If
more than one has been passed more than M times,
we take as the actual object detection that hypotheses
which has exceeded its threshold by the widest margin
at any time during the scan. Essentially, we take the
most likely target if there are multiple possibilities.

As we discuss in the talk accompanying this pa-
per, this sliding window testing process is advanta-
geous because it requires the storage of a �xed and
relatively small number of signature vectors. In par-
ticular, excellent results are obtained in x5 for using
a target signature library of only 400 �(n) sequences
the computation, storage, and manipulation of which
is relatively easy making this processing methodology
quite amenable to real time implementation.

5 Examples
For the following examples, the array is composed

of a single transmitter located at x = 0 and 20 re-
ceivers with half equally spaced between y = 5 cm and
y = 50 cm and the other half spaced between y = �5
cm and y = �50 cm. The array starts at x = 0m and
proceeds in 75 equally spaced steps to x = 3:7m. The
target is modeled as a 5 � 5 � 5 cm3 parallelepiped
of contrast 1 S/m above the surrounding soil and it is
assumed that the burial depth of the object is known
a priori. Thus, the signature vectors are generated
using this information. In practice, this assumption
is not overly restrictive as the range of burial depths
is generally quite limited for a given demining appli-
cation. Our scenario is meant to model the case of
a shallowly buried anti-personnel mine, of interest for
humanitarian demining. The noise measure used here
is the signal to clutter plus noise ratio (SCNR) taken
to be 20 times the base 10 logarithm of the ratio of
the signal power to the noise plus clutter power taken
over the entire data set.

We �rst consider the detection of an object located
at (x; y; z) = (2:2;�0:22;�0:05) m under a variety of
SCNR. In Fig. 2(a) we display a sample data set. The
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(a) Sample data set at about -15 dB SCNR. The ob-
ject is located atx = 2:2, and y = �0:22
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(b) Detection performance for �rst example.
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(c) Average value of likelihood statistic in excess of
threshold. The dashed line indicates the x coordinate
of the object.

Figure 2: Results for �rst example



object, located in the image at (x; y) = (2:2;�0:22)m,
is barely discernible at this SCNR. In Fig. 2(b) the de-
tection performance as a function of SCNR is shown.
Each point represents the fraction of times the object
was detected in 100 runs of the algorithm using inde-
pendent realizations of the clutter and noise processes
for each run. Strong performance is seen down to a
SCNR of about -20 dB with a gradual decline in de-
tection as the SCNR further degrades. At -15 dB the
object is detected essentially 100% of the time.

In Fig. 2(c), we display the average value of the
likelihood statistic less the threshold (i.e. l � � ) as a
function of the position of the sensing array as the ar-
ray proceeds toward the object. The average is taken
over all noise realizations and all experiments where
the object was in fact detected. The SCNR for this
problem was about 2.6 dB and the x coordinate of the
object is 2.2 m. Fig. 2(c) clearly shows that the rele-
vant decision statistic rises to a signi�cant level above
the detection threshold of zero well before the array
actually passes over the buried object. In particular,
these statistics become substantial when the array is
located at x = 1:95 m which is over 25 cm from the
location of the buried object.

As a second example, we consider detecting an ob-
ject at (x; y; z) = (2:2;�0:7;�0:05). Unlike the �rst
case, the object is located outside of the direct �eld of
view of the array. The detection results are given in
Fig. 3(a) while in Fig. 3(b), the plot of average likeli-
hood statistics less threshold are shown for at SCNR of
about 1. These plots show that even when the object
is located signi�cantly o� the axis of the array, we still
retain a strong degree of forward looking, predictive
capability. In particular, non-negligible test statistics
are reliably observed when the array is located about
30 cm from the object.

6 Conclusions
In this paper, we have presented an approach for

the detection and localization of objects from near
�eld sensor data. Our statistical signal processing ap-
proach is tailored both to the sensor and the data col-
lection method. The approach we have taken casts
the detection problem in the form of a statistical hy-
pothesis test. Using a novel state-space model for the
clutter, we employ a Kalman �lter to whiten the data
and use a rolling window, multiple-model approach to
ascertain the location of a object. Preliminary sim-
ulations indicate that this approach can provide sig-
ni�cant forward and side looking capability thereby
increasing the area over which an EMI sensor can re-
liable detect buried objects. In the future, we look
to extend these processing methods to other detection
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(b) Average value of likelihood statistic in
excess of threshold. The dashed line indi-
cates the x coordinate of the object.

Figure 3: Results for second example

problems; speci�cally those arising in remote surveil-
lance where target signatures have been reduced due
to excessive clutter, foliage, or other obscuration.
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ABSTRACT

The problem of mine detection and localization from array-based electromagnetic induction data is ad-
dressed. An e�cient forward scattering model based on the Born approximation is employed. Using insight
obtained from this model, a clutter model in the form of a state space system is developed which describes
the correlation of the noise both across the sensing array and from one position of the array to the next as
the measurement device proceeds down track. A multiple-model detection scheme based on the whitening
properties of the Kalman �lter is employed to perform the actual mine detection. This approach allows
for the detection and localization of buried objects well before the array physically moves over mines.
Examples are provided for mines buried directly in front and o� to one side of the array.

Keywords: Mine detection, EMI arrays, Kalman �lter

1. INTRODUCTION

The problem of detecting and localizing buried landmines from indirect observations of scattered electro-
magnetic radiation has received considerable attention in recent years. Of interest in this paper is the
development of statistical signal processing methods for solving such problems based on data collected us-
ing an array of very low frequency electromagnetic induction sensors. From a signal processing perspective,
the physics of this problem represents an unusual challenge. The majority of array processing algorithms
are based on the assumption that the observed waves are propagating in free space and the unknown
sources are in the far �eld. The resulting planewave model for the radiation incident on the sensors serves
as the basis for all beamforming and high-resolution localization methods. For the applications of interest
here, the objects are in the near�eld of the array and while the sensors are in freespace, the targets are
located in a lossy halfspace. The typical array approaches are therefore not applicable.

In addition to the basic physics describing these problems, the data are typically obtained by sweeping
the array in a �xed direction over a region of interest, as illustrated in Figure 1. The result is an \image"
acquired over time whose number of rows is equal to the number of sensors in the array and whose number
of columns is determined by the number of stops the array makes as it sweeps over the area. This implied
temporal structure is the second unique image processing element present in this problem. In particular,
it is imperative to detect the mine before the sensor array actually passes over the its location. This
requirement implies that any algorithm must process the image data in a real-time, column-by-column
manner, continuously updating its decision as to mine presence and its estimate concerning the object's
location as new data are obtained by the scanning procedure.

Other author information: ELM: elmiller@ece.neu.edu WCK: wckarl@bu.edu. SJN nortonsj@ornl.gov. This work was
supported by the Army Research O�ce Demining MURI under Grant DAAG55-97-1-0013 and the Air Force O�ce of Scienti�c
Research under Grant F49620-96-1-0028
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The �nal challenging characteristic of this problem is the need to process data contaminated by \clut-
ter." Physically, such clutter can arise from a variety of inhomogeneities present in the soil including a
random distribution of rocks and other discrete structures as well as the continuous, natural changes in
the electromagnetic characteristics of the earth. From a signal processing perspective, we regard clutter
as a correlated noise source present in the data. The correlation is evident �rst along the array from one
sensor to the next and second along the collection track from one array position to the next. To adequately
detect mines whose signals are obscured by such noise requires both careful modeling of the clutter and
the development of processing methods explicitly based on these models.

Air-Earth
Interface

j = j0

yz

x

Mine

Moving Down Track
ArraySensor

j = 1 j = 2

Figure 1. Data Acquisition Method for Subsurface Detection Problem

In this paper, we consider statistical signal processing methods for solving the mine detection problem
outlined in the previous paragraphs. Our focus is on shallowly buried metallic anti-personal mines arising
in the case of humanitarian demining. In Section 2, we describe a physical model relating the characteristics
of the buried mine to the observations obtained over an array. We next use this physical model as the basis
for a simple, analytical, stochastic model describing the distribution of clutter. In particular, the clutter
model takes the form of a so-called \state-space" system. This system accounts both for the inter-element
and inter-array correlation of the noise. In Section 4, we take advantage of the fact that the Kalman
�lter can be used to decorrelate (or whiten) such noise processes to obtain a method for detecting mines.
At each stop of the array, we perform a series of hypothesis tests. Under the null hypothesis for each
test, no mine is present. Under the alternative, there is a mine located at one of a number of positions
over a coarse scale grid. The whitening properties signi�cantly simplify the formulation of the tests while
retaining the optimality property of the procedure. We stop the array and declare the presence of a mine
when the sequence of tests for a mine at a hypothesized location are \su�ciently convincing." We show
in the examples in Section 5 that this process is capable of detecting mines reliably (a) up to 20cm before
the array actually passes over the mine and (b) under low clutter conditions, when the mine is located
up to 30 cm from one side or another of the array. Finally, conclusions and future work are described in
Section 6.

2. FORWARD MODEL

To �x notation, we assume that the array is situated in the x � y plane and proceeds from x = 0 to
x = xmax stopping at Ns equally spaced locations to obtain data. The array is composed of a single
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transmitter at y = 0 and Nr receivers equally spaced on either side of the array. All transducers are taken
to be small current loops of radii rp located zp above the air-earth interface carrying I A of current with
an e�i!t time dependence. We de�ne dm;n to be the �eld measured by the mth element of the array at
the nth stop between x = 0 and x = xmax. In this paper, we assume that the mine represents a small
perturbation of constant conductivity � S/m in the electromagnetic properties of the earth so that the �rst
Born approximation1 can be used to obtain a tractable physical model. For the case of a single mine, it
can be shown that the relationship between the physical properties of the mine and ymn is given by1

dnm = ��(!�Irp)
2

4

Z
V
A(r� r0 + rn)A(r� r0 + rm)dr (1)

where the quantityA represents the Green's function for the problem of a loop over a half-space, r = [x y z]T

is a point in three space represented in either Cartesian or polar coordinates, r0 is the position of the center
of the mine, rn (rm) is the position of the transmitter (receiver), � is the magnetic permeability and the
integral is taken over the volume, V , of the prototypical mine centered at the origin. In [1], it is shown
that the Green's function A can be well approximated as

A(r) =
2

�k(r)
p
rrp

��
1� 1

2
k(r)2

�
K (k(r)� E (k(r))

�
(2)

k(r) =
4rrp

(z + zp)
2 + (r + rp)

2 (3)

where r = jjrjj is the distance to the physical point, K(x) is the complete elliptic integral of the �rst kind,
E(x) is the complete elliptic integral of the second kind and the parameter k(r) is in the range 0 to 1.

For the problem of interest in this paper, we have found by direct evaluation that k(r) 2 [0; 0:6]. Under
this restriction, we have developed the following highly accurate, yet simple approximation to (2):

A(r) =
2

�k(r)
p
rrp

�
�4k

4(r) + �6k
6(r)

�
(4)

with �4 = 0:0882, �6 = 0:1321 and k(r) as in (3). The particular values of the � parameters are obtained
by a least squares �t and the use of the fourth and sixth powers of k is motivated by the Taylor series
expansion for the right hand side of (2). A semilogarithmic comparison of the right hand sides of (2)
and (4) is shown in Figure 2. The solid line represents the exact combination of elliptic integrals while
the dashed line is the polynomial approximation. It is clear that the approximation is, for all intents and
purposes, the same as the exact expression. From a computational perspective however, (4) o�ers de�nite
advantages over (2) in terms of speed of evaluation and ease of manipulation.

Given this model, the goals of the processing in this paper are the detection of the presence of a mine
from noisy observations of dij and determination of r0 once a detection has been declared.

3. CLUTTER MODEL

Typically, white Gaussian noise is used as the clutter model for mine detection problems due to its tractabil-
ity. Unfortunately, this simpli�ed assumption leads to a degradation in detection performance. In this
work we instead explicitly model the clutter or background process, leading to more robust performance.
In particular, we develop a tractable yet realistic stochastic model describing the distribution of the data
obtained over our receiver in the absence of a target. This statistical model then forms the basis for a
decision-theoretic procedure for the localization of buried mines discussed in the remainder of this paper.
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Figure 2. Comparison of exact and polynomial approximation to forward scattering model

The motivation for the mathematical form of our clutter model is actually provided by the nature of
the signal observed over the array due only to a mine buried some distance away. The wave�eld over the
aperture of the array is rather smooth when a mine does in fact exist near the array. In Fig. 3, noiseless
simulated data is shown for the case of a :05� :05� :05 m3 mine located at r0 = fx0; y0; z0g = f2; :1;�:05g
m where an 8 element array of length :6m is positioned at x 2 f0; :5; 1; 1:5g m. These plots indicate the
more general feature that the data over the array can be well modeled by a low order polynomial in yi,
the y position of the ith sensor in the array. In other words we can write

dm;n =
JX

j=0

�j;ny
j
m: (5)

By de�ning the vectors dT (n) = [d1;n d2;n : : : dNr;n] and �
T (n) = [�0;n �1;n : : :�J;n], (5) is rewritten as

d(n) = C�(n): (6)

where the (m; j)th element of C is yjm.

The clutter model we employ in this work is based on the assumption that the random signal over the
array in the absence of a mine is the sum of two components. The �rst portion is an additive zero mean,
white Gaussian component of variance 2 representing sensor noise. The second component is intended to
capture the e�ects due to the statistical distribution of the environmental factors not of primary interest in
the detection problem. Here we assume that this signal will display the same basic smoothness as that seen
in Fig. 3. That is it will be described by a low order polynomial. In the case of a mine, the coe�cients of
the polynomial are deterministically related to the position of the object relative to the array. For clutter
however, these coe�cients are taken to be random quantities. That is, �(n) is a random vector. Such a
model arises if we assume that the clutter represents the average e�ect on the sensor array of a random
distribution of small scatterers. If each such scatterer results in a smooth signal over the array then so
too will their sum. We note here that this choice of model certainly satis�es the criteria set forth in the
Introduction that clutter essentially represents noise which is correlated from one array element to the
next.

The second criteria is that the clutter should be correlated from one position of the array to the next.
For example, a clutter vector at position n should be correlated to that at position n + 1. This implies
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Figure 3. Data vectors, dj , obtained as array proceeds toward buried mine. Note the scale change in the
plots.

the need to specify a dynamic model describing the evolution of �(n). Toward this end, we employ the
following model of the spatial evolution of �(n):

�(n+ 1) = �(n) +B(n)w(n) (7)

where B = � diag
h
�J=2; �(J�1)=2; : : : 1

i
, � > 0, � 2 (0; 1), and w(n) is a zero mean, unit variance,

uncorrelated vector of Gaussian random variables. Finally, �(0) is taken to be a zero mean Gaussian
random vector with covariance matrix given by BTB. Eq. (7) represents a random walk model for the
vector �(n). The matrix B is such that variance of the additive noise is greatest for the higher order
coe�cients in (5) and decreases for the lower order �'s representing lower frequency components. The
constant � controls the overall power in the process and � determines the relative variances among the
coe�cients.

To summarize, in the absence of a mine, the overall signal model we use for the remainder of the work
is described by the following state-space model with �(n) representing the state of the system:

�(n+ 1) = �(n) +Bw(n) (8)

d(n) = C�(n) + v(n) (9)

where v(n) � N(0; 2I) is the additive white, sensor noise.

Sample paths of these clutter models are shown in Figs. 5(a) and 7(a) for an array consisting of 20
receiver elements for parameter choices described in greater depth in Section 5. In both cases, the variance
of the w(n) is greater than that of v(n) so that the background \clutter to noise" ratio is assumed to
be relatively large. These images indicate that our model of clutter possesses the desired features. As
functions of y, they are quite smooth. As x (and hence n) increases, they display gradual changes except
at a few points where the random walk model results in a sharp alteration of the \shape" of the pro�le.
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In closing this section, we wish to emphasize that the clutter model described above is neither the only
nor even necessarily the best such model for the processing of real data. Rather the precise model based
on the underlying polynomial regression is intended more as a vehicle for demonstrating the e�cacy of the
detection algorithm described and tested in subsequent sections. Indeed, our approach towards detection
is based only on the reasonable and generally unrestrictive assumption that one can describe the clutter
using some state space model to capture the temporal correlation of the process. Any valid state space
model will work and the problem of �tting �eld data to such a modeling structure represents an interesting
and very worthwhile piece of future research.

4. DETECTION ALGORITHM

In this section, we develop our approach to the detection of buried mines from progressively obtained array
EMI data. We begin by solving a simpler problem in which we assume that the mine can exist only at
a known point in space and want only to determine whether the mine is present. The solution to this
problem then allows for the solution to the problem where we lift the assumption of known location.

4.1. Case I: Known mine location

Assuming that the mine may only be located at position r0, the �rst problem of interest is to determine
whether the data we observe as the array proceeds down the track is just clutter or is comprised of
clutter plus mine. From a statistical signal processing perspective, this amounts to a binary hypothesis
test. Under the null hypothesis, H0, the data d(n) is comprised only of clutter and is therefore modeled
using (8) and (9). Under the alternate hypothesis, the data are described by combining (8) and a modi�ed
observation equation:

d(n) = s0(n) +C�(n) + v(n) (10)

where s0(n) is the signal over the array at time n arising from the mine at position r0 which can be
computed using the model of Section 2.

A key di�culty in solving this binary decision problem is that the clutter is correlated. To overcome
this problem, we employ a Kalman �lter to \whiten" the data. In most cases, the Kalman �lter is used
to track the state of a stochastically evolving system. It is well known however that a bi-product of the
minimum mean square error property of the �lter is that it may be interpreted as a means of de-correlating
a non-white noise sequence. Speci�cally, the Kalman �lter takes as input the sequence d(n) and produces
as output a new sequence q(n) termed the innovations. When there is no mine present, q(n) is a zero
mean, unit variance, white Gaussian noise sequence. In the event that a mine is present, q(n) is again unit
variance, white, and Gaussian, but now there is an added mean vector, �(n) (also known as a signature),
which can be computed directly from s(n) and the matrices in the state space model for the noise.2

Mathematically we have:

Under H0 q(n) � N(0; I) (11)

Under H1 q(n) � N(�(n); I) (12)

That is, the detection problem now is one of determining whether or not there exists a known mean in a
sequence of independent, unit covariance Gaussian random vectors.

In the case where the two hypotheses are to be distinguished based on a batch of data obtained between
n = 0 and n = N , the problem stated in the previous paragraph has a well known solution given in the
form of a likelihood ratio test. First, the following likelihood statistic is computed

l(N) =
NX
j=0

�
T (j)q(j)� 0:5�T (j)�(j): (13)
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Next, we compare l(N) with a threshold �(N). If l(N) > �(N) we say that the mine is present otherwise,
we continue to collect data. Typically, �(N) is chosen such that the probability of false alarm Pfa (that
is the probability of rejecting H0 when H0 is in fact true) is less than or equal to a prede�ned threshold.3

Under our Gaussian assumptions on the innovations, this threshold is3

�(N) = d(N) erfc�1
�

(Pfa)� d2(N)=2 (14)

with

erfc�(x) =
1p
2�

Z
1

x
e�x

2=2dx and d2(N) =
NX
j=0

�
T (j)�(j)

For the demining application, we want the ability to declare the presence of a mine before the array actually
passes the object. That is, we want to solve a sequential detection problem wherein at each n we decide
whether to declare a mine, declare no mine, or move the array and collect more data. While well known
methods exists for optimally solving this problem when � is independent of n, the solution to the problem
for a time varying mean is less well studied. The algorithm in this paper represents a �rst attempt to solve
this problem for the demining application.

Since we know where the mine is located, we can, in principle, take data up to but not including the
time the sensor passes the mine. Thus, at each n we compute l(n) as in (13) and for a �xed Pfa, perform
the comparison to �(n). We do not stop taking data until that point, n0, when the x coordinate of the
array is such that at step n0 + 1 the array would pass the mine. At that time we look at the sequence of
decisions made for all previous n. If H1 has been accepted more than Q times (in this paper Q = 3, that
hypothesis is declared to be true.

We observe that we could have chosen the simpler approach of collecting data until time n0 and then
solving the �xed size binary hypothesis test. The methods described in the previous paragraph though are
more easily generalized and provide greater insight into the more complex problem where we cannot wait
until n0 but must make the mine/no mine decision as rapidly as possible.

4.2. Case II: Unknown mine location

In the more realistic event that we know neither whether a mine is in a region of interest nor where it
may be, we employ a \multiple model"2 approach to the detection problem. As illustrated in Fig. 4, we
hypothesize the existence of mines over a coarse grid extending in front of the moving array. Associated
with the ith such mine location is a separate signature sequence �i(n). At each n, we perform a separate
binary likelihood ratio test for each location in the grid. When the array is set to pass those possible mine
locations with a given x coordinate, we look to see if any of the hypotheses in that collection have been
chosen more than M times. If none satis�es this criteria, we continue moving the array. If one location
passes, we declare a mine. If more than one has been passed more than M times, we take as the actual
mine detection that hypotheses which has exceeded its threshold by the widest margin at any time during
the scan. Essentially, we take the most likely target if there are multiple possibilities.

The implementation of this procedure can be made quite e�cient. Rather than keeping track of a large
number of mine locations extending over the entire track of the array, we perform this procedure using a
sliding window of hypothesized target positions. Let �x be the distance the array moves from n to n+ 1.
We choose as the coarse grid of possible mine locations the points at the center of the squares on a grid of
size M�x. That is, it takes the array M steps to proceed through one column of the coarse scale grid. As
shown in Fig. 4, assuming the array has been moving for a su�ciently long time so that the Kalman �lter is
operating in the steady state, there is a certain shift invariance to the detection problem. In particular, the
mathematical forms of the hypotheses generated when the array is in column 1 and the mines in column
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Column 1 Column 2 Column 3

Array

Hypothesized mine location

Figure 4. Relationship of moving array to coarse grid of possible mine locations. Rectangles represent
positions of the array as it moves down the track. Circles represent hypothesized mine locations. There
are M = 4 array positions per coarse grid cell.

2 (represented by the open boxes and circles) are identical to those obtained when the array is in column
2 and the mines are postulated to lie in column 3 (the darkened rectangles and circles). Clearly this holds
for any array/mine combinations with identical relative spacings in the along-track direction.

We use this observation in the following manner. We begin by postulating mines over a P � P coarse
grid in front of the array where P is chosen such that the response of the array when it is PM�x meters
away is negligible. This grid (i.e. these hypotheses) are retained for the �rst M steps of the array. At the
M +1st step, when the array is entering the second column, the grid looks very similar as in step 1 except
the columns need to be renumbered. The �rst column, of the grid is removed since the array is leaving it.
Each of the remaining columns are shifted to the left by one and a new column of hypotheses is added to
the rightmost edge of the grid so that the overall array is still P � P only now looking further down track
than was the case before. This procedure is repeated every M moves of the array.

This sliding window testing process is advantageous because it requires the storage of a �xed and
relatively small number of signature vectors. Rather than having to maintain a �(n) sequence for every
conceivable combination of array locations and mine positions, we need only compute and store P 2M such
sequences. For the EMI problems of interest here, excellent results are obtained in Section 5 for P = 10
and M = 4. The computation, storage, and manipulation of only 400 �(n) sequences is relatively easy
making this processing methodology quite amenable to real time implementation.

5. EXAMPLES

In this section, the performance of the detection approach is demonstrated and analyzed under a variety of
noise conditions and mine placements. In all cases, the array is composed of a single transmitter located at
x = 0 and 20 receivers with half equally spaced between y = 5 cm and y = 50 cm and the other half spaced
between y = �5 cm and y = �50 cm. Thus, the overall length of the array is 1 meter. The transmitters
and receivers are modeled as small circular loops of radius 2 cm located 10 cm above the air-earth interface
and operating at 3 kHz. The array starts at x = 0 meters and proceeds in 75 equally spaced steps to
x = 3:7 meters. The rolling grid of coarse scale hypothesized mine locations is composed of a 10 by 10
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array of square cells stretching from about -90 cm to 90 cm in the y direction and extending about 2 meters
in front of the array in the x direction. Finally, the mine-like target used in these simulations is modeled
as a 5 � 5 � 5 cm3 parallelepiped of contrast 1 S/m above the surrounding soil. Further, it is assumed
that the burial depth of the mine is known a priori. Thus, the signature vectors are generated using this
information. In practice, this assumption is not overly restrictive as range of burial depths is generally
quite limited for a given demining application. Our scenario is meant to model the case of a shallowly
buried anti-personnel mine, of interest for humanitarian demining.

For the low-frequency, Born-based inductive model discussed in Sec. 2, the electrical conductivity of
the soil is approximated as zero. Moreover, the frequency and conductivity contrast of the mine enter
the model only as multiplicative constants scaling the amplitude of the data. At higher frequencies and
when an exact scattering model is employed, these various parameters will indeed play a larger role on the
performance of the algorithm. For the work in this paper, however the key determination of performance
is the relative strengths of the noise, clutter and target signatures. The measure used here is the signal to
clutter plus noise ratio (SCNR) taken to be 20 times the base 10 logarithm of the ratio of the signal power
to the noise plus clutter power taken over the entire data set obtained from x = 0 to x = 3:7m.

As a �rst example, we consider the detection of a mine located at (x; y; z) = (2:2;�0:22;�0:05) m
under a variety of SCNR. In Fig. 5(a) we display a sample data set. The mine, located in the image at
(x; y) = (2:2;�0:22) m, is barely discernible at this SCNR. In Fig. 5(b) the detection performance as a
function of SCNR is shown. Each point represents the fraction of times the mine was detected in 100 runs
of the algorithm using independent realizations of the clutter and noise processes for each run. The SCNR
was changed by setting the variance of v(n) in (9) to 0.01 and increasing the variance of w(n) in (7) from
0.01 to 0.25 in steps of 0.02. It is clear, that strong performance is seen down to a SCNR of about -20
dB with a gradual decline in detection as the SCNR further degrades. At an SCNR of -15 dB the mine is
detected essentially 100% of the time. Finally, since the mine was not located at one of the coarse scale
grid points, a detection was declared if the estimated mine location was one of the four neighbors nearest
the true mine location on the hypothesis grid.

In Fig. 6, we display the average value of the likelihood statistic less the threshold (i.e. l� � from (13)
and (14)) as a function of the position of the sensing array as the array proceeds toward the mine. The
average is taken over all noise realizations and all experiments where the mine was in fact detected according
to the criterion described previously. The SCNR for this problem was about 2.6 dB and the x coordinate
of the mine is again 2.2 m. The plot does not reach 2.2 m because of the coarse scale gridding of the
mine hypotheses, which for this problem tests for mines located at x = 2:1 m and x = 2:3 m. Fig. 6
clearly shows that the relevant decision statistic rises to a signi�cant level above the detection threshold
of zero well before the array actually passes over the buried object. In particular, these statistics become
substantial when the array is located at x = 1:95 m which is over 25 cm from the location of the buried
mine.

As a second example, we consider the problem of detecting a mine at (x; y; z) = (2:2;�0:7;�0:05).
This placement of the mine is interesting because, unlike the �rst case, the mine is located outside of the
direct �eld of view of the EMI array. In particular, the array extends to y = �50 cm; however the mine
is located at y = �70 cm. A sample data set at an SCNR of about 1.8 dB is shown in Fig. 7(a) and the
detection results are given in Fig. 7(b). As in the �rst problem, the signature of the mine, which should
be evident at around x = 2:2 m and y 2 (�:3;�:5) m, is obscured by the clutter; however the detection
rate is quite high even to an SCNR of about -20dB. In Fig. 8, the plot of average likelihood statistics less
threshold are shown for this problem at at SCNR of about 1. These plots show that even when the mine is
located signi�cantly o� the axis of the array, we still retain a strong degree of forward looking, predictive
capability. In particular, non-negligible test statistics are reliably observed for this scenario when the array
is located at x = 1:9 m which is about 30 cm from the mine.

9
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Figure 5. Sample data set and detection results for �rst example

1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25
0

100

200

300

400

500

600

700

800

900

1000

Position of array (m)

M
ea

n 
lik

el
ih

oo
d 

ov
er

 th
re

sh
ol

d

Figure 6. Average value of likelihood statistic in excess of threshold as array approaches mine location
for �rst problem. Detection requires this value to exceed zero. The dashed line indicates the x coordinate
of the mine.
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Figure 7. Sample data set and detection results for second example
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Figure 8. Average value of likelihood statistic in excess of threshold as array approaches mine location for
second problem. Detection requires this value to exceed zero. The dashed line indicates the x coordinate
of the mine.

11



6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an approach for the detection and localization of buried landmines from
EMI sensor data. Our statistical signal processing approach is tailored both to the sensor (an array of EMI
transducers) and the data collection method (progressive acquisition as the array proceeds down track).
The approach we have taken casts the detection problem in the form of a statistical hypothesis test. Using
a novel state-space model for the clutter, we employ a Kalman �lter to whiten the data and use a rolling
window, multiple-model approach to ascertain the location of a mine. Preliminary simulations indicate
that this approach can provide signi�cant forward and side looking capability thereby increasing the area
over which an EMI sensor can reliable detect buried mines.

While the work in this paper has been directed towards an EMI sensing device, the general detection
methodology can be extended and applied to any scheme in which an array of sensors collects data in a
progressive manner. All that is required is a forward model to generate the rather modest sized library
of target signatures and a state-space or other recursive model for the clutter. With this in mind, future
research e�orts stemming from this project include the following:

1. Development of an estimation-based methods to better localize the detected object. Here we are
interested in developing a non-linear least squares method which takes the coarse grid estimates
generated by the algorithm in this paper and provides a more accurate determination of the mine's
true position.

2. Development of methods for \discounting" detected mines from the data set. After the mine has
been detected, we want to remove its e�ects from the data thereby allowing the array to continue
down track looking for other buried objects. Failure to perform such discounting generally degrades
subsequent performance.

3. Development of a full EMI scattering model for use in generation of target signatures.

4. Identi�cation of state space type model for EMI array from real �eld data.

5. Extension and adaptation of these methods to ground penetrating radar (GPR) sensor.

6. Use of Kalman �ltering ideas for fusion of GPR and EMI sensor data.
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An important component associated with the GPR problem is the computation of the
scattered �elds produced by buried objects when illuminated by the radar source. The
choice of technique for computing these �elds is often driven by a variety of factors including
computational complexity and the exibility to handle easily a wide range of con�gurations
of scatterers. Based on the fact that objects of interest for many GPR applications have
relatively simple shapes such as cylinders and spheres, it is apparent that transition matrix
(T-matrix) approach is well suited to the GPR forward problem.

The T-matrix technique is based on the expansion of the �elds and the Green's function
in spherical (3D) or cylindrical (2D) harmonic series. Considerable work has focused on the
generation of eÆcient recursive T-matrix techniques for computing the scattered �eld from
a single, electrically large, dielectric object. The approach taken in these applications is to
tessellate the object into many smaller scatterers. Thus, even though the number of scatterers
is large, the order of harmonics used to expand the basis functions is small thereby keeping
the computational load relatively small. However, if one wants to �nd the scattered �eld from
multiple, electrically large, tessellated objects, the number of scatterers grows quite quickly
thereby increasing the complexity of the problem considerably. A natural alternative is to
treat each object as a single scatterer (i.e. bypass the tessellation) but increase the order
of the harmonic expansions for each object. Unfortunately, this approach is hindered by
diÆculties related to the slow convergence of the harmonic expansions.

Here, we present a modi�ed, stable recursive T-matrix algorithm to calculate the scat-
tered �eld from a heterogeneous collection of spatially separated objects based on these
higher order expansions. Motivated by the GPR problem, we consider the calculation of
the scattered �eld produced by a group of parallel cylinders buried in a lossy medium. In
the most general case, these objects can be dielectric or metallic, electrically small (fraction
of �) or large (1-2 �). The modi�cation, which will be described in the talk accompanying
this abstract, circumvents the slow convergence of the series by replacing the product of two
translation matrices with product of three such matrices two of which yield the identity.

In the talk we will also discuss the veri�cation of this algorithm against previously pub-
lished results for scattered �elds from multiple cylinders, compare the computational advan-
tages of this higher order technique relative to the tessellated approach, and provide examples
demonstrating the ability of this code to compute �elds for GPR-relevant scattering scenarios
such as mine detection and hazardous waste removal.

1The work of this author was supported in part DOE contract DE-FC07-95ID13395, NSF Grant MIP-

9623721, and by subcontract GC123920NDG from Boston University under the AFOSR MURI Program on

Reduced Signature Target Recognition
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ABSTRACT

We apply high-dimensional analysis of variance(HANOVA) and sequential probability ratio test(SPRT) to detect
buried land mines from array ground penetrating radar (GPR) measurements. The GPR array surveys a region of
interest in a progressive manner starting at a known position and moving step by step in a �xed direction. Detection
method consists of two parts. Because, at each stop, path lengths are di�erent from radar pairs to a mine target,
there exists statistically signi�cant di�erence among received signals when a mine target is present. At �rst, we use
HANOVA to test for statistical signi�cance at each stop. The HANOVA compares multiple sets of data for statistical
di�erence. While HANOVA detects di�erence among received signals in time-domain, it does not incorporate new
data as the GPR array moves down-track. So secondly, we resort to sequential detection to look for changes in result
of HANOVA along the GPR array stops. It turns out to be a sequential probability ratio test to detect transient
curved signals. This SPRT allows real-time processing as new data are obtained by the GPR array. Performance of
this test is analyzed through the probability of detection and mean time between false alarms. Finally, real data and
computer simulation are processed to verify the method.

Keywords: Analysis of variance(ANOVA), sequential probability ratio test(SPRT), transient signal, curved data,
GPR signal

1. INTRODUCTION

The use of ground penetrating radar (GPR) arrays for detecting buried objects has received considerable attention in
recent years in areas such as landmine and unexploded ordnance remediation, utility line mapping, and archaeology.1

A typical GPR array con�guration for such applications is shown in Fig. 1. Here one uniform linear array of
transmitters and a second uniform linear array of receivers are simultaneously moved down a linear track. At
every stop of the system, each transmitter emits a short pulse of electromagnetic energy which interacts with the
surrounding medium. Based on observations of scattered �elds collected by the corresponding receiver the objective
of the problem is to determine if a mine is present in the �eld of view of the array.

Current processing methods for this problem fall into one of three categories. First, pattern matching methods2

employ techniques such as fuzzy set theory and neural networks. Such methods can be fast but also require extensive
training to function well. Moreover, performance analysis is limited to Monte-Carlo simulations. Second, image-
then-detect techniques3 employ a beamforming or backpropagation approach to build an image of the subsurface
which is then post-processed to detect objects. Such methods generally require the data from the full GPR scan to
form an image and are thus not well suited to on-line computations in which information is processed sequentially
as the array proceeds down track. Finally, there has been some very interesting work done in the area of statistical
processing methods4 where one can examine quantities such as detection rates, false alarm probabilities, etc.; however
the techniques in4 for instance are based on highly complex electromagnetic models for the GPR sensor and are thus
computationally intensive.

Here we view the GPR array detection problem in a blind signal detection framework and employ statistical
methods to process the GPR returns. By \blind", we mean that the exact form of signal reected from a mine is
unknown. What we know is that this received signal becomes stronger as the GPR array moves toward a mine and
then the signal becomes weaker after the array passes over the mine. Theoretical analysis and computer simulation
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Figure 1. GPR, a) a single GPR system, b) a GPR array.

indicate that this change follows a hyperbolic curve, though parameters of this hyperbolic curve are not known
beforehand. On the other hand, di�erent T/R pair registers a di�erent hyperbolic curve, it is so because T/R
pairs are spatially separated. This information allows us to exploit two generic properties of the signal transmission
process. First, for any given stop of the array, the presence of a mine close to a T/R pair results in a jump in the
mean value of the observed signal relative to that seen in other pairs. Thus, we develop a high-dimensional ANOVA
test5 to detect this change. Second, physical principles dictate that as the array moves from one stop to the next,
this change will increase and then decrease; that is, the change will be transient in space domain.1 A sequential
detector is employed to track and detect this spatial up-and-down change as the GPR array moves down-track.

The paper is organized as follows. Section 2 discusses physical model of a GPR system and corresponding
mathematic model. In Section 3, we present a statistical algorithm to detect mines and analyze its performance in
mean time between false alarms and probability of detection. Both �eld data and simulation are used to show how
the algorithm works. Conclusion and direction of future work is given in Section 4.

2. MODEL

2.1. GPR Model

At �rst, we consider a single GPR system.6 It consists one transmitter and one receiver. After each transmission,
the receiver collects echo for a certain amount of time. There are two to three components in received signal. One
is measurement noise, assumed to be white and Gaussian. The second component is reection from ground-air
interface, which we call clutter. Clutter is always present and changes as the GPR moves. We assume that it varies
slowly as the array moves down the track so that it can be estimated and taken out by subtraction.

In Fig. 2 we plot the clutter subtracted observation for single T/R pair obtained from �eld data as a function of
down-track position of the array. Each column of this image is a time-series of observation for a given stop of the
array. As can be seen from this �gure signal is transient in two ways. First, it appears only when the array is in
the vicinity (� 0:5 meter) of the mine. For most systems this implies that there are on the order of tens of stops of
the array when the mine can be detected out of hundreds to thousands of array positions in a typical GPR survey.
Second, when the array is positioned close to the object, the e�ects are only seen in a portion of the time-series. Signal
reected from the mine always comes behind clutter and attenuates quickly in soil. Before proceeding, we make two
observations regarding the signals in Fig. 2. First in general the precise form of the signal of interest is typically
unknown due to variations caused by uctuations in the electrical properties of the soil, unmodeled physical e�ects
such as surface roughness, and variability in the signature caused by the unknown orientation of the mine relative to
the sensor. Indeed, Fig. 2 is typical of the variability seen in practice. Second, for clarity, we have displayed signals
from two mines which are relatively easy to detect. Generally, even after removing the clutter other sources of noise
and interference can signi�cantly reduce the detectability of the desired signal and increase number of false-alarms.
In Fig. 3, we can see that besides signals reected from two mines, there are other interferences as well.
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Figure 2. Signal generated from two objects buried at position 1.5m and 3.0m.
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Figure 3. Signal from other three T/R pairs, from left to right, pair 2, 3, and 4.

2.2. Mathematic Model

Based on this discussion, at down-track position n of the array, after clutter has been removed, we have the classic
binary hypothesis model for the GPR signal returns

H0 : xm(n) = wm(n)

H1 : xm(n) = sm(n) +wm(n) (1)

for m = 1; � � � ;M , n = 1; � � � ; N , M is number of T/R pairs, N is number of array stops. Here xm(n); sm(n);wm(n)
are column vectors of length K, representing time series of observation, signal, and noise from the ith T/R pair.
The noise is assumed to be white and Gaussian with zero-mean and variance �2m. While the exact structure of sm is
unknown, we see that the e�ects of this signal are to cause a jump in the mean of the xm for those n where a mine is
in the �eld of view of the GPR. Thus the statistical problem of interest in this work is to detect this transient signal
based on M such observation vectors at N steps.

As detailed in the remainder of this paper, we approach this problem in two steps. First, we develop a method for
detecting the presence of sm for a �xed location of the GPR array. Second, we use this test in a sequential manner
to process the returns as the array acquires new data.

At a given position of the array since we do not know of sm the statistical problem we pose is

H0 : �m = 0

H1 : �m 6= 0; m = 1; � � � ;M
with �m = E [xm]. In many cases, analysis of variance (ANOVA) is used to solve this problem. Recently however,
Fan,7 Fan and Lin,5 has noted that the performance of ANOVA su�ers for problems when the signal of interest is
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limited to a small number of samples in the overall observation vector as is the case for the GPR problem of interest
here. Fan proposed a high-dimensional ANOVA which uses a portion of observation. Fan's original work was limited
to problems in which the �rst k samples were used, with k found from the data. Here we consider a generalization of
Fan's work to take into account the fact that for the GPR problem the transient object is signi�cant over a window
not generally starting with the �rst sample. Following the HANOVA, we turn to a sequential probability ratio test
(SPRT) to make on-line detection as new data is acquired.

3. ALGORITHM

3.1. Estimation and detection

Our method consists of two steps, as shown in Fig. 4. Here the GPR array has four T/R pairs. At each stop of
the GPR array, we receive four vectors of observation. These vectors are input to a high-dimensional ANOVA and
the HANOVA generates one test statistic X2. Next, X2 is fed into a sequential detector and produces a �nal test
statistic U(n). When U(n) exceeds a preset threshold, a mine is declared.

Before describing HANOVA, it is helpful to see why in some cases ANOVA loses its discrimination power. For
example, assume we have one observation vector of size K � 1, x1 � N(�; �21I) and we wish to test H0 : � = 0

vs. H1 : � = �1: Standard ANOVA is to estimate � by x1 and use the testing procedure X2
1 = jjx1jj2. The

approximate power of the standard ANOVA estimator-correlator test is

Pd(H1jH1) = Q

�
 �

PK

k=1 �
2(k)

�21
p
2K

�
(2)

where  the test threshold and Q the complementary cumulative distribution function and strictly decreasing. If �1

is di�erent from 0 for only a small number of k then as K goes large,
PK

k=1 �
2
1(k) <<

p
K. From (2), we then

conclude that testing all dimensions of the data actually causes the test to lose power due to the accumulation of
stochastic noise. This deterioration is reected in the factor 1=

p
2K. Fig. 5 shows how much target signal di�ers from

background, it is noticeable that target signal does not appear for the �rst hundreds of dimensions and it quickly
attenuates to zero after that. Fig. 6(a) shows that if starting from point 1, one begins to increase dimensions tested
of signal of Fig. 5(c), the probability of detection at �rst increases, i.e, when more signal is taken into computation,
and then decreases when signal runs out. On the other hand, if one �xes the end point around 500 and start from
point 1, testing fewer and fewer dimensions, the probability of detection achieves its maximum around 300. Thus it
provides us with an idea which portion of time series to test for statistical signi�cance.

Based on this observation, Fan et al. developed an adaptive HANOVA test of the form described previously. We
generalize it to GPR returns to form a two-end HANOVA, namely, testing a middle portion of time-series. Fig. 7
shows results from an ANOVA and a HANOVA test for the signals in Fig. 2. The HANOVA truncates observation
vectors of length K to length L by two steps 1) discarding the �rst k1 components which are consisted of ground-
bounce only (the target reected signal always comes after the ground-bounce) and 2) discarding the last k2 elements
which represent signal that has been attenuated too much to be meaningful for signal processing. Both the ANOVA
and HANOVA tests easily detect the stronger signal, at position 1.5m. We want to be able to �nd the very weak
target at 3.0m. For this target, the HANOVA shows improved performance. Speci�cally, the peak in the HANOVA
case is more clearly visible above the nominal \noise oor."
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Figure 5. Received signal, a) clutter and noise, b) signal plus clutter and noise, c) signal only
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Figure 6. Probability of detection a) start from point 1 and test more and more dimensions of observations b) �x
the end point and test fewer dimensions from point 1

Generalizing HANOVA to multiple observations, we build the test statistic as

X2 =

MX
m=1

��2m jjxm � xjj2 (3)

with x =
PM

m=1 �
�2
m xm=

PM

m=1 �
�2
m . It is easily shown that

X2 � �2ML(�
2) (4)

where

�2 =

MX
m=1

��2m jj�m � �jj2 (5)

with � =
PM

m=1 �
�2
m �m=

PM

m=1 �
�2
m and �2ML(�

2) is the �2 distribution with ML degrees of freedom and non-
centrality parameter �2.

While HANOVA detects di�erence among observations at one stop of the array, it does not capture the curvature
structure seen as the array moves down-track. To improve detection performance, we employ a sequential detection
scheme based on the processing of the HANOVA statistic to look for the transient signal from one stop of the GPR
array to the next. Hence, the two hypotheses are

H0 : X2(n) � �2ML(0)

H1 : X2(n) � �2ML(�
2(n)) (6)

for n = 1; � � � ; N where �2(n) is de�ned in (5). At stop n, the log likelihood ratio for this problem is

u(n) = ln
pn(X

2(n))

p0(X2(n))
(7)
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Figure 7. Test statistic, a) result of an ANOVA, using all dimensions of observations, b) result of a HANOVA,
using truncated observations.
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Figure 8. Test statistic U(n) of sequential detection, solid line: HANOVA followed by SPRT, dash line: ANOVA
followed by SPRT.

where pn(X
2(n)) � �2ML(�

2(n)) evaluated atX2(n) and p0(X
2(n)) � �2ML(0) evaluated atX

2(n). One di�culty with
generating u(n) is that �2(n) is typically not known a priori since the underlying �m are not assumed known. Here we
construct a generalized log likelihood statistic. Typically, this is done by replacing �2(n) by its maximum likelihood
estimate which for this problem is X2(n). After some experimentation in real data and computer simulation, we
have found that performance can be improved by incorporating a one-step delay into the processing. Speci�cally, we
estimate �2(n) as X2(n� 1).

The full algorithm then is essentially a repeated SPRT8 and is summarized by the following steps,

� U1 = 0.

� FOR n = 2; � � � ; N
{ �̂2(n) = X2(n� 1)

{ Form u(n) according to (7)

{ U(n) = max(0; U(n� 1) + u(n)).

{ IF U(n) > �, declare object.

� ENDFOR

where � is a preset threshold. Fig. 8 shows the result of the algorithm applied on HANOVA output of Fig. 7.
Clearly, sequential detection using results of HANOVA has a better performance.

3.2. Performance

Performance of this algorithm is studied in terms of mean time between false alarms and probability of detection.
Under H0, the test statistic changes as a Markov chain,9 with update u(n) at each step. Under H1, the update u(n)
is changing, and therefore, the test statistics U(n) can be described as an inhomogeneous Markov chain. One method
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Figure 9. Performance, a) mean time between false alarms with di�erent threshold and number of quantization
levels, b) probability of detection at di�erent signal to noise ratio, from top to bottom, SNR = 1.85dB, 2.2dB, 2.8dB.

of analyzing Markov chain is a matrix approach.9 First, since L is usually very large, in the order of hundreds, and
therefore ML is large, �2 distribution can be approximated by a Gaussian distribution. We then have

H0 : X
2(n) � N(ML; 2ML)

H1 : X
2(n) � N(ML+ �2(n); 2ML+ 4�2(n)):

Second, suppose the update u(n) and the interval [��; �] is uniformly quantized to 2k + 1 levels such that v0 = 0,
and vk = �. Let �nl = PrfUn = vljN > ng for integer l 2 [0; k � 1], and �n = [�n0; �n1; � � � ; �n(k�1)]T denote
the probabilities of Un = vk on the condition that there is no alarm until after sample time n. We can write the
transition matrix C(n) at step n as9

C(n) =

2
666664

p0n p�1n � � � p�+1n

pn(1) pn(0) � � � pn(� + 2)
pn(2) pn(1) � � � pn(� + 3)
...

...
. . .

...
pn( � 1) pn( � 2) � � � pn(0)

3
777775

(8)

where

pn(l) = Pr(log
f
(n�1)
1 (X2(n))

f0(X2(n))
= vl) (9)

and elements in �rst row of Eq. 8 are pin =
Pi

l=�1 pn(l). Here f
(n�1)
1 (X2(n)) denotes the PDF of X2(n) under the

alternative hypothesis H1 and using X2(n� 1) to estimate �2(n). Under H1, the transition matrix C(n) can be built
using Eq. 8 for di�erent n, since signal is time varying. The probability of detecting a signal of length nd is then

Pd(nd) = 1� 1T
ndY
n=1

C(n)�0 (10)

where 1 is a column vector of all ones. The mean time between false alarms T is found to be9

T = 1T (I� C(0))�1e1 (11)

in which C(0) is the transition matrix under the signal-absent statistics and e1 is a column vector containing a one
in position 1 and zeros elsewhere. With more levels of quantization, we obtain more accurate estimation of Pd and
T . Fig. 9(a) shows the mean time between false alarms under the null hypothesis H0, for di�erent thresholds.

Here, we de�ne the signal to noise ratio as

SNR = 10 log10

Pn2
n=n1

sTnsn

(n2 � n1 + 1)L�2m
(12)
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Figure 10. Probability of detection versus transient length of the signal.

where n1; n2 are chosen to include those GPR stops where a mine is close. As noise level reduces, probability of
detection increases, as shown in Fig. 9(b). Finally, we simulated transient signals of di�erent lengths on a computer.
Fig. 10 shows the probability of detection at a �xed threshold when the length of the signal is changing. Generally,
increasing signal length improves its SNR. As expected, a signal of large transient length can be detected at a higher
probability.

4. CONCLUDING REMARKS

In this paper, we have proposed a sequential, high-dimensional ANOVA to process multichannel GPR returns. The
method works in two directions: �rst it looks for statistically signi�cant di�erence among multichannel observations,
second, it carries out a sequential detection as new data are obtained. The HANOVA is powerful in the sense
of maximizing probability of detecting statistically signi�cant di�erence among sets of observations. Sequential
detection enables real-time processing as new data are collected. The method has a relatively low computational
complexity. We have demonstrated the performance of this technique on a sample of �eld data. Future research will
focus on adaptive sampling of received signal to take into consideration of roughness of ground-air interface; on-line
localization will be integrated to allow detect-localize-detect and thus provides higher probability of detection.
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A Nonlinear Shape Reconstruction Algorithm For Cross-Borehole Electromagnetic
Tomography Using Adjoint Fields And Level Sets

We consider the problem of recovering the shapes and locations of a collection of inclusions in

an inhomogeneous medium from limited observations of scattered electromagnetic �elds. In partic-

ular, we are concerned with a crosswell tomography problem arising in environmental monitoring

and remediation. Here one starts with a pair of boreholes. The �rst is equipped with an array of
electromagnetic sources and the second with an array of receivers. The medium between the two

boreholes consists of a known inhomogeneous (e.g. layered) background, and some unknown local-

ized inclusions, for example pollution plumes. The inclusions di�er from the background medium

in their complex electrical permittivities. The objective of the problem is the characterization of

these structures from time harmonic data collected at a small number (less than 10) of frequencies.

The limited data set does not support the recovery of a �ne scale collection of pixelated per-

mittivity values. However, in many applications, including ours, it can be assumed that some prior

information about the physical parameters inside the inclusions is available. For example, the per-

mittivities inside the inclusions might be known constants. In these cases, all that remains is the

recovery of the number, size, shape and locations of the inclusions.

We apply a two-step nonlinear inversion scheme to this problem with prior information. In the
�rst step, we try to determine basic information about the number and the locations of the unknown

objects by employing a recently developed nonlinear generalization of the algebraic reconstruction

technique (ART) in x-ray tomography, to the given problem. The second step of the reconstruction

makes use of level set methods as well as the prior information at our disposal. Introducing level set

calculations based on the output of nonlinear ART allows us to recover more precise information

regarding the shapes and sizes of the inclusions.

An essential feature of this inversion scheme is that the practical realizations of the two steps are

closely linked with each other. In fact, the level set step simply continues with the same inversion

routine as it is already used for nonlinear ART. All that has to be done numerically when switching

from one step to the other is to add a post-processing routine to the calculated update formula.

This yields already the correct deformation rule for the considered level sets.
In the talk accompanying this abstract we will provide a more detailed description and analysis

of the various components of this inversion routine. Included in this discussion will be numerous

examples demonstrating the utility of our method for problems of practical interest.

Session/topic: Inverse Scattering, Electromagnetic Signal Processing
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The inverse scattering problem (ISP) is characterized by a desire to determine the internal
structure of a medium given scattered energy obtained along the boundary. Typical methods
for performing the inversion amount to formulating the reconstruction problem as a solution
to a regularized, nonlinear optimization problem and performing the optimization using an
iterative algorithm. Rapid convergence often can be achieved through using a Newton-
type approach where each iteration is decomposed into two steps. First, an incremental
improvement is made to the estimated material properties by solving a least squares problem.
Second, the new pro�le is used to solve for the internal �eld distribution over the region.

Although such an algorithm along with proper regularization can address the problem of
ill-posedness, the Newton approach is known to be computationally complex. Constructing
the matrices de�ning the least-squares problem requires the matrix representation of resol-
vent for the second kind integral equation relating the scattered to the incident �elds for an
inhomogeneous medium whose properties are de�ned by the current estimate of the material
parameters. Direct knowledge of this resolvent also is of use in determining these �elds.
Explicitly determining this resolvent requires the costly inversion of a large dense matrix.

In this paper, we consider a lower complexity method which constructs an approximation
to the resolvent. By linearizing the formula for the resolvent about the increment to the
material properties computed in the previous least-squares iteration, we obtain an expression
in which the new resolvent is equal to the old resolvent plus an increment due to the change
in the material properties. Construction of this increment requires the multiplication of
three matrices. To reduce the computational burden of this task, we compute only a subset
of \signi�cant" elements of this increment matrix where the notion of signi�cance is related
to the sensitivity of the cost function to small changes in each component of this matrix.

We explore the use of this method in the context of a non-destructive testing modality
known as thermal wave di�raction tomography. Here, a laser is used to induce heat di�usion
on the top of a small sample of material. Based on reection or transmission measurements
of the thermal �eld, one desires an image of the internal structure of the sample which
makes evident holes or other defects. It can be shown that the thermal �eld obeys a scalar
Helmholtz equation with a complex propagation vector so that the physics of the problem are
quite similar to those of inverse electrical conductivity problems for which inverse scattering
methods are commonly employed.

�The work of the �rst author was supported in part DOE contract DE-FC07-95ID13395, NSF Grant MIP-

9623721, and by subcontract GC123920NDG from Boston University under the AFOSR MURI Program on

Reduced Signature Target Recognition



Electromagnetic Modeling and Physics-based Processing Methods for Subsurface
Object Characterization from Broadband Electromagnetic Induction Data

The use of broadband electromagnetic induction (BEMI) methods for the detection and char-

acterization of buried objects has received considerable attention in recent years for applications

ranging from environmental remediation to the detection and classi�cation of buried landmines

and unexploded ordinance. In this work, we describe an eÆcient modeling method and associated
processing techniques for the extraction of target information from BEMI data. The utility of this

approach is veri�ed both on synthetic as well as experimental data collected from a �elded sensor.

We consider processing techniques based on an enhanced version of the inductive sensor model

originally proposed by Das, McFee, Toews and Stuart (IEEE Trans. GRS, Vol. 28, No. 3, May

1990, pp. 278-287). The model conveniently encodes the quantities most relevant to the application

at hand: a frequency dependent dipole scattering tensor used to characterize and classify the object,

the spatial coordinates of the center of the target required for localization, and three Euler angles

required to specify the orientation of the object. Moreover, under this model the elements of the

dipole scattering tensor are independent of the orientation and location parameters and are in fact

linearly related to the observed BEMI data.

Given this structure, we consider statistically optimal estimation methods for the determination
of the dipole tensor, the object location, and orientation from noisy and cluttered BEMI data. The

structure of the model leads to a computationally eÆcient, low dimensional, non-linear least squares

algorithm. Speci�cally, we use the linearity of the model with respect to the dipole scattering tensor

to eliminate this high dimensional set of unknowns from the optimization problem and concentrate

on determining the location and orientation parameters: six in all. From these estimates, we can

then trivially determine the optimal dipole structure.

A key element of our approach is the speci�cation of a clutter model required for low SNR

problems where the object contains little metal such as anti-personnel landmine remediation. In

this paper, we develop a parametric stochastic model which captures the spatial correlation seen in

typical data sets. The model is constructed to reect the current methods in which BEMI data are

collected. First, a dense set of spatial BEMI data in a known, object-free region is collected. These
data along with a sparse collection of BEMI data taken in the immediate vicinity of a suspected

target will be used to estimate the clutter model parameters and remove this noise source from the

signal.

In the talk accompanying this abstract the utility of our processing approach and clutter model

will be demonstrated using both synthetic and experimental BEMI data collected from GEM-3

sensor constructed Geophex Inc. The clutter model structure will be presented along with al-

gorithms for estimating the parameters and performing clutter mitigation. The accuracy of the

orientation and location estimates will be discussed. Finally, the use of the dipole moments for

object classi�cation will be demonstrated for both high and low metal content objects.
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A Statistical Approach to Object Detection from Ground Penetrating Radar Arrays

The use of ground penetrating radar (GPR) arrays for detecting buried objects has received
considerable attention in recent years in areas such as landmine and unexploded ordinance reme-
diation, utility line mapping, and archaeology. A typical GPR con�guration for such applications
is comprised of one linear array of transmitters and a second array of receiving elements which are
simultaneously moved down a linear track. At every stop of the system, each transmitter emits a
short pulse of electromagnetic energy which interacts with the surrounding medium. Based on ob-
servations of scattered �elds collected by the receivers the objective of the problem is to determine
if an object is present in the �eld of view of the array.

From a signal processing perspective a number of factors make this problem quite challeng-
ing. First, the attenuation associated with the scattering of the GPR signal from the ground
and target results in useful signal only over receivers located closest to the �ring transmitter. In
many functioning systems in fact only a single receiver is employed per transmitter. Thus, detec-
tion methods based on beamforming, MUSIC, or ESPRIT which require array-based observations
cannot easily be employed. In essence then for GPR we have a multichannel (one channel per
transmit/receiver pair), as opposed to an array, processing problem. Even if full array data were
available, the assumptions underlying e.g. MUSIC (far �eld propagation, plane wave or at worst
spherical wave structure) are violated. Indeed, to obtain a precise description of the received GPR
signal one must resort to computationally intensive electromagnetic modeling methods to capture
the complex physics associated with near �eld propagation and scattering of the transmitted GPR
waveform o� a buried object in the presence of a random rough air-ground interface. While such
modeling can be done in principle, from a practical perspective such computationally intensive
methods are not appropriate for use in a functioning GPR system.

Given these issues, here we view the problem in the framework of multichannel blind signal
detection and employ statistical methods to process the GPR returns. This approach allows us to
exploit two generic properties of the signal transmission process. First, for any given stop of the
array, the presence of the mine close to a transmitter-receiver (T/R) pair results in a jump in the
mean value of the observed signal relative to that seen in other pairs. Thus, we develop a widowed
analysis of variance (ANOVA) test to detect this change. Second, physical principles dictate that
as the array moves from one stop to the next, the magnitude of this jump �rst increases as the
array approaches the object and then decreases as the sensors move past the location of the target.
This behavior is exploited in the synthesis of a sequential detection strategy designed to recursively
process the output of the ANOVA test as the GPR system moves down the track. The use of this
sequential methods allows us to determine a priori important performance statistics for the GPR
system, such as mean time between false alarms and average delay in declaring the presence of a
target. In the talk accompanying this abstract, we provide a more detailed description and analysis
of our algorithms as well as the physical models on which they are based. We will demonstrate the
performance of this method both on synthetic data obtained from computational electromagnetic
codes and on actual �eld data collected by a GPR system constructed by EG&G Inc.

Session/topic: Electromagnetic Signal Processing, Subsurface Object Detection, Remote
Sensing
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Multiscale, adaptive methods for reduced order inverse scattering

The objective of an electromagnetic inverse scattering problem (ISP) is to use observations of

scattered wave�elds obtained on the boundary of a medium to ascertain the spatial distribution

of permittivity internal to the region of interest. Typically, the solution to an ISP is approached

by formulating and then solving a high dimensional non-linear optimization problem to recover

the permittivity values in a �ne scale discretization of the underlying region. The optimization
functional usually contains one term encouraging �delity to the data and one or more regularizers

required to combat the inherently ill-posed nature of the inverse problem. In addition to the high

computational complexity associated with this technique, in previous work we shown that a uniform,

�ne scale discretization of the permittivity does not represent the best use of the data. More

precisely, using information theoretic methods it is possible to show that the level of uncertainly in

the reconstructed permittivity grows with the distance of the pixel from the sources and receivers.

Motivated by this observation, here we consider an inversion approach designed to obtain a low

order representation of the permittivity in which �ne scale information is adaptively distributed in

a more rational manner.

Our approach is based on the use of a two dimensional frame of quadratic B-splines to represent

the unknown permittivity. This family of functions has the convenient property that coarse scale
members can be de�ned as a superposition of �ner scale B-splines. We use this nesting property

in the synthesis of a multiscale inversion routine. We begin by representing the permittivity as

a superposition of a few, coarse scale spline functions. After determining the optimal expansion

coeÆcients, the remainder of the procedure is a loop in which we alternate between adding degrees of

freedom to improve the reconstruction, and removing unnecessary detail to control the complexity

of the estimate.

We have found that this approach to inversion is useful in a number of ways. First, by adaptively

placing �ne scale information only where it is really required, the dimensionality of the problem is

kept low (hundreds rather than thousands of unknowns) thereby leading to a signi�cant reduction

in computational complexity relative to a single, �ne grid approach. Second, a common problem

with all non-linear ISPs is convergence of the problem to a local minimum of the cost function.
The multiscale nature of our approach can in fact lead to convergence to a lower cost minimum

than would otherwise be the case. Finally, we can use the same information theoretic techniques

previously mentioned to quantify the reduction in uncertainty associated with our lower order

method.

The talk accompanying this abstract will provide a more detailed description and analysis of our

approach. We will demonstrate its utility using as an example a cross-borehole radar tomography

problem motivated by applications in environmental remediation and monitoring. As an example

of the typical performance of our approach for this application, the multiscale algorithm adaptively

converges to an estimate of the pro�le containing on the order of 300 B-spline functions when the

underlying discretization contains 4096 pixels representing a saving of about 92%. Despite the

smaller number of unknowns, the low order reconstruction is of comparable quality to its �ne scale
counterpart.
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A Uni�ed Statistically-Based Approach to the Modeling and Processing of EMI Time and
Frequency Domain Sensor Data

In the past decade, signi�cant e�ort has been devoted to the processing of electromagnetic induction
(EMI) data for purposes of buried object detection and characterization. Current EMI sensors
operate either in the frequency domain using a stepped frequency approach to probe the subsurface
or directly in the time domain. Time domain systems generally measure the transient response of
the earth and any embedded objects to pulsed input. The data collected by such sensors take the
form either of samples of the time response or integrals of the response over a collection of time
windows. In this paper, we describe a uni�ed approach to both the modeling and the processing
of data from these apparently dissimilar sensors.

One popular approach to EMI sensor modeling is to describe the response of the sensor in terms
of a superposition of decaying exponentials in time, or equivalently, one pole transfer functions in
frequency. The decay rates/pole positions can then be used to characterize the object. While
useful, this model fails to explicitly take into account spatial information which may be obtained
as the sensor collects data over a region above and surrounding the object. To overcome this
shortcoming, we propose a hybrid model. The spatial structure is captured using the technique
in Das et. al., (IEEE. Trans. Geoscience and Remote Sensing, 28, 278-287, May, 1990) while the
temporal/Fourier content of the data are represented using the exponential/single pole structure.
The result is a closed form model for the spatial-temporal and spatial-Fourier response of an EMI
sensor parameterized directly in terms of a small number of quantities, nine, which directly describe
the location, orientation, and class of the object under investigation.

Using this model, we will present a statistical signal processing framework for object character-
ization and sensor optimization. First, the Maximum likelihood estimator for the parameter vector
will be derived for swept frequency, sampled time, and integrated time sensors. We will describe the
implementation of the non-linear search routine required to determine these estimates. A Bayesian
classi�er will be employed to map the ML parameter estimates to object class. Processing results
will be provided using both synthetic data as well as real sensor data. Finally, using the asymptotic
properties of our estimator and standard decision-theoretic methods, we will discuss how the overall
modeling/processing approach can be of use to optimize sensor design. For example, our approach
provides a mechanism for determining the \best" frequencies or time gates to discern one object
from another.
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An important component associated with the GPR problem is the computation of the
scattered �elds produced by buried objects when illuminated by the radar source. The
choice of technique for computing these �elds is often driven by a variety of factors including
computational complexity and the exibility to handle easily a wide range of con�gurations
of scatterers. Based on the fact that objects of interest for many GPR applications have
relatively simple shapes such as cylinders and spheres, it is apparent that transition matrix
(T-matrix) approach is well suited to the GPR forward problem.

The T-matrix technique is based on the expansion of the �elds and the Green's function
in spherical (3D) or cylindrical (2D) harmonic series. Considerable work has focused on the
generation of eÆcient recursive T-matrix techniques for computing the scattered �eld from
a single, electrically large, dielectric object. The approach taken in these applications is to
tessellate the object into many smaller scatterers. Thus, even though the number of scatterers
is large, the order of harmonics used to expand the basis functions is small thereby keeping
the computational load relatively small. However, if one wants to �nd the scattered �eld from
multiple, electrically large, tessellated objects, the number of scatterers grows quite quickly
thereby increasing the complexity of the problem considerably. A natural alternative is to
treat each object as a single scatterer (i.e. bypass the tessellation) but increase the order
of the harmonic expansions for each object. Unfortunately, this approach is hindered by
diÆculties related to the slow convergence of the harmonic expansions.

Here, we present a modi�ed, stable recursive T-matrix algorithm to calculate the scat-
tered �eld from a heterogeneous collection of spatially separated objects based on these
higher order expansions. Motivated by the GPR problem, we consider the calculation of
the scattered �eld produced by a group of parallel cylinders buried in a lossy medium. In
the most general case, these objects can be dielectric or metallic, electrically small (fraction
of �) or large (1-2 �). The modi�cation, which will be described in the talk accompanying
this abstract, circumvents the slow convergence of the series by replacing the product of two
translation matrices with product of three such matrices two of which yield the identity.

In the talk we will also discuss the veri�cation of this algorithm against previously pub-
lished results for scattered �elds from multiple cylinders, compare the computational advan-
tages of this higher order technique relative to the tessellated approach, and provide examples
demonstrating the ability of this code to compute �elds for GPR-relevant scattering scenarios
such as mine detection and hazardous waste removal.

1The work of this author was supported in part DOE contract DE-FC07-95ID13395, NSF Grant MIP-

9623721, and by subcontract GC123920NDG from Boston University under the AFOSR MURI Program on

Reduced Signature Target Recognition



Simultaneous multiple regularization parameter selection by
means of the L-hypersurface with applications to linear inverse

problems posed in the wavelet transform domain
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ABSTRACT

In this paper, we introduce the L-hypersurface method for use in linear inverse problems. The new method is
intended to select multiple regularization parameters simultaneously. It is a multidimensional extension of classical
L-curve method and hence does not require any speci�c knowledge about the noise level or signal semi-norm. We
give examples of the L-hypersurface method applied to the linear inverse problems posed in the wavelet domain and
evaluate the performance of the new method on a signal restoration experiment.

Keywords: Inverse problems, wavelets, regularization parameters

1. INTRODUCTION

The term inverse problems refers to the estimation of an unknown quantity, called an object, from its noise corrupted
functionals. Such problems arise in a variety of �elds including image processing, medical imaging and geophysical
prospecting. For example, a common image processing problem which we explore later in this paper is that of
deconvolution where one observes a blurred and noise corrupted version of the original image and seeks to recover
the original. In this work, we consider the following discrete linear inverse problem

g = Hf + n (1)

where H is a known matrix representing the degradation, g is the vector holding the data, f is the desired object to be
estimated and n denotes zero mean white Gaussian noise. The problem of estimating f from g is said to be ill-posed
if the operator H is not invertible or its inverse is unstable.1,2 In such a case direct inversion is not advisable and a
unique and stable estimate f̂ is sought by incorporating some a priori information about unknown image f . Such a
technique is called regularization. The prior information is usually speci�ed in the form of a smoothness constraint
which is just some (semi)norm of f . The regularized solution is found by minimizing the following expression with
respect to f

J(f ;�) = kg�Hfk2 +�(�; f ) (2)

where � expresses the prior for f and is dependent on a set of parameters � = [�1; : : : ; �M]T (called regularization
or smoothing parameters). A typical example is �(�; f ) = �kLfk22 with L being a regularization operator (usually a
di�erential operator). In this case, � governs the tradeo� between the �delity to the data term and smoothness of
the solution term. Once the form of prior information (form of � in (2)) has been determined, the overall quality
of the estimate is a�ected only by the choice of regularization parameters and therefore the choice of regularization
parameters � is a crucial part of the inversion process.

Other author information:
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E.L.M.(correspondence): E-mail: elmiller@cdsp.neu.edu; WWW: http://claudius.cdsp.neu.edu/elmhome/; Telephone: (617) 373-8386;
FAX: (617) 373-8627
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The problem of choosing a suitable regularization parameter which would yield an estimate as close to the
original object as possible has received considerable attention in the past and is still an open problem. There are
methods which rely on prior information such as a bound on the (semi)norm of the signal or the noise level. A
well known example is the Morozov's discrepancy principle.2 On the other hand, methods such as Generalized
Cross Validation (GCV)3 and the L-curve4,5 do not require any side information. We note that all of the methods
mentioned above deal with choosing a single parameter. As more sophisticated inversion algorithms are developed,
the need for using multiple regularization parameters is becoming increasingly important. For example, in the
solution of image restoration problems posed in the wavelet domain one needs multiple regularization parameters
to capture the scale or orientation dependent structure of the underlying image.6 Another example is the inverse
problem of electrocardiography7 where one needs both temporal and spatial regularization constraints to obtain a
useful solution.

Extension of methods developed for a single parameter to choose multiple regularization parameters is often a
non-trivial task. In this paper, we introduce the L-hypersurface method for use in linear inverse problems which
require multiple regularization parameters. The L-hypersurface is based on the classical L-curve method. It is an
M dimensional function of the regularization parameters and provides signi�cant information about the likelihood
of a particular parameter set being optimum. In the next section, we provide some background information on the
L-curve method and then introduce the L-hypersurface method in Sect. 3. In Sect. 4, we present a brief introduction
to the solution of discrete linear inverse problems posed in the wavelet domain. In Sect. 5 we present result obtained
by applying the L-hypersurface to the linear inverse problems posed in the wavelet domain and then conclude the
paper in Sect. 6.

2. THE L-CURVE METHOD

A convenient tool for choosing a single regularization parameter which does not require any side information is the
L-curve method popularized by Hansen4,5 et. al.. The L-curve is simply a logarithmic plot of residual norm (the
�rst term on the r.h.s. of (2)) versus the log of the reconstruction (semi)norm (second term on the r.h.s. of (2))
for a set of admissible regularization parameters. In this way, the L-curve displays the compromise between the
minimization of these two quantities. It has been argued and numerically shown that the so called \corner" of the
L-curve, de�ned as the point with maximum curvature, corresponds to a point where regularization and perturbation
errors are balanced.4

In Fig. 1 we plotted a typical L-curve along with its curvature and the error between the original and restored
signals for a range of regularization parameters. The experiment for which the L-curve was computed was the
reconstruction of a 1-D signal using Tikhonov regularization with identity.1 The circle indicates the corner of the
L-curve de�ned to be the point with maximum curvature. The part of the L-curve to the left of the corner contains
a region where the regularization parameter is getting smaller and the error between the original and reconstructed
signals is dominated by the perturbation errors. The solution (semi)norm is very sensitive to small changes in
the regularization parameter indicating a noisy solution. On the other hand, the part of the L-curve to the right
of the corner is a region where the regularization parameter is gradually increasing and the residual norm is the
most sensitive to the changes in the regularization parameter. In this region, the restored signal is excessively
smooth. These two regions are clearly separated by the corner point, hence the corner corresponds to a point where
regularization and perturbation errors are approximately balanced. Supporting this observation, the corner of the
L-curve in this example indicates a point which is very close to the point where the error between the original and
restored signals is a minimum (bottom �gure in Fig. 1).

3. L-HYPERSURFACE: A NEW METHOD FOR SIMULTANEOUS DETERMINATION
OF MULTIPLE REGULARIZATION PARAMETERS

As mentioned in the introduction, in order to obtain a useful solution for the inverse problem of electrocardiogra-
phy,7 one needs both temporal and spatial regularization constraints. Facing the problem of choosing two or more
parameters simultaneously Brooks7 et. al. tried to extend the idea of L-curve by drawing the residual norm against
two side constraint norms. They named the resulting plot the \L-surface" (L-hypersurface). Although, they enjoyed
some success in choosing the regularization parameters, it was apparent that the interpretation of such a surface was
very di�cult.
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Figure 1. A typical L-curve, its curvature and error between original and restored signals. Circle indicates the
point with maximum curvature. f�(�) is the estimate of f using � as the regularization parameter.

Considering these di�culties, we propose using the Gaussian curvature of the L-hypersurface as a means to choose
multiple regularization parameters. To clarify this idea, consider the following inversion scheme:

f�(�) = argmin
f

(
kg�Hfk2 +

MX
i=1

�ikRifk
p
p

)
; (3)

where kRifk
p
p, 1 � i �M , are the constraints on the solution (semi)norm and �i are the corresponding regularization

parameters and 1 � p � 2. The cost function in (3) represents a multiply constrained least squares problem and
includes many popular image restoration schemes as its special cases. For example, by taking Ri = D(i) (i. e. the
ith order di�erentiation) and p = 2 we obtain the classical Sobolev regularization. The wavelet domain inversion
algorithm introduced by the authors is obtained if the problem is posed in the wavelet domain and the Ri are the
operators extracting the desired portions of the wavelet transform of the object f .6 For example, we can take R1

as the operator extracting the scaling coe�cients and R2 as the operator extracting the wavelet coe�cients for a
doubly constrained problem.

To construct the L-hypersurface, we �rst introduce the following quantities

f�(�) = argmin
f

J(f ;�) (4)

z(�) = logkg �Hf�(�)k22 (5)

xj(�) = logkRjf
�(�)kpp; j = 1; : : : ;M (6)

With the above de�nitions, the L-hypersurface is de�ned as a subset of RM+1 associated with the map S(�) : U !
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Figure 2. A typical L-hypersurface, its curvature and the error between the original and restored signals.

RM+1, � 2 U , U =
SM
j=1[aj; bj] such that

S(�) = (x1(�); : : : ; xM(�); z(�)) : (7)

In simple terms the L-hypersurface is a plot of the residual norm as a function of the constraint norms drawn in log
scale for a range of regularization parameters.

If the surface S de�ned above is smooth with no self intersections and has a de�nite tangent plane at all points
it is said to be regular.8 A regular surface possesses an interesting geometrical quantity called Gaussian curvature
which measures how much the surface is warped at a point. A plane has 0 Gaussian curvature while a sphere has
constant Gaussian curvature at all points. The Gaussian curvature reduces to the regular curvature for a 1-D curve.

Instead of considering S, we consider its Gaussian curvature �eld as a function of regularization parameters. This
approach is motivated by the analogous results for the L-curve method. If we consider the L-curve and its curvature
in Fig 1., we observe that the curvature plot provides the location of turning points which are practically the only
interesting points on the L-curve. Given the curvature plot we can easily determine the correct regularization param-
eter. Motivated by this fact, we will omit displaying the L-hypersurface itself. The reason is that the interpretation
of the curvature plot is much easier than the L-hypersurface and also the curvature plot provides an automatic way
of locating the regularization parameters if we de�ne the L-hypersurface selection of the regularization parameters
as the point with the maximum curvature on the Gaussian curvature plot. This is more easily understood by looking
at a typical L-hypersurface, as displayed in Fig. 2. In the leftmost plot in Fig. 2, we display the L-hypersurface for
a least squares problem with �rst and second order derivatives of the object as constraints. The middle and the
rightmost plots are the curvature of the L-hypersurface and the norm of the error between the original and estimated
objects. We observe that the points on the curvature plot where the curvature achieves a local maximum seems to
track the local minimum of the estimation error surface. Note that, locating the correct regularization parameters
by just examining the shape of the L-hypersurface is more di�cult.

By using elementary calculus, one can show that the L-hypersurface for the model problem in (3) is regular. The
Gaussian curvature of S can be easily computed given the �rst and second order partial derivatives of z(�) with
respect to xi(�), 1 � i �M , and is given by the following expression9

�(�) =
(�1)M

wM+1
jPj (8)

where w2 = 1 +
PM

i=1(
@z
@xi

)2, Pi;j =
@2z

@xi@xj
and derivatives are evaluated at q = (x1(�); : : : ; xM(�); z(�)). In the

next section, we present the application of the L-hypersurface method to the discrete linear inverse problems posed
in the wavelet domain.

4. WAVELET DOMAIN ADAPTIVE EDGE-PRESERVING IMAGE RESTORATION

Recently, there has been much interest in the wavelet domain formulation and solution of linear inverse problems,
especially in the area of image processing. Part of the reason is the collection of mathematical results indicating that
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wavelets are especially useful for representing functions that contain discontinuities. The wavelet transform10 of an
object produces a set of scaling coe�cients and a set of wavelet coe�cients. The scaling coe�cients are obtained by
�rst �ltering the object by a low pass �lter and then down sampling the resulting signal. The wavelet coe�cients
are obtained by �rst �ltering the object by a high pass �lter and then down sampling. Wavelet coe�cients obtained
in this way are close to zero at regions where the object is smooth and signi�cant only at regions where there is a
high intensity change. On the other hand, the scaling coe�cients appear to be a low resolution representation of the
original object.

The wavelet domain formulation of a linear inverse problem presents an interesting challenge since the scale-space
structure of the object may be highly irregular. A direct result of this phenomena is that one typically needs more
than one regularization parameter to adapt to the changes in the scale-space structure of the object. We can represent
the problem in (1) in the wavelet domain as6

Wdg =
�
WdHW

T
h

�
Whf +Wdn

ĝ = Ĥf̂ + û; (9)

where Wd andWh are wavelet transform matrices with possibly di�erent scaling functions, ĝ, f̂ and n̂ are the vectors
holding the scaling and wavelet coe�cients of the data, the original image and the disturbance, Ĥ is the wavelet
domain representation of our linear degradation operator H and WT

hWh = I follows from the orthogonality of the
wavelet transform. Note that, since wavelet transform is orthogonal û is again Gaussian with zero mean and variance
�2.

In previous work,6 the authors introduced a wavelet domain image restoration scheme where an estimate of f is
found by minimizing the following cost function

J(f̂ ; �) = kĝ� Ĥf̂k22 +
X
j

�jkR̂j f̂k
p
p; (10)

where R̂j are the operators extracting the desired portions of the wavelet transform (such as scaling coe�cients) and
1 � p � 2. The lp norm of the wavelet coe�cients are used as the regularization function since the recent results in
the area of image coding and denoising suggest that the distribution of wavelet coe�cients are notably non-Gaussian
hence using p < 2 is more appropriate.11

There are a variety of methods for structuring the regularizer through the choice of the matrices R̂j in (10).
For example, we may employ a Besov regularization scheme for which the fundamental assumption is that the
regularization parameter increases exponentially with scale as we go to �ner scales in the wavelet domain. That is,

�j = �12
��(j�j0); j0 � j � J � 1; (11)

where j0 is the lowest (i.e. coarsest) and J � 1 the highest scales of interest. In this case we need to determine two
regularization parameters, �0 and �1 for the scaling and coarsest scale wavelet coe�cients respectively (assuming

that � and p are pre-speci�ed). Correspondingly, we have two R̂j matrices: R̂1f is the vector containing scaling

coe�cients and R̂2f is the vector of wavelet coe�cients. On the other hand, a level dependent regularization scheme
can be developed. In this case we need to choose M +1 parameters simultaneously and we have M +1 R̂j matrices:

R̂1f is the vector of scaling coe�cients and each of the vectors R̂jf , 2 � j �M + 1 contains the wavelet coe�cients

at scale j. We note that an e�cient optimization method exists to compute the estimate f̂� once the regularization
parameters are determined.6

Both of the above cases can be handled by the means of the appropriate L-hypersurfaces. For the implementation,
we only need a set of derivatives as given in (8). Formulas for these quantities are provided in appendices.

5. SIMULATION STUDY

In this section, the performance of the L-hypersurface method for choosing two regularization parameters, � =
[�1; �2], will be measured by the classical e�ciency EL

12

EL =
min� kf�(�) � fk2
kf�(�L)� fk2

; (12)
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Figure 3. From left to right: A typical L-hypersurface for the model experiment, the error between original and
restored signals and the histogram of EL values over 100 experiments.

where �L is obtained by the L-hypersurface method and the vector of optimal regularization parameters � are those
minimizing the error between the original and the estimated objects. A value close to one obtained for EL indicates a
performance close to optimal while a value for EL close to zero indicates bad performance. The global performance of
the L-hypersurface method was evaluated by observing the values of EL obtained on 100 experiments which di�ered
only by simulated noise. These 100 e�ciency values were then used to create a histogram by partitioning the range
[0; 1] into ten intervals of equal length. We believe that such a histogram is a good summary of the performance of
the L-surface method.

The signal to be reconstructed is the 256 point \Blocks" sequence extracted from Donoho's Wavelab software
package.13 It was degraded by a Gaussian convolutional kernel with � = 2:0. Zero mean white Gaussian noise
was added to obtain a SNR of 30dB. The inversion scenario in (10) was implemented with R1 being the operator
extracting the scaling coe�cients and R2 being the operator extracting the wavelet coe�cients. We used p = 1:0
norm and set � = 1:0. The signal was decomposed by a 5-level wavelet decomposition with Haar wavelets. For the
calculation of Gaussian curvature, we used the derivatives obtained analytically.

Fig. 3 summarizes the results obtained in this experiment. The top leftmost plot shows the Gaussian curvature
plot for a typical experiment. In the middle, we have the surface obtained by plotting the norm of the error between
original and reconstructed signals. There is an extended ridge along the �1 direction in this plot. This ridge seems
to track the points where the error between the original and restored signals is locally minimum. Such behavior here
is not speci�c to this experiment but rather general. We performed numerous experiments by changing the signal,
degradation or noise level and obtained exactly the same results.

In the rightmost �gures, we plot the histograms of EL values obtained on 100 experiments. From this plot, we
observe that the regularization parameters obtained by the L-hypersurface method produce restorations which are
almost as good as the ones obtained by the optimal method.

Figure 4 shows an example of the L-hypersurface method applied to an image restoration experiment. As seen
in Fig 5, the original Mandrill image was blurred by a Gaussian kernel of width 2 pixels and then zero mean
white Gaussian noise was added to the blurred image to set the SNR at 30dB. We restored the degraded image
by our multiscale image restoration scheme with p = 1:0 norm. However, in this case we utilized a 3-level wavelet
decomposition and assigned a di�erent regularization parameter for each scale in the wavelet domain. For scaling
coe�cients we used �0 = 10�5 as the regularization parameter. Figure 4 shows the L-hypersurface obtained for this
experiment. The L-hypersurface is a function of three regularization parameters. Therefore, each �gure in Figure 4
shows a slice of the L-hypersurface with the regularization parameter corresponding to the lowest scale being constant.

This example shows that, the L-hypersurface tracks well the minima in the RMSE (RMSE =
q

1
N jjf � f�(�)k22,

N=number of pixels in the image f ) surface along which the restoration error is close to being minimum. Higher
dimensional L-hypersurfaces can be obtained by just augmenting the parameter set.
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Figure 4. L-hypersurface cuts and corresponding RMSE plots for an image restoration experiment.

6. CONCLUSIONS AND DISCUSSION

In this paper, we presented a new method for choosing multiple regularization parameters simultaneously without
using any side information. The method is called the L-hypersurface and is based on the popular L-curve method.
Instead of directly looking at the surface obtained by plotting the residual norm against the side constraint norms,
we look at its Gaussian curvature. From numerical examples, it was seen that the points where Gaussian curvature
reaches a local maxima appear to be closely tied to the local minima of the mean square error surface. We choose
the regularization parameters as those maximizing the Gaussian curvature of the L-hypersurface. Monte Carlo
simulations show that this selection method is indeed very good and produces results comparable to the optimal
method.

In the context of image restoration, multiple parameter regularization problems arise quite naturally. For example,
a simple restoration strategy which minimizes the norm of the gradient of an image as the side constraint could in
fact use two parameters corresponding to the gradients in the horizontal and vertical directions because those might
be quite di�erent (for example the image under consideration might be a layered in horizontal direction while being
smooth in vertical direction). Another example would be a wavelet transform domain restoration algorithm where
each subband is regularized di�erently as described in Sect. 4. We hope that the L-hypersurface method will be
actually useful in these cases.

As the future work, we will consider the computational e�cient implementations of the L-hypersurface and
investigate the theoretical properties of the L-hypersurface.
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Figure 5. From left to right: Original, blurred and the restored MANDRILL images. The regularization parameters
were obtained by the L-hypersurface method.

APPENDIX A. FORMULAS FOR THE IMPLEMENTATION OF THE
L-HYPERSURFACE FOR THE INVERSE PROBLEMS POSED IN THE WAVELET

DOMAIN

A.1. Characterization of Solutions

In this section, we present the necessary formulas for the implementation of the L-hypersurface method for wavelet
domain multiscale object restoration algorithm (10). The formulae are given for the case of a 1-D signal but extension

to 2-D signals is straightforward. We begin with de�ning the solution f̂�(�).

U = diag

2
64 �i�
jf̂�i j

2 + �

�1�p=2
3
75 ; �i = �j if i 2 Ij (13)

ĤT
�
Ĥf̂� � ĝ

�
+
p

2
Uf̂� = 0; (14)

where Ij is the index set for the wavelet coe�cients at scale j, f̂�i is the ith element of the vector f̂� and � > 0
is a small stabilization constant. Note that, the equations (14) do not represent an exact solution to (10). The lp
norm term at the right hand side of (10) has been slightly perturbed to avoid indi�erentiability of the cost function.
Equation (14) give the conditions that must be satis�ed by f�. An iterative algorithm based on (14) can be developed

to approximate the solution f̂�.6

A.2. Formulas for the L-hypersurface

By (8), the only quantities that we need to compute the Gaussian curvature of the L-hypersurface at a point
� = (�1; �2; : : : ; �M) are the �rst and second order partial derivatives of the residual norm z(�) with respect to M
constraint norms xi(�), 1 � i �M . Since z(�) is not explicitly de�ned in terms of the constraint norms, we obtain
the necessary derivatives by implicit di�erentiation. We �rst de�ne the following quantities:

J =

2
64

@x1
@�1

: : : @xM
@�1

...
. . .

...
@xM
@�1

: : : @x1
@�M

3
75 ; D2

�
=

2
664

@2

@�2
1

: : : @
@�1@�M

...
. . .

...
@2

@�M@�1
: : : @2

@2�M

3
775 ; d� =

2
64

@
@�1
...
@

@�M

3
75 : (15)

Note that, d� and D2
�

are operators which represent �rst and second order di�erentiation with respect to the
variables � = [�1; : : : ; �M]T . By the de�nitions above, the partial di�erentials of z with respect to x are given by:

@z

@xi
= dT

�
zJ�1ei
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@2z

@xi@xj
= eTj J

�TD2
�
zJ�1ei � dT

�
zJ�1

2
64

eTj J
�TD2

�
x1

...
eTj J

�TD2
�
xM

3
75J�1ei; (16)

where ei denotes the unit vector with all zero entries except for the ith one and 1 � i; j � M . Remembering the

formulasPi;j =
@2z

@xi@xj
and w2 = 1+

PM
i=1(

@z
@xi

)2 we realize that the curvature at the point � can be readily computed

by just plugging in the values @z
@�i

, @2z
@�i@�j

, @xm
@�i

, @2xm
@�i@�j

into the equations in (16). These partial derivatives can be

calculated in a straightforward but tedious way from (14).
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High resolution processing algorithms for near �eld object
detection: Performance bounds and sensitivity analyses1

Adnan S�ahin Eric L. Miller
Center for Electromagnetic Research, 235 Forsyth Building

Northeastern University, Boston, MA 02115
Telephone: (617) 373-8386
Telefax : (617) 373-8627

email: adnan@cdsp.neu.edu

A common problem in many application areas is the detection and localization of targets
with known structure based on observations of scattered electromagnetic or acoustic �elds.
In recent years, there has been considerable work in methods for solving such problems in
a manner which bypasses the need to solve a large, ill-posed inverse scattering problem.
These processing methods extract from the data a small number of geometric parameters
describing the target distribution. In previous work, we have considered algorithms of this
type for locating targets in the near�eld of a linear receiver array. Initial results based on
the use of high resolution array processing techniques indicate that these methods provide
highly accurate localization of arbitrary collection of buried metallic and dielectric objects.

In this paper, we examine issues of performance and sensitivity analysis associated with
these processing methods. Because our techniques are statistical in nature, we are able
to develop explicit expressions for the error variance (or bounds on this quantity) which
provide hard limits on the best performance achievable from the use of these array processing
techniques. We show that these bounds are easily and elegantly obtained when one employs
a T-matrix model to describe the scattering processes.

A key assumption underlying the success thus far of our methods is that we know the
number of targets for which we are looking as well as their material properties. In this paper,
we explore the sensitivity of our localization techniques to show how our detection schemes
behave when the actual parameters are di�erent from the ones used in the algorithm. For
example, we determine the degradation in performance when the actual shape of the target
di�ers from the one the algorithm assumes. Of particular interest are sensitivity to changes in
target shape and material properties. We establish analytical bounds for sensitivity against
changes in these parameters, and verify these bounds with Monte-Carlo runs.

In addition, we determine "detectability" of targets for a given geometry. For example,
we �nd the minimum radii of objects for a certain soil type or minimum distance between
two objects to achieve a particular detection probability for a �xed false alarm rate. In the
talk, we will show examples of sensitivity analyses and detectability problems for multiple
mine-like and drum-like objects.

1This work was supported by the US Army Research OÆce MURI grant #DAAG55-97-1-0013 and the

US Dep. of Energy Grant DE-FG07-97ID13566
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In recent years there has been considerable work in the development of inversion methods
which, rather then forming an image of a medium, extract directly from the data informa-
tion relevant to the distribution of desired targets located in the region under investigation.
One such application are of these methods is the detection and localization of buried land-
mines from low frequency electromagnetic induction (EMI) measurements. In this work we
consider the development of inversion techniques adapted to the processing of data from an
EMI array which surveys a region in a progressive manner staring at a known position and
moving in a straight line to a �nal location. The use space diversity coupled with advanced
signal processing techniques will be shown to improve detection/false alarm performance and
localization accuracy relative to a more typical mono-static EMI system.

We begin by developing a forward model relating the observed data directly to the per-
tinent physical characteristics of the targets of interest including size, shape, orientation,
and electromagnetic properties. Our model is obtained using a reciprocity argument and
the full three dimensional Maxwell's equations. For simplicity, we restrict our attention to
a linearized model obtained under the �rst Born approximation. The �nal measurement
model expresses the data at the receiver array as a linear combination of physically derived
target signature vectors. The vectors carry information about the geometric structure of the
buried objects. The weights represent the relative contrast of the objects and the number of
vectors is equal to the number of mines in the receiver �eld of view.

This forward model lends itself particularly well to the analysis of the mine detec-
tion/localization problem and to the synthesis of adaptive algorithms for identifying buried
mines. We will show how the above model can be used to provide quantitative results on the
manner in which detection and false alarm rates and localization accuracy is dependent on
the size, orientation, and position of the mines relative to the sensor array. We demonstrate
how this analysis and the scattering model can be used as the basis for the synthesis of
algorithms for performing mine detection and localization. Because the array is sensitive to
mines in a full 3D volume, we can obtain detection and localization information before the
array passes directly over or adjacent to the mine. We will discuss algorithms which provide
this forward looking information in conjunction with accuracy estimates both of which are
progressively re�ned and updated as the EMI array moves toward the buried object.
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Motivations and Goals

• System types
– Multi-monostatic such as GEM-3
– Multi-multistatic such as FAR

• Algorithm characteristics
– Statistically-based
– Exploit spatial, spectral, and temporal diversity
– Recursive implementation 
– Employ simplest possible physical model

Development of detection, localization, and 
characterization methods for buried UXO from 

array-based EM and GPR sensing systems
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Technical approach: Overview
• EM projects

– Recursive detection and localization
– Spatial/spectral analysis for orientation 

estimation and target characterization

• Radar projects
– Matched field methods for multi-target 

detection and localization
– Detection and characterization from FAR data
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EM Project 1: 
Recursive, Model-Based Detection and 

Localization
EM Sensor array

t0 t2t1

Mine

• Collect data one stop at a time
• Algorithm Goals

– Detect as soon as possible
– Localize

• Methods &  Models
– Physical target models 
– Recursive, stochastic 

clutter models
– Statistical methods for 

detection, localization
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Processing flow
Correlated data

Kalman filter based
detector

Models

Nonlinear least squares
estimator

• Object Present?
• If yes:

Whitened innovations   
Rough location

•Estimate of object location
•Estimate of object shape parameters
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Example
• System

– Single transmitter
– Ten receivers on either side (± 50cm)
– Scan 75 positions between 0 and 3.7 m

• Randomize over mine location and size
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Example (cont)

• Detection
– Based on single, nominal mine size and burial 

depth
– Coarse localization: 20 cm x 20 cm spacing

• Localization / classification
– Used detection results to generate initial 

position guess
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Why Whiten?

Raw Data Filtered Innovations
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Performance on this case

Parameter True Value (cm) Estimate (cm)

Major Axis Length 10.98 10.93

Minor Axis Length 4.33 4.39

Down Track Position 265.83 265.83

Cross Track Position 21.16 21.15

Depth Below Array 18.63 18.64
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Errors in center estimates

"E 

17 

16 

15 

14 

13 

12 

11 

10 

6 g 
u 

10 40 
Abe:Jiuie enor in obje::d oenier (em) 



1/3/2002 ELM: AEMW 99 11

EM Project 2:
UXO Orientation Estimation and 

Classification
• Goals 

– Estimation of target orientation and spectral dipole 
moment functions from multi-frequency spatial EM 
data

• Hypotheses/Approach
– Classification from orientation-independent dipole 

moment spectrum
– Estimate orientation explicitly
– Entirely model based

• Team: NU, OU, Geophex
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The model

[ ]xDRRd TTy =

• y      = datum at location r and frequency ω
• x, d = 3´1 vectors of (x,y,z) field components dependent on 

positions of transmitter, receiver and mine
• R      = 3´3 rotation matrix encoding orientation of object
• D = diagonal matrix holding frequency dependent 

dipole moments
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The Processing
• Goals:

– Determine two unique elements per frequency of D
– Determine two orientation angles buried in R

• Method:
– Estimation of dipole moments = linear MAP problem 
– Estimation of angles = nonlinear ML problem
– Performance analysis: CRB readily available
– Lots of structure. 

• Looking into efficient implementation

– Also looking into sub-optimal, still faster methods
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Example

1 meter 

1 meter

40 cmRotated spheroid
with “reasonable”
aspect ratio

• 20dB SNR
• 10 x 10 grid

of measurements
• Non-permeable
• 20 log. Spaced

frequencies 
between 1 Hz
and 20kHz

• Assume position
previously determined
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Dipole moments
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Cost versus rotation angles

y / p

f / p
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Estimated dipole moments

Frequency Frequency

10
0

10
1

10
2

10
3

10
4

10
5

-0.5

0

0.5

1

1.5
Est. Trans. dipole moment function

10
0

10
1

10
2

10
3

10
4

10
5

-0.2

0

0.2

0.4

0.6

10
0

10
1

10
2

10
3

10
4

10
5

-0.5

0

0.5

1

1.5
Est. Long. dipole moment function

10
0

10
1

10
2

10
3

10
4

10
5

-0.2

0

0.2

0.4

0.6

Long real

Long imag

Trans. real

Trans. imag



1/3/2002 ELM: AEMW 99 18

Reconstructed object
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Radar Project 1: 
Array Processing for Multi-Object 

Near-Field Detection
• Goals

– Employ high resolution array processing methods to 
detect multiple objects in near field of antenna array

• Hypotheses/approach
– Use of model-based array processing would allow for 

discrimination of closely spaced objects
– Matched field processing with various forward solvers 

assuming homogeneous medium 
– Closed form CRB analysis

• Team: NU
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Experimental Setup

Well separated metal objects Closely spaced metallic objects
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Simple physical model

Well separated: Easily locates both scatterers

Closely spaced: Cannot see separate objects
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Advanced model, close objects

Both objects well localized
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Radar Project 2:
FAR Processing

• Goals
– Detection and localization of buried objects 

from FAR-type data
• Hypotheses/approach

– Detection can be done using stochastic, 
recursive change detection methods

– Localization using delay estimation based on 
hybrid ray-optics/FDTD model

• Team: NU and GeoCenters
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FAR System Overview 

x

z

Transmitter Receiver

y

Direct path

Ground bounce
pathFocus path
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Layer-based detection

• Target:
• Elliptical anomaly with correlated structure

across layers
• Approach: 

• Statistical model for background texture/clutter
• Recursively whiten data and identify cross-layer

anomalies
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Localization and classification
• Model

– Received signal superposition of delayed and scaled 
base signal with delays coming from half-space ray-
optics approximation

– Base signal is target dependent and calculated from 
FDTD simulation

• Processing
– Time delay estimation gives target location
– Multiple model approach gives target type
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Conclusions
• EM Projects

– Demonstrated utility of model based, statistical 
methods for detection and localization

– Near real time implementation possible

• Radar projects
– Demonstrated feasibility for finding multiple 

objects in near field of array
– Implementable approach to FAR detection, 

localization, and classification



1/3/2002 ELM: AEMW 99 28

Next Steps and Transition
• EM

– Project 1: Verify using data from array-based system
– Project 2: Continued work using GEM-3 data
– Goal: merge the two for overall approach to EM ATR 

• Radar
– Project 1: 

• Many extensions (3D models, include interface, clutter models, 
unknown object characteristics ...).  

• Requires       d   ’s and �/�
– Project 2: Just getting off the ground
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The Processing
• Estimate unique elements of the symmetric matrix 

B = RTDR.
– Small (6x6) linear least squares estimation problem
– Closed form performance analysis 

• From estimate of B, determine dipole moments (2) 
and rotation angles (2)
– Can write dipole moments as function of angles
– Therefore solution = 2D non-linear least squares 

estimation problem for angles.
– CRB analysis easily available
– Also quick
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THE SOLUTION OF NON-HERMITIAN SYSTEMS WITH

MULTIPLE RIGHT-HAND SIDES∗

MISHA KILMER† , ERIC MILLER‡ , AND CAREY RAPPAPORT‡

SIAM J. SCI. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 23, No. 3, pp. 761–780

Abstract. In this work we consider the simultaneous solution of large linear systems of the
form Ax(j) = b(j), j = 1, . . . ,K, where A is sparse and non-Hermitian. We describe single-seed
and block-seed projection approaches to these multiple right-hand side problems that are based on
the QMR and block QMR algorithms, respectively. We use (block) QMR to solve the (block) seed
system and generate the relevant biorthogonal subspaces. Approximate solutions to the nonseed
systems are simultaneously generated by minimizing their appropriately projected (block) residuals.
After the initial (block) seed has converged, the process is repeated by choosing a new (block) seed
from among the remaining nonconverged systems and using the previously generated approximate
solutions as initial guesses for the new seed and nonseed systems. We give theory for the single-seed
case that helps explain the convergence behavior under certain conditions. Implementation details
for both the single-seed and block-seed algorithms are discussed and advantages of the block-seed
algorithm in cache-based serial and parallel environments are noted. The computational savings of
our methods over using QMR to solve each system individually are illustrated in two examples.

Key words. QMR, projection, Krylov subspace, iterative methods, block Krylov

AMS subject classifications. 65F10, 65N22

PII. S1064827599355542

1. Introduction. In many applications one desires the solution of multiple lin-
ear systems of the form

Ax(j) = b(j), j = 1, . . . ,K,(1.1)

involving the same N ×N coefficient matrix A but K different right-hand sides b(j),
all of which are available simultaneously. Such problems arise, for instance, in the
numerical solution of frequency-domain electromagnetic wave scattering; here, the
right-hand sides might correspond to incident fields over the scatterer induced either
by plane waves at various angles of incidence or by excitation sources at different
locations.

Systems involving large, sparse matrices make good candidates for solution by
iterative Krylov subspace methods since storage is kept to a minimum and matrix-
vector products can be done efficiently. However, the naive approach of solving each
of the K linear systems independently using a Krylov subspace method does not take
advantage of the fact that the b(j)’s, and hence the x(j)’s, may be closely related
due to the underlying physical nature of the problem. By closely related, we mean
that the solution to the jth system has large components in the initial directions
of the k-dimensional (k � N) Krylov subspace generated from one of the other
systems. Projection-type techniques for both the Hermitian and non-Hermitian cases,
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discussed in more detail below, that specifically exploit such shared information have
been proposed (e.g., see [5, 26, 24] and the references therein).

Another alternative is to use a block Krylov subspace algorithm to solve the sys-
tems simultaneously [16, 23, 4, 8, 15]. Essentially these methods seek solutions in block
Krylov subspaces, or some deflated version thereof, generated by the matrix A and
the N ×K matrix R = B−AX0; here the columns of B are the b(j) and the columns
of X0 are the initial estimates for each of the systems. However, this approach can
be more expensive in terms of storage than projection techniques because the length
of the recurrences to update the iterates depends on the number of right-hand sides,
or, in the case of deflation [8], the number of right-hand sides corresponding to the
deflated Krylov sequences. Also, if a deflation technique is used, a deflation tolerance
must be specified in advance, and we have found in experiments that the performance
and convergence of the systems depend in a somewhat unpredictable manner on this
value. On the other hand, block Krylov subspace algorithms have the advantage that
they are better suited to parallelism [17, 14, 15] and make use of higher level BLAS [2].
Therefore, in this paper we develop new single and block-seed projection approaches
based on the QMR and block QMR algorithms, respectively; our block-seed method
exploits the best properties of the block QMR algorithm while preserving the basic
properties of our sequential projection technique. To our knowledge, ours is the first
block-seed projection algorithm for non-Hermitian linear systems with multiple right-
hand sides; in particular, as our algorithm is built around the BL-QMR algorithm of
[8], it incorporates a deflation strategy.

Specifically, the idea of a projection technique is to first select one of the systems
as “seed” and solve it by an iterative Krylov subspace method. As the relevant
subspaces are generated, the approximations to the other systems are simultaneously
updated by projecting the residual onto a particular subspace and by either enforcing
a Galerkin-type condition [11, 25] or minimizing the projected residual [24]. Such
methods are sometimes referred to as Lanczos–Galerkin approaches [21].

Smith [25] and Joly [11] both consider a projection approach based on BiCG for
nonsymmetric A. In [11] a similar approach for CGS is also given. However, the BiCG-
projection approach can exhibit the potentially erratic convergence behavior observed
when applying BiCG to a single linear system (see the results in [24]). Simoncini and
Gallopoulos [24] also present an approach to solving (1.1) when A is nonsymmetric.

Our single-seed projection algorithm is most similar in concept to the project-
minimize approach in [24]. However, as a result of the underlying unsymmetric Lanc-
zos process, we do not need to store the basis vectors, we do not need to predetermine
a subspace dimension, and we show that the approximate solutions and residuals to
the nonseed systems are cheaply computed and available at every stage of the algo-
rithm because they are updated with short-term recurrences. Since we are minimizing
quantities rather than enforcing Galerkin conditions, the convergence behavior should
be less erratic than methods based on the latter. As noted and as we illustrate in The-
orem 3.4, the success of our single-seed method depends on the closeness, in the sense
described above, among the right-hand sides. The block-seed approach we introduce
here is more efficient when the right-hand sides are not all close.

This paper is organized as follows. In section 2, we give the necessary background
on the QMR approach. We give an outline of our single-seed projection approach
and discuss its convergence in section 3. Background on the block QMR algorithm is
presented in section 4. The block variant of our QMR-projection algorithm is reported
in section 5, and related computational issues are discussed in section 6. Section 7
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gives numerical results, and section 8 reports conclusions and future work.

2. Background: The QMR algorithm. The quasi-minimal residual (QMR)
algorithm was introduced by Freund and Nachtigal in [9]. The original algorithm
was based on three-term recurrences. In [10], the authors proposed a mathematically
equivalent algorithm which employed coupled two-term recurrences. Since the latter
variant has been found to be more numerically stable for solving linear systems, in
numerical experiments we use this implementation. However, to simplify the notation
in this section and in section 3, and to be consistent with the notation in section 5,
we will follow the notation in [9]. Further, for simplicity, we consider only the version
without look-ahead but note that our algorithm could be adapted to account for
look-ahead.

In the remainder of the paper, the notation ‖·‖ always refers to the Euclidean norm
‖ · ‖2. The superscript T is used to denote the transpose operation, and superscript
∗ is used to denote the conjugate transpose operation.

A Krylov subspace of dimension k generated by a matrix G and a vector q is
defined according to

Kk(G, q) = span{q,Gq,G2q, . . . , Gk−1q}.

The QMR algorithm is a Krylov-subspace-based iterative method that can be used
to solve non-Hermitian linear systems of the form Ax = b, A ∈ CN×N . At the kth
iteration, the current solution estimate has the form

xk = x0 + Vkzk,(2.1)

where x0 denotes the initial guess and Vk = [v1, v2, . . . , vk] is an N × k matrix whose
columns are basis vectors for Kk(A, v1) with v1 = r0/‖r0‖ and r0 = b − Ax0. The
length k vector zk is chosen as the solution to a particular minimization problem, as
discussed below. Those basis vectors are generated via the nonsymmetric Lanczos
process (see [22]) and are constructed to be biorthogonal to vectors wi, i = 1, . . . , k,
which form a basis for Kk(A

T , w1).
1 The columns of the N ×k matrix Wk are the wi.

From biorthogonality it follows that

WT
k+1Vk+1 = Dk+1, Dk+1 = diag(δ1, . . . , δk+1), δi �= 0.(2.2)

Also as a result of the Lanczos algorithm we obtain the relation

AVk = Vk+1T̄k,(2.3)

where T̄k is a (k+1)× k tridiagonal matrix. Using (2.1), (2.2), and (2.3), and setting
β = ‖r0‖, at the kth iteration the residual, rk = b−Axk, is given by [22]

rk = Vk+1(βe1 − T̄kzk),(2.4)

where e1 denotes the first Cartesian unit vector. Since the columns of Vk+1 are not
orthonormal,

‖rk‖ ≤ ‖Vk+1‖‖βe1 − T̄kzk‖.

1Here we always take w1 ≡ v1, but note that other choices are possible. A version of the algorithm
is also possible using Kk(A∗, w1) for the second Krylov subspace.
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The QMR algorithm determines zk by minimizing the norm of the quasi-residual term
[9]; that is,

zk = arg min
z∈Ck×1

‖βe1 − T̄kz‖.

We make the following alternate observation. From (2.4) and using biorthogonal-
ity,

‖D−1
k+1W

T
k+1rk‖ = ‖βe1 − T̄kzk‖.

Thus, the zk which defines the kth QMR iterate can also be thought of as the one that
minimizes the norm of the residual projected onto a smaller dimensional subspace. We
will make use of this alternate definition of the QMR iterates in subsequent sections.

3. The single-seed QMR-projection algorithm. In this section we describe
a single-seed QMR-projection algorithm for solving linear systems of the form (1.1).
Our algorithm proceeds as follows. First, we select one system, say, system j, to serve
as “seed” and apply QMR (without look-ahead) to the seed system. In the following,

we use rj,l0 to denote the initial residual to system l, where l denotes the index of any

of the nonconverged systems given the starting guess xj,l
0 . We use rj,lk to denote the

residual of system l after k iterations. Since different choices of seed lead to different
Krylov subspaces and hence different iterates, the superscript j is used to denote
that this is the residual at the kth iteration for system l when system j was used as
seed. By the beginning of the kth iterate, QMR has generated biorthogonal bases
for two k-dimensional Krylov subspaces, Kk(A, rj,j0 ) and Kk(A

T , rj,j0 ). We denote the
respective bases by the vectors vj,i and wj,i, i = 1, . . . , k: the subscript j is used to
indicate that this particular set was generated using system j as seed. These vectors
are the columns of the N ×k matrices Vj,k and Wj,k, respectively. The corresponding
(k+1)×k tridiagonal matrix is denoted as T̄j,k (compare to (2.3)). By the end of the
kth iterate, QMR has also generated the unnormalized versions of the vectors vj,k+1

and wj,k+1 for use in the (k + 1)st iteration.

Let us comment on the values of xj,l
0 . If we suppose that j was the seed system

and converged after m steps and that the index of the next seed system is j∗, then

we set xj∗,l
0 = xj,l

m for all indices l such that system l has not already converged.
In the previous section, we have seen that the kth iterate corresponding to the

seed system is given by

xj,j
k = xj,j

0 + Vj,kz
j,j
k with zj,jk = arg min

z∈Ck×1
‖βe1 − T̄j,kz‖.

Now we also want the kth iterate of the (nonconverged) nonseed system, say, system

l, to lie in xj,l
0 +Kk(A, rj,l0 ), in other words,

xj,l
k = xj,l

0 + Vj,kz
j,l
k , l �= j.(3.1)

Next we must decide how to define zj,lk . From (2.3) (with Vj,k in place of Vk) and
(3.1),

rj,lk = b(l) −Axj,l
k(3.2)

= rj,l0 − Vj,k+1T̄j,kz
j,l
k .
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Therefore, using biorthogonality,

‖D−1
j,k+1W

T
j,k+1r

j,l
k ‖ = ‖D

−1
j,k+1W

T
j,k+1r

j,l
0 − T̄j,kz

j,l
k ‖.

Finally, we use the above equality to determine zj,lk :

zj,lk = arg min
z∈Ck×1

‖D−1
j,k+1W

T
j,k+1r

j,l
0 − T̄j,kz‖.(3.3)

3.1. Computational issues. Let us sketch how to efficiently compute the it-
erates and residuals of the nonseed systems. More details can be found in [13]. As
above, we will use the index l to denote an arbitrary nonseed system and j to denote
the seed system.

Let the QR decomposition of T̄j,k be

T̄j,k = Q∗
j,k

[
Rj,k

0

]
,

where Qj,k is a product of Givens rotations and Rj,k is k × k upper triangular with
upper bandwidth 2. It can be shown [13] that using the QR factorization to solve
(3.3) results in the easily solved system

zj,lk = R−1
j,kt

j,l
k ,(3.4)

where tj,lk differs from tj,lk−1 only in its last entry, which we shall denote by yj,lk . The

norm of the projected residual in (3.3) is given by the scalar |τ j,lk+1|. Further, τ
j,l
k+1 and

yj,lk can be updated from γj,l
k+1 and τ j,lk with δj,k ≡ wT

j,kvj,k:[
yj,lk

τ j,lk+1

]
=

[
cj,k sj,k
−s̄j,k cj,k

][
τ j,lk

γj,l
k+1

]
with γj,l

k+1 ≡
1

δj,k+1
wT

j,k+1r
j,l
0 ,(3.5)

where cj,i ∈ R, sj,i ∈ C, c2j,i + |sj,i|2 = 1.

As in equation (4.8) of [9], we define Pj,k = [pj,1, pj,2, . . . , pj,k] ≡ Vj,kR
−1
j,k . Since

Rj,k is upper triangular with bandwidth 2, there is a short-term recurrence relation
for the pj,k [9]. Using (3.1) and (3.4), the kth iterate of the lth system is given by

xj,l
k = xj,l

k−1 + yj,lk pj,k.(3.6)

From this, we derive an iterative update for rj,lk that does not require any additional
matrix-vector products per iteration as follows.

Lemma 3.1. The residual at the kth iteration corresponding to the lth system is
given by

rj,lk = rj,lk−1 − yj,lk fj,k, where fj,k ≡ Apj,k,

and can be computed in O(N) flops.
Proof. The proof follows from (3.6), the bandedness of Rj,k, and the definition of

pj,k above. (A detailed proof can be found in [13].)

3.2. Seed selection. Clearly, the success of our QMR-projection approach at
reducing the total number of matrix-vector products needed to solve all the systems to
the desired tolerance depends on which and in what order systems are selected as seed.
We use the approach in [24]; namely, we choose the seed index j such that the norm of
the residual of the corresponding system is larger than all the remaining nonconverged
systems. Developing more informed selection heuristics remains a subject for future
research.
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3.3. Theory. Suppose that QMR has been run once and that the initial seed
system has converged afterm steps. Our algorithm proceeds by choosing another seed
and using as its initial guess that solution obtained via projection as the first system
was solved. One of the results of this section is that in exact arithmetic, assuming
A is diagonalizable, if some of the right eigenvectors are well approximated by Ritz
vectors corresponding to the first Krylov subspace generated, the rate of convergence
of the second seed system behaves as if the corresponding part of the spectrum of A
is cut off. The proof technique follows along the lines of the proof of Lemma 3.2 in
[5]. κ2(·) denotes the 2-norm condition number of the argument.

We assume A is diagonalizable with eigendecomposition A = ẐΛŜ, where Ŝ =
Ẑ−1. Here Λ = diag(λ1, . . . , λN ). We use ẑj to denote the jth column of Ẑ and

ŝ∗j to denote the jth row of Ŝ. Without loss of generality, we may assume that
‖ẑj‖ = 1. After step m of QMR applied to the seed system, let T1,mU1,m = U1,mΣ1,m

be the eigendecomposition of T1,m, where T1,m denotes the tridiagonal m×m leading
submatrix of T̄1,m. Since QMR is built on top of the unsymmetric Lanczos process,
in exact arithmetic if m is large enough, we expect some of the Ritz vectors given
by the columns of V1,mU1,m to be good approximations to, say, n ≤ m of the right
eigenvectors2 [1, 6, 7, 2] (assuming these eigenvectors are present in the starting
vector for the first seed system). Under these definitions and assumptions, we have
the following.

Theorem 3.2. Consider two systems Ax(1) = b(1) and Ax(2) = b(2) with A an
N ×N matrix. Let x2,2

0 be the starting vector for the second system obtained via our
projection approach after m steps of QMR have been run using the first system as
seed; that is, x2,2

0 = x1,2
m .

Define I as the set of indices of the n right eigenvectors that are well approximated
by n ≤ N of the m Ritz vectors V1,mU1,m. Define x̄2,2

0 such that x(2) − x̄2,2
0 is the

projection of x(2) − x2,2
0 on span{ẑj , j �∈ I}. Let x̄2,2

i be the ith iterate of GMRES

applied to system 2 with initial guess x̄2,2
0 . Then for any i

‖b(2) −Ax2,2
i ‖ ≤ κ2(V2,i+1)(‖b(2) −Ax̄2,2

i ‖+ δ),

where

δ =
∑
k∈I
|λkp̃(λk)||ŝ∗jPme1,2

0 |,

p̃ is a particular i-degree polynomial with constant term 1, e1,2
0 ≡ x(2) − x1,2

0 , and
Pm ≡ I − V1,m(T̄

∗
1,mT̄1,m)

−1T̄1,mD−1
1,m+1W

T
1,m+1A is a projector.

Proof. Since A is diagonalizable, e2,2
0 ≡ x(2) − x2,2

0 =
∑N

k=1 φkẑk for some expan-
sion coefficients φk. Hence, by definition

b(2) −Ax2,2
0 =

N∑
k=1

φkλkẑk,(3.7)

b(2) −Ax̄2,2
0 =

∑
k �∈I

φkλkẑk.(3.8)

2We caution the reader that our notation is somewhat unconventional, as we use n simply to
denote an index n ≤ N and N to denote the dimension of the matrix.
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Now if x̄2,2
i is the ith GMRES iterate with x̄2,2

0 as the initial guess, there exists a
polynomial p̃i of degree less than or equal to i with p̃i(0) = 1 such that

b(2) −Ax̄2,2
i =

∑
k �∈I

φkλkp̃i(λk)ẑk,(3.9)

where p̃i satisfies

p̃i = arg min
p∈Π̄i

‖p(A)(b(2) −Ax̄2,2
0 )‖.(3.10)

Here, Π̄i denotes the set of all polynomials with degree less than or equal to i with
constant term 1. From Theorem 7.1 in [22], we have a bound on the ith QMR residual
in terms of the ith GMRES residual:

‖b(2) −Ax2,2
i ‖ ≤ κ2(V2,i+1) min

p∈Π̄i
‖p(A)(b(2) −Ax2,2

0 )‖.(3.11)

Also,

min
p∈Π̄i

‖p(A)(b(2) −Ax2,2
0 )‖ ≤ ‖p̃i(A)(b(2) −Ax2,2

0 )‖ = ‖
N∑

k=1

φkλkp̃i(λk)ẑk‖.(3.12)

Substituting this into (3.11) and using (3.9) and the triangle inequality gives

‖b(2) −Ax2,2
i ‖ ≤ κ2(V2,i+1)

(
‖b(2) −Ax̄2,2

i ‖+
∑
k∈I
|λkp̃i(λk)||φk|

)
.(3.13)

Using the definition of x2,2
0 as x1,2

m , it is straightforward to show

e2,2
0 = (I − V1,m(T̄

∗
1,mT̄1,m)

−1T̄ ∗
1,mD−1

1,m+1W
T
1,m+1A)e

1,2
0 = Pme1,2

0 .

It is easy to see that Pm is a projector since (Pm)
2 = Pm. By the definition of e2,2

0 it

follows that Pme1,2
0 =

∑N
k=1 φkẑk. Using ŝ∗j ẑk = 1 if j = k and 0 otherwise leads to

|ŝ∗jPme1,2
0 | = |φj | j ∈ I.(3.14)

Substituting (3.14) into (3.13), we obtain the desired result.
Now let us discuss why we expect δ to be small. First, it is clear that in exact

arithmetic the Ritz vectors lie in N (Pm). For any vector q ∈ CN , since Z is full
rank we may write q = Ẑc for the vector of expansion coefficients c = Ẑ−1q = Ŝq
with components cj = ŝ∗jq. Now suppose q ∈ R(Pm). Since the columns of Z with
indices in I are approximated by n of the m Ritz vectors, by assumption, and since
the Ritz vectors are in N (Pm), this implies cj ≈ 0, j ∈ I, which by definition means

ŝ∗jq ≈ 0, j ∈ I. Therefore, with q ≡ Pme1,2
0 , |φj | ≈ 0, j ∈ I, so δ should be small in

exact arithmetic. It is clear that the quality of the Ritz vector approximation and
loss of biorthogonality (e.g., the actual N (Pm)) will affect the size of δ in practice.

Using the definition of p̃i in (3.10), we obtain in analogy with the standard
GMRES upper bound for diagonalizable matrices [22] the following corollary.

Corollary 3.3. Let Ẑn denote the N × (N − n) matrix with columns ẑj for
j �∈ I. Then with δ defined as in Theorem 3.2 and P being the (N − n) ×N matrix
whose rows are the transposed unit vectors eTk , k �∈ I,

‖b(2) −Ax2,2
i ‖2 ≤ κ2(V2,i+1)


min

p∈Πi
max

λk
k �∈I

|p(λk)| ‖Ẑn‖ ‖PŜr̄2,2
0 ‖+ δ


 .
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Proof. The proof follows from the result of the theorem by first writing (3.9)
as Ẑnp̃(Λ̂)

∑
k �∈I φkλkek, where Λ̂ is diag(λk)k �∈I , using the identity ek = PŜẑk, and

taking norms.
Thus, under the assumptions we stated at the beginning of this section so that n

right eigenvectors with indices in I of A have been captured when the first seed system
is solved, the second seed system converges in exact arithmetic as if the corresponding
part of the spectrum of A has been cut off. The strength of this statement in practice
is based on the size of δ, which is affected in finite precision arithmetic as noted above.

In the next theorem, we bound the residual norms of the nonseed systems. A
proof and detailed discussion of the size of the upper bound are given in [13]. In
short, when the right-hand sides are close and the quasi-residual of the seed system
is being efficiently reduced, so are the residuals of the nonseed system.

Theorem 3.4. Let j denote the index of the seed system and l denote the index
of a (nonconverged) nonseed system. Then

‖rj,lk ‖ ≤
√
k+1

(
|γj,l

1 |
∣∣∣∣∣
k−1∏
i=0

sj,k−i

∣∣∣∣∣+
k−1∑
i=0

|γj,l
k−i+1||cj,k−i|

∣∣∣∣∣
i−1∏
m=0

sj,k−m

∣∣∣∣∣
)

(3.15)

+
√
N−k−1‖hj,l

k ‖,

where hj,l
k = [γj,l

k+2, . . . , γ
j,l
N ]T and sj,k, cj,k are as defined in section 3.1.

4. BL-QMR background. The BL-QMR algorithm of Freund and Malhotra
attempts to solve (1.1) in the following way. First, given K vectors ri and p vectors
li, they define

R = [r1, . . . , rK ], L = [l1, . . . , lp].

The block Krylov sequences generated by R,A and L,AT are{
R,AR,A2R, . . . , Aj−1R, . . .

}
and

{
L,ATL, . . . , (AT )j−1L, . . .

}
.(4.1)

However, if Aj−1ri (likewise (AT )j−1li) is linearly or nearly linearly dependent on
the previous vectors, so are all Akri (likewise (AT )kli) for k ≥ j. Thus, Freund
and Malhotra propose scanning the vectors in the two sequences in (4.1) from left to
right and deleting those which are linearly or nearly linearly dependent on previous
ones. In the process they obtain deflated Krylov sequences whose vectors are linearly
independent. We refer to the n-dimensional subspaces generated by these deflated
sequences as Kdl

n (A,R) and Kdl
n (AT , L). Note that in the presence of no deflation,

Kdl
n (A,R) and Kdl

n (AT , L) are spanned by the first n columns of (4.1) with n ≤ jK
or n ≤ jp, respectively.

Within BL-QMR is a Lanczos-type algorithm which incorporates the deflation as
mentioned above in order to generate biorthogonal bases forKdl

n (A,R) andKdl
n (AT , L):

that is, two sequences of right and left Lanczos vectors

v1, . . . , vn and w1, . . . , wn, n = 1, 2, . . . ,

such that

span{v1, . . . , vn} = Kdl
n (A,R), span{w1, . . . , wn} = Kdl

n (AT , L),(4.2)

wT
j vk =

{
0 ifj �= k,

δj �= 0 ifj = k.
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Defining the N × n matrices Vn = [v1, . . . , vn] and Wn = [w1, . . . , wn], it follows that

WT
n Vn = Dn ≡ diag(δ1, . . . , δn), n = 1, 2, . . . .

Also, the matrix equation relating the v’s is

AVµ = VnTµ + V̂ dl
µ , µ ≥ 1,

where µ = n −mcr and mcr is defined by the fact that K −mcr is the total number
of deflations performed in the v sequence up to iteration n in the Lanczos algorithm.
Further, Tµ is n× µ with lower bandwidth K + 1 and upper bandwidth p+ 1. Also,

V̂ dl
µ = V dl

µ + Eµ, where V dl
µ is N × µ but has only K − mcr nonzero columns cor-

responding to vectors that are deflated and Eµ has nonzero entries in row i column
p + j, j = 1, . . . , only if a deflation of the ith w occurs for i > K. We note that if
deftol is the deflation tolerance, then ‖V dl

µ ‖ ≤ deftol
√
K −mcr. For further details,

the reader is referred to [8].

Now let us assume R = [r
(1)
0 , r

(2)
0 , . . . , r

(K)
0 ]; that is, the matrix R contains the

initial residuals of each of the K systems we would like to solve. Thus, the v’s
correspond to the initial residuals. The way the deflation strategy in [8] works is that
if a v is deflated, one linear system is also set aside; then upon convergence of the
remaining systems, the solution to the deflated system is updated using the solutions
of the other systems. Thus, in what follows we consider only the updates to the
nondeflated linear systems, and we denote with a subscript “cr” submatrices of the
originals with mcr columns that correspond to these systems.

Recall that when QMR is applied to a single linear system, the µth iterate is an
appropriate linear combination of the Lanczos vectors, plus the initial guess. Similarly,
the block QMR iterate is defined as

Xµ,cr = X0,cr + VµZ, Z ∈ Cµ×mcr .

As with QMR, then, we need to find the matrix Z which determines the appropriate
linear combination. Following [8], the residual block Rµ,cr related to Xµ,cr satisfies

Rµ,cr = Bcr −AXµ,cr

= R0,cr −AVµZ

= R0,cr − VnTµZ − V̂ dl
µ Z

= Vn

([
βcr

0

]
− TµZ

)
− V̂ dl

µ Z,

where βcr is m1 ×mcr defined by taking the appropriate columns of β, with

Vm1β + V dl
0 = R,

and m1 is the number of columns of R (recall R has K columns) that are not deflated
as the first K Lanczos vectors are created (m1 ≤ K). Here B contains the b(j)’s as
its columns, and Bcr is the submatrix of B with the appropriate mcr columns.

Because the columns of Vn are not unitary and V̂ dl
µ has nonzero columns, one

cannot find Z such that ‖Rµ,cr‖ is minimal. Rather, we seek Z = Zµ such that

Zµ = arg min
Z∈Cµ×mcr

∥∥∥∥
[

βcr

0

]
− TµZ

∥∥∥∥ .
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Since Tµ is banded, the standard approach based on the QR factorization of Tµ

is used to implicitly determine Zµ and ultimately determine short-term recurrences
for Xµ,cr. Following [8] we have

Tµ = (Q(µ))∗
[

R(µ)

0

]

for a unitary n × n matrix Q(µ) and a nonsingular, µ × µ, upper triangular matrix
R(µ). Thus,

Z(µ) = (R(µ))−1tµ, where

[
tµ
τµ

]
= Q(µ)

[
βcr

0

]
.

Finally,

Xµ,cr = X0,cr + V(µ)(R
(µ))−1tµ

= Xµ−1,cr + pµy
T
µ ,(4.3)

where pµ and yTµ are given by (refer to [8, equations (5.10), (5.8)])

pµ =


vµ −

µ−1∑
i=j∗

piθi


 /θµ,

[
yTµ
τµ

]
= Qµ

[
τµ−1

0

]
.(4.4)

The θi are scalars corresponding to the last column of R(µ), Qµ (not to be confused
with Q(µ)) is a particular matrix of Givens rotations described in (5.2) of [8], and j∗

is an index described in [8] satisfying (µ− j∗) ≤ 2m.

5. The block QMR-projection method. In a manner similar to section 3,
we describe a block QMR-projection approach to solving (1.1) that combines the
advantageous properties of the block QMR algorithm and our single-seed projection
algorithm.

Suppose that we select a subset of size m < K linear systems to serve as “seed”
from among the original K. Let Im1 be the index set i1, . . . , im of the chosen systems.
We use Icm1

to denote the indices from 1 to K which are not in Im1 . Let b(j) with

j ∈ Im1
be the m columns of the matrix B(1) and let the remaining J = K−m right-

hand sides (corresponding to nonseed systems indexed by Icm1
) be the columns of the

matrix B(2). We define X
(1)
0 as the matrix [x

(i1)
0 , . . . , x

(im)
0 ] of initial guesses for the m

seed systems, and X
(2)
0 as the matrix of initial guesses for the nonseed systems. The

corresponding initial block residuals are R
(1)
0 = B(1)−AX

(1)
0 and R

(2)
0 = B(2)−AX

(2)
0 .

The idea is to set R (and L) defined in the previous section to R
(1)
0 and run BL-

QMR to solve the seed systems while using a projection idea to update the nonseed
systems. Once BL-QMR converges on the seed system, the process is repeated by
choosing a new subset, indexed by Im2 ⊂ Icm1

, of the nonconverged, nonseed sys-

tems. The systems indexed by Im2 now serve as seed, where the columns of X
(1)
0 are

understood to be the estimated solutions, generated in the first round of projected
BL-QMR, to the systems with indices in Im2 . The remaining systems, indexed by

Icm2
= Icm1

\Im2 , are updated by projection. In the following, X
(1)
µ (R

(1)
µ ) denotes the

µth block iterate (residual) of the current block seed while X
(2)
µ (R

(2)
µ ) denotes the µth

block iterate (residual) of the current nonseed block. We shall further assume that m
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is the number of current seed systems and J is the number of current nonconverged,
nonseed systems. The numbers m and J can change at each round.

At iteration µ, we want our nonseed systems to also lie in the current Krylov
subspace. That is, we desire

X(2)
µ ∈ X

(2)
0 +Kdl

µ (A,R
(1)
0 ).

Since the columns of Vµ span this subspace, this means

X(2)
µ = X

(2)
0 + VµZ

(2)
µ

for some µ× J matrix Z
(2)
µ . Now we must decide how to define Z

(2)
µ . We observe

R(2)
µ = B(2) −A(X

(2)
0 + VµZ

(2)
µ )

= R
(2)
0 − VnTµZ

(2)
µ − V̂ dl

µ Z(2)
µ .

Using biorthogonality

D−1
n WT

n R(2)
µ = D−1

n WT
n R

(2)
0 − TµZ

(2)
µ −D−1

n WT
n V̂ dl

µ Z(2)
µ .

Then

‖D−1
n WT

n R(2)
µ ‖ ≤ ‖D−1

n WT
n R

(2)
0 − TµZ

(2)
µ ‖+ ‖D−1

n WT
n V̂ dl

µ Z(2)
µ ‖.

Note that if no deflations have occurred, V̂ dl
µ is zero, so we have equality rather than

inequality. Therefore, in analogy with the single-seed algorithm of section 3, we define

Z(2)
µ ≡ arg min

Z∈Cµ×J
‖D−1

n WT
n R

(2)
0 − TµZ‖.

Using the QR factorization of Tµ described in the previous section, we obtain

Z(2)
µ = arg min

Z∈Cµ×J

∥∥∥∥Q(µ)Gn −
[

R(µ)

0

]
Z

∥∥∥∥ ,
where Gn is the n× J matrix Gn = D−1

n WT
n R

(2)
0 . If[

t
(2)
µ

τ
(2)
µ

]
= Q(µ)Gn,(5.1)

we obtain

Z(2)
µ = (R(µ))−1t(2)µ ,(5.2)

so that

‖D−1
n WT

n R
(2)
0 − TµZ

(2)
µ ‖ = ‖τ (2)

µ ‖.(5.3)

Using GT
n =

[
GT

n−1, gn
]
, together with (5.1) and the definition of Q(µ) in (5.1) of [8],

it is easy to show that

[
t
(2)
µ

τ
(2)
µ

]
=

[
Iµ−1 0
0 Qµ

] t
(2)
µ−1

τ
(2)
µ−1

gTn


 =


 t

(2)
µ−1

Qµ

[
τ

(2)
µ−1

gTn

]

 .(5.4)
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Thus, t
(2)
µ differs from t

(2)
µ−1 only in its last row, which we call (y

(2)
µ )T :

t(2)µ =

[
t
(2)
µ−1

(y
(2)
µ )T

]
, where (y(2)

µ )T ∈ C1×J .

From the above relation and (5.4) it follows that to obtain (y
(2)
µ )T one need only

perform a product with Qµ:[
(y

(2)
µ )T

τ
(2)
µ

]
= Qµ

[
τ

(2)
µ−1

gTn

]
,

which, since Qµ by definition is a product of mcr Givens rotations, is an easy task.
With pi defined as in (4.4), it is now easy to show that the µth nonseed block

iterate is

X(2)
µ = X

(2)
µ−1 + pµ(y

(2)
µ )T .(5.5)

Thus, we may readily show

R(2)
µ = R

(2)
µ−1 −Apµ(y

(2)
µ )T .(5.6)

However, using the definition of pµ, we find an update formula for the block residual
which does not actually require any additional matrix-vector products.

Lemma 5.1. R
(2)
µ can be updated from R

(2)
µ−1 in at most O(N(J+2m)) additional

floating point operations.

Proof. By substituting (4.4) into (5.6), we obtain a formula for updating R
(2)
µ :

R(2)
µ = R

(2)
µ−1 − fµ(y

(2)
µ )T with fi ≡ Api =

1

θi


Avi −

i−1∑
k=j∗

θkfk


 .(5.7)

Consider forming fµ. Now the matrix-vector product Avµ is computed in the course
of the Lanczos process at iteration µ and need not be recomputed. Therefore, it is
clear that to compute the length N vector fµ requires at most O(2mN) flops since
(µ−j∗) ≤ 2m by definition (see section 5 of [8]). We note that the computation of the

outer product fµ(y
(2)
µ )T requires O(JN) operations, and the proof is complete.

We note that a similar update is valid for R
(1)
µ :

R(1)
µ = R

(1)
µ−1 − fµ(y

(1)
µ )T .(5.8)

6. Issues in practical computation for the block algorithm.

6.1. Block-seed selection heuristic. Clearly, the performance of our multiple-
seed algorithm in terms of savings of matrix-vector products depends on which, and
how many, systems are chosen to be seed. Deflation in BL-QMR solves the problem
of removing redundancy if systems with starting residuals which are nearly linearly
dependent are chosen as seed. Ideally, however, we would like to choose as seed
systems some subset of the nonconverged systems which are in some sense optimally
independent in order to increase the chance that the solutions to the nonseed systems
will lie nearly in the Krylov subspaces generated by the seed systems, thereby ensuring
the effectiveness of the projection process.
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In our examples, we used the following heuristics to determine which and how
many seed systems to use. First, we let B = [b(1), . . . , b(K)]. Since K � N was not
too large in these examples, we computed a compact pivoted QR factorization of B,

B̃ ≡ BΠ = QR, Q ∈ CN×K , R ∈ CK×K ,

to determine which of the remaining were most independent. Here, Π is just a per-
mutation matrix which serves to permute the columns of B such that the first few
columns of BΠ are the most independent. In particular, if ρ denotes the diagonal
entries of R and if |ρ(1)|/|ρ(i)| > α for any 1 ≤ i ≤ K, then we discard the corre-
sponding column of B̃. The remaining m columns of B̃ serve as the seed systems.
We set the maximum value of α to 105 to ensure the columns were not too linearly
dependent, but adjusted it lower if necessary so that the size of the seed block was
no bigger than about K/2. On the next round of projected BL-QMR, however, we
simply decided on a new number of seeds to use (m ← �m/2�) and took those with
the largest m relative residuals to serve as seed. More efficient means of selecting m
for each round and for determining the m seeds need to be examined in the future.3

6.2. Loss of biorthogonality. One additional problem that we encountered in
practice in using either our single-seed or our multiple-seed algorithm was that loss
of biorthogonality could affect the accuracy of the γjl

n = (1/δj,n)w
T
j,nr

jl
0 , or gTn =

(1/δn)w
T
nR

(2)
0 . This loss of accuracy would thereby adversely affect the convergence

of the computed solution. To avoid this difficulty for the block projection algorithm,
we used the following fact. If no deflations were performed up to the µth iteration
when solving the single-seed system,

R
(2)
µ−1 = R

(2)
0 − Vn−1Tµ−1Z

(2)
µ−1 ⇒ gTn =

1

δn
wT

nR
(2)
µ−1 =

1

δn
wT

nR
(2)
0 ,

where it is understood that R
(2)
j = R

(2)
0 , j < 0. Thus, at the beginning of iteration

µ ≥ 1, we computed gTn based on the current residual estimate, then updated the
residual estimate using Lemma 5.1. If deflations do occur, observe

gTn =
1

δn
wT

nR
(2)
µ−1 −

1

δn
wT

n V̂
dl
µ−1Z

(2)
µ−1.

In our examples, the second term was on the order of the deflation tolerance. This
was because V̂ dl

µ = V dl
µ since no w deflations occurred for indices larger than J . Hence

nonzero columns of Vdl were nearly linear combinations of the first m1 v’s for which
1
δn
wT

n v = 0. In this work we choose to ignore the second term rather than go to the

extra expense of computing inner products with the nonzero columns of V̂dl.
Likewise, for the single-seed algorithm we use

γjl
n =

1

δj,n
wT

j,nr
jl
0 =

1

δj,n
wT

j,nr
jl
n−2, n ≥ 2.

An investigation into the reason behind the success of these approaches in finite preci-
sion arithmetic will be the subject of future work. We note that a similar phenomenon
was observed in [20] with respect to practical implementation of GMRES variants,
and an explanation for such behavior in finite precision arithmetic was given.

3In the worst case, if the seed block is too small, then it could require many rounds and much
computation for all the systems to converge, and performance could be worse than BL-QMR without
projection. If the seed block is too large, gains in execution time over BL-QMR would probably also
be reduced, and our algorithm’s behavior would become more dependent on the deflation tolerance.
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6.3. Computational aspects of the block-seed algorithm. It may be rela-
tively expensive in terms of execution time to move data between the smaller, faster
cache and the larger, slower main memory. When data is available in cache, it is
desirable to use it as much as possible. The level-2 and level-3 BLAS are better
for achieving this than level-1 BLAS operations. Thus, one advantage that the block
Krylov subspace algorithms enjoy over standard Krylov subspace algorithms (and our
single-seed algorithm) is that the former can be implemented to be rich in higher level
BLAS operations, whereas the latter class of algorithms requires a large number of
level-1 BLAS operations [14, 2].

Further, Krylov subspace algorithms require a large number of vector inner prod-
ucts relative to the remaining number of computations. These inner products, when
implemented on a distributed memory parallel machine, correspond to synchroniza-
tion points (that is, computation cannot proceed until all processors receive the result
of the inner product) and require numerous smaller messages among processors [17].
Our single-seed method inherits these problems, although updates to the seed and
nonseed systems can be done independently. Block Krylov subspace algorithms, how-
ever, can be implemented to provide more computation between communications and
larger but fewer messages among processors [14, 17]. Below, we provide one imple-
mentation of the block-seed projection algorithm from the proceeding section. We do
not claim that this implementation is optimal in terms of cache utilization or paral-
lelism; our goal is to illustrate the potential efficiencies of the block-seed algorithm
and show that it retains the same advantages that the block QMR algorithm enjoys.

Suppose that m is the number of right-hand sides in a given seed block and that
J is the number of systems in the nonseed block. Let m1 ≤ m be the number of
linearly independent right Lanczos vectors that are formed, using deflation, from the
initial residuals to the seed block. In the following, V(k) = [vm1k+1, . . . , vm1(k+1)] and
W(k) = [wm1k+1, . . . , wm1(k+1)], 0 ≤ k.

Algorithm 1. µ = 1 = φ. Given X
(1)
0 , R

(1)
0 ∈ CN×m1 and X

(2)
0 , R

(2)
0 ∈ CN×J ;

Given the m1 columns of V(1) and W(1) and D(1) = diag(δ1, . . . , δm1
).

For k = 2 until seed block converges do
1. V(k) = AV(k−1);W(k) = ATW(k−1).

2. If deflations occurred in the W (or V ) sequence, update V(k) (or W(k)).
3. Biorthogonalize the columns of V(k) against the columns of V(k−2), V(k−1);

biorthogonalize the columns of W(k) against the columns of W(k−2),W(k−1).
4. Set i = 0, j = 0, s = 1, ŝ = 1. Set µ = µ+ 1; φ = φ+ 1.
5. For n = (k−1)m1+1, . . . , km1, set i = i+ 1 and do

(a) If V(k)(:, i) does not exist, put V(k)(:, i) = AV(k)(:, s) and biorthogonalize
against φµ previous Lanczos pairs; s = s+ 1.

(b) If ‖V(k)(:, i)‖ < deftol, then j = j + 1 and deflate:

i. Compute (y
(1)
µ )T , (y

(2)
µ )T , τ

(1)
µ , τ

(1)
µ ; compute fµ, pµ (via gaxpy’s).

ii. “Delete” ith column of V(k), “shift” remaining columns left 1.
iii. Compute which system gets dropped from the seed block (that row

of y
(1)
µ will have a zero entry).

iv. Let y
(iv)
µ , fµ, pµ be the jth columns of Y (iv), iv = 1, 2;F ;P .

v. Update deflation index sets. Set µ = µ+ 1, goto step 5(a).
(c) Normalize V(k)(:, i) and set µn = µ; j = j + 1:
(d) If W(k)(:, i) does not exist, put W(k)(:, i) = ATW(k)(:, ŝ) and biorthogo-

nalize against µφ previous Lanczos pairs; ŝ = ŝ+ 1.
(e) If ‖W(k)(:, i)‖ < deftol, then deflate:
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i. “Delete” ith column of W(k), “shift” remaining columns left 1.
ii. Update deflation index sets. Set φ = φ+ 1, goto step 5(d).

(f) Normalize W(k)(:, i). Set φn = φ and δn = W(k)(:, i)
TV(k)(:, i).

(g) Continue the MGS4 process on columns ≥ i of V(k),W(k).

(h) Set gTn = (1/δn)W(k)(:, i)
TR

(2)
µ−j .

(i) Compute (y
(1)
µ )T , (y

(2)
µ )T , τ

(1)
µ , τ

(2)
µ ; compute fµ, pµ (via gaxpy’s).

(j) Let y
(iv)
µ , fµpµ be the jth columns of Y (iv), iv = 1, 2;F ;P .

6. X
(1)
µ = X

(1)
µ−j + P (Y (1))T ; R

(1)
µ = R

(1)
µ−j − F (Y (1))T .

7. X
(2)
µ = X

(2)
µ−j + P (Y (2))T ; R

(2)
µ = R

(2)
µ−j − F (Y (2))T .

8. “Remove” deflated systems from X
(1)
µ .

One benefit of this implementation is that A,AT are accessed only once each block
iteration, if no deflation occurs, and computing products of A and AT with dense,
rectangular matrices of Lanczos vectors makes better use of cache than products
of A with a single vector. In step 2 (also 5(a), 5(d)) some columns of either or
both of the current blocks may have to be biorthogonalized against some previous
Lanczos vectors if certain previous deflations occurred in the V and/or W sequence.
In step 3, the current blocks of Lanczos vectors are biorthogonalized against the
appropriate columns5 of the previous two blocks. Considering the matrix V(k) (or
W(k)) rather than its columns separately, we can do this using level-2 BLAS with a
two-sided modified Gram–Schmidt approach or, at the expense of some stability, we
could accomplish this with level-3 BLAS via a block modified Gram–Schmidt approach
[14]. For each deflation step, however, we incur the price of one matrix-vector product
and several vector-wise inner products. It is possible to reorganize the algorithm so
that a Lanczos block effectively decreases in size after deflation (possibly leaving left
and right blocks of different sizes) and thereby put off this extra work until it can be
done with higher-level BLAS, but as the notation is more tedious, we use the current
implementation to illustrate our points.

Notice we are using modified Gram–Schmidt to biorthogonalize within the current
block, but that computation toward updating the solution and residual blocks is done
between each step of the process. Notice also that the block iterates and residuals
are only updated after a new block of Lanczos vectors has been generated; this was
done in order to minimize the number of accesses to the block iterates and residuals
and to incorporate level-3 BLAS operations. The updating could be done (via level-2
BLAS operations) inside the innermost loop according to (4.3), (5.5), (5.7), (5.8), or

one might opt to track the size of τ
(1)
µ and update only when necessary.

One way to implement the algorithm on a distributed memory parallel machine

is to row partition [17, 14] the matrices F, P, V(k),W(k), X
(iv)
µ , R

(iv)
µ , iv = 1, 2. Thus,

the matrix-multiplications with A,AT , the biorthogonalization steps, and steps 5(b),
(c), (e), (f), (h) require communication among processors; most of the other steps
require only local updates of portions of the rectangular matrices. As in [17, section
3.1], it may be possible in a parallel implementation to exploit any computations that
are mostly decoupled: for example, the updates to solution and residual blocks are
somewhat independent of the generation of the Lanczos vectors and of each other.

4Modified Gram–Schmidt.
5If deflations have occurred in the W sequence, then one need only biorthogonalize V(k) against

some of the columns of W(k−2) (or W(k−1)), rather than against the whole block, and similarly for
computing W(k) if deflations occurred in the V sequence.



776 MISHA KILMER, ERIC MILLER, AND CAREY RAPPAPORT

Techniques for performing matrix-vector products with A,AT in parallel should also
be employed.

Before executing Algorithm 1, using our heuristic in section 6.1, we do a com-
pact pivoted QR factorization of B to determine the seed block and therefore should
not incur much overhead beyond what the BL-QMR algorithm in [8] would need to
generate its initial block using deflation. Every other time that a seed must be cho-
sen, we select those �m/2� systems with largest residual norm, so a small amount of
additional computations/communication are needed at the seed selection steps.

Clearly, if the first time Algorithm 1 is called J = 0, it is just the block QMR
algorithm with deflation. If J �= 0, then the first time Algorithm 1 is executed, for a
given k, the same number of solution vectors and residual vectors must be updated (at
most) as if J had been 0: the difference is that updates are separated into updates on
two different solution and residual blocks, and these updates are independent of one
another. Thus, if Algorithm 1 is implemented in parallel, the independent updates
may help compensate for the execution time that is due to processor communication.

The computation of gTn and (y
(2)
µ )T are the most notable differences between the

unprojected and projected algorithms. Overall, the block-seed projection approach
may yield the following advantages over block QMR:

• fewer accesses to A and less communication among processors;
• smaller seed block sizes with the block-projection approach mean fewer flops
are needed to compute products with A,AT and fewer flops are needed to
construct Lanczos pairs and to factor Tµ;
• less storage per processor during a given run of Algorithm 1 (as fewer vec-
tors are needed in the recurrences for pµ, fµ and the number of columns of
V(k),W(k), etc., are reduced);

• updating the seed and nonseed blocks can be done independently.

7. Numerical results. In this section we give numerical results which indicate
the potential effectiveness of our approach on electromagnetic scattering problems.
All experiments were conducted in Matlab using IEEE double precision floating point
arithmetic on a 600 MHz Pentium II processor. We compare our results with results
from the Matlab implementation of block QMR with deflation, algorithm BL-QMR in
[8]. For comparison purposes, the implementation of our block-seed algorithm mirrors
the implementation of BL-QMR in [8] with modifications where necessary, rather than
the one in the preceding section.

Mathematically, we would like to solve a two-dimensional Helmholtz-type equa-
tion for the scattered electric field E(x, y):

(∆ + k2(x, y))E(x, y) = χm(x, y)E0(x, y) in Ω(7.1)

with perfectly matched layer (PML) boundary conditions [3, 18]: the specific math-
ematical formulation we use is described in [12]. Here k2(x, y) = ω2µ0ε(x, y) is the
square of the wave number, with ω representing angular frequency and µ0 a constant
denoting the magnetic permeability. The function ε(x, y), called the electrical per-
mittivity, is defined as ε = ε0εrel + i σω for some real σ ≥ 0, εrel ≥ 1 with i =

√
−1

and ε0 a constant (the permittivity of free-space). The value σ is the conductivity of
the material. The function χm describes the properties of the buried object and has
support only over the object location. E0(x, y) is the known incident electric field.

We discretize using finite differences, which leads to a matrix equation involving
the matrix A which is N ×N , sparse, complex, and structured but neither symmetric
nor Hermitian due to the boundary conditions. Because the matrix is highly indefinite,
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Fig. 7.1. Physical configurations for Example 1 (left) and Example 2 (right).

we need to use a preconditioner to speed convergence. The preconditioner we use is
the one described in [12], and we perform all preconditioning from the right.

For all algorithms, we take the initial starting guesses x
(j)
0 to be zero. We stop

running our algorithms when the relative residual norms of all of the systems are
less than tol = 10−7. For the two block-based algorithms, ours and BL-QMR, we
update (seed) block residuals via (5.8) ((5.7) is used for the nonseed block6). We
monitor convergence of the current seed block by checking norms of the columns of

R
(1)
µ . However, the true norms of the residuals in the seed block were computed and

checked to satisfy the convergence tolerance before the block was deemed to have
converged. Since for these examples the major computational expense per iteration is
the two matrix-vector products with applications of the preconditioner, we consider
the total number of matrix-vector products required for all the systems to converge
as our primary measure of success and discuss some timing results.

7.1. Example 1. In this experiment we would like to find the scattered electric
fields caused when plane waves at various angles impinge on a horizontal air-soil
interface and scatter from a 7cm × 6cm object buried 5cm below the surface. Each
angle corresponds to a different E0 in (7.1), which in turn corresponds to a different
right-hand side b(j) in (1.1). Figure 7.1 gives a physical illustration of the problem.

In this example, we use a soil type (referred to as “Seabee” in the literature [19])
and conduct experiments at two different frequencies, ω/(2π) = 45 MHz and 475 MHz.
At 45 MHz, Seabee has εrel = 35.65 and σ = .13, while at 475 MHz εrel = 21.31 and
σ = .23. We assumed that the buried object has εrel = 2.9 and σ = .001 at both
frequencies. For air, εrel = 1, σ = 0. We have discretized at a rate of 50 points per
wavelength of soil at 45 MHz and 20 points per wavelength at 475 MHz. In both
cases, the total number of unknowns (N) is (27 + 15)2.

We centered the buried object (refer to Figure 7.1) and considered the scattered
field due to plane waves impinging on the surface at evenly spaced angles from −60
to 60 degrees from the normal. The second columns in Tables 7.1 and 7.2 give the
total number of matrix-vector products needed if preconditioned QMR is applied
to each system separately.7 The third column gives the total number of matrix-
vector products needed if our preconditioned QMR with projection algorithm is used.
The next several columns give the total number of matrix-vector products computed
when solving the problem using BL-QMR with various deflation tolerances. The final

6Note that the latter needs to be computed each iteration to determine the update for the nonseed
block, whereas one could use the bound in [8] to monitor convergence of the seed block at the possible
expense of computing many extra matrix-vector products.

7Note that we define the matrix-vector product count as the number of multiplies by AM−1 or
its transpose where M is the preconditioner.
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Table 7.1
Example 1. 45 MHz: Number of matrix-vector products required for convergence by each of the

methods (each system independently, single-seed QMR-projection, BL-QMR with deflation tolerances
10−8, 10−9, and 10−10, and block QMR with projection) for experiments involving different numbers
of right-hand sides (RHS). Dashes indicate no convergence of the method in under 300 iterations.

No. matrix-vector products, 45 MHz
No. RHS Seq. Prj. BQ 1E−8 BQ 1E−9 BQ 1E−10 BQ 1E−11 BQ + Prj.

7 856 292 – 201 219 219 173
13 1590 254 – 211 227 239 180
25 3054 280 – 233 243 267 207

Table 7.2
Example 1. 475 MHz: Number of matrix-vector products required for convergence by each of

the methods for experiments involving different numbers of right-hand sides.

No. matrix-vector products, 475 MHz
No. RHS Seq. Prj. BQ 1E−7 BQ 1E−8 BQ 1E−9 BQ 1E−10 BQ + Prj.

7 664 420 223 223 223 223 221
13 1236 468 – 303 321 319 237
25 2378 492 – 321 319 – 245

column shows results when our block-seed approach is used (deftol = 10−9), where
the seed blocks are chosen using the heuristic outlined in section 6.1 with α = 105.
Dashes indicate that the convergence tolerance was not met within maxit = 300
iterations.

As Table 7.1 shows, for the 45 MHz case, BL-QMR failed to converge after 300 it-
erations in all cases when the deflation tolerance was set to 10−8, but it outperformed
our single-seed projection method if the deflation tolerance was small enough. Our
block-seed projection approach performs better than all the other methods in terms
of the number of matrix-vector products; however, we note that for these nonopti-
mized implementations, the execution times for the best BL-QMR runs and our block
algorithm are about the same. Solving sequentially took 4.5 times longer than our
single-seed method and over 6 times longer than block-based algorithms.

At 475 MHz, we expected our x(j)’s not to be as close as in the previous case due
to the underlying physics of the problem, and therefore we did not expect as much
savings with our single-seed projection approach. Indeed, Table 7.2 shows that the
difference between the second and third columns is not as dramatic as in Table 7.1.
Table 7.2 also shows that BL-QMR, with the deflation tolerance set at either 10−8 or
10−9, outperforms our single-seed projection approach. However, comparing the last
column with the others, we find that our block-seed projection approach can provide
substantial savings over the other methods. There is also a difference in execution
times: for example, for 25 systems our block-seed projection method takes about 6.2
minutes while BL-QMR with deflation tolerance of 10−9 takes about 7.1 minutes.

7.2. Example 2. For our second example, each of our K systems corresponds
to solving for the scattered electric field from a buried object when the source of
the incident field is a point source, located at position xi, yi above the earth (see
Figure 7.1). We consider the case when the frequency is 480 MHz, and the soil has
εrel = 6.5 and σ = .019. As before, the buried object has εrel = 2.9 and σ = .001.
The buried object is 7cm × 4cm buried 5cm deep and centered left to right. The
width of each cell in the discrete grid is 1cm, and the total number of unknowns (N)
is (26 + 15)2. Our point sources are each located 3cm above the earth and either
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Table 7.3
Example 2. Number of matrix-vector products required for convergence by each of the methods

for experiments involving different numbers of right-hand sides. Dashes indicate no convergence of
the method in under 300 iterations.

No. matrix-vector products
No. RHS Seq. Prj. BQ 1E−9 BQ 1E−11 BQ 1E−12 BL-QMR + Prj.

25 1894 1084 – – 345 209
35 2658 1468 – – 411 289

Table 7.4
Example 2. Approximate execution time in minutes. Dashes indicate no convergence of the

method in under 300 iterations.

Minutes
No. RHS Seq. Prj. BQ 1E−9 BQ 1E−11 BQ 1E−12 BQ + Prj.

25 4.2 4.5 – – 10.6 2.0
35 5.9 7.4 – – 33.1 3.7

vary in the horizontal direction, with 0 being in the middle, from −12cm to 12cm in
1cm increments or −17cm to 17cm in 1cm increments. The numbers of matrix-vector
products required by each of the different methods to solve these systems are given
in Table 7.3. However, as illustrated by the timing results in Table 7.4, both the
single- and block-seed projection give dramatic improvements over BL-QMR without
projection.8

8. Conclusions and future work. We have introduced two new projection
approaches, based on QMR and block QMR, respectively, for solving multiple linear
systems with the same coefficient matrix but different right-hand sides. Compared to
solving each system separately by QMR, both approaches can significantly reduce the
work and execution time needed to solve all the systems to within a specified tolerance
provided there is sufficient shared information among the right-hand sides; the block-
seed algorithm requires less shared information to perform well. We provided theory
for the single-seed approach which suggests that under certain conditions in exact
arithmetic, QMR on subsequent seed systems converges as if part of the spectrum
has been cut off; we also gave an upper bound for the rate of convergence of the
nonseed systems. More work needs to be done to determine convergence behavior of
the block-seed algorithm in both exact and finite precision arithmetic.

As our numerical results showed, with appropriate deflation tolerance, the BL-
QMR algorithm [8] could outperform our single-seed QMR-projection method in terms
of matrix-vector product savings (although not always reflected in the execution times)
particularly when the right-hand sides are not as close; however, our block-seed pro-
jection method consistently exhibited the greatest savings in such cases. The perfor-
mance of our block-seed approach depends on our choices of successive seed blocks, and
overall execution time depends on the actual implementation. We gave one block-seed
selection heuristic and discussed possible efficiencies of block-seed algorithm. Deter-
mining good seed selection strategies, efficient serial and parallel implementations,
and formal time comparisons with other methods remain subjects for future research.

8Part of the improvement can be attributed to the difference in size of the BL-QMR block iterate
with the size of the seed for our methods.
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Abstract. In this paper we present three theorems which give insight into the regularizing
properties of MINRES. While our theory does not completely characterize the regularizing behavior
of the algorithm, it provides a partial explanation of the observed behavior of the method. Unlike
traditional attempts to explain the regularizing properties of Krylov subspace methods, our approach
focuses on convergence properties of the residual rather than on convergence analysis of the harmonic
Ritz values. The import of our analysis is illustrated by two examples. In particular, our theoret-
ical and numerical results support the following important observation: in some circumstances the
dimension of the optimal Krylov subspace can be much smaller than the number of the components
of the truncated spectral solution that must be computed to attain comparable accuracy.
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1. Introduction. The discretization of a compact self-adjoint operator equation
with errors in the right-hand side results in a linear system whose exact solution bears
no relation to the solution of the original error-free system. Specifically, in the spectral
domain — that is, in the coordinate system of the eigenvectors of the matrix — the
exact linear system can be written in the form

Λx = b,

where

Λ = diag(λ1, . . . , λn), 1 = λ1 > · · · > λn > 0.

Note that we assume that the system is positive definite and has been scaled so that
λ1 = 1. To the extent that the quantities in this equation track the corresponding
quantities in the original operator, they have the following properties:

(1) If the operator is smooth, the eigenvalues λi of the discrete operator will
eventually decay rapidly to zero.

(2) If the solution of the original problem is square integrable, then the compo-
nents ξi of x decay to zero.

(3) Since the components βi of the right-hand side satisfy βi = ξiλi, they decay
faster than either the components of the solution or the eigenvalues of the
operator.

The system with error is

Λx̃ = b+ e ≡ b̃.
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If we model the error as white noise, then we can append the following condition to
the above list.

(4) The components εi of e are random variables with mean zero and standard
deviation ε.

The components of the solution for the perturbed right-hand side are

ξ̃i =
βi + εi
λi

.(1.1)

Since the βi decay rapidly, they soon fall below the error level. The subsequent
components of the solution are effectively random variables with standard deviation
ε/λi. The division by λi magnifies the originally small error so that it dominates the
solution.

As long as the βi are larger than the errors εi, the ξ̃i contain useful informa-
tion. The process of extracting this information is called regularization. There are
many regularization schemes. A natural one is to stop computing components of x
when the βi get near the error level. We will call this procedure truncated spectral
regularization.1

In this paper we will be concerned with regularization based on the iterative
method MINRES [9]. The method can be described briefly as follows. Let

Kk = (b̃ Λb̃ · · · Λk−1b̃)

be the kth Krylov matrix . Then we seek an approximation to x in the form

xk = Kkak,

where ak is determined so that

ρ2
k ≡ ‖b̃− Λxk‖2 = min.

Here ‖ · ‖ denotes the usual Euclidean norm.
The residual rk = b̃−Λxk has an alternate expression that is used in the analysis

of the algorithm. Given a vector ak = (α1, . . . , αk)
T

, let a polynomial p be defined
by

p(t) = 1− α1t− α2t
2 − · · · − αktk.

Then the residual rk = b̃− ΛKkak can be written in the form rk = pk(Λ)b̃, where pk
is the polynomial associated with ak. Since MINRES minimizes ‖rk‖, we have

ρk ≡ ‖rk‖ = min
deg(pk)=k

pk(0)=1

‖p(Λ)b̃‖.(1.2)

Because the ith component of the residual is the value of a polynomial at λi, we
will often call it the value of the residual at λi.

It has been widely observed that up to a certain index k0 the MINRES solutions
xk are increasingly accurate approximates to the exact solution x, after which their
accuracy rapidly deteriorates. Thus if we can determine k0 (a difficult problem),
MINRES can be used as a regularization method. What seems less well known is that

1In the nonsymmetric case this process is also known as truncated SVD regularization (see [7]
and the references therein).
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in some circumstances the critical index k0 can be quite small — much smaller than
the number of components of the truncated spectral solution that must be computed
to attain the same accuracy.2

In this paper we give three theorems that help explain the regularizing properties
of MINRES. The phrase “help explain” is a deliberate warning to the reader not to
expect a complete analysis. The theorems do not say that MINRES has to behave in
a particular way. Nonetheless, they give considerable insight into the method.

There is a vast body of literature on regularization, much of which is devoted to
determining the asymptotic behavior of the error in the optimally regularized solu-
tion as the error in the right-hand side approaches zero. (This literature has been
admirably surveyed by Engl, Hanke, and Neubauer [4].) There is also a body of litera-
ture for well-posed problems in which the asymptotic convergence of Krylov methods
like MINRES are analyzed (see, for example, the recent book by Greenbaum [5]). Our
approach, which consists of leaving the error in b fixed and determining how the solu-
tion behaves as the regularization parameter varies, is essentially nonasymptotic and
fits in neither of these categories. On the other hand, our work is closely related to
analyses that attempt to find the optimal value of the regularization parameter. (For
a survey of this literature see Hansen [8].)

In the next section we give a toy example that will be used to illustrate the
subsequent results. We will also describe in a general way what is happening. The
next three sections are devoted to establishing our three results. In section 6 we apply
our results to another example. The paper concludes with a discussion of the results
and suggestions for future work.

A little informal terminology will help in our discussions. We will call the part
of the spectrum for which the β̃i are little affected by the error the initial part of the
spectrum. We will call the part where they are fully contaminated the terminal part of
the spectrum. The part of the spectrum lying between will be called the intermediate
part or the transitional part.

2. An example. In this section we will introduce a simple-minded example from
image processing. Let x(t) represent an “image” on [0, 1], and consider the Gaussian
blurring operator

b(t) =

∫ 1

0

x(s)e−
(
s−t
σ

)2

ds.

We will discretize this operator by choosing an integer n and setting

ti =
i− 1

n
, i = 1, . . . , n+ 1,

and generating a matrix K whose elements are

κij = e−
(
tj−ti
σ

)2

.

The resulting matrix is then scaled so that its dominant eigenvalue is one. Although
this problem is highly simplified, its regularization properties are typical of more
realistic problems.

In the following experiments, we took n = 40 and ε = 0.1. Our function was
x(t) = 1 + t + t2, and it was discretized by evaluating it at the points ti to give the
components xi of x. The vector b was generated in the form Ax. Figure 2.1 is a plot

2Martin Hanke has also observed this phenomenon [6].
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Fig. 2.1. x(t) (solid) and b(t) (dashed).

Fig. 2.2. ξi (solid), λi (dotted), and βi, β̃i (dashed).

of x(t) and b(t). The divergence at the ends of the intervals is due to the fact that
at those points the part of the blurring distribution that lies outside [0, 1] becomes
significant.

Figure 2.2 shows the vectors b, b̃, and x after they have been transformed to the
spectral coordinates. Note that for i > 15 values β̃i are significantly contaminated
with error. The plot also shows the eigenvalues of A, which decrease slowly at first
and then rapidly plunge to about 10−15. This rapid decrease is typical of smooth
operators.

Truncated spectral regularization and MINRES regularization behave quite dif-
ferently for this problem. Figure 2.3 plots the norms of the errors at the kth step of
each method. The error for truncated spectral regularization decreases slowly until
k = 15, after which it increases rapidly. The error in the MINRES iterates decreases
rapidly until k = 5 and then rises. Truncated spectral regularization produces a bet-
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Fig. 2.3. Errors from spectral regularization (dashed) and MINRES regularization (solid).
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Fig. 2.4. First five MINRES residuals and b̃ (dashed line).

ter solution with about half the error but arrives at it more slowly.3 In fact, not until
k = 11 does it produce a solution as accurate as the MINRES solution for k = 5.

It is informative to examine the behavior of the MINRES residuals. Figure 2.4
displays the magnitudes of the residuals at the eigenvalues λi as a function of i for
the first five MINRES approximations along with the magnitudes of the components
of b̃. It is seen that they decrease in the initial part of the spectrum. At other points
in the spectrum, they change very little. The plot in Figure 2.5 shows the same thing
in terms of the residual polynomials that satisfy (1.2).4 The polynomials are small in

3The relative quality of the solutions depends on the throw of the dice in constructing the
random vector e. For ten other simulations the ratio of the minimum error for truncated spectral
regularization to that for minres was the following: 0.80, 0.57, 0.76, 0.41, 1.14, 0.65, 0.67, 0.67, 0.82,
0.68. These numbers show the solutions to be usually comparable, with the minres solution actually
better in a single case.

4The plots are not strictly the polynomials. The values between i and i + 1 were obtained by
evaluating the polynomial at ten equally spaced points between λi and λi+1.
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Fig. 2.5. First five MINRES residual polynomials.

the initial part of the spectrum and then rise swiftly to a value of one.

Stepping back from this example, we see that three factors are operating to give
the fast regularization.

(1) From (1.1) it follows that the residual cannot be reduced indefinitely without
harming the solution.

(2) The plot in Figure 2.4 shows that the residual decreases rapidly to a point
where further reduction is harmful.

(3) Notice in Figure 2.4 that the values of the first five residuals corresponding
to terminal eigenvalues λi coincide with β̃i. Equation (1.1) implies that if
we reduce the residual at λi from β̃i to β̃i(1 − α), where 0 < α < 1, then
the corresponding component of the approximate solution is αβ̃i/λi. Now in
the terminal part of the spectrum β̃i ∼= εi, and hence the component of the
approximate solution is essentially αεi/λi. Because the terminal eigenvalues
are extremely small compared to the error, even a very small reduction of the
residual at a terminal eigenvalue must result in a large component in the ap-
proximate solution. Thus if MINRES is to produce an acceptably regularized
solution, it must not reduce the residuals at the terminal part of the spectrum
while it is still reducing the residuals at the initial part. As it turns out (see
Figure 2.5), the first 5 residual polynomials for our running example are very
near one on the terminal spectrum, so there is virtually no reduction of the
residual there.

In the next three sections we will establish results that give quantitative substance to
these observations.

3. The residual and the error. The first of our results concerns the relation
between the size of the error in a purported solution and the size of the corresponding
residual. We have already noted that if the residual is required to be too small, the
error must be large. However, we can be more precise.

Specifically, let y be a purported solution with residual norm δ. There are many
such solutions, and among them one must give minimum error; i.e., there must be a
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vector y that solves the following problem. Given δ > 0,

minimize ‖x− y‖2
subject to ‖β̃ − Λy‖2 = δ2.

(3.1)

The following theorem shows when the solution to this problem has a large error.
Below we have assumed λ1 = 1.

Theorem 3.1. If τ > −1 is the solution of the equation∑
i

ε2i
(1 + τλ2

i )
2

= δ2,(3.2)

then

ηi = ξi +
τλiεi

1 + τλ2
i

(3.3)

is a solution of (3.1). In this case

‖x− y‖2 =
∑
i

(
τλi

1 + τλ2
i

)2

ε2i .(3.4)

Proof. Consider the Lagrangian

∑
i

(ξi − ηi)2 + τ

[∑
i

(β̃i − λiηi)2 − δ2

]
,

where τ is the Lagrange multiplier. Differentiating with respect to ηi and setting the
results to zero, we get

ξi − ηi + τλi(β̃i − λiηi) = 0.

Equation (3.3) follows on solving this equation for ηi and using the fact that β̃i =
λiξi + εi. Equation (3.2) defines the value of τ for which the solution satisfies the
constraint. Finally, (3.4) follows by direct computation.

The best way to understand this theorem is to consider the solution yτ generated
as τ varies from −1 to ∞. From (3.2) we see that the residual norm δ decreases
monotonically from∞ to 0. The error norm ‖x−yτ‖ decreases from∞ to 0 at τ = 0,
where δ = ‖e‖. Thereafter, small reductions in the residual cause large increases in
the error. To see this, consider the term

ε2i
(1 + τλ2

i )
2

in (3.2). For this term to be reduced by a factor of four from its value ε2i at τ = 0, a
very modest reduction in the total, we must have τλ2

i = 1. The corresponding term
in the square of the error norm (3.4) is(

τλiεi
1 + τλ2

i

)2

=
ε2i

4λ2
i

,

which for small λi is large. It is worth noting that these observations depend only on
Λ and e and not on x or b.
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The above comments suggest that an attempt to reduce the residual norm below
‖e‖ will increase the error in the solution. This is certainly true of our example,
for which ‖e‖ = 0.033. The error turns around at k = 5. The residual norms are
ρ4 = 0.055 ρ5 = 0.039, and ρ6 = 0.031. Thereafter the error increases sharply, as it
must (see Figure 2.3).

It is worth noting that Theorem 3.1 supports the discrepancy principle of Moro-
zov, which says that a regularization parameter should be chosen to make the norm
of the residual approximately the size of the norm of the error (see [4, section 4.3]).
However, the rapid increase of the error when the residual becomes too small sug-
gests that methods based on the discrepancy principle will be extremely sensitive to
variations in the estimate of the error norm (see the experiments in section 7.7.1 of
[8]).

4. Reduction of the residual. We now turn to the reduction of the residual.
The usual analysis of MINRES is based on (1.2). Specifically, given any polynomial
pk of degree k satisfying pk(0) = 1, we have

‖rk‖2 ≤
n∑
i=1

pk(λi)
2β̃2
i .(4.1)

One convergence result amounts to choosing a sequence of polynomials pk such that

λ ∈ [λn, λ1] =⇒ pk(λ)→ 0.

The rate at which the pk approach zero on [λn, λ1] is an upper bound on the conver-
gence rate of MINRES.

The key to analyzing the regularizing properties of MINRES is to note that we are
not interested in the convergence of the method on the terminal part of the spectrum.
In fact (1.1) shows that MINRES must not converge there until after a reasonable
regularized solution has been formed. We can therefore restrict our attention to an
interval, say, [λm, λ1] in which the β̃i are relatively error free. Since the interval is
farther removed from the origin, the convergence will be faster.5

The polynomial pk,m for this analysis is constructed in the usual way from the
Chebychev polynomials ck(τ). Specifically, let

sm(t) = −2t− λ1 − λm
λ1 − λm(4.2)

and set

pk,m(t) =
ck[sm(t)]

ck[sm(0)]
.(4.3)

By bounding the values of these polynomials we obtain the following theorem.
Theorem 4.1. Let m > 1 and set

κ =
λ1

λm

5For the standard analysis see [5, Chapter 3]. In fact, one reviewer has pointed out that Björck
and Eldén [2] used polynomials of this kind to construct regularizing iterative methods. Here, on
the other hand, we use them to analyze the regularizing properties of a particular iterative method.
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and

b̃m = (β̃1, . . . , β̃m)
T
.

Then

‖rk‖2 ≤ ‖pk,m(Λ)b̃‖2

≤ 4
(√

κ−1√
κ+1

)2k

‖b̃m‖2

+
∑n
i=m+1

(
1− 2 λi

(
√
λ1+
√
λi)2

)2k

β̃2
i .

(4.4)

The proof of this theorem is highly technical and will be found in the appendix.
The first term in (4.4) is of the same form as the bound from the usual analysis
of MINRES mentioned above. However, for that bound κ is λ1/λn, which is larger
than λ1/λm and implies slower convergence. The first factor in the remaining terms
is essentially one for small eigenvalues. However, for eigenvalues near λm it has a
reducing effect on the corresponding part of the residual.

The bound is too crude to use in applications, but it provides insight into the way
MINRES converges. In our running example, when m is small, κ is near one, and the
polynomials pk,m rapidly reduce the residual on λ1, . . . , λm. But this is precisely the
place where there is a large residual to reduce. Since the reduction by pk,m bounds
the MINRES reduction, we conclude that initially MINRES will rapidly reduce the
residual.

But the bound implies more. As k increases, for fixed m, pk,m will reach a point
of diminishing returns when there is not enough residual to reduce. This can be seen
by looking at the upper bound in (4.4). Consider m fixed at 4. Since κ is effectively
1, the first term becomes insignificant for k ≥ 2, and we have a tight bound on the
residual for k = 2. Yet as k increases and the residual continues to be reduced, the
bound stagnates because the second term decreases slowly. However, if we increase
m a little, the first term remains small while the second term becomes smaller (since
there are fewer indices over which to sum). Thus with increasing k one should increase
m to get the smallest possible upper bound. The following table shows that this is
precisely what happens in our example.

k 1 2 3 4 5
m 2 4 5 6 7

‖pk,m(Λ)b̃‖ 8.8e−01 2.8e−01 1.3e−01 7.1e−02 4.7e−02
max[λm,λ1] pk,m 8.0e−02 2.9e−02 1.0e−02 6.1e−03 5.2e−03
ρk 8.7e−01 2.5e−01 1.0e−01 5.5e−02 3.9e−02

For each value of k, the value of m for which pk,m minimizes the residual ‖pk,m(Λ)b̃‖
was determined. As the table shows, the value of m increases with k. This increase
is accompanied by a modest decrease in the size of pk,m on [λm, λ1]. Note that by
holding m fixed one can obtain a dramatic decrease in the size of pk,m over [λm, λ1],
but this strategy is not as effective at reducing the bound on the residual norm as
the strategy of increasing m and putting up with a modest decrease in pk,m. For
example, if m is fixed at two, then max[λ2,λ1] p5,2 = 1.5e−09, but the residual norm
is only 8.9e−02.

The last line in the table shows the MINRES residual norms. They are well
approximated by the values in the third line, which suggests that MINRES is following
a similar strategy. Figure 2.5 supports our contention that MINRES reduces the
residual by increasing the interval in which the polynomial is small.
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5. Nonreduction of the residual. Let α ∈ [0, 1], and suppose we wish to
reduce the residual at λi from β̃i to β̃i(1 − α). We have already noted that the
corresponding component of x̃ is then

ξ̃i =
αβ̃i
λi

.

If λi is small, then ξ̃i is large and the solution will be unsatisfactory. Thus while
MINRES is producing a regularized solution, it must not reduce the residuals on the
terminal part of the spectrum. From Figure 2.5 we see that this is precisely what is
happening in our example. The residual polynomials are effectively one at small λi.

The reason MINRES behaves in this manner is that if any polynomial is small
at a small eigenvalue, it must be very large at the initial eigenvalues, say λ1, . . . , λm.
Specifically, we have the following theorem.

Theorem 5.1. Let pk,m be defined by (4.3). If p is any polynomial of degree k
satisfying p(0) = 1, p(λi) = 1− α for some i > m, and

pk−1,m(λi)λi
pk−1,m(λi)− 1 + α

< λm,(5.1)

then there is a point tbig∈[λm, λ1] such that

|p(tbig)| ≥
∣∣∣∣1− pk−1,m(λi)− 1 + α

pk−1,m(λi)

λm
λi

∣∣∣∣ |pk−1,m(λm)|.(5.2)

Proof. The proof is a variant of the standard proof of the theorem of de laVallée
Poussin [1, p. 191]. Consider the polynomial

q(t) =

[
1− pk−1,m(λi)− 1 + α

pk−1,m(λi)

t

λi

]
pk−1,m(t).

This polynomial satisfies the conditions p(0) = 1 and p(λi) = 1 − α. If, in addition,
(5.1) is satisfied, the root of the linear term in brackets is less than λm, and the
polynomial q(t) alternates in sign at k points

λm = t1, t2, . . . , tk = 1

on the interval [λm, λ1].
Now let p also satisfy the conditions of the theorem. We claim that |p(ti)| ≥ |q(ti)|

for at least one ti. For if not, the polynomial p − q alternates in sign at the ti and
hence has k − 1 zeros in the interval [λm, λ1]. But by the conditions of the theorem
p− q is zero at zero and λi. Hence p− q is a polynomial of degree not greater than k
with k + 1 zeros and must be identically zero — a contradiction.

Because the values of |pk−1,m(ti)| are equal, the absolute value of q(ti) is smallest
at λm, and evaluating |q(λm)| gives the lower bound (5.2).

Note that when i is large the condition (5.1) is not very restrictive. For in that
case, the right-hand side is near λi/α, which cannot approach λm unless α is very
small.

The import of this theorem is that the cost of reducing the residual at the small
eigenvalues is to make the polynomial large on an interval containing the initial eigen-
values. This is because the factor λm/λi in (5.2) becomes enormous for i large. For
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Fig. 6.1. Eigenvalues (solid line) and components of b (dashed line).

example, Theorem 5.1 implies that if m = 8 and k = 5 in our running example, then
to get a reduction of .9 (α = .1) in the residual at λ25 = 6.8e−6, the absolute value
of the residual polynomial will have to be to be greater than 71 at some point in
[λ8, λ1]. Such a large polynomial is more likely to cause a residual magnification than
a residual reduction in [λ8, λ1]. This likelihood is increased by the fact that for our
example the roots of pk are spread out over [λm, λ1], where m > k, and the zeros of
pk cannot be near all m of these eigenvalues.

On the other hand, in our example, suppose we wish to reduce the residual at
λ15 from β̃15 to β̃15(1 − α) for α = 0.11. The lower bound (5.2) for the residual
polynomial is 0.0086. The maximum value of the residual polynomial in [λ8, λ1] is, in
fact, 0.037, which is insufficiently greater than 0.0086 to render the reduction at λ15

harmless. Once again, the dispersal of the roots of pk,m has a beneficial effect — this
time allowing a modest decrease in the residual at the intermediate eigenvalues.

In the last section we observed that MINRES eschews a quick reduction of the
residual polynomials over a limited range in favor of expanding the range in which they
are moderately small. The theory of this section shows that the deferred reduction
has another benefit: it gives the algorithm an opportunity to reduce the residual by
a modest amount on the intermediate eigenvalues.

6. Another example. To confirm our analysis of MINRES, we consider a two
dimensional blurring operator. Specifically, the original matrix A is the Kronecker
product T ⊗ T , where T is a symmetric Toeplitz matrix whose first row is given by

t1k = e−0.1(1−k)2

, k = 1, . . . , 32.

Figure 6.1 exhibits the first 200 eigenvalues of the matrix and the absolute values
components of b in the spectral coordinate system. The error e consists of white noise
scaled so that ‖e‖/‖b‖ = 0.01.

Figure 6.2 plots the errors from spectral regularization and MINRES. The contrast
is dramatic. The MINRES iteration reduces the error to a minimum of 195 in four
iterations. Spectral regularization requires the first 100 components of the solution
be computed to reduce the error to a minimum of 192. (However, the plot shows that
acceptable accuracy is attained for, say, 30 components.)
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Fig. 6.2. Errors from spectral regularization (dashed line) and MINRES regularization (solid
line).

The analysis of section 3 suggests that the solution will deteriorate when the
residual norm becomes less than the error norm. In fact, the fourth, fifth, and sixth
residual norms are 8.66, 7.86, and 7.52. This should be compared with the error norm
7.78.

From the comments in section 4 we would expect that residual polynomials would
reduce the error by spreading their roots over a number of eigenvalues rather than by
approximating specific eigenvalues. The roots for the first five residual polynomials
are given below.

(1) 9.3e−01
(2) 9.8e−01 7.3e−01
(3) 9.9e−01 8.1e−01 5.7e−01
(4) 9.9e−01 8.7e−01 6.9e−01 3.6e−01
(5) 1.0e+00 9.0e−01 7.4e−01 5.4e−01 2.2e−01

The largest root is converging to one, which in our normalization is an eigenvalue of
A. But otherwise, the roots are dispersed. For example, the smallest root of p4 is
0.36, which corresponds to λ34.

7. Conclusions. In the introduction to this paper we emphasized that this work
would not provide a complete analysis of MINRES as a regularization technique. We
can analyze MINRES applied to well-posed problems because asymptotic bounds be-
come applicable long before a solution of the desired accuracy is attained. On the
other hand, for ill-posed problems in our examples, MINRES does not have a chance
to settle down before the optimal solution is obtained. In effect, we are analyzing the
early transient behavior of the algorithm — always a difficult problem.

In spite of not concluding with a general theorem, our analysis sheds considerable
light on the behavior of MINRES as a regularizer. Theorem 3.1 is a very general result
about ill-posed problems. It suggests that attempting to reduce the residual norm
below the error norm will result in a worsened solution. As we have already noted,
the theorem can be taken as a justification of the Morozov discrepancy principle.
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We have mentioned that the bound (4.4) on the residual norm is too crude to be
used in practical applications. Nonetheless, it is good enough to suggest the strategy
that MINRES uses to obtain rapid reduction of the residual norm. The free parameter
m in the bound is essentially a measure of the spread of the zeros of the residual
polynomial. As we have seen, the bound is optimized by keeping m greater than the
iteration number k. This suggests that MINRES will attempt to minimize the residual
by spreading the roots of its residual polynomials over a larger number of eigenvalues.
Our numerical examples support this conjecture.

Finally, Theorem 5.1 shows us why MINRES does not tend to reduce the residual
at a small eigenvalue while homing in on the regularized solution. Essentially, a small
value of the residual polynomial at a small eigenvalue causes the polynomial to be
large on the larger eigenvalues — just where it is most desirable to obtain a decrease
in the residuals.

For definiteness, we have restricted ourselves to MINRES applied to a positive
definite system. Obviously, some of our results apply to other systems and methods —
e.g., least squares regularization of overdetermined systems. Such generalizations,
however, will be subject for future work.

8. Appendix. Proof of Theorem 4.1. Let ck(τ) denote the Chebychev polyno-
mial of degree k and define sm(t) and pk,m(t) as in (4.2) and (4.3), respectively. Now
pk,m is a polynomial of degree k satisfying pk,m(0) = 1, and therefore from (4.1), we
have

‖r(k)‖22 ≤
n∑
i=1

p2
k,m(λi)β̃i = ‖pk,m(Λ)b̃‖22.(8.1)

When i ≤ m, c2k(sm(λi)) ≤ 1. Moreover, one can show that the denominator of
pk,m, which is independent of i, is bounded above [10]:

∣∣∣∣∣ 1

ck(λ1+λm
λ1−λm )

∣∣∣∣∣ ≤ 2

(√
κ− 1√
κ+ 1

)k
.(8.2)

Thus, it remains to determine an upper bound for the values ck(sm(λi)), i > m.

For notational convenience, we fix i, let d = λi
λ1

, and note that since κ = λ1

λm
,

λi
λm

= dκ. Using this notation, we write sm,i ≡ sm(λi) = (κ+1−2dκ
κ−1 ).

Now ck(s) = cosh(k cosh−1 s). We use the formulas

coshx =
ex + e−x

2
(8.3)

and

ln z = cosh−1

(
z + z−1

2

)
when x = ln z(8.4)

to determine our upper bound as outlined below. We note that this type of proof
technique was used at least as early as the 1960s (see [3]).
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(1) Find a z such that ( z+z
−1

2 ) = sm,i, i > m.
(2) Use z and (8.3) to determine ck(sm,i), i > m.
(3) Find an upper bound for c2k(sm,i), i > m.
(4) Use this bound and (8.2) to deduce an upper bound for p2

k,m(sm,i) i > m.
(5) Use the above information to obtain the upper bound on the right-hand side

of (8.1).
Step 1. We first set

z + z−1

2
= sm,i

to obtain

z2 − 2sm,iz + 1 = 0.

Since this is a quadratic equation, z is given by

z =
2sm,i ±

√
4s2
m,i − 4

2

=

(
κ+ 1− 2dκ

κ− 1

)
±
√(

κ+ 1− 2dκ

κ− 1

)2

− 1

=
1

κ− 1

(
κ+ 1− 2dκ± 2

√
(κ− κd)(1− κd)

)
=

(
√
κ− κd±√1− κd)2

κ− 1
.

(8.5)

For convenience, we take z to be

z =
(
√
κ− κd+

√
1− κd)2

κ− 1
.(8.6)

Step 2. Now ck(sm,i) = cosh(k ln z) = cosh(ln zk). Using (8.3), we obtain

ck(sm,i) =
zk + z−k

2

=
z2k + 1

2zk
.

(8.7)

Step 3. Therefore,

c2k(sm,i) =
1

4

(
z2k +

1

z2k
+ 2

)
.

(8.8)

To get an upper bound on c2k(sm,i), let us first try to get an upper bound on 1
z2k

by getting a lower bound on z. Observe that the numerator of z in (8.6) is bounded
below by κ− dκ, so our lower bound for z is κ−dκ

κ−1 . Since dκ ≤ 1, we therefore obtain

1

z
≤ κ− 1

κ− dκ ≤ 1,
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and so 1
z2k ≤ 1.

Next, we have the following expression for z2k:

z2k =

(
κ+ 1 + 2 ((κ− dκ)(1− dκ))

1/2 − 2dκ

κ− 1

)2k

.

Therefore, we have the following bound on c2k(sm,i):

c2k(sm,i) ≤ 1

4

3 +

(
κ+ 1 + 2 ((κ− dκ)(1− dκ))

1/2 − 2dκ

κ− 1

)2k
 .(8.9)

Step 4. Now we may use (8.2) and (8.9) to determine an upper bound on
p2
k,m(sm,i) for i > m:

p2
k,m(sm,i) ≤

(√
κ− 1√
κ+ 1

)2k
3 +

(
κ+ 1 + 2 ((κ− dκ)(1− dκ))

1/2 − 2dκ

κ− 1

)2k
 .

Using
√
κ−1√
κ+1

= κ−1
κ+2
√
κ+1

, we cancel like terms on the right-hand side above and

factor out
√
κ from the radical to obtain

p2
k,m(sm,i) ≤ 3

(√
κ− 1√
κ+ 1

)2k

+

κ+ 1 + 2
√
κ
(

(1− λi
λ1

)(1− λi
λm

)
)1/2

− 2 λi
λm

κ+ 1 + 2
√
κ


2k

.

The second term of the right-hand side above can be bounded above by(
1− 2 λi

λm

κ+ 1 + 2
√
κ

)2k

=

(
1− 2

λi

λ1 + λm + 2
√
λ1λm

)2k

.

Thus,

p2
k,m(sm,i) ≤ 3

(√
κ− 1√
κ+ 1

)2k

+

(
1− 2

λi

λ1 + λm + 2
√
λ1λm

)2k

.(8.10)

Step 5. From (8.2) when i ≤ m,

p2
k,m(sm,i) ≤

(
l

ck(sm,i)

)2

≤ 4

(√
κ− 1√
κ+ 1

)2k

.

Breaking up the sum over the first m and last n−m terms from (8.1) and (8.10), we
observe

‖rk‖22 ≤ 4

(√
κ− 1√
κ+ 1

)2k

‖b̃m‖22 +

n∑
i=m+1

(
1− 2

λi

(
√
λ1 +

√
λm)2

)2k

β̃i
2
.
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Abstract. Numerical solution of ill-posed problems is often accomplished by discretization
(projection onto a finite dimensional subspace) followed by regularization. If the discrete problem
has high dimension, though, typically we compute an approximate solution by projecting the discrete
problem onto an even smaller dimensional space, via iterative methods based on Krylov subspaces.
In this work we present a common framework for efficient algorithms that regularize after this second
projection rather than before it. We show that determining regularization parameters based on the
final projected problem rather than on the original discretization has firmer justification and often
involves less computational expense. We prove some results on the approximate equivalence of this
approach to other forms of regularization, and we present numerical examples.

Key words. ill-posed problems, regularization, discrepancy principle, iterative methods, L-
curve, Tikhonov, truncated singular value decomposition, projection, Krylov subspace
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1. Introduction. Linear, discrete ill-posed problems of the form

min
x
‖Ax− b‖2(1.1)

arise, for example, from the discretization of first-kind Fredholm integral equations
and occur in a variety of applications. We shall assume that the full-rank matrix A is
m×n withm ≥ n. In discrete ill-posed problems, A is ill-conditioned and there is often
no gap in the singular value spectrum. Typically, the right-hand side b contains noise
due to measurement and/or approximation error. This noise, in combination with the
ill-conditioning of A, means that the exact solution of (1.1) has little relationship to
the noise-free solution and is worthless.

Instead, we use a regularization method to determine a solution that approximates
the noise-free solution. We replace the original operator by a better conditioned but
related one in order to diminish the effects of noise in the data. Sometimes this
regularized problem is too large to solve exactly. In that case, we typically project the
problem onto an even smaller dimensional space, perhaps via iterative methods based
on Krylov subspaces. Sometimes this projection provides enough regularization to
produce a good approximate solution, but often (see, for example, [28, 15]) additional
regularization is needed.

A fundamental decision to be made in such cases is whether to regularize before
or after the projection. One subtle issue is that the regularization parameter that
is optimal for the discretized problem may not be optimal for the lower-dimensional
problem actually solved by the iteration, and this leads to the research discussed in
this paper.
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At first glance, there can appear to be a lot of work associated with the selection
of a good regularization parameter, and many algorithms proposed in the literature
are needlessly complicated, repeating a Krylov iteration multiple times. By regular-
izing after projection by the iterative method, so that we are regularizing the lower
dimensional problem that is actually being solved, this difficulty vanishes.

The purpose of this paper is to present a common framework for parameter se-
lection techniques applied to the problem resulting from iterative methods such as
Krylov subspace techniques. We show that by determining regularization parameters
based on the final projected problem rather than on the original discretization, we
can better approximate the optimal parameter and reduce the cost of solution.

Our paper is organized as follows. In section 2 we survey some methods for
choosing the corresponding regularization parameters. In section 3, we show how
any standard parameter selection technique for the original problem can be applied
instead to a projected problem obtained from an iterative method, greatly reducing
the cost without much degradation in the solution. We give experimental results in
section 4 and conclusions in section 5.

In the following we shall assume that b = btrue + e, where btrue denotes the
unperturbed data vector and e denotes zero-mean white noise. We will also assume
that btrue satisfies the discrete Picard condition; that is, the spectral coefficients of
btrue decay faster, on average, than the singular values.

Let ÛΣV̂ ∗ denote the singular value decomposition (SVD) ofA, where the columns
of Û and V̂ are the singular vectors, and the singular values are ordered as σ1 ≥ σ2 ≥
· · · ≥ σn. Then the solution (1.1) is given by

x =

n∑
i=1

û∗i b

σi
v̂i =

n∑
i=1

(
û∗i btrue
σi

+
û∗i e

σi

)
v̂i.(1.2)

As a consequence of the white noise assumption, |û∗i e| is roughly constant for all i,
while the discrete Picard condition guarantees that |û∗i btrue| decreases with i faster
than σi does. The matrix A is ill-conditioned, so small singular values magnify the
corresponding coefficients û∗i e in the second sum, and it is this large contribution of
noise that renders the exact solution x defined in (1.2) worthless. The following four
classes of regularization methods try in different ways to lessen the contribution of
noise. For further information on these methods, see, for example, [19, 15].

In Tikhonov regularization, (1.1) is replaced by

min
x
‖Ax− b‖22 + λ2‖Lx‖22,(1.3)

where λ is a positive scalar regularization parameter, and we choose L to be the
identity matrix I. Solving (1.3) is equivalent to solving

(A∗A+ λ2I)xλ = A∗b.(1.4)

In analogy with (1.2) we have

xλ =

n∑
i=1

(
σi û

∗
i btrue

σ2
i + λ

2
+
σi û

∗
i e

σ2
i + λ

2

)
v̂i.(1.5)

In truncated SVD we compute the regularized solution by truncating the ex-
pansion in (1.2) as

x	 =

	∑
i=1

û∗i b

σi
v̂i.(1.6)
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Here the regularization parameter is �, the number of terms retained in the sum. Rust
[33] introduced a related truncation strategy, including in the sum (1.2) only those
terms corresponding to a spectral coefficient û∗i b whose magnitude is greater than or
equal to some tolerance ρ, which can be regarded as the regularization parameter.

Solving (1.4) or (1.6) can be impractical if n is large, but fortunately, regular-
ization can be achieved through projection onto a k-dimensional subspace; see, for
example, [9]. The truncated SVD (TSVD) is one example, but projection is often
achieved through the use of iterative methods such as conjugate gradients, GMRES,
QMR, and other Krylov subspace methods [28, 1]. Krylov subspace algorithms tend
to produce, at early iterations, solutions that resemble xtrue more than later iterates.
Therefore, the choice of the regularization parameter k, the stopping point for the
iteration and the dimension of the subspace, is very important.

Another important family of regularization methods, termed hybrid methods
[19, 15], was introduced by O’Leary and Simmons [28]. These methods combine a
projection method with a direct regularization method such as TSVD or Tikhonov
regularization. Since the dimension k is usually small relative to n, regularization of
the restricted problem is much less expensive, but the end results can be very similar
to those achieved by applying the same direct regularization technique to the original
problem; see section 3.5.

2. Existing parameter selection methods. In this section, we discuss three
parameter selection techniques that have been proposed in the literature. They differ
in the amount of a priori information required as well as in the decision criteria.

The discrepancy principle [26] says that if δ is the expected value of ‖e‖2,
then the regularization parameter should be chosen so that the norm of the residual
corresponding to the regularized solution xreg is τδ; that is,

‖Axreg − b‖2 = τδ,(2.1)

where τ > 1 is some predetermined real number. Note that as δ → 0, xreg → xtrue.
Other methods based on knowledge of the variance are given, for example, in [3, 13, 7].

Generalized cross-validation (GCV) [11] does not depend on a priori knowl-
edge about the noise variance. We find the parameter λ that minimizes the GCV
functional

G(λ) =
‖(I −AA�

λ)b‖22
(trace(I −AA�

λ))
2
,(2.2)

where A�
λ denotes the matrix that maps the right-hand side b onto the regularized

solution xλ. In Tikhonov regularization, for example, A�
λ is (A∗A+ λ2I)−1A∗.

The L-curve, the plot of the norm of the regularized solution versus the cor-
responding residual norm for each of a set of regularization parameter values, was
introduced by Lawson and popularized by Hansen [17, 25]. Intuitively, the best reg-
ularization parameter should lie on the corner of the L-curve, since for values higher
than this, the residual increases without reducing the norm of the solution much,
while for values smaller than this, the norm of the solution increases rapidly without
much decrease in residual. In practice, only a few points on the L-curve are computed
and the corner is located by estimating the point of maximum curvature [20].

The appropriate choice of regularization parameter—especially for projection
algorithms—is a difficult problem, and each method has severe flaws. The discrep-
ancy principle is convergent as the noise goes to zero, but it relies on information that
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Table 2.1
Summary of additional flops needed to compute the regularization parameter for each of four

regularization methods with various parameter selection techniques. Notation: q is the cost of mul-
tiplication of a vector by A; p is the number of discrete parameters that must be tried; k is the
dimension of the projection; m and n are problem dimensions.

Basic cost Added cost
Disc. GCV L-curve

Tikhonov O(mn2) O(p(m+ n)) O(p(n+m)) O(p(m+ n))
TSVD O(mn2) O(m) O(m) O(m+ n)
Rust’s TSVD O(mn2) O(m logm) O(m logm) O(m logm)
Projection O(qk) 0 O(q) O(q)

is often unavailable or erroneous. Even with a correct estimate of the variance, the
solutions tend to be oversmoothed [21, p. 96]. (See also the discussion in section 6.1 of
[17].) One noted difficulty with GCV is that G can have a very flat minimum, making
it difficult to determine the optimal λ numerically [37]. The L-curve is usually more
tractable numerically, but its limiting properties are nonideal. The solution estimates
fail to converge to the true solution as n→∞ [38] or as the error norm goes to zero
[8]. All methods that assume no knowledge of the error norm— including GCV—have
this latter property [8].

For further discussion and references about parameter choice methods, see [7, 19].
The cost of these methods is tabulated in Table 2.1.

2.1. Previous work on parameter choice for hybrid methods. At first
glance, it appears that for Tikhonov regularization, multiple systems of the form
(1.4) must be solved in order to evaluate candidate values of λ for the discrepancy
principle or the L-curve.

Chan and Ng [5] note that the systems involve matrices C(λ) = A∗A + λI,
which they solve using a Galerkin projection method on a sequence of “seed” systems.
Although economical in storage, this is unnecessarily expensive in time because they
do not exploit the fact that for each fixed k, the Krylov subspace Kk(A

∗b, C(λ)) is
the same for all values of λ.

Frommer and Maass [10] propose two algorithms for approximating the λ that
satisfies the discrepancy principle (2.1). The first is a “truncated conjugate gradient
(CG)” approach, solving k systems of the form (1.4), truncating the iterative process
early for large λ, and using previous solutions as starting guesses for later problems.
Like Chan and Ng, this algorithm does not exploit the redundant Krylov subspaces.
In the second method, however, they update the CG iterates for all k systems simul-
taneously, stopping their “shifted CG” algorithm when ‖Axλ − b‖2 ≤ τδ for one of
their λ values. The methods we propose in section 3 will usually require less work
than the shifted CG algorithm because of less overhead.

Calvetti, Golub, and Reichel [4] use upper and lower bounds on the L-curve, gen-
erated by the matrices C(λ) using a Lanczos bidiagonalization process, to approximate
the best parameter for Tikhonov regularization before projection.

Kaufman and Neumaier [22] suggest an envelope guided conjugate gradient ap-
proach for the Tikhonov L-curve problem. Their method is necessarily somewhat
more expensive than ours because they maintain nonnegativity constraints on the
variables.

Substantial work has also been done on TSVD regularization of the projected
problems. Björck, Grimme, and van Dooren [2] use GCV to determine the truncation
point for the projected SVD. Their emphasis is on maintaining an accurate factor-
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ization when many iterations are needed, using full reorthogonalization and implicit
restart strategies. O’Leary and Simmons [28] take the viewpoint that the problem
should be preconditioned appropriately so that a massive number of iterations is un-
necessary. That viewpoint is echoed in this current work, so we implicitly assume that
the problem has been preconditioned [28] so that A = M−1Â and b = M−1b̂, where

Â and b̂ are the original data and M is a preconditioning matrix. See [16, 27, 24, 23]
for preconditioners appropriate for certain types of ill-posed problems.

3. Regularizing the projected problem. In this section we categorize a dozen
approaches to regularization of the projected problem that arise from using Krylov
methods, giving enough detail to make the costs apparent and to show that the ideas
are easy to program. Many Krylov methods have been proposed; for ease of exposition
we focus on just one of these: the LSQR algorithm of Paige and Saunders [30].

LSQR iteratively computes a bidiagonalization related to that introduced by
Golub and Kahan [12]. After k iterations, it has effectively computed three ma-
trices: an upper-bidiagonal matrix Bk and two matrices Uk ≡ [u1, . . . , uk] and Vk ≡
[v1, . . . , vk], with orthonormal columns, related by

b = β1u1 = β1Uk+1e1 ,(3.1)

AVk = Uk+1Bk ,(3.2)

ATUk+1 = VkB
T
k + αk+1vk+1e

T
k+1 ,(3.3)

where ei denotes the ith unit vector.
In numeric computations, the columns of Uk and Vk can fail to be orthonormal.

This has never given us convergence difficulties, but if it becomes troublesome, there
are well-known techniques to handle it [31, 32, 36, 6].

Now suppose we want to solve

min
x∈S
‖b−Ax‖2,(3.4)

where S denotes the k-dimensional subspace spanned by the first k vectors vi. The
solution we seek is of the form x(k) = Vky

(k) for some vector y(k) of length k. Define
r(k) = b−Ax(k) to be the corresponding residual and observe that

r(k) = β1u1 −AVky(k)

= Uk+1(β1e1 −Bky
(k)).

Since Uk+1 has, in exact arithmetic, orthonormal columns, the projected problem we
wish to solve is

min
y(k)
‖β1e1 −Bky

(k)‖2.(3.5)

Solving this minimization problem is mathematically equivalent to solving the normal
equations involving the bidiagonal matrix

B∗
kBky

(k) = β1B
∗
ke1,(3.6)

although more stable means are used in practice. Typically k is small, so reorthogo-
nalization to combat round-off error might or might not be necessary. The matrix Bk

may be ill-conditioned because some of its singular values approximate some of the
small singular values of A. Therefore, solving the projected problem might not yield
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Table 3.1
Summary of flops for projection plus inner regularization with various parameter selection

techniques, in addition to the O(qk) flops required for projection itself. Here k is the number of
iterations (i.e., the size of the projection) taken and p is the number of discrete parameters that
must be tried.

Projection plus – Disc. GCV L-curve
Tikhonov O(pk) O(k3) O(pk)
TSVD O(k3) O(k3) O(k3)
Rust’s O(k3) O(k3) O(k3)

Table 3.2
Summary of additional storage for each of four regularization methods under each of three

parameter selection techniques. The original matrix is m × n with q nonzeros, p is the number of
discrete parameters that must be tried, k iterations are used in projection, and the factorizations are
assumed to take q̂ storage.

Basic cost Added cost
Disc. GCV L-curve

Tikhonov O(q̂) O(1) O(p) O(p)
TSVD O(q̂) O(1) O(m) O(m)
Rust’s TSVD O(q̂) O(m) O(m) O(m)
Projection O(kn) O(1) O(k) O(k)

Table 3.3
Summary of storage, not including storage for the matrix, for projection plus inner regulariza-

tion approach and various parameter selection techniques. Here p denotes the number of discrete
parameters tried. Each of these regularization methods also requires us to save the basis V or else
regenerate it in order to reconstruct x.

Projection plus – Disc. GCV L-curve
Tikhonov O(1) O(p) O(p)
TSVD O(1) O(k) O(k)
Rust’s TSVD O(k) O(k + p) O(k + p)

a good solution y(k), but we can use any of the methods of section 2 to regularize this
projected problem; we discuss options in detail below.

If we used the algorithm GMRES [35] instead of LSQR, we would derive similar
relations. Here, though, the U and V matrices are identical and the B matrix is
upper Hessenberg rather than bidiagonal. Conjugate gradients would yield similar
relationships.

For cost comparisons for these methods, see Tables 2.1 and 3.1. Storage compar-
isons are given in Tables 3.2 and 3.3.

3.1. Regularization by projection. As mentioned earlier, if we terminate the
iteration after k steps, we have projected the solution onto a k-dimensional subspace
and this has a regularizing effect that is sometimes sufficient. Determining the best
value of k can be accomplished, for instance, by one of our three methods of parameter
choice. Efficient implementation relies on LSQR recurrences for determining ‖r(k)‖
and ‖x(k)‖ cheaply, without computing either r(k) or x(k) [30, 34].

For the discrepancy principle. we stop the iteration for the smallest value of
k for which ‖rk‖ ≤ τδ.

To apply GCV, we note that in LSQR (see section 3.1), the operator AA� is

given by Uk+1BkB
†
kU

∗
k+1, where B

†
k is the pseudoinverse of Bk. Thus from (2.2), the
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GCV functional is [19]

G(k) =
‖r(k)‖22
(m− k)2 .

We note that there are in fact two distinct definitions for A� and hence two definitions
for the denominator in G(k); for small enough k, the two are comparable, and the
definition we use here is less expensive to calculate [19, section 7.4].

To determine the L-curve associated with LSQR, values of ‖r(k)‖2 and ‖x(k)‖2
are needed for several values of k. In using this method or GCV, one must go a few
iterations beyond the optimal k in order to verify the optimum [20].

3.2. Regularization by projection plus TSVD. If projection alone does not
regularize, then we can compute the TSVD regularized solution to the projected
problem (3.6). We need the SVD of the (k + 1)× k matrix Bk. This requires O(k

3)
operations but can also be computed from the SVD of Bk−1 in O(k2) operations [14].

Clearly, we still need to use some type of parameter selection technique to find a
good value of �(k). First, notice that it is easy to compute the norms of the residual
and the solution resulting from retaining only the � largest singular values. If ξjk is
the component of e1 in the direction of the jth left singular vector of Bk, and if γj
is the jth singular value (ordered largest to smallest), then the residual and solution
2-norms are

‖r(k)
	 ‖ = β1


 k+1∑

j=	(k)+1

ξ2jk




1/2

and ‖x(k)
	 ‖ = β1


	(k)∑

j=1

(
ξjk
γj

)2



1/2

.(3.7)

Using this fact, we can use any of our three sample methods.
For the discrepancy principle we choose �(k) to be the smallest value for which

‖r(k)
	 ‖ ≤ τδ, if such a value exists. As k increases, the number of neglected singular

values will be monotonically nondecreasing (exact arithmetic).
The GCV functional for the kth projected problem is obtained by substituting

Bk for A and B�
k for A�, and substituting the expression of the residual in (3.7) for

the numerator in (2.2):

Gk(�) =
β2

1

∑k+1
j=	+1 ξ

2
jk

(k − �+ 1)2
.

We now have many L-curves, one for each value of k. The coordinate values in
(3.7) form the discrete L-curve for a given k, from which the desired value of �(k) can
be chosen without forming the approximate solutions or residuals.

3.3. Regularization by projection plus Rust’s TSVD. As in standard
TSVD, to use Rust’s version of TSVD for regularization of the projected problem
requires computing the SVD of the (k + 1)× k matrix Bk. Using the previous nota-
tion, Rust’s strategy is to set

y(k)
ρ =

∑
j∈I(k)

ρ

ξjk
γj
q
(k)
j ,

where q
(k)
j are the right singular vectors of Bk and I(k)

ρ = {i < k + 1 : |ξik| > ρ}. We
focus on three ways to determine ρ.
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For the discrepancy principle, the norm of the residual of the regularized solu-

tion is given by ‖r(k)
ρ ‖2 = β1(

∑
j �∈I(k)

ρ
ξ2jk)

1/2. According to the discrepancy principle,

we must choose ρ so that the residual is less than τδ. In practice, this would require
that the residual be evaluated by sorting the values |ξik| and adding terms in that
order until the residual norm is less than τδ.

For GCV, let card(I(k)
ρ ) denote the cardinality of the set I(k)

ρ . From (2.2), it
is easy to show that the GCV functional corresponding to the projected problem for
this regularization technique is given by

Gk(ρ) =
β2

1

∑
j∈I(k)

ρ
ξ2jk

(k + 1− card(I(k)
ρ ))2

.

In practice, for each k we first sort the values |ξik|, i = 1, . . . , k, from smallest to
largest. Then we define k discrete values ρj to be equal to these values with ρ1 being
the smallest. We set ρ0 = 0. Note that because the values of ρj , j = 1, . . . , k, are the
sorted magnitudes of the SVD expansion coefficients, we have

Gk(ρj) =
β2

1(|ξ(k+1),k|2 +
∑j

i=1 ρ
2
i )

(j + 1)2
, j = 0, . . . , k.

Finally, we take the regularization parameter to be the ρj for which Gk(ρj) is a
minimum.

As with standard TSVD, we now have one L-curve for each value of k. For fixed
k, if we define the ρj , j = 0, . . . , k, as we did for GCV above and we reorder the γi in
the same way that the |ξik| were reordered when sorted, then we have

‖x(k)
ρj
‖22 = β2

1

k∑
i=j+1

(
ρi
γi

)2

; ‖r(k)
ρj
‖22 = β2

1

(
|ξ(k+1),k|2 +

j∑
i=1

ρ2i

)
, j = 0, . . . , k.

When these solution and residual norms are plotted against each other as functions
of ρ, the value of ρj corresponding to the corner is selected as the regularization
parameter.

3.4. Regularization by projection plus Tikhonov. Finally, let us consider
using Tikhonov regularization to regularize the projected problem (3.5) for some in-
teger k. Thus, for a given regularization parameter λ, we would like to solve

min
y
‖β1e1 −Bky‖22 + λ2‖y‖22.(3.8)

The solution y
(k)
λ satisfies

(V ∗
k A

∗AVk + λ
2I)y

(k)
λ = V ∗

k A
∗b.(3.9)

We need to address how to choose a suitable value of λ.
For the discrepancy principle, note that in exact arithmetic, we have

r
(k)
λ = b−Ax(k)

λ = U∗
k+1(β1e1 −Bky

(k)
λ ).(3.10)

Hence ‖Bky
(k)
λ −β1e1‖2 = ‖r(k)

λ ‖2. Therefore, to use the discrepancy principle requires
that we choose λ so that ‖r(k)

λ ‖2 ≤ τδ with p discrete trial values λj . For a given k,
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we take λ to be the largest value λj for which ‖r(k)
λ ‖2 < τδ, if it exists; if not, we

increase k and test again.
For GCV, let us define (Bk)

†
λ to be the operator mapping the right-hand side of

the projected problem onto the regularized solution of the projected problem:

(Bk)
†
λ = (B∗

kBk + λ
2I)−1B∗

k .

Given the SVD of Bk as above, the denominator in the GCV functional defined for
the projected problem (refer to (2.2)) is

k + 1−
k∑

j=1

γ2
j

γ2
j + λ

2




2

.

The numerator is simply ‖r(k)
λ ‖22. For values of k � n, it is feasible to compute the

singular values of Bk.

The L-curve is comprised of the points (‖Bky
(k)
λ − β1e1‖2, ‖y(k)

λ ‖2). But using
(3.10) and the orthonormality of the columns of Vk, we see these points are precisely

(‖r(k)
λ ‖2, ‖x

(k)
λ ‖2). For p discrete values of λ, λi, 1 ≤ i ≤ p, the quantities ‖r(k)

λi
‖2

and ‖x(k)
λi
‖2 can be obtained by updating their respective estimates at the (k − 1)st

iteration.1

3.5. Correspondence between direct regularization and projection plus
regularization. In this section, we demonstrate why the projection plus regulariza-
tion approaches can be expected to yield regularized solutions nearly equivalent to
the direct regularization counterpart. The following theorem, a simple corollary of
the invariance of Krylov sequences under shifts, establishes the desired result for the
case of Tikhonov vs. projection plus Tikhonov.

Theorem 3.1. Fix λ > 0 and define x
(k)
λ to be the kth iterate of conjugate

gradients applied to the Tikhonov problem

(A∗A+ λ2I)x = A∗b.

Let y
(k)
λ be the exact solution to the regularized projected problem

(B∗
kBk + λ

2I)y = B∗
k(βe1),

where Bk, Vk are derived from the original problem A∗A = A∗b, and set z
(k)
λ = Vky

(k)
λ .

Then z
(k)
λ = x

(k)
λ .

Proof. See [15, p. 301].
Let us compare TSVD regularization applied to the original problem to the pro-

jection plus TSVD approach. Direct computation convinces us that the two methods
compute the same regularized solution if k = n and arithmetic is exact. An approxi-
mate result holds in exact arithmetic when we take k iterations, with � ≤ k ≤ n. Let
the SVD of Bk be denoted by Bk = ZkΓkQ

T
k , and define the s× � matrix Ws,	 as

Ws,	 =

[
I
0

]
.

1The technical details of the approach are found in [29, pp. 197–198], from which we obtain

‖r(k)
λ

‖ =
√

‖r̄(k)
λ

‖2 − λ2‖x(k)
λ

‖2. The implementation details for estimating ‖x(k)
λ

‖ and ‖r̄(k)
λ

‖ were

taken from the Paige and Saunders algorithm at http://www.netlib.org/linalg/lsqr.
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Then the regularized solution obtained from the TSVD regularization of the projected
problem is

x(k)
reg = Vk(QkWk,	Γ

−1
k,1W

T
k+1,	Z

T
k U

T
k b),

where Γk,1 denotes the leading � × � principal submatrix of Γk. If k is taken to be

sufficiently larger than � so that VkQkWk,	 ≈ V̂ Wn,	, W
T
k+1,	Z

T
k U

T
k+1 ≈WT

n,	Û
T , and

Γk,1 ≈ Σ1 with Σ1 the leading principal submatrix of Σ, then we expect x
(k)
reg to be a

good approximation to x	. This is made more precise in the following theorem.

Theorem 3.2. Let k ≥ � such that

(VkQkWk,	) = V̂1 + E1 with ‖E1‖ ≤ δ1 � 1,

(Uk+1ZkWk+1,	) = Û1 + E2 with ‖E2‖ ≤ δ2 � 1,

where V̂1 and Û1 contain the first � columns of V̂ and Û , respectively. Let D =
diag(d1, . . . , d	) satisfy

Γk,1 = Σ1 +D with |di| ≤ δ3 � 1.

Then

‖x(k)
reg − x	‖ ≤ max

1≤i≤	

1

σi + di

(
δ3
σ	

+ 3max(δ1, δ2)

)
‖b‖.

Proof. Using the representations x	 = V̂1Σ
−1
1 ÛT

1 b and x
(k)
reg = (V̂1+E1)Γ

−1
k,1(Û

T
1 +

ET
2 )b, we obtain

‖x(k)
reg − x	‖ ≤ (‖Γ−1

k,1 − Σ−1
1 ‖+ ‖Γ−1

k,1‖ ‖E2‖+ ‖E1‖ ‖Γ−1
k,1‖+ ‖E1‖ ‖Γ−1

k,1‖ ‖E2‖)‖b‖ ,

and the conclusion follows from bounding each term.

Note that typically σ	 � σn so that 1/σ	 is not too large. The bound says that the
better LSQR captures the first � singular values and vectors, the more we are assured
the solution obtained by projection plus TSVD is close to the TSVD regularized
solution to the original problem. For some results relating to the value of k necessary
for the hypothesis of the theorem to hold, refer to the theory of Kaniel-Paige and
Saad [31, section 12.4]. There is no universal recipe, but if k is large enough that the
projected problem satisfies the discrete Picard condition, then this is some indication
that the approximability property holds.

4. Numerical results. In this section, we present three numerical examples. All
experiments were carried out using Matlab with IEEE double precision floating point
arithmetic. Where noted, we made use of certain routines in Hansen’s Regularization
Tools [18]. Since the exact, noise-free solutions were known in these examples, we
evaluated the methods using the relative, 2-norm difference between the regularized
solutions and the exact solutions. When we applied Rust’s method to the original
problem, the ρi were taken to be the magnitudes of the spectral coefficients of b sorted
in increasing order.
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Table 4.1
Example 1: comparison of ‖xtrue − xreg‖2/‖xtrue‖2 for each of four regularization methods

on the original problem, where the regularization method was chosen using methods indicated. The
parameter values selected for each method are indicated in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (1.6E−1) 2.2E−2 (8.0E−2) 2.2E−2 (4.0E−2) 4.3E−2 (1.3E−1) 2.1E−2
TSVD ( 6) 1.1E−1 ( 9) 1.6E−2 ( 10) 1.6E−2 ( 9) 1.6E−2
Rust’s TSVD (1.6E−2) 2.5E−2 (5.3E−5) 2.2E + 4 (1.6E−2) 2.5E−2 (1.6E−2) 2.5E−2
Projection (5) 2.5E−2 (5) 2.5E−2 (10) 2.2E−2 (9) 2.2E−2

4.1. Example 1. The 200 × 200 matrix A and true solution xtrue for this ex-
ample were generated using the function phillips in Hansen’s Regularization Tools.
We generated btrue = Axtrue and then computed the noisy vector b as b + e, where
e was generated using the Matlab randn function and was scaled so that the noise

level, ‖e‖
‖btrue‖ , was 5× 10−3. The condition number of A was on the order of 4× 107.

Table 4.1 displays the values of the regularization parameters chosen when the
original problem was solved using one of the three parameter selection techniques
together with one of the four regularization methods. We set τδ for the discrepancy
principle to be 8E−2, close to the value ‖e‖2 = 7.65E−2.

The last column in the table gives the value of the parameter that yielded a
regularized solution with minimum relative error. Several values of λ were tested:
log10 λ = −4,−3.9, . . . , 0. The relative error values for regularized solutions corre-
sponding to the parameters are also presented in this table. The GCV and L-curve
parameters for projection were determined after 15 iterations. Note that using GCV
to determine a regularization parameter for Rust’s TSVD resulted in an extremely
noisy solution with huge error.

The corners of the L-curves for the Tikhonov, projection, and TSVDmethods were
determined using Hansen’s lcorner function, with the modification that sometimes
points not strictly on the portion of the curve that was L-shaped (that is, points
with very large residual or very small residual) were not considered (otherwise, a
false corner resulted); this was most often a concern with the TSVD method. Since
the corner was so clearly defined for Rust’s method but the function had trouble
automatically finding the corner, the corner was picked manually.

Next, we projected using LSQR and then regularized the projected problem with
one of the other three regularization methods together with one of the three parameter
selection techniques. Results at iterations 10 and 25 are given in Tables 4.2 and 4.3,
respectively. As before, the lcorner routine was used to determine the corners of the
respective L-curves, with the modifications as mentioned above.

Comparing Tables 4.1 and 4.2, we observe that using either the discrepancy prin-
ciple or the L-curve, 10 steps of projection plus Tikhonov gives results as good as
or much better than if those techniques had been used with Tikhonov on the orig-
inal problem. A similar statement can be made for projection plus Rust’s TSVD
when any of the 3 selection methods are used and for projection plus TSVD when
the discrepancy principle is used. After 25 iterations, the errors for projection plus
Tikhonov or Rust’s TSVD closely resemble the errors in Table 4.1 with one exception.
We note that at 25 iterations, the parameters chosen for projection plus Tikhonov by
the discrepancy principle or the L-curve method and their corresponding errors are
identical to those chosen for the original problem.

In fact, the L-curve, GCV, and discrepancy methods applied to the projected
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Table 4.2
Example 1, iteration 10: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. The parameter values for each method are indicated in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (1.6E−1) 2.1E−2 (2.5E−2) 2.5E−2 (2.0E−4) 2.2E−2 (2.0E−2) 2.0E−2
TSVD (7) 2.5E−2 (7) 2.5E−2 (10) 2.2E−2 (10) 2.2E−2
Rust’s TSVD (9.7E−3) 2.5E−2 (9.7E−3) 2.5E−2 (5.5E−4) 2.2E−2 (9.1E−3) 2.1E−2

Table 4.3
Example 1, iteration 25: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. The parameter values are given in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (1.6E−1) 2.2E−2 (2.0E−1) 2.3E−2 (4.0E−2) 4.3E−2 (1.3E−1) 2.1E−2
TSVD (17) 2.5E−2 (17) 2.5E−2 (21) 2.4E−2 (19) 1.6E−2
Rust’s TSVD (2.0E−2) 2.5E−2 (2.0E−2) 2.5E−2 (1.5E−2) 2.5E−2 (1.5E−2) 2.5E−2

problem with Tikhonov regularization consistently chose the same parameter for fu-
ture iterations (see Figure 4.1, for instance), and correspondingly the errors remain
constant; however, the results at earlier iterations are actually better than after the
parameter on the projected problem has converged to the L-curve parameter on the
original. For the projection plus TSVD, both the discrepancy principle and GCV
method yielded parameters for which the solutions had similar errors from one iter-
ation to the next for at least the first 80 iterations (see the top of Figure 4.2); the
L-curve behaved slightly less consistently for iterations beyond about 50. Discrepancy
and GCV when applied to projection plus Rust’s TSVD also gave consistent solutions
for about 40 iterations, after which the GCV solutions began to grow very large in
error, much like GCV applied to the original problem (refer to the bottom of Figure
4.2).

4.2. Example 2. The 3969× 3969 matrix A for this example was a symmetric,
block Toeplitz matrix with Toeplitz blocks formed according to A = T ⊗T . Here T is
a symmetric, banded Toeplitz matrix with entries Ti,j = ti−j ; the nonzero entries in
the first row were tk = (sin(k/B)/(k/B))2, 0 ≤ k ≤ 4, B = .8. The singular values of
this matrix range from 5.7 to 8.6×10−8 but do not decay very quickly, and the matrix
has a condition number of about 7× 107. x was obtained by stacking by columns the
63 × 63 image that was zero except for a rectangle with value 1 from rows 20 to 49,
columns 4 to 24, and another rectangle with value .8 at rows 23 to 53, columns 29
to 52. We generated btrue = Axtrue and then computed the noisy vector b as b + e,
where e was generated using the Matlab randn function and was scaled so that the

noise level, ‖e‖
‖btrue‖ , was 2× 10−3.

We generated our discrete λi using log10 λ = −4,−4.9, . . . , 0. The norm of the
noise vector was 3.66E−1, so we took τδ = 4.00E−1 for the discrepancy principle.

In this example, when no preconditioning was used, it took 90 iterations for
LSQR to reach a minimum relative error of 7.93E−2. Likewise, the dimension k of
the projected problem had to be at least 90 to obtain good results with the projection-
plus-regularization approaches and even larger for the parameter selection techniques
to work well on the projected problem. Therefore, for the projection based techniques,
we chose to work with a left preconditioned system (refer to the discussion at the end
of section 2.1). Our preconditioner was chosen as in [23] where the parameter defining
the preconditioner was taken to be m = 2080. Results for right preconditioning were
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Fig. 4.1. Example 1. Top: λk as selected by L-curve method; bottom: relative error for
corresponding solution. The solid line indicates the optimal value on the original problem, and the
dashed line indicates value selected by L-curve on the original problem.
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Fig. 4.2. Example 1. Relative error between computed and exact solutions for projection
plus TSVD (top) and projection plus Rust’s TSVD (bottom) when the parameters for the projected
problem are selected by either the discrepancy principle (*) or GCV method (o).

similar, although the errors were not quite as small. On other examples, though, we
found that right preconditioning by this type of preconditioner was only effective in
certain instances, even when left preconditioning was effective.2

The results of the resulting regularization for the original problem parameters are
given in Table 4.4. We note that GCV with Rust’s TSVD was ineffective. Also, after
50 iterations on the left preconditioned system, the GCV functional for projection was
still decreasing, so the value in Table 4.4 corresponds to the value after 50 iterations.
The L-curve parameter in the table was determined after 20 iterations.

Although we projected using LSQR, we note that since the matrix and precondi-
tioner were symmetric, we could have used MINRES as in [23]. The results in each
case at iterations 10, 20, and 40 are given in Tables 4.5, 4.6, and 4.7, respectively, and
we summarize results up to 60 iterations in the discussion below.

Again, we used the lcorner routine to determine the corners of the respective
L-curves, with the modification that for 20 iterations and beyond for TSVD, we first
removed points on the curve with residual norm greater than 10 to avoid detecting a
false corner.

2In the language of [23], right preconditioning worked well only when K was a very good approx-
imation to C so that right preconditioning did not mix noise into early iterates; left preconditioning
was not nearly as sensitive to the approximation on the transition and noise subspaces.
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Table 4.4
Example 2: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for each of four regularization methods on

the original problem. The parameter values are given in parentheses. The projection was performed
on a left preconditioned system.

Disc. GCV L-curve Optimal
Tikhonov (1.6E−1) 8.5E−2 (5.0E−2) 8.0E−2 (3.2E−3) 5.3E−1 (6.3E−2) 7.8E−2
TSVD (2073) 9.9E−2 (2534) 8.1E−2 (1509) 1.2E−1 (2521) 8.0E−2
Rust’s TSVD (2.1E−2) 7.6E−2 (9.2E−2) 4.0E + 3 (1.6E−2) 2.3E−1 (2.0E−2) 7.6E−2
Projection (2) 9.7E−2 (50+) 2.7E−1 (13) 8.3E−2 (8) 7.9E−2

Table 4.5
Example 2, iteration 10: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. Parameter values are given in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (7.9E−2) 7.9E−2 (6.3E−2) 7.9E−2 (2.0E−4) 7.9E−2 (5.0E−2) 7.9E−2
TSVD (6) 9.9E−2 (6) 7.9E−2 (8) 9.8E−2 (10) 7.9E−2
Rust’s TSVD (2.2E−1) 8.5E−2 (2.6E−1) 9.9E−2 (2.3E−1) 9.9E−2 (3.9E−4) 7.9E−2

Table 4.6
Example 2, iteration 20: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. Parameter values are given in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (7.9E−2) 7.9E−2 (6.3E−2) 7.8E−2 (2.0E−4) 1.1E−1 (6.3E−2) 7.8E−2
TSVD (12) 9.9E−2 (12) 9.9E−2 (19) 8.3E−2 (19) 8.3E−2
Rust’s TSVD (1.6E−1) 9.5E−1 (7.9E−2) 1.1E−1 (4.6E−2) 1.1E−1 (1.3E−1) 8.3E−2

Table 4.7
Example 2, iteration 40: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. Parameter values are given in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (7.9E−2) 7.9E−2 (6.3E−2) 7.8E−2 (2.0E−1) 2.3E−1 (6.3E−2) 7.9E−2
TSVD (24) 9.9E−2 (24) 9.9E−2 (28) 9.9E−2 (38) 8.3E−2
Rust’s TSVD (1.5E−1) 9.2E−2 (5.8E−2) 2.3E−1 (1.6E−1) 9.2E−2 (1.5E−1) 9.2E−2

Discrepancy and GCV consistently chose the same regularization parameter and
hence gave the same error for projection plus Tikhonov for 10 to 60 iterations. From
the tables, we see that these are not the same parameters as those chosen when
applied to the original problem and that, in fact, the solutions for projection plus
Tikhonov have smaller error. The errors for the solutions obtained using any of the
3 parameter selection methods applied to find � for projection plus TSVD were also
consistent for 10 to 60 iterations, as alluded to in the tables. Figure 4.3 shows the
errors from iterations 5 to 60 for projection plus Tikhonov and projection plus TSVD
when GCV is used. For Rust’s TSVD, the L-curve and discrepancy rules are fairly
consistent at picking parameters that give solutions with similar error from iteration
to iteration. We note that GCV for Rust’s TSVD picked parameters giving solutions
with reasonably small errors, even though GCV for Rust’s TSVD on the original
problem failed, giving a solution with huge error. A similar statement can be made
for the L-curve with projection plus Tikhonov.

Summarizing, we observe two phenomena. First, the parameters selected to regu-
larize the projected problem can be different from those chosen on the original problem
but still yield solutions of better or comparable error. Second, as this and the previous
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Fig. 4.3. Example 2: Errors for projection plus Tikhonov (*) and projection plus TSVD (o)
when the regularization parameter for the projected problem was given by GCV.

Table 4.8
Example 3: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for each of the 4 regularization methods on

the original problem. Parameter values are given in parentheses. Those for GCV and the L-curve
are those selected after 30 iterations.

Disc. GCV L-curve Optimal
Tikhonov (1.0) 3.9E−1 (1.3) 4.0E−1 (5.0E−1) 4.1E−1 (7.9E−1) 3.9E−1
TSVD (232) 4.2E−1 (400) 1.3E+4 (261) 4.0E−1 (241) 4.0E−1
Rust’s TSVD (3.0E−1) 7.4E+2 (1.8E−1) 1.2E+4 (3.7) 4.6E−1 (3.9E−1) 4.6E−1
Projection (9) 4.0E−1 (23) 4.3E−1 (16) 4.0E−1 (12) 3.9E−1

example show, loss of orthogonality does not seem to hamper the parameter selection
process, at least not for a reasonable number of iterations. This may be due to the
fact that the parameter selection methods are applied directly to the projected prob-
lem: for example, the denominator of our GCV function for projection plus TSVD is
different from the denominator of the GCV function given in [2, (3.8)].

4.3. Example 3. Our final example is from the field of computed tomography.
In this example, the true vector x corresponded to the 20 × 20 image created with
the phantom.m function. The matrix A was the corresponding 561 × 400 Radon
transform matrix where it is understood that the data was taken at angles from 0
to 179 degrees in increments of 11 degrees. The matrix itself was computed (albeit
naively) in Matlab column by column using successive applications of radon.m on
images of point sources. The singular values fall off very slowly at first (the first 260
of the 400 singular values range between 18 and about 1) after which they fall off
rapidly, resulting in a condition number for A of about 107.

Since the norm of the noise vector was about 3.44, we took the tolerance for the
discrepancy principle to be 3. The discrete values λi used for Tikhonov regularization
were 51 evenly log-spaced points between 10−4 and 101. The results computed using
discrepancy, GCV, and L-curve methods for Tikhonov, TSVD, Rust’s TSVD, and
projection on the original problem are given in Table 4.8.

Table 4.9 gives the results after 10 iterations of LSQR. Notice that the errors
for the projection plus Tikhonov solutions via GCV and L-curve are slightly better
than the corresponding error for Tikhonov without projection at only 10 iterations.
Also interesting is the fact that at 10 iterations the discrepancy and GCV methods
for projection plus Rust’s TSVD give solutions with reasonable errors, whereas these
techniques give solutions with very large errors when applied to the original problem.
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Table 4.9
Example 3, iteration 10: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. Parameter values are given in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (1.0) 4.0E−1 (2.2) 4.0E−1 (1.6E−4) 3.9E−1 (4.0E−1) 4.0E−1
TSVD (10) 3.9E−1 (1) 8.6E−1 (5) 8.3E−1 (10) 3.9E−1
Rust’s TSVD (1.0) 3.9E−1 (1.5) 4.0E−1 (2.2) 4.0E−1 (0.0) 3.9E−1

Table 4.10
Example 3, iteration 40: comparison of ‖xtrue−xreg‖2/‖xtrue‖2 for projection plus Tikhonov,

TSVD, and Rust’s TSVD. Parameter values are given in parentheses.

Disc. GCV L-curve Optimal
Tikhonov (1.0) 3.9E−1 (1.2) 4.1E−1 (5.0E−1) 4.1E−1 (7.9E−1) 3.9E−1
TSVD (37) 4.0E−1 (15) 7.8E−1 (39) 4.1E−1 (38) 4.0E−1
Rust’s TSVD (6.0E−1) 4.2E−1 (1.2) 4.1E−1 (2.7E−1) 4.1E−1 (6.6E−1) 4.0E−1
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Fig. 4.4. Example 3. Top: Value of ρk selected by GCV for projection plus Rust’s TSVD;
Bottom: Relative error of the corresponding solutions.

Table 4.10 shows the parameters and the errors after 40 iterations. From these
results, we see that the L-curve for projection plus Tikhonov eventually gives the
same regularization parameter and same solution error as when applied to the larger
problem, and we observed this to be true for several iterations beyond 40. Again, we
see that discrepancy and GCV used with projection plus Rust’s TSVD is effective,
whereas they are ineffective when used on the original problem; we observed this
behavior well beyond 40 iterations (see Figure 4.4).

5. Conclusions. In this work we have given a common framework for methods
based on regularizing a projected problem. We have shown that determining regular-
ization parameters based on the final projected problem rather than on the original
discretization has firmer mathematical justification and often involves less computa-
tional expense. We presented results that in fact the regularized solution obtained by
backprojecting the TSVD or Tikhonov solution to the projected problem is almost
equivalent to applying TSVD or Tikhonov to the original problem, where “almost”
depends on the size of k. The examples indicate the practicality of the method and
illustrate that our regularized solutions are usually as good as those computed using
the original system, and they can be computed in a fraction of the time, using a
fraction of the storage. We note that similar approaches are valid using other Krylov
subspace methods for computing the projected problem.
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In this work, we did not address potential problems from loss of orthogonality
as the iterations progress. In this discussion, we did, however, assume that either k
was naturally very small compared to n or that preconditioning had been applied to
enforce this condition. Possibly for this reason, we found that for modest k, round-off
did not appear to degrade either the LSQR estimates of the residual and solution
norms or the computed regularized solution in the following sense: the regularization
parameters chosen via the projection-regularization and the corresponding regularized
solutions were comparable to those chosen and generated for the original discretized
problem. Another possible reason for the success of our approach is that we chose
parameters for the projected problem directly, rather than for the backprojected,
larger problem. In our experiments, we found that the parameters selected usually
leveled out after a few iterations. The stagnation of the parameters themselves may
suggest when k is large enough.

For the Tikhonov approach in this paper, we have assumed that the regularization
operator L was the identity or was related to the preconditioning operator; this allowed

us to efficiently compute ‖r(k)
λ ‖ and ‖x

(k)
λ ‖ for multiple values of λ efficiently for each k.

If L is not the identity but is invertible, we can first implicitly transform the problem
to “standard form” [19]. With Ā = AL−1, x̄ = Lx, we can solve the equivalent system

min
x̄

= ‖Āx̄− b‖22 + λ2‖x̄‖22.

Then the projection plus regularization schemes may be applied to this transformed
problem. Clearly the projection based schemes will be useful as long as solving systems
involving L can be done efficiently.
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Abstract

Subsurface sensing and imaging seeks to locate and identify objects or conditions underneath an

obscuring media by monitoring a probe or wave outside the surface.  Many of the mathematical and

physical models used in this process are common to underground and underwater environmental

exploration, medical  imaging, and three-dimensional microscopies, allowing a common framework

of physic-based signal processing (PBSP) to be applied. The basis for a unified discipline of

subsurface sensing and imaging can be identified from a few general subsurface information

extraction strategies.  These strategies and their related families of PBSP algorithms can be used to

guide a systems-oriented approach to subsurface solutions.

1. The Need for a Unified Discipline

The problem of imaging under a surface arises is a wide variety of contexts, and these problems

are among the most difficult and intractable system challenges known. Place one hundred plastic

landmines on top of a cleared field and they can be safely removed in hours by trained workers.

Bury them under one centimeter of soil, and you have a problem that has been the subject of

intensive research for over half a century and remains far from solved. State-of-the-art inductive

sensors in the hands of an experienced operator can detect non-metallic mines from the signal

received from the firing pin and other small metal parts.  In typical operation, however, over 300



2

false alarms are recorded for every mine identified, each requiring lengthy and delicate examination.

In the end, operational mine detection systems have little, if any, advantage over probing each square

centimeter of the ground with a titanium rod, a process that can clear a field at a rate of 1 meter by

25 meters of ground per person per day.  No one has any idea how the three million landmines buried

in Bosnia or the 10 million in Cambodia can be removed at any reasonable cost.1

De-mining, in common with nearly all subsurface sensing and imaging problems, is an

information problem.  If we could see precisely where the mines were buried, world-wide

humanitarian de-mining could be achieved with available physical resources. Yet in an Information

Age, when the cost of computation and communications is reduced by a sizable fraction each year,

the full potential of applying our exponentially expanding information technology sector to

subsurface problems has not been realized because of lack of equivalent progress in subsurface

detection and identification.

In addition to the technical problems of probes and processing that we will discuss below, we

identify two major systems obstacles to progress in subsurface sensing and imaging:

1) the problems of sensor design, modeling, image processing, and recognition have been

compartmentalized, viewed as separate disciplines rather than as integrated parts of a  system

optimization problem.

2) the subsurface problems in different media and different length scales are commonly viewed

as unrelated problems and addressed with ad hoc solutions.  Lessons learned in one subsurface

technology are rarely applied to other problems, and no overarching theory exists to identify

fundamental limitations, predict what can be detected and the optimal way to do it.
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Figure 1.  Subsurface problems can be classified on the
basis of the probe-medium-target interactions.

Figure 2.  A unified physics-based approach can unite
subsurface problems from many domains at different
length scales.

The subsurface sensing and imaging problem is to extract information about a subsurface target

from scattered and distorted waves received above the surface. Imaging techniques, whether

ultrasound sensors in tissue or electromagnetic probes in soil, can be described by the properties of

probe wave, the wave propagation characteristics of the medium and surface, and the nature of

target/probe interaction as shown in Figure 1. The framework of Figure 1 describes not only

underground imaging, but also underwater imaging, medical imaging inside the body, and 3D

biological microscopies inside a cell or collection of cells.  A unified theory of subsurface sensing

and imaging, as illustrated in  Figure 2, should encompass all of these applications and permit

progress in one domain to be transparently applied in other domains with similar elements in the

taxonomy of Figure 1.

For example, diffusive wave optical imaging for medical diagnosis and crosswell electromagnetic

induction tomography for geophysical exploration both involve extracting an image of, or
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Figure 3. The physical/mathematical framework of
diverse problems can be very similar.

information about, anomalous regions (e.g., diabetic lesions under the skin or oil-bearing rock

formations under the ground; see Figure 3). Although the problems occur on vastly different length

scales, both require solution of the frequency-domain diffusion equation in the presence of an

inhomogeneous, layered medium, and a need to filter large data sets from multiple transmitters and

receivers that are, nevertheless, sparse compared to the information set sought. Attacking these two

problems within the same framework allows the synergy of the two solutions to be exploited. Thus,

even the critical differences between the two problems (lossy vs. lossless propagation, Poisson vs.

Gaussian noise statistics, the diffusion equation as a limit of the radiative transfer equation  vs. the

diffusion equation derived by neglecting the displacement current in Maxwell’s Equations) become

a basis for more complete understanding of the unified problem, rather than just an obstacle to

applying the same specialized algorithm to each problem.

2. Physics-Based Signal Processing

It is rarely the case that we cannot get any information from the subsurface region.  The

concealing media, while not transparent, can usually be penetrated to a considerable depth by a

variety of acoustic and electromagnetic wave

probes.  The problem is that the target signal is

distorted by complex absorption, dispersion,

diffraction, and refraction of the wave through the

media and obscured by surface reflection,

subsurface clutter, and scattered energy from

unknown inhomogenieties on many scales.  The

signal received, y, depends on the target
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(1)

information x and various signal-dependent clutter and nuisance parameters z through the function

C which describes the physics of the probe-wave generation, propagation, and target and clutter

interaction:

The inverse problem of un-encoding the signature of the target object x from the received signal

y in the presence of unpredictable clutter signals due to z and noise, n,  is the challenge of subsurface

sensing and imaging.

Since the mapping from the target to the sensor depends on unknown information about the

subsurface media and target, the inversion from the scattered wave to the target properties is a

nonlinear mathematical problem2,3.  The use of appropriate physical models of the

probe/surface/media/target/ receiver interaction (C in Equation 1) to assist in the solution of that

inverse problem is what is referred to as physics-based signal processing (PBSP).  PBSP has been

identified in a seminal 1998 review article as a key to progress in image formation in complex

media.4.  Physics-based reasoning through the entire image understanding process and goal-directed

processing is the most direct path to produce algorithms which are robust to modeling errors and

generate accurate reconstructions of the critical information.

The fundamental problem of subsurface sensing and imaging is to differentiate the target of

interest from the background scattered return and irrelevant clutter:  to distinguish a landmine from

the ground-surface and volume-inhomogeneity reflections, roots, stones, or shell-casings, for

example.  In the pulse-reflection ground-penetrating radar (GPR) simulation in Figure 4  the signal

from the plastic cylinder in the lower figure is obscured by the rough-surface reflection in the upper
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Figure 4.  Clutter from rough-surface reflection in the
top frame obscures the signature of the buried object in
the bottom frame in this pulse GPR simulation.

figure. The task is to extract the signal from the

complex scattered field of random surface

irregularities.  In principle, if the surface profile

and the soil dielectric properties were precisely

known, one could subtract the calculated

background from the received signal to extract

the target signature, but a full 3D calculation of

the scattered field for a single pulse could take on

the order of 10 hours on a 450 MHz desktop

Pentium computer. 

One of the primary methods of differentiating

a target from clutter is through resolution of the

target shape.  Problems where the target

distinguishing features are comparable to the

clutter size, such as demining, are among the

most challenging subsurface problems that exist.  Since resolution in the far-field is limited to order

of the wavelength, it is desirable to use probes with wavelengths smaller than the size of identifying

features.  Unfortunately in most subsurface modalities, absorption increases with increasing

frequency (smaller wavelengths). For example, the attenuation of medical ultrasound increases at

the rate of 1dB/cm for every megahertz of frequency. Arterial plaque, which can be resolved by

inserting catheters containing 30 MHz (8 = 50 :m) ultrasonic probes, cannot be noninvasively
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imaged from outside the body because the attenuation is too severe (about 30 dB per centimeter of

depth at 30 MHz).  This range/resolution trade-off is a fundamental limitation on many subsurface

modalities including underground seismic imaging and underwater sonar imaging.

Alternatively, probes which are sensitive to target material properties, such as to material optical

response (color), conductivity, permittivity, or magnetic susceptibility, can offer advantages for

target differentiation. For example, medical imaging probes such as magnetic resonance imaging or

nuclear medicine molecular tags which are sensitive to target chemistry can be used to differentiate

targets on the basis of physiology (functioning) instead of anatomy (structure).  Imaging the subtle

physiological differences between cancerous cells and normal cells would be a medical

breakthrough.

Nonlinear material properties are used for subsurface discrimination in two-photon microscopy5,6,7

or ultrasonic harmonic imaging.  Harmonic imaging can yield diagnostically useful information on

the 25% to 30% of the population that cannot be imaged well by ultrasound due to high clutter

levels, distortions, and artifacts.  Although harmonic imaging is already commercially available, the

physical mechanisms behind it are poorly understood.

Quantitative subsurface imaging, for example measuring low concentrations of contaminants in

ground water or determining oxygenation levels in a neo-natal brain, demands a challenging

combination of spatial and material differentiation.  To image an intensive quantity, such as percent

of contaminants, requires 1) a sensing strategy with sufficient material sensitivity to differentiate to

the desired measurement precision, and 2) the ability to localize the anomaly to a meaningful region.

In this case the target/background differentiation includes the necessity to distinguish, for example,
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a ground-water plume with 5% contaminants from an uncontaminated background and also, if a

measurement precision of ±5% is desired, from a plume with 10% contaminants.  The ability to

differentiate such subtle differences in the presence of unknown subsurface inhomogeneity tests the

limits of subsurface imaging.

3. Information Extraction Strategies

Despite the bewildering variety of imaging modalities and techniques covered in the Figure 1

taxonomy, subsurface problems can be organized into a relatively small number of information

extraction strategies which use similar algorithmic tools.  Three broad information extraction

strategies are discussed here.

Localized probing and mosaicking (LPM) concentrates the probe wave on

a local subsurface region by focusing or time-gating and then assembles these

individual pieces of information into an information mosaic.  Common to these

techniques are problems of concentration, aberration, and registration which

may use tools as simple as a lens or as complex as three-dimensional image matching and

reconstruction.  For example, medical reflection ultrasound and confocal microscopy both collect

scattered energy from a subsurface target voxel.  In both cases, precise focusing assumes a uniform

homogeneous wave velocity, rarely the case in subsurface imaging, and resulting aberrations impede

accurate imaging.   LPM techniques are subject to obstruction by opaque objects (e.g., bones), and
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Figure 5.  High-resolution underwater optical image of
an ocean-floor thermal vent is assembled by 3D photo-
mosaicking techniques.  (Photo courtesy of Wood Hole
Oceanographic Institution.)

because reflection geometries are sensitive to high

spatial frequencies (interfaces) LPM techniques

are poor at detecting low-contrast or phase-only

objects. One approach to increasing LPM

resolution is to produce a localized modification

of the object under study, e.g., by introducing a

controlled magnetic field gradient in magnetic

resonance imaging (MRI) or through radioactive

molecular tags in nuclear medicine.

Wide-scan, high resolution LPM imaging

usually requires  mosaicking of multiple frames.

Figure 5 shows an image of an ocean-floor

hydrothermal vent assembled in this way by our

Woods Hole Oceanographic Institution

collaborators.  Errors in image registration and

composition techniques contribute to errors on the scale of meters in the large-scale representation

of imaged objects, reducing their utility in quantitative oceanography.  The use of high-resolution

sonar maps to register the optical images is a multi-modality path to the desired capability for high-

resolution mapping of hundreds of thousands of square meters with an accuracy of centimeters.

In contrast to LPM where the sensor information is spatially isolated, in

multi-view tomography (MVT) correlated information from multiple sensors is

combined mathematically to create a virtual map of the physical properties of
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the target. These systems all involve mathematical inversion of integral equations through

linearization, regularization, and integral transforms.  Examples include x-ray CAT scanning,

diffraction tomography, and synthetic aperture radar.

If multiple view angles are possible, MVT techniques can image obstructed/occluded objects and

yield quantitative maps of wave velocity as well as absorption, allowing imaging of phase-only

objects.  For wavelengths that are short compared to feature dimensions, as in CAT scans8,9, Radon

convolution-backprojection algorithms combined with Fast Fourier Transforms (FFT) was first used

to achieve 3D feature imaging in the 1970’s.

Diffraction tomography10 is the technique of image reconstruction and resolution enhancement

by multiple-view imaging when the wavelength is comparable to feature size. The development of

the theory of diffraction tomography by the linearization and Fast Fourier Transform (FFT) inversion

of the wave diffraction equations using the filtered back-propagation algorithm was pioneered in the

early 1980s.11,12 Diffraction tomography has been successfully applied for seismic imaging of near-

surface objects, including fossil dinosaur bones13 and to ultrasonic imaging14,15,16,17,  Applications of

diffraction tomography with limited or obstructed field-of-view or with higher-order, non-linear

models are at the forefront of the state-of-the-art.

When the wavelength is long compared to feature size, near-field tomographic techniques can still

yield useful information in geophysical, industrial, or medical applications. In Electrical Resistance

Tomography and Electromagnetic Induction Tomography, quasi-static probes and models are used

to image contaminants in soil and groundwater and leaks from storage tanks on scales much smaller

than the electromagnetic wavelength.18,19 Capacitance Tomography is used to image the permittivity
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Figure 6.  In Cardiac Electrical Imaging (CEI), near-
field MVT inversion yields the electric potential on the
heart from measured voltages on the torso.

of multiphase pipeline flow components for

industrial process control.20  Applications in

medical imaging include Electrical Impedance

Tomography21 and Cardiac Electrical Imaging

22,23,24.  Figure 6 shows the electric potential on the

heart imaged from the measured potential on the

torso by Cardiac Electrical Imaging. The potential

benefits of the enhanced information gained by this technique over standard electrocardiograms

(ECGs) are enormous.  ECGs have a rate of false diagnosis of myocardial infarctions (Aheart

attacks@) as high as 30% which results in unnecessary health-care costs in the U.S. estimated at $4

billion per year 25, while up to 25% of actual heart attacks go unnoticed until evidence of cardiac

damage is detected in annual checkups.

Multi-spectral discrimination (MSD) adds the element of frequency

discrimination to the spatial resolution sought by LPM and MVT giving a 4-

dimensional map (3-space plus frequency) of the object.  Combinations of

MSD with LPM are common (a color photograph or hyperspectral image are

examples).  Joint methods for MSD and MVT have received little attention. MSD information

extraction methods focus on material dispersion, parameter estimation, image registration, and

fusion.  Multi-sensor fusion can be viewed as an MSD problem involving, in some cases, probes that

differ in modality (acoustic and optical, for example) as well as frequency.

For example, the work26,27 illustrated in Figure 7 shows that subtractive imaging at two nearby

optical wavelengths can map specific chemical concentrations, such as oxygenated /deoxygenated
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Figure 7 MSD analysis of diffusive optical waves
images areas of activity (high blood oxygenation levels)
in infant brain.

hemoglobin (Hb).28,29,30 This use of optical spectroscopy to detect chemical indicators of

physiological function in vivo is promising for diagnostic discrimination.  The rich spectral

interaction of IR-VIS-UV light with biological molecules, however, causes absorption and strong

scattering in tissue 31,32,33 and makes the localization of emergent light difficult. Light will propagate

through a hand, but the strong scattering does not allow imaging of the bone structure. Diffusive

Wave Imaging34,35 in strongly scattering media is the focus of much current research, including

optical coherence tomography36,37,38 and dual-wave acousto-photonic imaging39 which seek to

improve spatial resolution from centimeters to millimeters for precise quantitative diagnosis.

Satellite hyperspectral imaging of the Caribbean Basin has been used to determine the health of

coral reef ecosystems and measure coastal erosion40. Reflected light is strongly scattered in the water

column, by the ocean surface, and by the atmosphere, distorting the  spectral information as well as

the position of underwater objects. This problem is similar to medical diffusive imaging except on

a length scale that differs by orders of magnitude.

The physics of both are modeled by the radiative

transfer equation (RTE).41  However, in diffusive

medical imaging, the ratio of absorbed to

scattered light is assumed to be small leading to

the diffusion equation, while in ocean scattering

Beer=s law is often applied by assuming the ratio

is large. In reality, the physical situation in both

cases may be intermediate, and there is a need for

more rigorous forward models and more robust
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inversion algorithms. Current spatial resolution from space-based platforms is approximately 1

meter; processing techniques that take advantage of accurate physical models may improve the

resolution limit to 10 centimeters.

4. A Systems Approach to Subsurface Sensing and Imaging

Progress in subsurface sensing and imaging approaches within these information extraction

strategies has been documented in the feature articles in a recent issue of  Science (”Imaging: New

Eyes on Hidden Worlds”)42. Key elements in these advances include the increase in computation

power, the application of new mathematical algorithms and advanced sensing strategies, the

exploitation of wave coherence, and the fusion of multiple sensing modalities (e.g., microwave and

infrared) to extract increasingly detailed information from physical systems.

Still, the need for new technologies is clear. The General Accounting Office has stated, “the

dimensions and potential costs of cleaning up our environment are so great that, without innovative

technologies, we may find the solution cost prohibitive and impacting on our ability to address other

national needs.” By using current technologies, the costs of remediating Superfund and Resource

Conservation and Recovery Act sites, Federal facilities, and other known hazardous waste sites may

total $750 billion over the next 30 years43. Humanitarian de-mining remains an unsolved problem.

No current imaging technique can adequately detect precancerous cell masses in soft tissue or
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Figure 8.  Application of a unified framework of
subsurface sensing and imaging will allow the creation
of “end-to-end” optimized system solutions.

noninvasively diagnose arteriosclerosis, and there

is no way to collect and correlate the images from

different modalities to automatically identify

incipient health problems. 

The path to the solution of these important

societal problems lies through the application of

the unified framework of subsurface sensing and

imaging to create “end-to-end” systems solutions

as shown in Figure 8.  A general information

extraction strategy is based on the common model in Equation 1. This model encompasses all

traditional tomographic (MVT) problems: electrical impedance tomography, diffraction tomography,

diffuse wave imaging, and the deconvolution and focusing problems associated with LPM and MSD

methods such as optical microscopy systems and hyperspectral sensors.

We observe that the number of information extraction strategies is small compared to the number

of individual modalities, and there is sufficient commonality in the underlying physical and

mathematical structures to develop a unified framework for PBSP techniques. This framework

incorporates the relevant physics of wave propagation plus techniques for capturing the effects of

random fluctuations in background properties, unknown interfaces, and discrete background clutter.

The end-to-end integration of subsurface sensing mechanisms with advanced algorithms fostered

by a unified approach enhances subsurface sensing systems in two ways. First, the physics-based

processing and recognition/decision algorithms can exploit the a priori knowledge implicit in a deep
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understanding of the physics of the wave probe and sensors.  Second, the approach to problems from

the front-end to final product permits optimization of  the entire system--all the way to the sensor

modality and configuration--based on the ultimate system objective.

5. Research Needs and Barriers to Progress

Fundamental research on several overlapping levels is necessary to create the desired system

solutions of Figure 8. Subsurface Sensing and Modeling research (R1) seeks to elucidate the nature

of the physical model contained in C in Equation 1. This includes investigations of fundamental

wave interactions in the subsurface media and targets, particularly for non-linear and dual-wave (e.g.,

acousto-photonic) probes where propagation and scattering mechanisms are poorly understood.

Forward modeling plays an important role here.  Given a sensor system, the computational model

provides the mathematical description of the physics of the device/wave/media/target/receiver

interaction problem. We can have reasonable confidence that the physics of the wave interactions

is understood only when good agreement can be achieved between a physical model and the sensor

data. This forward model then becomes the first step in the inversion process, and may be used

repeatedly in iterative reconstructions. 

PBSP and Image Understanding (R2) research uses the model C developed from R1 in PBSP

algorithms to find x from y.  This is the inverse problem which is the core of subsurface sensing and

imaging.  The difficulties with accurate reconstruction of the required information in x arise from

many sources: sparse, limited data collected at surface boundaries, sensor uncertainties, clutter, and

the complex nature of the operator C.
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Figure 9.  The unified framework enables a top-down
approach to sensing and imaging systems solutions.

To gather enough information to identify

subsurface objects in cluttered and noisy

environments, large amounts of data may need to

be collected from multiple diverse sensors.  This

can lead to severe computation and data handling

tasks.  Research in Image and Data Information

Management (R3) is needed to develop

compression and computation capabilities to link

distributed sensors and to implement complex R2

algorithms in near-real-time, allowing sensor

reconfiguration to optimize performance.

 The path from these fundamental research thrusts to advanced sensing and imaging solutions to

societal needs requires a model for goal-directed research and engineering development.  In Figure

9 we present one such model based on the National Science Foundation’s Engineering Research

Centers Program.44  In a top-down focus,  we begin with a broad system goal: to create a unified

discipline of subsurface sensing and imaging to solve important societal problems.  Applying the

unified approach of Figure 8 based on the common wave-physics  elements, we identify barriers to

our goal and select fundamental research thrusts (R1-R3) to address these barriers.  The Level 1

fundamental science develops a unified physical/mathematical framework for subsurface sensing and

imaging.  

At Level 2, experimental testbeds are used to validate the unified framework on well-

characterized “ground-truth” scenarios. On this level, the research breakthroughs will be verified
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with real data.  This will require the development of  widely accessible experimental testbeds with

reconfigurable sensors in a number of subsurface sensing scenarios.  In addition standards for data

and metadata need to be developed so that algorithms can be tested in diverse domains at different

length scales. As the unified framework is developed and verified it will be used to revise the barriers

and research efforts. The verified framework is applied to real-world problems at Level 3,

completing the system goal.

Beginning from the unified framework developed in this paper as a first step, we can identify

some present  barriers to advanced civil-environmental and biomedical detection systems.  The major

barriers lie both in unsolved fundamental research problems and in lack of adequate technology

tools.  These barriers are:

 Barrier 1: Fundamental knowledge is lacking about nonlinear interactions, dual-wave sensing

mechanisms, and coherent imaging in scattering media. While linear acoustic and electromagnetic

interactions can be modeled and characterized by well-understood linear response functions,

advanced imaging techniques using non-linear or dual-wave (e.g., acoustic/optical) probes require

fundamental investigations to determine appropriate physical models. 

 Barrier 2: The present formulation of coherent inverse scattering is inadequate to quantitatively

image objects in highly-scattering random inhomogeneous and cluttered environments.  In these

situations the non-linear character of the inverse problem defeats tomographic reconstruction and

adequate alternatives do not yet exist.
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Barrier 3: Recognition strategies for obscured and limited-view subsurface applications are not

well developed, and we have no theory for combining different sensor inputs to optimize the

information obtained. 

Barrier 4: Forward modeling of large complex scattering geometries is too slow for real-time

inverse-processing applications.  Progress is required in both efficient approximate forward solvers

and in hardware/software implementation of processing. 

Barrier 5: There are few test facilities with sufficient flexibility and sensor reconfigurability to

permit the optimization of sensor modality/configuration and processing strategies based on

recognition and decision objectives.

Barrier 6: Techniques for rapid processing, cataloging, storage and retrieval of large image

databases are not sufficiently developed. Data and metadata standards will need be instituted so that

processing algorithms can be routinely tested on experimental results from diverse experimental

domains.

5. Conclusion

The pieces are in place for a major advance in the field of sensing and imaging. The development

of a common framework and unified discipline of subsurface sensing and imaging promises to allow

the field to emerge as a co-pillar of the Information Age, along with computation and

communications.  We can look forward to systems-level advances such as integrated, field-tested,

algorithmic and computational tools for the entire range of subsurface problems, and standards and

criteria for the use of multiple sensing modalities to achieve subsurface sensing system goals. These,

in turn, will open the door for the next generation of systems for environmental sensing underground
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Figure 10.  The CenSSIS logo expresses the goal of a
unified discipline of subsurface sensing and imaging:
“diverse problems, similar solutions.”

or under the water, medical imaging and automatic diagnosis inside the body, and biological

microscopy to reveal fundamental processes inside living cells.
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Abstract

A 100 mJ, 100ns pulsed CO2 laser incident on the surface of soil is used as a localized

acoustic source for the detection and imaging of underground objects.  The acoustic pulse

produced by the impulsive heating of the soil surface due to the absorbed 10.6 :m radiation is

detected with an acoustic transducer suspended over the surface.  Application of a Fourier

domain filter enables the separation of the direct acoustic return from the faint echo from an

object buried 3-25mm below the surface.  Scanning of the laser pulses across the position of a

buried object allows the resolution of the shape and the depth of the buried object.  The

application of this technique to image buried landmines is demonstrated in trials at an outdoor

test track.

Keywords: Laser, acoustic, landmine, detection

The detection, location, and ultimate removal of landmines is a challenging and important

task.   Mines with low metal content  pose severe difficulties for the standard electromagnetic

induction techniques1.  Often, 300 or more false alarms are observed for every actual landmine

detected.  A major goal of any new mine-detection technology, then, is to reduce the false alarm
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rate of existing techniques.  Any technology which provides information on the shape, size, and

composition of buried objects may prove useful in this regard.  Acoustic detection is attractive in

principle because of the large acoustic mismatch between porous soil and solid metallic or non-

metallic objects, but difficult to achieve in practice because of the need to couple acoustic energy

into and out of the soil2,3,4,5.  A laser-induced acoustic imaging system is proposed, and

experiments are reported here to validate the technique. 

The photo-acoustic effect has been used to produce acoustic pulses for liquid drop studies

and materials characterization6,7,8.  A short pulse of laser light is absorbed at the surface of the

solid or liquid target, resulting in immediate heating and expansion of the material.  Provided that

the duration of the pulse is shorter than the time required for thermal diffusion to reduce the

temperature, the resultant heating will cause expansion, and thus generation of a broad-band

acoustic wave. For application to mine detection, the laser pulse would be directed at the surface

of the ground over the suspected location of the landmine.  The laser-generated acoustic wave

reflects and refracts upon encountering buried objects or interfaces.  An acoustic  receiver placed

above the ground will detect the acoustic wave from the surface, and at a later time, will detect

the reflection from a buried object, if present9. 

To test this concept, a pulsed, TEA, carbon-dioxide laser (LSI 150, by Laser Science,

Inc.) was used to induce acoustic signals in a box of sand with various buried objects.10  The laser

pulse energy was over 100 mJ, with a typical gain-switched spike about 100 ns long, followed by

a tail of several microseconds.  The sandbox was moved as shown in the inset in Figure 1 on a

grid pattern to produce a raster scan, and the echo at each location was recorded with an acoustic

receiver in the air above and an oscilloscope connected to a personal computer.  

Two different detectors were used in these measurements.  The measurements reported in
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the lab used a generic piezoelectric transducer potted in an epoxy cylinder approximately 4cm

long by 2cm in diameter.  The resonant response of this detector created a high gain signal

sharply peaked around 30 kHz.  The field trial measurement used a Radio Shack 33-1073A

audio microphone with an approximately flat response below 15 kHz.  The microphone had a

higher sensitivity, but also was much more susceptible to low-frequency noise.  The lower

frequency microphone also lead to noticeably lower acoustic resolution.  The detectors were

positioned between 2 and 10cm above the surface of the ground, directly above the laser impact

site.

Two typical time histories are shown in Figure 1, one with an ice-hockey puck, sliced in

half, buried one centimeter below the surface and one with no buried object.  The dominant

feature is the ringing of the transducer at approximately 29 kHz, stimulated primarily by the

reflection from the air-sand interface, and so the two signals look very similar.  The challenge

then is to extract the small echo caused by the buried object from the larger surface signal.  If the

soil surface is level, the laser spot and microphone will remain at the same relative positions, and

subtraction of a background signal from a target-free region of ground  will reveal the anomaly

created by the echo from the subsurface object, albeit strongly modulated by the detector ringing. 

If the ground is non-uniform, amplitude and phase differences between the target and background

time traces will defeat the cancellation by subtraction of the time-domain signals.  

Alternatively the signals may be Fourier transformed, the detector response estimated

from the no-target signal and removed by a deconvolution.  Deconvolution is implemented by

dividing the received signal by the no-target signal in the Fourier domain.  The problem with this

approach is the singularities created at frequencies where the detector response went to zero.  To

take out these singularities, a deconvolution  based on a Weiner filter11 was used.  

Under the assumption that the signal consists of the impulse response of the transducer
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(1)

(3)

(4)

convolved with a temporal description of the reflectivity as a function of depth, the Fourier

transform of the signal, Y(T) is the product of the transfer function H(T) and the desired

reflectivity function X(T), plus a noise term, N(T). 

Straightforward deconvolution would magnify the noise at frequencies where H

approaches zero.  Instead, the Weiner filter produces an estimate,  , of the signal as

where , is a constant chosen empirically through trial and error.  If the magnitude of the transfer

function is large, the result is:

which implements a deconvolution, while for small magnitudes of H,

which implements a matched filter.  The function H can be determined from the Fourier

transform of a pulse where the laser is not near the target.  

The constant parameter , is chosen by examining the Fourier transform of the data and

selecting a value that was equivalent to the signal level at a cut-off frequency about 50 kHz.  The

data above the cut-off frequency was discarded since the piezoelectric transducer response was
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reduced by a factor of 40 from the peak response near 30 kHz.  In practice, the selection of the

high-frequency cut-off and the value of , did not make a large difference in the quality of the

deconvolution.

To test the ability to distinguish depth, the puck was tilted as shown in the Figure 1 inset,

and the sand box was moved in the x-direction with respect to the fixed laser and detector so that

the laser spot passed directly over the center of the puck.  The vertical slices (constant position)

through the resulting data  processed through the Weiner filter, shown in Figure 2, clearly

demonstrated the ability to resolve depth and to effectively filter the signal even under an uneven

surface.   At our measured speed of sound in dry sand of about 300 m/s, the time delays in Figure

2 correspond to a distance under the surface of between 0.3 to 1.2 cm, consistent with the tilt of

the target puck.

A half-hockey puck was buried horizontally less than 1 cm below the surface and

horizontal (constant time delay) slices were also developed to show the strength of the signal at

each individual depth as the target was scanned in an x-y plane.  Each such slice imaged the

surface of the puck at a given depth.  All the slices between time delays of 45-60 :s (depth from

0.7-0.9 cm) were summed to produce the projection shown in Figure 3.  The outline of the puck

is shown by the dashed line to illustrate that the shape is also quite well resolved in two

dimensions. 

At the 29-kHz resonant frequency of the transducer the acoustic wavelength in dry sand is

about 1 cm, and we have measured an pressure-field absorption length (1/") close to 30cm

(assuming 1/r spreading).  Experiments conducted with a microphone with a response from 0-15

kHz produced noticeably poorer resolution.  At higher frequencies it is anticipated that resolution

will improve and absorption will increase,  with an optimal frequency at some

yet-to-be-determined value.
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To evaluate the usefulness of this technique for application to demining, we conducted a

field test of the system at an outdoor test facility.  The test track is a 25 x 3 meter section of

screened loam traversed by an instrument cart on rails.  The laser and electronics were mounted

on the cart and pushed over the location of a known mine simulant, a 5.6 cm-diameter plastic M-

14 antipersonnel mine with the charge replaced with inert silicone filler and buried 2.5 cm below

the surface.  The laser was focused with a lens to a spot size about 5mm in diameter and the

detector, an audio microphone, was mounted on the cart about 2 cm from the ground surface near

the incident laser spot.  The cart was moved so the laser pulse crossed the center of the known

mine location and stopped every 1.3 centimeter so the acoustic signals from eight laser pulses

could be recorded and averaged.

To allow for variations in the ground surface that affected the intensity of the acoustic

signal, the signals were Fourier transformed and normalized before applying the Weiner filter. 

The filtered signal is shown in Figure 4 as a function of laser position with respect to the known

position of the mine simulant as indicated.  The trace indicates a clear anomaly at a position

between about 20 and 30 cm corresponding to the position of the buried mine.  The return from

the mine at about 0.2 ms time delay is weak, but the modification of the acoustic signal from the

plastic mine and the disturbed soil with respect to the undisturbed soil creates a pronounced

ringing in the filtered signal that extends for almost a millisecond after the initial pulse.

The Weiner filter was not as successful in reconstructing the impulse echo as in the

laboratory test,  perhaps due to the limited dynamic range of the sampling oscilloscope, and the

image is larger that the diameter of the M-14 simulant,  possibly as a result of the imaging of the

disturbed soil caused by the simulant emplacement, or the lower resolution of the microphone

frequency range.  Nevertheless, the existence of an acoustic anomaly at the position of the buried

mine simulant is evident in Figure 4.
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Additional information could be obtained if multiple acoustic sensors are used, for

example, through the use of a multiple-beam laser vibrometer, scanned with the incident laser

beam.  The shape information attainable with laser-induced acoustic imaging, combined with

additional information, has the potential to reduce the false-alarm rate associated with landmine

detection. 
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Figure 1.  Unprocessed detector signal (PZT transducer voltage) for a single laser
pulse incident on the surface of dry sand when the laser is over the target (solid) and
when it is not over the target (dotted).  Inset:  Experimental configuration for laser-
induced acoustic experiment.
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Figure 2.   Fourier-filtered acoustic data for tilted hockey puck buried under uneven surface of
dry sand.  The high intensity return near 40:s is the ground surface and the return from the puck
surface is visible from 50-130:s.
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Figure 3.  Sum of filtered acoustic return from )t=45 to 60:s (depths from 0.7 to 0.9 cm)
along with shape of object buried in dry sand (a sectioned hockey puck) as a function of laser
pulse position, showing imaging of object shape in horizontal plane.



13

Figure 4.  Fourier-filtered signal received from audio microphone as a function of the
position on the ground surface of the pulsed laser source, taken at an outdoor test track. 
An M-14 antipersonnel landmine simulant is buried in screened loam, 2.5 cm under the
surface, at the position indicated.
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Abstract 

Simulation code was developed to model monostatic or bistatic radar returns from terrain 

and discrete objects within the radar's field of view, including subsurface scattering due to 

complex permittivity inhomogeneities and buried objects, using Born approximations. This 

code is applied to simulation of return from a mine-like dielectric cylinder buried a few inches 

below the surface. Clutter sources included are: scattering from the rough surface above 

the mine and subsurface random permittivity inhomogeneities. Simulated images of received 

power from a subsurface region are obtained with and without the mine and the results will 

be compared with experimentally-obtained images of the region. Depth resolution of a few 

inches is obtained by using a focused linear array of 4 transmitters and a linear array of 4 

receivers identical to and parallel to the transmitter array. The illuminated subsurface volume 

is between the two arrays. The detector scans the volume by varying relative delays between 

array elements such that, at a given time instant t1 the signals arrive at a point p1 and returns 

from Pl arrive at the 4 receivers with equal delays. Superposition of received signals at time 

t 1 favors returns from a small volume around Pl· At time t 2 all energy is similarly focussed 

on a different point P2. The process continues until the entire volume has been scanned and 

an image of the region has been generated. Sensitivity to mine dimensions, composition and 

burial depth and soil parameters is demonstrated. 
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1 INTRODUCTION 

This paper describes a frequency domain simulation of a GPR scenario involving a bistatic focused 

array radar system attempting to detect and locate a mine in the presence of clutter. The clutter 

sources are: the rough surface at the air-soil interface above the mine and a random distribution of 

complex permittivity throughout the subsurface region containing the mine. 
In the next section we briefly discuss the modeling of the propagation of the transmitted wave 

into the soil, its reflection from the interface and scattering from underground objects and regions 

of deviation of permittivity from its mean value. 
In the section following that we describe the focused array scheme and the way in which we have 

attempted to simulate its application to the mine detection and location scenario of interest in this 

investigation. 
Finally, some results of the simulation are presented in the form of 3-D plots of the amplitude 

of the received signal against depth and horizontal distance along the array axis. These plots, in 

showing the distribution of received radar signal energy within the region containing the mine, seem 

to demonstrate that the mine signals exceed the component of clutter due to subsurface permittivity 

inhomogeneities. However, the clutter component due to surface reflections is comparable to or 

larger than the mine signal; hence the latter can not be seen except through time delay resolution. 

Some interpretations of the results and some conclusions are presented in the last two sections of 

the paper. Also discussed are both ongoing and planned enhancements and modifications designed 

to improve the accuracy of the modeling on which the simulation code is based. 

There is a large literature on the modeling of scattering from rough surfaces [1, 2, 3] and volume 

scattering due to permittivity inhomogeneities [4, 5]. The simulation code used in this study is 

based on established theoretical models detailed in the cited references. In using these models in 

the context of this study, we adapted them to the simulation format, i.e. the scattering algorithm is 

always applied to a small surface element or a small volume element and the incidence and scattering 

angles for that element depend on the relative positions and orientations of transmitter, receiver 

and element. Hence, regardless of the specific scattering model used, the code must produce a 

complex bistatic scattering matrix for arbitrary incidence and scattering angles. 

2 SUMMARY OF BACKGROUND ANALYSIS 

The theoretical background for the simulation algorithms dealing with received radar signals from 

earth surface terrain and discrete objects above the surface is given in [6]. The extension to include 

signals from below the surface [7, 8] will be summarized below. 
The algorithm for computation of the received signal voltage in a single receiver at point 2 due 

to scattering from a small volume centered at point p irradiated by a transmitter at point 1, is based 

on the vector Born approximation. The geometry is illustrated in Figure 1 (a). The 2-D grid of 

earth surface elements in the x-y plane, numbered 3 toN +2, is shown in (b). To include subsurface 

scattering, this grid is extended to 3-D, where the third dimension is depth -z, as illustrated in (c). 
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Given M depth layers, the volume elements ("cells") in the first (top) layer are numbered N + 3 to 

2N + 2, the next layer 2N + 3 to 3N + 2 etc. until the deepest layer to be covered by the simulation 

is reached, its cells being numbered M N + 3 to ( M + 1 )N + 2. 
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Figure 1: Illustration of problem geometry and 3-D grid 

In the generic simulation code described in [6], the single scattering specialization of the received 

signal voltage is the coherent superposition of the singly-scattered returns from all of the numbered 

cells. For GPR cases, there are N surface scattering processes and M N volume scattering processes. 

The E-field vector of the transmitted wave at a surface cell q is 

(1) 

where elq, ~lq are unit base vectors in the spherical coordinate frame (r1q, 81q, ¢lq), centered at 

1, and where 

(2) 

In (2), Pr, Gro and fr (8, ¢) are respectively the peak transmitted power, peak antenna gain and 

complex voltage radiation pattern of the transmitter for vertical ( "v" )or horizontal(" h" )polarization. 

These polarization directions are defined with respect to the transmitter's local coordinates. 

Assuming the air-soil boundary to be horizontal on average and the soil medium to be a LHI 

half-space on average, the mean E-field at the center of volume cell p due to downward propagation 

from surface cell q is (in vector- matrix form) 

(3) 
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where the tangent plane approximation is used to determine the field just below the surface at q, 
[T01] is the 3 by 3 matrix of transmission coefficients for downward propagation from air into the 
soil medium at the point q, and the Stratton-Chu integral [9] evaluated by stationary phase is used 
to obtain the field at p, thereby excluding wave fields from other surface cells. In (3), k 1 is the 
propagation vector for the soil medium, E(rqp) and E(roq) are the field vectors at points p and q 
respectively, and rqp and roq are respectively the vectors from q top and from the origin to q. 

The "forward path" portion of the computation is the coherent superposition of the fields as 
given by (3) over all surface cells q and all subsurface volume cells p, resulting in a field vector in 
every volume cell along the propagation path from a surface cell illuminated by the transmitted 
wave. 

The next phase of the algorithm is the "return path" portion of the computation, whose inputs 
are the fields given by (3) for all cells p. The first order field vector just below a surface cell q 
at position r = r oq' due to upward propagation from all volume cells p centered at points r' = r op, 

based on the vector Born approximation, is given by 

E (r) = -k~ j j j dx' dy' dz' G (r/r') · E (r') (6 E (r')) (4) 

where 6 E (r') is the deviation of complex permittivity from its mean value at r', E (r') is the field 

calculated by (3), G (r/r') is the dyadic Green's function, and in the necessarily digitized algorithm 
to implement (4), r' = rop = (x', y', z') is the vector from the origin top. 

The field vector just above q' is given by 

(5) 

where the field components on the right-hand side are those on the left-hand side of ( 4) and [Tw] is 
the matrix of transmission coefficients for upward propagation from the soil medium back into air. 

Again using Stratton Chu, this time to evaluate the field at the receiver due to propagation from 
q, we obtain 

(6) 

where rq'2 and roq' represent the vector from q to the receiver at point 2 and the vector from the 

origin to the point q respectively, E (roq') and E (rq'2) are respectively the field on the left side of 
(5) and that at the receiver, [S(r q'2 /r oq' )] is a surface scattering matrix derived from Stratton Chu 
(including the coherent part from the flat mean horizontal surface and the incoherent part due to 
the surface roughness)and K is a constant given by 

where Ae0 is the receiver's peak effective aperture area, fR (8, ¢)is the receiving antenna's complex 
voltage receptivity pattern and a0 is the peak value of the bistatic scattering cross-section, to whose 
square root the elements of [S] are normalized. The angles 8 2q1 and ¢ 2q, are in the receiver's 
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coordinate frame. They correspond to v and h polarizations with respect to the receiver's coordinate 
frame, in general different from their counterparts in the transmitter's frame. 

Finally we obtain the v and h voltages in the receiver by taking projections of the field vector 
as given by (6) onto the receiver's aperture plane in the directions along that plane corresponding 
to those polarizations. 

Superposing the computations in (1) through (6) over all M N volume cells and further super
posing scatterings from the N surface cells, we obtain the return from the 2-D surface grid and the 
3-D volume grid directly below it. 

3 THE FOCUSED ARRAY GPR SYSTEM 
The focused array scheme [10], shown in Figure 2, is based on two parallel linear arrays, one of 
them an array of four transmitters parallel to a horizontal axis which we label x. The second array, 
that of four receivers, is also parallel to the x axis and separated from the transmitter array by a 
distance 2Y in they direction. They axis is set midway between the two arrays. In both arrays, the 
x-separation distance between elements is X; hence the length of each array is 3X. The x-origin is 
at the center of the array. All array elements are at height Z and they are designed to be identical. 
We can infer from all this that transmitter T1 is at position ( -l.SX, - Y, Z), T2 at (- .SX, - Y, Z), 
T3 at (.SX, -Y, Z) and T4 at (1.5X, -Y, Z). Corresponding receiver positions are R1 at (-l.SX, 
Y, Z), R2 at (-.5X, Y, Z), R3 at (.SX, Y, Z) and R4 at (l.SX, Y, Z). The current values of these 
parameters are: X = 10", Y = 5", Z = 15". 
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The vehicle-mounted mine detection assembly is moved in the y direction. Every three seconds 
it scans a specified subsurface volume directly below the pair of arrays, as shown in Figure 2. The 
volume scanned is envisioned as a rectangular 3-D grid of volume elements containing 16, 1 and 64 
in the x, y and z directions respectively. To focus on a particular volume cell centered at point p, 
pulses are triggered at transmitters T1, T2, T3 and T4 at time instants tll t2, t3 and t4 respectively in 
such a manner that they arrive at p at precisely the same time. (Ideally these pulses are conceived 
as impulse waveforms so that it is possible to define their times of arrival exactly.) The receiver 
R1 sees the superposition of the signals from p due to all four transmitters at a time instant tl'· 
R2, R3 and R4 see the superposition of signals from pat t 2,, t 3, and t4' respectively. The received 
pulses that the timing algorithm indicates to be from pare then delayed in each receiver such that 
the effective arrival times for the pulses from p are exactly the same for all four receivers (i.e. the 
induced delay in R2 is t 1,- t 2,, that in R3 is t 1'- t 3, and that in R4 is t1'- t4, ). Then the artificially 
delayed signals from p are superposed, resulting in a total signal from p consisting of a sum of 
sixteen signals whose path delays are all equal, i.e. a sharply focused return from pin the ideal case 
where the transmitted signals are impulses. The sixteen returns from other points within the grid 
arrive with different delays and hence should be weaker than the signal from p. 

The scanning process performed by the system consists of application of the timing protocol as 
described above to each cell in the grid during the three second scan period, searching for especially 
strong signals from a particular region of the grid, indicating the presence of a mine. 

The task of computing the radar return from all of the cells in the subsurface grid for all sixteen 
transmitter-receiver position pairs is straightforward for our simulation software. To execute that 
phase of the simulation we choose the subsurface grid of numbered cells, as described in Section 2, 
to closely match the grid defined by the timing algorithm in the actual system. This cannot be done 
exactly without incorporating that algorithm into the simulation code. It is done approximately, 
maintaining the feature that the numbered grid cells in the code used to compute the radar signals 
are all of the same size. The vertical dimensions of the cells of the scanned grid in the system itself 
are different, being dependent on the timing protocol. Because of refraction at the interface and 
the phase velocity difference between soil and air, equal time delays obviously do not correspond to 
equal depths and hence the vertical dimension of a grid cell is depth-dependent. 

The horizontal dimensions of the grid cells used in the radar signal computations are roughly 
the same as those of the scanning grid. There are 16 cells in the x-direction each 2" wide and 1 cell 
in they direction, of dimension 5". There are 64 cells in the z direction, each of dimension .1875", 
thus covering depths from zero down to 12". The total coverage region of the computation grid is 
about the same as that of the scanning grid, from x = -16" to +16", from y = -2.5" toy= +2.5" 
and from z = 0 to z = -12". 

The computation of the returns from all 16 surface cells and 1024 volume cells for each pair of 
transmitter-receiver positions includes the evaluation of the electrical path length T for each return, 
using an algorithm based on 

r = (1/c) [(rlq + rq,2 ) + (cjv)(rqp + rpq')] (7) 
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where c and v are phase velocities in free space and the medium respectively and rjk is the distance 
between points j and k. 

In the system used in the field, the probing signal is a 500 picosecond "time domain" pulse. 
Our simulation code is designed for frequency domain modeling. The program can model the 
transmitted pulse spectrum, compute the scattering at sampled frequencies throughout the signal 
band and IFT the resulting set of frequency samples of the return to construct the received signal 
pulse. This would be the ideal way to apply the code to this problem. However, that process is very 
CPU time-intensive and hence was not invoked for this first investigation. The simulations were all 
executed at 1 GHz. 

4 RESULTS 

The results to be shown below were obtained by computing the returns from the subsurface grid 
described in Section 3 for each of the sixteen transmitter-receiver position pairs, then superposing 
the sixteen amplitudes of returns from each of the 1040 grid cells. This is not an exact simulation 
of the focused array system's scanning procedure. However, it captures the essential feature of its 
operation, the superposition of returns from a small volume at various look angles synchronized 
in time delay so that the return from that region is enhanced relative to that from other regions. 
The time synchronization can also be achieved in our code by equalizing path delays for all 16 
T- R pairs and superposing the resulting returns coherently. In some respects that is closer to the 
system's true operation than summation of amplitudes. However, it also retains phase differences 
due to causes other than path delay, so that alll6 sets of returns from the same cell are not really in 
phase. That detracts from the desired effect and doesn't happen in the actual system, so it would 
not be a realistic simulation. 

The output plots shown here are not in the same format as the experimental results obtained 
with the time domain system. The latter are acquired by averaging returns from volume cells similar 
to those generated in our simulation; hence, they contain much less information. An output format 
like the one we are using allows us to examine in detail the spatial distribution of radar energy to 
be expected from the illuminated underground region as predicted by our model. 

On all of the output plots, the x-axis is along the array axis and is calibrated in cell index 
numbers in the x-direction, each cell being 2 inches wide in that direction. Thus the x-axis region 
covered is between -16" and + 16". The other horizontal axis is that depth, calibrated in vertical 
cell index numbers, where each cell is .1875 inches deep, which implies that 64 cells cover depths 
from 0 to 12 inches. The cell whose vertical index number is 1 is that for the surface return, which is 
assumed to be resolved by the timing algorithm from the returns from the first depth layer (vertical 
cell index number 2); hence, the results show the surface return as separated from the underground 
volume grid returns. In the actual system, the surface return is separated from the total return 
because it would overwhelm the latter if it were included in the final output display. The ability to 
resolve surface return from underground returns is a requirement for the feasibility of subtracting 
it out. 
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Figures 3,4,5,6:CL, 1%,10%,15%,30% 
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The vertical axis on the plots is the power received due to scattering from a single cell, where the 
amplitudes of the returns have been summed over all 16 T-R pairs and the sum has been divided 

by 16, i.e., the average amplitude (not the average power) has been computed, then squared and 
plotted in dB relative to the peak transmitted power. 

The computed outputs are vpol and hpol components of the returns from all the cells, but 
the output plots show the square root of the sum of the squares of vpol and hpol returns, i.e., 
polarization information for each cell has been discarded and we show only the total power for both 
polarizations. 

The source of the clutter model used here is a set of zero mean complex random numbers 
whose real and imaginary parts have a bivariate Gaussian PDF. The rms values are weighted 

with assigned fractions of the magnitude of relative complex permittivity of the soil medium. The 
weighted random numbers are entered into the code as the random variations about the mean of the 
complex relative permittivity of the underground volume cells. The assigned fractions, multiplied 
by 100, are designated as "percent clutter levels", e.g., a 1% level means a weighting fraction of .01. 

In figure 3-6 and 7-10 respectively, plots are shown for clay loam soil (dielectric constant= 6.2, 
loss tangent= .145 at 1 GHz) and sandy soil (dielectric constant= 2.55, loss tangent= .03) [11, 

l 
/1 

12 for a cylindrical dielectric mine (dielectric constant = 3.00, loss tangent = .00033) buried 2 
deep, whose vertical dimension and radius are 2'' and 1.5" respectively. The surface clutter is shown 
in all of the plots. Figures 3-6 and 7-10 show how the mine signal becomes less discernible as the 
clutter level is increased, being clearly distinguishable from the clutter for a 1% clutter level for 
both soils, still visible at 10% and 15% for clay loam and below 10% for sandy soil. The reason for 

this difference in mine visibility in the two media is the difference between their dielectric constants 
relative to that of the mine. This difference is 3.2 for clay loam and -.45 for sandy soil. The ratios 
of mine contrast to rms clutter are 34 dB and 25 dB respectively for a 1% clutter level. For 10% 
clutter level, these ratios are 14.3 dB and 5 dB respectively, and they are 10.7 and 1.4 dB for a 15% 
clutter level. The mine contrast does not descend below the clutter (i.e., the ratio defined above = 

0 dB) until the clutter level exceeds 51% in clay loam, but does so in sandy soil when the clutter 
level exceeds 17.6%. 

5 CONCLUSIONS AND DISCUSSION OF CONTINU
ING WORK 

At this stage of the work definitive conclusions about the realism of the results presented here 
would be premature, since we do not yet have comparisons with experimental results. However, 
some tentative observations can be made about the potential for use of this simulation code as 
a forward model for study of mine detection algorithms. The code is based on high frequency 
approximations and hence cannot be expected to produce images whose accuracy is competitive 
with purely numerical techniques. It is designed as a fast and easily implemented algorithm to 
simulate entire systems such as the focused array and to capture the essential features of the 
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returns from a subsurface region containing a mine. 
Our 3-D plots show that the focusing scheme achieves the necessary spatial resolution to provide 

significant contrast between the region containing a mine and the remaining volume that contains 
only clutter. The mine image would be still sharper if we fully accounted for the time domain pulse 
spectrum, which is one of the planned improvements alluded to in the discussion below. 

There are a number of ways in which the accuracy of the modeling used to obtain these results can 
be greatly improved. Work is currently in progress on generalizations accounting for the fact that 
mines buried only a few inches below the surface are actually in the near zone of points on the surface 
at frequencies from 0.7 GHz to 1.3 GHz. Hence, the interactions between points on the surface and 
those on the mine are not really far zone scattering processes. The code is being extended to include 
some near-zone effects for both forward and return paths. In this approach, the surface integrals 
are not evaluated by stationary phase; hence waves (not necessarily transverse) propagate in all 
directions between ground surface and subsurface points, not only in those directions dictated by 
Snell's law at the air-interface boundary. This generalization results in significantly greater accuracy 
but greatly increases CPU time. The tradeoff between speed and accuracy for this application will 
need to be evaluated ultimately by comparing the results with experimental data and determining 
whether the enhanced modeling accuracy has a significant positive effect on the comparison. 

The same remarks would apply to other generalizations that are either in the process of being 
written or already exist as options in the code. Among these are the time domain modeling of the 
returns through frequency domain computation of the scattering over the spectrum of the transmit
ted waveform followed by inverse Fourier transformation, already feasible with the existing code but 
very CPU time-intensive. Other planned generalizations not yet fully implemented are: inclusion 
of a distribution of rocks as an additional clutter source, inclusion of higher order interactions be
tween the mine and air-soil boundary, which may have a significant effect on the results for shallow 
mines, and finally: generalizations beyond the first order Born approximation [13], e.g., first order 
renormalization [13, 14] and possibly the extended Born approximation [15] (although the latter is 
most suitable for frequencies below 100MHz). These extensions would decrease the limitations in 
maximum allowable permittivity contrast between mine and soil that still preserve the validity of 
the analysis. 
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Signal processing methods for sub-surface detection 
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Sophisticated signal processing methods for the detection and localization of 
buried objects must be built around a scattering model describing the interaction of 
the probing energy with the medium parameters of interest (i.e., complex electrical 
permittivity). These algorithms can assume one of two fonns. An imaging-type 
algorithm would use the forward model as part of an optimization routine to 
construct a pixel-by-pixel image or volumetric rendering of the subsurface 
permittivity. Alternatively, in the event that one's primary objective is the 
localization of known objects such as mines or buried drums of hazardous waste, 
one would make use of this forward model as part of a more structured object
detection algorithm. This class of algorithms typically employs methods such as 
template matching, matched filtering, or sequential hypothesis testing and is 
distinct from an imaging algorithm in that these unknown quantities are the number 
and spatial locations of the objects rather than a large number of pixel or voxel 
values. 

The forward model to be used in this application is an extension of a simulation 
program developed by one of the authors, whose purpose was to model radar 
returns from the terrain surface and discrete objects in the radar's field of view for 
a wide variety of radar scenarios. The extension, discussed in a paper presented at 
AP-SIURSI in July 1996 (H.R. Raemer and R. Bilotta, "Simulation of imaging 
radar returns including underground volume scattering"), adds to the existing 
capabilities of this software the option of modeling the scattered returns due to a 
specified volume distribution of complex permittivity deviation from the mean 
value below the ground surface and spatially resolving these contributions. The 
simplest option uses the first-order Born approximation for vector fields, 
accounting for the effects oftransmission through the air-earth interface. This can 
be used to model both subsurface clutter and returns from some buried objects. 
More advanced options include layered media and hence the effects of reflections 
from interfaces below the ground surface. Still more advanced options not yet 
fully implemented involve higher-order vector Born approximations. Some 
examples of the use of this forward model in the context of the signal processing 
algorithms referred to above are shown in the presentation. The basis of the 
simulated scenario is some SAR data on buried objects in desert terrain. The case 
studies include both buried objects and subsurface clutter due to random spatial 
variations of complex permittivity. 



Effects of wavefield interactions on simulated GPR signals 

by Harold Raemer,Carey Rappaport and Eric Miller 
Northeastern University, Boston,MA,02115 

In previous papers by the authors(Proc.SPIE 3392,April, 1998,pp 754-765 and 
Proc.SPIE,April,1999),work was reported on a frequency domain simulation of a 
bistatic GPR scenario in which dielectric objects,( e.g. mines)are buried a few 
inches below the ground surface.Received signals from the objects must compete 
with surface retum,the direct signal, scattered signals from random permittivity 
fluctuations and clusters of rocks within the illuminated subsurface region. Near
field effects and the influence of surface roughness were partially accounted for in 
our earlier work.However,the reflections from the underside of the air-ground 
interface due to first-order scattering from the buried objects and permittivity 
inhomogeneities were neglected.In the present work,this effect is approximately 
accounted for in determination of the illumination on a subsurface scatterer. Since 
the distance between the underground scatterers and the interface are within a 
wavelength in the frequency region ofinterest(0.7 to 1.3 GHz),this interaction 
between them can significantly influence the received signal within specified 
delay gates from which the object's location is inferred in the signal processing. 
Simulated image plots ofthe illuminated subsurface region are shown with the 
above-mentioned effects included in the algorithm and compared with previous 
results in which these effects have been neglected. 



ABSTRACT 

THE CONICAL SPIRAL ANTENNA PROBE FOR UNDERGROUND OBJECT DETECTION 

Harold Raemer and Carey Rappaport 

Department of Electrical and Computer Engineering and 

Center for Subsurface Sensing and Imaging Systems 

Northeastern University, Boston, MA 02115 

In underground object detection by ground penetrating 

radar, it is necessary to use an antenna with a bandwidth 

sufficiently large to accommodate wideband transmitted signals 

and wide receiver passbands. The high spatial resolution 

attainable with system bandwidths of the order of Gigahertz is 

limited by employment of antennas with insufficient bandwidths. 

Recently the authors initiated an investigation of the use 

of a particular class of "frequency independent antenna", the 

conical spiral, in a GPR application. The antenna is used as a 

probe, thrust into the ground apex first at an angle of about 60 

degrees from vertical and radiating primarily along the cone 

axis. This antenna offers promise of large bandwidth within the 

constraints of size and portability. The planned deployment 

method should provide significant enhancement of the information 

about nearby buried objects (e.g. mines) than the mechanical 

probes routinely used in mine detection work. 

The basic reference sources are a series of papers 

published in the 1960's in AP Transactions by Rumsey, Dyson, Yeh, 

Mei and others, on the theory of frequency independent antennas 

in general and the conical spiral in particular, in free space. 

Our investigation extends this work to include the partial 

immersion of the antenna in a soil medium, the interractions 

between the antanna and the possibly rough air-ground interface 

and interractions between the antenna and the buried object that 

the radar is attempting to detect. The frequency range of 

interest is 500 MHz to 8GHz. 

A MOM computation of the currents on a conical spiral 

antenna 52 em. long and with a maximum diameter of 12 em. 

immersed in dry sand, followed by evaluation of the near field 

pattern, was carried out by the authors and reported in a recent 

conference paper (SPIE Aerosence, Orlando, April, 2001) . The 

present paper is a continuation of that work to include other 

soil media and to begin to address some of the effects of the 

air-soil interface and the buried object on the operation of the 

antenna. 
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Near-Field and Timing Effects in Simulation of Focused 

Array Radar Signals frorn a Niine in Subsurface Clutter 

by 

Harold Raemer, Carey Rappaport and Eric :Nliller 

Department of Electrical and Computer Engineering and 

Center for Electromagnetics Research 

Northeastern University, Boston, :NIA 02115, U.S.A 

Presented at Radar 4, Proc. SPIE 3392, Orlando, FL, April, 1999. 

Abstract 

In a previous paper (Raemer, Rappaport and ~!iller, Proc. SPrE 3392, Orlando, FL, April 

1998) we discussed a frequency-domain simulation of GPR returns from buried mines in clutter 

due to random permittivity inhomogeneities, using a focused array radar system (Rappaport 

and Reidy, SPrE 2747, Orlando, FL, April 1996, pp. 202-213). 3-0 image plots of the illumi

nated volume resulting from this simulation were presented and showed that a mine buried a 

few inches deep in clay loam or sandy soil appears distinguisable from the clutter if the rms 

deviation of the permittivity from its mean is less than ten percent of the mean permittivity. 

The simulation is designed to be a forward model for signal processing algorithms for mine 

detection and location. Hence, both accuracy and running speed are important considerations. 

The code discussed in our previous paper is very fast, but contains approximations that com

promise the acuracy of the electromagnetic modeling. The recent work on which the present 

paper is based addresses improvements in accuracy, emphasizing inclusion of near-field effects 

and more accurate depiction of the timing algorithm that is the basis of the focused array 

system. The results obtained from the more accurate algorithms require more running time 

to obtain but are still sufficiently fast for use as a forward model for signal processing. 
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1 INTRODUCTION 

This paper reports continuing work on the subject of a previous SPIE paper [1] on a frequency 

domain simulation of a GPR scenario involving a focused array system [2] attempting to detect and 

locate mines in the presence of clutter. The clutter sources are: the rough surface at the air-soil 

interface above the mines, a random distribution of complex permittivity throughout the subsurface 

region containing the mines and an aggregate of rocks in that same region. 

The modeling of the propagation of the transmitted wave into the soil, its reflection at the 

interface and scattering from underground objects and permittivity fluctuations were discussed 

in [1], together with the focused array system and our method of simulating its use in the mine 

detection and location scenario of interest in this study. 

In the work reported in [1] each ground-patch in the surface grid that covers the radar's field of 

view is assumed to be in the far-zone of both the transmitted and receiver and hence the field of the 

wave from transmitter to patch and that scattered from the patch toward the receiver have inverse 

distance dependence. The far-zone approximation also applies to the wave propagating downward 

from the patch to a volume element of the subsurface grid and that scattered upward from that 

element toward another surface patch from which it propagates toward the receiver. These may be 

valid approximations for the deeper regions of the subsurface coverage volume, but tend to become 

poorer for the more shallow regions, which are in the near-zones of the surface patches. 

The objective of the major enhancement of the code for the present paper is to more accurately 

model the fields in the near zones of their sources. In the general expressions that describe a field 

from a source in an LHI medium (those specifically used in this study are the Stratton-Chu integral 

[3] and the Green's Function for the soil medium [4]) the factor (exp( -jkR)I R)F(R) always occurs. 

In this expression R is the distance between source and observation point, the real part of k is 2;r I..\, 
where ..\ is the wavelength, and F(R) is a vector-phasor of the form 

F(R) = c + (afjkR) + b(1/jkR)2 (1) 

where I a I I I c I and I b I I I c I are quantities of the order of unity(no greater than about 3). 

The media assumed in this study are complex in general. The factor I F(R) I is approximately 

unity in the far zone, where l1lkRI << 1, and hence the last two terms are negligible in (1). 

However, if we examine the wavelengths in the media assumed in this study at 1 GHz, and the 

distances between source and observation points where the most important effects occur, we find 

that these terms are not necessarily negligible and neglecting them can significantly reduce the 

accuracy of our simulation code. 

Far zone analysis predicts only transverse waves. But longitudinal field components are always 

present in a general analysis. They are negligible in cases where I F(R) I is approximately unity 

but begin to appear when l1lkRI becomes large enough to compare significantly with 1, since they 

only exist in the terms proportional to (1/jkR) 2 and never in those proportional to (1/jkR), the 

latter being the far zone terms. 

At 1 GHz, the central frequency of the transmitted signal spectrum in this investigation, the 

free-space wavelength is 30 em., or equivalently 11.8 inches. In the two media assumed in the study, 
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clay loam and dry sand, the wavelengths are about 12 em. (4.7 ")and 19 em. (7.5 ")respectively. 
For distances R = 1 inch and f = 1GHz, J1/kRJ is about .75 for clay loam and about 1.18 for 
dry sand. Thus for these media and a wide class of other soils whose constitutive parameters have 
the same orders of magnitude, the second and third terms of F(R) in (1) may have magnitudes 
comparable to the first term and should not be neglected in the field computation code. This is 
particularly true for burial depths of the order of 4 inches or less, where the subsurface scattering 
points are in the near zone of the air-ground interface. 

Consider the waves propagating from the transmitter to the ground surface and from ground to 
receiver. In this scenario the transmitter and receiver heights are 15 inches. The minimum value of 
R is 15" and hence the largest value of 1/kR, based on the free space wavelength of 11.8" at 1 GHz, 
is about 0.1. This means that the terms beyond the first in F(R) can probably be neglected in most 
cases without much compromise in accuracy. In the original code, where all scatterers and receiving 
points were assumed to be in the far-zones of the sources, these terms were always neglected. In 
the work we are discussing here, no changes have been made in the portions of the code that model 
the propagation between transmitter and ground and between ground and receiver. 

2 BACKGROUND ANALYSIS 
The geometry of a subsurface scattering process was illustrated in Figure 1 in Section 2 of [1], which 
is repeated here as Figure 1. 

(a) 

Figure 1: Illustration of Problem Geometry. 

Referring to that figure, transmitter and receiver are at points 1 and 2 respectively and the 
subsurface scatterer is at point p. The transmitted wave propagated downward toward p intersects 
the air-ground interface at point q. The wave propagating upward from p toward the receiver 
intersects the interface at q'. 

3 



The surface patch centered at q is small, allowing the incoming wave from point 1 to be approx

imated locally as a plane wave since the curvature of the phase-front is negligible within the patch. 

Its traversal of the boundary is treated at point q as if it were a plane wave incident on an infinite 

horizontal plane and is modeled accordingly. The vertical propagation plane of that wave is the x', 
z' plane of a Cartesian coordinate system. The y' components of it's electric ( "E") and magnetic 

( "H") fields immediately below the surface are: 

E - T.TEE+ 
qy' = 01 qy1 (2-a) 

H - 'T'TMH+ 
qy' = J.o1 rn~' (2-b) 

where T&E and T&M are respectively the transverse electric and transverse magnetic downward 

transmission coefficients and the E+ and H+ on the right hand sides are those irrunediately above 

the surface. The arguments of E and H are the vectors from the origin of a global coordinate 

system to the center of the surface patch at point q. 
Since there are many processes of the kind described here in each simulation run and they must 

be superposed, they must all be in the same coordinate frame. The global Cartesian frame used 

for this purpose has its x, y plane on the horizontal air-ground interface. Its x axis is at an angle 

cPtq with respect to the x' axis of the primed system alluded to above. Obviously z = i. The field 

vectors in the global frame are: 

(3-a) 

(3-b) 

where 

cos 8e = 
sin

2 8i 1 J 2 1 - 2 = -- E1R - sin 8i 
1.11 y'€lR 

where Z1 and Y1 are respectively the complex wave impedance and admittance of the medium, X:, 
y, z are the unit base vectors along the global coordinate axes, ei is the angle of incidence of the 

transmitted wave at q, 1.11 is the complex refractive index, equivalent to the square root of E1R the 

complex relative permittivity. Z0 and Yo are wave impedance and admittance of free space, where 

Z1 = Zo/ ftlR and Y1 = Y0 .fliR. 
After evaluation of E; and H;;, these field vectors are viewed as sources of waves propagating 

downward from point q. More precisely, the surface patch whose center is at q is treated as an 
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incremental element of the Stratton-Chu integral over the entire ground surface assumed to be 
illuminated by the transmitting antenna beam. Based on this, the electric field vector at an arbitrary 
point p within the underground volume is: 

(-1) 

where 

and where 

d(rqp) = jk1 (1 + -:--k
1 

) , 6.Sq is the area of the surface patch, (8qp, </Jqp) are the spherical polar J lrqp 
angles of point p as viewed from point q in the global coordinates and cPr q is a surface element on 
the patch. 

The next phase of the computation is the vector Born scattering [5] from a small volume element 
centered at p. The general expression for this is given by Eq. (4) of [1], repeated below as Eq. (5). 

E (r) = -ki j j j dx' dy' dz' G (r/r') · E (r') (6. E (r')) (5) 

where 6. E (r') is the deviation of complex permittivity from its mean value at r', E (r') is the field 
calculated by (3), G (r/r') is the dyadic Green's function, and in the necessarily digitized algoritlun 
to implement ( 5), r' = ( x', y', z') = r op is the vector from the origin to a point within the val ume 
cell centered at p. 

The dyadic Green's function in (5) [6] is a symmetric 3 x 3 matrix given by 

G (r /r') = -g(R) (6) 

where 



g(R) = elk1 R /47r R 

R = lr-r'l 

and where the matrix elements are given generically by 

where 8ik is the Kroneker delta (1 if j = k, 0 if j =I= k), 

U1 = (x- x)/R 
u2 = (y -i)/R 
u3 = (=- =')/ R 

The observation point in (5) is specialized to the point cj as illustrated in Figure 1. Then coun
terparts of the steps implemented in modeling the downward boundary traversal at q are executed to 
model the upward boundary traversal at cj. First, we postulate another primed coordinate system 
whose x', z' plane is the propagation plane from cj to the receiver at point 2. The 1} component of 
the electric field immediately below the boundary at cj is obtained from (5) and is given by 

(7) 

where cPpq' is the azimuthal angle of the point cj relative to p in the global frame. 
The 1} component of the electric field immediately above the patch centered at cj is given by 

(8) 

where TfoE is the upward transmission coefficient for the T E mode. 
To obtain the TYI field above the boundary, we must first evaluate the 1} component of the 

magnetic field immediately below the boundary. Again viewing the upward-propagating wave from 
p toward cj in the vicinity of cj as approximated by a plane wave, we can calculate they' component 
of the magnetic field from the electric field given by (5). The result is 

H;; (rq') = 

Y1 (Ex ( r q') cos 8~q' cos cPpq' + Ey ( r q') cos e~q' cos cPpq' - Ez ( r q') sin 8~,] (9) 

where 8pq' is the spherical polar angle of cj relative to rf in the global frame. 
Next we calculate the y' component of the magnetic field immediately above cj from that im

mediately below cj, with the result 
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(10) 

where Tfo·H is the upward transmission coefficient for the T M mode. 

From (8) and (10), the Maxwell equations with the plane wave approximation and an expression 

for (i, fj, z), the unit base vectors in the global frame, in terms of (X', i/, z'), the unit base vectors 

in the primed coordinate system, we obtain the components of E+ ( r q') and H+ ( r q') in the global 

frame, given by 

E+(r q') = i; [-E;, (r q') sin ¢q•2 + Z0 H;,(r q') cos 8q'2 cos ¢q'2] 

+fj (E;,(rq•) cos ¢Q'2 + Z0 H:(rq•) cos 8q'2 sin ¢q•2] 

H+(r q') = x [- H: (rq') sin ¢q•2 - YoE;,(r q') cos 8q'2 cos ¢q'2] 

+fj ( H: (rq') cos ¢q•2- YoE;,(rq•) cos 8q'2 sin ¢q'2] 

+z [YoE;,(r q') sin 8q'2) 

(11-a) 

(11-b) 

where 8q'2 and ¢q'2 are the spherical coordinate angles of the receiver at point 2 relative to the 

point q as origin. 

The fields given by Eqs. (11-a, b) at the point q act as sources for the wave propagating from 

q toward the receiver. 

The portions of the analysis not explicitly included in the discussion above are: 

(a) the process by which the field components g:V, and H~, in Eqs. (2-a, b) are obtained from 

the fields generated at the transmitting antenna at point 1; 

(b) the determination of the fields at the receiver due to the wave propagating from q'; 

(c) explicit indication of the transmission coefficients in Eqs. (2-a, b), (8) and (10); 

(d) evaluation of the surface integral indicated by (4); 

(e) simulation of the focused array system. 

Items (a) and (b) are part of the radar simulation program that serves as a framework for the 

GPR code [7]. Bistatic radar returns from a grid of small ground surface patches are modeled in 

that program. It includes the effect of the antenna patterns for both transmitter and receiver and 

the direct signal from transmitter to receiver. The theoretical background for all of the received 
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signals from scattering regions on or above the ground (i.e. the direct signal and the ground-reflected 
signals) is covered in (7] and will not be given here, the focus of this paper being returns from below 
the ground surface, as illustrated in Figure 1. The enhancement of the original code to include 
subsurface returns begins with the transmitted wave field impinging on the surface patch centered 
at point q. That field is the source for both the wave scattered toward the receiver from that 
patch and the wave transmitted across the boundary toward the subsurface point p as described 
by Eqs. (2)-(11). The patch centered at point cf in Figure 1, which receives the subsurface wave 
scattered from p, also intercepts a wave from the transmitter and scatters it toward the receiver. 
All of these processes, executed thousands of times, are the constituents of the overall simulation 
program. Turning to Item (c), the transmission coefficients in Eqs. (2-a, ·b) are given by 

T.TE 
01 = ----r====== 

COS 8i + JciR- sin2 8i 
(12-a) 

T.TM _____ 2_E1_R_c
1

o=s=8='=· === 
01 -

EiR COS 8i + Jf.iR- sin2 
82 

(12-b) 

and those in (8) and (10) are 

T
TE _ 2..j€iR COS 8~ 
10 -

y'EiR COS 8~ + J1- EiR sin2 8~ 
(13-a) 

2 cos e~ T TM ------------r========= 10 -
cos e~ + JEiR.V1- CiR sin2 e~ 

(13-b) 

where e~ is the angle of incidence for the wave propagating upward from p toward cf. 
Item (d), the surface integration in ( 4), can be treated in one of two ways, and both options are 

available in the code. The option used in the computations done for this paper is a straightforward 
integration over the patch centered at q under the assumption that the field is constant over the 
patch surface and equal to its value at the center. The patches are small enough to use the standard 
approximation 

(14) 
where subscript 0 indicates that the point q is at the patch center. This leads to a product of 
complex expressions for the x andy integrals, each of which degenerates into a sine function in the 
limit of zero conductivity. 

The other option is to find stationary phase points and to obtain the stationary phase approx
imation of the integral at only those points. The relative merit of these two approaches is the 
subject of continuing work but will not be discussed further here. Item (e), the operating prin
ciple of the focused array system, was covered in detail in [2] and further summarized in [1] and 
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will not be repeated here. To simulate the action of the focused array we are required to execute the computation of the received radar signals from the illuminated region 16 times, once for each transmitter-receiver position pair, and combine the outputs of each run of the code for every one of the illuminated volume cells, as explained in [1] (Section 3, "The focused array GPR system"). 

3 RESULTS AND CONCLUSIONS 
The 3D plots in Figures 2 through 9 show outputs of simulations of received signals from a volume directly below the focused array. The horizontal locations of the four transmitters Tk = 1, 2, 3, 4 and the four receivers Rk = 1, 2, 3, 4 are shown in Figure 2 of [1]. This assembly moves along the y a:<is ("alongtrack" direction). The x axis ("crosstrack" direction) is parallel to transmitter and receiver array a..xes, which are at y = -5" and +5" respectively and both of which extend from x = -15" to x = +15" and are at heights of 15" above ground. This configuration corresponds roughly to a version of the focused array system used to obtain some of the experimental results we have received from Geo-Centers. The underground volume grid covered in these simulations extends from -15" to +15" in the crosstrack direction, from -5" to +5" in the along-track direction and from the ground surface to a depth of 8". Figures are plots of received power (in dB over a given reference level) from each small volume element in the grid, averaged over all 16 transmitter-receiver position pairs, vs. the depth and the crosstrack coordinate (where the latter is calibrated in inches from 0 to 30, rather than from -15 to +15, as depicted in Figure 2 of [1]). The scattering computations whose background theory was discussed in Section 2 were performed for each of 3072 volume elements of 1 inch dimension in all 3 directions. There are 32 x elements, 12 y elements and 8 depth elements. For each x and depth value, the received powers from all 12 y elements are summed to generate the total return from a single y element extending from -5" to +5". This refinement of the y scale for the computations addresses a problem that existed in the results presented in [1]. In those earlier simulations the grid used for the computations was the same as the grid used for the 3D output plots, which in turn is the same grid as used to collect experimental data as the moving detector assembly stops to examine a region directly below it (16, 1 and 64 in x, y and z directions respectively, totaling to 1024 elements). The physics of the scattering computations is less accurately depicted if the scatterer dimension in the y direction is 10 inches than if that dimension is only 1 inch. A better simulation of the scattering process is realized by computing the returns from 12 small elements and summing them to generate an output from a single element. In all of the plots shown, the mine is a slightly lossy dielectric cylindrical object 3" high and 3" in diameter, with complex relative permittivity of TNT (3, -.001) at 1 GHz. Its burial depth is indicated on each figure. The rocks are slightly lossy dielectric spheres with radii between .75" and 1.5", burial depth between 1.5" and 3" and distributed horizontally around the illuminated region, with dielectric constant between 2 and 5. The soil is clay loam or dry sand, with mean relative 

complex permittivity (6.2, -0.9) or (2.55, -.077) respectively at 1 GHz. The clutter from each element is modeled as a bivariate Gaussian distribution of the soil's complex permittivity around its mean. A given "percent clutter" is the ratio of average deviation to the mean value times 100. 
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Figures 2 and 3 show image plots for a mine buried 2" deep in clay loam soil for 1 and 10 percent 
level of permittivity fluctuation clutter respectively and Figures -!and 5 are analogous plots for dry 
sand. There is no clutter due to rocks in any of these cases. 'With either soil type, the mine is 
easily discernible in 1 percent clutter and imperceptible in 10 percent clutter based on modeling 
not accounting for near field effects. Inclusion of these effects does alter the shapes of the image 
plots somewhat but does not greatly change the dependence of mine visibility on clutter level on 
these plots. The near field effects appear to influence the mine signals and clutter signals to about 
the same extent. In Figures 6 and 7, the effects of 10 rocks in the vicinity of the mine is shown for 
both soil types, where clutter due to permittivity fluctuations has been suppressed. Even in the 
absence of such clutter, and more prominently when both rocks and permittivity fluctuation clutter 
are present (Figures 8 and 9), there appears to be no way to distinguish a mine from one of the 
rocks with the spatial resolution in our output displays. That resolution is set to be comparable to 
that in the actual system as provided by the focused array principle in the crosstrack and depth 
directions, which partially offsets the delay resolution limitations of a 500 picosecond pulse. It 
would be feasible to improve the resolution in our displays by decreasing the size of the elements 
in the volume grid used for the output displays and thereby enable discrimination on the basis of 
shape, but that would reduce the realism of the model and therefore is not a permissible option. 
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Figure 6: 1 mine. 10 rccks,O% clutter,clay loam Figure 7: 1 mine, 10 rocks,O% clutter,dry sand 
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4 CONTINUING WORK 
In Section 5 of [1], we cited ongoing efforts to improve the realism and scope of the code. One task was inclusion of near-field effects, which is the major theme of this paper. Another was study of rocks as clutter sources, also included in this paper. Still not implemented are generalizations beyond the first order Born theory, especially effects of reflection of scattered waves from subsurface volume elements from the underside of the air-soil interface, resulting in second order contributions to the illumination of these elements. Another study, now in progress but not mentioned in [1], is the effect of local surface tilt due to large-scale roughness on scatterer locations indicated by the timing algorithm. This could be an important source of distortion of image plots of the return from the illuminated volume. In addition to carrying out the studies indicated above, we are reconstructing the output formats to simulate a scenario that matches the geometry consistent with minefield data received from Ceo-Centers, a step required for comparisons with experimental results. 
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Abstract 

In two previous papers, the authors discussed a frequency-domain simulation of received 

signals in a focused array radar system (Rappaport and Reidy, SPIE 2747, April 1996, pp. 

202-213) illuminating a swath of flat terrain with one or more small plastic mines buried a 

few inches below the surface and a clutter background consisting of returns from random 

permittivity fluctuations, aggregates of rocks and the ground surface (SPIE 3392, pp 754-765, 

April 1998 and "Near-field and timing effects in simulation of focused array radar signals from 

a mine in subsurface clutter", SPIE, April 1999). The second paper emphasizes generalization 

of the algoritlun to take proper account of the fact that distances between participants in the 

scattering processes are within fractions of wavelengths, enhancing the importance of near field 

effects in the modeling. 
In the present work, further generalizations are made which enhance the realism of the 

model. In particular, we investigate the role of surface height variations in changing the 

apparent propagation delay of the signal from a subsurface region. Since delay is the major 

d.iscriminent in the processing of received signals in this system, this has a possibly significant 

effect on the simulated images. Still another generalization under investigation is that of 

inclusion of surface reflections from the interface's underside on the effective illumination of 

subsurface regions. 
Simulated image plots will be shown and compared with some previous results in order to 

assess the effects of these enhancements in the model. 
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1 INTRODUCTION 

In this paper we discuss further progress on a study reported in two previous SPIE papers by the 
authors [1, 2]. The objective of the study is to develop an effective simulation of the received signals 
in a focused array radar system [3] illuminating a swath of land terrain with small plastic mines 
buried within a few inches below the ground surface. The ultimate purpose of this simulation is to 
provide a forward model for evaluation of signal processing algorithms for improvement of detection 
of the mines in a clutter background. The clutter consists of random fluctuations of the complex 
permittivity of the soil, aggregates of rocks and returns from the ground surface. 

Previous improvements in the accuracy of the modeling [2] were directed toward accounting 
for the fact that the buried mines, rocks and the permittivity fluctuations from which scattering 
occurs are within fractions of a wavelength from the ground surface. Hence, near field effects were 
addressed in [ 2]. 

In [2], the air-ground interface was assumed to be horizontal on the average, with the possibility 
of small-scale fluctuations around the average height. 

In the present paper, both small scale and large scale height variations around the horizontal 
are allowed, with a significant effect on the timing algorithm on which the focused array system is 
based. Application of that algorithm, which is based on the assumption of a flat horizontal ground 
surface, results in a distortion of the spatial distribution of the illumination of the underground 
volume of interest and that of the returns from that volume if the true surface is rough. 

2 BACKGROUND ANALYSIS 
In Section 2 of [2], aided by a diagram in Figure 1 of [2], we described the background analysis for 
simulation of the propagation of a ray from a transmitter at point 1 to a subsurface point label 
p, via a refracting surface point q. The diagram of Figure 1 of [2] then shows a scattered wave 
from q propagating toward a different surface point q, from which it propagates toward the receiver 
at point 2. In that diagram the ground surface is shown as nearly flat and horizontal with very 
small-scale height fluctuations. 

In the code that generated the simulation discussed in [2], the refracting angles at points q and q 
are based on the average surface height and are independent of the small-scale height fluctuations. 
The only assumed effect of these fluctuations is on the scattered wave from the ground surface to 
the receiver and they have no effect on the returns from the illuminated subsurface region. 

Part (a) of Figure 1 in this paper is Figure 1 of [2]. Part (b) of Figure 1 illustrates the gen
eralization that is the subject of the most recent work. The surface in Figure 1(b) is shown to 
have large-scale height variations on which are superposed small-scale variations like those shown 
in Part (a). The surface patches centered at q and q now have an average tilt with respect to the 
horizontal. AI:. in [2], the small-scale surface fluctuations on the now tilted patch have no effect on 
the refraction angles, which are based on the average height and tilt angles. However, they do have 
a significant effect on the surface return, whose ratio of incoherent-to-coherent scattering increases 
with the small-scale rms height variation. 
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This generalization complicates the geometry considerably and requires a re-definition of the 
primed coordinate system used in [1] and [2]. To explain this, some of the equations and associated 
text will be repeated below, beginning with Eqs. (1) and (2) of [1]. 

The E-field vector of the transmitted wave at a surface cell q is 

(1) 

where S1q 1 ;j,1q are unit base vectors in the spherical coordinate frame (r1q, 81q, </J1q), centered at 
1, and where 

(2) 

In (2), Pr, Gro and /r (8, ¢) are respectively the peak transmitted power, peak antenna gain and 
complex voltage radiation pattern of the transmitter for vertical ( "v" )or horizontal(" h" )polarization. 
These polarization directions are defined with respect to the transmitter's local coordinates. 

The magnetic field components of the transmitted wave at q, obtained from Eq, are 

Hc/>tq = -YoEct>tq , Hcf>tq = YoE9 1q (3) 

where Y0 is the wave admittance of free-space. 
As in (2], we consider the surface patch centered at q to be small enough to allow the incoming 

wave to be approximated locally as if it were a plane wave incident on an infinite plane (i.e. the 
"tangent plane approximation.") But the departure from the analysis in (2] occurs at this point, 
wherein the plane of the patch is tilted with respect to the horizontal direction. To determine the 
tilt angles, we first note that the unit normal to the patch at q, pointing into free space, is given by 

- (zx)q X- (z11 )qf) + z 
nq = )1 + (zx)! + (zx)! 

(4) 

where (x, f), z) are the unit base vectors for the global coordinate system and (zx)q and (;)q 
are the partial derivatives of the surface height with respect to x andy respectively at the point q, 
both assumed constant within the patch. 

The orientation angles of the surface normal n in the global frame are (8n¢n), given at q by 

8 -1 ( 1 ) -1 ( - ( Zx) q ) 
nq = COS , </Jnq = COS 

2 2 
J1 + (zx)! + (zx)! J(zx)q + (zx)q 

(5) 

A local coordinate system ( x'q, 1/q, z~) is constructed such that the z~ axis is in the direction of 

the surface normal nq as given by (4) and the x'q axis is along the projection of the incident wave's 

propagation vector ~ (from the transmitter at point 1 to q) onto the ( x'q- ?4) plane (Figure 2). 

The plane of propagation, no longer necessarily vertical as it was in (2], is the x'q- ~ plane. The 
1/q axis is normal to the plane of propagation. Thus the unit base vectors are given by 
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~' ~ ., nq x k1q ~' ~' ., Zq = nq , Yq = ~ ~ , xq = Yq x zq I nq x k 1q I 
The angle of incidence 8~ in this local primed coordinate frame is given by 

8~ = cos- 1 
( -klq. nq) 

and it is evident from (6) and (7a) that 

sin8~ =I nq X klq I 

(6) 

(7a) 

(7b) 
To calculate the TE and TM fields of the wave immediately below the boundary at the point q, 

we first find they' components of those immediately above the boundary, which are given by 

E+ E A/ H+ H A/ qy' = q • y q ' f/1/ql = q • y q (8) 

where Eq is obtained from (1) and (2), Hq from (3) and y from (5) and (6). The fields 
immediately below the boundary are given by 

E - - r.TEE+ H- - r.TMH+ (9) f/11~ - 01 f/1/~ ' f/1/~ - 01 f/1/~ 

where 'J'ltE and 'J'ltM are respectively the transverse electric and transverse magnetic downward 
transmission coefficients. 

The field vectors at the point q immediately below the boundary act as sources of the wave 
propagating downward toward the subsurface point p. As in Eqs. (4) and (4-a, b, c) of [2], we 
use the Stratton Chu integral including near field terms to evaluate the fields at p, using the fields 
E;, H; as the source fields on the bottom surface of the patch. The latter fields were given in 
the global coordinate frame by Eqs. (3-a, b) of [2], but are specialized there to the case of a fiat 
horizontal patch. For the tilted patch, these equations are more complicated. In the primed (i.e. 
tilted) coordinated frame, they are 

E; = X'q [-Z1H~~ cos8~] 
(10-a) 

(10-b) 

where 

cos8~ = 
. 2 8' 1 sm i J . 2 OJ 1 - 2 = -- fiR - sm o; 

Ill J€iR 
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where Z1 and Y1 are respectively the complex wave impedance and admittance of the medium, X'q, 
Yq, Z'q are the unit base vectors along the tilted coordinate axes, 8~ is the angle of incidence of 

the transmitted wave at q, relative to the tilted plane of the patch, v1 is the complex refractive 

index, equivalent to the square root of E1R, the complex relative permittivity. Z0 and Y0 are wave 

impedance and admittance of free space, where Z1 = Z0 / .jElR and Y1 = Y0 -j€1R. 
To determine E; and H; in the global coordinates from (10-a, b), a rotational transformation 

is required, i.e. in vector-matrix notation 

(11-a) 

where [ E;] and [ E;]' are the vectors of the electric field components in global and local coor

dinates respectively and [H;] and [H; ]' have analogous meanings for magnetic fields and where 

(11-b) 

where u1, 2, 3 = x, y, z, u~1 • 2, 3 = X'q, ~. z~ 
and where the matrix elements, i.e. the scalar products X'q • x, X'q · y, !{q · z etc. are given in 

the appendix in terms of (8nq, ¢nq), the orientation angles of the surface normal and the incidence 

angles (8i, ¢i) in the global coordinates. 
After the fields E;, H; have been evaluated in global coordinates, the fields at pare computed in 

global coordinates using Eqs. (4) and (4-a, b) of [2],which are not changed by our generalization and 

will not be repeated here. That step, when carried out in a loop over the entire grid of subsurface 

volume elements, constitutes the "forward path" computation, i.e. that of the illuminating fields 

within the entire subsurface region of interest. 
These illuminating fields at each subsurface point are the incident wavefields for scattering from 

that point. We now focus attention to the "return path" computation, i.e. that of the received 

signal voltages due to the superposition of scattered wavefields from all of the subsurface points. 

The first phase of that computation is to evaluate the wavefields at the surface point q due 

to scattering from p. This is done in global coordinates in our code. The analysis behind the 

algorithm is based on Eqs. (5) and (6) of [2], which are not changed by our generalization and 

are not repeated here. The results are E;,, H;,, the wave fields at the surface point q immediately 

below the surface due to scattering from p in the global frame. Again using the tangent plane 

approximation as in the forward path calculation, we must first find the components of these fields 

normal to the propagation plane in order to use TE and TM transmission coefficients in evaluating 

the fields immediately above the surface at q. 
This is accomplished through the 3 x 3 rotation matrix .Aq,, the inverse of Bq' given in (11-a, b) 

for point q, except that it applies to a different primed coordinate frame, that applying to the point 

q, where the local slopes are different than those at q. The unit normal n as given by (4), again 

points into free-space and is in the ~' direction in this new coordinate system. The x'q' direction is 

along that of the projection of the propagation vector k, (from q toward the receiver at point 2) 

onto the x'q' - !/q' plane (Figure 3). The result in vector-matrix notation is 

(12-a) 
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where 

(12-b) 

and where [E;, ]', [E;,], u~j, and uk have the same meanings as in (11-a, b), except that the 

specific evaluation of the quantities like :X~, y, Z'q', :X, etc. as indicated in the appendix, are now 

given in terms of (8,, ¢,), the global direction angles of the wave emerging from q and propagating 

toward the receiver rather than (8i, cPi), the global incidence angles of the wave impinging on q 

from the transmitter. 
After [E;,] and [H;,] have been determined, the next computation is of the y'-components of 

the fields immediately above the boundary at q, given by 

(13) 

where TfoE and TfoM are the upward transmission coefficients forTE and T M modes respectively. 

Next, we calculate the fields immediately above the surface at point q, given by 

E;, = i;~, [ ZoH;11~, cos~] + ~~ [ E;11~,] 
(14-a) 

+ z~, [- ZoH;II~I sin ~] 

H;, = X'q' [-Y0E;11~, cos 8~] + ~~ [ H;11~,] 
(14-b) 

+Z~, [YoE;11~, sin 8~] 
where 8~ is the spherical polar angle (in the primed coordinated frame) of the propagation 

vector k, for the refracted ray propagating from q to the receiver at point 2, related to 8~, the 

incidence angle of q, the wave propagating upward from p to q in the primed system, through the 

expressions sin 8~ = v1 sin 8~, cos 8~ = J1 - €1n sin2 8~ , 
The next step is to determine the fields given in Eqs. (14-a, b) in the global frame, given by 

(15) 

where the meanings of all quantities in (15) are analogous to those of their counterparts in (11). 

The fields [ E;,] and [ H;,] are now the source fields for another application of Stratton Chu, 

this time for upward propagation toward the receiver in free space. The equations that describe 

this (not shown here) are essentially Eqs. (4) and (4-a, b, c) of [2] except that the surface normal is 

upward rather than downward, resulting in a sign reversal in all terms, the constitutive parameters 

are those of free space rather than the soil medium and subscripts q and pare replaced by q and 2 

in all quantities containing those subscripts. 
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When the wave propagated from the upper surface of the patch centered at q reaches the receiver 
at point 2, it undergoes a transformation to the coordinates of the antenna aperture and is weighted 
by the antenna's receptivity pattern and its peak effective aperture area. 

An issue not yet covered in this discussion is the integration over the surface of the patch 
centered at q on the forward path and that over the patch centered at q on the return path. For 
the flat horizontal surface where the patches are rectangular and oriented along the global artesian 
coordinate axes, the most accurate method is to assume that the integrand is constant over each 
patch except for the local phase factor exp (jk0 [aza (x- xq) + a 11a (y- yq)]) for the forward path 
and exp (jko [azb (x- Xq') + a11b (y- Yq')]) for the return path, 
where 

a:;ca = f3za + lza, aya = /3ya + /ya, aza = f3za + lza, 

f3zb =sin 9q'2 COS ¢q'2 +III sin 9q'p COS ¢q'p, /3yb = sin 9q'2 sin ¢q'2 +Ill sin 9q'p sin ¢q'p 

f3za = COS 9qi + III COS 9qp, /3zb = COS 9q'2 + III COS 9q'p 

lza = f3za (zz)q, /ya = f3za (zll)q, /zb = f3zb (zz)q, , /yb = f3zb (zll)q, 

If the x and y dimensions of all patches are all the same and denoted by a:c and a11, and the 
factor involving the imaginary parts of the complex refractive index can be assumed constant over 
the patch, then the integral over the patch on the forward path is approximately 

(16) 

with an analogous expression for the return path where subscript a is replaced by b. 
If this integration method is chosen, then in principle the integral must be evaluated for every 

patch on the surface in order to find the field at any subsurface point on the forward path or from 
such a point on the return path. That process is prohibitively CPU-time intensive. Alternatively, 
we can choose an angular region well within the first lobe of the sine functions and integrate only 
over the patches within that region. That method saves considerable time but the decision on the 
limits of the process is a difficult one. The method we finally decided upon was to use the stationary 
phase ( "sp") approximation and integrate only over sp points. For a flat surface, there is only one 
sp point for each subsurface cell. For a rough surface, there may be many sp points, but it is still 
faster to find the sp points and perform the integration only at those points than to use the method 
discussed above. The result for the forward path is 

(17) 

where v1n is the real part of 111 , with an analogous expression for the return path where subscript 
a is replaced by b. 
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The result (17) and its counterpart for the return path show reductions in the 1/ R spreading 
factors for the illumination of a given sufsurface point p and the return from that point, relative to 
the case where the integral is carried out for only a few patches centered around the angles at the 
peaks of the sine functions in (16), as was done to obtain the results shown in [2]. Those spreading 
factors would be reduced if we integrated over many more patches, but since as indicated earlier that 
is prohibitively time-intensive, a better approximation should be attainable with stationary phase. 
The effects of 1/ R2 and 1/ Jt3 terms and longitudinal wavefields, all due to near field interactions, 
which were a major theme in [2], are still present in results obtained using (17). 

(a) Small-scale roughness only b) Large and small-scale roughness 

Patch centered at q Patch centered at q' Patch centered at q Patch centered at q' 

1 

Figure 1: illustration of Problem Geometry with Rough Surfaces. 

z z~, 

I 

p 

Figure 2: Coordinate System for Forward Path. Figure 3: Coordinate System for Return Path. 

3 Results and Conclusions 

The simulation of the returns from a subsurface volume containing mines, aggregates of rocks and 
random variations of complex soil permittivity, was based on the code whose background theory 
was described in Section 2. As in [1] and [2], the code was run thousands of times in order to 
simulate the action of the focused array system described in [1] and in more detail in [3]. Referring 
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back to Section 3 of [1], there are 4 transmitters and 4 receivers, resulting in 16 transmitter-receiver 

positions. The grid of small volume elements making up the illuminated underground region (32" 

in crosstrack ( "x") direction, 10" in alongtrack ( "y") direction and 8" in depth ( "z") consisted of 

3072 such elements, each one a cube with x, y and z dimensions of 1''. Thus the propagation path 

1 -+ q -+ p -+ q' -+ 2 and associated scattering processes described in Section 2, were simulated 

16 x 3072 = 49, 152 times, resulting in 3D image plots as shown in Figures 4 through 9. To obtain 

these plots we assume a single mine and two rocks in a clutter background due to random soil 

permittivity inhomogeneties. The burial depth for the mine is 2'' and those for the rocks are 2.5" 

and 1. 75". The mine is placed at x = 0 and the rocks at x - 8" and +6". The rms deviation 

of soil permittivity from its mean value is set at 3 percent of the mean. The large-scale surface 

roughness is modeled through one of the options available in the overall simulation framework 

[4]. The selected option is based on a two dimensional Fourier series model, where the coefficients 

can have deterministic and/or random components. To produce these illustrative plots, we have 

specialized the model to a single sinusoidal function 

(18) 

and vary the amplitude C from 0 to 0.4". 

The slopes (z:r)q and (zy)q defined in (4) are: 

-2~ 2~ 
(z:r)q= Xo Csin~q, (zY)q=-y0 Csin~q, (19) 

where 

~q = 2~ (!!L + Yq + \lf] 
Xo Yo 

The slope angles ( 8nq, </>nq) can be determined from ( 5) and ( 19). 

The results presented in this paper are merely illustrative, designed to show that large-scale 

roughness can have a significant effect on the simulation results under certain conditions. In all of 

the plots in Figures 4-9, the soil is clay loam (complex permittivity 6.2- j0.145 at 1 GHz). The 

mine is an upright finite circular cylinder of radius 1.5" and height 2'' with permittivity 3 - j0.03 

and the rocks are spheres of radii .75' and 1'' and permittivity 4.5 - j0.003 and 4.0 - j0.003. 

In Figures 4 and 5, there is no soil permittivity fluctuation clutter. In Figure 4, the air-ground 

interface is a fiat horizontal surface. In Figure 5, the maximum spread of surface height is 0.8". 

There are small differences in the shapes of mine and rock signals on these two plots, but they are 

not significant. This is because the differences between true and indicated positions are present 

for a very small number of subsurface scattering points, i.e. those within the volume occupied by 

the mine and rocks. We conclude that surface height spreads below 0.8" have very little effect 

in the absence of permittivity fluctuation clutter. When we introduce 3% fluctuation clutter, the 

effect of surface roughness becomes more pronounced, as shown in Figures 6-9. In Figure 6, the 

interface is horizontal. The mine shows up in the same place as in the zero clutter plots, but the 
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rock signals are obscured by the clutter. In Figure 7, where the surface height spread is OA", the 
mine is still visible in the clutter and its location is unchanged, but there are many more peaks 
comparable in intensity with the mine, which could be interpreted as due to discrete objects such 
as mines or rocks. However, aside from a few peaks that may be due to rocks, nearly all of them 
would have to be due to permittivity fluctuations that permeate the entire volwne. These effects 
are still more pronounced in Figures 8 and 9, where the clutter level is still 3%, but surface height 
spreads are 0.6" and 0.8" respectively. In both cases there are so many peaks in various locations 
that it would be very difficult to infer the presence and location of a mine without further signal 
processing beyond that inherent in the focused array timing algorithm. An explanation for these 
effects in the simulation is the possible existence of many stationary phase points for any given 
subsurface scattering point. Hence some subsurface points would receive (and scatter) much more 
illumination than predicted by analysis based on a flat horizontal interface and others would receive 
(and scatter) much less. This should result in more fluctuation in the clutter return than in the 
absence of surface roughness, as observed in Figures 7, 8 and 9. 

4 Continuing Work 
Accounting for large-scale surface roughness, the primary focus of this paper, is only one of the 
generalizations we have implemented in order to improve the accuracy of the modeling. Work is 
still in progress not only on that issue but also on inclusion of second order scattering effects [5, 6] 
on the subsurface illuminating fields, but the complete second order theory is prohibi tiveiy CPU
time intensive. Even reflections of first-order scattered fields from the underside of the air-ground 
interface, the simplest of the second order effects to be considered, must be limited to the strongest 
reflections in order to avoid excessive running time. The decision on which reflections to include is 
much more difficult with a rough surface, so the current study of this issue is being Limited to fiat 
surfaces. The next step is development of a criterion to decide which reflections can be excluded 
without much of a penalty when the roughness of the interface is accounted for. 
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5 Appendix 

Aq and Bq matrix elements 

(Aq) 31 = (Bq) 13 = Stnq Cpnq = a311 (Aq) 32 = (Bq) 23 = Stnq Spnq = a32 

(Aq) 33 = (Bq) 33 = Ctnq = a 33 , (Aq) 21 = (Bq) 12 = Kq (stnq Ctiq Spnq- stiq Ctnq spiq) = a21 

(Aq)22 = (Bq)22 = Kq (Ctnq Stiq Cpiq- Stnq Ctiq Cpnq) = a22 

(Aq) 23 = (Bq)32 = Kq Stnq Stiq (spiq Cpnq- Cpiq Spnq) = a23 

where 
Stnq =sin 8nq, Ctnq =COS 8nq, Spnq =sin tPnq, Cpnq =COS tPnq 

Stiq = sin 8iq 1 Ctiq = COS 8iq, Spiq =sin tPiq, Cpiq = COS tPiq 

Kq = 1/ sin ~q 
(Aq) 11 = (Bq) 11 = a22 a33- a23 a32, (Aq) 12 = (Bq)21 = a23 a31 - a21 a33 

(Aq) 13 = (Bq)31 = a21 a32- a22 a31 

and where the subscript q on an angle implies that the angle is evaluated at the surface point q. 
The matrix Bq in (11-b) is evaluated at q, while Aq, given in (12-b) is evaluated at c/ 
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Abstract 

The project motivating this paper is r.llAl d~pluymeut of a frequency independent a nt• nna on 
the transceiver of a mouostatic ground-pennr.rating rade.r used to detect min~ . The desigu 
goal is th .. t the radiation p.~ttern e.nd input impe<i .. ucc he noarly uniform over a band frum 1 
GHz to 5GH7. if t he antenna is partially itnn•~roed in a tYpical soil medium. T he cont'.mplated 
method of deploymen~ is lo have !.M e.nwnna 6traddle Ole air-soil imeoface i.e. partly in free 
space a.nd partly ouulerground, radiating lnlo tbe ground. The particular subclass of frequency
ind.,pendP.nt antenna un<ier io.vestigalion fnr t his application is the conical r.qulangule.r~piral 

antenna, in which thin wi!'f'.ll ~<~wound around a conical frame and the radiation is from the 
apex and rear.h!'S its peak in the axial dir•ction. The conical structure, a.buut l>Ornn long and 
t~.it.h a maximum diameter of 12cm, is thrust int.o the ground apex·fir.•t at an f\Dg}e of about 
70° to t he vmical. 

The subject uf thi~ paper is an analysis of this anteno.a, lirst soh;ng the integral equation to 
lind the currents on the wire, then determining the radiation pattern at frequencie~ between 
500MI:Iz e.nd 5GHz. The theory of this ant.enua in infinite free space was deveioped by K. K. 
M~i 11.nd ot hers in the 1960s (!EEl:: 1f,.n•~~r.tlnn~. AP-13, 5/65, pp. 374-378 and Y~h Md Mci, 
AP-15, 5, 9/ 67, pp 634-639 and AP-16, I. 1/68, pp. !).21.) The an..Iysi$ repoctoo in the present 
paper is based on these sourcea. Ao. uhima to! objective of the reported work Is to determine 
theoretically t he degree of frequency unifolTility attainable when the aot.nn" geo....,t.ry is "" 
indicared ah<mo. The ideal "frequency independent" property is •heoretically p ossible if the 



mnc is inlhutely long, EO ~he finite lcn,::th a!ld v.;dth of the [r;JStum impose; limits on the 
nLralnable :.andwi((l.h. ln order ':.0 ~n to determine the fe,..i!Jility of this antenna iu the 
c..>mernpla.ted application, this paper will be lirnitert to t he ;IJlaJysi& of t lte =t•o.na posi~ioncd 
wi•h il~ uis in the vertical direction ond iunncr~cd in a.n infi11ite lo.,;y <li~lectric medium (e.g. 
clay lnam ""il). The extension to inciUIIP. the ~itect of t.he aic-•oil interface and ~.he parti•l 
ixrur.ac•ion of the 10ntnnna in the soil nt an angle othr.r than vertical will b" ~iven ix1 a Inter 
paper. 
K EYWORDS: min• rtP.t-...:tion, antennas, ground-P<:nctraling radar, frequP.ncy-inde~ndont 
aut~nnas, conical ~pirtll antenna.. 

1 Introduction 
'!'he conil:al spiral antenna, n subclass of "frequency independent antCIUlas," "-as studied ext~-rlllively 
by a number of researchers in the 1960's ll) - 17) a.n<t has been di~<::uHsed in some more rerent 
antenna texts f8J - [10). Because of the very large bandwidths attainable with these nntenna.' 
nnd ap()ropriate form-fador as a prolJ.,, we are inv!'.$t.ige.ting their u:re i!l anti-personnelle.n<!-miuc 
detection by ground-penetrating radar. Ideally, in that application, the antenna's bandwidth should 
be oomp3Cablc to that of the transmitted pul1;cs uned in ~he many GPR systems whoee durations 
are of the order of nanose<)Onds. A conic'.al spiral co.n a~.hiAvf! thnt kind of bandwidth in free space 
and might be able to do so in soil media in whit:h minee are typically buried. It also produces 
radiation pattern.q that peak in the axial direction, and although not very directive, focus nearly 

. all of the radiated energy into the hemisphere outside the cone. In t.he c..'Ontemplat.ed application; 
t he tip of t he cone is mB.nually thrust into the ground at :;elected intervals at an angle of about 70' 
from the vertical ..s illw;trated in Figure 1. Each thrust of this probe will illuminate a suhsurfacc 
volume possibly conl.aiuing a mine. It is expected th1l.t such a hand-held probe would supplement 
othc:: deter.tors as a confirmatory sensor. 

An obvious iS~~ue in the use of a GPR probe r.onflgured as described above is that of t he operation 
of the conical spiral in a typical soil , eepecially a soil with significant lossiness. At10t.her U!sue is 
the ~ifect of the air-ground interface on the current distribution , input impedance and radiation 
pattern, particularly if the interface has significant roughnC><S. 

The nominal geometry assumes a circular wire of constant radius wound around a r.one 50cm 
long and with n maximum diameter of 12crn, with cone angle 96 = 13'. Thill antenna has two arm.~, 
the first of which is governed by the equation r = r0~ and the SECond by r = r0e•!¢ ··Tl. 

T lilil paper reports on the first part of a particular task in thi~ investigation , which L~ the 
generation of & computer simulation to determine the current distribution, near-field pattern and 
input impedance of this antenna when immersed in a soil ruediwn modeled as a lossy dielectric. 
In the above-mentioned theoretical a.nd experimental work doue in the 1960's, the nntenna was 
assllll1.Bd to be in infinite froo space. Althongh the early rooult.s provide precise information about 
the behavior of the antenna in free spaoe, and qualitative in&ghts into its expected propert ies in a 
dielectric medium, its behavior in a 1056y !iOil cannot eMily be qUilllt.it a&ively infcncd from thetll. 
For this re880n the aruslysis must be repeated for those cnses, nsing th11 enotrnous improvements in 
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computet· pow(,.- during thP. pa$~ thirty years t.o pr<tdll(:e a wider range of n:~u!l' that "'ill aid ~~~ iu 
t.he c!evdrJpmcnr. of tlr~ GPR probe. 

The ulUmat.e goal in this simnlAtJon phase of thr. projk:t is to include the effect« of a poesibly 
rough ><ir-grotm d interface a.oul ~ buried mine on 11. wuiuil ~piral with ><rbitrltry orientation. 'fhll.f. 
level of gem".ml.ity is required to completely evalooa~~ the confignra.t.ion we have in mind. fl11t the 
n.at.lab simulat.lon code developed t.o-dM.e is linutcd r.o the r.as<' whcrc t he llJlt.eunR. i$ immer~ed in 
an infinite lokk)' cli<::lcctric, a tbeoml.lt~~Jly 'imple P.xten~lou of t.hc work of K . K. \lei in l!J6/i [I] R.nd 
Ych and MP.i h1 Lg()7 a.nd 196ll [2, :Ji. 

4 X "' lltft'j!fin& lrrta.o. .. aS ah•ne pntll, 

~ d:u:t:tlDn aftni\liMnf(jl'~ ;:110~ pi1.1Cor.n. 
K. · 4X ) IE ·t.X-~ 

2 Theoretical Background 

, .. ~.._,....or~nl 
' • r. Jof4n;n,s poim of am~ 1. 
, r01 lml 1 - ~ri~· rro.., F"'-~"~~* 
J Cot •~12 -10 .... '8:-d tlu: StiXIMUr 

T he axis of tho COW) is along t.he .:-ax.is of a cartesian noord inatc frame whMe origin is at t.he apex, 
as shown in Figure 2. The l>'Phorical <'.Oorrlinll.te~ of an innnitesirual <:urrcnt element. on lhe wire 
wound around t.hc stuface of !.he l'<Jnc are (r',O',¢') , where 

r' = roc·~· ' fJ' - (iu (1) 
where a is thP. "spiral constant", a monot<Jnically lnr.rAA.'<ing function of t he pitch angle , 00 Is the 
cone angle, U6Snmed mns!Mt, and ro, iA the ~traight-lioe distanl~ on the cone !mrf:~cc froru the 
origin to t.loe point p shown in J?igurc 2. The ver:tor from the origin to the ~;enter of t.he elP.ment, is 

r' = roc•<>' [Rin Oo (x<:os<f/ + y si n9;') +zoos On] 

'l'he im:remcnt.1.l <'.hang" in r' a~~ ~· '"ries along the wire is 

dr ' = [ar' - r0co9' sin00 (x ~in qf - yeas¢')]~· 

The magnit.ude of dr i.~ ( "~th the aid of (I)) 
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= Qdt·' II ~i112 90 , where Q = V I t- --2 ··· 

" 
The quantity Q, defined in [2] as the ''olowness factor'', is a measure of the tatio of t.he Cl>rvilineii.C 
rlist.ancc traversed aloug the wire to the linear di8Lance r' along the oone surfat:e. 

A uiLit veetor s' in the dir~tiou of the current element at t.ite point r:', proportional to dr! in 
(3), is 

s' = ~ { sin60 [x (cos¢' - si:of) -'- y (sin¢'+ r.o: ~)] + z cos90} (5) 

The unprimed version of (5} is corroborated by Eq. (16} of :2]. The distance traversed along the 
wire, proportional t.o ldr'l aa given in (4), is 

l=Qr' (6) 

Eqs. (l) - (6) apply to arm I, which starts at the point pin Figure 2. Arm 2, wound in the same 
5ense as arm L sts.rt.s at poinr. p', separat.ed from p hy 180•. The counterpart of ( 1) for arm 2 is 

(7) 

If .p' is replaeecl hy ¢'- 1'1 in (2} and the steps from (2) through (6} arc repeated, we cun obtain the 
counterparts of (5) and (6) for ann 2, which a.re given in ~2]. 

To determine the electric fiE>Jd at an arbitrary point designated by a vector r due to currents 
along arm l, we note that the current vector on an clement at r' is denoted by I (s') s'- The magnetic 
vector potcutial a.t r due to this element i• 

A (r) =Ill (s') s' G (r, r') ds' (8) 

where G(r,r') is the green's. fun~tion-in the surrounding meclinm, given by G(r,r') = e-jkRf1nR, 
and R = lr - r'l, and where JJ and k are the magnetic permeability and propagation coll$tant 
respectively of that medium. The electric field at r, a:; obtained from (8), is 

E(r) = -jw(j +~2 \7'\7) · [t ds'pl(l)s'G(r,r')] (9) 

where w is the angular frequency and L is the length of arm l. 
Eq. (9) (or its equivalent in other forfllll), is the basis of the integral equation from which tht~ 

currents I ( s') are to he evod!uated by :VI OM (Sect-ion 2. L) and also the calculation of the field pattern 
in the surrounding space (S~x:tion 2.1). To obtain the field due to both arms, a .!leoond term is added 
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t.o the right hand side, idcnt.ical t.o t.ltc expression in (!I} bu~ with ~ubsl.:ripts 2 on s, s', r' ancl Al~o 
on L if a.nns l und 2 have different lengths. 

Th e Jadius of the v.~IC, denoted hy /,, is II:!Sllmcd conslAt\t in this ana..ly~i~ That ~.a."<: is di&ellssed 
on Page 638 of :2i. It is not t he thcorctically idPAl ~. in which t he antennA i~ infinitely long 11C1<\ 
the radi11~ c:ontinno11~ly increases along t.he wire. The pr~cribcd increasA in wire ra.diu~ j~ feMible· 
in principle but. more difficult Lo implement in pra~:tice an<! obvirm~ly a. praNk..! antcrma mu~t. 
have a finite length. For ~.he:<P retl>lc:>DS, the !l.flt.enna being inve.tigated here is not truly frequl.'nc:.y 
independent . But it is expected tha t t.he c.ou.s\ant wire rad ius version will h•.vc a s•lfficiP.nr.ly large 
uandwidth for tbe contemplated applir:,.tion. 

2.1 Cur rent Distribution 
To olJLIIin the currents I (s1), 11n elect ric. field integral equation (EFIE) is rlArived from [9) or its 
equivalent [1) . The point r is •et on arm 1 of the wire. T he r, r, 5 and 3' arc given by expretssions 
identical to(! ), (2) , (5) and (6} respectively CXC()pt that. the primes are removed from all quantities 
in those expressions. The tangeutinl compooeol. of E (r), equal to .S· E (r}, is int.egrated over the 
length of ann 1. 

The derivation of the EFIE for a:n arbitrary thiu wire nnt.enna i.~ given by Mei in [1) and further 
speciali;:ed t.o t.he conica l Rpir.,l &nt.P.IlJla by Yeh and Mei in [2]. It is ba.•ed on Eq. (11) of [1;, which 
can be derivP.d rtom (9) in the present paper. Th"' rf'fmlt.ing kernel, a.s given by Eq. (28) of [ I] anrl 
more specifically by f;q. (12) of [2), iA 

( 10} 
where " • (~. s') = G (s, s')(s.s'), G (s,s') being t he same as G (r , r'} in (8) but the Green's function 
is expressed as a fu11ction of s and s'; 

( ' {L [8G(L, .s') (" •I) 8G (t, .9') G ( ') (dt ")] k ( )) 1Tb s, s ) - - P}o dt &t t.s +- as·,- + t,s dt · s cos( . .s-t, 

1' denoting the principal value of the integral on t ; 

Ire (s,s') = -G (sp,s') [ ( s; .5') - ( s; .i')] COG (k (s - Sp)) u (s - ·'lp) 

T he Ia.st term is due t o the step dia.continuity at the point p. In this term§; anrl s; refer to the unit 
vectors at points just above and just helov.• p respectively and u (s -sp) is the unit step func tion, 
implying that s must exceed s •. 

The counterpart of (10) for arm 2, which is added to (10) to fonn the complete kernel, is identir.a.l 
to ( 10} but with s' and S' replaced by s; = - i and s~ respectively. The two kP..rnPls are additive 
bccawse I (s') • I ( - s'). due to the symmetry of t.he two arms and hence th e final form of t he EFIE 
is {Eq.(l2) of [2)) 

r'-Jo ds' F (s , s') I (s') = 8 ~~oo ks - (jVof2Z) sinks (11) 

5 



whl're P (s, .t) = ,. (sJ) +1r (s. - .1) , where Vo and Z are the applied ,·oltagc and wave imped&nf.e of 
t!te ITlMiHm rc:;pt'<:tivcly and where B on the ri,~~;ht-hand side b uniquely spedfierl by the requirement 
thar. the cuucnt must vanish at. boti1 ends of t.he wire, &..'\ in the f'<)(:klington sod Hallen integr~l 
equation (FIJ, pp. 278-286) for a thin straight wire sntencw., of v.•hich this antem\A is a g!!flcrulization. 

:I'he spedlk forms (I[ till' exprc.sllions in ( 10), i.P.. $. ~·. i.is'. s; .s', and ~; · s' CfUl \.>~ C<lkula:ed 

for tt.rm 1 from Eqs. (!6) And (17) <.>f l't], where i and t replaces and sin some of thP.RA expre.sion~. 
T heir counterparts for arm 2 r.au be calc.'luatcd from (Hi), (l7) <Wd (18) of [2) . T h-. exprc.:ssions 
were c.al('alat.ecl and incorpor.-te<t into the matlab <:ode <Ill >trrays to form the qnH.o t.i t.io~ in (10). 

The modeling of the Green's ftmct.ion G (~,$')requires a decision on the inclusion of t he integra
t ion MOund t.he periphery of the circular wire. Referring to literature on the straight drcular """ire 
antenna direr.t.ed along the z-axis (11] in the formtuation of tile integral equation the r.nrrent c.c1 
b<! <Wwned to be entirely on the ont.er surfa<.'() of the wire and the obeervat iou point a~ the renter 
of the wi r~. All.e rnacively, the current can be along the ccntcr and \be Wset-valion point along the 
$Urfacc. These t wo ''iP.WJ>Oints give t:tiSCJJt ia lly equivalent result.~ and we have chosen the former. 
Rot h vi«"·pnints are bSBed on t he assnmption that r.hc wire is so thin that t.he currents Bow entirely 
in the wire d irection, i.e. currents tmnsvense to that direction are neglected. 

Actually, .o;ince the wire is 856umed to be a solirl perfect conductor, the current flows almost 
entirely on the outer stufac.e. The true l>oundary condition is t.he vs.nishing of the electric field 
Along t.he outer wire surlacc. The ~.boice of hoth ~ourr.e and ob~>C~vation point on r.hf'l ont.el' surface 
in the formulation of the inr.egral equation lca.cls to ohvion~ singularitie8 of t.hc kernel \\'hen s = s'. 
Although the effect of tha>e singularili~ i.'l d.iminutod in the integrA.tions, as point<.-d out on Page 
637 of [2], they can be entirely circtmwent.e<\ l>y the approximation indicated above, l\llu for a 
sufficiently thin wire, should not cause serious errors in the eomputation. 

The modeling of R, the dist11.nce between an obsef\'l\tion point along the r.enter of t.he wire and 
an infiniteeima.l current element on the outer !ilt.rfa.t:e of t be wire and parallel to i/ a t t he center of 
Lhe element, can be easily accomplished. The result is 

R = fr - (r' + bp')J = R(:$,1, b, 0) = v'llo + (ucosfJ- vsin S) 

where {J is t,he local azimuthal angle around t.he periphery of tbe wire, and where 

Ao = ~l { s2 + (~r -2ss! (coo~ Bo +sin2 Bo C'OS 6¢) + b2Q2
} 

where b i~ the wire radius e.nd p' is a vector nor0111l to i/ for ann 1 and to 62 for arrn 2. 
have also been calculated but are not given here. 

The Groon'g limction, acCOIUlting for i.utegration over the local e.zimuth angle~. Is 

, b k2• e-J>R(•.•'A8l be-i~ll(•,•',b) 
G (s ,s,b}=- dfiR( f3) :::e R b) 4,.. o s,s',b, 2 (s,s', 
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where R is approximatflrl il.'l ~' 011 the aa~urnp~\00 that. b is SHffident.ly ~mall tO jH.;t.ify neglect 
uf the terms involving .6 in (12). 

If the tP.rrn~ involving /3 were compAJ·able in maf!nitnde t.o Ac, t.hen the .fJ integration would nee.:l 
to be perfonn~'<i numerically for each c~urrcnt elemAnt , which i~ enormously CP U-time inten~iv«. ln 
t.he ca.~e.q to be considm·ed ln this ~b1dy, examination of parameter val u~s indicates that the{:) terms '"*' Fmfikicntly small rornpan..'<i with Ao t.o ju:rtify an approximation in the exponential term. lt ~ 
noted that, as Oo __, 0 and a - x (i.e. 3$ the spiral npprOI\Chcs a straight wire in the z-direction), 
li __, y(z - z')2 + b1, known as t-he ~thin-... ;re approximationn for a z-dirccted lineA-r l:li!tcnna. 

The termR in ..-:b(s, 31
) involving derivatives of the Greeu'• function can be obtained from (13). 

In general 

8G 8GiJR ( l)lJR -8 =-....- =-JkG 1+ - -.-s 8R as iTeR iJs 
s' s' s' 

(11) 

By replacing s "'ith t in {14) and substituting the rfflulting expressions into 1r0 (s ,s') in (10), "'e 
can obtain s.JJ the quant ities needed in U\e iutegr!Uld of "l { s, s') for MID l. With sign changes in 
thERe quantities, we c.an do the ~Mne for arm 2. 

The next step in obtw.ning the c-.1rrent on the wire is to exp~nd the c.:urrent in a set of b<~Sis 
fnnctions p,. (s'), i.e. 

N 

I (s') = L C..P.. (s') ( 15) 
u • l 

substitute (15) iDto the integriL! equation ami apply the method of moments (MOM) to solve for t.he 
coefficients c,. T hi:s wa:; ac.:tually done by Yeh ~~oDd Mei in (21, but their technique WM not dESignated 
hy them as MOM ber.&~L<;e that terminology {121 was not yet in wide use in 1967. They used t.he 
most-elementary and st raightforward form of MOM, that of point matching 113], and a set of b•.sis 
functions that are nonzero only iD the subdoma.in of s' th .. t conta.ins the matC'.hing point, e.g., a 
wt of contignon$ r<ll:tangula.r pulse functions. Tbtlir pulse f1mction~ were multiplied by a set of 
interpolation functions that were quadratic in s', which eul•aucet! the rate of convergence relative 
to Bat-top pulse functiolll!. In our work, we have initially used fiat-top pulse functions but have 
~l.udied more sophistir.at.ed sets of basis functions [t4J with a view toward improving the accuracy 
of t.he eomputations in later work . 

2.2 Near-Fields of Antenna 
To calculate the near fields within a region a.round the antenna, we again invoke (9j, using I (s') as 
determined from the MOM solution of the EFIE tiS discussed in the previous section. To deterntine 
the II, tP and r components of the electric field in the same global ~vordinate system defined PArlier, 
we first find t.lte rectangular component.s of fields at u.n arbitrary observat.ion point from a volume 
distribution of arbitrarily directed infinitesimal current clements from Eq1t (6-108 a, b, ~) on pp. 
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21l3-2il4 of [15[. which are based on an ex prt'5sion cqui-.ulent to (9). This procedur() yields a set of 
~led. rir : field component$ (E., Ey , E,) from a. vol11mc integral <>V?.r r:nrrcnt ~ll'mcnts ./, , J,, J,. 

1'beu the fipbelic:al <.:oordinate compone11t.s arc calcul ~tl.tll! fiom ~he rPJAliOIL~hips 

{16) 

E,. =i.E = sin 0 (Ez cos r,i + E~ ~in 9) + K, <XJ$ 9 

The vo!Wlle of int~Ation is then defined as that of the cmved v.ires on rums 1 and 2 of the r.ouical 
•piral antenna., which {for arm 1} results in 

E9 =. J~ j ds'l(s' )e-ikR " [A] " " " [M,) 
_ · L { G, (-B) + G2 [D] [Mol } 

¢ lrrkQ o , ( -C] , " , (M~ J 
(17) 

where fJ = rA - roe•fl , M~ = r 0 e&;' (bb), M, = r - 7"oe•ol' (aa), M~ = r0 e•ol' (cc) lind where 
aa = cosOcosllo + sin8sin9u<XIliA,P, bb = sinOcosllo - eo&8!!in8ocosA¢, cc = sin9asinA4>, A= 

cc . cr. sin 90 COis AcP r 2] aa+ - sm0,B = bb --cos8,C= cc - ,G1 =- ;l+jkR+(JkH.) fR3 ,C2 = a a a ·-
.3 + 3JkR - (jk ll)1

) / R_S, I (s') "" f~" llJbJ (s,' II) anrl A¢= (/!-</>'. 
- Each tot.al field Component is the superposition of two ter!ll.$ of the form.~ in (17), one for each 

arm. The expres.~ion for arm 1 i~ th~ osame as that for ann I except t-hat ¢/ is changed to ¢/ ... 1r 11.nrl 
hence A¢ is changed t.o A¢+ >r, resulting in l!ign changes a.nd consequent difference; in the values 
of R, as discussed in suhsectiou 2.l. It is noted that, as required, E, and EQ become proportioual 
to 1/-r a.nd E,. benomes proportional to 1/il as r appro3Chcs infinity. 

3 Discussion of Results 
Before proceeding to parametric studies of t-he variation of current and fielr! J>Iltterns v.itb frequency 
and soil properties, we first emba:rked on an effort to validate the simulation code by comparison 
"ith past res<alt.s. This result-ed in the CU!V€S shown in Figure 3(a.) , where our comput.ed currents 
were (~Ompared with those obtained by Yeb a.nd Mei (Fignte 7 on Page 538 of [2)). Figure :l(a) shows 
plots of real a.nd imaginary parts and amplitude of the current in milliamperes aga.inst x = $/A as 
s varies from 1 to 6 wavelengths. For t.hese plots, we have used the same values of input variables 
ns those in Figure 7 of (2[. i.e. a :c .035, ro = .316>., b = .0096>., 90 = ro•, and the surrounding 
medium is infinite free space. The results from l2l are shown in Figure 3{b). Comparing the real 
and imaginary parts of the current in Figu.re 3(a) with thOGe in Figure 3(b), we note fairly good 
agreement in the a-locations of mMt of the maxima e.n.d minima, except. for the first peak of the rea.! 
pR.J:t, whkh shows some WlStable behavior, and the last maxiwum a.nd minimttm of both real and 
imaginl3ory parts, whose locations deviate from those Q( Fignte 3(b). Relative a:mplitudes of sorrw of 
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the peaks and t roughs and the rate of decay of the amplitude arc also do:;c to those of l'ignre 3(h), 
hnw(.-ver, there are enottgh discrcpancit"Z to warrant further atlf11)'5is of the code, ~~.~ inrli<'AI.<.'<I below. 
A.s of thi,q writing, "'-c arc not certain of why r.lu: lwo acts of cnrvt:S ttre not. in emrt agreement., hm 
it. i~ .pmbably at. lt>ast. partially due to r.),._, fact that O\IJ' basis fnJid.ious for t.hu MO~'ll~Ompntatiun 
were not exactly the same AS t.hose n~ed by Ych and Mei (i.e. "'c did not use tlu:,ir interpolation 
functions, as indicfll.ed in S<X:tion 2.1 }. Another probable rca:son is t.be approxiiUat.ion u;;t.'Ci in the 
Green'B function (See Eq. (13}) whk.h circurHvent.ed the exact integration ;•rvund tho periphery of 
the wire, which is p111ticularly import.llJ'J.t in the region in which .~ i~ clo~e to s', where the Gr<'<'n's 
function reaches VA!Y large valuffi. Whatever the rea.'IOn~ for thes<) discrepancies, fn(t.h~r work is in 
progress to improve the aec-urlley of thE: kcr:1cl of t he integral eqnac ion, a.ud to try moro sophist.icatcd 
).10M ba.sl$ fw1ctions, both of which are cr it ical to the accuracy of t.he r.omput.l.'<i current. 

Since all inp11t variable>:~ with climenaions of distance are entered in wavelengths in the (.'0111-

parison C&'le diS<.'U58ed above, they are all independent of fn:quency. They are also independent of 
constitutive panuneLers, which rue used only ~ determine wavelength and propagation conStant 
from the inputted frequency and h<>.nce are the same for soil media as for free space. Hence they 
are not useful in the titudy of the dfoct ef frequency and soil varameters on the current dist.ribution 
and rudiation pattern.~. To condu<'t ~\1<.:h a ~tudy, we enter input variable values iD uccordancc with 
the model described iD Section 1, and those with dinteHsion of distance arc entered in metP.rs, not 
as multiples of a wave>length. Some current distribution compul.al.ions ha"t' been made at various 
frequencies between 400?\.1Hz and 2.4Gfi.z. An example is shown in Figure 4(a) for dry sand M the 
ambient medium (dielet.'tric constant = 2 .~5, looA taug.;uL = .008} at a frequency of lGHz. This 
result is compared :wit.h that in Figure 4(b) , where all antenna paran1ett-r~ and the frequency are 
t.he se.me a.s in Figure 4(a) except that the ambient medium is free space. 

In t hese cases, t.he total length of the wire i~ about 200ctn. Wavekngths for dry sand and free 
space arc 18.8cm and 30cm respectively, implying wire-lengths of about 10.(i ami 6.5 wavelengths 
l'E!IP~~ivP.ly at l GH:t-. The number of cycles of t he rea! and imaginary parts of the current in Figures 
4(a} and 4.(b) is obviOU8ly the number of wavelengths. 

Another example is shown in Figures S{a) and 5(b), the same 115 Figures 4(a) nnd 4{b} except 
that the frequency i!'. 2GHz. In these case5, tho wavelengths are half of Uull!e !U. lGHz and hence 
the number of cycles of real and imaginary part.s are twice those of Figures 4(a) and 4{b). Jn all of 
thase cases, the amplitude decays froru a high value near the source to a smaller pla.teau ncar the 
termination, but there are significant diffArences in the shapes of the curves for each medi\lffi at the 
two frequencies and at each frequency for the two media, especially ne3r the source and ncar the 
termination . Other sets of results have been obtained for different frequencies within the band of 
interest and they all show behavior eimila.r to figure! 4(a)-5(b). except tho.se at the low frequencies 
and, whose amplitudes do not exhibit significant decay with distance. 

A general r.ondusion we can draw from the cases gtudied to date is that the rates of decay of 
the ~urrent amplitude show an increase with frequency. The frequency ubovc which this occurs is 
about 9.50MHz in free space and abou t 550MHz in m y sand. At frequencies helow ~bese value!\, 
the amplitude is highly oscillatory and exhibiiS very li Hle decay with di.3tancc along the wire. The 
wavelength in dry sand is about 63 percent of that in free space for any frequency. This appears 
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to he the rP.A.<\On for the difference between the two mwia in th<! muumum freqll(:ncy at whir.h s ignificanr. dcca,y rates begin t.o ocr.ur. For frequcnr.ieos bdow t.hat minimum, t.hera is ~~~ insuftid ent nulllbP.r of wavdcngtl.o.:; !'long the wire t.o realize t he typical .:urrent. <li~tribnt icn of r.loe conical spiriil. ~ of th is writing, we <"Armot draw ronchL~ions about th.c efTe<.'t of these t~ends on t.h" radiation p"ttcrn, which we have not yet s t.udied fnr t.he paru.meter \'ll.bL'S of c>ur model. SmuO) preliminary radiation pattern computlttions were mat.!c for t.hc ' 'B.Iidiil.ion case. and plots of elevatino pl<me cu ts show 9mil.ac shape hnt less eymmetry than those given in (2]. These rcsultR will be shO">o·n in the prcsentati on . 
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·Figure 5(a) Figure 5(b) 

4 Conclusions and Plans for Future Work 
The results indicate that the modeling we have done to date will be useful in predicting the behavior 
of the conical spiral antermn in a soil medium, but more work is required to improve its accuracy 
for the case of an infinite medium and then to include the effects of the air-soil boundary and a 
mine and possibly other clutter sources in the near-vicinity of the antellJla. Final validation will 
require favorable comparisons with results to be obtained with the experimental modeL 

In the immediate future, before considering these refinements, it is planned to take more accurate 
account of the integration over the outer periphery of che wire and to try other basis functions and 
"~'<"eighting functioll8 in the MOM current computation, in hopes that the results will come closer to 
those obtained in the earlier literal.me. 
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A bst.t-act 

lr: w~vion• p"-pers (P :·oc. Sl'l.I::, A;>ril, 1!198, April, 1999 <unl A"gu•t, 1999j th~ an:.hors 
reported work on a ;Jl> frequency domain sim1Jlation ofbi~cat.ie GPR smnari()ij i:wolving sig."llil$ 
from bu,·ied min"' ar.rl ~hltt.cr due to randon: permittivity nur.~uat.ior" ;, the soil, rough!>e~s 
of tho air-gTOllHd in.t~rfAc:~, and di':iLJihutions of rn<:kfol. The W"lalysiB is based UJI noni iLppmxi
mM.ion<. T he ernpht~.~ i• in these pap~"" wa.< on ~i muiMion of a fot:u..,•d arrny flular (Il.nppa.port. 
and Reidy, Pro<:. S.I'JE 1997), which b a mulli•tllli<: ''Y"'·"ln and h<:n<O€ its simula tot1 n.quire• 
" bug" n:;mbr.r of rul\&. Sinmla.t.ion of a muitW~lir. CPR sys\e"' "'"""" " high premium on 
s?f3'ld, wlich n""""''it.ut"" .'lOme loss cf accura"Y· Wurk is r.nrrcntly under\\11\Y on '~idlltion 
of this m<lr. through cornvo,ri,;on with eXJ'('rimcntal results and with remlu nhtninoo Mt.h 
numerical cod"" that r.,n ll.Chicve great wcurar.y wit.h ,.,., long r~>T>ninl); UOlCS. ln the wmk 
n:port.~<l in thi~ paper, re•ulL• ohtainr.d ";th our COO(\, requiring only minute$ "f running lime, 
axe compared with n :<ntts of a tlm~c o:nlCllHiounl F'l)f' l) code, which reQ•Jires mnuy hours of 
CPU time for t.h~ •nmc C.M~. 

KI!:YWO.twS 
Radar, ground pcnuL :·atiu~ r;ula:-: dm.t~r. mottr.ling, cl(~Ct !'omA.guet:<: :-::c:n.t:r.ri nx, mine dc

t.E:Ction. 
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1 INTRODUCTION 
ln t.h~ previous SPIE ConfP.rence Proceedings p.~pcrs 11. 2, :l], the authors reported work on a 
thrccxlimeMional bistatic frequency dom.uin simuiAJ.\on of ground penetrating rarlar· ~igna.ls from 
11. sub~•ll'faL'€ region possibly containing wine!. The emphasis in these papers ww; on n.pplicat.ion 
of tho code to simulation of the ad.ion of t.hc for.used array rad~<r system (4) in ctllles wh~re the 
suhsurf~~~>P. d ut.t.er consists of random permlU.ivit.y inhomogoneities in the ROil, and distributions of 
rock11 !n the vicinity of the mines. 

The focU!!cd array syste.m is able tQ resolve signals from dilferenl. region.s within t.he soil, using a.n 
algoritlun based on differences in prop&gation time delay between retUius from different regions. A 
frequency clomain sirnult\tion, in order to capture that effect, must r.onte.in a fw.tmo that separates 
rcturo.s on t he ba.qill of time c!P.lay. I11 the work reported in O\!I prcvio\IS papers, ~uch 1\ fe.o.tur"' 
wM present, in the form of a simula.t!on of the focused array rada.r princi ple. If tbe air-ground 
interfar:'.e is fiat, the umltist-3l.ic re~urus witb a. specific relative dela.y are su pcrpo&ed and th~r sum 
:.S interpreted as arising from a specified subsurface region. 

The \\"Ork repor~<.l in t.he present pap<-r does not contain a t.irnP.-re=<olut ion feature. lt is based 
on a. pure CW computation of the wavefielct~ ~r\Ring from a static transmitting anterma at a. height 
z1 above an air-grotl!lu interface that has u.n average height designated N; zero, bnt P068ibly with 
a small degree of surf~~Ce roughness (i.e. uz, the rrn.s height of thP. interface, is small compared 
with t he transmitter height h, and with the hnrial depth of the top of a cylindrical dielectric mine 
;<:;.:jwned to be placACI directly below the antennu). The hori1.ont.IU coordin~:~te<; of the center~ of bot.h 
antenna &nd mine are x = 0, y = 0. The w&veficlds ari~ing from the tra.n~ruitted wave, reflection 
of tha t. wave from the air-ground interface, Its downward tralll>milS!Iion through the int.P.rface and 
&:att ering from the mine are all superposed coherently, resulting in a di8tribntion of field-strength 
~hroughout a re<:.tangula.r volume induding bot.h the above-surface region containing the tr&nsmittcr 
and t.h~! anbs.rrfotee rt>.gion containing the mine. The fret!'teucy i.s 96() MHz. 

The P1Ull06E! of the work is to compare the modeling methodology used in ll , 2, 3) os applied 
to lhe gtoOrnct.r:y described above with a F OF D compucation of the same geomet ry performed by 
R. Young and C. Rappaport I5J. The latter produces extremely aocurate results at an expenditure 
of hours or days of CPU time. The former can obtain results for the same scenario in minutes of 
CPU time. This is acmmplished through the use of approximations discu:;scd in 11, 2, :l] . This 
produces a less ~cmate result but. pos.~ibly one sufficiently accurate to provide e. useful forn-ard 
model for s ignal processing scllemt!ti on data ob tained from large scale GPR systc:miB (su<'h as the 
focused array radar or other multJRte.tic :gystems, particularly in cases where t.he simulated scenarios 
are dynamic or oovcr large amounts of space with many lruried objocts to be det ected) . 

2 Description of Problem Geometry 

The geometry is illustrated in Figure L In thA l'.arteaian t cordinatc system used in thiA compntat.ion, 
wh06e z = 0 plane is ~he (average) air-yound interface, t he centroid of the tra.usmitting anttmna is 



at x = 0, 11 = 0, z = h = IO~m. The vcr~ical center of the burif!d mine, whkh is modeled as a finite 
upright circular cylindrical ohjoct, i~ &t x = 0, y = 0, .<: = -d,, = -7r.m. The mine's radius r,. i8 5cm 
und its vertical thickness t.,. is 4~7'1. Tim• the top ~urface of ~he mine is at z = -dm + tmf2 = -Scm 
and its bottom surface is at z = -d,n - tm/'2 = -!lcm. The Uline is characWJ:ized a8 a uniform 
<Slightly lossy d:elect.ric with relative permittivity E,...= 2.9 and conductivity fTm = .004 Sjm. The 
soil paramet"J:l$ &I<l E,= 6.2 and o-. = .035 S/m, whkh r.lta.ra.:terizes Puerto Rican day loam. 

The three dimensional region over which we must ~'Omputc the fieldR, a.~ illustrated in Figure I, 
is rectangular with dimensions 50crn, 50cm, and 10cm in the x, y aud z dirodions re~>pectively. The 
lower vertical li111il. of this region is 20cm below the air-ground interface. The upper limit. is 20cm 
above the interface. In thf! horiwntal dir(.'<:tions, the coverage region extends from x = - 25crn to 
x = + 25cm and from y = - 25~ toy = + 25cm. In the FDFD work, there 11re two 3D volume 
grids. one designated as the course grid, whose number of elements in :c, y and z directions are 95, 
95, and 77 respectively. The other, de.signatetl a:> the fine grid, has 97, 97, anrl 85 clements in the 
x, y <~nd z directions respectively. WA-velength is 31.2cm in air and 12.5cm in the soil. 

3 Modeling of Electromagnetic Processes 

The theoretical modeling behind the simulation was d~-scribed in some detail in [1], [2], and [3]. Thc 
basic process modeled wa.~ ilhL~ttated in Figure 1 of [2], repeated here as Fi~e 2b, which illustrates 
the transmission of a ray from the transmitter at Point. 1, int.~rsect.ing the air-ground interface at q, 
trav<!r~ing thf! intexface ~nd propagating downward in the ooil toward point p, scattering from point 
p toward a point q' on the interfa.:e, agA-in trave(ljiug the interf~ into freE: space, then propagating 
toward point 2. 

The total wa.vefield at point 2, in addition to the supcrpooition of all wavefipJds due t.o pr<~<:"'-'<S~S 
illustrated in Fi~re :l-b (i.e. for all air-ground-inters~t.ion points q and r/ and for all subsurface 
points p whose permittivity differs from that of the Ambient soil medium), but also cont~ two 
other contributione t-hat were largely dt-~mph&Sized in [1, 2, 3], namely the fields of the dlrect 
wa.ve from 1 to 2 and the superposition of rays reflected from the boundary at all surface points 
-~- These ()()Dtributions, which arc in general much larger than the srAt.tered wavefields due to 
subsurface inhoooogeneiti<:ll and buried objects, are illustrated in Figure 2-a. In [1, 2, S], where 
the emphasis was on subsurface scattering with a focused array radar, it was assumed that these 
cont.rib•ttione could be timc-gatcl out through the signal prooo;sing inherent iu the action of the 
focused array and through further signal processing that served to isolnte the subsurface returns 
from the direct and ground-reflected signals. However, in the computatiollS performed in this paper, 
these contributions cannot be eliminated and the fields arising from thE>.m at any point above the 
surfa.:e are the dominant contributions to the fields at that point. 

There arc a few differenr.es hetWef!ll the analysis perfonned in [t, 2, 3] and that in this paper. 
First, the focused array is not a subject of thi8 paper. The transmitting antenna, as in the FDFD 
work, is a Hertzian dipole oriented in the horizontal direction, or more precisely along the ::t-axis. 
The basis of the algorithm for the radiated fields is the very simple and well known theory of a 



"short" (compaccd with wavelength) elect ric clipoiA ~~~ t he origin with uniform curren~. given in 
many clectrornagnctic theory text~. e.g. [6, 7, 8j. From S*""'t.ion 15-5, Eq~. (20}, (21) 1>ncl (2.3) on 
Page 747 of [6), the electric and magnetic fields in spherical coordina.t.!'S r, 8, ¢arc: 

E, = 2K0 exp (- j{Jr) r.o~ 0 (.2..
2 
+ ..2.._

3
) 

ct• J~'f' 
(1-a) 

Eo= Ko exp(-j/Jr)~in9 (jw + .2.. ~ ~) 
c2r cr2 Jt..'ra ( l·b) 

H~ = Ko Eo exp ( - ji3r) s.in6' (jw + .!.) 
cr r2 {1-c) 

where K0 "' 
10:. , ,8 ill the propagation constant of free space and where t he dipole is asswned 

411 t::O 
to be in the z..direc.tion. 

If we note tha.t 

cosO=~. siu6' =E., where p = Jx2 + y2, 1· = y,? + z2 
r r 

(2) 

then to redirect the dipole into the x-directlon rather than the z direction, we r~~cJeline the quantities 
in (2) as follows 

cosiJ =::,sinO= €., where p = Jy2 + (z .. h)2, r = J,;z + :z2 
r r 

(3) 

In this new geometry, where z ..... :z, :z ..... y, y ..... z, the cosines and sine6 of the other angular 
ooordinate rjJ ,.,.e defined by 

y z - h cos tP = -. sin¢ = --
P p 

(t ) 

From the st andard expressions for the spherical coordinate un.it base vectors, in our new coordinate 
system 

(5) 

E$ = E ·l/> = -E~sin4>+ E,cos¢ = 0 
Inversion of {5) yields the rect~mgula.r coordinR.tes of t.he e!ec.t.ric field vectors at the observation 
point due to an x-directed Hertzian dipole at X "' y = 0, z =h. Expre..<sioo.s analogous to (5) yield 
H0 w terms of¢. 
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E~ = Eoc;OISIJca;¢ t· E,sinlloos¢ 

E, ~ Eo r.oR Osint/J+ E,sinSsin.P 

E, = - .t:9sin ll + E, cos 0 

(6->t) 

(6-b) 

(6-c) 

H~ = - H.,Rin 1/J (7-a) 

H. = +Hif>cos.p (7-b) 

~ = 0 ~0 

where E~ . £.-and H., are give>.n by (1- b), (1-a) and (1-c) respectively and where, from (3) and (4) 

X . p . f 2 I y . (z - h) cos9= - , sm9 = - , p = y(,z -h) +y2, r= vtfl+ x2 , cos¢=-, liln <f> = "---'-r r p p 

The S(."qUCDlX! of computations that lead to th.c results reported in F igures ~ a.re de&eribed in what 
follow~: 

3.1 Direct wavefield in above--surface region 
The first ~tage of the computat.ion (the l _, 2 ray illustrat!:d in Figwe 2-a) i;; to $pedfy the location 
of the transmitter ~t :r ""y ~ 0, z = lOcm, 1111d x , y, z at the center of each d ement in the above
~urfa.ce portion of the grid, specify the values of lo 1111d i (whic.h will 3ffect the end results only as 
a scale fa.cr.or}, then calculate Er and Eo t.hrough (1-a} and (1-b} with thP. aid of (3) and (4) for 
the a!nter of every grid clement above the a.lr-ground intcrf<l(.-e, i.e. from x - - 25cm to ~25cm, 
from y = - 25cm to 25cm and z from 0 to 20cm. T hen for each of the elements the recta.ngui::\C 
compOnents of the electric field are c.omvuted from these results, u.~ing Eqs. (6-a, b, c). 

The resulting three-dimensional arrays of el(l('.tric field components over the above-ground portion 
of the grid is the first of the outputs obtained and is designated 3S the "direct wavefield". It 
reprliAAnts the field that would be seen at each point in the absence of the lower-half space occupied 
by the soil. 

3.2 Ground-reflected wavefield in above-surface region 

The ~cond contribution to the total field in the region above the air-ground intm:face Is the ground
refLected wavefield (illustrated 3S the 1 -+ s - 2 ray in Figure 2-a). If the interface is perfec.r.ly 
hori:.~:outal, i.e. with no surface rouglUless, then the major contribution is in the specular direction 
at ear.h point. of inters<.'Ction of the direct w~ve with the interface. The method of appro~~.r.h is 
to begin with the direct wavefield.s immedill.tely above the ground andaee, use the tangent plane 
approxlrnation 'for the total field jwt above the ~nrfa.ce and evaluate the Stra.tton-Chu integral [91 
ovu- the portion of the air-ground interface included in our simulation domain (tacitly lll!lluming that 
t he region outside that dolllllin hfl.'! a negligible influence on the results). If the integration is d<lne 
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by tbe station~~.ty phase method. then using simple throry reporr.ed iu mMy standard references, the 
stationary phase ("sp') point on the r;round given a receh·ing point at {x11, 1/n, zR) Md a oource 
point at ( x, , 11;. z 1} is easily show11 t.o be 

1 zR. Z ) + :r.; ZR, t 
x,. = . , Y.p = 0, z,p = 0 (1\} 

Zt - lH. 

where the prinu'ld horizontal coordinat.~ arA In a ~y~tem who.~e x' - z pl>uoe i~ the vertical plane of 
propagution of the wave from 1 to 8 to R. The a.ugle ¢' bet,veen that plane and the ~:c - z) plane 
of the unprirued sy:<tern is d€fi.ned by 

• , X I! - X l . qJ' Y"'R.:.......,-...:Yco.l 
COS"' = ~IU = · 

... {I' r!' (9) 

where p' • j(xn- xt)~ + (YR - y1)
1 The global ro.ordinates of the sp point are 

XP.Zt + XtZI! '!/Rh +l/lZR 
x ,P = , '1/•p = . z,11 = 0 (10) 

~I +· Zl! Zt .,.. ZR 

'Ihe mmputation of the electric field mmpnn~H.R o.hrough Eqs. (6-a, b, c) includes that of the fields 
just above the boundary. Eqs. (7-a, b, c) arc then used to r.omput.e the magnetic field components 
just above tJte boundary. The eleo:Lrk field component that is normal t.o ~he plane of prop~ation is 
that of the transverse electric (T E) incident wave at ~he sp point and the corresponding magnetic 
field component is that. of the transverse magnetic (T M) incident. wave at that point. T hen the T E 
and T M reftedion coefficient.o RfiS and F(fM are computed nt the .~p point and lLl!Cd to determine 
the surfACe fields un!ler the tangent plane approximation. Thooc fields are t.hen used to cvcluo.te 
th~ integJal by the sp method, leading to a factor of the form 

I - - j 7r r •;.r .• R I 1 
• - kiJ lrh + r .R I rose, I (11) 

multiplying the Stratton-Ciru integrand nt the surfA.CP. point.s, where rh and r,R are the distances 
betweeu transmitter and s and receiver and s res,Poctivdy, 9; is the an~le of i.oci<.lencc, and where 
the TE and TM surfACe ficlds arc given by (E1)J.ll + RTe) and (H;) 1 ll + RTM) where (E,) L and 
(H1)J. are the components of the incident fields normal to the plane of propagl.\tion. If the physical 
optics method is used to evaluate the integral for each rectangular surface pa.trh, and there is no 
surface roughness, then the factor J, in (1l) is replaced by an expre.~'<ion of the form 

(12) 

where t:J.S is the patch an•a and Gz and a., are x and 11 components of the phose factor on t.he pat.c.h, 
given by 

a, =sin 8, r.os 4>1 +sin 9, cos¢, 
a,= sin ll1sin ¢ 1 +8inO, sin9), 
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whAre $ubsc!ipts i and .~ indicate incident and :>eattcrecl rcsp(l(;tively. In om (~ode, both the sp 
rncthod and ~he po n::ct.hocl are av!!.Gahle eR opt.i•ltll$. 

3.3 Wavefield transmitted into subsurface medium 
The firsL set o{ outputs in t he sn~nrf3Ce grid i~ the set of rt:ctangular co•np<>nents of t he electric 
flAkls of the wave transmir.r.ed across the bouudary into the soil medium. The bndcgrollllcl lh¥.OQ 
for this process (t he t- q- p process illustrated in F igure 2b} was discussed briefly in [I) (Text 
from Eq. (1) through the paragraph including l:Jq. (3))' and in grea!R.r cler.a.il in [2) (section 2 of 
[2) "Backgrmmd Analysis", including Eqs. (2-a) through (4-r.) and the remainder of the paragraph 
below (4<)) for a p~>.rfac::t.ly flat horizontal boundary. In [:i] the analy~lli wa.s extended to II(;COWlt 
for surface rougbnel!S. (The clism~~ion of thjs proCf!5S in [3] begins above F.q . (1) and extends one 
paragraph beyond Eq. (11-h)). 

F\1rther analysis in (3) (Eq~. (16) and (17) in [3J and the text sutro\mdwg these expressions}, 
relates to the selection of t he met.hod of l.'V'aluation of the Stratton-Chu integr!Ll over the lower side 
of the air-ground interface. The same tradeoff between t he greater lil.>t:uracy of the physical optiQ 
method and the grp.ater ~peed of the stationary pha.<;e methods of integration P.oci~ts for both the 
reflection process discU!sscd in Section 3.2 and the t-r!Wl!mission process under discussion here. On 
bnt.h processes, the code contairn< bot-h options. 

3.4 Scattered wave from subsurface Inhomogeneities 
The background u.rJ.a.lysis for the wave sca~tcrcd from complex perwittivity inhomogenei~ies in the 
subsurface medium by the Born approximation was covered in 11; ( Eq. {0) and associated text) 
and (2) (Thxt beginning above Eq. (5) and exteoding through Eq. (6)). In our previous work the 
~.Alter~ field from a subsurface region needed to he m lrJI)&t.e.l only for obsE>.rvation poinr.s on the 
und=ide of the a.ir-ground interface as an interim step in obtaining the fields at a •-pecified aboY&
ground recciwr location. The Born scattering code was executed for car.b subsurface sourc-e point 
and for all obsE'J'Vation points on the surface grid. In the current study, for each element within 
the subsurface volmne grid whose complex permittivity differs from that of t.he ambient m<xlium, 
Born scattering of a wave incident on that elem~nt must he computed for observation point~ at all 
!2iligr subsurface grid elements. The munblll of computations of Born scattering from each element 
is increased from (N. Nv) in [1, 2, 3] to (N,N.N, ) in the present ~tudy, where N., N., and N, are 
numbers of volume elements in the subsurface grid in the :1:, y, and z directions respec-tively and N% 
and N, are also the numbers of :r and y surface patches on the air-ground interface. 

3.5 Wavefl.eld due to subsurface scatter ing into above-surface region 
The wavefields·due to scattering from suoomface inhomogeneities arP. superposed on the direct and 
ground-rcller.tecl wavefields described in Sect.ions 3.1 and 3.2 respectively M a contribut-ion to the 
fields in the above-s1uface grid. Tillis proc~s, illustrated as the path p _. rf - 2 in figure 2b, is 
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described for the case of the flat boundary in [I] (r.he "rdurn path," f.:qs. ( 4) through (6) a.ml 
~soci«tcd text.) and [21 (Text beginning above l'.:q. (fi) and extending t.hrough Eq. (11-b)). It is 
ext.ended to include surface roughn(.>:>S in (3] (From three paragraphs above Eq. (12-a} throu~h F..q. 
(17) a.ru1 the remaining tP.xt in Section 2). The Rame two opt.ions for integrating the Stratton-Chu 
integral over all snrfac.e poim8 q' (the sp and pu methods) arc available for the return path wave as 
for the b'rOund-r~<.'le<:ted wave (Section 3.2) and the wave trau$mitted into the subsurface medium 
(Section 3.::1). The facto.-~ mull.iplyiug t.he Stmtton-Chu integ:cand for the retm·n path for the po 
and sp method~ are given respectively by ( 16} and ( 17) in [3] for the geuer:U e!ISe accounting for 
•nrf1U:e roughness. 

3.6 Additional contributions to wavefields 

If there is no subsurface clutter due ~o permittivity inhomogeneities (w;; we a<sume for these com
putations), then in the absence of 11 buried object such as a mine, the only contributions to the 
above 8Uif~M:e wavefields are those due to the direct wave (Section 3.1) and the grotmd reflected 
wave (Section 3.2) and the only contriimtioru; to the subsurface wavefields are those due to the 
transmitted wave (Section 3.3). That is the fir~t :*.!.of r.~~sPS we are ruuuing. 

If & plastic mine is present, then the Born scattering proc.:csscs described in Sections 3.4 lllld 3.5 
are also present and contribute t.o the total wavefield in the subsur£21<:~ and above-surface regions 
respectively. TJW; suffices for the first order Born approximation. It is evident that the contrast 
between mine aud soil permittivity is too large to c!lllure accuracy with first order -Born Rr.attering. 
Accuracy would probably be signifiea.ntly (.'Jihanced with second or higher order Born, i.e. the 
incident wavefield at the mine location indud~ the effect of downward reflection of the fir8t order 
scattered fields from the underside of the air-ground interfar.e and !Jossibly further b<l(-k-and-forth 
interactions bctwE..oen lower order scatterings from the mine and reflections of these !;C!It.tered fields 
from the underside of the boundary. Although the code to implement these higher order effects 
can easily he made a.vailahle, we have not attempted to indude it iu this stuc.ly. The reason 
is th.e enormo•c~ proliferation of required running time for cach higher order proocss. Since the 
major e.dvantage of our approach over highly accurate numerical codes such as MOM or FDFD is 
computation spe~-d, it might be counter productive to go too far in this direction. 

4 Results and Conclusions 

The results of the computations dis~ussed above are pr.-sentw iu Figure>~ 3 through 6, each of which 
iRa 3 dimensional plot of the amplitude of the f!lectric fiel<l v~. a hori~ontal coordinate (x or y) on 
one axis and the vertical coordinate (z) on the other axiR. The xz plots (Figures 3 and 4) are from 
x = -25cm to +25cm, z = -20cm to +20cm and y = 0. The yz plots (Figures 5 and 6) have the 
same range of 11 and z with x = 0. In each <".S."f', the computations were of t.he thr~ rectangular 
components of the electric field amplitude, IE7.1, lEvi and [E:I and the total field amplitude v'E · E•. 
Only the total amplitude i~ shown on the plots. Figures 3 and 5 arc for the ca.sc of a flat air-ground 
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intcrfac:e wit.honr. the mine and wil.h the n1ine respe..:l.ivcly. Fi~uru8 1 and 6 are al.~o fm· the ease.; of 
no mine a.:nd mine respcc:t.ively. It i8 evident. t.J.at. t.laere is HO perceptible difference het.weE>n t.hese 
lOnr plot~. First, the mine and no-mine cases cannot he diMin~uislwcl on the xz plots or on the yz 
plot.s. · 5eron<lly, l.hP. :r.z plots ami tht• yz plots show neaxly perfect symmetry about the yz and xz 
planes rcsp0etivcly, which i8 exper.t.erl Rince the lrausll.l.it.tcr is located ut t.he horizontal cent.er of 
the simulation c.lomaiu. 

Also, t.hc xz and yz plots sh01v only miniscul" clilfe~nce~ in •hapc in both sets of ploi.R and t.he 
amplitudes appear to be ·1,ero in the subsurface region. In the ontpm. file~, l.lte "ubsurfl\te fields arc 
not ze:ro but. arc so ~mall <:omparcrl to the peak values in l.hc vidnit.y of the peak t.hat t.hey plot. 
A.~ ·7..e•·o. Thi~ is b~c.au~c the amplitude r~olution was chosen t.o inclttde the pel•b on the plot$. 
Plot8 that are rnarle wi~.h finet· rfflolul.ion showed ~mall nonzero va.lue8 in the sub~urfac.;. grid but. 
Lrtm<~li.t.ed the P<'.!tk<. Sm10.ll <.lifft~cnc~ between xz anrl !JZ plots cio n.ppeM when amplitudes of field 
components rather than total field are plott.ctl (Figtucs 7 und 8). '!'his ill expect.ecl becaus•~ !.hE! 
dipole i~ (l"'ra.llell.o t.hc xz p!MJ.c and therefore the xz and yz planar cut~ arc different. 

The compari;;ons het,w~n the.~ resnll.s >uu.l F[)FD rc8ult8 arc not yet comt,Iet.ed <~s of Lhis 
writ.ing. II. i~ planned tlta.t eomparison resnlt8 will be shown a.t t.he confcn~•tr.e presCIJtat.ion. Current 
indimt.ions arc that the geneml Rhnpes oft h~ two <:urve$ art• :similar for the rP.sohtt.ion ~ca.les used. 
However, much bef.t.t~r c\i"~(lltCt: rt'Oolur.ion is 1mlilahlc for t.he H.H'O computations, whiclt arc run 
on a computer wit.h t.en timeR the RAM r.w:rontly available for the rny-hMed compntfit.ic>""· For this 
reason, some: of the line detail thnt. shows up on the f>'l)F I) plot.s i" s•tppressr.xl on the my-based plots. 
RW1.Dlng t.irnes for r.he F'DFD code arc between 30 and 10 honrs while t.ho,'e currently being done 
with the ray-b&sed t".Ode require v.hom one minute fm t.h~ no-mine ease lllld uhout. 1\C'ven minutes 
for r.he case wit.h a mine present .. For the lo.tt.cr c:ornputations, enhancing the r..listancc rc."Solmion, 
tt8ing phy~ical opti<l' •·at.her than stationary ph;,.,c for the i:tr.cgration over the boundary, and ""iug 
higher order Borrl "Jll'roximatior..,; for ~cattering from the tnioe will ceii·IO.inly in('rcase CPll time, 
but. we h&vc not yet determined the runo1mt. of t.he increas~. 
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Abstract--This study attempts to quantify the ground penetrating radar rough ground 

surface clutter by numerical modeling of wave scattering, and establish a strategy to 

suppress the clutter for given test signals.  The goal is to improve the GPR detection 

statistics for small, buried, low-contrast nonmetallic antipersonnel mines.  Using a model 

of an experimentally measured impulse GPR signal, we simulate the ground surface and 

buried low-contrast mine target scattered responses.  We employ a 2D finite difference 

time domain (FDTD) method to analyze the pulse shape, delay, and amplitude 

characteristics of the scattered waves -- with and without buried nonmetallic mine targets 

-- as a function of roughness parameters.  Five hundred Monte Carlo simulations of 

various test cases of specified ground root mean square height and correlation length 

were run to generate statistics for the clutter and target signal variations.  In addition, the 

effectiveness of identifying and removing the ground surface clutter signal for detecting 

subsurface targets is presented.  Results indicate that even with moderate roughness, 

statistics can be generated to enhance the detection of small, shallow, low contrast 

targets. 
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1.  INTRODUCTION 

 

The problem of detecting buried dielectric targets -- such as nonmetallic antipersonnel 

mines -- with ground penetrating radar (GPR) is important and challenging. Because the 

dielectric constant and electrical conductivity of the mine target (2.9 and 0.0001 at 1 

GHz) is similar to that of the surrounding soil and its size is comparable to the thickness 

of soil above it, detection and discrimination are difficult. In addition, the soil dielectric 

constant may not be well characterized, and the ground surface will usually be rough, 

often with surface height variations of the order of the target burial depth.  While there 

are many sources of clutter obscuring the mine target signal — including volumetric 

inhomogeneities (rocks, roots, metal fragments) and surface vegetation — the largest 

single source of undesirable signal is the ground surface itself.  Since the ground has an 

infinite surface and presents a larger impedance mismatch with the air above it than with 

the low-contrast, nonmetallic target within it, its contribution to clutter is quite 

significant.  Further, since buried clutter objects can only be inferred by imaging and 

reconstruction, the ground surface is unobscured, and its effects can be measured directly. 

 

Impulse ground penetrating radar has been used as a robust and relatively inexpensive 

means of detecting underground objects [1]. By observing the arrival time of a subsurface 

scattered pulse and eliminating the reflection from the ground surface by time gating, it is 

possible to detect deeply buried anomalies. However, when the target is small, shallow, 

and of low contrast, special modeling and processing are required to characterize and 

separate the ground surface clutter from the target signal. A commonly used procedure of 
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background averaging to remove the ground clutter signal can be effective for very 

smooth ground surfaces, but tends to rapidly degrade for moderate roughness. In this 

study, we simulate the effects of rough ground on the GPR signal using Monte Carlo 

FDTD modeling of random surface variation.  Because of the need for multiple case 

studies of hundreds of Monte Carlo runs, we used a very fast 2-D TM FDTD code, 

specifically adapted to frequency dependent, lossy media, with a lossy Perfectly Matched 

Layer (PML) ABC [2-4].  Clearly, more accurate modeling is afforded with a three-

dimensional FDTD model, but each set of 500 runs would require 2000 hours of 

supercomputer CPU time.  Instead, this study presents a range of possible signal delay, 

attenuation, and distortion characteristics, with associated statistical variation as a 

function of ground surface roughness. 

 

As a baseline, we model the wave scattering for a bistatic impulse GPR geometry, based 

on the Geo-Centers EFGPR mine detection system, as shown in Fig. 1, using the 

measured Geo-Centers TEMR antenna element radiated signal as the excitation, 

presented as a function of time in Fig. 2 [5].  This pulse is wideband, with frequency 

response (6 dB roll-off) from 700 MHz to 1.3 GHz.  This frequency range is ideal for 

detecting antitank mines, which are thicker and more deeply buried than antipersonnel 

mines, but is a little too low for optimal discrimination of objects with scale lengths of 

the order of 5 cm.  The TEMR element radiates a fairly broad beamwidth nearfield 

antenna pattern, with wideband half-power points at roughly ±60° relative to boresight.  

The FDTD time and space steps used are ∆t=20ps and ∆=1.22cm, maintaining a Courant 

condition r = 0.5. Simulations are run for 500 surface realizations -- with and without a 
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mine target at a typical burial depth of 8.5 cm below the nominal surface level -- for a 

variety of roughness statistics.   

 

 

2. ROUGH SURFACE MODEL FORMULATION 

 

Assuming that the random height of the ground surface has a Gaussian distribution with 

zero mean and standard deviation equal to σh, the probability density function of the 

height z is [6]: 

( ) 2/exp
2

1
)( 22

h
h

zzp σ
πσ

−=     (1) 

This statistical distribution of the height provides no information about the distances 

between the hills and the valleys of the surface [6]. An additional function is needed to 

describe the density of the surface irregularities of the rough surface. This function is the 

autocorrelation function or its Fourier Transform, the surface profile power spectral 

density function. The autocorrelation function R(xd) gives the correlation between the 

random heights at two different points on the surface, x1 and x2. It is defined by [6, 7]: 
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11

h

d
d

xxfxf
xR

σ

+
=      (2) 

where xd = x2 – x1.  For full correlation, ( ) 1 lim
0xd

=
→ dxR , and for independence, 

( ) 0 lim
dx

=
∞→ dxR .  Moreover, if the surface profile spectral density function W(Kx) is given, 

then the auto-correlation function R(xd) can be obtained by the inverse Fourier Transform 

as: 
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Thus, the Gaussian joint probability density function for two heights on the surface, z1 

and z2, with zero mean and standard deviation σh is given by [6, 8] 
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If the surface spectral density W(Kx) is assumed to be Gaussian as [7] 
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in which Kx is the surface profile wave number. Thus from (3), the auto-correlation 

function will also be Gaussian given by 

( )     exp 2
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d
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where lc is the correlation distance for which R(xd) will drop to the value e-1. 

 

While other statistical variations for randomly rough ground surfaces may be more 

applicable for some rough ground surfaces, the Gaussian provides a sufficiently rich 

family of surface realizations to establish a population for analyzing clutter effects. 

 

Although statistical analysis can be done on the received signals themselves, it is more 

useful to consider the particular effects on these signals caused by scattering by the rough 

ground.  For example, Fig. 3 shows the computed received signals from 100 rough 

surface realizations of a ground surface with height and correlation length σh = 3cm and lc 

= 10cm, without (Fig. 3a) and with (Fig. 3b) a buried target.  The mean signal and levels 
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one standard deviation above and below the mean signal is overlaid on each plot.  It is 

clear that there is no discernable difference between the signals for the buried target plot 

and the target-free plot. 

 

If the correlation length lc is large, the received signal will retain its pulse shape in time, 

experiencing primarily a shifting in time and a change in amplitude corresponding to 

greater or lesser propagation distances from source to ground to receiver.  By identifying 

these parameters and measuring their statistics separately, much added information about 

the clutter becomes available.  In addition, compensating for the time shift and amplitude 

scaling allows the shape of each individual received signal to be examined, and used in 

the determination of whether a buried target is present. 

 

To identify the amplitude scaling Ai of the received pulse Si for a given trial, we compute 

the square root of the total energy in the signal divided by the energy in a suitable 

reference signal.  We use the computed received scattered signal from an ideal soil half-

space with a flat boundary as the reference Sf: 

( ) ( )   /
1

2

1

2 ∑∑
==

=
N

n
f

N

n
ii nSnSA     (6) 

Alternatively, the value of the signal peak could be used for this scaling, but it was 

determined that energy normalization is superior for rougher surfaces that generate 

greater pulse distortion. 

 

The time shifting is found by cross-correlating each signal under test with the same 

reference signal, each normalized to the square root of its energy.  The cross-correlation 
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function indicates the inter-dependence of the values of two different processes at two 

different times:           
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( ) ( )   0mfor   , m- <= iffi CmC            (7b) 

where i =1, 2, 3,…M is the rough surface realization index, M is the size of Monte Carlo 

sample, and N is the total number of time steps.  Note that the normalized cross-

correlation of the reference signal with itself has a maximum of unity at m = 0; that 

cross-correlation with a shifted copy has a unity maximum at the index corresponding to 

the shift; and that cross-correlation of dissimilar signals will have a maximum less than 

unity.  The maximum value of this cross-correlation function is a measure of the pulse 

shape distortion from that of the ideal flat ground response. 

 

 

3. NUMERICAL RESULTS 

 

Numerical experiments were performed on the well–measured Puerto Rican clay loam 

with 10% moisture and 1.4 g/cc density [9].  This soil has dielectric constant varying as 

6.4 < ε′ < 6.1 and electrical conductivity 0.033 < σ < 0.067 and the wavelength in this 

soil varies from 17.0 < λ < 9.5 cm over the 700 MHz to 1.3 GHz bandwidth.  The 

dispersive FDTD model employed uses the Z-transform supplemental equation model for 

frequency dependent conductivity [2].  With this model, the real dielectric constant is 
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assumed to be constant and the ratio of electric current density and electric field is given 

by: 

1
1

2
2

1
10

1
)( −

−−

+
++

=
Za

ZbZbb
ωσ , 

where  Z = e-iω∆t  for the frequency ω.  For the particular type of Puerto Rican clay loam, 

the parameters have been found to be [3]:  b0 = 0.916249,  b1 = -1.67662, b2 = 0.761072, 

a1 = -0.88, and ε′Av = 4.167.  Note that since the imaginary part of σ(ω.) is non-zero, it 

will contribute to the real part of the dielectric constant, raising it above the ε′Av value to 

the measured values 6.1 to 6.4 . 

 

For each pair of Gaussian height and correlation parameters, 500 FDTD runs were 

performed on different surface realizations.  In each case, the scaling and shift were 

determined using (6) and (7).  An example of the distribution of these characteristics for 

the pair σh = 3cm and lc = 30cm, is shown in Fig. 4.  The average scaling is 0.995 and the 

average shift is -55 ps.  From these histograms, it is apparent that although the ground 

heights are normally distributed, the amplitudes and time shifts are not. 

 

With the ultimate goal of target detection, it is important to observe the differences in the 

received signal when a mine is buried under the rough ground surface.  For each surface 

realization, this difference can be clearly seen by simply subtracting the nominal ground-

only signal from the signal with the mine present.  In this simulated situation, the clutter 

would be known a priori and numerically removed.  In practice, this is not possible, since 

the clutter signal is not separately available.  It is the goal of these Monte Carlo 
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experiments to reasonably estimate the rough surface clutter effects so that they can be 

suppressed relative to the mine signal, without the a priori knowledge of the ground 

clutter effect for a given trial.    

 

Using the individual FDTD differences, the responses due to the presence of mines can 

be compared to the signals from the ground surface alone.  The mine position is usually 

determined by measuring the time delay corresponding to the path to and from the buried 

target.  However, with rough ground, the path from the transmitter to ground to mine and 

back out to the receiver, changes with the local ground surface height, or the height of the 

antenna.  Since the wave propagation velocity is quite different in air as opposed to soil, 

the target time delay for a given mine depth varies considerably. 

 

Scatter plots showing the distribution of the shifts of the ground scattered signals τgnd(i) 

compared to the time delay of the mine scattered signals τmine(i) relative to a nominal 

perfectly flat ground for different rough surface parameters are shown in Fig. 5.  For low 

contrast targets the dominant aspect of each scattered signal is the ground scattering, so 

the cross-correlation function gives τgnd(i). To find τmine(i), (7a) is applied to the difference 

between the signal scattered by the ground and mine and the ground alone (the target  

signal with a priori ground clutter signal removed). The surface root mean square height 

is σh = 3cm in Fig. 5a and Fig. 5b while it is 2cm in Fig. 5c and Fig. 5d, and 1cm in Fig. 

5e and Fig. 5f.  The correlation length is lc = 10cm for the figures on the left and 3cm for 

those on the right.  There is a strong correlation between τgnd(i) and τmine(i).  A regression 

analysis is conducted to fit these simulated data with a straight line.  The slope of this line 
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corresponds to the relative delay between the ground and target scattered signals. The 

slope is negative, and for very long correlation lengths—corresponding to large, flat 

raised or lowered portions of ground—would be equal to the (1-√ε′). Since a positive 

shift in τgnd indicates the presence of a depression, which in turn implies less soil 

covering the mine, the time delay for the mine signal, τmine, is reduced by the difference 

of the wave velocities in air and soil times the depth of the depression.  As shown in Fig. 

5, the fitting error increases with the root mean square slope σs = 1.414 (σh / lc ) [10].   

Also, it can be seen that the distribution of points is closer to the mean for small height 

variation σh. 

 

The clutter signal can be suppressed and consequently the target signal can be enhanced 

using physics-based signal processing.  Subtracting the measured or modelled ground 

surface clutter signal has been a successful strategy to enhance the signal under test [11].  

It is possible to improve on this basic algorithm for rougher surfaces using a multiple 

pass process.  First, the average clutter signal is found by shifting each ground-only 

signal by -τgnd(i), then taking the ensemble average [12].  Note that this is an average over 

signals, not time, so the resulting signal will be the average pulse shape for the rough 

ground with delay compensation for the local height variation.  Second, this average 

signal is shifted back by τgnd(i), and scaled by factor Ai in (6) for each mine-in-ground 

signal and subtracted from these signals.  By using the previously modeled (or measured) 

surface signals to find the ensemble average pulse shape gives the best estimate for the 

local clutter that corrupts the target signal.  Fig. 6 shows the result of this subtraction on 

each of the 100 signals of Fig. 3.   The differences between the ground-only (Fig. 6a) and 
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mine-present (Fig. 6b) signals are now quite clear.  The maximum amplitude of each 

processed signal is considerably smaller than for each of the original signals in Fig. 3, 

since much of the clutter has been removed.  Since the appropriately delayed average 

ground clutter signal has been subtracted rather than the a priori known clutter signal for 

each trial, the clutter removal is not perfect.  The ensemble averages for the ground-only 

and mine-in-ground cases in Fig. 6 indicate that for the particular soil type, mine depth, 

and radar excitation, the presence of signal at a certain time interval and above a given 

threshold corresponds to a buried target.  This provides the basis for a statistical target 

detection procedure.  The results for this example case do not apply for all cases, but the 

strategy for suppressing ground surface clutter is generally applicable, as long as the mine 

is not too close to the surface, or the excitation pulse too long.  This approach could be 

used in realistic field measurements, without separately measuring the ground roughness 

or knowing if a target was present.   

 

If the surface scattered wave were primarily due to a single specular reflection – as would 

be the case if lc were large – then this procedure would suppress most of the surface 

clutter.  However, it is possible that the surface scattering occurs at multiple points.  In 

this case, the cross-correlation/shifted ensemble averaging and subtracting procedure is 

repeated.  This process is shown schematically in the flowchart of Fig. 7.  The initial box 

labeled “Raw Signals” refers to either the 500 Monte Carlo FDTD simulated signals or 

actual measured data, obtained progressively with updated averaging.  
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The signals produced from these multiple subtractions represent the signals scattered just 

from the target. The obtained shifts τi are amplified by the slope values of the straight 

lines shown in Fig. 5 and then used align these target-only signals. Fig. 8 shows the result 

of multiple subtraction and shifting to realign the mine signals.  Note that this 

realignment would have to be performed for every presumed mine depth.  This procedure 

can be performed during actual GPR operation in the field, using several ground-only 

calibration measurements as the average signal.  For hardware focused systems, the 

ground surface clutter suppression must occur at each receiver, before the signals from 

multiple receivers are combined. 

 

The average clutter suppressed signals for ground with mine present have been obtained 

for the same Gaussian roughness parameters of Fig. 5, and shown in Fig. 9. Also shown 

are curves indicating one standard deviation above and below the mean.  As expected, the 

standard deviation is much smaller for the target signal than for the clutter signals.  Also 

visible in Fig. 9 is the increase of clutter with the surface mean square slope σs.  

Correlating any trial signal for a given statistical ground roughness and the average signal 

for that roughness with inverse weighting by the standard deviation provides a strong 

parameter for estimating the presence of a mine at a given position.   

 

Note that the ground signal is detected for each trial signal, so that any given ground 

roughness variations, or even radar antenna height variations are accounted for.  That is if 

the GPR bounced or sagged at a given sample, the ground signal would still be correlated 

with the shape of the average ground signal, and the appropriate shift is determined. 
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4. CONCLUSIONS 

 

Identifying the time shift and amplitude scaling of the ground surface clutter by 

correlation with the ideal flat ground provides a means for ground surface clutter removal 

for a given signal.  Shifting this clutter-suppressed signal by a time delay roughly 

proportional to the differential propagation velocity in the effective soil layer (or absence 

of soil) relative to the nominal soil level realigns the target signal to its expected temporal 

position.  Using this procedure, even fairly shallow buried nonmetallic mines signals can 

be distinguished from rough ground surface clutter using available (nonideal) impulse 

GPR sources.   

 

Although this study is based on two-dimensional synthetic modeling, it presents a 

representative set of randomly cluttered signals, and shows that the physics-based 

processing suppresses clutter and leads to enhanced target detection.  The problem of 

mine detection is certainly more complicated than detecting anomalous signals generated 

by subsurface objects.  The issue of distinguishing the particular mine target, as opposed 

to other buried objects:  rocks, roots, pockets of water, is not addressed in this study.   

However, combining the information from multiple views from different radar positions 

will help characterize the shape of the anomaly.  In addition, fusing information from 

other modalities—such as electromagnetic induction, acoustic, and infrared detection— 

with GPR will help reduce false alarms, giving some hope in the effort to characterizing 

buried mines. 
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FIGURE CAPTIONS 

 

Figure 1.  Bistatic ground penetrating radar scattering configuration with rough ground 

surface and buried mine target, based on the Geo-Centers, Inc. EFGPR system 

 

Figure 2.  Measured time pulse transmitted by the Geo-Centers, Inc. EFGPR antenna 

element.  Time units are in 20 ps time steps, amplitude is given in arbitrary relative 

intensity units. 

 

Figure 3.  One hundred sample Monte Carlo FDTD calculations of field intensity as a 

function of time, received after scattering from a half space of Puerto Rican clay loam 

(10% moisture and 1.4 g/cc density) with randomly rough ground surface (Gaussian 

parameters: σh = 3cm and lc = 10cm) for;  a) soil alone, and b) soil with a 10 cm by 5 cm 

rectangular region of TNT buried 8.5 cm below the nominal surface.  Also shown are the 

mean signals and curves one standard deviation above and below the means.  Note that 

the differences between the mean signals are too small to distinguish. 

 

Figure 4.  Histograms showing distributions of a) Relative amplitude scaling and b) 

Relative time shift for received signals scattered by 500 realizations of randomly rough 

ground (σh = 3cm and lc = 30cm). 

 

Figure 5.  Scatter plots showing the correspondence of time delays of the signal from the 

mine target buried 8.5cm below the mean ground height compared to the time shifts due 

to the ground surface alone for various Gaussian parameters: a) σh = 3cm and lc = 10cm, 
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b) σh = 3cm and lc = 3cm, c) σh = 2cm and lc = 10cm, d) σh = 2cm and lc = 3cm, e) σh = 

1cm and lc = 10cm, f) σh = 1cm and lc = 3cm. 

 

Figure 6.  One hundred Monte Carlo calculations of the same physical situation as Figure 

3, each processed by subtracting the average ground surface clutter, correlated in time to 

the sample signal.  Note that the amplitude of these processed signals is about one-third 

of the original signals, and that the mine signal is clearly distinguishable from the mean 

signal in b) at time step 240, compared to the ground-only mean signal in a). 

 

Figure 7.  Flowchart of the ground clutter suppression algorithm. 

 

Figure 8.  One hundred Monte Carlo calculations of the same physical situation as Figure 

3, each processed by multiple subtraction of the average ground surface clutter, correlated 

in time to the sample signal, as indicated by the flowchart of Figure 7.  Almost all the 

clutter is removed in the mean ground-only signal a), while for the buried mine 

simulations b), the mine signal is practically the only response.  This algorithm is 

superior if there are sufficient independent views of the ground sample. 

 

Figure 9.  Mean and ±1 standard deviation for 500 Monte Carlo simulations for 

randomly rough ground with Gaussian parameters a) σh = 3cm and lc = 10cm, b) σh = 

3cm and lc = 3cm, c) σh = 2cm and lc = 10cm, d) σh = 2cm and lc = 3cm, e) σh = 1cm and 

lc = 10cm, f) σh = 1cm and lc = 3cm. 
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ABSTRACT 
 
Over the past year with the support of the Army Humanitarian Demining MURI, Aerodyne has substantially moved forward 
in developing and demonstrating the value of an affordable and fieldworthy IR polarimetric hyperspectral imager .for 
inclusion in multisensor demining.  Such technology promises powerful clutter suppression and enhancement of man made 
objects, particularly applicable to the reliable detection of scatterable mines, especially plastics, and any UXO that are 
partially exposed..  We have achieved the first 3 steps of a 4 step, controlled-risk program defined as follows:  (1) LWIR 
(non-imaging) Spectral Polarimeter to demonstrate the effectiveness of combined polarimetric and hyperspectral 
discrimination capabilities in observations on static scenes; (2) LWIR Uncooled FPA Imaging (broadband) Polarimeter to 
verify the sensitivity of an affordable Uncooled FPA in a broadband configuration against static scenes; (3) Multispectral 
Imaging Polarimeter to quantify clutter rejection performance improvements to be realized from multispectral imaging 
polarimetry; and (4) IR Polarimetric Hyperspectral Imager designed with optimal spatial and spectral resolution and 
sufficient throughput to achieve the reliable performance required in surface mine and UXO detection applications. We 
present results for Steps 1 and 2, and initial results for Step 3 from the ongoing demonstrations in simulated surface mine 
detection.  
 
Keywords: Infrared polarimetry hyperspectral multispectral imaging demining,unexploded ordnance UXO microbolometer 
 

1. INTRODUCTION 
 
1.1. Background 
 
For more than 15 years Aerodyne Research has worked systematically toward the development of passive IR spectral and 
polarimetric discrimination techniques.  In the first 10 years of these activities Aerodyne focussed on the development and 
validation of a first principles computer model called POLAR1,2,3 that computes the spectrally dependent Stokes vector and 
user-selected in-band IR polarimeteric images of targets given the geometry, optical properties4, and thermal description of 
the target.  Support for the POLAR model came from Northrop5, the NADC/Warminster6,7,8,9, and internal R&D.  Then in 
recent years, emphasis has turned to the systems applications of polarimetric attributes such as non-cooperative target 
identification9,10 and the discrimination of targets in highly cluttered natural backgrounds.    
 
In 1993 - 95 several important steps were accomplished: Aerodyne and the Boeing Defense and Space Group with the 
support of NAWC/Warminster used the modified IRAMMP sensor, POLIRAMMP, to collect quasi-polarimetric IR imagery 
of aircraft on the ground to validate the POLAR model.11 Results showed a strong correlation between the analytic model 
predictions and measured data.  Subsequently in 1994 Aerodyne produced a seminal paper10 on a polarimeter sensor concept 
(3-Channel Simultaneous Acquisition Polarimeter) specifically designed for the long range Counter-Air Target Identification 
application.  Shortly thereafter, Boeing and Aerodyne applied the Improved POLIRAMMP sensor in the 1994 Navy Long 
Jump Tests at China Lake to collect surface-to-air polarization imagery of aircraft and thereby further validate the POLAR 
model.12 It was at this test site that we conducted our first primitive simulation of surface mine detection using the two-
channel POLIRAMMP sensor.  Even though this test simulated only surface mine detection13, it provided quite convincing 
evidence of the clutter suppression capability of IR polarimetry. 
 
In 1997 under a Phase I SBIR for the Air Force Research Laboratory (AFRL), Aerodyne invented a IR Polarimetric 
Hyperspectral Imager concept14 capable of providing the perfectly co-registered, polarimetric hyperspectral imagery desired 
for locating polarized objects in a cluttered background from a dynamic moving platform.  We are in the process of building 
the prototype hyperspectral IR polarimeter under Phase II SBIR support from the AFRL.  In a parallel project sponsored by 

                                                           
1 Further author information - 
Email:  scott@aerodyne.com; www.aerodyne.com; TEL:  (978) 663-9500; FAX (978) 663-4918 



the Army Research Office (ARO) Humanitarian Demining MURI / Northeastern University (NEU) Team, we are taking 
incremental steps to demonstrate the value and reliability of LWIR spectral polarimetry in the detection of antipersonnel (AP) 
mines, especially plastic flush-buried and scatterable types.15  Our stepwise progress and the LWIR polarimetric spectral 
imaging proof-of-concept demonstrations in the demining application are the topics of this paper. 
 
1.2. Scope   
 
Many researchers have investigated LWIR and multiband passive infrared sensing techniques for applications in demining;16 
a few investigations have considered passive IR polarimetry and costly hyperspectral imaging methods separately for 
locating land mines;17 yet insofar as we have found, no previous investigators have pursued the combination of hyperspectral 
IR polarimetry and affordable LWIR uncooled focal plane arrays.  Effort in this Demining MURI is devoted to deliberate, 
controlled-risk, proof-of-concept demonstrations that verify our particular innovative combination of LWIR hyperspectral 
polarimetry and affordable uncooled FPA technology can be reliable and effective in surveying and locating exposed surface 
mines of any material type.  The exploitation of polarimetric attributes that are demonstrated in this project effort were in 
most cases suggested and supported by our earlier analytic investigations into systems applications of IR polarimetry9,10,18  In 
addition to the proof-of-concept tasks, we are investigating surface optical properties of the relevant classes of materials and 
coatings for mine fabrication; this is a concurrent laboratory effort to fill the important gaps remaining from prior optical 
properties measurements.  
 
The present effort is focused on antipersonnel mines, many of which are partially exposed on the surface or are buried in a 
very shallow manner.  Therefore, we are placing much greater emphasis on the optical properties of materials, emissivity and 
reflectance, and less emphasis than usual on the material thermal properties. We make no claims to be dealing with the full 
complexity of thermal conduction issues associated with buried mines, consisting of a wide range of materials in all manner 
of soils and terrain.  Many investigators16,19 have examined the conductance and differential heating/cooling effects for 
opportunities to exploit in locating buried mines using passive IR techniques.  Our premise is simple; IR spectral polarimetry 
is only one of a large arsenal of affordable and reliable technologies required to deal with the extensive, worldwide demining 
and unexploded ordnance problems.  Our objective is to make IR spectral polarimetry an affordable and reliable technique to 
locate mines having any significant exposure on the surface, regardless of the material composition and including common 
types of paints and coatings.  If we are successful, our method simultaneously positions us to include and exploit significant 
thermal effects as well since these effects exhibit themselves in the same LWIR wavelength regime.  We must give close 
attention to the magnitude and impact of the heat transfer effects even as we examine the optical properties of materials and 
coatings. 
 
Since we are implementing a controlled-risk, step-by-step effort to demonstrate a new combination of technologies including 
the uncooled focal plane array (UFPA) microbolometer, it is important that we establish the terminology for these  steps and 
the technologies to be demonstrated: 
 

Step (1)  - LWIR Spectral Polarimeter 
(8 - 12 µm Spectral Region, Non-Imaging, Static Scenes).   

Step (2)  - LWIR Uncooled FPA Imaging Polarimeter 
(8 - 12 µm Broadband, No Spectral Resolution, Static Scenes).  

Step (3)  - LWIR Uncooled FPA Multispectral Imaging Polarimeter 
(Multiple Bands in 8 - 12 µm Spectral Region, Static Scenes). 

Step (4)  - Uncooled IR Polarimetric Hyperspectral Imager  
(8 - 12 µm Spectral Region, Spectral Resolution ~ 0.02 µm, Imaging, 
Registration and Simultaneity in Polarimetric Channels for Dynamic Scenes). 

 
 

2. LWIR SPECTRAL POLARIMETER DEMONSTRATION TEST 
 
The data reported in this first proof-of-concept demonstration were collected for a variety of mine-like materials and 
coatings, including Army CARC (Chemical Agent Resistant Coating, both tan and green), a plastic frisbee, asphalt, and 
quartz sand.  The backgrounds consisted of sand or sandy asphalt in all cases. The asphalt is a particularly challenging 
background, having a degree of polarization in the infrared that is comparable to or higher than many paints and plastics.  
Table 1 summarizes the data collection geometries and simulated mine target areas for each location.  It is particularly 



 
Sunset

Sunrise

3

2

5

4 6

1

60 ft

Pine
Tree

Pine Trees

Embankment (Soil and Rock Outcropping)

# - Target Locations

�����
�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

�

 - Locations of FTIR Spectrometer with Wire Grid Analyzer

Asphalt Parking Lot

Sand Mounds

 28'

 30' 

 44' 

 60' 

 20' 

10'

ARI-98-03 hs  
 

Figure 2. Illustration of the LWIR polarimetric field data collection setup using  an LWIR spectral polarimeter 
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Figure 1.  Illustration of polarized reflections from a flat horizontal surface. 

 
 

 

 
 

 
 



important to note the ranges and the grazing angles between the sensor (polarimeter) line-of-sight and the target normal.. 
These geometries closely approximate a reasonable deployment geometry for an LWIR spectral polarimeter mounted on 
either a land vehicle with boom or a low flying UAV platform;  however, the modified FTIR spectrometer used in this proof-
of-concept demonstration was in no way related to our concept for a field deployable multi-channel polarimeter. 
 
The LWIR spectral polarimeter consisted of an FTIR spectrometer with a wire grid analyzer adapted to it.  For this 
demonstration we used 4 cm-1 resolution at 10 scans/sec and collected 200 scans per data point per analyzer angle.  The 
detector was MCT with D*peak = 4 x 1010 cm Hz1/2 W-1.  The wire grid analyzer was 1200 lines/mm on a ZnSe substrate with 
antireflection coatings on both sides. 
 
As illustrated in Figure 1, reflections from a flat surface induce polarization perpendicular to the plane of incidence (the plane 
of the page).  Emission is polarized parallel to this plane.20  Wire grid polarizers transmit radiation when the E-vector is 
perpendicular to the wire and reflect radiation when the E-vector is parallel to the wire.  We use the convention of  0-degree 
polarizer angle to mean the wire grid is oriented vertically.  Also, we use the spectroscopic notation sigma(σ) for 
wavenumber (cm-l), and our plots will appear reversed to many readers.  The materials used in this demonstration do not 
transmit in the spectral region of interest, so the simple relationship between the reflectance and emissivity of the materials 
applies, ε(σ) = 1 − ρ(σ). 
 
This proof-of-concept demonstration was set up locally in a parking area (see Figure 2) surrounded by several large white 
pine trees and on the northwest side by a steep embankment of rock outcroppings, rocky soil and scrubs.  The parking surface 
was asphalt, and in the winter months when these data were collected, the asphalt was lightly covered with a residue of sand. 
The data of interest were collected at locations 4 and 5 as shown in Figure 2 and consisted of fifty polarimeter spectra for the 
various combinations of target, background, target angle, wire grid analyzer angle, ambient temperature and cloud cover.  
Again, the setup geometry details are listed in Table 1.  Most of the data for these locations were collected in the late 
afternoon, both before and after sunset, on two successive days with the ambient temperatures between 0- and 15-C.  Each 
spectrum required 20 sec to collect.  Since the data collection time was not a primary driver in this demonstration, we made 
no effort to minimize the time, but it is quite clear that the SNR achieved would allow the collection time to be less than 2 sec 
per data point per analyzer angle with no important degradation of the results. 
 
2.1. Interpretation of the LWIR spectral polarimeter data 
 
For a view of the spectral data and an understanding of the analysis procedures, we show several overlays of the spectral data 
in Figures 3 and 4, each at two angles of the wire grid analyzer.  As called for in our analysis procedure discussed below, data 
were normally collected for wire grid analyzer angles of 0-deg (vertical wire grid) and 60-deg; for verification and 
redundancy we also collected data intermittently at wire grid orientations of 90-deg and 120-deg.  Our convention in this 
analysis is to use the 0-deg and 60-deg wire grid angles as the orthogonal components to differentiate the reflected and 
thermal emitted radiation components coming from the target and background sources within the field-of-view.  The spectra 
are plotted with the envelope of the shaded area being the spectrum for 0-deg analyzer angle; this spectrum represents the 
polarized reflection component in the 'horizontal earth' geometry selected for the demonstration.  Relative to this the 
predominantly emission component, passed by the wire grid analyzer in the 60- or 90-deg position, is plotted as a thin solid 
line lying close to and just above the envelope of the shaded area.  The white empty band area, or the difference, between 
these two envelopes is a measure of the degree of linear polarization (DoLP) of the spatially unresolved scene in the field-of-
view of the spectral polarimeter.  Note that the DoLP and hence the polarimetric SNR of a spatially resolved mine target will 
typically be higher than this average of the entire scene, proportionate to the target/scene fill factor.  When the scene radiation 
is totally unpolarized, the orthogonal polarimetric component spectra are coincident over the full spectral range of sensitivity 
for the polarimeter.  Here the spectral region of interest is 800 -1250 cm-1 (or 8 - 12.5 µm).  The general procedure for 
extracting scene DoLP from the spectra is given below, and the results are plotted in Figure 5. 
 
Alternatively, the white empty band in between the shaded area envelope and the line plot above represents the spectrally 
dependent, available polarimetric signal to be exploited.  For any given broadband polarimeter the average area under the 2 
orthogonal polarizer orientation spectra such as in Figure 3(a) is a measure of the total signal while the difference between 
these integrated orthogonal polarizer spectra  is a measure of the scene polarization signal, the fraction of scene radiation that 
is linearly polarized. From the integrated areas measured for the materials in Figures 3(c), 3(d) and 4(a), we find the adjusted 
fraction of target radiation that is linearly polarized when extrapolated to fill the entire FOV of the sensor to be of the order of 
10%.  
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Figure 3.  Raw data plots from spectral polarimeter, each at two analyzer angles, for four scenes.  The 
envelope of the shaded area is the spectrum for analyzer angle 0-deg, and the solid line for analyzer angle 60-
deg. 
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Upon closely examining the polarimetriccomponent spectra in Figures 3(a) and 3(b), we find that these 0-deg and 60-deg 
spectra are coincident over the 800 - 1250 cm-1 region for soil and sand near normal incidence, so we may expect the degree 
of linear polarization (DoLP) for these background materials to be very small or zero.  Below, we compute the DoLP spectra 
and indeed show these background materials are substantially unpolarized. 
 
This is not the case, however, when we examine the polarimetric component spectra for the plastic frisbee on sand, CARC on 
sand, and sandy asphalt by itself in Figures 3(c), 3(d) and 4(a), respectively.  In Figures 3(d) and 4(a) we find large 
separations in the polarimetric component spectra indicating that CARC and asphalt exhibit strong LWIR polarization 
effects.  Furthermore, the separations in CARC and asphalt show an interesting spectral dependence, being very strong near 
the greybody curve peak at 925 cm-1 and gradually narrowing until the gap closes at about 1250 cm-1.  While the general 
shape of the spectra are determined by the greybody temperature and the spectral polarimeter response function (including 
the optics, analyzer, antireflection coatings and detector), the sharp spectral features in the 1100 - 1200 cm-1 region are 
attributed to quartz sand.  Notice these features are not present in the soil spectrum, Figure 3(a).  These spectra, rich in 
features, demonstrate very clearly our interest in the LWIR and our rationale for pursuing hyperspectral polarimetry as a 
powerful technique to discriminate man made target materials against natural background clutter. 

Table 1. Summary of the Data Collection Geometries and Results of the LWIR Spectral Polarimeter 
Measurements for the Target and Background Materials at Locations 4 and 5. 

 
 

Target Name 
and Location 

 
Sandy 

Asphalt 
Location 4 

 
Tan 

CARC 
Location 4 

 
Plastic 
Frisbee 

Location 5 

 
Green 
CARC 

Location 5 
 

Plane of Target Surface 
Relative to Vertical (deg) 

86 66 85 79 

Background Type Sandy 
Asphalt 

Sandy 
Asphalt 

Sand 

Mound 

Sand 

Mound 

Range (ft) 
 

30 30 28 28 

Target Total Area (sq in) 737 64 33 

Exposed 

56 

Angle Between Sensor 
LOS and Target Surface Normal (deg) 

79 59 75 69 

Target Area Projected into 
FTIR FOV (sq. in.) 

140 33 9 20 

FTIR Weighted FOV Scene Footprint at 
Range   (sq. in.) 

140 140 130 130 

Fractional Area of Total Weighted FOV 
Occupied by Projected Area of Target 

Do Not Know 
Frac of Asphalt 

Covered by 
Sand 

0.24 0.07 0.15 

DoLP of Scene, adjusted to remove any 
DoLP of Sandy Asphalt, for the 
Spectral Region 
800-1250 cm-1 

 
0.02 

 
0.02 

 
0.01 

 
0.02 

Percent of Target Radiation that is 
Linearly Polarized When 
Extrapolated to Fill the FOV of 
Sensor 

 
---- 

 
8% 

 
14% 

 
13% 
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Figure 4.  Spectral polarimeter measurements at the noted analyzer angles for sandy asphalt with and without 
CARC panel present.  The relative intensity for the same analyzer angle is always greater with the CARC 
panel present in the FOV.  

(a) Sandy Asphalt 
(Shaded=0-deg, 
Line=60-deg) 

(b) Sandy Asphalt 
with CARC at 60-
deg (line), and 
without CAR C 
(shaded) 

(c) Sandy Asphalt with 
CARC at 60-deg (top 
line), 0-deg (bold line), 
and without CARC at 
60-deg (mid line) and 
0-deg (shaded) 



2.2. Analysis of polarimetric measurements 
 
The degree and angle of linear polarization (DoLP and AoLP) of a partially linearly polarized wave can be obtained from 
measurements made at three different analyzer angles. The intensity measured at the output of the analyzer oriented at angle 
α is given by10, 20: 
 

I(α)  =  1/2 Iu  +  Ipcos2(θp-α)                (1) 
 
where 

Ip         = Polarized light from target 
Iu-tgt       = Unpolarized light from target 
Iu-bkg     = Unpolarized light from background (here assumed unpolarized) 
Iu         = Iu-tgt + Iu-bkg 
DoLP  = Ip/(Iu-tgt + Ip) = Degree of linear polarization of target 
θp        = Angle of linear polarization. 

 
As is frequently the case with simultaneous trigonometric equations, general solutions in terms of well known functions are 
difficult to find; a numerical solution can be obtained by searching for it using Newton’s method based on minimizing an 
objective function such as the sum of the squared differences between the measurements and the theoretical value (i.e. left 
hand side minus right hand side of Eq (1)). The field measurements obtained at Aerodyne were performed such that the 
surface normal vector of the targets was in the plane of incidence, thereby constraining the emitted light to a 90-degree 
analyzer angle and the reflected light to a 0-degree analyzer angle. Careful attention was paid to orienting the spectral 
polarimeter such that cold sky was reflected. Under these circumstances, it is reasonable to make the simplifying assumption 
that θp=90 degrees (i.e. the reflected component of Ip is negligible). Equation (1) then becomes 
 

I(α)  =  1/2 Iu  +  Ipsin
2(α)   .                (2) 

 
By choosing an analysis angle of 0-degrees, the unpolarized intensity is immediately obtained. The polarized intensity can 
then be obtained by using any other angle (albeit within the limitations of SNR). In the present case of 90-degree angle of 
polarization, the greatest signal to noise ratio is obtained by using 90-degrees for the second analysis angle.  A 1.25 dB loss 
in SNR results from the use of 60-degrees instead of 90 in this case. 
 
2.3. Results 
 
Using the simplified analysis approach represented in Equation (2), we extracted a quick-look approximate "residual scene 
DoLP spectrum" for each of the materials observed in this demonstration, presented in Figure 5.   Since the quartz sand 
background was present in varying yet nearly equal abundances within the field of view for 4 of these data, a constant 
intensity spectrum of sand (corresponding to 100% fill of the field of view) was subtracted in each case.  Each residual scene 
DoLP spectrum thus is an approximate unnormalized (for target fill factor) target material DoLP spectrum.  Other features in 
these DoLP spectra deserving comment are: 
 

1. Soil is effectively unpolarized and provides a point of reference for the other materials plotted in Figure 5. 
2. CARC and sandy asphalt exhibit essentially the same DoLP, indicating they will not be easily distinguished using 
a  broadband polarimeter.  Refer ahead to view the CARC panel on sandy asphalt in Figure 9. 
3. In the 1000 – 1100 cm-1 region the trace effect of ozone remains observable in the spectrum. 
4. Fringes apparent in the spectra are attributed to a polarization sensitive beam splitter effect in the FTIR 
spectrometer. 

 
2.4. The special case of CARC target on sandy asphalt background 
 
The combination of the CARC target imbedded in a sandy asphalt background is a key piece of data from our proof-of-
concept demonstration.  The reason for this can be seen in Figure 5.  Over the spectral interval 800 - 1250 cm-1 the measured 
DoLPs are the same for CARC on sandy asphalt and sandy asphalt alone; CARC and sandy asphalt cannot be differentiated 
solely by the broadband linear polarization attribute, i.e. by a single broadband imaging polarimeter.  In Section 4 we show 
image data to confirm this.  However, this case provides an excellent example of the powerful tool obtained when the  
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Figure 5.   A plot of the residual scene degree of linear polarization (DoLP) for 4 scenes, and soil-only.  A constant sand 
background intensity, with varying abundances in the FOV for the four scene measurements, has been subtracted as a quick-
look means of isolating the approximate target material spectrum.  The angle noted is between the sensor LOS and the 
material surface normal.  

 
 
Figure 6. Inerted antipersonnel mines used in grazing angle reflectance measurements and in imaging polarimeter field 
demonstration 
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polarimetric and spectral capabilities are combined in an LWIR spectral polarimeter.  One set of the data for tan CARC on 
sandy asphalt collected with our basic combination of FTIR spectrometer and wire grid polarizer are shown on a magnified 
scale in Figures 4(a), 4(b) and 4(c).  Figure 4(c) is an overlay of four plots - two for the ‘CARC present’  and two for ‘only 
sandy asphalt’ .  By inspection of their spectral dependence we can easily distinguish the presence of CARC in the sandy 
asphalt background.  At 900 cm-1 the 0-deg and the 60-deg analyzer plots are identical with and without the CARC present; 
no differentiation here.  However, as we move along the wave number axis toward 1200 cm-1, two effects are evident.  First, 
the separation by analyzer angle for each pair of curves (with and without the CARC present) is becoming less and washes 
out completely by 1250 cm-1 (see Figure 4(c) for this to be apparent in the ‘CARC present’  case).  Secondly, the ‘CARC 
present’  traces are decidedly higher than ‘without CARC’  plots over the spectral region 1050 - 1250 cm-1.  This effect is 
shown clearly in Figure 4(c).  Therefore, in the spectral dimension (at 1050 - 1250 cm-1, not 900 cm-1) we have a very strong 
differentiation of the CARC present in the sandy asphalt background even though the DoLP for the combined CARC and 
sandy asphalt background afforded no differentiation.  This is true even though separately both the CARC and the sandy 
asphalt exhibit strong polarization effects.  These data make a clear case for the importance of adding the spectral dimension 
to the LWIR polarimeter.  Our goal in the demining application is to demonstrate an affordable and effective polarimeter 
having both spectral and imaging capabilities. 
 

3. LABORATORY MEASUREMENT OF GRAZING ANGLE IR SPECULAR REFLECTANCE OF 
ANTIPERSONNEL MINE CASINGS 

 
In order to exploit unique spectral features (particularly low emissivity regions) of land mine casings and similar man made 
objects (typical plastics such as ABS and blended polymers) we must know the spectral features of both the man made 
materials and the natural backgrounds in these spectral regions.  Our laboratory measurement of grazing angle specular     
(80-deg) reflectance of four AP mine casings and several related, simulant materials of interest confirm the availability of 
many LWIR spectral features to be exploited in multi- or hyper-spectral polarimetry.  These reflectance spectra exhibit the 
characteristic dispersion curve shape near the centers of absorption features in the materials. 
 
Our laboratory grazing angle reflectance spectra were collected with an FTIR spectrometer at a resolution of 4 cm-1 and 
generally covering the range of 3 - 15 microns (666 - 3333 cm-1).  In each case the sample spectrum has been ratioed to the 
spectrum of a front surface gold mirror that has a reflectance greater than 0.99 over the entire spectral range covered here.  
The inerted AP mine casings that were available for study are listed in Table 2 and pictured in Figure 6.  In addition, Table 2 
includes several related or simulant materials of interest for which we collected reflectance spectra, but not all of these will be 
discussed here.  
 
Sample grazing angle reflectance spectra are plotted in 
Figures 7(a), (b) and (c).  To make the examination of these 
spectra easy it is important first to eliminate from further 
consideration all spectral features attributed to the 
incomplete removal of water vapor and carbon dioxide 
from the optical path in the laboratory spectrometer; even 
though the path was constantly under purge with dry 
nitrogen, this did not completely remove all atmospheric 
gases from the sample compartment of the instrument.  The 
spectral features to be ignored are water vapor bands at 2.7 
and 6.3 microns and carbon dioxide bands at 4.3 and 
15 microns.  Then it is important to remember that the 
dispersion features in the reflectance spectra mark the 
locations of absorption features for the material.  Since the 
material does not transmit radiation at these characteristic 
absorption wavelengths, the grazing angle reflectance, like 
the index of refraction, shows a strong change across the 
width of an absorption feature. 
 
Our hyperspectral polarimetry approach to developing a 
reliable detection method for partially exposed scatterable 
land mines exploits differences in the emissivity and  

Table 2. List of Anti-Personnel Mine Casings and Related  
 Materials Included in Laboratory Measurement 
 of Grazing Angle IR Reflectance Spectra. 

 
 

Anti-Personnel Mine 
Component 

 

 
Related Materials  

or Simulants 

 
  M-14 Plastic 
 
  PFM-1 (Butterfly) 
 
  TS-50 Rubber Center 
 
 TS-50 and VS-50  Plastic 
 
 VS-50 Rubber Center 

 
  CARC (Chemical Agent  
  Resistant Coating),  
  Both Green and Tan 
 
  RTV 3110 Silicone Rubber 
 
  Floppy Diskette Plastic Shell 
 
  Rubber Hockey Puck 
 
  Asphalt 
 
  Sand 
 
  Soil 

 



 
(a) Comparison of grazing angle reflectance of RTV 3110and TS-50 mine casing (rubber center) 

 

 
(b) Grazing angle reflectance of Tan CARC 

 
(c) Comparison of grazing angle reflectance of antipersonnel mine casings 

 
Figure 7.  Laboratory measurements of grazing angle specular reflectance for several antipersonnel mine 

casings and related materials of interest. 
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polarimetric attributes of mine materials and coatings relative to these same properties for natural backgrounds. Typically, we 
will examine the spectral reflectance, and thereby the spectral emittance, of the mine materials for unique spectral features 
and high grazing angle reflectance compared to the backgrounds.  With this in mind the measured reflectance spectra 
presented in Figure 7 have a number of features of interest.   First, examining the spectra in Figure 7(c) for similarities, we 
find the M-14 and Butterfly (PFM-1) mine casings very similar in having very little spectral structure and a difference in 
overall reflectance level that is accounted for simply by the difference in surface roughness.   Although not shown here, 
reflectance at 14.3 microns is similar between the M-14 mine and the floppy diskette shell, making the latter a very sensible 
simulant for M-14 surface properties. Also in Figure 7(c) the plastic shells of the TS-50 and VS-50 (not over plotted to avoid 
confusion) have identical spectral features at 8.1, 8.9 and 10.7 microns and are apparently the same polymer blend.  We 
believe this to be an ABS (acrylonitrile butadiene styrene) plastic, but we have more work to do in matching spectra to 
polymer blends before claiming to have identified the materials. 
 
Second, examining the spectra of the rubber materials in Figures 7(a) and (c), we find that the TS-50 rubber center and 
RTV 3110 have the same spectral features at 7.87, 8.96, and 12.2 microns.  We conclude the TS-50 center element is actually 
an RTV silicone rubber.  Comparing these same features to the reflectance spectrum for the VS-50 center element in Figure 
7(c), we find them to be wholly different and learn by comparison to another spectral database that the VS-50 center element 
is natural rubber. 
 
In Figure 7(b), we examine the spectrum of an Army camouflage paint of interest, green and tan CARC, because it is a low 
reflectance coating purposefully formulated to have the optical properties of the natural background.  The grazing angle 
spectral reflectance features measured for tan CARC are located at 9 and 12.5 microns, with the 9 micron feature being very 
robust.  The infrared spectral features of CARC have been studied extensively in the Joint Multispectral Program (JMSP)21 
for the purpose of identifying spectral bands that provide a dependable two-color discriminant for CARC in a variety of 
backgrounds. Using apparent spectral contrast data collected over a wide range of backgrounds and local meteorological 
conditions, this study concluded that the 9 micron feature provides a persistent two band spectral contrast discriminant for 
CARC (8.73 / 9.23 microns).  This is a successful illustration of our effort to use narrow band spectral features for 
discrimination of mines within clutter when broadband polarimetry alone cannot eliminate all of the clutter. 
 
In general, our laboratory measurements of grazing angle specular reflectance for the materials listed in Table 2 compare well 
to the more comprehensive and dedicated measurement efforts of Salisbury and D'Aria22 on the spectral reflectance of terrain 
background materials, of Johnson and coworkers23 on the spectral emissivity variations in disturbed soils, and of 
Cederquist and coworkers24,25 on the spectral reflectance of target materials and coatings.  For insight into the spectral 
features of blended polymers we found the book by Garton26 to be very useful.  Our purpose in making comparisons to these 
dedicated studies is to confirm our approach and to put a quantitative foundation under our efforts to apply spectral 
polarimetry to mine detection.   
 
Given that reliable mine detection has proven to be a difficult and frustrating challenge for many qualified investigators, we 
stand firmly by our stepwise, controlled risk approach as outlined above, and note here again that our laboratory 
measurement of mine materials spectral reflectance features is a key element in out approach.  These data tell us if and where 
we can expect to apply spectral polarimetry to antipersonnel mine detection successfully.   Overall we are encouraged by the 
availability and robustness of spectral features for plastic mine casing materials found in the LWIR region of interest.   
 
 

4. LWIR IMAGING POLARIMETER DEMONSTRATION MEASUREMENTS 
 
A series of demonstration measurements were performed on a sampling of inerted non-metallic antipersonnel (AP) mines in 
various natural backgrounds. The images were collected using an uncooled microbolometer imager operating in the 8–12 µm 
band. A manually rotated wire grid polarizer (1200 lines/mm) was mounted to the camera in front of a 25 mm focal length 
f/1.0 germanium lens. Although complete characterization of the polarization state requires four independent measurements 
(three if partial linear polarization is assumed), only two measurements were made in this proof-of-concept demonstration. 
The justifications for this are twofold. First, it can be assumed that the elliptical polarization is small. Second, the geometry 
of the scene was chosen such that the angle of polarization for the objects of interest was either vertical or horizontal, in 
which case the maximum image contrast will be seen in the difference between images made with the polarizer in these two 
orientations. A sequence of 10 frames was co-added for each polarization angle before subtraction. 
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Figure 8. Polarization difference image (0 - 90 degrees) of landmines in sand.  (a) Note the raked area  
 at top and disturbed area around lower three mines;  (b) Note the sand has been raked and  
 graded to a uniform depth. 
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Figure 9. Polarization difference image (0 - 90 degrees) of landmines in sand.  Note the polarized emission 
from the vertical faces of the guardrail and asphalt curbing and the polarized reflection from the 
horizontal strip of bark mulch beneath the railing. 

 

Puck 
RTV 3110 
 
Butterfly 
M-14 
VS-50 
TS-50 

TS-50 
VS-50 
M-14 
Butterfly 
 
RTV-3110 
 
Puck 



The Fresnel reflectance relations indicate that the angle of polarization of reflected radiation is perpendicular to the plane 
defined by the incident and reflected beams while that of emitted radiation is parallel to this plane.  Wire grid polarizers 
transmit radiation when the E-vector is perpendicular to the wire and reflect radiation when the E-vector is parallel to the 
wire.  In this paper we use the convention of 0-degree polarizer angle to mean the wire grid is oriented vertically.   
Consequently, in the intensity difference images (0 - 90 degrees) discussed below, net reflected (emitted) polarized regions 
appear brighter (darker) than unpolarized regions for horizontal surfaces, with the converse for vertical surfaces.   
 
4.1. Discussion of the LWIR imaging polarimeter data  
 
Figure 8(a) shows the polarization difference image for four mines, a disk of RTV 3110, and a rubber hockey puck buried 
flush to the surface in sand. The mines, from front to back, are as follows: TS50, VS50, M14, and PFM-1 (Butterfly), 
followed by the RTV disk and the puck. It is clear from the image that these materials are easily distinguished from this 
relatively unpolarized and clutter free background. The polarization appears due to emission. It is noteworthy that the top 
surfaces of the sandbox frame appear significantly polarized, wood being a material used in the construction of certain land 
mines. A more subtle, yet equally important feature of this image is the contrast evident between the disturbed and 
undisturbed regions of the sand. A horizontal (i.e., left to right) strip at the rear of the sandbox, extending to the butterfly 
mine was purposefully raked with a spring steel rake, and the areas surrounding the mines were disturbed to bury them. 
These areas are clearly distinguishable in the original images. This effect is attributed to a combination of contrast reduction 
caused by fine-grained particle coatings on the disturbed soil and the increased moisture content of the surface sand in the 
disturbed regions.22,23  In these measurements the undisturbed sand had received two days of sun since the last rainfall, so the 
surface was very dry. The disturbed areas brought noticeably moist, but not wet, sand to the surface. 
 
Figure 8(b) shows the sandbox rotated 180o so the objects are in reversed order. In this case, the entire surface was well raked 
and graded to a uniform depth. The uniformity in the image is evident. 
 
Figure 10 shows the same objects in a more natural background consisting largely of undisturbed aged bark mulch. Other 
elements in the scene include a rock (about 15 cm diameter), a bush, and some small weeds. The two objects labeled “CARC 
panel”  are metal panels painted with CARC.  In this image, the absolute value of the polarization difference is taken so net 
emission and reflection polarization energy both appear as bright. The bush, a small central portion of the rock, and the rear 
CARC panel were deliberately underexposed while the front CARC panel and the left edge of the mulch were overexposed. 
This was done to achieve maximum sensitivity in the region containing the mines and is a limitation of the 8-bit digitizer in 
the frame grabber rather than the imaging polarimeter itself.  Clearly, the mines are evident in Figure 10, yet there is much 
less contrast against the bark mulch, which itself yields partially polarized radiation, compared to the sand in Figures 8(a) and 
8(b).  Although the contrast is low, most of the clutter in the thermal image has been suppressed. By contrast, Figure 11, 
showing only the 0-degree image component of Figure 10, exhibits the wide range of thermal variations present in the scene.  
Notice that in polarization the two CARC panels appear very similar on the gray scale in Figure 10 while in the intensity 
image (Figure 11) the sunlit CARC panel appears quite hot in comparison to the shaded panel near the bush.     
 
Figure 9 shows the sandbox using the same camera and lens but now at a greater range (about 4 m). The mines and soil 
disturbances are still evident, but the scene also includes a large wood guardrail, a strip of aged bark mulch below it, and a 
vertical asphalt curbing. For two materials in the scene, wood and asphalt, we have both horizontal and vertical surfaces of 
the same materials in view at the same time.  It is useful to observe how the contrast flips for the same material as the 
orientation and therefore the plane of incidence changes between horizontal and vertical.  The vertical surfaces of the 
guardrail, sandbox wall, and curbing are bright in this difference image (0 - 90 degrees) because the plane of incidence is now 
horizontal. 
 
There are several other basic polarization phenomena to be observed in this scene (Figure 9). The railing is painted dark 
brown and consequently heats up considerably during the day. The left end of the railing is seen to yield net polarized 
emission as the view angle increases off-normal. The mulch exhibits polarized reflection when viewed at this grazing angle. 
The odd-shaped reflective lines near the sandbox are tar-filled cracks in the asphalt.  One of the CARC panels is located on 
the asphalt just beyond the top left corner of the sandbox.   Even though the CARC can be distinguished from the asphalt 
when we know where to look for it, the two exhibit nearly the same degree of linear polarization as seen here in the gray 
scale image.  This confirms the quantitative DoLP results (Figure 5) obtained earlier in the LWIR spectral polarimeter data 
for CARC on an asphalt background.  The top horizontal edges of the wood sandbox are dark, indicating polarized emission 
from the wood.  Since the  
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          Figure 10.  Polarization absolute value difference image, Abs(0-90 degrees), of landmines 
  in bark mulch background with various natural debris and small plants. 
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          Figure 11. Intensity image (at 0-degree analyzer angle) of landmines in bark mulch  
  background with various natural debris and small plants. 



 
 
 
 

 
 

   

  
Figure 12.  Polarization difference image (0-90 degrees) of bark mulch (a) at a range of 12 ft.  Note the 
polarized reflection from individual bark mulch chips at this range where detector IFOV footprint is 
about 0.5 inches; (b) at range of 45 ft.  Note the bark mulch, directly below the black body illuminator, is 
not discernible from the background at this range where detector IFOV footprint is about 2 inches. 
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Figure 13.  Bark Mulch Spatial Scale 

 



wood is in contact with the hot sand and asphalt, it can be expected to be warm; however, when wood is in contact with cool 
moist soil, this may not be the case.  Finally, notice the rings of disturbed soil around the mines in the sandbox.  Our 
consistency of detecting disturbed soil encourages us to refine our approach by using narrow band filters (multispectral) that 
are optimized for the characteristic spectral features of various soil types.22, 23  
 
4.2. LWIR imaging polarimeter - importance of spatial scale 
 
These imaging polarimeter data yield an empirical understanding of the spatial scale requirements for a polarization sensor. 
The polarimetric signal manifested at the detector will be a superposition of the vectorial (Stokes) polarization contributions 
from the various elemental surfaces of the target, as "ensquared" within a sensor's instantaneous field-of-view IFOV.  If the 
IFOV is too large for the spatial scale of the target features in the scene, the distinctive polarization attributes of the target can 
be obliterated.  Even though it does not provide a direct example of a wrong choice of spatial resolution, the degree of 
polarization exhibited by the bark mulch, that is the clutter, in Figure 10 illustrates the importance of spatial scale.  Here the 
bark mulch and the flush-buried mines are similar in dimensions.  As a result the bark mulch is an effective polarimetric 
background clutter for mines in this instance where the only attribute being measured is the degree of polarization with a 
broadband polarimeter.  It is correct to infer from this that an investigator who chooses to apply broadband polarimetry alone 
to scenes of arbitrary spatial scale will fail. 
 
For a more direct illustration of the importance of spatial scale, Figures 12(a) and (b) are polarization difference images, 
recorded under controlled conditions, of the box of bark mulch shown in the photograph, Figure 13.  For Figures 12(a) and 
(b) the angles between the illuminator, the normal to the bark mulch box and the polarimeter were held constant while the 
range between the bark mulch and the polarimeter increased from 12 ft in Figure 12(a) to 45 ft in Figure 12(b).  The IFOV 
footprint at the bark mulch is about 1/2 inch in Figure 12(a) and 2 inches in Figure 12(b), compared to a mean dimension of 
3/4 inches for the bark mulch chips.  As expected the polarized reflectance from individually resolved bark mulch chips are 
visible in Figure 12(a) but obliterated by the coarser spatial resolution in Figure 12(b). 
 
Clearly, in the design of an hyperspectral polarimeter, the spatial resolution is an enabling design parameter27, making the 
spectral and polarization attributes of the target accessible to be used as additional discriminants.  At the same time, no 
amount of effort in tailoring the spatial resolution will help in the event the spatial dimension and polarimetric attributes of 
the clutter are nearly the same as that of the target.  In this situation the broad spectral band imaging polarimeter will not be 
successful, and the need to invoke hyperspectral polarimetry, thereby adding the spectral attributes for discrimination 
purposes, is clear. 
 
4.3. LWIR imaging polarimeter - performance 
 
The microbolometer FPA demonstrated strong performance when applied in the broad spectral band imaging polarimeter 
mode with the 1200 line/mm polarizer mounted in the optical train.  In addition to the imaging polarimeter that we have 
assembled around an uncooled FPA being affordable, we can report the following performance on static scenes:   
 

1. With f/1 optics and modest additional effort to hold the temperature of the optics constant when operating in the 
field, the polarimeter delivered a NEDT < 0.1o C. 
2. The polarimeter consistently detected disturbances in sand, soil and bark mulch created by burying objects and 
bringing fresh sample to the surface.   
3. The system detected flush-buried antipersonnel mine casings and simulants both night and day, with and without 
cloud cover. 

 
5. LWIR UNCOOLED FPA MULTISPECTRAL IMAGING POLARIMETER 

 
Even though we are quite pleased with the performance of the uncooled FPA microbolometer in the mode of a broadband 
imaging polarimeter, it is necessary to next demonstrate its performance as a multispectral imaging polarimeter. There are 
two goals here.  The first is to combine spectral, polarimetric, and imaging feature spaces together in order to demonstrate the 
increased discrimination gain, relative to earlier abbreviated combinations (i.e. spectral/polarimetric, spatial/polarimetric).  
The second is to experimentally ascertain the radiometric sensitivity performance when using an uncooled FPA with spectral 
filters.  We recognize that the NEDT of the current uncooled FPA technology is an order of magnitude higher than for cooled 
FPAs, and thus we anticipate the division of the available polarization signature into say 10 (multispectral) or 100 
(hyperspectral) bins implies the uncooled FPA performance as a multi- or hyper-spectral polarimeter may be marginal. We 



nevertheless are of course motivated to see how far the uncooled FPA technology can be pushed, given its nearly two orders 
of magnitude affordability over cooled FPA technology.  Our experience to date with the uncooled FPA indicates that its 
actual NEDT performance can be as much as a factor of two better than the nominal specification.  
 
The LWIR (broadband) imaging polarimeter, implemented using a microbolometer uncooled FPA as described in Section 4, 
was recently modified to add a 6-slot filter wheel.  Two of these bandpass filters were chosen to spectrally discriminate 
CARC (when using 2-band processing).  The desired bandpasses were 8.1–9.2 and 9.2–10.2  µm, but compromising in order 
to employ inexpensive off-the-shelf filters yielded 8.1–9.3 and 9.3–10.2 µm.  Another filter was chosen as an LWIR 
bandpass of 6.5–14 µm, since the unfiltered microbolometer detector response due to the much broader Germanium optics 
passband is roughly 3–14 µm, which includes (at times undesired) solar scatter.  Two additional filters divide the LWIR into 
7.5–10.2 and 10.0–13.6 µm passbands.  Finally, the 6th slot was open, allowing the aforementioned full 3–14 µm response.  
The following sequence of measured imagery constitute early-look results that indicate the discriminative power of 
polarimetric multispectral imaging.   
 

 
Figure 14 shows the measurement setup of the various target materials on or partially exposed in sand.  The RTV silicone 
rubber is spectrally identical to the rubber center of the TS-50 AP mine (per discussion in Section 3).  In order of increasing 
aggregation of feature spaces (and discrimination processing sophistication) are Figures 15-18.  Figure 15 is a broadband 
LWIR (6.5-14  µm) conventional intensity image.  Figure 16 is the polarization difference image (0-90) through the same 
broadband LWIR filter (6.5-14  µm).  Figure 17 is a multispectral PCA (principal components analysis) image showing 
intensity based on projection of the data comprised of the 5 previously stated LWIR passband filters onto the 2rd most 
energetic eigenvector.  Figure 18 is a polarimetric multispectral PCA image, this time projecting 12-vector imagery 
consisting of all 6 bands, with 0-deg and 90-deg polarizer orientations for each, onto its 2rd most energetic eigenvector.  
Initial eigenanalysis on subset polarimetric multispectral data supports the visual conclusions:  for the 2nd eigenvector is 
predominantly synthesizing the polarization difference yet includes some multispectral projection, while the 3rd eigenvector is 
predominantly synthesizing a spectral filter.  The 2nd eigenvalue is about 3x the energy of the 3rd eigenvalue.    
 

 
 
Figure 14  Mines, CARC panels, floppy disks, and frisbee on or partially exposed in sand. 
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Figure 15  Broadband LWIR (6.5–14 micrometers) intensity image  

 
 
Figure 16  Polarization difference image for broadband LWIR (6.5–14 micrometers). 



 
 
 

 
 
Figure 17  Multispectral PCA image comprising the data of 5 LWIR spectral bands  projected 
onto its 2rd eigenvector. 

 
 
Figure 18  Polarimetric multispectral PCA image comprising the data of 12 image planes 
(6 bands x 2 polarizer orientations) projected onto its 2nd eigenvector. 



6. CONCLUSIONS 
 
6.1. Rationale for combining hyperspectral and polarimetric IR imaging 
 
We have presented several pieces of evidence to motivate the marriage of hyperspectral and polarimetric IR imaging.  
Basically we recognize that polarimetric and hyperspectral attributes supplement one another, and that all available 
independent supplemental pieces of information can be used to advantage for discriminating target objects from background 
clutter.  Polarimetry appears particularly suited to segregating partially exposed man made objects from natural background 
based on the typical smoothness of the former, and typical roughness of the latter.  While we expect to exploit the broadband 
attributes of man made objects, knowledge of the characteristic spectral features for a large number of both man made and 
natural background materials (for example, quartz sand and the mine casing spectra presented above) enables an additional 
hyperspectral polarization discrimination capability that comes in the form of the narrow spectral features.  
 
6.2. Polarimeter design process and some useful insights 
 
 Our current understanding of the best design process for an imaging multi- or hyper-spectral polarimeter 
application10,13,17,18,28,29,30 includes the following points: 
 

1. The spatial resolution will be determined and even constrained by the spatial scale of the target and primary clutter 
sources in the scenes and scenarios of interest.  A polarimeter geared toward mine detection requires a spatial scale 
consistent with the mine dimensions and respective of the spatial scale of primary clutter sources.  Recall the bark mulch 
images in Figures 12(a) and (b). 

 
2. Given this spatial scale constraint the spectral range, resolution, and choice of detector are a compromise between the 
need for signal (broadband operation) and the availability of distinguishing "narrow" spectral features to exploit (multi- 
or hyper-spectral operation). 

 
3. Prerequisite to this process is a very clear realization10 that at least two, and preferably three, independent polarization 
measurements must be acquired at near perfect registration, which for moving platforms means simultaneously. 
Otherwise the misregisteration of polarimetric detection channels will masquerade as serious to overwhelming 
polarimetric clutter, induced particularly by time-dependent effects such as sensor platform motion, substantial changes 
in the downwelling radiation incident upon the target, and even small temperature and sensitivity drifts in the detector. 

 
4. Multispectral or hyperspectral polarimetry offers essential advantages over broadband polarimetry in applications such 
as demining where spectral techniques allow discrimination against similarly polarized backgrounds such as asphalt, and 
potentially when tuned to discriminate surface spectro-polarimetric texture disturbances indicative of sub-surface mines. 

 
6.3. Overall status of IR polarimetric hyperspectral imaging effort 
 
More important than any one of the above proof-of-concept demonstrations, each of which represents a successful step in the 
risk-reduction sense, is to put all these elements together into the same sensor, an IR Polarimetric Hyperspectral Imager; this 
is our goal and represents our most significant effort to go beyond state-of-the-art.  If we are successful, we will have 
captured the spectral, spatial and polarimetric attributes in one sensor, all simultaneous in time and perfectly registered 
spatially.   
 
Going beyond the current proof-of-concept sensor configuration intended for static scenes, we now have an innovative sensor 
design in hand and are building the prototype IR Polarimetric Hyperspectral Imager.  We have verified in a laboratory 
visible-band implementation that our design allows us to extract any angle or degree of polarization in the scene at a frame 
rate determined by the multiplexer and signal processor.  For initial application purposes we are using a cooled FPA in the IR 
prototype, yet we anticipate the opportunity to test uncooled FPAs for the demining/UXO applications.  Having all of the 
spectral, spatial and polarimetric attributes available to us at the same time provides a powerful discrimination and clutter 
suppression capability that is quite unique.  All indications from analyzing our sequentially collected data are that these 
attributes taken together will comprise a reliable sensor for the detection of surface and flush-buried land mines, as well as for 
disturbed soil and shallow-buried mines over diurnal cycles or with microwave enhance heating. 
 



Laboratory measurements or other knowledge of the spectral reflectance and polarimetric properties of the targets in each 
application are necessary to support hyperspectral polarimetry.  Our laboratory data help directly to (a) determine the 
locations and widths of spectral features needed to infer the value added of hyperspectral over multispectral polarimetry and 
thereby to (b) determine in potential applications whether broadband, multispectral or hyperspectral polarimetry applies. 
 
 In summary, using somewhat sparse, but very reproducible, data from field and laboratory measurements to date, we 
have presented a case for LWIR polarimetric hyperspectral imaging in applications requiring the detection of plastic, as well 
as metal, flush-buried and scattered surface mines.  This approach applies equally well to partially exposed unexploded 
ordnance (UXO) and to shallow-buried mines subjected to microwave enhanced heating and diurnal cycles.  Our rationale for 
combining hyperspectral and polarimetric imaging was presented. 
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ABSTRACT 

 
We introduce the method of Polarimetric-Spectral Intensity Modulation (P-SIM) and discuss how it enables a new robust 
class of hyperspectral polarimetric imaging sensors.  P-SIM was invented by one of us (P. Kebabian) and has been submitted 
for patent.  We are presently building a sensor, dubbed the IR Polarimetric HyperSpectral Imager (IRPHSI) which 
implements the P-SIM concept.  P-SIM employs a novel and robust optical multiplexing scheme that enables simultaneous 
measurement of spectral and full elliptical polarimetric image content, employing a single focal plane detector and 
conventional optics, and eliminating moving parts and difficult alignment issues.  The technique is equally viable across the 
visible through long-wave infrared bands.  The P-SIM concept constitutes a breakthrough for the inclusion of polarimetry in 
optical hyperspectral imaging.  To date, even single-band polarimeter designs for remote sensing are compromised due to 
their lack of spatiotemporal measurement registration, inapplicability to marginally resolved scene elements, costly optical 
configurations, or polarimetric ambiguity from too few “channels”.  Polarimetric imaging from a moving platform (i.e., 
moving field of regard) or against moving targets rules out the standard methods of time-sequential polarimetry via rotation 
of a polarizer or waveplate.  P-SIM eliminates these limitations while additionally extending polarimetry into the spectral 
imaging domain. 
 
Keywords:   Optical infrared polarimetry hyperspectral discrimination imaging sensing 
 

1. MOTIVATION FOR POLARIMETRIC AND SPECTRO-POLARIMETRIC SENSING 
 
Sensor technology has progressed to the point where it is practical to detect and measure the spatial, spectral, and 
polarimetric distribution of optical radiation of sample objects or remote scenes.  Such in-situ and particularly remotely 
sensed radiation characteristics reveal a substantial amount of information about the objects or phenomena under study.  For 
instance, numerous air- and spaceborne optical sensors produce spectrally resolved imagery used for military surveillance as 
well as geophysical and earth resource mapping.  The polarimetric state of received radiation also contains valuable 
information about source object surface roughness and orientation.  Optical polarimetric sensing has been advocated for a 
number of years for various military and remote sensing applications.  Because natural backgrounds are typically 
unpolarized=, relative to other modalities, polarimetric sensing can offer superior clutter suppression in the discrimination of 
typically polarized manmade objects.  For image recognition applications, the predictable Fresnel behavior of polarimetric 
observables may enable passive inference of surface orientation and object shape1.  Imaging polarimetric and spectro-
polarimetric sensors provide a significant increment in our capability to respond to existing requirements, as well as to our 
insatiable need for more information in remote sensing applications. 
 

2. FUNDAMENTAL POLARIMETRIC SENSOR REQUIREMENTS FOR DYNAMIC PLATFORMS 
 
2.1. The requirement for spatio-temporally registered full-channel polarimetry 
 
The prior art contains numerous responses to this demand for polarimetric and spectropolarimetric sensors.  Polarimeter 
designs can be classed into 2 general categories: (1) time-simultaneous or (2) time-sequential techniques.  Time-simultaneity 
invariably involves a division of power among sensing “channels”.  One approach for time-sequential polarimetry involves 
the rotation of retarders as in the case of the infrared spectropolarimeter by Goldstein et al, US patent 5,045,701.   
 

                                                           
= Depending on pixel footprint, various background features may exhibit polarization. 



In recent years, prototype polarimeters have been introduced into experimental field measurements to validate observability 
predictions.  These time-sequential polarimetric designs, when employed in static sensing configurations, have been adequate 
to validate predicted polarization effects.  Unfortunately for many applications of interest involving a dynamically moving 
sensor platform and/or object of interest, time-sequential polarimetric techniques are precluded due to the practically 
uncorrectable spatiotemporal mis-registration of the imaged scene (due to relative scene motion) over the duration of the 
measurement sequence.  Such mis-registration creates artifacts that masquerade as polarization signals.  The limits of 
allowable relative motion are quite restrictive since many polarization signals of interest represent polarization levels on the 
order of only several percent.  Thus, spatiotemporal misregistration must typically be controlled to below 1%.   
 
Specifically, for a temporal sampling sequence duration of dt , and a spatial resolution element of linear angular subtense 
∆θ , in order to employ time-sequential polarimetry the relative sensor pointing slew rate Ý φ  must satisfy the following 

constraint: Ý φ ⋅ dt ≤ 0.1 ⋅ ∆θ .  This is certainly not the case for most military and remote sensing field applications.  For 
example, at a modest 1°/sec platform rotation rate (e.g., due to buffeting), the footprint of an IFOV of 100µrad would shift 
nearly an entire IFOV subtense during a frame period (τint) of a mere 5msec!  Note that for such applications the employment 
of time-simultaneous polarimetry might not necessitate sampling extremely rapidly (i.e., to attempt near “freeze-frame” 
sampling), but rather that exactly the same scene content be dwelled upon in the same spatiotemporal manner across all the 
sensor’s polarimetric channels for the given spatial resolution element.   
 
To date, time-simultaneous polarimeter designs for remote sensing are compromised due to their inapplicability to marginally 
resolved scene elements, costly and difficult optical configurations, or polarimetric ambiguity from too few “channels”.  
Time-simultaneous imaging polarimetric channel acquisition is possible at the expense of important drawbacks by employing 
“microscale channelization”.  This technique inserts a pixelated polarizing filter mask of alternating analyzer orientations at 
an intermediate image plane within the optical train, at a sacrifice of 2-4 in spatial resolution relative to the underlying focal 
plane array detector spacing/resolution.  A more serious drawback is that microscale channelization designs are suitable only 
when restricted to applications imaging radiometrically and polarimetrically uniform extended scene elements (i.e., elements 
with radiometric and polarimetric (auto)correlation lengths roughly at least several pixels).  Otherwise, due to the lack of 
spatial registration (coincidence) of channels, a microscale design attempting polarimetric imaging of marginally resolved 
scene elements will yield unacceptable phantom polarization artifacts due to the unknown and varying amounts of light 
incident upon each of the channel pixels as the scene dwell is varied. 
 
Time-simultaneity can also be obtained by employing “macroscale channelization” by me
“quadfocal” optic (e.g., via a segmented mirror), wherein offset images are projected through oriented analyzers and onto a 
singular focal plane.  This preserves spatial resolution and achieves spatial channel coincidence at the expense of a reduced 
field of regard, the need for custom optics and precise alignment.  Alternately, multiple focal planes can be employed at 
greatly increased expense and heightened alignment difficulties.   
 
Even designs that embrace the time-simultaneity and spatial channel coincidence requirements fall short when too few 
“channels” are measured.  For instance, a design which employs merely  “vertical” and “horizontal” linear polarizers (2 
channels) in an attempt to deduce the “degree of polarization” will fail for most encountered angles of polarization, 
particularly yielding a null signal at a 45 degree polarization orientation. 
 
2.2. Constraints on extension of spatio-temporally registered polarimetry to spectral sensing 
 
The extension of spatio-temporally registered polarimetry designs to spectropolarimetry must of course by definition not 
employ time-sequential spectrum acquisition methods.  An example of the latter is the device of US patent 5,131,742 to 
Schaff (1992) wherein the ordinary and extraordinary diffracted beams propagated through an acousto-optic tunable filter 
(AOTF) are intercepted for purposes of polarimetry, but wherein the passband of the AOTF must be swept in time to acquire 
the spectrum.   
 
Compliance with time-simultaneity can typically be accomplished by insertion of a dispersive diffraction grating or prism 
into the sample beam.  For imaging spectropolarimetry, this typically implies the use of an area focal plane detector wherein 
a line image is spectrally dispersed along the remaining dimension of the detector array.  Nevertheless, this approach may be 
fraught with practical difficulties, as illustrated in the device described in US patent 5,337,146 to Azzam (1994).  To 
accomplish spectropolarimetry it is suggested therein to insert polarizing means between the diffraction grating and the area 
detectors for two or more of the intercepted diffraction orders.  In practice, this configuration would require precise alignment 



and registration of the exitent beams as imaged onto one or more focal plane array detectors, potentially precluding compact, 
rugged, or inexpensive embodiments.  
 

3. POLARIMETRIC SPECTRAL INTENSITY MODULATION (P-SIM) 
 
The most telegraphic means of conveying the P-SIM (Polarimetric Spectral Intensity Modulation) concept is to show its 
employment within a conventional hyperspectral line (pushbroom) imager.  We are presently building a prototype of just 
such a design for the LWIR dubbed “IRPHSI”, which we will describe herein.  It is also possible to insert the elemental P-
SIM modulator assembly into other spectral imaging designs to overlay polarimetric capability, and we will briefly suggest 
an example pertaining to a 2D chromo-tomographic imaging spectrometer (CTIS).   
 
3.1. Overview of IRPHSI Project Underway 
 
The InfraRed Polarimetric HyperSpectral Imager (IRPHSI) concept was originated by Aerodyne Research as part of a Phase 
1 SBIR effort under the sponsorship of the U.S. Air Force (AFRL/Hanscom).  The sensor simultaneously acquires 
polarimetric and hyperspectral imagery on a single focal plane array (FPA).  The effort to fully design and build IRPHSI, 
under Air Force Phase 2 SBIR funding, is presently underway.  Aerodyne is presently submitting a patent application for the 
underlying “Polarimetric Spectral Intensity Modulation” (P-SIM) design concept employed within IRPHSI.  Our polarimetric 
hyperspectral imaging technique is equally viable in the visible or near-infrared bands, but our prototype sensor currently 
under development concentrates on the “thermal” infrared wavelengths spanning 8 to 12 micrometers. 
 
3.2. IRPHSI Design Configuration 
 
The difficulties of introducing snapshot polarimetry into hyperspectral imaging are obviated by employing IRPHSI’s P-SIM 
design concept.  IRPHSI parsimoniously achieves time-space simultaneity without sacrificing spatial resolution, and employs 
a compact inexpensive configuration.  The notional optical layout is shown in Figure 2 and Figure 3.  In Figure 2 the key 
polarimetric spectral intensity modulator assembly 20 is presented, showing its components and their arrangements.  A 
birefringent primary medium 22, in this instance crystaline CdS (Cadmium Sulfide), is the first component to receive the 
propagating polychromatic waveflux.  The waveflux subsequently propagates into a birefringent secondary medium 24.  The 
birefringent primary medium by nature possesses orthogonally resolved fast and slow axes of propagation.  The nature of 
propagation through the medium is that a respectively shorter or longer propagation time delay is imposed upon the 
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Figure 1 Lab measurement demonstration of P-SIM in visible regime 



polarization component of the incident wave as resolved with respect to either axis.  The primary medium is crafted such that 
its fast and slow axes lie within a plane substantially normal to the direction of propagation.  The characteristics of the 
primary medium are chosen such that its propagation time delays are minimally dispersive or well tempered functions with 
respect to optical frequency within the desired spectral range.  
 

The secondary medium is similar in aforementioned characteristics to the primary medium, albeit with two critical 
differences.  First, the predetermined difference between its slow and fast propagation delays is normally to be discernibly 
different from that of the primary medium.  This is typically arranged, if the two media are composed of the same material, 
by using differing lengths (as measured along the direction of propagation).  Otherwise, a combination of length and material 
disparity is employed.  The length of the secondary medium should often be considerably greater than that of the primary 
medium.  Second, the secondary medium must be situated such that its own fast axis 25 is substantially displaced rotationally 
to form a finite acute (less than 90 degree) angle with respect to the fast axis 23 of the primary medium.  Normally, this acute 
angle is set at 45 degrees. 
 
Waveflux propagated through the secondary medium subsequently propagates through a linear polarizer 26.  For optical 
infrared sensors, wire grid polarizers satisfy this and other predetermined typical criteria.  They are fabricated by depositing 
metal within parallel grooves etched upon transparent planar substrates such as ZnSe.  It is critical that the transmission axis 
27 of the linear polarizer is oriented substantially rotated to form a finite acute (less than 90 degree) with respect to the fast 
axis 25 of the secondary medium.  Normally, this acute angle is set at 45 degrees.  
 
The IRPHSI sensor is composed by inserting the modulator assembly 20 described above into a slit-based line imaging 
spectrometer as shown in the layout of Figure 3.  The inclusion of the modulator assembly enables this imaging spectrometer 
to simultaneously perform full elliptical Stokes polarimetry in addition to its normal function.  This layout is comprised of 
input imaging optics 30, typically implemented with a light-collecting primary imaging optic, a field-stop, and collimating 
lens as illustrated.  The imaged waveflux is relayed as a collimated beam through the modulator assembly 20, the output of 
which is subsequently analyzed by the arrangement of remaining conventional elements 32, 34, 28, and 36.  The re-imaging 
optics 32 produce 2 principal focal planes.  A field definition slit 34 is placed at the first (intermediate) focal plane.  A 
dispersive element 28, in this instance a diffraction grating, is placed in the collimated beam region between the first and final 
focal planes of the re-imaging optics.  The spectrally dispersed, 1-dimensionally spatially resolved line image is projected 
onto a photosensitive areal detector array 36.   
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Figure 2 P-SIM Modulator 



With each readout of the photosensitive areal detector array 36, a spectrally and (1-D) spatially resolved image of the 
spectrometer slit 34 is acquired.  To achieve spatial imaging in the direction perpendicular to the slit, sensor platform motion 
translates the slit across object space in “pushbroom” fashion.  Alternately, for stationary platforms, a scanning mirror (not 
shown) may be engaged.  Thus, assuming simultaneous synchronized sampling by all the elements in said photosensitive 
areal detector array 36 (assured by “snapshot” mode operation now commonly available), the complete sensor performs 
simultaneous spectropolarimetric 1-dimensional line imaging, while spatial imaging in the second (orthogonal) dimension is 
obtained in a time-sequential manner. 
 
The effect of the modulator assembly 20 is to impress polarization-dependent modulation modes upon a spatial resolution 
element’s (hereinafter “pixel”) intensity spectrum.  Appropriate signal processing of a pixel’s modulated intensity spectrum 
(as projected along a row of detector elements as shown, 36) allows recovery of its intensity spectrum and also deduces its 
full elliptical polarization state (Stokes vector).   
 
3.3. Existing Experimental Confirmation of IRPHSI’s P-SIM Concept 
 
The P-SIM concept has been experimentally confirmed at Aerodyne.  The low cost of components for the visible spectrum 
was exploited by employing an inexpensive P-SIM modulator configuration (quartz waveplates and polaroid) within an off-
the-shelf visible line imaging spectrometer.  Figure 1 shows the measured areal focal plane response to a uniform line source 
for various imposed angles of linear polarization (impressed upon a light source via a polaroid film).  Observe that the fringe 
pattern is more complex than a monotonic (though chirped) sinusoid that would otherwise result from a mere waveplate and 
polarizer typical of birefringent filter designs2.  Rather, as will be shown in what follows, P-SIM produces a multi-period 
fringe pattern enabling full elliptical polarimetry.  
 
3.4. Mueller-Stokes Perspective of P-SIM Method 
 
The following Mueller matrix-Stokes vector formulation of the sensor measurement equation provides one of several 
perspective for revealing the nature of operation.  The derivation of the sensor measurement equation follows from 
expressing the spectral Mueller matrix of the modulator assembly and thereby relating its output Stokes vector to the incident 
Stokes vector.   
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Figure 3 IRPHSI Layout 



 
The Stokes parameters are a method of characterizing the ergodic average (i.e., time average over many cycles of the 
principal frequency components of the wave) hence conventionally observable polarization state of partially polarized 
waveflux.  The parameters are frequently assembled into a vector and are defined as follows: 
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where a1 and a2  are the ergodic real-valued orthogonal field amplitudes and δ  is the phase lag between instantaneous 
realizations.  The first Stokes parameter is thus the conventional waveflux intensity.   
 
Mueller matrices or scattering matrices, form a convenient method for describing the transformations on the Stokes vector as 
partially polarized waveflux propagates through a system.  The resulting transformed Stokes vector is merely a matrix-vector 
product.  Therefore, the modulated spectral intensity pattern is ascertained to be the first Stokes component (i.e. intensity) of 
the matrix-vector product formed by frequency-dependent Mueller matrix of the modulator assembly 20 and the incident 
waveflux Stokes vector.  Attending to Figure 2, we can build up the expression for the resultant Mueller matrix of modulator 
assembly 20 by determining the matrix product of sequentially ordered standard Mueller matrix representations of the series 
of elements, namely the primary medium 22, secondary medium 24, and linear polarizer 26.  
 
A retarder (delay element) behaves as a frequency-dependent phase-shifter, with denoted (frequency-dependent) phase shift 
angle φ .  A unixial birefringent medium behaves as an orientationally selective retarder by virtue of its possessing 
orthogonally oriented fast and slow axes of propagation.  The nature of propagation through the medium is that a respectively 
shorter or longer propagation time delay is imposed upon the polarization component of the incident wave as resolved with 
respect to either axis.  
 
The difference between these propagation delays can be expressed as a frequency-dependent phase shift angle φ  as follows: 

 φ =
2πν∆nl

c
 

where ν  is the optical frequency, ∆n  is the birefringence of the medium (i.e., the difference between the refractive indices 
of its slow and fast axes) and l is the physical length of the medium (as measured along the propagation direction), and c the 
speed of light in vacuum.  The intent of the design is most directly realized when the birefringence of the medium ∆n  is 
nearly constant with ν  within spectral range of interest (i.e., minimally dispersive), and this will be assumed in description of 
operation that follows.  The Mueller matrix employed herein for a uniaxial birefringent medium corresponds to its fast axis 
oriented parallel with the system reference axis (i.e., the axis of reference for aforementioned Stokes vector definition field 
amplitude component a1).  
 
Consequently, we form the ordered products of the Mueller matrices corresponding to each element of the modulator 
assembly 20, accounting for rotation of axes with respect to the system reference axis which is taken to be the fast axis 23 of 
the primary medium.  Denoting the rotation angle of the secondary medium as β  and that of the linear polarizer as θ , the 
Mueller matrix of 20 is: 
 Mmodulator = Mpolarizer θ( )⋅ Mrotation −β( ) ⋅ Muniaxial φ2( )⋅ Mrotation β( )⋅ Muniaxial φ1( ) 
 
A most useful design configuration for elliptical polarimetry is to configure element orientations to set β  to 45 degrees and 
θ  to zero or 90 degrees.  Assuming θ  to be zero and solving for the output first Stokes (intensity), we obtain: 
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where, with l1 and l2  the lengths of the primary medium 22 and secondary medium 24: 



φ1 ≡
2πν∆nl1

c

φ2 ≡
2πν∆nl2

c

 

 
Thus, the resultant intensity spectrum Iν  is modulated by 4 sinusoidal modulation “fringe” modes: a DC (non- modulated) 
mode, a “carrier” mode corresponding to the φ2  term, along with sum and difference frequency (upper and lower 
“sidebands”) modes corresponding to the φ2 − φ1  and φ2 + φ1  terms.  A modulation mode’s periodicity is: 

∆ν =
c

∆n ⋅ l
 

with the periodicity units in bandwidth (Hz) per modulation cycle.  Thus, the 4 modulation mode periodicities are: 
DC 

 

∆νc = c
∆n ⋅ l2( )

∆ν low = c
∆n ⋅ l2 − l1( )

∆νup = c
∆n ⋅ l2 + l1( )

  

 
For an otherwise white optical spectrum incident upon the modulator assembly 20, sinusoidal variations as a function of ν  
will appear across the resultant intensity spectrum.  For a non-white incident spectrum, the apparent variations will appear 
other than sinusoidal but nevertheless are determined by the measurement equation derived above.  Note that for the given 
orientation configuration, the identified carrier mode frequency is set by the secondary medium. 
 
3.5. SpectroPolarimetric Data Processing for P-SIM 
 
The fundamental observation that modulator assembly 20 imposes 4 independent modulation modes (DC, carrier, and 
sidebands) upon resultant intensity spectrum evokes the following expectation.  Inversion of the measurement equation given 
4 or more ν -varying spectral intensity samples should allow solving for the 4 unknown Stokes parameters of the sensor-
incident waveflux.  Given or providing the appropriate regularization conditions, this is indeed the case.  There are a number 
of conceivable methods that will undoubtedly suggest themselves to those skilled in the art for retrieving the Stokes vector 
and also the conventional intensity spectrum, at varying spectral resolution, from the transduced modulated intensity 
spectrum pertaining to a given spatial image resolution element. 
 
3.6. Polarimetric augmentation of CTIS design using P-SIM 
 
Non-scanning computed tomography imaging spectrometry (CTIS) provides a means of 2D imaging snapshot spectrometry 
ur3,4.  The essential notion is to use crossed transmissive phase gratings or a computer-generated holographic (CGH) 
disperser within the collimated image beam.  Followed by re-imaging optics, this projects spatially/spectrally overlapped 
regions of various spectral orders.  The effect mathematically is essentially to form various projections of the 3D space-
spectral image cube onto various oblique 2D planes.  These various “slices”, manifested by the various spectral orders 
projected on the focal plane detector, can be used to tomographically reconstruct the 3D spectral image cube voxels.  
However, the “missing cone” drawback of such imaging (due to a finite focal plane array, and other practical factors) limits 
the spectral and spatial resolution of the reconstruction.  To add full-Stokes polarimetry to this design without disrupting its 
snapshot feature, we simply insert the P-SIM modulator into the collimated beam.  The resulting spectrum will be modulated, 
and can be decoded for polarimetry, as evidenced in earlier discussion.   
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ABSTRACT 

 
The augmentation of passive IR conventional and hyperspectral imaging sensors with polarimetric capabili ty offers enhanced 
discrimination of man-made and geophysical targets, along with inference of surface shape and orientation.  In our efforts to 
size the design of IR polarimetric hyperspectral imagers to various remote discrimination applications, we have ascertained 
critical relationships between polarimetric SNR and pixel sizing.  This relationship pertains primaril y to realms wherein the 
objects to be sensed will be marginall y resolved spatiall y.  The determination of such application-specific relationships is key 
to the design of effective polarimetric sensors. To quantify this key trade-off relationship, we have employed the latest 
developmental version of SPIRITS, a detailed physics-based signature code which accounts for the various geometric, 
environmental i llumination, and propagation effects.  For complex target shapes, detailed accounting for such effects is 
especiall y crucial to accurate prediction of polarimetric signatures, and thus precludes hand calculation for all but simple 
uniformly planar objects.  Key to accurate polarimetric attribute prediction is our augmentation of the Sandford-Robertson 
BRDF model to a Mueller/Stokes formalism that encompasses representation of fully general elliptically polarized reflections 
and linearly polarized thermal emissions in strict compliance with Kirchoff’s Law.  We discuss detail s of the polarimetric 
augmentation of the BRDF and present polarimetric discriminability-resolution trade-off results for various viewing aspects 
against a ground vehicle viewed from overhead.  
 
Keywords: Optical infrared polarimetry discrimination polarization BRDF  reflectance signature 
 
 

1. OVERVIEW OF IR POLARIZATION PHENOMENA AND OBSERVABLE ATTRIBUTES 
 
The fundamental principle behind polarimetric sensing is the fact that the parallel and perpendicular reflection coefficients 
are not, in general, equal. Figure 1 shows the difference between the perpendicular and parallel Fresnel (intensity) reflection 

coefficients for a dielectric surface (n = 1.3, k = 0).  The apparent signature of an elemental surface may exhibit a net 
polarization, the nature of which is determined by the surface optical properties, the surface temperature, the viewing angle of 
incidence and the effective temperatures and angular distribution of the incident radiation field.  The impact of the optical 
properties can be characterized by the complex index of refraction, the surface roughness, and the “diffusivity” .  A sound 
representative model is one that partitions the exhibited behavior between "surface"  (i.e., specular) and "volume" (i.e. diffuse) 
scatter components.  The diffuse component (e.g., sub-surface volume multi -scatter) of reflected or emitted light is typicall y 
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Figure 1  Difference (disparity) between 
perpendicular and parallel Fresnel (intensity) 
reflection components, for dielectric (n=1.3, k=0). 



unpolarized.  The diffuse (i.e., rough) character of many natural background surfaces is the underlying reason why such 
backgrounds exhibit a decided lack of observable polarization.  For the "surface" component, the (unscaled) reflectance 
coefficients for light polarized parallel and perpendicular to the plane of incidence are given by Fresnel's relations, dependent 
upon the index of refraction.  Detailed discussion of the reflectance model is provided later below. 
 
Reflected light will exhibit a net polarization vector (E-field) perpendicular to the plane of incidence, while conversely, 
emitted light will exhibit a net "parallel" polarization.  Depending on the source intensities of surface reflected and emitted 
radiation, there may be a net partial polarization of observed radiation.  The degree of such polarization with respect to the 
total exitant radiation intensity is herein termed the Degree of Polarization (DoP).  For an isothermal surface and surrounding 
environment, the emitted and reflected polarized components cancel vectoriall y, yielding zero net DoP.  However, with 
unequal reflected and thermally emitted intensities, which particularly occurs for at least some of an object’ s surface elements 
when located within angularly anisotropic radiative environments (e.g., warm earth/cold sky radiance fields), such 
cancellation is typically incomplete, yielding a finite net DoP.  For such situations, the angle of the (E-field) polarization 
vector with respect to some reference direction is termed the Angle of Polarization (AoP), and depends upon the relative 
surface orientation.  In certain (relatively unusual) configurations, a third polarimetric attribute may be observable, that of the 
elli pticity of polarization (EoP).  Discussion of the various types of polarization descriptors and means of measurement can 
be found in Collett.1  In what follows, we will assume negligible EoP, and thus that DoP and AoP correspond to linear 
polarization. 
 

2. SENSOR DESIGN MOTIVATIONS FOR POLARIMETRIC SIGNATURE PREDICTION 
 
As indicated above, the IR polarimetric observables are strongly dependent on configuration variables.  In prior years there 
had been a vigorous if somewhat restricted debate about whether IR polarimetric observables were so fleeting and evanescent 
that it was not worth building sensors for their exploitation.  Although computational modeling evidence indicated sufficient 
persistence over much of the typical range of terrestrial environmental conditions, ever-accumulating field measurements 
provided the decisive corroboration.  At this point in time, there is general acceptance of the util ity of polarimetric sensing. 
Nevertheless, the relevance of signature prediction to polarimetric sensing remains strong, particularly for sensor design. 
 
Implied in the earlier discussion regarding the vectorial addition of polarimetric observables (e.g., Stokes vectors) is a fact of 
fundamental significance for polarimetric sensor (non-imaging) field-of-view (FOV) or (imaging) pixel instantaneous FOV 
(IFOV) sizing.  The polarimetric observables from two differently oriented surfaces may be of significant intensity when 
measured separately in turn.  Nevertheless, when these same surfaces are measured together in combination, the net 
polarimetric observables may yield negligible intensity, precisely due to vectorial combination.  This explains why a 
polarimetric imaging sensor that measures a sphere that completely fall s within a pixel’s subtense will register no 
polarization signal, while a similar sensor with higher resolution pixels that spatially resolve the sphere will register 
otherwise.  Thus, it is evidently of criti cal importance to match sensor pixel sizing to polarimetric feature spatial scale.  
 
An object such as an aircraft or ground vehicle can be modeled as a collection of elemental surfaces or facets.  The 
computation (prediction) of the net polarization attributes (e.g., polarized radiance, DoP, AoP) of an object, as observed 
within any given (partiall y or totall y subtending) angular view subtense, is essentiall y an exercise in the detailed accounting 
per the phenomenology described above, with the vectorial components due to each surface element within the subtense 
properly accumulated to yield the net polarimetric signature.  However, only a computer model can adequately account for 
the complex interplay of parameters required to compute such quantities for a complex shape such as a vehicle, especiall y i f 
these quantities are to be spatiall y resolved (imaged).  
 

3. IR POLARIZATION SIGNATURE PREDICTION CODE CAPABILITIES 
 
3.1. IR polarization signature prediction using SPIRITS-AC3 
 
SPIRITS (which stands for “Spectral and Inband Radiometric Imaging of Targets and Scenes” ) is a well -establi shed and 
validated optical signature prediction code owned by the U.S. Government and principally developed at Aerodyne Research 
by one of us (J. Conant).  Over the past 15 years, it has undergone numerous enhancements for various application versions.  
The most recent versions are denoted SPIRITS-AC, with “AC” indicating features and modules specifically useful in 
modeling aircraft signatures.  Nevertheless, the code is sufficiently flexible to allow importing of surface temperatures 
computed by specialized heat transfer codes, which facili tates applicabil ity to various other types of vehicles and objects.  
 



A “polarized” version of SPIRITS, called “POLAR” , was first generated by Aerodyne in 1986.  The POLAR code included 
two separate incompatible BRDF (bi-directional reflectance distribution function) models, for “polar” and “non-polar” use.  
The polar BRDF routines were based upon the Maxwell-Beard model2,3, while non-polar computations utilized the Sandford-
Robertson (“S-R” ) model as with other SPIRITS versions.  The capabil ities of this POLAR model evolved in tandem to those 
of the SPIRITS model itself, all the while remaining a separate code due to the non-unified BRDF modeling. Although valid 
for specular, non-metalli c coatings, the POLAR code implementation of the Maxwell -Beard BRDF model lacked an explicit 
coupling between the specular and diffuse components. 
 
To include proper treatment of coatings possessing a diffuse reflectance component as well as metalli c (e.g., complex 
refractive index) coatings, the most current developmental version of SPIRITS has thus been extended to compute both 
polarized and non-polarized target body radiances, and is denoted as SPIRITS-AC3dr1.4  It improves on and supplants 
previous versions of POLAR (polarized SPIRITS) in two ways: it is based on the latest developmental non-polarized version 
(AC2Dr2), and it has an improved polarized reflectance-emittance model.  This model combines the Sandford-Robertson 
approach (used previously in SPIRITS) with the Fresnel/Mueller equations, resulting in a model which includes the most 
important polarization properties, is easy to use, and gives total radiances identical to those of version AC2Dr2.  The new 
version has been given to U.S. Government (JANNAF) control, and is expected to comprise the latest configuration of 
mainstream SPIRITS. 
 
3.2. Characteristics and advantages of the polarized Sandford-Robertson BRDF treatment 
 
The Sandford-Robertson (“S-R” ) model as included within SPIRITS includes emission, transmission, and reflection.  
Reflectance is divided into quasi-diffuse and quasi-specular portions with separate sub-models.  Total reflectance and 
emittance are analyticall y coupled to conserve energy, with their relative balance an adjustable function of incidence angle.  
We model the specular reflections as polarized, while the diffuse reflections are depolarizing.  Future upgrades could add in 
polarization to the diffuse contribution.  At present, since we have focussed concern on opaque surfaces, transmissions are 
taken as neutral; they neither polarize nor depolarize the transmitted light, but merely attenuate all Stokes components by the 
same factor.  A more detailed discussion of how we polarized the S-R BRDF treatment is contained in [4].  An overview is 
presented below. 
 
In polarizing the S-R BFDF treatment, there were two main constraints we have adhered to.  First, we constrain the Stokes 1 
element (total radiance) to strictly match that yielded by the (non-augmented) S-R model.  In this way we ensure that all 
previous (non-polarized) SPIRITS tests and data validations remain relevant and repeatable.  Moreover, the new SPIRITS-
AC3 may be run in either polarized or non-polarized mode, and wil l give identical results in the total radiance. 
 
The second applied constraint is to meet the requirements of thermal equilibrium (discussed below), keeping a proper balance 
between polarized emissions and reflections.  Our previous polarization studies have shown that in most cases the total 
polarization state of a 3D object results from a subtle balance of vectoriall y competing polarized emissions and reflections, 
modulated by varying surface element orientations.  Specular reflectance and emission from a surface are cross-polarized (for 
unpolarized incident light), and they will cancel to the degree that the surface’s Planck emission matches the incident 
radiance field.  The remaining polarization will be a “small dif ference of two large numbers”, and thus sensitive to modeling 
infideli ties. 
 
In contemplating the compliance with Kirchoff’s Law, it is important to conceptualize the situation of thermal equilibrium, 
which dictates that incoherent unpolarized radiation is incident upon the surface.  Polarized incident light is by definition 
non-equilibrium.  Since unpolarized incident radiation will reflect as linearly polarized radiation, the emittance must be 
linearly polarized in such a way as to cancel the reflected polarization and yield a net unpolarized exitance under equilibrium 
conditions.  This also implies that elliptically polarized emission is forbidden.  [This is true even though at the microscopic 
level when a primary reflection followed by a secondary exitant reflection yields elli pticall y polarized light.  In this case, the 
primary surface will also emit linearly polarized light that exactly cancels the linear polarization of the primary reflection.  
Thus, the total light exitant from the primary surface onto the secondary surface is unpolarized.] This relationship between 
directional (polarized) emittance and scattering coefficients is similarly establi shed by Peake.5 A more generalized 
relationship for translucent anisotropic media in non-equilibrium is derived using Landau/Lifshitz fluctuation-dissipation 
theory in Yueh and Kwok.6  A treatment in [7] establi shes these fundamental properties of the BRDF from field (coherence) 
theory. 
 



Unlike other signature models, the polarization predictions of SPIRITS properly include the effects of finite-width lobe 
specular reflectance, non-Lambertian diffuse reflectance, and polarized directional emittance derived in strict compliance 
with energy conservation and Kirchoff’s Law.  Less capable approaches typicall y attempt to represent surface reflectance 
merely with a simple Mueller matrix derived directly from the complex refractive index.  Such approaches are ill -equipped to 
account for the effects of angularly variable diffuse reflectance, which complicates the maintenance of Kirchoff ’s Law 
compliance for the balance between reflected and emitted polarized light.   
 
The accuracy of predicted polarized radiance due to specular reflections of extended sources is fundamentally dependent on 
the accuracy of the source radiance assumed. SPIRITS versions AC2 and above employ a panoramic environmental 
(earth/cloud/sky) representation with inwell ing spectral radiances properly varying in both zenith and azimuth.  This level of 
fidelit y (as compared say to simpli fications that assume hemispherically isotropic upwell ing earth and downwelli ng sky 
radiance) is oftentimes critical for polarization signature prediction.   
 
3.3. Examples of SPIRITS-AC3 polarized signature computations 
 
An example computation using SPIRITS-AC3 is shown in Figure 2 and Figure 3.  This employed a representation of a Beech 
Duke commercial aircraft.  In this representation the propellers are modeled as a translucent disk with radially varying normal 
vector, capturing the effect of their time-averaged spin on a staring sensor and also the effect of propeller variable pitch.  A 
set of realistic paints was applied, and a full radiating environment was used.  Computations were made in both the LWIR 
(1000 – 1500 cm-1) and SWIR (4000 – 5000 cm-1) regions to show both thermal-dominated and solar-dominated images. 
 
Figure 2 shows the total (Stokes 1) radiances in both bands.  The LWIR image is dominated by thermal emission, which is 
fairly uniform across the body.  Most variation across the image is due to varying amounts of reflected warm earth and cold 
sky, with reflected earth causing the lighter regions on the sides. The translucent time-averaged propellers reflect either earth 
or sky depending on their local orientation, which varies radiall y (propeller pitch) and azimuthally (propeller spin).  The 
SWIR image is dominated by reflected sunlight, with glints from the propellers. 
 
Figure 3 displays the degree of linear polarization ("DoLP"), color-coded from 0.0 (black) to 28% (white) for both bands.  
The DoLP is largest for facets seen near-grazing angles.  Since the primary aircraft paint was given significant extinction 
(imaginary index) there is no Brewster Angle where a facet (in the SWIR) is 100% polarized; the angle of maximum linear 
polarization occurs around 80o off-normal, or 10o from grazing.  Furthermore, the net DoLP will t end toward a maximum 
when there is minimal cancellation of the competing emission and reflection.  Since the employed set of Sandford-Robertson 
BRDF model parameters has emittance decrease toward grazing while specular reflection increases, a DoP peak at grazing is 
to be expected. 

 

(a) LWIR (b) SW IR
 

Figure 2 Example SPIRITS-AC3 computation - Total radiance 



 
4. MULTISCALE POLARIMETRIC SIGNATURE COMPUTATIONS 

 
While SPIRITS-AC3 is an essential tool for computing the apparent Stokes imagery of complex targets, it is inefficient to 
iterate its computations merely in order to span across various pixeli zations (spatial resolutions).  Instead, our approach for 
gauging the impact of spatial resolution is to perform a multi-resolution decomposition of the high-resolution Stokes imagery 
output from SPIRITS-AC3.  At each spatial resolution level, the corresponding Stokes image planes are used to compute 
images of various polarimetric measures such as DoP.  This of course is the physical ly correct manner of reckoning; merely 
performing a multi-resolution decomposition on, say, the hi-resolution DoP image itself is incorrect.   
 
The multi-resolution decomposition is performed using an augmentation of the classical (oversampled) Gaussian pyramid.8  
The “pyramid” terminology is appropriate since each resolution level’s image is decimated by factor 2 (in each dimension) 
relative to the preceding level.  Conceptually “stacking” the various resolution level imagery along a vertical axis yields a 
pyramid, with the finest resolution level corresponding to the original image (level “0” ) at the bottom, proceeding to ever 
coarser resolutions toward the top.  An image at the “i -th” resolution level is formed by lowpass filtering the “(i-1)-th” level 
image then subsequently decimating the filtered result by factor 2.  The low-pass filter is typicall y a 2D Gaussian kernel – we 
employed an even-number of taps (6x6).   
 
It can be shown that a pixel at the “i-th” resolution level corresponds to the output of an ever more finely interpolated 

“effective” filter kernel spanning 2i−1 ⋅ kernelWidth  pixels along a given dimension of the original (level 0) image.  
Furthermore, the “weight” of the effective interpolated kernel is preserved – we normalized our 6x6 kernel taps to sum to 1.0.  
The composite “phase” of this effective kernel “ laydown” within the original level 0 image can be controlled by selecting the 
“odd” or “even” samples (for each dimension) at each decimation step.  This successive downsampling-with-averaging 
property of the Gaussian pyramid exactly mirrors the pixel response to a scene for a physical imaging sensor as its IFOV 
resolution is coarsened.   
 
To statisticall y assess the impact of varying IFOV size on polarimetric discriminability, we treated each of the non-zero 
valued pixels (i.e., target & boundary samples) within a given multiresolution level DoP image as dwell samples pertaining to 
the corresponding IFOV size.  At each level, we include in the sample ensemble all 4 sets of sampling "phase", i.e., the "odd" 
and "even" samples for each dimension at each decimation step.  Although strictly speaking, it is the polarized radiance and 
not the DoP that determines polarimetric SNR, for our particular example given its fairly high target effective emisivities and 
warm environmental reflections, SNR is sufficiently proportional to DoP across all total radiance instantiations.  When 
reporting effective IFOV values, we quote the IFOV as the full -width-half-maximum (FWHM) of our effective (Gaussian) 
kernel, which we take to be half its total width.  Its total width spans +/- 2.5 standard deviations (s.d.), so the FWHM spans 
2.5 s.d. (+/- 1.25 s.d.).   
 
We took care in our implementation of such computations to preclude careless missteps that might tarnish the results.  The 
lowpass filtering was performed using FFTs, which implies performing a circular convolution.  To preclude the associated 
wraparound and edge effects, we padded the Stokes imagery, placing the target in the center of the pad.  Pad values set to the 
background radiance were employed for s1 imagery (total radiance), while zero-valued pads were employed for s2-s4 (this 
assumes unpolarized background).  Since the successive decimation performed by the Gaussian pyramid operations would 
eventually cause enough pad decimation to threaten wraparound effects, we adaptively re-padded during the “ascent” of the 
pyramid.  Padding was maintained so that the distance between the target boundaries and the image borders was always 

(a) LWIR (b) SWIR
 

Figure 3 Example SPIRITS-AC3 computation - Degree of linear polarization 



greater than the kernel width.  One might dub this augmentation of the pyramid computations as the “interrupted Gaussian 
pyramid” .  For eff iciency of coding, all i mplementation was performed in MATLAB. 
 

5. POLARIMETRIC OBSERVABILITY VERSUS IFOV SIZE – EXAMPLES 
 
We model a military ground vehicle, which for expedient modeling purposes we assume is uniformly coated with a typicall y 
high emissivity specular paint.  The inquiry regards observers above the ground at the following viewing geometries.  
Observers are sweeped in azimuth about the vehicle in steps of 40 degrees starting from 0 degrees (head-on)., for the 
following discrete zenith angles: 30, 45, 60, 75, and 85. Zenith angle is measured between the local vertical (at the vehicle) 

and the vector from vehicle to observer; thus 0 degrees corresponds to a directly overhead observer, while 90 degrees is a 
horizontally viewing observer.  Signatures were computed for the 8-12 micrometer band from a range of 10km through a 
clear sky U.S. Standard Atmosphere, rural haze, with multiple scattering as computed by MODTRAN.  The vehicle was 
quiescent with temperatures computed for a sunny diurnal cycle point of 1500 local time.   
 
A number of competing factors confound simplistic expectations regarding the dependence of the distribution of pixel DoP 
on zenith, azimuth, and varying IFOV size.  Although incidence angle, thus Fresnel disparity hence elemental DoP, increases 
with zenith for horizontally oriented surfaces, it decreases for those vertically oriented.  Furthermore, as the Fresnel disparity 
of horizontally oriented surfaces increases with zenith, their projected area decreases as the reciprocal of cosine(zenith).  
Thus, a statistical analysis of the behavior of DoP with the factors zenith, azimuth, and IFOV size is warranted and presented 
below.   
 
2D scatterplots of DoP versus IFOV lineal subtense (1 plot for each given zenith) are shown in Figure 4 through Figure 8.  
Regression analysis revealed no clear trend with respect to azimuth angle (even when considering trimmed quantiles), so it is 
a hidden factor in what we present here (although azimuth induces a slight systematic variation on realized IFOV values due 
to the image formation operations within SPIRITS).  Each point plotted represents a pixel from within each of the 4 grid sets 
of pixels that fall across the target for a given IFOV size.  A grid set corresponds to 1 of 4 possible dyadic sampling phases 
(e.g., northeast, northwest, southeast, or southwest shift by half an IFOV width).  All grid set pixels are plotted, even those 
with meager target fil l factors (e.g., those that barely include the target edge).  Thus, for nearly all IFOV bins the DoP sample 
values will span a range extending down to near zero.  Detection will be dependent largely on high fill factor pixels with 
correspondingly higher DoPs (i.e., not diluted by unpolarized background).  Therefore, the most relevant “response surface” 
is what one may visualize as “draping” across the tops of the “spikes” of samples within the scatterplots.  
 
One prominent robust trend is (visually) evident from inspection of the scatterplots.  For a fixed zenith angle, the observable 
DoP values decrease at least superlinearly and nearly quadraticall y with lineal IFOV subtense.  This makes sense in that the 
projected area increases quadratically.  For this vehicle and scenario, the highest DoPs occur for zeniths of 75 and 85 and, 
relative to these, are somewhat lower for zeniths of 30, 45, and 60.   Interestingly, the maximum DoPs achieved appear to be 
lowest for 60 degree zenith, with an increase in DoP as the zenith value approaches the extremes of zenith.  This may be 
related to the fact that the neighborhoods near the extremes of zenith (0 and 90) represent the best opportunity for near-

 

Figure 4 Scatterplot of DoP versus IFOV for zenith=30 



grazing incidence viewing of horizontal or vertical surfaces (hence maximal Fresnel disparity), although as earlier remarked 
this competes with other effects.   

 

 
An IFOV (“FOV” in the plot figures) of 400 microradians (0.0004) corresponds to a projected length of 4 meters (lineal) at a 
10km range.  The size of the vehicle is nominally about 4m width by 7m length by 3m height.  An IFOV projected footprint 
of between 0.5m-1.0m (lineal) (50-100 microradians) appears to be about the coarsest sizing that maintains DoP at or greater 
than 5% (corresponding roughly to 10:1 polarimetricSNR), before the DoP drops precipitously to negligible noise-equivalent 
(e.g., 0.5%) levels.  (Note:  the axes of the plots are displaced outward from the data origin for clarity). 
 

 

Figure 5 Scatterplot of DoP versus IFOV for zenith=45 

 

Figure 6 Scatterplot of DoP versus IFOV for zenith=60 



 

 
6. CONCLUSION 

 
These results, though rendered for a singular scenario and certainly not exhaustive, should infuse a cautionary approach into 
polarimetric sensor design for remote sensing and surveillance.  Specifically, we demonstrate that the spatial subtense of the 
detector(s) is a critical design parameter – if their sizing is chosen carelessly, a negligible polarimetric signal may result when 
deployed against the applications of interest.  These IFOV size sensitivity results need to be validated by comparison with 
actual measurement data.  Nevertheless, a well -validated polarimetric signature prediction model appears slated to play an 
essential role in careful polarimeter designs of the future.  
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In this work we consider the solution of multiple linear systems of equations 
of the form 

A:rU! = 1/j), j = 1, ... , J, 

\Vhere A E cnxn is large, sparse, and non-Hermitian and the 1/Jl's are all avail
able simultaneously. Sur:h problems arise, for instance, in the numerical so
lution of frequency-domain electromagnetic wave scattering: in this case, the 
right hand sides might correspond to different incident fields on the scattercr 
induced either by plane waves incident at various angles or by excitation sources 
at different lor:ations. \Ve propose a new technique, based on the quasi-minimal 
residual (Q:tviR) algorithm, t.o solve these types of problems. Our approach is 
efficient in both computation time and storage. 

The naive approach of solving each of the J linear systems independently 
using a Krylov subspace method docs not take advantage of the fact that the 
1/J) 's, and henr:e the ;r;Ul 's, may be closely related due to the underlying physical 
nature of the problem. By closely related, we mean that the solution to the jth 
system has large components in the directions of the Krylov subspace generated 
from one of the other systems. Projection-type techniques for both the Hermi
tian and non-Hermitian cases that. specifically exploit such shared information 
have been proposed (e.g., see[?,?] and the references therein). 

Another alternative is to use a block algorithm, such as block Ql\IR [?, 
?], to solve the systems simultaneously. Hmvever, this approach can be more 
expensive in terms of storage than projection techniques because the length of 
the recurrences to update the iterates depends on the number of right hand sides, 
or, in the case of deflation [?], the number right hand sides r:orresponding to the 
defiated Krylov subspaces. Further, the residuals themselves are not available at 
every iteration. Also, if a deflation technique is used, a deflation tolerance must 
be specified in advance, and we have found in experiments that the performance 
and r:onvergence of the systems depends in an unpredictable way on this value. 
Therefore, \Ve pursue the idea of a projection-type technique and then present a 
block variant of our algorithm that exploits good properties of the block Q:tviR 
algorithm \vhilc preserving the basic properties of our projection-type technique. 

The idea. of a projection-type technique is to choose one of the J systems 
to be the "seed" system and apply some type of Krylov subspar:e method to it. 
For the non-Hermitian case, choices include conjugate gradient for least squares 
(CGLS), biconjugate gradient (BiCG), conjugate gradient squared (CGS), and 
generalized minimal residual (Gl\IRES). As the relevant subspaccs arc gener
ated, the approximations to the other systems arc simultaneously updated by 
projecting the residual onto a particular subspace and by either enforcing a 
Ga.lerkin-type condition[?,?] or by minimizing the projected residual[?]. Our 
algorithm is similar to the project-minimize approach but has certain advan
tages over the algorithm in [?]; namely, we do not need to store the basis vectors, 
we do not need to predetermine a subspace dimension, and the approximate so
lutions and residuals are r:heaply computed and available at. every stage of the 
algorithm because they are updated with short-term recurrences. 

Our algorithm proceeds as follows. First, we select one system, say system 
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j, to serve as "seed" and apply Q::Vm (without lookahcad) to the seed system. 

In the following, we use r6J) to denote the initial residual to system j given the 

starting guess :r~j) and rij) to denote the residual of system j after k iterations. 
As Q:VIR progresses to the k+ 1st iterate, it generates hi-orthogonal bases for tvm 
k-dimcnsional Krylov subspaccs, Kk+r(A,r~j)) and Kk+1 (AT,rSil). \Vc denote 
the respective bases by the columns of '-''k+l and H rk+l· By hi-orthogonality, 
TVl~1 lk+l = D k+l = diag( !51 , ... , 8.~;:+ 1 ). For the seed system, the kth iterate is 
obtained by minimiz,ing the norm of a quasi-residual, \vhich amounts to solving 
a least squares problem involving a (k + 1) x k tridiagonal matrix. That quasi

residual can also be thought of as a projected residual; that is, if riJJ denotes 

the k:t.h residual of the seed, the k:t.h iterate is taken to be :rr~jJ + l k zij), where 

zij) denotes the vector in CA: \vhich minimizes the norm of D/:~ 1 1V/~1rkj) 
D -1 T;rrT ( (j) 4.• F (j) ) 

k+l yk+I 1'0 - . VkZ;, " 

\Ve extend this idea to solve the remaining systems. Thus, if r~,i ) denotes 
the kth residual of the ·ith non-seed system, the corresponding kth iterate is 
i · · i t · (il u · uJ ·l · · Ul · · · · 1 · f n-1 T": 1 · "' til r etermmer to >e .J:0 + • .~;:zk \\· 1ere zk nnrnrrnzes t 1e noun o k+I ·• k+l r k . 

Alternately, the iterates to the non-seed systems can be thought of as minimizing 
a quasi-minimal residual. After the seed system converges, the current iterates 
arc used as starting guesses and the process is repeated by selecting a nc\v seed 
from among those that have not converged. The whole process repeats until all 
the systems have converged. Although it is not obvious from this discussion, we 
note that no extra Lancz,os vectors need to be stored to form the kth iterates 
of the non-seed systems. \Ve expect our algorithm to have better convergence 
behavior than BiCG-projection approaches just as Q:\-IR behaves more stably 
than DiCG on a single problem. 

The dominant cost in our algorithm is the total number of matrix-vector 
products. In the \Vorst case, if the solutions have very little shared information, 
\:Ve expect the cost to be comparable to the method of solving each system 
separately. Hmvcvcr, if the Krylov subspace generated by the seed and the 
Krylov subspace generated by a non-seed are dose, we expect that only a few 
restarts, relative to the number of right hand sides, will be necessary, and thus 
significantly reduce the number of matrix-vector products computed overall. 
Along the lines of the analysis in [?], we show that under certain conditions, 
\vhen the process is restarted \vith a nc\v seed, the convergence rate of the 
residual of that seed system behaves as if the extreme ends of the of the spectrum 
of A are cut off. \Ve are currently working on bounds for the remaining residuals 
after each restart. Indeed, our numerical results indicate that the computational 
savings of our algorithm over the approach of solving each system separately 
can be significant. 

As mentioned, the performance of the single seed projer:tion-type algorithms 
relies on presence of common information among the right hand sides. If little 
such information is found, one vmy found to generali"'e our algorithm to address 
this difficulty is to take m (1 < m < .J) systems as seed, say those with indicies 
in Is, and usc block QlVIn to solve the seed systems. Then, as with the single 
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seed algorithm, we project the residuals of the non-seed systems and solve the 
corresponding minimization problems. Thus, the Krylov subspace in which 
approximate solutions are sought is the bn dimensional subspace 

\Ve use the implementation in [?], which incorporates deflation to drop con
verged seed systems and to delete (nearly) linearly independent vectors in 
Kkm(A, B 8 ) and Kkm(Ar, B 5 ). :Methods for selecting optimal choices for m 
and Is are topics for future research. 

Therefore, if the right hand sides of the seed systems arc not very closely 
related, they must each be contributing unique information to the Krylov sub
space, and \ve expect convergenr:e of the seed systems to occur for small k. 
Further, we expect that initial guesses of non-seed systems obtained by projec
tion onto this subspace will be better. As long as the number of seed systems 
is not too large, there arc still short term recurrences which generate the so
lution estimates at each iteration. \Ve are currently exploring the theoretical 
convergence properties of our multiple seed approach. 
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ABSTRACT FOR the SIAM ANNUAL MEETING in TORONTO 1998  
 
Ill-conditioned matrices with Toeplitz-type structure arise from the 
discretization of certain ill-posed problems.  We use a preconditioned 
Krylov subspace method to compute a regularized solution to this linear 
system given noisy data.  Our preconditioner is a rank-$m$ 
approximation to the Cauchy-like matrix obtained by applying a fast, 
symmetry-preserving orthogonal transform to the original system.  We 
show that the preconditioner has desirable properties, give a method 
for applying it quickly, and illustrate its effectiveness on examples.   



ABSTRACT FOR SIAM ANNUAL MEETING IN Atlanta, 1999 
 
We consider the solution of large, sparse, non-Hermitian, linear 
systems with multiple right hand sides.  We use QMR to solve the seed 
system and generate bi-orthogonal Krylov subspaces; approximate 
solutions to non-seed systems are generated by minimizing their 
appropriately projected residuals.  The process is repeated by 
selecting a new seed from among the non-converged systems and using 
previously generated approximate solutions as initial guesses.   
Convergence theory is given and algorithmic efficiency is illustrated 
on examples. 



ABSTRACT FOR PLEMMONS BIRTHDAY CONFERENCE, 1999 
 
Discrete ill-posed problems in the form of large linear systems or 
least squares problems occur in a variety of applications.  Due to the 
presence of noise, regularization methods must be used to determine a 
solution that approximates the noise-free solution.  A wise choice of 
regularization parameter, which controls conditioning, is crucial to 
obtaining a good approximate solution.  If the dimension of the 
discrete problem is large, however, selecting a parameter and solving 
the regularized problem can be costly.  For this reason, we compute an 
approximate solution by projection onto a smaller dimensional subspace 
via Krylov subspace-based iterative methods.  We show how techniques 
designed for choosing the regularization parameter for the original 
problem can also be used effectively on a regularized form of the 
projected problem.  We prove some results on the approximate 
equivalence of this approach of regularizing after projection to other 
forms of regularization, which operate on the larger problem directly.  
The success of these techniques and the computational savings is 
illustrated in examples. 



FOR TALK AT UMASS DARTMOUTH, 1999 
 
Many problems in image processing require the solution of a linear 
system or least squares problem resulting from the discretization of a 
first kind integral equation.  The exact solution to such problems is 
often hopelessly contaminated by noise, since the discretized problem 
is very ill conditioned and noise is usually present in the data; 
hence, regularization must be employed to approximate a solution.  In 
this talk, we will consider a wavelet-based regularization scheme for 
use in linear image restoration problems.  We introduce the L-
hypersurface method for determining the multiple regularization 
parameters associated with our regularization scheme.  Since the 
computational cost of selecting parameters by means of the L- 
hypersurface can be prohibitive, we also explore cost efficient 
variants.  The effectiveness of our regularization approach and 
parameter selection techniques will be illustrated on several examples. 
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Abstract

The detection of landmines and buried objects requires methods that can cover large areas rapidly while providing the required

sensitivity to detect the optical and spectroscopic contrasts in soil properties that can reveal their presence. These conditions

on contrast and coverage can be met by capturing images of the soil at wavelengths which are sensitive to the properties

modified by the presence of buried objects. In this work we investigate both imaging and scanning methods which may have

some utility for the detection problem. In the imaging approach, we capture hyperspectral reflection images using an acousto-

optic tunable filter (AOTF) and fluorescence images using a long-pass filter. For the scanning method, we acquire data point-

by-point over a two-dimensional grid with a single emitter/detector pair. The results illustrate the potential of these two

approaches for detection of landmines and buried objects.

I .  Introduction

Indirect methods of detecting buried objects involve looking for differences between undisturbed soil and soil directly above a

buried object. The detection of landmines and buried objects requires methods that can cover large areas rapidly while

providing the sensitivity to the contrasts in soil properties that can reveal the presence of foreign objects. The conditions on

coverage can be met by acquiring images of large areas or rapidly scanning over the ground. The contrast is provided by

acquiring the data at specific wavelengths or over continuous spectral bands which are particularly sensitive to the properties

affected by the presence of buried objects. In this work we look at both imaging and point-by-point (scanning) methods which

can be adapted for use in the detection problem. The images were acquired by a charge-coupled device (CCD). Two types of

images were captured: (1) narrowband reflection images using an acousto-optic tunable filter (AOTF) and (2) fluorescence

images using a long-pass filter. The scanning method employed a near-infrared (NIR) emitter/detector pair where data were

captured point-by-point over a two-dimensional grid.

II. Imaging-Based Methods for Object Detection

IIa. Reflection Imaging with an Acousto-Optic Tunable Filter

By taking two-dimensional images of a target zone, a large area can be spectrally mapped quickly given that the contrast

between the background soil and burial sites are sufficiently strong to allow rapid detection. One method of increasing contrast

is to image at/over wavelengths where the differences in reflection or fluorescence properties are maximized. These types of

images can be captured rapidly by using an acousto-optic tunable filter (AOTF) for wavelength discrimination. The AOTF is



a narrowband optical filter with a electronically-selectable passband and a two-dimensional aperture. It can quickly jump

between remote wavelengths or be rapidly scanned across some continuous spectral range. Band-limited (i.e., a spectral range

wider than the resolution width of the filter) imaging can be performed by scanning the AOTF across a specific range of

wavelengths while exposing the image-capturing elements

(e.g., film or charge-coupled device array (CCD)). Our

laboratory has previously reported on the use of AOTF/CCD

based systems for hyperspectral imaging[1-3].

The AOTF operates by propagating ultrasonic waves through

an anisotropic crystal. The strains induced by the ultrasound act

to spatially modulate the indices of refraction of the crystal.

The device is essentially a three-dimensional grating whose

spacing can be tuned by changing the wavelength of the

ultrasound in the crystal. Since the AOTF has no moving parts

and can be rapidly moved to the desired wavelength, it is ideal

for use in portable instrumentation where spectral selectivity

and timely feedback are required. Figure 1 shows the how the

light is discriminated by the TeO2 AOTF used here.

In this work our imaging system was limited to wavelengths

shorter than 700 nm. Thus to demonstrate the capabilities of

an AOTF-based system to make wavelength-resolved images,

we have examined a landmine casing both above and partially

buried in sand (see Figure 2) illuminated by an incandescent

lamp and imaged at wavelengths from 525 to 700 nm. A

white-light image of the casing is shown in Figure 3. The

imaging system is diagrammed in Figure 4 and employs a

TeO2 AOTF (Brimrose, Inc. tunable from 450 to 700 nm), a

thermoelectrically cooled CCD (Santa Barbara Instruments,

Model ST-6) and a camera lens with adjustable aperture and

focus. At each wavelength, in addition to the landmine images,

an image of a white card was also recorded along with the landmine casing for use in data normalization. The normalization

process is diagrammed in Figure 5.

The normalized images for the exposed casing are displayed in Figure 6. The casing has five indentations on its surface (four

around the rim and one arrow-shaped) which were filled with sand in the wavelength-resolved images. The best images in
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Figure 1:  AOTF mode of  operation. When a
ultrasonic wave propagates in the crystal, a specific
wavelength component of the incident light is diffracted
into the two first-order beams. The wavelength in the
diffracted beams is tuned by changing the frequency of the
ultrasound propagating in the crystal.
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casing

Mine casing at surface

Mine casing partially buried

Figure 2  Orientation of the landmine casing for the two
sets of images taken with the AOTF.



terms of clarity and contrast between the sand and casing are the three

images taken at 600 nm, 625 nm, and 650 nm respectively. The

images of the partially buried casing, as displayed in Figure 8

(Figure 7 gives the orientation of the casing as seen in Figure 8), showed similar results. For these, the 625-nm and 650-nm

images display the best contrast. The resulting contrasts in these reflected-light pictures are of course related to the respective

colors of the casing and sand. The casing is mostly green and as one moves to longer wavelengths (starting from 525 nm) the

casing reflects less light while the background sand reflects more evenly across the spectrum. Thus the contrast between the

two increases as one moves from green wavelengths to the red end of the spectrum. Future work will involve investigating

local reflection properties of the soil at NIR wavelengths. By performing narrowband or wavelength-resolved imaging, the

contrast in soil properties can be maximized.

3”

Figure 3  Reflection image of the landmine casing
in white light.

Flat Field
Image at λ

Image of
Casing at λ

Normalized
Image

÷ =

Figure 5  Normalization process for the images. The image of a white background at the wavelength of
interest is divided by the image of the casing at the same wavelength. This processing was used to produce
the images shown in Figures 6, 7, and 8.
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Figure 4  The wavelength-resolved
imaging system built around the AOTF.



IIb. Fluorescence Imaging

In addition to reflected light, we also captured images of the fluorescence emission from the partially-buried object. In this

mode, the AOTF was replaced by a 525-nm long pass filter, the focusing lens/camera were axially aligned with the collection

lens and the object was illuminated by the 488-nm line of an Argon laser. The captured image is shown in Figure 9. The high

contrast between the casing and sand is readily apparent. If a condition of the soil above a buried mine can be detected via

fluorescence, this method could be useful in low-light situations where the fluorescence can be measurably detected over

ambient reflected light.

525 nm 550 nm 575 nm

600 nm 625 nm 650 nm

700 nm

Figure 6  Normalized images of the landmine casing at seven wavelengths. The contrast between the
sand and casing is greatest in the 600, 625 and 650 nm images.



525 nm 550 nm 575 nm

600 nm 625 nm 650 nm

675 nm

Figure 8  Normalized reflection images of the partially-buried landmine casing at seven wavelengths.
The degree of contrast between the sand and casing is greatest in the 625 and 650 nm images.

625 nm 1”

Region of casing 
pictured at left

Figure 7  The right panel shows the region of the casing displayed in the
partially-buried object images. The left panel is an image of the partially-
buried casing at 625 nm. The ovals identify where the casing breaks
through the surface



III. Point-by-Point Scanning in the NIR

In contrast to the direct imaging methods, we also performed a

point-by-point reflection-mode scan in a 2-D grid pattern at

NIR wavelengths over the surface of sand with wet and dry

areas. The idea behind this experiment is that the soil above

the buried object may contain less moisture - the flow of

moisture being drawn up to the surface (due concentration

gradients stemming from surface evaporation) may be affected

by the presence of the object. A casing for a landmine was

buried under 5 mm of material in a tray that measured

30x16x8 mm (LxWxD). In order to simulate the dry and wet

areas found in the field, a piece of plastic wrap was used to

separate the dry material from the wet. Using an infra-red

emitter/detector matched pair operating at 915 nm, a light-

emitting diode (LED) and a photodetector were mounted side-by-side on perforated board and soldered in place. The orientation

was chosen to maximize the detection of reflected IR from the infrared LED. The photodetector has a sensitive area of about 1

mm2 while the LED has a collimating lens mounted in place and a radiant power of 0.5 mW. The detector and experiment are

depicted in Figure 10.

The photodetector was used in the passive mode and voltages were measured with a digital multi-meter. The device was

positioned using an optical rail system marked in mm. The

LED and photodetector were held about 30 mm above the

surface of the soil and a reading was taken, in a darkened

Exposed portion of casing

Figure 9  Fluorescence image of the partially-buried
landmine casing. The sample area was illuminated with the
488 nm line of an Argon laser. A 520 nm long pass filter
was used to remove the background.

sand

sensor

mine

sensor in detail

Figure 10  Diagram of the sensor and the experimental
arrangement used for the IR scan.

position of buried casing

Figure 11  Result for the IR scan of the buried object.
The x and y axes are position and the z-axis is the
photodiode voltage in linear units.



room, every 20 mm in the x and y direction. The surface scanned in this procedure covers a 12x20 cm area. The resulting

image is illustrated in Figure 11.

The experiment provided an image of medium resolution where the wet sand reflected enough radiant energy to produce a

signal on the order of 27 - 40 mV and the dry sand that of 50 - 60 mV. The variation of the signal at any given point was

about one millivolt. The device was able to differentiate between wet and dry material and produce an image that roughly

corresponds with that of the buried landmine. Further work will focus on improving the sensor and more accurately

simulating field conditions in the laboratory.

Conclusion

In this paper, we have reported on some preliminary work evaluating methods that could be used in the detection of buried

objects. We examined imaging techniques using both reflected and fluorescent light as well as point-by-point scanning with a

single infrared emitter-detector pair. Each of the methods shows some promise and will be evaluated under more stringent

conditions in the future.
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Abstract

The sand above a shallow buried object can be differentiated from the surrounding sand by
detecting the difference in relative water content.   Moist sand absorbs more near-infrared (NIR)
incident light than dry sand.  A light emitting diode operating at 900 nanometers and a
photodiode sensitive to NIR radiation formed the emitter/detector pair used in this study.  The
pair were mounted side-by-side and scanned over a surface in a two-dimensional grid as
readings were collected point-by-point.  The results indicated that this simple NIR
emitter/detector pair discriminated between sands of varying water content and possessed an
imaging resolution of 4 millimeters.

I.  Introduction

Remote detection of a shallow-buried-object requires identifying a property to distinguish the
undisturbed soil and the soil directly above the buried object.  One characteristic that may be
exploited for such differentiation is the water content of the surface soil.  The water content of the
soil directly above a buried object can differ from that of undisturbed soil and the difference can
be detected using near-infrared reflectance. The detection of landmines and buried objects
requires methods that can cover large areas rapidly while providing required sensitivity to
detect the optical and spectroscopic contrast in the soil properties that reveal their presence.
These conditions on contrast and coverage can be met by capturing images of the soil at
wavelengths which are sensitive to the properties modified by the presence of buried objects.
Eventually these techniques can be extended to rapidly scan large areas by using NIR
photography.  Previous work has shown how powerful an imaging system is in detecting
buried objects [1].  The work in this paper illustrates the usefulness of the NIR optical region for
detecting buried objects and leads directly to NIR imaging techniques.

II.  Experimental

In this study, a probe was constructed to examine the ability of NIR reflectance to detect
differences in the moisture content of sand.  The emitter and detector were mounted side-by-
side on perforated circuit board with a current limiting 1K resistor and a 9V battery for the
source.  The detector was used in the passive mode and had a 12 millimeter long opaque tube
affixed to its casing.  This tube protected the photodiode from side scatter of the LED and
enhanced the image resolution.  Light reflected off of the sand surface was captured by the
photodiode, which  generated a voltage level that was read by a digital multimeter.

Sand (Quikrete Play Sand) was placed into a plastic tub that measured 13X7X3.5 inches.  Plastic
petri dishes measuring 10 millimeters high and 35 millimeters in diameter were placed in the
sand so that their tops came flush with the surface.  On the average, one of these petri dishes
holds 13.3 grams of sand.  Three of these dishes were placed in the tub and various amounts of
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water were added to each dish.  The emitter/detector pair was mounted onto the end of an
optical rod and this mounted onto an optical rail scored in millimeters.  The configuration
positioned the pair to be looking down onto the surface.  This experimental configuration was
used to optimize the distance between the surface and the emitter/detector pair to determine
the response of the device to various amounts of water in sand and the resolution of the
optimized system.

Resolution was determined by finding a bright reflective surface (white paper) and a good
absorber (black paper) and mounting them to produce a sharp boundary perpendicular to the
axis of travel of the emitter/detector pair. A step size of 2 millimeters provided sufficient
accuracy to determine the imaging resolution of the system.  The resolution of the detector was
adjusted by placing a black plastic tube over the active element to create a limiting aperture.
By increasing (decreasing) the length of the tube, the resolution is increased (decreased) as well.
A longer tube length, however, is also accompanied by a decrease in signal.  We determined
the resolution of a 12 millimeter tube to be on the order of 4 millimeters (Figure 1).  We found 4
millimeter resolution gave us a reasonable balance of spatial sensitivity and signal-to-noise. The
final experimental configuration is illustrated in Figure 2.

.  
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Figure 1: Determining  Imaging Resolution of 
Emitter/Detector Pair System
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Figure 2: Schematic of experiment for determining areas having higher water content than
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The scans were made in a darkened room and the device was moved in 5 millimeter
increments in both directions.  The sand was used as is; there were no special preparations
made such as baking or washing.  To determine the amount of water per gram of sand three
petri dishes were chosen at random, tared, filled with sand (overfill and scrape level method),
and weighed when filled.  Each was weighed filled three times generating nine data points.
The weights were consistent as seen in table 1.

Table 1

Petri Dish 1 Petri Dish 2 Petri Dish 3
Net Weight 1 13.26 g 13.66 g 12.96 g
Net Weight 2 13.15 13.63 13.02
Net Weight 3 13.02 13.54 13.39
Mean ± St. Deviation   13.14  ±   0.12 g 13.61  ±   0.06 g     13.12 ±  0.23 g

All nine results give a mean weight of 13.29 ± 0.27 gram.  In preparing this proof-of-principle
experiment, it was desirable to maintain a constant distance between the detector and the
surface of the sand.  In accomplishing this, material was moved into and out of the petri dishes
several times as the surface and the dishes were scraped over by a steel ruler.  The leveling
procedure makes it impossible to weigh a known amount of material into a petri dish.
However, the standard deviation of the weights and the consistency between dishes shows that
relatively little error was introduced by not weighing the sand in each dish.  Figure 3 gives a
graph of the response of the emitter/detector pair when viewing sands containing various
amounts of water.  Dry refers to untreated sand.  The unit (milliliters/gram) given in the graph
refers to the amount of water added to untreated sand.

Figure 3:  Response of System to Soils Containing Various Amounts of Water

mL / gr Mean St. Dev. Data 1 Data 2 Data 3 Data 4 Data 5

(Dry) 0 15.5 0.122474 15.6 15.5 15.3 15.5 15.6
0.037 13.26 0.320936 13.3 13.4 13.5 12.7 13.4
0.075 11.8 0.291548 11.4 11.9 11.8 12.2 11.7
0.113 11.12 0.130384 11.2 11.1 11.2 11.2 10.9
0.15 10.6 0.2 10.7 10.4 10.5 10.5 10.9
0.188 10.58 0.130384 10.5 10.6 10.7 10.7 10.4
0.226 10.22 0.083666 10.2 10.3 10.3 10.1 10.2
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Figure 4 illustrates the image resulting from a point-by-point scan of the surface.  The petri
dishes contained sands of higher water content than the surrounding sand.  This image was
produced by moving the detector in 5 millimeter increments.   A grayscale was assigned to the
numeric values so that the dry sand produced a light gray pixel and the wettest sand produced
a black pixel.

The data may be represented in a three-dimensional form (Figure 5).  The regions of higher
water content are illustrated as having greater height and the variation in the dry sand is
illustrated in the baseline.  The values of the z-axis are in descending order to produce peaks
where there is greater water content.  The value of the signal is smaller in these regions.

Figure 4:  Two-Dimensional Representation: Response of the NIR Detector to Sand With
Various Water Content.   The x and y axes represent the distance in millimeters and the gray
scale is the voltage in millivolts.
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Figure 5: Three-Dimensional Representation of Wet/Dry Sand.  The x and y axes represent
the distance in millimeters and the z-axis is the voltage in millivolts.

III. Imaging Approach
By taking two-dimensional images of a target zone, a large area can be spectrally mapped quickly given that
the contrast between the background soil and burial sites are sufficiently strong to allow rapid detection. The
idea is to increase contrast by collecting images at/over wavelengths where the differences in reflection or
fluorescence properties are sufficiently large. To illustrate the application of imaging methods to the
landmine detection problem, images of the fluorescence emission from a landmine casing partially buried in
sand were captured. The 488-nm line from an Argon laser illuminated the object and a CCD camera captured
the image through a 525-nm long pass filter. The orientation of the casing is shown in Figure 6. One of
the captured images is shown in Figure 7. The high contrast between the casing and sand is readily
apparent.
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IV.  Conclusion

In this paper, we have reported some preliminary work evaluating methods that could be used
in detection of buried objects.  We showed the signal of the NIR detector to be sensitive to water
content of sand.  We illustrated that such a device can produce images of regions having
different moisture.  This study illustrates the potential of an NIR imaging system to detect
buried objects.  Such a system could be composed of a charge-coupled device (CCD) in
combination with a device to select a specific wavelength of light (e.g. an acoustic optical tuning
filter).

625 nm 1”

Region of casing 
pictured at left

Figure 6  The right panel shows the region of the landmine casing
displayed in the partially-buried object image. The left panel is a reflection
image of the partially-buried casing. The ovals identify where the casing
breaks through the surface

Exposed portion of casing

Figure 7  Fluorescence image of the partially-buried landmine
casing. The sample area was illuminated with the 488 nm line of
an Argon laser. A 520 nm long pass filter was used to select the
fluorescent light for imaging.
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FDTD Wave Propagation in Dispersive Soil 
Using a Single Pole Conductivity Model 
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Abstract-In FDTD modeling of lossy, disper
sive soil for subsurface imaging and detection appli
cations, the electric flux and the current are con
volutions of E(t) with E(t) and a(t) respectively. To 
avoid these memory-intensive computations, the con
volutions can often be accurately and simply mod
elled as second order difference equations. In partic
ular, by matching the corresponding Z-transform of 
the E-field/ current relation to frequency-dependent 
conductivity results in a ratio of polynomials in z-1 

(where Z = ejwll.t). A good fit to measured soil 
data over two decades in frequency is possible us
ing only a single pole, two zero conductivity model. 
Compared to a similarly accurate three-term De
bye model, this one-pole model requires one-third 
the storage of previously computed field values. 

Index terms-FDTD, Soil Modeling, Disper
sion, Mine Detection 

I. BACKGROUND 

There is growing interest in simulating wave propa
gation for underground microwave and RF sensing and 
imaging applications. Soil is a good candidate for the 
finite difference methods since it is usually inhomoge
neous, lossy, and has an irregular surface boundary. It 
has been challenging to accurately compute wideband 
wave behavior in realistically modelled soil because of 
its dispersive nature, requiring either many individual 
frequency domain calculations or a robust deconvolu
tion of E(t) from D(t) in the time domain. A sim
ple dispersive variant of the FDTD algorithm which in
cludes the effects of frequency-dependent conductivity 
and dielectric constant enables the use of this prevalent 
and efficient modeling method. 

The conventional approach to modeling dispersion 
in soil approximates the frequency domain dispersive 
complex dielectric constant with rational functions (De
bye or Lorentz models) of jw (1,2], multiplies the consti
tuitive relation by the denominator and inverse Fourier 
transforms the result. We improve on this method by 
modeling solely the conductivity as a simple rational 
function of the Z-transform (3,4], based on the obser
vation that the frequency variation of the real dielec
tric constant does not significantly affect either the real 
propagation constant f3 or the decay rate a. By mod
eling a in terms of powers of the Z-transform vari
able z- 1 (which readily transforms to time delays), 
the conversion of the generalized dispersive Ohm's Law 
J(Z) = a(Z)E(Z) to the time domain is particularly 
straightforward. 

Manuscript received June 1, 1998. 
This work has been supported by The Army Re

search Office, Multidisciplinary University Research Ini
tiative Grant No. DAAG55-97-0013 
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II. MODEL FORMULATION 

To preserve the conceptual elegance and simplic
ity of the FDTD method, it is important to keep the 
media model to at worst second-order. In previous 
reports, a quite satisfactory two-pole, two-zero ratio
nal function conductivity model was presented. This 
current work shows that a model with a single pole 
can often be just as good. The right hand side of 
Ampere's Law \7 x H = 8Dj8t + J Z-transforms to: 
((1-Z-1 )/ .6-t]EoEAvE+a(Z)E (where it is assumed that 
EAv is frequency independent). The time-dependent 
conductivity may thus be modelled as 

Both the real and the imaginary components of 
a(Z) depend on the frequency sampling interval .6-t and 
the coefficients of the rational function ( a 1 , b0 , b1 , and 
b2). The imaginary component corresponds to an ef
fective permittivity. This model is implemented by fit
ting Re{ a} to measured conductivity and Im{ a} jwEo to 
measured real dielectric constant less an average value 
EAv· To simultaneously solve for b0 , b1 , and b2, an 
initial guess is made for a 1 . The conductivity and di
electric constant at three representative frequencies for 
the measured data and the model are equated. Further 
simple optimization is performed by trial and error, 
varying either a1 or one of the three frequencies. Com
plex wave number k(w) is then calculated from both 
the model and the measured data, and the real prop
agation constant f3 and the decay rate o: are derived 
from k = wjcJEAv- jajwEo. 

Once the a and b parameters of a have been deter
mined, integration into the FDTD algorithm is straight
forward. If the temporal average of the current density 
J is used, Ampere's law in the Z domain becomes: 

1- z- 1 1 + z- 1 

\7 X H(Z) = EAv .6. E(Z) + a(Z)E(Z) t 2 
(2) 

Using (1) in (2) and noting that z- 1 corresponds to the 
time index shift n--+ n -1, theE-field update equation 
for a 2-D Transverse Magnetic (E = zEz) simulation 
is: 

1 
E~+ 1 = -( -e1E~ - e2E~- 1 - e3En-2 + .6-H) eo z 

.6-H = .6-t (-(;+!- a1(;-! + 1;+! + a1 I~l-!) EAv 
(3) 

where eo= 1+bo.6.tj2EAv, e1 = a1-1+(bo+bi).6.tj2EAv, 
e2 = -a1 + (b1 + b2).6.tj2EAv, e3 = b2.6.tj2EAv and Ix 
and Iy ~re the spatial first differences of the Hx and Hy 
fields w1th respective to y and x (spatial indices have 
been suppressed for clarity). 
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The one-pole model of a(Z) requires storing Ix 
and Iy (and I= in a three-dimensional simulation) a 
single additional time compared with non-dispersive 
FDTD. For each additional conductivity pole, this same 
amount of storage space must be additionally allocated. 
Fig. 1 shows the fit of the model (at 6.t = 20 ps) to 
the conductivity and dielectric constant data measured 
from Puerto Rican clay loam (PRCL) with 1.4 gjcm3 

density and 10% moisture [5]. The difference between 
the imaginary conductivity of the model and the mea
sured c (lower panel) is used to determine the constant 
real soil permittivity EAv· Fig. 2 shows the fit of the full 
model to j3 and a:. The maximum amount of error is 
less then 20%, which is close to the measurement error 
of the soil sample. 
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Fig. 1. (a) Measured (circles) versus single pole model (contin
uous curves) of a(Z): (a) real conductivity and (b) imaginary 
conductivity (real relative dielectric constant) for Puerto Rican 
clay loam, 10% moisture, 1.4 g/cm3 density [5]. The constant 
real dielectric constant EAv is the average difference between the 
curve and the measured circles of (b). 

The use of the average value of the current density 
is well established and produces accurate results. How
ever, using only the present value of the current density 
in the update equation results in the savings of another 
storage location. To facilitate this savings without sac
rificing accuracy, a(Z) is multiplied by (1+Z- 1)/2 and 
a new set of model parameters is determined to fit this 

product over the frequencies of interest. In this case, 
(3) is additionally simplified with e0 = 1 + b06.t/EAv, 
e1 = a1 - 1 + b16.tjcAv, e2 = -a1 + b16.tjEAv, and 
e3 = 0, and this dispersive model requires only one 
additional storing of each field value compared to non
dispersive FDTD. This compares with two field stor
ings for the (2,2) model and three field storings for the 
comparably accurate three-term Debye model. 

Similar modeling for several different types of soil 
with widely varying density and moisture [5,6] at 6.t =20 
ps is summarized in Table 1. All models have wave 
numbers in agreement with measured values within 20%. 
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Fig. 2. Measured (circles) versus model for single pole model of 
a(Z) with constant EAv (continuous curves): (a) Real and (b) 
imaginary parts of wave number for Puerto Rican clay loam, 10% 
moisture, 1.4 g/cm3 density [5] as a function of frequency. Insets 
show normalized error for this model. 

III. STABILITY CONSIDERATIONS 

The Courant stability analysis in [3] shows that 
in a source-free homogeneous medium, the time-space 
transform of the wave equation for a plane wave (.6.x = 
.6.y = 6.z = 6.) is: 

(4) 



where from (2), F(Z) = CAv(1- z-1 ) + (.6.t/2co)(1 + 
z-l )O"(Z), and r = c.6.tj ~.6., and s2 = sin2 kx.6. + 
sin2 ky.6. + sin2 kz.6. with maximum value of s equal to 
the spatial dimension of the FDTD simulation. Ex
pressing F ( Z) in rational form: 

Using (4), (3) becomes a third order polynomial in z- 1 . 

The solution to this equation yields one real root and 
two complex roots that are a function of .6.. Stability 
requires IZI < 1. For .6. within the range of 4.6mm to 
120mm, all three roots are within the unit circle. 

NUMERICAL TEST CASES 

Several numerical experiments were performed to 
validate this method. The simulations were run in one 
dimension for simplicity. The choice of .6.t is criti
cal since it defines the model, determines the range 
of usable frequencies and determines the limits on .6. 
through the Courant condition. For these experiments, 
the spatial increment was 2.5 mm. The incident field 
is a modulated gaussian pulse, used to excite many fre
quencies simultaneously. The modulation frequency is 
3 GHz for the Alicia and A.P. Hill soils and 1.5 GHz 
for the PRCL soil sample. 

In order to compare the results of the FDTD simu
lations with the measured data, the frequency-dependent 
wave number k must be extracted. Fast Fourier Trans
forming the time domain fields gives 

1 Ez(w,e) 
kFDTD =- jf! ln Ez(w,O) (6) 

Fig. 3 shows the real and imaginary parts of the 
wave number versus frequency for measured values and 
either the "Time-Averaged" or "Model-Averaged" kFDTD. 

These latter "Model-Averaged" simulations use only 
the current value of the conduction current Jn. The 
parameters in Fig. 3 correspond to the three separate 
sites of Table 1. Both the real and imaginary wave 
numbers agree well for each soil, for both types of mod
els across the entire two decades of bandwidth from 45 
MHz to almost 4 G Hz. It should be noted that the 
"Time-Averaged" FDTD computation is more robust, 
with less sensitivity to excitation function and Courant 
number. 

CONCLUSIONS 

A minimal-storage time-domain model for frequency
dispersive soil based on a constant real dielectric con
stant and a (2,1) rational function of z-l conductiv
ity function has been developed and tested. By pre
multiplying the measured conductivity data by the Z
transform of the time average function, the resulting 
model avoids requiring conduction current time aver
aging in Ampere's law. Without this time averaging, 

TABLE I 
ONE-POLE CONDUCTIVITY PARAMETERS 

Puerto Rican Clay Loam: m = 10, d = 1.4t 
av? a1 bo b1 b2 €Au 

no -0.88 0.91625 -1.67662 0. 761072 4.18775 

yes -0.9 0. 7983 -1.4695 0.67176 4.282 

A.P. Hill, Firing Point 22: m = 19.3, d = 1.527 
no -0.975 1.51947 -2.97284 1.45362 5.25834 

yes -0.97868 1.5473 -3.036 1.4888 4.7731 

Bosnia, Test site Alicia: m = 25.3, d = 1.263 
no -0.925 

yes -0.93 

1.76106 -3.32102 1.56193 5.03815 

1.6325 -3.0827 1.4521 4.9831 

t m is percent moisture content of the soil, d is soil density 
(g/cm3

). 

a one-pole conductivity model requires just one addi
tional store of electric and magnetic field compared to 
the non-dispersive FDTD algorithm. This is half the 
required additional storage of the previously reported 
(2,2) model, and even less than standard Debye and 
Lorentz models. In addition, fitting parameters to a 
single, real conductivity function- rather than to both 
parts of a complex permittivity function - is quite ad
vantageous. 

Numerical simulations on measured data show that 
this simple model is efficient and accurate across a wide 
frequency band for both real and imaginary parts of 
wave number, giving good predictions of velocity and 
decay rate. A stability analysis shows that the model 
is stable for one, two, and three dimensions, for a wide 
range of grid spacings. 
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Outline

• Problem:  Why is it important to 
characterize the nearfield rough surface 
effects on impulse GPR signals?

• Modeling methodologies
• Features of ground surface clutter signal
• Separating surface clutter from target 

signal.

*  Demining MURI Supported by ARO
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Rough Ground Clutter Signal Characterization

• Signals from rough ground vary considerably
– Pulse shape depends on roughness and T/R position 

[DISTORTION]
– Peak depends on particular T/R position [SHIFT]
– Overall amplitude varies [SCALING]

• Monte Carlo simulation can model these relevant 
features
– 2D FDTD model
– Real measured impulse GPR excitation and dispersive soil
– 500 different rough surface realizations
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Gaussian PDF for surface height Gaussian PDF for surface height zz with zero mean with zero mean 
and rms height = and rms height = σσh h ::

Surface height autoSurface height auto--correlation function for surface correlation function for surface 
points points xx11, x, x22::
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Rough Surface Statistical Specification
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Rough Surface Parameters:Rough Surface Parameters: σσh h = 3cm, = 3cm, llc c = = 10cm, (10cm, (σσs s = 23= 23oo))
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Normalized crossNormalized cross--correlation functions between flat ‘correlation functions between flat ‘ff ’ ’ 
and rough ‘and rough ‘ii’ surface:’ surface:
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Determining Differential Target Delay from 
Detected Ground Clutter Delay

• If ground surface height varies, amount of soil 
between air and nominal target depth varies 

• For a given target depth, longer path in air implies 
shorter path in soil; earlier target signal arrival.
– Earlier arrival proportional to differential soil propagation 

velocity

• Verify this effect by comparing ground-only signals 
with ground-and-target signals:
– Align ground clutter signals to find
– Align ground-and-target signals each with ground-only 

signal subtracted w.r.t. target peak to find

τ gnd

τmine
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Separating Mine Response from Ground Clutter

Raw SignalsRaw Signals

CrossCross--correlatecorrelate
with referencewith reference

SHIFT

SCALING

Shift and scale raw Shift and scale raw 
signals andsignals and

compute average compute average 

Subtract shifted,Subtract shifted,
scaled average scaled average 

from each raw signalfrom each raw signal

Compute differentialCompute differential
velocity in soil, shift to velocity in soil, shift to 

line up target featureline up target feature

Is max clutter  
> threshold?

yes

no



Original Signal Averages Obscure Mine Signal

No Mine Mine



Single Ground Clutter Signal Removal

No Mine Mine



Double Ground Clutter Signal Removal

No Mine Mine



Realigning Signals to Presumed Mine Position

No Mine Mine
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ConclusionsConclusions

nn Rough ground clutter can be effectively analyzed in terms of: Rough ground clutter can be effectively analyzed in terms of: 
nn Signal time delaySignal time delay
nn Signal amplitude increase/reductionSignal amplitude increase/reduction
nn Pulse distortionPulse distortion

nn Signal distortion and time delay depend directly on both Signal distortion and time delay depend directly on both 
surface roughness and roughness scale.surface roughness and roughness scale.

nn Target signals are difficult to separate from ground clutter Target signals are difficult to separate from ground clutter 
signals because they small and occur near cutter peaks.signals because they small and occur near cutter peaks.

nn Identifying and removing the ground signal Identifying and removing the ground signal ---- and realigning and realigning 
with the propagation time of a given soil with the propagation time of a given soil –– enhances the target enhances the target 
signalsignal. . 
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Abstract 

Humanitarian landmine detection and clearance is one ofthc most chalkngtng. dirti~ult 

and time-consuming tasks to be completed with existing technologies. Infrared I I R) 

Imagery images differences in heat transkr on the surface of the soil due \!1 a buncd 

object. Based on sunlight heating, it is only useful at cc11ain times. Micro\\ a' cheating 

has been proposed to enhance the thcnnal signature. but it is limited by surlctce 

roughness. 

We have proposed a method called Dual Frequency Micrmvm•e Enlumad lnfi·ared 

Thermography. Heating with microwaves instead of natural sunlight katb tu a numhct 

of advantages. such as more efticient heating, tnorc tCaturc paramctct s I i kc fn.:qucnc:. 

modulation and incident angle. Moreover, two different fr~qucneics arc u"·d 
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Microwave-Enhanced Infrared Thermography 
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ABSTRACT 

Microwave heating of the ground can enhance infrared signatures of buried objects. 
The extent of the enhancement depends upon many parameters including wavelength, po
larization, angle of incidence, and properties of the soil and the object. We show that angle 
of incidence and dielectric properties of the object are important, with some analytical and 
experimental results. 

Key Words:. Microwave heating, infrared imaging, landmine detection. 

1. INTRODUCTION 

We have previously reported analytical and experimental results showing that mi
crowave heating of the ground can produce enhancements of the infrared signature of 
buried objects {DiMarzio, et. al., Sept. 1998}. While diurnal variations in natural heating 
provide some useful signatures, the microwave heating offers the opportunity to enhance 
the signals by heating the soil below the surface and the object itself. Two mechanisms 
contribute to the unique signatures of buried objects. The first, evident at short times, 
is a modification of the electromagnetic field of the microwave source by the presence of 
an object with dielectric properties which contrast with those of the ground. This results 
in changes in the heating pattern of the soil including that near the surface, and appears 
almost immediately. At later times, an image appears which is quite useful for identifying 

Part of the SPIE Conference on Detection and Remediation Technologies 
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the shape of the buried object. This signature depends on the difference in absorption of 
microwaves between the object and the background, and on the contrasting thermal prop
erties. This signature remains for many minutes after heating is ceased. The combination 
of these two signatures offers a powerful new tool for the detection and characterization of 
buried mines and mine-like objects. 

2. VARIATION WITH ANGLE AND POLARIZATION 

One of the most obvious discriminants is the combination of angle of incidence 
and polarization. The two-dimensional model was run with a dielectic mine and different 
angles of incidence for TE and TM polarizations, all at 2.54 GHz. Figure 1 shows some 
of the results for different angles with TM polarization. The color scale shows the amount 
of absorbed power. The axes in each plot are spatial, with the vertical representing depth 
and the horizontal representing transverse position. The microwave energy is incident as 
a plane wave from the top left at the indicated angle with respect to the vertical. The 
major result is that the absorbed power decreases with increasing angle as a result of 
the changing Fresnel reflection at the surface. However, a smaller effect is also noted, 
in that the region of maximal absorption moves away from the beam with increasing 
angle. The absorption is almost entirely in the soil rather than in the mine, which has 
a lower absorption coefficient. The soil heating pattern at the surface is rather complex, 
resulting from an interference pattern between the incident beam and the scattered one. 
In a cluttered environment, this heating pattern may make it difficult to detect buried 
objects directly using the microwave-enhanced infrared signatures. On the other hand, 
the pattern provides information about the field distribution, which may prove useful in 
conjunction with imaging using ground-penetrating radar. 

A similar result was obtained with the model using TE polarization. Differences 
do exist between the two, but they are in all cases less than 10 percent of the total, and 
are much less than that at the surface. Thus these differences would make unreliable 
indicators of buried objects. A slight advantage exists for TM polarization as a result of 
the decreased Fresnel reflection at the surface at angles near the pseudo-Brewster angle. 
However, this effect is not very strong in materials such as soil with high absorption. While 
the reflectivity for TM polarization does reach a minimum at the pseudo-Brewster angle, 
the minimum is not very deep, and the ratio of Fresnel reflection between TM and TE 
polarization is not far from unity. Because the dielectric constant is high, the wave bends 
strongly toward the normal, and the interaction of the wave with the target is similar for 
the two polarizations. This result would change for targets without circular symmetry in a 
three-dimensional model, but it is unlikely that ~he difference could be exploited effectively 
to distinguish between mines and other objects under the surface. 
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3. VARIATION WITH MICROWAVE ABSORPTION 

Results similar to those of Figure 1 were obtained with absorbing targets, but the 
energy was absorbed primarily in the target rather than the background. This results in a 
considerably different time history than is observed for the dielectric mines. Figure 2 shows 
three different objects, having low, medium, and high absorption. The top images are in 
the same configuration as those in Figure 1, and show the distribution of absorbed power. 
The bottom images show how surface temperature varies with time. The horizontal axis 
is the same as in the top figures, and the vertical axis represents time. The color shows 
the temperature at the surface. 

For all objects, heating begins immediately with the application of power at the top 
of the time axis, and the interference pattern is readily evident. In a three-dimensional 
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3. VARIATION WITH MICROWAVE ABSORPTION 

Results similar to those of Figure 1 were obtained with absorbing targets, but the 
energy was absorbed primarily in the target rather than the background. This results in a 
considerably different time history than is observed for the dielectric mines. Figure 2 shows 
three different objects, having low, medium, and high absorption. The top images are in 
the same configuration as those in Figure 1, and show the distribution of absorbed power. 
The bottom images show how surface temperature varies with time. The horizontal axis 
is the same as in the top figures, and the vertical axis represents time. The color shows 
the temperature at the surface. 

For all objects, heating begins immediately with the application of power at the top 
of the time axis, and the interference pattern is readily evident. In a three-dimensional 
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example, this pattern would result in rings around the object. When the power is turned 
off at time zero, the ground containing the low-absorption object begins to cool almost 
immediately. 

For the more absorbing objects, the surface temperature continues to rise after the 
power is turned off, as heat from the object is conducted toward the surface. Figure 3 
shows a typical temperature time history from the model for the most absorbing object 
shown in Figure 1, and below that, experimental results for a hockey puck, 76 mm in 
diameter and 25 mm thick buried in dry sand. The temperature of the surface continues 
to rise for 10 minutes after the power is turned off. Each graph on the right shows the 
temperature as a function of time for a column near the center of the corresponding color 
plot. 
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4. IMAGING THE TARGET SHAPE 

Finally, we examine our ability to recognize the shape of buried objects. For this 
purpose, we cut hockey pucks into distinguishable shapes and buried them at a depth of 
about 1 centmeter in dry sand. Figure 4 shows a sample infrared image, overlaid with a line 
drawing of the objects. We note that the semi-circular shape of the half pucks is evident. 
One of the small segments shows a rather weak signature, and the other shows a stronger 
one. Location and aspect ratio are easily determined, although the subtle changes in shape 
are not readily distinguishable in this picture. We conclude that shape information can 
be obtained on objects with dimensions of a few centimeters. We anticipate that this 
information could help eliminate false alarms caused by rocks, roots and other natural 
buried objects. 
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5. SUMMARY 

We conclude that microwave-enhanced infrared thermography produces useful sig
natures for the detection of buried mines and minelike objects. Signatures exist and change 
over a period of minutes after microwave illumination. Initial signatures show information 
about electromagnetic wave propagation in the vicinity of the object while later ones reveal 
more about its thermal properties. These images, particularly at the later times, provide 
useful shape information about objects which are more than a few centimeters in size. 



6. ACKNOWLEDGEMENT 

This work was sponsored by the OSD MURI Program under Army Research Office 
Grant number DAAG55-97-1-0013. 

7. REFERENCES 

DiMarzio, Charles A., Carey M. Rappaport, and Li Wen, "Microwave-Enhanced 
Infrared Thermography," Detection and Remediation Technologies for Mines and 
Minelike Targets III, SPIE Aerosense Volume 3392, September 1998. Pp. 1103-1110. 

DiMarzio, Charles A., Carey M. Rappaport, and Gerhard 0. Sauermann, 
"Microwave-Enhanced Infrared Thermography," Industrial and Environmental Monitors 
and Biosensors, SPIE Volume 3534 and presented in Boston, MA, on 4 November 1998. 

179 



328 

Laser Induced Acoustic Imaging of Underground Objects 

Wen Li, C. A. DiMarzio, S. W. McKnight, G. 0. Sauennann, E. L. Miller 

Center for Electromagnetics Research, Northeastern University, Boston, MA 02115 

ABSTRACT 

This paper introduces a new demining technique based on the photo-acoustic interaction, together with results from 

photo-acoustic experiments. We have buried different types of targets (metal, rubber and plastic) in different media 

(sand, soil and water) and imaged them by measuring reflection of acoustic waves generated by irradiation with a 

C(h laser. Research has been focused on the signal acquisition and signal processing. A deconvolution method 

using Wiener filters is utilized in data processing. Using a uniform spatial distribution of laser pulses at the ground's 

surface, we obtained 3D images of buried objects. The images give us a clear representation of the shapes of the 

undergrmmd objects. The quality of the images depends on the mismatch of acoustic impedance of the buried 

objects, the bandwidth and center frequency of the acoustic sensors and the selection of filter functions. 

Keywords: Photo-acoustic, Laser-induced, Acoustics, Buried object detection, landmine 

detection, pavement quality. 

I. INTRODUCTION 

This paper investigates the photo-acoustic process, in which the optical energy is converted into acoustic energy. 

This phenomenon has been obsetved as early as the 1960's when sound pulses were produced on absorption of 

pulsed ruby-laser radiationl11 . 

When a laser pulse hits the swface of a medium (solid or liquid), several processes occur in a short time, including 

reflection, absorption (with side-effects such as optical to thermal energy conversion), heat conduction, medium 

expansion and contraction. Although we have not constructed an exact mathematical model for the photo-acoustic 

process, we can qualitatively understand the mechanisms: ( 1) Thermal coupling based on the absorption of laser 

radiation, (2) heating and expansion occurring in the medium. (3) excitation of sound caused by sudden changes in 

medium volume. 

Hidden objects can be located by echo location. This is a well-known idea in everyday life, as in the example of 

tapping a wall or floor to fmd studs or holes. 'This idea could also be applied to the process of evaluation of 

pavement quality, and buried mine location. 

Traditionally, acoustic waves can be generated by direct physical stimulation, for example using an acoustic 

transducer. Laser-induced acoustic waves have more advantages in detecting objects: 

( 1) Tiris is a non-contact method of sound generation. This is the most iniportant advantages for detection of 

dangerous object like landmines. 

(2) Coupling is easy and efficient because over 90% of optical radiation at 10.6um is absorbed in soil. Thus, the 

sound wave is generated directly in the ground. 

(3) The process is flexible. The width and power of the laser pulses can be controlled, the size of the laser spot can 

be focused and the scanning of laser shots can be easily implemented and changed by an optical scanner. 
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ll. ACOUSTIC ECHO AND SIGNAL PROCESSING 

The solution of acoustic wave transport in a mediwn can be described by applying elastic wave theory. In the most simple case, we consider the monochromatic plane wave in a liquid or in an isotropic elastic solid. Combining the acoustic wave equations and appropriate boundary conditions, we obtain the reflection coefficient, 

R = Z II Z I 

Z II + Z I 

where Z = p 1c 1 I and Z 11 = p 2c2 / () are the acoustic impedances in two different media. p, c and 1 I cosB1 lcos 11 

() are the density of the medium, velocity of the acoustic wave and propagation angle, respectively. 

(:Zf Table 1: Density and Velocity of sound in various media . 
Substances Density VI 

g/cm3 
rnfs 

Aluminum, rolled 2.7 6420 
Copper, annealed 8.93 4760 
Glass, pyrex 2.32 5640 
Lucite 1.18 2680 
Polyethylene 0.90 1950 
Polystyrene 1.06 2350 
Rubber, butyl 1.07 1830 
Rubber, gum 0.95 1550 

V1: Velocity of plane longttudmal wave m bulk matenal 
Vs: Velocity of plane transverse (shear) wave 

Vs 
rnfs 

3040 
2325 
3280 
1100 
540 
1120 

The large acoustic impedance mismatch between soil/sand and land mine is the prerequisite condition of using acoustic echo detection. Table 1 shows the densities and velocities of sound in different media. In our experiment, we use dry sand as an acoustic medium, with the density of sand being about 2.6g/cm3
. The velocity of sand varies according to the density and moisture content of the sand. In our samples, we measured the speed of sound in dry sand as about 280rnfs, 20% less than the speed of sound in air. Compared with the speed of sound in metal, plastic or rubber, the mismatch of acoustic impedance is large enough for echo detection. Another important point is that the paths of reflection and refraction obey Snell' law: 

= Sin {)II 

Thus, we can calculate the relations between the position of the mine and the signal track of the mine. Figure 1 illustrates this concept. As we move the laser spot toward a target (a piece of aluminum), the arrival time of the reflected signal should follow a straight line with a shape given by the speed of sound in the mediwn. 

Water is a very good medium for acoustic waves. The soil or sand in which a mine is usually buried dampens sound waves, therefore, the echo from the target is usually very weak in soil/sand. It is hard to find the target directly in this case. Also, from the signal processing point of view, the data acquisition method by scanning a laser spot and burying a detector in the soil makes interpretation difficult. The small signal from a buried target is often lost in changes of the larger direct signal which results from varying distance from source to detector. 
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Figure 1. Acoustic echo in water 

We considered another method for data acquisition that involves placing the detector over the surface of ground and 
making it relatively fixed respect to the laser spot, instead of burying the detector into the soil. This method lets us 
obtain a constant delay time, unless the surface is not perfectly flat. 

Figure 3 shows some results acquired by using this method. In the cases where the mine is exposed to the surface of 
the ground, the laser pulse hits the surface of the mine directly, and the difference of acoustic excitation between the 
mine and the sand is easily detected. However, in the case of a buried mine, because of strong reflections at the 
boundary between sand and air, the sound echo from the buried mine is so weak that we can not find information 
about buried objects from the raw data directly. Thus, an appropriate method of digital signal processing is 
necessary. 
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Figure 3. The sound echo. (a) Buried hockey puck 4mm under surface of sand. (b) A hockey puck exposed to 
the surface of sand. (c) A bar of soap exposed to the surface of sand. 



Let us consider the procedure of acoustic echo detection again. After absorption and expansion, the spot of the laser pulse becomes a source of a pulsed sound wave. Echoes of the sound pulse arrive at the detector at different times after following different paths, as shown in Figure 4. 

Laser Detector 

I 
s( t) ~,._..___._/\_._____._._A---

h ( t) l~rvif\1'~~-------------- -----1 

~ 

d c t) \ iVvv,,Vvvv->'J'-'"-------1 
if 

Figure 4. The signal analysis of reflection. S: The sound pulses from surface of ground, top surface of mine and bottom surface of mine. H: The impulse response of the detector. D: The resulting signal from detector. 
The delay time contains information about the position of the ground surface and depth of the mine. The acoustic signal received by the detector is the convolution of the sound pulse and the impulse response of the acoustic detector. Because of the limited bandwidth of the detector and the attenuation of the echo signal, the reflection from the underground target is occulted by the strong signal from the surface of the ground. In order to pick up the sound echo from the buried mine, we can use an inverse processing technique in the frequency domain, 

S = D~ 

where D is the signal we got from the detector, H is the impulse response of the acoustic detector. Thus, Yn is 
used as a filter function multiplied the received signal to obtain the original reflection distribution. At the points where the magnitude of H is near zero, the inverse process will produce a large amplification of noise. Thus, we use a slightly more complicated inverse method to limit the effects of noise: 

Filter 
H* 
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The new filter function avoids the problem of large amplification at small magnitude of H. The value of & gives a 

general idea of the noise margin. The impulse response of the detector is usually a complex number in the frequency 

domain. We can use the real number H · H • , which is the intensity of the impulse response, and add it to & . 

When the intensity of the impulse response is very large compared to & , the filter function is nearly fH , which is 

an inverse filter; when the intensity is small, the filter function is H /e which represents a matched filter in the 

frequency domain. 

From Figure 4 we can see that the filtering process is actually the inverse process from D(the detector signal) via 

H(impulse response of detector) to S(the sound echo) in the frequency domain. We call this inverse process 

deconvolution filtering. 

ill. EXPERIMENTAL RESULTS 

A Laser Science LS 150 pulsed C02 laser was used in our experiment to generate an acoustic pulse. The wavelength 

of the laser is 10.6um and the pulse width is about lOOns, with the energy per pulse being 150mJ. We buried a mine 

into a 30cm by 60cm sand box, with the depth of the sand about lOcm. We believe that the acoustic pulse should be 

very narrow, meaning it has wide bandwidth in frequency domain. Unfortunately, wide-band audio frequency 

transducer are not readily available to collect all of the information contained in the sound pulses. We have tried 

several detectors in our experiment, include two identical seismic transducers and two audio microphones with 

different frequency response. We used an HP-54615b Oscilloscope for data acquisition, and a DAQ multifunctional 

110 board for system controlling (control of optical scanner, laser triggering and synchronization). All of the signal 

processing work has been done on a computer running Matlab. 

We concentrated our research on non-metallic mines. We used some simulants that compare favorably to the 

constituents of a non-metallic land mine, include plastic box, racquet ball, soap and hockey puck. Figure 5 shows the 

pictures of the experimental setup and the simulants of mine. 

(a) (b) 

Figure 5. (a) The experiment setup. (b) Simulants of mine 



Figure 6 shows some results after the deconvolution filtering we discussed before. We used a seismic transducer as the acoustic detector which has 29kHz resonance frequency with narrow bandwidth of about 5kHz. We made a scan on the surface of sand with 25 pulses and a track of 12.5cm long, which crosses the buried mine. When the hockey puck was buried vertically in the sand box, after filtering, we obtained the image shown in panel (a) of Figure 6, which shows the circular shape of the puck. We also buried a hockey puck horizontally with the surface parallel to the surface of sand, then we obtained the result in panel {b) which shows the surface of the puck. If the puck is tilted to the surface, the reflection track is also tilted (panel c). The other picture is a bar of soap buried in sand box. 
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(b) Puck, horizontally buried 
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Figure 6. (a) Half hockey puck vertically buried in dry sand. (b) Hockey puck horizontally buried in sand with surface parallel to the surface of sand. (c) Hockey puck buried in sand with surface tilted compared with the surface of sand. (d) A bar of soap buried in sand. 

Clearly, the results in Figure 6 provide the depth and shape information of underground objects. Furthermore, because the time delay of the sound echo is proportional to the depth, a surface scan of laser shots in 2 dimension, combined with the depth infonnation, provides a 3-D picture of underground objects. Figure 7 shows the result of a surface scan for a half hockey puck. The detector is still the seismic transducer. We make slices, each with a different time delay, to show the strength of the reflection at that depth. We then combine these slices to produce a 2-D map as would be seen from above. Figure 7 shows several of these slices and the combined image. 
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Figure 7. The 2-D scans for a buried half hockey puck: At different times, we can image different depth slices 

for underground imaging. 
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Figure 8. The experiment using an audio microphone. The simulants of mine are a vertically buried half 

hockey puck, an empty plastic box and a racquet ball respectively. 



In the frequency domain, the acoustic detector only samples a part of the infonnation contained in the sound pulse. Tests using different detectors are shown in Figure 8. We used an audio microphone which has wider bandwidth and lower cutoff frequency as acoustic detector. Different mine simulants including the half hockey puck, plastic box and racquet ball have been used in the experiment. The signal seems stronger than before because of the wider bandwidth. We also did a 2-d scan at the surface for a buried half hockey puck shown as Figure 9, and the result shows that the shape resolution is dimmer than it was with transducer. Thus we conclude that the resolution is degraded because the higher frequencies of sound (shorter wavelength) are not used. 
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Figure 9. The 2-D scans for a buried half hockey puck using the microphone as an acoustic detector: At different times, we can image different depth slices for the underground imaging. 

IV. CONCLUSION 

The experiments shown in this paper demonstrate that laser induced acoustic imaging is feasible for mine detection. As one of the prospective demining techniques, laser induced acoustic wave has many advantages, such as noncontact, easy control and detection of non-metallic mines. 

The selection of data acquisition and signal processing method is also very important. We found that fixed detector over the surface of ground with constant relative position to the laser spot is a good acquisition method, and the deconvolution filter works well for picking up the infonnation of underground objects. 
The echo of the sound pulse has a very wide bandwidth in the frequency domain, but we only obtained a small part of the whole information because of the limitation of our acoustic detector. As shown in the experiment, the higher the center frequency, the better the shape resolution; the wider the bandwidth, the stronger the echo signal. Therefore, the ideal detector should have white frequency response. 

The large acoustic mismatch between soil and buried mine promises success of acoustic imaging. By detecting the reflected sound pulse from the surface of mine, we can get clear shape infonnation of underground objects, and thereby reduce false alarm rates which are typical of all mine detection techniques. 
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A mathematical model of the laser acoustic interaction should be a high priorities in the future work. We need to 
know more about the energy distribution of the acoustic wave. In order to collect more information from the sound 
echo, a better detector should be used in future experiment. We think that a laser Doppler vibrometer is a good 
choice, because it is also a non-contact detector with very high sensitivity and almost white frequency response. 
Also, it can image multiple locations and be scanned with the pulse laser. An operational system of acoustic imaging 
might be laser induced and laser detected. In addition, different types of soil should be taken into account. We will 
continue to try more media and do some experiments outdoor in the real ground as well. 
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Effects of Surface Roughness on Microwave Heating of Soil for 

Detection of Buried Landmines 
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ABSTRACT 

Two common techniques proposed for detection of landmines are ground-penetrating radar (GPR) and infrared imagery. 

Because of the wide diversity of mines, the clutter which is encountered in minefields, and variation caused by the ground 

surface, the task of interpreting GPR signals is daunting. Likewise, variations in thermal properties of soil, solar heating, 

clutter, and surface irregularities lead to limited performance for IR imaging systems. 

Throughout the past two years, our research has emphasized using the microwave energy to heat the ground with the goal of 

enhancing the infrared signatures. Wavelength, polarization, angle of incidence, properties of soil, chemical and physical 

structures of buried objects, and amount of roughness are the parameters affecting the extent of enhancement. We have 

previously shown a two-dimensional model for flat surfaces. In the present work we included a rough surface, to see the 

effects of the amount of roughness on both temperature distributions in the soil and temporal and spatial variations of surface 

temperature. We present results which show that the quality of the infrared surface images is dependent upon surface 

roughness. 

Keywords: Landmines, microwave heating, infrared imaging. 

1. INTRODUCTION 

Detection of landmines has been a challenging research topic through decades for both military and humanitarian reasons. 

One of the techniques in solving the landmine detection problem is thermal infrared image processing, which was widely 

used for the detection of defects in materials, the detection of thermal leaks of power plants, and environmental remote 

sensing as well [Li, et. al.]. This thermal infrared imaging technique has also been investigated by DiMarzio et. a/. [Sept. 

1998] with an efficient modification yielding high performance. The suggested modification was to use a microwave power 

source enhancing the normal diurnal thermal cycle, since the thermal effects of buried objects were too weak due to the 

dominant absorption of solar irradiance very near the surface. 

Microwave heating of soil has many advantages for the detection of landmines or shallow-buried waste [DiMarzio, et. al., 

April 1998]. First, it contributes an additional discriminant caused by the contrast between the dielectric properties of soil and 

target along with thermal properties. Second, this kind of enhancement of diurnal solar cycle accelerates the process by 

reducing the time necessary for observable temperature changes on the surface of the ground under which an object is buried. 

Finally, controllability of microwave power source allows us to focus on doubtful areas, decreasing the false alarm rates. 

Furthermore, DiMarzio, et. al. [Sept. 1999] have investigated the angle of incidence of microwave source and dielectric 

properties of the object due to the fact that enhancement is affected by many parameters, such as, wavelength, polarization 

type of the waves, angle of incidence, properties of the soil, and physical and chemical structure of the buried object. 

Those investigations were performed under the assumption of smooth, almost flat, surfaces. As the roughness of the 

surface to be explored increases, the signal indicating the presence of a buried object weakens and it gets harder to detect that 

object. In the experiments carried out at the Army's Gold Regions Research and Engineering Laboratory Hanover New 

Hampshire, the presence of any buried material couldn't be noticed. In figure-1, one can see the surface clutter, and the 

indistinctness due to the disorderliness. The roughness is the consequence of the disorderliness on the surface caused by the 

structure of the ground and the clutter such as vegetation. Here, we examine the effect of roughness on surface temperature 

increase by introducing new 2-dimensional absorption and thermal models. 
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Figure 1. Surface clutter and detection difficulties due to this disorderliness. 

2. TWO-DIMENSIONAL MODEL FOR ROUGH SURFACES 
new two-dimensional model for rough surfaces includes two main parts: An absorption model and a thermal model. 

two models will be explained in detail in further paragraphs. 
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2.1. Absorption Model 

"fhe absorption model, based on the fundamentals of electromagnetic theory, uses the finite-difference, frequency-domain 
technique. In order to be able to avoid the reflections due to the computational limits, 8-Iayer PML boundaries surrounding 
the two-dimensional computational grid have been implemented into the model. These layers provide the electromagnetic 
grid to avoid reflections and have it propagate in an unbounded medium. Since roughness is introduced into the absorption 
model, the two-dimensional computational grid is composed of three different media: Air, soil, and target. A sample grid can 
be viewed in Figure-2. This model takes as inputs the horizontal and the vertical dimensions of the target to be buried under 
the soil and its location. Furthermore, the incident angle of excitation wave, the dielectric properties and the conductivity of 
each medium are described. The model forms the binary images of the rough surface and the target under the soil and 
calculates the absorbed power pattern in Watts/m3 resulting from both incident and scattered waves according to 

1 - - 1 - - 1 1-12 P =- J · E =- aE · E =-a E 
2 2 2 ' 

(1) 

formulation. A sample absorbed power pattern has been demonstrated in Figure-3. The specifications of the material 
examined as target, ground, and air have been mentioned in Table- I. 

It may be concluded that the surface just over the target would be cooler than elsewhere since the target heats up less 
than the ground surrounding it [DiMarzio, et. a!., Sept. 1998]. Nevertheless, due to the fact that electromagnetic part of the 
problem is much more complex, one must think over the other factors, such as the dielectric properties, location of the target, 
itS size, etc. Several examples of the absorbed power at the surface for different depth have been examined. It has also been 
demonstrated that the power absorption pattern does not only depend on the chemical structure of the target, but also its 
physical characteristics and location [DiMarzio, et. a!., Sept. 1998]. 

Table 1. Specifications of the target, ground, and air. 

Distance of target from the 8.85cm (~3.48inches) 
right edge of the computational 
grid. 

Depth of the target from the top 3cm ( ~ 1.18inches) 
of the computational grid. 

Size of the target 7 .5cmx2.5cm 
( ~2.95inchesx0.98inches) 

Relative dielectric constant of 2.9 
the target 

Relative permeability constant 1 
of the target 

Conductivity of the target 1 xlO-jS/m. 

Relative dielectric constant of 6.5 
the ground 

Relative permeability constant 1 
of the ground 

Conductivity of the ground 7xlo·-stm. 

Relative dielectric constant of 1 
the air 

Relative permeability constant 1 
of the air 

Conductivity of the air ~o 

zoz 



Figure 2. Sample grid for thermal model. 
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Figure 3. Absorbed power density pattern at 3GHz. 
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Here, how the shape of the rough surface affects the power absorption pattern has been examined. The surface, which is 

going to be investigated, could be either a periodic rough surface or a random rough surface. For the time being, periodic 

rough surfaces having sinusoidal harmonics with different ripple factors have been implemented. The function shaping the 

surface is given below: 

j(x)~D-8sin( ;x )-8sin'(~ x )-8sin'(~ X} (2) 

where D, W, and 8 determine the depth, the width of the grid, and the ripple factor respectively. Figure-4 shows the power 

absorption at the surface of a target with several different surface shapes. 
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Figure 4. Absorbed Powers at 3GHz. with different roughness amounts. 

2.2. Thermal Model 

A two-dimensional thermal diffusion model was implemented under the excitation of a microwave power source. Actually, 

the microwave absorbed power density obtained as a result of the absorption model is used as a power source. Like in the 

absorption model, the ground and the target buried under the ground are described by their geometric properties. The thermal 

diffusion equation to be solved in the identified two-dimensional computational grid is shown below: 

T.n+l = R(Tn
1 

. + Tn
1 

. + Tn_ 
1 
+Til 

1 
)+ (1- 4R)T.~ 

IJ t+ ,j 1- ,j l,j+ 1,)- I} ' 
(3) 

where R is 
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Dis 

k 
D=

pc 

(4) 

(5) 

where k, p, and c are thermal conductivity, density, and specific heat of medium respectively. L1t and L1x represent the time 
and grid spacing. The temperature quantity T/ in equation (3) is computed from information at points (i+l,j), (i-l,j), (i,j+l), 
(i,j-1), and (i,j) at time n shown in Figure-5. 

Constant-temperature boundary conditions are applied at the grid boundaries and a convective boundary condition 
reference is used at the interface between air and ground. The microwave source is kept on for a while and then shut down. 
All temperature increases and decreases, belonging to each specific time, are calculated during the heating and cooling 
cycles. The time history diagram, the temperature function of transverse distance and time, is built up. 

~ (i+l ) 

(i~-1) (i "+1) .. 
i,j) 

i-l,j 

Figure 5. Computational grid for thermal model. 

3. THE INVESTIGATION OF TIME HISTORY DIAGRAMS BELONGING TO ROUGH 
SURFACES WITH DIFFERENT RIPPLE FACTORS 

As stated in section 2.2., rough surfaces with the target with the characteristics stated in Table-! were implemented for the 
investigation. The investigation, which has been performed here, could be broken into two parts. In the first part, the amount 
of roughness, which was introduced into the surface shaping function mentioned in equation (2) by various ripple factors, 2, 
3, 4, and 5 has been examined at only 3GHz. Furthermore, the effects of roughness on time history diagrams have been 
demonstrated in Figure-6. In the second group, the effects of frequency change have been investigated. The surface 
roughness applied here is unique; i.e. the study has been performed under the same rough surface. The ripple factor used in 
this simulation is 5. Frequencies are 0.5, 0.75, 1.0, 2.0, 2.5, and 3.0GHz. respectively. The results are presented in Figure-7. 
Both simulations were carried out under the assumption of zero angle incidences. The time history diagrams are also can be 
viewed from Figure-8 for frequency values of 0.5, I, 2.5, and 3GHz. · 

4. CONCLUSIONS AND FUTURE WORKS 
can be seen from Figure-6, the time history diagrams look like very similar to each other. However, as inspected closer 

. in more detail, one can realize that the five distinct hot regions get narrow with increasing ripple factor 8. As a result of 
IS, the gaps between these distinct hot regions can be distinguished more easily for the surfaces with higher roughness 

ts than the surfaces that are relatively smooth. 
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From figure-7, one can draw several conclusions. It is useful to separate to have the images with two different 

groups: Low frequencies and high frequencies. 

For low frequencies, one can easily observe that there is an obvious temperature rise in the middle of the location for 

the same surface shape, same soil and mine characteristics, and same mine location. As frequency increases, this temperature 

rise increases in the middle. On the contrary, the heating of the sides disappears. The temperature increases become 

concentrated in the middle portions. 

For higher frequencies, the situation is a little bit different. As frequency increases, side-bands get more distinct. 

However, when the temperature rise in the middle is viewed, it is impossible to determine the presence of a mine. Overall, it 

is difficult to sort out temperature variations due to buried objects and those due to surface roughness. Temperature rise in the 

middle is sometimes high and sometimes low, due to the effects of electromagnetic interference of incident, transmitted, and 

scattered fields. In any case, the presence of the mine is evident. 

We plan to investigate the frequency behaviors of these time history diagrams and to look at the changes in the 

heating pattern with frequency in the presence and absence of a mine. We believe this will yield new information, and reduce 

the effects of surface roughness. 
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Figure 6. Time History Diagrams at 3GHz. with different roughness amounts. 



Figure 7. Time History Diagrams at different frequencies with same amount of roughness. 
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Figure 8. Time History Diagrams without mine at different frequencies with same amount of roughness. 
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Abstract 

Humanitarian landmine detection and clearance is one of the most challenging, difficult and time-consuming tasks '\,e completed with existing technologies. Infrared (IR) Imagery has been used to find differences in heat n·ansfer on the •;~a.ce of the soil due to a buried object. In this paper, we will describe a method, Dual Frequency Microwave Enhanced ..,7 ,.mu•Pa Thermography (MElT). Heating with microwaves instead of natural sunlight leads to a number of advantages, such more efficient heating to enhance the thermal signature, and the ability to sense electromagnetic as well as thermal •liO!lterti1es of the buried object. However, like other IR techniques, it is limited by surface roughness. Thus, the two frequency is used to minimize the clutter introduced by the rough, irregular surface of the ground itself, and vegetation the ground. The dependence of scattered waves on frequency is weak enough to makes this possible. A 2-D model of this method has been developed to simulate real-world landmine detection. Moreover, ROC ver Operating Characteristic) curves are used to evaluate the performance of the system applying this method. 

P.f'I(Mwords: Landmine detection, rough surface, infrared (IR) imagery, thermography, microwave enhanced, dual y, ROC curves. 

I. INTRODUTION 

.·We have previously presented analytical and experimental results on Microwave-Enhanced Infrared ~1ography. In [1] [2], we have shown that using microwave heating of the ground can produce strong enhancements of signature of the shallow-buried objects, while diurnal variation of the heating pattern, caused by natural is much weaker. Moreover, we have described how different signatures impart electromagnetic and thermal 

In all the above work, analysis and results are based on an ideal uniform interface at air-ground boundary, say, a surface. Furthermore, we have shown that the effects of surface roughness produce clutter, which masks the from buried objects in (4] [5]. As surface roughness increases, infrared signatures of buried objects becomes more and have an increasing probability of producing false alarms due to hot spots on the surface generated by local in surface orientation. 

For detecting landmines and discriminating between landmines and other bmied objects, this effect also increases of the following image-processing procedure to exact information out of the obtained heating pattern. 
Remediation Technologies for Mines and Minelike Targets VI, Abinash C. Dubey, J. Thomas Broach, Vivian George, Editors, Proceedings of SPIE Vol. 4394 IE · 0277-786X/01/$15.00 379 



,

j 
. 

. 

' 

. 

Jr rr 
In this paper, we present a modified MEIT technique, Dual-Frequency MElT, which is developed based on 

previous work. In this new method, microwave sources with two different frequencies are used in two consecutive h . 
eatml) 

cycles on the ground. Then we obtain difference between two infrared signatures corresponding to the different freque . '" 
ncJes 

assuming that all the conditions of environment and of scatter have not been changed within the period between th ' 
e two 

separated heating cycles. 

In Section II & IU, we will show that the signature of difference gives information about buried objects \\ith 

reduced clutter, which mainly comes from rough surface and vegetation covering the surface. To validate the efficiency of 

this new method, at the end of this paper (Section IV), we have calculated ROC (Receiver Operating Characte1istic) cun·es 

for both single frequency and dual-frequency technologies. The ROC curves indicate an overall improvement. 

II. THE DUAL FREQUENCY TECHNIQUE V.S. THE SINGLE FREQUENCY TECHNIQUE 

Surface roughness is the major factor limiting the MEIT technique in our recent research. As we discussed in [3]. 

wavelength, polarization of the incident waves, as well as properties of the soil all have some influence on enhancement. 

while angle of incidence, physical structure and chemical composition of buried object are more important. 

However, all the above discussion had assumed a flat, smooth surface. Based on some of our real world 

experiments, in comparison to those in the laboratory on a flat surface, we find that a rough surface contributes most to the 

distortion of infrared signature at the air-ground boundary, compared with all the other parameters. Thus, eliminating the 

clutter due to surface roughness becomes the first thing to be considered to ensure microwave enhancement. 

We have noticed the fact that field irradiation under the surface depends most on Fresnel reflection and surfa~ 

geometry and dielectric constants, and less on the wavelength of the incident wave. In our microwave model, computational 

simulation has also confirmed this idea. 
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Figure 2.1 shows the geometry of the computational model we used in this paper, and Figure 2.2 explicitly shows 
that incident microwave power with different wavelengths produce, predictably, almost the same power distribution, as well 
as electromagnetic field distribution on the same rough surface. We explain this phenomenon as follows: no matter what 

. wavelength is used for incident waves, absorbed power density at the surface mainly focuses at tips of the rough surface, 
because a unit volume of soil at tips has more effective area for absorption than that of other region. 
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Figure 2.2, Frequency independence of scattered wave, power density distribution at the 

surface under two different frequencies 

Next, we consider how this simulation reduces the surface clutter. We know that using microwave heating instead of 
natural sunlight has many advantages, one of which is that we can take microwave wavelength as an adjustable parameter in 

· the MEIT technique. By subtracting the two infrared signatures obtained under two different frequencies, one can finally 
·'achieve a signature of the buried objects, with clutter introduced by rough surface greatly reduced. Then we can more easily 
~.extract information about the buried objects under the ground from the thermal signature data. In the following section, we 
·.present some results obtained by a 2-D computational model based on the idea above. 
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III. COMPUTATIONAL RESULTS 

Now it is time for us to use the 2-D numerical model developed according to the above analysis to simulate what 
happens during the period of a microwave heating cycle, which includes heat-up and cooling down periods. As described in 
our previous paper [1][2], the numerical model includes two main parts, the microwave model and the thermal model. The 
microwave model calculates total electromagnetic field including undisturbed incident plain wave plus scattered waves to get 
the power density distribution all over the under ground region. Then, the thermal model applies a thermal diffusion equation 
to calculate the temperature distribution variation on the surface as a function of time to form a THD (Time History Diagram) 
[5]. As presented in [3], initial signatures of microwave heating cycle show information about electromagnetic wm·e 
propagation in the vicinity of the object, and the purpose of the dual-frequency technique is mainly focused on improving the 
infrared signature contrast in this early heat-up cycle. Therefore, we only use the microwave model here to obtain the 
absorbed power density distribution. Some results obtained from the 2-D FDFD numerical microwave model simulations are 
shown below. 
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In figures 3.1 - 3.4, power density distributions on the top of the surface in our 2-D geometry, under different 

surface roughness, are shown in cases of frequency 0.915Ghz, frequency 1.115Ghz, and the corresponding dual-frequency, 

{rom top to the bottom respectively. 

All the figures are obtained with the same shape of rough surface, and different extent of roughness for the same 

surface profile is represented by factor k (O<k<l). For example, when k is equal to zero, surface becomes flat, and when k is 

equal to one, the standard deviation of the surface height is 1.15cm in the above case. 

From these figures, we find out that using the Dual Frequency technique efficiently reduces the clutter of rough 

surface comparing with power density distributions for the single frequency case. The rougher the surface becomes, the 

0

• worse the signature contrast becomes for single frequency, while for the Dual Frequency case power density distribution 

~· remains almost the same. Thus, the Dual Frequency technique successfully extracts useful information of buried objects out 

of the clutter caused by surface roughness. Similar results are also obtained with other different rough surface profile. 

One more thing we want to point out is, however, we cannot totally eliminate the distortion of heating pattern. 

Basically, there always exists some extent of dependence on wavelength for irradiation field pattern, which increase will 

increase difference between two frequencies. On the other hand, it is obvious that too close frequency difference yields a 

small signal as well as low clutter. So we have to choose the proper frequency pair to get as much enhancement as possible. 

The frequency pair we have used in this simulation has been optimized. To get optimized frequency pair, we have searched in 

a large range of the frequency domain to compare maximum signature difference between mine-free and mine case. 

Furthermore, in the following section, we have also used another means, ROC curves, to validate the dual-frequency 

technique's efficiency at removing or minimizing clutter caused by surface's irregularities. 

IV. ROC CURVES 

To evaluate the performance of a certain detection system, ROC curves provide much help to understand overall 

detection statistics of the system and compare systems when a priori probability and cost function are not available. 

For a single measurement, four results are possible: a correct detection, missed detection, correct negative, or false 

alann. The distribution of three results depends on the distributions of signals where an object is present and where it is not. 

We assume that both distributions are Gaussian. In the present case, the widths of both distributions are determined by a 

combination of a fixed number and the standard deviation of the signal in the absence of a mine. 

For an ideal detection system, these two distributions are sufficiently separated to ensure that true signals are always 

~detected and that the probability of false alarms is zero. However probability distributions of real system always have some 

- extent of overlap, shown as Figure 4.1 below. For any given threshold value of detection, the areas under each Gaussian 

CUrve to the right side of threshold are the probabilities of detection and false alarm, respectively. 

To get ROC curves, we scan the threshold value from negative infinite to positive infmite, and calculate the 

. corresponding probability for detection and false alarm, i.e., Pd and Pf. In fact, ROC curves are curves for Pd versus Pf 

Parametrically depending on threshold value of system. Typical ROC curve looks like Figure 4.2. The more area under the 

CUrve is, the better overall performance of the detection system will be. The ideal system ROC curve is a straight line from 
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origin (0,0) to point (0,1), then to (1,1), and the straight line from origin (0,0) to point (1,1), as shown in figure 4.2, is as bact 

as random choice. 
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Figure 4.2 Typical ROC curves 

In our analysis, signal and clutter, mine and no mine present respectively, are both assumed to be Gaussian. We 

know that the Gaussian curves can be totally determined by two parameters, mean and standard deviation, where the latter is 

related to noise. When these two parameters are obtained from surface power density pattern, we can easily get ROC curves 

according to above definition. Our strategy to get ROC curves is that, first, we find the difference between maximum and 

minimum values of power density along rough surface in mine and no mirie case, then use them as the means of Gaussian 

probability density distributions for true signal and false alarm, respectively. From our previous experiment data, the 

unpredictable behavior of the ground temperature variation, which is due to sunlight, is around a few Kelvins. So we take the 

minimum power density variation corresponding to 1 Kelvin as the standard deviation of Gaussian probability density 

distribution for both true and false alarm case. Then we add the standard deviation of the signal in the absence of a mine to 

indicate the clutter level. 

We show ROC curves from simulation data as described above. As can be seen from Figures 4.3, with increasing 

surface roughness, ROC curves become worse and worse for the single frequency detection technique. The ROC curves for 

the dual-frequency technique become worse, though at a pace much slower than those of the single frequency technique. 

However, as shown in Figure 4.3, when the surface roughness factor k is large enough, the dual-frequency technique 

begins to show its advantage over single frequency ones. From this time on, the single frequency technique tends to fail and 

the ROC curve suggests that the single frequency technique, in this case, is no better than a coin toss. 

By using ROC curves, we validate that the dual-frequency detection technique has better performance when a target 

is under ground surface with irregularity. 

384 Proc. SPIE Vol. 4394 



ROC Curves: k=040,0.915GHz&1.115GHz 
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Figure 4.3 ROC curves for dual-frequency technique 
with increasing surface roughness factor k (O<k<l) 

V. CONCLUSION AND FUTURE WORK 

We have presented an improved MElT technique for humanitarian landmine detection, Dual-Frequency MElT. This 

technique mostly retains the advantages of original MElT while it enhances us to observe an infrared signature of the 

. ·~allow-buried object under rough surfaces. Then we have validated it by results obtained via numerical simulation and ROC 

/9Jrves. In the future work, we will account for two other essential factors, vegetation and variation in solar heating, both of 

\Vhich may mask the infrared signatures of the buried objects. By overcoming these difficulties, the MElT technique will be a 

[l}ore valuable tool for detection of buried objects. Moreover, examining the thermal signature in later part of heating cycle 

provide useful shape information about objects. 
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ABSTRACT 

Acoustic sensing shows promise for the detection of buried landmines. One of us has previously demonstrated successful imaging of mine simulants buried at depths from the surface to 15 centimeters, using speakers and a laser vibrometer, which collects spectral data at low frequencies. The strength of the method is in the contrast between the porous soil and the nonporous mine, while the limitations are the strong attenuation of the probing acoustic wave and coupling of the sound directly into the vibrometer. 

Another member of our group has shown that shallow-buried objects can be detected by acoustic pulses generated by a high-power pulsed laser and a microphone, producing signals which are processed in the time domain to observe echos from buried objects. The strengths of this method are the lack of direct acoustic coupling into the vibrometer and the resolution implicit in the high frequencies. The limitations are in the depth of penetration, the large size of the laser, and the low acoustic energy. 

vVe have recently performed an experiment which combines the best features of both techniques. A new, portable, pulsed laser and the laser vibrometer were used at an outdoor test site to show that (1) sufficient laser energy can be coupled into the ground to produce signals larger than the ambient seismic noise, and (2) these signals are modified by buried objects. We will show some examples and consider the configuration for an operational system. 

Key Words:. Photoacoustic imaging. Landmine detection. 
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1. INTRODUCTION 

It is widely recognized that successful humanitarian demining will require many 
sensors to achieve the combination of certain detection required to return land to civilian 
use and low false alarm rate to allow the removal process to proceed at an acceptable rate. 
One interesting approach is the use of acoustic sensing. One of the authors of this work 
has previously demonstrated successful imaging of mine simulants buried at depths from 
the surface to 15 centimeters, using commercially available speakers and a laser Doppler 
vibrometer. The speakers insonify a large area while the vibrometer produces an image by 
scanning the region of interest, collecting spectral data in a bandwidth from hundreds to 
thousands of Hertz, at each point. The strength of the method is in the contrast between 
the porous soil and the nonporous mine, while the limitations are the strong attenuation 
of the probing acoustic wave and coupling of the sound directly into the vibrometer. 

Another member of our group has shown that shallow-buried objects can be de
tected by acoustic pulses generated by a high-power pulsed laser. In this case, the pulsed 
laser source is scanned across the target area and a microphone records signals, which are 
processed in the time domain. The signals show an acoustic pulse from the surface and 
the echo of the pulse from the buried object. Ten microseconds corresponds to a depth of 
about 1.5 centimeters. The strengths of this method are the lack of direct acoustic coupling 
into the vibrometer and the resolution implicit in the high frequencies. The limitations 
are in the depth of penetration, the large size of the laser, and the low acoustic energy. 

We have recently performed an experiment which combines the best features of 
both techniques. A new, portable, pulsed laser and the laser vibrometer were used at an 
outdoor test site to show that (1) sufficient laser energy can be coupled into the ground to 
produce signals larger than the ambient seismic noise, and (2) these signals are modified 
by buried objects. We will show some examples and consider the configuration for an 
operational system. 

Here we explore an all-optical implementation of an acoustic landmine detection 
system. We will present a brief overview of the advantages of an all-optical implementation, 
followed by a study of the mechanisms by which light generates sound, and a summary of 
our experiments. 

2. USE OF LIGHT IN ACOUSTIC IMAGING 

The all-optical implementation of acoustic imaging has two parts. In the first, a 
pulse of light generates sound in the ground, and in the second, a continuous wave (CW) 
laser vibrometer measures surface motion to measure the reflected sound from the object. 
Here we compare this approach to conventional all-acoustic techniques. 
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If sound is generated in the air, and transmitted into the soil, it is subject to severe 
losses caused by reflection at the soil-air interface. These losses are related to the variations 

in the speed of sound, and density, as well as the angle of incidence of the sound. Typical 

reflections can exceed 98%, with the result that an incident power level of 200 Watts in 

air can lead to peak pressures of as little as 200 Pascals in the soil. In contrast, if a pulse 

of laser light is absorbed in the ground, the resulting sound wave does not need to travel 

through the interface, and is thus not subject to loss. For a 150 millijoule laser pulse, 
our simulations indicate that a pressure of 105 Pascals can be generated. Thus, laser 

generation of sound is attractive because the sound can be generated directly in the soil 
without incurring the usual reflection loss. 

On the detection end of the process, a similar or worse situation arises on reflection 

from the interface. Specifically, if the sound reflected from the buried object is scattered 

over a wide angle, large portions will be reflected much more strongly, and thus the trans
mission can be as low as 0.1%, to a microphone above the ground. The possibility of 

detecting such small signals in the presence of the larger ones produced by the source, or 
even in the presence of noise, is limited. On the other hand, surface motions related to 

buried objects are of the order of fractions of a micrometer, which are easily detected by 
laser vibrometry. 

Thus, an all-optical implementation seems desirable because of the opportunity to 

ma.ximize signal strength and, perhaps more importantly, because of the ability to avoid 
coupling of the receiver to the transmitter directly through the air. 

The laser vibrometer has been used successfully in work reported elsewhere in this 
volume. The issues that remain to be discussed are the generation of the sound by the 
laser pulse and the propagation of the waves which are generated. 

3. MECHANISlVIS OF SOUND GENERATION 

vVe consider four different mechanisms for sound generation, and we find that at 
least two of them are likely candidates in different situations. In the first and most obvious, 

the soil is heated, and expands, thereby producing a compressional wave. This was our 
first assumption and is consistent with our first observations, reported previously {Li, et. 
al., McKnight, et. al., 1999}, for which imaging has been demonstrated {Witten et. al.}. 

The second potential mechanism is radiation pressure, in which photon momentum 

is transferred to the soil. Numerical calculations have shown that the resulting impulse is 

much less than that produced by heating, and this option has been dismissed. 

The third option is that the air between the sand particles is heated, resulting in 
a very different form of acoustic wave, specifically, the so-called Biot Slow vVave. This 

appears to be somewhat consistent with the results reported in this volume NicKnight et. 



aJ., 2000, when the laser beam is tightly focused. The other alternative is that the laser 

beam produces a plasma in the air, the expansion of which produces the acoustic pulse. As 

reported in by McKnight (2000), this is the more likely choice; We have observed "white" 

light emitted from the region of the laser spot in the case of a tightly focused beam, and 

upon spectroscopic analysis, this light has distinct lines associated with atmospheric gasses, 

as would a plasma. If the process were heating alone, the spectrum would be the smooth 

spectrum of black-body radiation. 

We thus conclude that sound is generated by heating of the sand in the case of a 

broad laser beam (150 mJ in a 1-cm spot), and by plasma in the case of a tightly focused 

beam (150 or 18 mJ in a 1-mm spot). We have developed a model which predicts the 

performance of the broad beam, and are working to develop one for the focused beam. 

Although the sound of the plasma pulse is more easily audible to observers in the labo

ratory, it is not immediately clear that it produces a larger sound pulse in the ground, 

nor that this pulse propagates in such a way as to detect buried objects. Indeed some of 

our experiments suggest the opposite. We repeated the experiment discussed in Witten's 

paper mentioned above, but using a focused beam. Results were significantly worse, and 

it was not possible to observe the shape of objects. This result is not understood yet, and 

is the subject of further research. 

4. EXPERilVIENTS 

To determine the feasibility of the all-optical approach, we conducted two days (28-

29 July 1999) of experiments at the University of Mississippi mine lanes, using a portable 

pulsed C02 laser (Laser Science, Inc., Franklin, MA) with a pulse energy of 18 mJ, and a 

pulse length of about 100 nsec, as a source, and a scanning ReNe laser vibrometer (Polytec, 

PI, Auburn, MA) as a detector. The work was conducted in a small patch of ground over 

an anti-tank mine casing buried two inches deep. We focused the laser with a short focal 

length lens, so that a flash of visible light was seen when the pulse occurred. 

The source laser was focused to nine positions, spaced about 25 mm apart, and 

the vibrometer collected data at six points near each source spot. If the spots overlapped 

closely, the vibrometer signal was contaminated by ejection of soil particles, and if it was 

too far away, the signals were not strong enough to detect with the particular configuration 

of the hardware used. A typical set of results is shown in Figure 1. 

The two panels on the left show Fourier transforms of the displacement signals 

calculated by the vibrometer. The top shows two curves, one collected with the laser on, 

and the other, for reference, collected without the laser, and thus indicating the ambient 

motion of the ground. The lower panel shows the ratio of the signal to the background. 

This is the data set normally recorded by the vibrometer. On the right, we have inverse 

Fourier transformed this data to produce displacement, and then differentiated numerically 

to obtain velocity, both as functions of time. We note that in the spectral plots, there is 
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Figure 1 - Sample Results of All-Optical Acoustic Imaging. 

a positive ratio at all frequencies, indicating that the ground surface motion resulting 
from the laser pulse exceeds the background acoustic activity, and does so by a substantial 
amount at most frequencies. In the time plots, the initial pulse is the most striking feature. 

These plots illustrate the differences between the two types of acoustic imaging 
being performed by our individual groups. Using the speakers as sources, the most effective 
frequencies seem to be low, in the range of hundreds of Hertz, where the penetration of 
the ground is good. The successful mine detection work relies on spectral information in 
this range. The sound source is adjusted to produce mostly these low frequencies. In the 
laser-induced acoustic work, the energy is distributed across a much wider spectrum, as 
dictated by the interaction of the light and the soil. The high quality images reported by 
l\!IcKnight et. al. result from analysis of these signals in the time domain, and in particular, 
making use of frequencies as high as 30 kHz. However, it will be noted in the spectra that ·. 
significant laser-induced acoustic energy exists at frequencies well below 2 kHz. 

This discussion raises a number of interesting and complicated issues. Let us 
the relevant times and frequencies. The pulse is typically a few microseconds in lvHF,V'"''v 

as shown on the top panel of Figure 2. This means that the spectrum has a width 
something less than 1 MHz. For multiple pulses, this spectrum is multiplied by a comb 
function at the pulse repetition frequency, as shown in the lower panel. For a finite t' 
sample, each comb tooth will be convolved with the Fourier transform of the time win 
For the unfocused laser beam and higher frequencies, the footprint is large compared to 
acoustic wavelengths, and the acoustic energy remains well collimated for some d. 
into the soil. Lower frequencies diverge faster, although they also travel longer 
in the soil. Although the laser-generated acoustic energy is spread over a wide band 



the narrow comb functions achievable with long dwell time may permit significant noise 

reduction by synchronous detection. Based on the work at the University of Mississippi 

reported elsewhere in this volume, these frequencies are particularly useful for detecting 

mines with a low false-alarm rate. The high frequencies can also be detected through 

synchronous detection, and based on McKnight, et. al. can provide exquisite imagery 

in three dimensions, for classification, particularly for smaller mines at shallow depths. 

Optimal use of the data will require further analytical and experimental effort. 
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Figure 2 - Relevant Times and Frequencies. 
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5. CONCLUSIONS 

We have shown that short pulses of laser light can produce easily measured acoustic 
signals in soil, which can be used for detection of buried objects. Many issues must be 
resolved to optimize this technique. In the most basic areas, the mechanism of sound 
generation is not well understood. Apparently different mechanisms exist for tightly and 
weakly focused spots. These evidently generate different types of waves in the soil, and the 
propagation of these waves is not yet understood. Next the information available at each 
range of frequencies must be investigated to determine the best use of the data. Finally: 
some choices for the laser pulse length, energy, and repetition frequency may have impact 
on improving the signal-to-noise ratio of the detected signal. 

The ultimate result of this effort could be a non-contact acoustic sensor with the 
potential standoff distance limited only by the height of the vehicle on which it \vould be 
mounted. The optical source and receiver would eliminate problems of direct coupling of 
energy through the air, and the use of data over a wide frequency band could permit the 
detection of landmines of different sizes buried at various depths. 
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ABSTRACT 
Mechanisms for the production of acoustic energy in soil by pulsed C02 laser excitation of the surface are reported. When the 

laser pulse in unfocused with a spot size about 1 em in diameter, a single narrow acoustic pulse is observed with a spectral content 

near the detector limit of 100 kHz and a velocity of 255 m/s, close to the speed of sound in air. When the laser is focused to a 

spot size on the order of 1 mm diameter, the audible acoustic intensity in greatly increased and we observe a second broad acoustic 

feature. This feature has a much lower frequency (near 3kHz) and velocity (75 m/s). We have tentative identified the fast mode 

as a normal compressive mode and the slow mode as a Biot slow-wave. A study of visible light emission when the focused CO, 

laser beam strikes the sand surface indicates ionized nitrogen, oxygen, and silicon are present. This implies that the mechanism

for sound production with the focused beam involves ionization by the optical electric field, expansion, and subsequence collapse 

of the air. The mechanism for sound production by the unfocused beam, which produces better imaging of underground objects, 

appears to be quite different. 

Keywords: laser-induced, acoustic, landmine detection, Biot waves, porous media 

1. INTRODUCTION 
The use of high-frequency (-30kHz) acoustic waves produced by a pulsed C02 incident on the surface of dry sand for imaging 

of shallow buried objects such as anti-personnellandmines has been demonstrated in the laboratory1
•
2

• The mechanisms for the 

conversion of the optical pulses into sound, however, is poorly understood. Since the optimization of the process of optical to 

acoustic conversion in a porous media depends on understanding and modeling the physical processes, we have initiated an 

experimental investigation of the behavior of the acoustic modes created in soil under different laser pulse focusing conditions. 

For a broad, unfocused laser spot, modeling the soil as a uniform effective medium as in Figure 1 a may be appropriate. If the laser 

is focused to a small spot comparable to the size of the sand grains as in Figure 1 b, a more complex calculation may be necessary 

which takes into account the random position and orientation of the sand grains and the intervening air spaces. In addition, under 

focused beam conditions the optical field intensity can become very large, leading to different physical effects. We have ob~~rved 

Two Models of Surface Interactions 
(Unfocused Beam) 

1 [ j 

\ 
Frame 

Effective Medium Random Porous Medium 

Figure 1 Conceptual models of optical-to-acoustic conversion 
in soil. a) An effective medium approximation may be adequate 
when the laser spot is much larger than the structure of the soil, 
b) The details of the interaction of the light with the discrete 
particles of the pore-elastic medium may be critical when the 
beam size is comparable to the particle size. 

Figure 2 Photograph of experimental 
pulsed C0

2 
is at top left and the exo,eronen 

is below. Objects to be detected.or 
study the laser-to-acoustic couphn~. 
sand. 
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that focusing the laser beam to a spot size on the order of 1mm in diameter greatly increases the audible acoustic sound associated 
with the laser pulse and, in addition, can cause the production of a flash of visible light at the point where the infrared C02 pulse 
impinges on the sand. We have studied the time-dependence of the acoustic pulse at various depths and angles in the soil for both 
focused and unfocused laser pulses. For unfocused pulses we find a single acoustic mode with a velocity slightly less than the 
spe~d of sound in air with a directionality perpendicular to the soil surface. With a focused beam we detect two distinct acoustic 
features in the time trace: a sharp pulse with a velocity and spectral content similar to that achieved with the unfocused beam, and, 
in addition, a second broad pulse with a much lower frequency content which propagates at a slower velocity. We suggest that 
these two modes may be related to the two Biot modes allowed in poro-elastic media3

• 

2. EXPERIMENT 
A photograph of the experimental setup is shown in Figure 2. The source laser is a LSI pulsed 1 0.6!J. C02 TEA laser with a pulse 
length of 1 OOns, a pulse energy of 150mJ, and a repetition rate less than 20Hz. The laser is incident on a 1 m2 surface of dry sand 
about 60 em deep in which we would bury detectors or various types of subsurface targets. In the present studies of the optical
acoustic conversion mechanism, the acoustic signal was measured with a wide-band hydrophone (0-1 OOkHz) which was buried 
at various depths and positions in the sand. This configuration contrasts with the experimental setup that we used to image 
underground objects. For imaging, our best results were obtained with a narrow-band (30kH) tuned PZT detector which was 
suspended in the air above the position of the laser pulse on the surface of the sand. 

The laser was used in two configuration: unfocused or with a focusing lense to reduce the spot size. The unfocused laser spot is 
an oval approximately 1.1 x 0.7 em in size. A germanium lens with a focal length of25cm was used to focus the beam to a spot 
size less than 1mm in diameter, comparable to the size ofthe sand grains. 10.6!J.light is very effectively absorbed in soil with a 
reflection less than 1 0% and skin depth of approximately 5!J.. The sound produced by both the focused and the unfocused beams 
was audible across the room. With the focused beam the sound was considerably louder and there were flashes of visible light 
emitted and some movement of sand grains at the spot where the laser hit the surface. 

The acoustic signal detected by the buried hydrophone for the focused and unfocused beams is shown in Figure 3 and Figure 4. 
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Figure 3 The time trace of the acoustic signal measured by a 
buried hydophone as a result of a pulse from the unfocused laser on 
the sand surface. 
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Figure 4 The time trace ofthe acoustic signal measured by a 
buried hydophone as a result of a pulse from the focused laser on 
the sand surface. 
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Scanning laser pulse from d=O to 
d=7.5cm the speed of sound can be 
calculated by the arrival time 

d 

C02 laser pulse 

Figure 5 Experiment to measure the velocity in sand of the acoustic features in Figure 3 and 4. 
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Figure 6 The arrival time vs. distance for the features indicated by the arrows in the inset. The propagation velocity in sand of the two features is determined as indicated from the slope of the lines. 
The initial spike is electrical noise caused by the laser discharge. The acoustic pulse is dominated by a sharp peak with a width (about lOJ.!s) that is probably limited by the bandwidth of the 100kHz detector. For the focused beam only, there is a second, much broader feature with a peak-to-peak width of about 300J.!S. 

To determine the propagation speed of these two different acoustic features observed with a focused laser beam, we measured the change in the acoustic signal as a function of distance from the laser spot to the detector using the configuration in Figure 5 The time trace of the acoustic signal measured by a buried hydophone as a result of a pulse from the focused laser at two different positions on the sand surface are shown on the left in Figure 6. Identifying the sharp feature by the initial spike, and the broad feature by the dip between the two broader peaks, in Figure 6 we plot the time delay after the laser fires of these two features as a function of distance from the laser spot to the detector. By taking the slope of these two curves, we fmd the velocities of the two features are dramatically different. The sharp feature propagates with a velocity around 255 m/s, while the broad feature propagates with a velocity of about 75 m/s. 

The observation of acoustic modes with two different velocities in porous media is a well-known phenomena. In the theory of Biot, the solution for acoustic propagation in a random porous elastic media gives rise to two modes: a mode in which the frame and the fluid move in phase (compressional wave) and an addition mode in which the motion of the frame is out of phase with the motion of the fluid. Typically the in-phase mode has a velocity which is close to the velocity of sound in the fluid, while the out-ofphase mode, the "Biot slow wave" has a lower velocity. If we tentatively make an identification of the features we observe with the Biot modes, the sharp feature which travels at 255 m/s, close to the velocity of sound in air, could be the Biot in-phase mode, while it is natural to identify the broader feature, low-velocity feature with the Biot slow wave. Note that we only observe this second, slower wave under excitation with a focused laser beam. 

To measure the angular dependence of the magnitude of the acoustic signal from the focused beam, we positioned hydrophones at different angles along an arch buried in the sand centered on the position of the laser spot, as shown in Figure 7. In Figure 8 and 9, we plot the peak amplitude of the sharp "fast-wave" signal and the 

Angular Distribution of Acoustic Intensity 

I CO, law pulse 

Figure 7 Experimental setup to measure the angular directivity of the acoustic features in Figure 3 and 4. 
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Fast Wave Angular Distribution 
(Focused laser beam) 
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Figure 8 Angular dependence the amplitude of the "fast wave" 
feature produced with a focused laser beam. 

Slow Wave Angular Distribution 
(Focused laser beam) 

90 

270 

Figure 9 Angular dependence the amplitude of the "slow 
wave" feature produced with a focused laser beam. 

broad "slow-wave" signal as a function of angle from the normal. The two modes show a dramatic difference in angular 

distribution, with the slow wave signal propagation peaked at angles perpendicular to the surface, while the fast-wave signal 

strength is peaked along the surface of the sand. The angular dependence of the fast-wave mode is hard to understand, since when 

the beam is unfocused we observe only a single mode with a shape and velocity similar to the fast-wave signal, but with an angular 

distribution sharply peaked at a direction normal to the surface, as shown in Figure 10. 

The unfocused beam has a Rayleigh length d2/A. on the order of I em, so for distances into the sand on the order of I em the 

unfocused beam looks like an extended source. The focused beam, on the other hand, has a Rayleigh length less than a millimeter 

and is a point source to a good approximation. Since the radius of the detector arch was about 10 em, it is unlikely, however, the 

difference between the fast-mode angular dependence seen in Figure 9 and 10 can be accounted for by such physical optics effects. 

It is more likely that the different acoustic excitation physics between the broad laser beam and the focused beam, such as 

illustrated in Figure I, may account for these differences. We will return to this question later. 

Table I summarizes the differences between the two acoustic modes that are observed with the focused laser beam. We note that 

these differences may impact on the utility of the two modes for underground detection and imaging. The fast mode, having a 

Angular distribution 
(Unfocused Laser Beam) 

90 

150 

Rayleigh distance=D21 .);~ 1 em 

Figure 10 Angular dependence of the amplitude of the fast
wave feature produced by an unfocused laser beam. 

Table 1: Comparison of Fast-Wave and Slow-Wave 
laser-induced acoustic features produced with a 
focused laser beam. 

Comparison ofF ast and Slow Acoustic Waves 

*Band-width of detector= 100kHz (11/Jt,.'"'" =10 MHz) 
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higher spectral frequency content may be more useful for high
resolution imaging where a small wavelength is desired. On the 
other hand, if we have correctly identified the slow wave as a Biot 
out-of-phase wave, it will see an exceptionally large contrast 
between the porous soil where the slow wave is allowed and any 
subsurface non-porous object where, since there is no longer any 
differentiation between frame and fluid, its propagation is 
forbidden. There may also be implications about detection 
strategies, since to the extent that the energy of the slow-wave is 
carried in the fluid, techniques that measure the motion of the solid 
surface, such as laser vibrametry, will be less effective than with 
an ordinary compressional wave. On the other hand, for the same 
reason the mismatch between the poro-elastic wave and the wave 
in the air may be less for the slow-wave than the fast wave, so that 
detection by means of a microphone above the soil may be more 
favorable for the slow wave. 

It is noteworthy that our attempts so far at subsurface imaging with 
the focused beam have been less successful than our previous 

Spectral Signature of Laser Flash 
(Focused beam) 

Figure 11 Experimental configuration for measuring the 
spectrum of visible light produced when a focused laser beam is 
incident on sand. 

work with the unfocused beam. These imaging studies were carried out with an acoustic detector suspended in the air above the 
surface. It is not possible to say at present whether the lack of success was due to an inherent effect such as the longer wavelength 
of the slow wave, less efficient acoustic coupling to or from the soil and air, or some interference effects between the fast and slow 
acoustic waves, or more incidental effects such as noise from the movement of sand grains and drifting of the laser focus due to 
heating of the air and movement of the surface. 

One clue about the mechanism for acoustic excitation is that a flash of visible light is observed which the C02 pulse hit the surface 
of the sand when the beam is focused, but not for the unfocused beam. Origins of this visible light that we considered were black
body incandescence of the sand surface, photoexcitation and luminescence of the sand material, and electric field ionization and 
recombination. The energy density of the focused beam is sufficient to heat the sand over I 06 oc if the effects of radiant emission 
and conduction are neglected, but this does not seem likely on the relatively long (0.1 J.I.S) timescale ofthe pulse. Luminescence 
of Si02-based materials is usually very broad-band and can extend into the ultraviolet. 

To gather more information about the light emitted when the focused C02 laser pulse strikes the sand surface, we measured the 
spectrum of the emitted light using a multispectral filter and a photomultiplier detector as in Figure 11. The measured spectrum 
is reproduced in Figure 12 and Figure 13. The emission peaks are negative, because the electron current ofthe photomultiplier 
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Figure 12 Spectrum of visible light produced by focused laser 
beam incident on surface of sand (short wavelength). Emission 
lines are identified from standard handbooks. 
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is converted to a negative voltage by a voltage-to-current amplifier. 
Electron photocurrent resulting from the detected light yields a 
negative voltage. 

We have identified emission lines in the spectrum by comparison 
with the CRC Handbook of Physics and Chemistry. We note that 
large emission lines associated with ionized nitrogen, oxygen, and 
silicon are present in the spectrum which implies that the model for 
optical field ionization is the best model for the production of the 
light. The concentration of the electric field of the optical signal 
n;ar the sharp points of the sand grains is the most likely 
mechanism for the breakdown and ionization of the air and sand. 

Focused Beam Surface Interactions 

\ 
\ 

1. Field concentration 
/

1 

at point 

/ Air/sand ionization 

3. Compressional shock wave 

The acoustic production for the focused beam can then be best Figure 14 Model for production of light and sound by focused 
explained by the collapse of the air following the rapid expansion laser beam impinging on soil surface. 
associated with the ionization and plasma formation as shown in 
Figure 14. The intense audible noise associated with the focused beam is analogous to the crack associated with an electrical arc 
or with thunder. One implication of this model is that the sound production for the focused beam is probably primarily as a 
compressional wave in the air above the soil. The reduced effectiveness of imaging with the focused beam may be a result ofthe 
poor coupling of this acoustic compressional wave in air into the soil. 

The unusual angular dependence of the compressional fast wave for the focused beam seen in Figure 9 may represent the more 
effective transport of acoustic energy in the air along the surface of the sand than propagation in the sand. In effect, the sound 
produced by this ionization and collapse travels through the air to a point close to the high-angle, near-surface sensor and then 
propagates only a short distance into the soil to the detector. Since the velocity of the fast wave is very near the speed of sound 
in air, it is very difficult to distinguish this propagation channel from propagation through the soil. The slow wave may not have 
the same channel available to it because a Biot wave will not propagate in a single component fluid such as the air. 

r .. 3. CONCLUSIONS v r· The production of acoustic energy in soil by a pulsed C02 laser has been studied. When the laser beam is focused to a spot size f;r . comparable to the soil grains, a much louder acoustic sound is observed and two different acoustic modes are detected in the soil. 
~~: One mode, which we identify with a normal compressional acoustic wave has a velocity (255 m/s) close to the speed of sound ~~-;~; in air, and a bandwidth of at least I OOkHz. The second mode, which we have tentatively identified as a Biot slow-wave 
~~'i',Ptten<)mc!na, has a velocity of only 75 m/s and a spectral peak near 3kHz. By analyzing the visible light emitted by the focused 

beam, we conclude that for the focused laser pulse the acoustic energy is produced by ionization of the air and soil 
components, with a rapid expansion and subsequent collapse of the air column. Preliminary investigations have indicated that 
imaging of subsurface objects with the focused beam laser is not as successful as with a broader unfocused beam. This may be 

result of the poor coupling of sound produced in air into the soil. Studies to measure the attenuation and dispersion of the 
c signals produced by the focused and unfocused laser beams are underway. 
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implementatio~ is problematic. _T~e ~"1it~Kn,eofr·1t.a<lot'tenuation expenenced by waves InCI-
P:\tiL drops off sharply as the angle of in
i~creases. Des pi ~e consi_der~ble_ effort in 

ir'O[eur10, adapting a~d rmpr_ov~ng rt, httle su~
been achieved In modrfymg the P.NIL m 

way as to achieve consi~tent performance 
.Wide range of angles, until now_. ~resented 
constitutive values of conductivity u that 

the PML to achieve a total reflection of 
01 %) through angles beyond 60°. Also ••u,ut·''ivs the background and methodology re-

to determine these values. 

·· · to understand the problems in discretiz
P1-IL consider that it has been established 
dec~v rate of the P:NIL in continuous time 

~.·.·lmac:e is ~a= (]TJCOS B. When discretized, the 
two way loss for the an N-layer PlVIL is L = 

··'"'"'"'' ••L "£N_:
0
1 

(]iTJ cos B 6..), assuming perfectly con
, .. ,:tftltliUIK ter';Tlination. The value of u at a spatial 

within the Pl\tiL is Ui, 6.. is the spatial in-
"'·;trtmen~o and i is the spatial index. Because the 

>.·.•:.Lo ....... IV' rate per PML layer, defined by si = U(T}6.. if a source of discretization error, the values of 
${.must be chosen carefully (Rappaport, IEEE 
1hzns. /vfagn.: May 96) and clearly any Si may not 
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Based on Berenger's results~ it is assumed that there exists a profile of the form Uj = (] 1(j /16)P, 
j = 1, 2 .. 16 (i = (j /2]) \vhere u 1 and p must be found to optimize performance. The first observation is that reflections off the P?v!L at small angles are dominated by discretization error. Finding the best set of o"j's for small angles is simply balancing the discretization error against L. An increase in u 1 will increase the discretization error ~nd decrease L. The value of p effects the change rn one value of Uj to the next. If this "contrast" is !arge, reflections from adjacent spatial points are 
!~creased. The_ overall effect of changes in p are difficult to predict. The second observation is that 
~efiections from th~ P~IL at large angles are dammated by L. It will be shown that discretization error goes down with an increase in B. The kev then, is to have u f large enough to provide a suitable attenuation at large angles and to adjust p to minimize both the discretization error and L at low angles. 

One-dimensional FDTD simulations (vVinton, Rappaport, 97 ACES Syp. Dig., to be published) are used for an automated search for u 1 and p. The gaussian pulse width and FDTD parameters are those used by Berenger to facilitate comparison. Reflections were analyzed for angles from normal to 60°. When an appropriate set of parameters was found, several angles were tested with the 1-D simulations and verified with 2-D simulations. 
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The results above clearly indicate that significant improvement over the parabolic profile has been achieved for angles between 0° and 7.5 °. In some cases this improvement is as much as 40 dB. 
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Abstract

A novel handheld time-domain array GPR antipersonnel mine detection system using an
offset paraboloidal reflector antenna is described.  The reflector collimates rays from an
ultra-wideband transmitting feed, directing the microwave impulse forward, in front of
the antenna structure. As such, much of the ground reflected wave is directed further
forward, away from the operator, the reflector, and the receiving antennas, and thereby
reducing the major source of clutter.  The wave transmitted into the ground that interacts
with the target, generating significant backscatter returning toward the receiving
antennas.  These receiving antennas are configured in a 2 by 2 array to provide spatial
focusing in both the along- and cross-track directions.

This system has been built and tested at both Lawrence Livermore National Laboratory,
and GeoCenters, Inc.  In both cases, custom-built wideband antenna elements generate
narrow pulse shapes, which allow for resolving small non-metallic targets buried at
shallow depths.  The LLNL’s Micro-Power Impulse Radar (MIR) operates in the 1.5 to 5
GHz range a very narrow pulse shape.  The Geo-Centers wideband TEMR antenna
elements have higher power, though lower frequency range (850 to 1700 MHz), and
generate less residual ringing in the time signal.

Preliminary measured data from both systems indicate that the surface clutter is indeed
reduced relative to the target signal, and that small non-metallic anti-personnel mines can
be reliably detected at burial depths as shallow as 1 inch in both dry sand and dry
vegetative clay loam soil.



Introduction

The Northeastern University Multidisciplinary University Research Initiative (MURI)
demining effort, sponsored by the Army Research Office, has been investigating novel
sensing systems and processing algorithms to detect small, shallow buried, low metal
content antipersonnel mines.  Finding buried plastic mines with conventional
electromagnetic induction metal detectors is problematic, due to the relatively low
amount of metal (just in the firing pin) relative to surrounding metallic clutter [1].
Ground penetrating radar (GPR) has been shown to be effective in detecting shape
anomalies characteristic of buried mines [2].  However, identifying buried target signals
amid rough ground clutter is particularly difficult for small mines buried close to the
ground surface.  To address this problem, it is essential that the GPR sensor minimize the
strongest scattering contribution:  the ground surface reflection.

A new GPR system designed at Northeastern University, and fabricated at both Lawrence
Livermore National Labs (LLNL) and Geo-Centers, Inc. reduces this ground clutter by
illuminating the sample ground surface with a forward propagating, quasi-planar wave,
and receiving the scattered signals with a two-dimensional multistatic array. Since the
scattering by a small target is relatively isotropic, while scattering by the ground is
primarily specular, a planar transmitted signal is well suited for shallow GPR detection.
Plane wave illumination has another advantage beside clutter reduction compared to
point source excitations:  for a given target burial depth, the wave incident on a target
from a plane wave source will always scatter the same way.  For a point source, the
incident wave on a given target will be illuminated from the side for one transmitter
position and directly above for another.  This constant exposure angle for the planar wave
makes processing the returned signals more straightforward.

In both the LLNL and Geo-Centers systems, the excitation signal is sufficiently short in
time duration to resolve small targets and discriminate the ground surface from a shallow
buried target.  The multistatic array concept provides for additional clutter rejection and
time-domain focusing [3]. This focusing is accomplished by measuring, comparing, and
summing the backscattered signals at each receiver in the narrow time window between
the times when the residual ground reflected wave passes the receiver and before this
wave re-reflects from the reflector components.

The finite-difference time-domain (FDTD) [4] method has been used to electro-
magnetically model the novel GPR configuration. We implemented the 2-D FDTD code
to simulate the generation of the non-uniform plane wave, the scattering by the modeled
dispersive soil ground surface, the scattering by the target, and the retransmission back
into the air, confirming the clutter minimizing characteristics of this mine detector.

Parabolic Reflector Transmitter GPR

The quasi-planar transmitted wave is generated using an offset paraboloidal reflector
antenna. The resulting wave is incident at 45 deg. to normal, and is fairly uniform over
the portion of ground being investigated.  Because the transmitted wave diverges very
little from reflector to the ground, most of the power incident from the illuminating feed
is transferred to the ground.  Much of the ground reflected wave is directed further



forward, away from the operator, the reflector, and the receiving antennas, reducing
clutter.  In addition, the wave transmitted into the ground is incident on the target in the
same manner for any antenna position:  always  as a plane wave with constant soil path
length and incident angle.   Since the scattering from an electrically small buried target is
primarily isotropic, there will be a significant backscattered signal, propagating
oppositely to the surface clutter signal, returning toward the receiving antennas.

Figure 1 shows the geometry of the parabolic reflector and the way it directs rays from
the transmitting feed to the ground.  Diverging rays leaving the transmitter reflect from
the paraboloidal surface, emerging as parallel rays, in such manner as to keep the path
length from the feed to an inclined wavefront constant. The inclined wavefront is
perpendicular to -- and propagates along -- the axis of revolution of the parent paraboloid,
which includes the parabola focus and vertex.  Also, the reflector produces a beam of
microwave energy with an abrupt drop in power outside the ray tube bounded by the
perimeter of the reflector.  As long as the distance from reflector to ground S is
comparable to the projected reflector diameter D, the rays representing the transmitted
wave will be parallel, and the wave will be planar.  The governing equation for the
nearfield of the reflector is:  S << 2 D2 / λ, so when the reflector is positioned close to the
ground, the radiated wave is in the nearfield, and concepts of antenna gain and radiation
pattern are irrelevant.

An offset section of the paraboloid is selected to avoid blockage of rays by the feed
structure.  In contrast to offset reflectors used in communications applications, this offset
section is particularly deep, extending from the vertex past the focal point by twice the
focal length, giving an F/D ratio of the parent paraboloid of about 0.15.  The best offset
section extends from 45 deg. to about 115 deg. from the symmetry axis, which ensures
that the front and rear edges are at the same height above ground.  For a parabolic focal
length of 20 cm, the projected aperture diameter of the reflector is about 47 cm, which
nominally illuminates an elliptical spot of ground with axes 47 and 67 cm.   For a
reflector positioned 33.5 cm above the ground, the center of this elliptical region is
immediately below the front edge of the reflector, and all of the collimated rays from the
reflector would reflect from a flat ground just missing the front of the reflector.

Figure 1.  Geometry of the offset parabolic reflector
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The receivers are positioned under the reflector, but behind the point on the ground at the
center of the illuminated spot.  The 4 receivers are arranged in a rectangular 2 by 2 array,
with the forward pair separated by about 40 cm, and the backward pair by the same
distance, 20 cm behind the forward pair.  Since the receivers are displaced from the
centerline, they do not appreciably block any of the wave from the reflector to the
ground.

For FDTD modeling the dispersive soil, several modeling methods have been proposed to
avoid convolution in the time domain [6,7]. Our method makes use of the Z-
transformation. We approximate the frequency dependent conductivity using the (2-2)
Pade’ approximant
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and assume a constant average dielectric constant,  With the a1, b0, b1, b2 parameters in
(1) chosen to match the experimental data, such as Puerto Rican clay loam [8] with
density 1.4 g/cc and moisture 10%, we have a1 = -0.88, b0 = 0.9162, b1 = -1.6766, b2 =
0.7611, and ε = 4.2.  The perfectly matched layer (PML) absorbing boundary condition is
used in the FDTD model to terminate the computational grid [9,10].  Computational
models of the parabolic reflector system indicate that the wave reflected by the offset
parabola does indeed remain planar over the illuminated region of ground, and that the
scattering by rough soil surface is primarily specular.  In addition, the mine scattered
signal appears to be circular, showing that the electrically small target scatters almost
isotropically.

Lawrence Livermore National Laboratory System and Results

The Lawrence Livermore National Laboratory (LLNL) Micro-Power Impulse Radar
(MIR) was used as the transmitter source for one of fabricated systems [5].  This radar
source generates an impulse with pulse width of about 300 ps and frequency range from
about 1.5 to 5 GHz (see Figure 2), and has the particular advantage of being small and
extremely low cost: both important features for mine detectors used in developing
countries.  This source was assembled with a custom-built metallic offset paraboloidal
reflector.  Figure 3 shows the full mine detector prototype; Figure 4 shows the device
performing measurements at the test site at LLNL.  In this test, a non-metallic
antipersonnel mine simulant was buried in dry sand 1 in. below a very rough surface.
This is a particularly challenging detection problem, because the dielectric constants of
the plastic body TNT filled mine and the surrounding soil are very close.  In addition, the
random rough surface height variation is of the order of the height of the mine, and its
burial depth.  Thus, the anomaly detection is frustrated by low signal to clutter both in
terms of size and contrast.

The result of processing the measured signals is shown in Figure 5, with bright areas
signifying anomalies.  Although there is still appreciable clutter from the rough ground,
the target is still visible in the center of the image.  The extent of the rough ground
variation precludes clutter suppression using purely signal processing means.  However,



by ensuring that the ground scattered signal specularly reflects away from the receivers,
the target signal can be discriminated from the clutter.

Figure 2  LLNL MIR pulse shape

Figure 3  Offset parabolic mine detector with
LLNL MIR sources and antenna elements

Figure 4  Parabolic mine detector
under test at LLNL test site
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Figure 5  Detection results for the LLNL MIR system for rough sand with AP mine
buried 1 in.

Geo-Centers System and Results

Another mine detection system based on the offset parabolic reflector transmitter was
fabricated by GeoCenters, Inc.  The reflector consists of metallized fiberglass, and the
antenna elements are proprietary Transverse Electromagnetic Rhombus (TEMR), fed by
a 1 ns impulse shown in Figure 6.

The system is shown in Figure 7 as it is configured for measuring signals on the
Northeastern University test track.  The targets in this test were seven non-metallic
antipersonnel mine simulants buried 1 in. in moist loam, with naturally occurring
vegetation.  While this soil surface was not as rough as in the LLNL test, there is
significant realistic clutter from long grass.  The seven targets were spaced roughly 60 in.
apart.



Figure 8 shows the detection results by combining the registered signals from the four
receivers each with the moving average background signal removed.  It is apparent that
six of the seven targets are detected (note the proximity to the indicated true positions),
and only one false alarm is generated.

Figure 8  Detection results for the Geo-Centers TEMR system for vegetated moist
loam with AP mine buried 1 in.
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Conclusions

A novel GPR mine detection system that reduces ground surface clutter has been
developed and tested.  The detector uses an offset parabolic reflector to generate a
forward propagating plane wave to illuminate the ground and a 2-dimensional multistatic
array to focus and enhance the received backscattered signal.  Numerical simulations
support the concept of specular ground reflection with more isotropic target scattering.

Measured signals using both the LLNL MIR and the Geo-Centers TEMR radars for
rough dry sand and vegetated moist loam indicate that small non-metallic targets can be
detected and discriminated from the cluttered background, even when shallow buried to a
depth of 1 in.
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' 1·. ABSTRACT 
~· 
( Microwave heating of soil offers the potential to enhance infrared signatures of 
~1ed objects such as landmines. In uniform soil, with no vegetation and a flat surface, ""'"'' ~ges can be obtained showing the shape of the objects, to aid in their identification. 
tfu.bined with other subsurface imaging modalities, this promises a reduced false alarm ~~- leading to more effective demining operations. However, in the presence of rough ~tmd, non-uniform soil, vegetation, and solar heating, the signatures become much more ~plicated. In this work, we examine some of these issues, based on outdoor experiments !~ two-dimensional model. 
~: 
~Y Words:. Microwave heating, infrared imaging, landmine detection. I, I L INTRODUCTION 

: We have previously reported analytical and experimental results showing that mifave heating of the ground can produce enhancements of the infrared signature of 
~e~ objects {DiMarzio, et. al., Sept. 1998}, and we have described two time periods 
lshich different signatures impart information about the electromagnetic properties and 
~~P .... ermal prop~rties, respectively {DiMarzio, et. al.: 1999}. In those works, _analysis was 
i2rmed assummg a fiat ground surface, and expenments were conducted In controlled j~tory settings, with dry sand or soil in the absence of vegetation. Here we report 
&\Preliminary measurements in an outdoor environment and a model which accounts 
~~·· Jirface roughness. 

~· Previous laboratory work had been hampered by the requirement to enclose the test 
~~¥1 a screen box to prevent exposure of the IR camera and the personnel to microwave 
11 
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energy. In the outdoor experiments, we used an elliptical reflector antenna to direct the 
energy to the test area. We observed that this antenna was very successful in keeping the 

energy concentrated on the target, with the result that a short distance away, microwave 
power density was at a safe level. This permitted us to operate the IR camera during 

heating. 

However, we also determined that spatial and temporal variations in heating by 

solar energy exceeded the temperature fluctuations we were trying to observe to detect 
buried objects. Furthermore, the surface signatures were severely contaminated by the 

presence of surface irregularities and vegetation. These issues led us to modify the model 
reported in the previous work to accommodate surface roughness. Future work with the 

model will also accommodate solar heating and vegetation. 

2. EXPERIMENTS 

The outdoor experiments were performed at the Army's Cold Regions Research and 
Engineering Laboratory (CRREL), in Hanover, NH, on 29-30 June 1999. Two cameras 
were in use; a modified Mitsibushi IR focal-plane array (320X240 pixels), and a Boeing 

microbolometer. A key element of the project was the use of an elliptical reflector for the 
microwave energy. In previous research, the microwave source, a 2.45-GHz. magnetron 

from an industrial microwave oven, attached to a homemade copper feed horn, was en

closed in a copper-screen shield which prevented microwave energy from leaking into the 

surroundings. Infrared images taken through the screen were not satisfactory, and it was 

necessary to stop heating and open the enclosure in order to take pictures. The upper 

left portion Figure 1 shows the test site with the reflector and feed horn mounted on a 
gantry crane. The feed horn is at one focus of the ellipsoid, 0.5 meters from the vertex, 

while the other focus, 4.5 meters from the vertex, is placed approximately at the ground 
surface. Because the ellipsoid is large (1.5 meters across), the radiation pattern from the 

feed horn is contained within the reflector, the power at the edges of the reflector is almost 

zero, and sidelobes are insignificant. The center right portion of the figure shows the two 

infrared cameras mounted on tripods. Survey measurements taken continuously during 
the heating experiments revealed an exposure level at and beyond the rail seen at the base 

of the tripods of less than the detection limit of our power meter, a fraction of a milliwatt 

per square centimeter. During experiments, personnel were kept outside this rail although 

measurements of power were still below the safety standard at locations considerably closer 
to the heated area. 

Three mine simulants, shown in the right-hand side of Figure 1, were buried just 
below the surface near the focus of the ellipsoid. Because the antenna performed better 

than expected, we only heated the area containing one of the simulants. The grass in the 
area where the mines were buried was very dense, as shown in the left panel of the figure. 

-



3875-15 

Figure 1 - Outdoor Test Site at Cold Regions Research and Engi
neering Laboratory, with Equipment in Place for MicrowaVi 
Enhanced Infrared Thermography. 

Solar heating of about 1000 Watts per square meter is often mentioned as sufficient 
infrared detection of buried objects such as landmines. Typically, one waits until the 

~ .... , .... u..::~.J heating or cooling reaches a maximum, and then examines an infrared image of the 
In addition, the presence of clouds can dramatically alter the temporal distribution 

solar heating. Figure 3 shows an example, taken from the two days of our test. On the 
day, solar irradiance was only about half the normal level, and, although there were 
short-term fluctuations associated with clouds, and there were some showers during 

day, the overall heating was less than would occur on a sunny day. The temperature 
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3875-16 

Figure 2- Area Where Mine Simulants Were Buried (Left), and 

the Simulants (Right). 

of the ground was relatively stable at the time of our experiment, as shown by the top 

curve of Figure 4, which indicates the surface temperature as a function of time. In both 

figures, the time axis is hours from midnight local time (0400Z) on 29 June, extending 

through two days, until the end of 30 June. Figure 5 shows an infrared image from the 

first experiment. The mine location clearly shows a level of heating greater than that of 

the surrounding environment, but there are a number of clutter signals in the surrounding 

area with temperatures equally high. Furthermore, the mine signature is not particularly 

well defined, probably because of the clutter caused by the vegetation. This can affect 

the microwave heating directly because of the absorption of the microwave energy, and 

indirectly, by modifying the water content of the soil by varying the exposure to sunlight. 

More importantly, it can affect the temperature reported by the infrared camera. In some 

cases, the camera will see through gaps in the vegetation, while in other pixels it will see 

leaves of grass. Some pixels may include some of each. Clearly further work in processing 

is required. 

The second test occurred at a time of intense increase in solar irradiance in the 

visible, as morning clouds began to clear. Note the increasing surface temperature follow

ing the slight flattening during the cloudy period. Note that the high rate of increase in 

temperature is seen at depths of greater than 10 centimeters. This presents the greatest 

challenge for observing microwave-enhanced infrared signatures, because the ground tem

perature is changing rapidly, and the rate of change is also changing rapidly. Thermocouple 

readings on the ground showed unpredictable behavior over several Kelvins, depending on 
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so 

probe placement, shading by grass, and changes in sunlight and soil composition. In general these changes were larger than those we expected to observe from microwave heating. 
Figure 6 shows an image taken during this second experiment. Although there is a sugges
tion of increased heating in the area near the mine, it is evident that there are much higher 
temperatures in other regions. Any attempt to m~e measurements based on microwave heating will be require extensive processing to remove the effects of such clutter. It should be pointed out that these problems arise for both passive solar and microwave-assisted heating scenarios. 
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2. MODEL DEVELOPMENT 

In the previous work, we reported a model for microwave heating of landmines 

buried in soil, based on a finite-difference, frequency-domain solution of the wave equation 

and a finite-difference solution of the thermal diffusion equation. In light of the results 

reported in the above section, we see the need to expand our model to address rough 

surfaces, vegetation, and solar energy. The first step is the inclusion of a rough surface. 

Figure 7 shows a result for thermal diffusion in the presence of a landmine (TNT) under 

a rough surface in Puerto Rican clay loam, for a microwave heating at 2.45 GHz. Because 

the mine is less conductive than the surrounding soil at this frequency, it heats less. At this 

point, the microwave model has not been implemented, so the fiat-surface model is used: 

with data set to zero in the air above the actual rough surface. Thus the electromagnetic 

distribution of energy is not correct but, given that distribution, the thermal behavior is 
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2. MODEL DEVELOPMENT 

In the previous work, we reported a model for microwave heating of landmines 

buried in soil, based on a finite-difference, frequency-domain solution of the wave equation 

and a finite-difference solution of the thermal diffusion equation. In light of the results 

reported in the above section, we see the need to expand our model to address rough 

surfaces, vegetation, and solar energy. The first step is the inclusion of a rough surface. 

Figure 7 shows a result for thermal diffusion in the presence of a landmine (TNT) under 

a rough surface in Puerto Rican clay loam, for a microwave heating at 2.45 GHz. Because 

the mine is less conductive than the surrounding soil at this frequency, it heats less. At this 

point, the microwave model has not been implemented, so the fiat-surface model is used, 

with data set to zero in the air above the actual rough surface. Thus the electromagnetic 

distribution of energy is not correct but, given that distribution, the thermal behavior is 
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Figure 5 - Infrared Images of Heated Soil with Buried Objects from 
First Experiment. 

correct. It is evident that the thermal diffusion process is influenced by the rough surface, 
but that the mine signature is still visible at the surface as it was in the case of a smooth 
surface. The two panels on the left show color plots of temperature for the cross-section 
during heating, while those on the right show the same plots during cooling. In the lower 
left plot, the mine has begun to heat through conduction from the surrounding hotter soil. 
As the mine heats up, a hot spot is observed in the local high point in the surface above the 
mine. Later this hot spot disappears through conduction and convection, and the shape of 
the mine is evident in a cool spot, although the mine continues to increase in temperature. 
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Figure 6 - Infrared Images of Heated Soil with Buried Objects from 

Second Experiment. 

4. CONCLUSIONS AND FUTURE PLANS 

We have shown that microwave heating of soil can be used to enhance infrared 

signatures of buried objects. Both solar and microwave-enhanced signatures are influenced 

by surface irregularities, vegetation, and variations in solar heating. At times of high solar 

heating, the microwave enhancement can be masked by clutter. Vegetation masks the 

transfer of energy in and out of the soil. Nevertheless, bare spots can be observed through 

the vegetation, and imaging algorithms may be developed to capitalize on these bare spots. 

The model will be completed to account for vegetation and solar heating. Experiments 
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Figure 7 - Preliminary Results from Model for Microwave Heating 
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and analysis will begin to address whether the use of different wavelengths and fusion with 
other sensing modalities can provide help in reducing the effects of clutter. If these issues ~~·- can be addressed, microwave-enhanced infrared thermography can provide a valuable tool ~:-: 

.,. for detection of buried objects. 
c;:<<:.i 

~~if:.~ 

5. ACKNOWLEDGMENT 
;;-,_ 

t We wish to thank Dr. Gary Koh of the U.S. Army Cold Regions Research and 
r~ Engineering Laboratory, in Hanover, New Hampshire, for the use of his test site, supporting ~~---
=~'. instrumentation, and for his help during the test program. We also thank Arnold Dean $, of GeoCenters for providing the elliptical reflector. This work was sponsored by the OSD ~:: MURI Program under Army Research Office Grant number DAAG55-97-l-0013. ; 

319 



320 

6. REFERENCES 

DiMarzio, Charles A., Carey M. Rappaport, and Li Wen, "Microwave-Enhanced 
Infrared Thermography," Detection and Remediation Technologies for Mines and 
Minelike Targets III, SPIE Aerosense Volume 3392, September 1998. Pp. 1103-1110. 

DiMarzio, Charles A., Li Wen, Carey M. Rappaport, Gerhard 0. Sauermann, 
and Herman E. Scott, "Microwave-Enhanced Infrared Thermography," Detection 
and Remediation Technologies for Mines and Minelike Targets IV, Proc. SPIE 3710. 
Presented at AeroSense, Orlando, FL. April 1999. 



158 

Some Approaches to Infrared Spectroscopy 

for Detection of Buried Objects 

by 

Charles A. DiMarzio 
Center for Electromagnetics Research 

Northeastern University 
Boston, Massachusetts 02115 

Tuan Vo-Dinh 
Oak Ridge National Laboratory 

P. 0. Box 2008 
Oak Ridge, Tennesee 37831-6101 

and 
Herman E. Scott 

Aerodyne Research, Inc. 
45 Manning Road 

Billerica, MA 01821 

ABSTRACT 

Detection of buried objects presents a formidable challenge which requires many 

different approaches. Infrared imaging has proven its versatility in a number of appli

cations. Recent advances in technology have opened the door for spectroscopic imaging 

systems which can produce images of reflectivity or emissivity as a function of two spatial 

dimensions and wavelength. These imagers have been largely unexploited for detection of 

buried and surface-laid landmines. 

Several promising opportunities exist for this application in different parts of the 

infrared spectrum. Variations in soil moisture content, vegetation condition, and soil 

composition may well be related to the presence of shallow-buried objects. In addition, 

polarimetric signatures appear useful in detecting man-made objects on the surface and 

may even help in detecting buried objects. 

This paper will explore both the feasibility of using infrared spectral imagery in the 

1-to-2.5 and 8-to-12 micrometer infrared bands to detect surface-laid and buried objects. 
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1. INTRODUCTION 

The detection of landmines is widely recognized as an extremely difficult challange, 
-~'""r,·ng multiple sensing strategies with different operating scenarios, sensor modalities, 

algorithms. In this work, we explore the use of hyperspectral imaging in two bands 
the infrared spectrum. We consider the short-wavelength infrared band from 1 to 2.5 

mic:roJmeters, in which water and soil contamination are detectable using scattered sunlight, 
the long-wavelength IR band from 8 to 12 micrometers, in which material properties 
surface characteristics can be determined from emissions from the surface. In the 

er case, we also consider polarimetric measurements. 

Recent advances in technology allow nearly simultaneous imaging and spectral char
ation in what is called hyperspectral imaging. A dispersive element is placed in front 

a and multiple images are collected. In one configuration, the dispersive element 
as a filter, allowing the camera to capture an image at only one wavelength. Succes-
. ctures are collected at different wavelengths. In another, the optical system causes 

._,,.~·m•"ra to image a single line in space, for example, in the horizontal direction on 
.,.,.,.TIP,·::~, while the dispersive element distributes the contributions from different wave

across the camera in the vertical direction. If the camera is scanned or mounted 
· cle, successive pictures build a two-dimensional image in a "pushbroom" mode. 

case, a three-dimensional array of data is obtained, in which the coordinates 
to two spatial dimensions and wavelength. Conventional spectroscopy can be 

on each spatial pixel, or more sophisticated processing can be performed on the 
.... .::.,~-LUH.LCJ.J.sional array. Furthermore, data can be collected in polarimetric channels 

further information from the scene. 

··preparation for using hyperspectral imaging in the detection of landmines and 
·ects, we explore the spectra of relevant materials to determine what signatures 

ted in conditions related to demining. Here we report on some studies in two 
bands. 

2. SHORT-WAVELENGTH-IR MEASUREMENTS 

short-wavelength infrared band, self-emission is low, and the spectrum of 
termined by reflected sunlight. The reflection spectrum can be used to 
osition of a material. Frequently soil composition varies strongly with 
ance of the soil in laying a buried mine will result in deeper soil being 
surface and the spectral difference between the disturbed region and the 

... remain for a long time. Given the many natural variations which can 
soil spectra, this technique is not sufficient to locate landmines by itself, 

useful in conjunction with others, particular to address the issue of false 

spectrometer was modified to hold soil samples in a reflective mode. 
·were placed in the holder and measured from 1.1 to 2.5 micrometers. 
soil spectra with different water content. Soil 1 is a loam with 10% 
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Figure 1 - Soil Spectra with Varying Water Content. 

clay, 50% sand and 40% silt, while Soil 2 has 10% clay, 65% sand and 25% silt. There 

are significant differences in the content of several elements as well. The difference in 

absorption around 1.9 micrometers is a measure of the water content. In soil 1, several 

other water absorption lines become apparent. Soil 1 has an overall higher reflection. The 

overall reflectivity is probably not a useful parameter in detecting burial of objects, as wide 

ranges of variation are to be expected, and in operational scenarios, these results would 

be affected by lighting conditions. What may prove useful is the comparison of adjacent 

regions. Thus, hyperspectral imaging will permit simultaneous detection of the spatial 

variations in overall reflectivity and spectral features. 

The emerging technology of acousto-optical tunable filters may permit the devel

opment of hand-held hyperspectral cameras to detect soil moisture, spatial changes in soil 

composition, and perhaps changes in the condition of vegitation, which can indicate the 

presence of objects below the surface. Used in conjunction with other, more established 

demining detectors, this technology could help to reduce the false-alarm rate and thus 

improve the speed of the overall demining process. 



3. LONG-WAVELENGTH-IR MEASUREMENTS 

In the long-wavelength infrared band, the contribution of scattered sunlight is low 

and the spectrum of an object is determined by its temperature and emissivity. Infrared 

thermography can detect changes in these parameters and, combined with polarimetry, 

can detect different surface characteristics. The emissivity of a surface depends on its 

composition, shape, and orientation. In the case of soil, transmission does not occur, so 

conservation of energy dictates that the sum of reflectivity and absorption equal unity. 
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Figure 2- Fresnel Re:B.ection from a Lossy Medium. 
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Furthermore, the laws of thermodynamics require that the absorptivity equal the 

emissivity. Thus, emissivity is related to reflectivity by 

Ex( A, 8) = Ax(A, 8) = 1- Rx(A, 8), 

where E is the emissivity, A is the absorptivity, R is the reflectivity, and all are functions 

of the wavelength .\, the angle of observation 8, and the state of polarization, x. As an 

example, Figure 2 shows the Fresnel reflectivity of a surface having an index of refraction 

equal to 1.5 + 1.25i. At the grazing angles typical of forward-looking mine detection, a 

significant difference exists between the two polarizations. This plot is for a smooth surface 

typical of a man-made object. For rough surfaces, the results become more complicated, 

involving details of the surface texture. 

Spectral measurements were made using a FTIR spectrometer with a wire-grid 

polarizer before the lens against realistic target scenes on the test range shown in Figure 3. 

Polarmetric difference images showed greatest contrast at polarization angles of zero 

and 60 degrees. Figure 4 shows results for a plastic frisbee on a sand backgrouund. The 

left panel shows the two spectra and the right panel shows their difference. The difference 

is particularly significant in view of the fact that the plastic only subtends 7 percent of 

the field of view. Interestingly, the polarimetric signature depends strongly on wavelength, 

and a polarimetric sensor could see a positive, negative, or zero signal, depending on the 

wavelength band. 

Table 1 summarizes the polarimetric data. When the polarimetric signatures are 

converted to degree of linear polarization (D 0 LP), and corrected for the fraction of the 

field of view that is filled by the target, it is evident that strong polarimetric signatures 

exist for several targets. 

Table 1 

Key Polarimetric Results 

~andy Asphalt Tan CARC J:<~nsbee !Green CARC 

DOLP (Tgt and Bkg) 0.02 0.02 0.01 0.02 

Fractional FOV ? 0.24 0.07 0.15 

Angle Normal to LOS 83 59 75 69 

DOLP (Tgt Only) ? 0.08 0.14 0.13 



Embankment (Soli •nd Rock Outcropping) 

' 

' 0-Targlll.l.a ... Dlll 

k:::;:;:;;;j. Lecdo .. el FTJR .,. ...... ,will Wire 8rhl Alllltplr 

... ',0', 
Sunriae 

Figure 3- Outdoor Test Range. 

Uft 

0 
Plfta ,,., 

Ql9-rmJ.etn· c differences for a tan CARC (chemical-agent resistant coating) target 
Figure 5. In this case, the CARC target is placed against sandy asphalt, 

net polarimetric signature, integrated over the spectrum, as indicated by the 
polarization shown in Table 1, similar to that of the CARC. However, 

, .. o ... ~ .. u:~.Lures are noticably different, as are the spectral polarimetric signatures, 
both polarimetry and spectral data are important. 

sibility also exists for detecting soil disturbances associated with mine burial 
band. Figure 6 shows spectra obtained in the laboratory for a "chunk" 
from near the test range and for the same soil after being pulverized. 

on an IRTRAN window in the laboratory spectrometer, and is not to 
eore~;entative of soil which will be encountered in situ. Nevertheless these 

soil characteristics are dependent upon recent activity. These results 
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Figure 4 - Polarimetric Spectra for Plastic Frisbee. 

are consistent with recent data in the literature {Johnson et. al.}, which suggest that the 

increased reflectivity in the 8 to 10 micrometer region of the spectrum is caused by an 

increase in the number of small particles which are created when the soil is disturbed, but 

are later removed through erosion by wind and water. Polarimetric signatures of these 

samples were not investigated, but such a study is proposed for the future. 

In conclusion, polarimetric signatures in the band from 8 to 14 micrometers are 

useful in detecting surface objects. Hyperspectral images are also useful and appear to be 

complementary. Combined polarimetric, hyperspectral FIR imaging may yield additional 

information about landmines scattered on the surface. Preliminary measurements suggest 

that this technique can be used to detect subsurface landmines as well, indirectly by 

measuring soil disturbances. 



Future plans include, in the short term, additional measurements and polarimet
ric images using an uncooled microbolometer camera and a wire-grid polarizer. In the long term, filters will be added to produce hyperspectral, polarimetric images. More care
ful studies of different types of surfaces and soils will continue, using the existing FTIR 
instrument. 
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ABSTRACT 

A short pulse of laser light can act as a source of acoustic energy for acoustic imaging. Although tlwre are a number of mechanisms by which the light pulse may generate sound, all require a pulse of high peak power density and short duration. In this work, we address PxamplPs whPre the material is highly absorbing at the laser ·wavelength, and the sound is generated nPar the surface. In these cases, there exist two different mechanisms which can conYt"rt the light to sound. The first is heating followed by expansion, and the second is gt"zwration of a plasma in the air above the surface. In the first case, sound generation occurs iu tlw medium of interest and the energy efficiency can be very high, in the sense that no refit>ction losses occur. We present two applications from our own research. 

1. INTRODUCTION 

Acoustic imaging is useful in many different applications, ranging from the everyday exampl~· of a carpenter locating a stud by tapping the wall, to advanced ultrasound imaging of tJw body. A common requirement in all applications is the coupling of energy from a sound soun·p into the material of interest. A pulsed laser offers several advantages as a 
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sourcP of acoustic energy. First, it is remote. The laser can be a long way from the material to bP tPsted [Li, et al.}. If the acoustic detection is accomplished with a laser vibrometer, then tlw complete acoustic imaging task can be performed from a long distance away {DiAiarzio, et al.}, for example, on hostile targets. Because of the good resolution possible with lasers, it is possible to make remote measurements with good transverse resolution, limited only b:v the size of the optics. Second, it is well calibrated. rvtany lasers are capable of delivering repeatable pulses. Third, it may be very efficiently coupled. Depending on the exact mechanism of interaction, sound may be generated in the medium itself, eliminating the losses associated with reflection at the surface. This will be discussed in more detail later. Fourth~ optical properties ( eg. spectroscopic) may be sampled acoustically, providing non•l information. 

Generation of sound by light is covered by several different names corresponding to different physical phenomena. We will begin with a cursory review some of the better known Pxamples, before turning to the applications of interest in this paper. In an early application [Orael·sk.v}, described as the photo-acoustic effect, light impinges on a sample of gas. If the wavelength of the light is tuned so that the gas is absorbing, a sound is produced. and detected by a sensitive microphone. The shape and duration of the acoustic pulse is determined by the interaction o~ the light and the medium. The strength of the acoustic signal, plotted as a function of the laser wavelength, yields the absorption spectrum of the gas. 

In opto-acoustic imaging, light is incident on biological tissue. The tissue is weakly absorbing so that absorption occurs along the path of the light. In this case, an acoustic signal is generated which propagates to the detectors. The shape of the acoustic pulse is determined by the travel time from each point along the laser beam to the detectors and the absorption profile of the tissue at the laser wavelength. The primary absorber of light in tissu<' is hemoglobin, which has a highly structured optical absorption spectrum, which changes when oxygen is bound to it. As a result opto-acoustic imaging can detect blood vessels. disniminating between veins and arteries {Oraevsk.v, et al.}. 
In contrast to these examples, in the applications to be discussed in the present paper. the optical absorption is strong, and most of the light is absorbed within a few optical wavPlengths of the surface of the medium. Possible mechanisms of interaction are optical radiation pressure, various forms of heating and expansion, and plasma generation. 

2. DETECTION OF SHALLOW-BURIED LAND~HNES 
PulsPs of light have been used experimentally to detect buried objects such as landmines {Li et. aJ.). Figure 1 shows an example of an acoustic pulse generated in sand b~· a 100 nanosecond, 150 millijoule pulse oflight from a carbon-dioxide laser. The receiver is a B & K modf'l 8103 hydrophone with a bandwidth of 100kHz, buried a few centimeters below the surfacf'. As the sand is strongly absorbing at the 10.6-micrometer wavelength of 

208 



th<' las<'r. most of the light is absorbed, rather than reflected. The absorption depth is of 
t lw ordPr of the wavelength, so most of the light is absorbed in the first few micrometers 
of soil. This light heats the sand faster than thermal diffusion can cool it, with the result 
that tlH' saud <>xpands at the point where the laser is incident, and produces an acoustic 
pulsP. Iu most acoustic imaging systems [Sabatier and Xiang; Scott et al.; Donskoy and 
EkimO\"}. tlw sound is generated in the air above the soil, and most of it is reflected because 
oft lu' impf'danc<> mismatch at the interface. In the case of laser-induced sound, at least in 
this eoufignration, with 150 mJ of energy in a 1-cm diameter, the light is absorbed in the 
saud. thf' acoustic pulse is generated there, and a substantial fraction of the laser energy 
is convPrtPd to sound in the sand. Although the laser pulse is only 100 nanoseconds, the 
rf'stllting sound pulse width is a few microseconds, because of the thermal properties of 
thP sand. 

ThP times and energy densities discussed above are consistent with other qualitative 
obs<'ITations \1\"f' havP made over the years {unpublished}. For example, one of us used this 
pffpct to locatf' a carbon-dioxide laser beam in order to align a laser radar, having 20 
millijoul<>s of <>nergy in a pulse length of 2 microseconds and pulse-repetition frequency 
of 140 HPrtz. The 14o-Hz tone was readily apparent to the ear when the beam impinged 
on a variPt~· of surfaces, even though the beam diameter was almost 30 centimeters. In 
contrast. a rf'cent attempt at generating sound in sand with a laser pulse length in the 
tPns of microsPconds failed. In the latter case, although the pulse energy was sufficient, 
t hP lon~Pr pulse meant that power was delivered so slowly that thermal diffusion cooled 
thP sand during the pulse, leading to a lower peak temperature and less expansion of the 
sand. Calculations have shown that radiation pressure of light produces a lower acoustic 
puhw than tlw heating effect under our conditions. As the pulse length becomes longer, of 
<·oursP. tlw lwating effect becomes smaller, while the effect of radiation pressure remains 
snbstantiall~· tlw same. 

Figur<> 2 shows the result of scanning a laser beam over the surface of the sand in 
two dim<>nsions. and processing the signals to determine the time of reflection from a pair of 
buriPd hockPy puck halves. The color shows the strength of tl;e strongest reflected signal. 
BPcausP t lw ground location was known approximately, the ground signal was removed, 
and t lw strong('st rPmaining signal was used. In addition to the signal strength, this tech
niquP also prm·ides depth information, which is useful in imaging as well. The receiver 
was a barium titanate transducer with a center frequency of 29 kHz and a bandwidth of 
about 5 kHz. located above the surface. Other receivers such as the 100-kHz hydrophone 
mPntionPd ParliPr, and an inexpensive microphone were also used, but this transducer pro
duced t hP b<'st results. The narrow bandwidth removed low-frequency noise, provided high 
sPnsitivit.v and reduced noise. The frequency was sufficiently high to provide good depth 
information and transverse resolution, but not so high as to be absorbed before reaching 
thf' buriPd object. The sand box was moved while the laser and microphone remained 
in th<> samP locations. The halves are oriented so that their flat surfaces are toward the 
surfacf' of tlw sand, and are placed about 1 em apart, and about 1 centimeter deep. This 
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depth is particularly important for the demining application, because ground-penetrating radars han' difficulty discriminating shallow buried objects from surface returns. Note that tlw shapP and space between the pucks are easily resolved. The pulse is composed of fn'quencies np to tens of kilohertz, so the wavelengths are on the order of a few centimeters and longf'r. Thus, this is an example of near-field imaging. 

IncrPasing the power density raises the peak temperature and results in an increase in pPrformauce. but this increase has its limits. We have performed experiments with differPnt lasPr spot sizes, and found that as the spot size is reduced, other effects begin to bPcome i1uportant. One of these appears to be the generation of a plasma in the air abovP thP sand. This is evident by the appearance of visible light being emitted from the contact point. in spite of the incident light having a wavelength well into the infrared. To a11 obsPlT<'r of the experiment, the resulting sound is impressive. A 18-mJ pulse produces a .. pop .. Pa~il~· detected a few feet away and a 150-mJ pulse produces an explosive sound v;hich attracts the attention of anyone in the laboratory. However, as impressive as this ma~· bP. tlw dPtection of buried objects has not been as successful. In this case, the sound is gPil<'ratf'd iu the air above the sand. As seen in Figure 1, this produces a very different acoustic pulsP with lower frequencies, and a slower sound speed. This wave is less absorbed 
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in the sand. but it must first pass through the air-sand interface where the loss to reflection is high. Furthermore, the plasma itself absorbs the light, and the plasma itself thus moves up awa~· from the sand during the light pulse. Thus it appear:s that the best approach for detection of buried objects may be to use a pulse shorter than a few microseconds, with energ~· densit~· just below that sufficient to initiate the plasma. This conclusion is offered somewhat tPntatively, because the use of lower frequencies shows great promise for mine detection in Yiew of their greater penetration. Because this application is based on nearfield imaging. the resolution is not determined by the wavelength. and the normal benefits of smallPr wa,·Plengths are not relevant. Research is currently under way to determine the best compromisf' between the ability to transfer energy to the medium and the frequency distribution of that energy. To date, most of the detection has been done by detecting thf' acoustic signal directly, but in the future, a laser vibrometer will make the technique completPly n•mote, and perhaps more sensitive. 
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3. NON-DESTRUCTIVE TESTING OF PAPER 
The second application of Laser Induced Acoustic (LIA) sensing is in the field of Kon-DPstructive Testing (NDT). When employed for NDT, LIA used to generate an acoustic pulse. either through a process of localized thermal expansion, an ablation shock wave or both. The generated acoustic pulse then either propagates through the test medium or on the surface. Surface detection is performed through interferometric techniques or Doppler shift detection via a coherent laser sensor. 

Detection of the acoustic wave reveals information about the test medium in several potential ways. Interruption or reflection of the acoustic wave can pinpoint cracks or localized faults - such methods have been employed to interrogate the quality of aircraft skins or other critical components. Detection of the magnitude and time delay at a point removed from the initiation point of the acoustic wave can reveal information related to the material properties, such as density, stiffness and other mechanical properties. 
Recent work performed at the Lawrence Berkeley Laboratory with the support of the U.S. Department of Energy, in collaboration with one of us, at Laser Science, Inc., has used the latter technique to measure the quality of paper, non-destructively and insitu. This differs from the mine-detection application in several ways. It is a single-point measurPnwnL and imaging is not required. The resulting acoustic wave is inherently twodimensional. being contained within the paper. The first parameter to be measured is the spPPd of the wave and depth of penetration is not an issue, so high frequencies are of primary importance. 

The kP,v elements of paper quality include overall strength (tensile a~d compressive) fiber orientation and fiber strength. Classical methods to check these quality control parameters include cutting samples from the large paper rolls after the manufacturing process is completed and the large "webs" are shut off. The paper is then inspected and the manufacturing process modified to correct any errors and improve the quality of the paper. This is a time-consuming operation that costs money while wasting significant amounts of material and energy. Contact methods employing ultrasonics have been developed and employPd that used transducers to generated and sense acoustics waves to monitor paper quality: However, the pressures needed to interface the transducers to the paper roll are onl~· adequate for the heavier grades of paper and damage the lighter grades. 
The non-destructive, and in this case totally non-contact, technique employing LIA uses a YAG or TEA C02 laser to generate a sub-microsecond laser pulse that is focused onto tlH' paper that is streaming between the paper rollers in the web at 30 meters per sPcond. As the pulse duration is quite short relative to the speed of the moving paper, the acoustic pulse that is generated is essentially a point source. In conjunction with the firing of tlw pulsed laser, a laser-based interferometer "stares" at a probe point on the paper which is at a fixed location (several millimeters) offset from the point where the acoustic pubP is generated. Because the paper is moving, the probe point (where the 
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aeousti<' pulsP is detected) must actually travel at a speed equal to that of the moving papPr to maintain the fixed offset between acoustic point source and probe point. This is accomplislwd through the used of a rotating mirror and optical encoder, which essentially frePzPs the papPr motion relative to the probe point and synchronizes the pulsed laser. 
Tlw kPy parameter measured in this technique is the time delay between pulsed laser firing (start of acoustic pulse) and detection of the pulse at the probe point. Knowing then the fix('d offs('t distance provides the acoustic velocity of the wave in the paper, which is then relatPd to elastic properties of the medium. Empirical relationships have already been established to relate elasticity to properties of strength. 

4. CONCLUSIONS 

Laser -induced acoustic pulses can be used for a variety of applications in many differPnt types of media. The mechanisms of interaction are many, and vary with the eharactPristics of the media, the wavelength of the laser light, the pulse length, total Piwrg,v. and spot size. Different mechanisms generate different acoustic pulses which can be tailored to the application. Two examples have been considered in which the medium is highly absorbing. In both cases, the propagation time of the acoustic wave is of importance. In tlw landmine case, near-field imaging is possible because the objects of interest are a fpw waYelengths from the surface. In the second example, the goal is to measure the spPPd of sound in a thin medium. In both cases, the laser offers significant advantages ow•r othPr acoustic imaging techniques because of its remote measurement capability with good transY<'rse resolution, its repeatability, and its efficiency. 
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ABSTRACT 

It has been shown that, for non-conductive backgrounds and non-conductive spatial heterogeneities, two- and three
dimensional images of spatial variations in wave speed can be reconstructed from broadband ground penetrating 
radar (GPR) measurements. In diffraction tomography, the reconstructed image is the so-called object function 
which, for non-conducting heterogeneities, is one minus the square of the real refractive index. In cases where spatial 
variations in electrical conductivity exist, the object function is complex with real part related to relative changes 
in the real refractive index and the imaginary part representing the spatial variations in conductivity. Thus, by 
considering the complex object function, it is possible to reconstruct images of both wave speed and conductivity. 
The procedure presented here is used to reconstruct images of wave speed and conductivity for several buried targets. 

Keywords: diffraction tomography, ground penetrating radar, wave speed, electrical conductivity 

1. INTRODUCTION 
Tomographic imaging has been applied in geophysics to wave-based data to reconstruct images of geologic struc

ture and isolated buried objects. There are various imaging procedures ranging from straight ray algorithms to 
non-linear inversions. The particular type of imaging algorithm considered here is diffraction tomography1. Geo
physical diffraction tomography (GDT) was first considered for a multi-bistatic transmission mode measurement 
geometry using a single frequency and and the synthesis of multiple direction of insonifying plane waves2. This work 
has been extended to a multi-monostatic measurement geometry where wave sources and receivers are assumed to 
be co-located and moved in unison along a line or over a plane3'4 . Such a measurement geometry is typical of GPR 
measurements and, for this geometry, broadband information is used. 

Traditionally, GDT has been used to reconstruct images of the spatial variations in wave speed. In many ap
plications, the problem is one of target discrimination and, as such, there may exist many buried targets of similar 
size, shape, and wave speed while only a relatively small number of these targets are of interest. For example, land 
mines are relatively small and may appear as many other near-surface naturally-occurring or man-made objects. If 
the object of a geophysical investigation is to locate all possible land mines for subsequent remediation, the cost 
associated with the removal of all false positives could be prohibitive. An even worse situation is one where land 
mines exist in a host soil where the wave speed of the land mine is nearly that of the soil. In such cases, land mines 
may not be detected. It is clear that there is a need to develop better techniques for the discrimination of buried 
targets and one possible approach to this problem is to reconstruct images of wave speed and electrical conductivity 
of buried objects. By considering two physical properties, there is more information for target discrimination and 
less likelihood of a target being "invisible". 

For transmission mode radio wave measurements, it is possible to reconstruct wave speed and electrical con
ductivity using straight ray algorithms. In these methods, perturbations in travel time are associated with spatial 
variations in wave speed while amplitude variations are associated with attenuation induced by spatial variations 
in electrical conductivity. Apart from the known limits of straight ray algorithms, there is an addition problem 
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associated with the separation of wave speed and attenuation from travel time and amplitude. The Green's func

tion for wave propagation is complex so that there is a blending of real (propagation) and imaginary (attenuation) 

resulting in the travel time being corrupted by attenuation and vice versa. While diffraction tomography has its 

own limitations, it does not assume any explicit separation of travel time and amplitude and, subject to a weak 

8cattering approximation, rigorously treats the blending of real and imaginary parts5 '6 . By considering the imaging 

reconstruction to be complex, a method is established here whereby separate images of wave speed and electrical 

conductivity can obtained. 

2. MULTI-MONOSTATIC BROADBAND IMAGING 

The GDT algorithm has previously been published where only spatial variations in wave speed were considered3 '4• 

Since the separate imaging of wave speed and conductivity is based on this algorithm, it is summarized here. Since 

the examples given later are based on one-dimensional measurements over a line on the ground surface, only the 

two-dimensional imaging algorithm is presented. This algorithm can easily be generalized to three dimensions for 

data acquired over a plane. 

The reconstruction of wave speed from broadband multi-monostatic measurements is based on the inversion of 

the frequency domain wave equation subject to the Born approximation 7 given by 

us(r) = k5 j dr' G(lr- r'l)uo(r')O(r'), (1) 

where Us is the temporally Fourier transformed time-domain scattered field, G is the Green's function for the 

scalar Helrnhotz equation, uo is the incident wave, for an non-conducting background and spatial heterogeneities, 

ko = w.JJiD€0 is the background wavenumber for frequency w, magnetic permeability J.Lo, and dielectric constant Eo, 

O(x) = 1- (c5/c2 (x)) is the object function that defines the spatial variations in wave speed c(x) = 1/JJ.LoE(x) 
associated with spatial variations in dielectric E(x) in terms of the background wave speed co = 1/ JIIOEO. It has 

been assumed in Eq. (1) that the incident field uo arriving at the receiver has been removed from the data either by 

appropriate time gating or filtering so that this component of the data is absent in Us. 

For a co-located point source and receiver, the incident field u0 is given by G(lr- r'l) so that Eq. (1) becomes 

Us(r) = ~ j dr' G2(lr- r'l)(r')O(r'). (2) 

Assuming that the measurements are made at positions£ on a line in an x, z coordinate system r = (£, 0) where z is 

measured vertically upward, the plane wave expansion for the Green's function G can be used8 , the data spatially 

Fourier transformed with respect to measurement location £ 

and a resulting integral approximated by stationary phase to give 

(3) 

where 
O(K . f 4k2 _ K2) = J dx e-i(K.x+J4k~-K.2z) O(x) 

'V o ~ 

and it is clear that Eq. (3) relates the one-dimensional spatial Fourier transform of the data to the two-dimensional 

spatial Fourier transform of the object function divided by the square root of the depth. This equation can be used 

to represent the Fourier transform of 0 1 = 0 j y'jZj in terms of the data as 

(4) 
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where K = ( K, J 4kff - K-2). 

Images of object function and hence wave speed can be reconstructed by inverting the two-dimensional spatial 
Fourier transform given by Eq. (4). Typically, data is acquired over uniform spacings in l and the spatial and 
temporal Fourier transforms of Us result in Us being known at uniform intervals in w (or alternatively ko) and K. 
To avoid K-space interpolations necessary to implement the inverse Fourier transform, this inverse transform is 
expressed as integrals over K and ko to give 

O(x) = L:[ii.s], (5) 

where 

£[ ] = _ 4iJ2 Vfzje-i7r/4 j dk j dK.Q ei(~x+vf4k~-~2z) [ ] 
7r .fi 0 \14k5 - K,2 ' 

(6) 

and 0 is taken to be real. Figure 1 shows the K-space coverage over which 0 1 is known. From this coverage, 
expectations of the images resulting from the application of Eqs. (5) and (6) can be deduced. First note that there 

Figure 1: Illustration of the K-space coverage of the multi-monostatic imaging algorithm where K = (Kx, Kz). 

is no coverage at the origin. This implies that there is no spatial DC information present and the reconstructions 
will represent only the boundaries associated with changes in wave speed. This is common to linearized reflection 
mode imaging. Another artifact associated with the lack of K-space coverage at the origin is the reconstruction 
of 0 will necessarily have a zero mean. Experience with this algorithm has established that, for features that are 
large compared to a wavelength, a zero mean is produced by filling the otherwise hollow interior of a feature with an 
opposite contrast. For targets that are small compared to a wavelength, a zero mean is produced by a ring around the 
feature having an opposite contrast. Concentric rings around the image of objects will occur as a result of bandwidth 
limitations. Although the coverage shown in Fig. 1 indicated information at Kz = 0 this can only be achieved when 
measurements extend out to £ = ±oo. Since can never be the case, the lateral boundaries of features can never be 
reconstructed. 

3. IMAGING OF WAVE SPEED AND ELECTRICAL CONDUCTIVITY 
It can be shown that the procedure outlined in Sect. 2 can be directly used to separately image wave speed and 

electrical conductivity. In the more general case of a non-conducting background and a heterogeneity that has both 

1073 



a difference in wave speed and electrical conductivity with respect to the background, the object function can be 
expressed as 

O(x) = 1 _ k
2(x) = 1 _ ,UoE(x)w2 + i,u0u(x)w, 
k5 ,UoEow2 

(7) 

where E(x) and u(x) are spatial variations in dielectric and electrical conductivity, respectively. It is clear from this 
representation that the object function is complex where 0 =OR+ iOI and 

E(x) c5 
OR(x) = 1-- = 1- --

Eo c2 (x)' 
(8) 

and 

OJ(x) = u(x). 
EoW 

(9) 

Similarly, the two-dimensional spaltial Fourier transform of the object function is complex where, from Eqs. (8) and 
(9), 

OR(K) = 1- €(K)' 
Eo 

(10) 

OJ(K) = a-(K)' 
EoW 

(11) 

From Eq. (4), the real part of 01 is 

OIR(K) = ~{ -~4..J21f.y/4k5- K2e-i7rf4u8 (K)} 

so that the image of wave speed variations is simply the real part of O(x) given by Eqs. (5) and (6). Since the two
dimensional Fourier transform of the spatial variations in electrical conductivity relative to the background dielectric 
Eo is u(K)/Eo = wOJ(K), the two-dimensional spatial Fourier transform of this relative conductivity divided by the 
depth is given by 

wOII(K) = -w8'{ ~4..J21f.y/4k5- K2e-i7rf4u8 (K)}. 

It is now clear that spatial variations in wave speed can be reconstructed using 

(12) 

and spatial variations in relative electrical conductivity can be reconstructed using 

(13) 

where£ is defined in Eq. (6). 

This procedure is only valid when the background is non-conducting. In cases where there is a background con
ductivity (uo), the background wavenumber ko = J ,UOEow2 + i,u0u0w is complex and the integral transform given in 
Eq. (3) is not a Fourier transform. Although more complicated and less computationally efficient, separate imaging 
of spatial variations in wave speed and conductivity can still be accomplished. 

4. RESULTS 

The reconstruction algorithms for wave speed and electrical conductivity given by Eqs. (12) and (13) have been 
applied to broadband GPR data acquired at two sites. The first is a test site where 400 MHz center-frequency an
tennas were used over a variety of known shallowly buried objects of similar size and shape but composed of different 
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Figure 2: Gray scale image of wave speed and electrical conductivity for a polystyrene disk. Darker shades of gray 
are associated with larger values of wave speed and conductivity. 

1075 

L----- -



1076 

WAVE SPEED CONDUCTIVITY 

.. _; -350.00 

5.50 6.00 6.50 
5.50 6.00 6.50 7.00 

7 00 

horizontal distance (m) horizontal distance (m) 
Figure 3: Gray scale image of wave speed and electrical conductivity for a concrete tube. Darker shades of gray are 
associated with larger values of wave speed and conductivity. 
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Figure 4: Gray scale image of wave speed and electrical conductivity for a iron tube. Darker shades of gray are 
associated with larger values of wave speed and conductivity. 
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materials. The second site contains a shallowly buried land mine of unknown type, size, and depth. At the land 

mine site, 1000 MHz center-frequency antennas where used. 

Figures 2, 3, and 4 display reconstructed values of wave speed and conductivity as gray scales for three different 

targets at the test site. The images of the polystyrene disk (Fig. 2) and the iron tube (Fig. 4) yield the anticipated 

results that the polystyrene disk exhibits a high relative wave speed and low conductivity and the iron tube exhibits 

low relative wave speed and high conductivity. For the concrete tube, both the relative wave speed and conductivity 

are high. The sizes of three targets are small relative to wavelength and, as a result, the boundaries of the features 

blur together making them appear solid rather than hollow as would be expected since there is no spatial DC infor

mation. The ringing evident in some images is a result of both the zero-mran requirement and bandwidth limitations. 

Figure 4 presents gray scale images of wave speed and electrical conductivity, similar to those given in Figs. 2, 3, 

and 4; for the data acquired at the land mine site. In this figure, the presence and location of the mine is obvious. 
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Figure 5: Gray scale image of wave speed and electrical conductivity for a buried land mine. Darker shades of gray 

are associated with larger values of wave speed and conductivity. 
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Because these images reveal that this feature has a wave speed greater than the background and an electrical con
ductivity less than the background, it is suspected that this is plastic mine. An interesting feature in these images 
is the low wave speed and high electrical conductivity in the center. This could be an image artifact associated with 
zero-mean object function requirement (Sect. 2) or it could be real. If the center of the image actually has a reverse 
contrast, then a zero-mean may approximately be realized without any image artifacts. If this central feature is real, 
it could be the metallic firing pin components of the mine. 

5. CONCLUSIONS 

A method has been developed, within the formalism of diffraction tomography and for a multi-monostatic measure
ment geometry, whereby spatial variations in wave speed (dielectric) and electrical conductivity can be reconstructed 
from broadband GPR measurements. When applied to known buried objects, the results proved consistent with the 
material composition of these objects. 

Although the procedure described here is for multi-monostatic measurements and for a non-conducting back
ground in two dimensions, it can readily be generalized to three dimensions and for a conducting background. 
Furthermore, it can also be extended to multi-bistatic transmission and reflection geometries. 
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ABSTRACT 

Rough surface clutter is a significant source of interference in non-specular ground penetrating radar (GPR) ap
plications that needs to be suppressed to maintain high performance in the signal processing. Our research is in 
the directions of (i) development and testing of flexible parametric models for the statistical distribution of clutter 
that rely on the theories of alpha-stable random processes, (ii) establishment of bounds on the performance of signal 
processing algorithms, and (iii) design and analysis of robust, non-Gaussian signal processing algorithms based on 
the statistical clutter models. Synthetic data simulated with FDTD techniques are extensively used. 

Keywords: Rough surface scattering, ground penetrating radar, FDTD modeling. 

1. INTRODUCTION 

A buried mine sensing modality with great opportunity for detailed physics-based modeling is Ground Penetrating 
Radar (GPR). To maximize the potential of mine detection with GPR, the radar must be wideb~nd, to use as much 
of the frequency-dependent scattering information as possible. Within this area, developing accurate computational 
and statistical models of the mine/soil/air environment is of paramount importance. These models can be used to 
determine if and under what conditions a particular mine-like target can be observed and what are optimal detection 
procedures and help design new sensors to best collect the data needed for the detection algorithms. Particularly 
important are stochastic rough surface studies with FDTD simulation, since surface clutter is the major source of 
interference obscuring the signal from the mine (signal of interest). 

The exact wave equations result in a nonlinear model for the wave-surface interaction, one that is analytically 
difficult to invert. Therefore, approximations are usually made to the exact nonlinear model, which are valid and 
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sufficient only under restricting conditions. Most common approximations anse (i) either from pertubations to 

corresponding solvable "smooth" surface problems [5, 3, 2] or (ii) from the Kirchhoff approximation [1]. Perturbation 

solutions apply in the limiting case when the deviations of the rough surface from a smooth one are small with 

possibly large slopes relative to the wavelength. On the other hand, the Kirchhoff approximation is applicable if the 

irregularities of the surface have large radii of curvature relative to the wavelength. Both methods break down when 

incidence and/or observation angles approach grazing and none applies when the surface is rough on length scales 

comparable to the wavelength. Recently, field-phase perturbation techniques were reported [6] which reduced to the 

usual (field) perturbation techniques or the Kirchhoff approximation in the low and high frequency limits, respectively, 

but were also valid in intermediate frequencies. 

In this paper, we present a framework for designing algorithms for detection of radar returns from buried mines 

m the presence of rough surface clutter. The rough surface height function is modeled as a realization from a 

Gaussian process and the electric field clutter statistics are related to the surface statistics via first order perturbation 

analysis. It is shown that the effect of clutter is minimized if the receiver is placed in the backscatter region of the 

mine. More specifically, the paper is organized as follows: Section 2 reviews first-order field perturbation analysis 

of electromagnetic scattering from a rough surface and relates field statistics to rough surface statistics. Section 

3 is concerned with mine target backscatter simulation in both the frequency and time domains and preliminary 

conclusions on the "optimum" receiver location. Finally, Section 4 summarizes the paper and points to related future 

research. 

2. ELECTROMAGNETIC ROUGH SURFACE SCATTERING 

A. Electric Field Equations 

We are concerned with the reflection of plane electromagnetic waves from a surface z = h(x, y), which is almost, but 

not quite fiat as illustrated in Fig. 1. As in [3], we are going to assume that the surface is a realization from a periodic 

random process with period L, thus 
00 

z = h(x, y) = L Sm,n exp[-i~ (mx + ny)]. (2-1) 
m,n=-oo 

The upper medium (z > h(x, y)) is non-dispersive with dielectric constant €o = 8.854 x 10- 12 farad/meter, permeab

ility J.Lo = 1.257 x 10-6 henry/meter, and conductivity cr0 = 0, while the lower medium (z < h(x,y)) is dispersive 

with frquency-dependent relative dielectric constant €r, permeability J.Lo, and frequency-dependent conductivity cr. 

A horizontally polarized monochromatic electromagnetic plane wave with electric field 

E~ = 0, E~(x, y, z) = exp[-iko{sin Bx- cos Bz)], E; = 0 (2-2) 

is incident on the two media interface, where k0 = w.,fiiQ€0 is the wavenumber at the frequency w of the wave and 

B is the angle between the direction of propagation of the incident wave and the positive z axis assumed such that 

sin B = z:~ for some integer v. 1 In the absence of interface roughness, the interaction of the incident wave and the 

1It is assumed that the time-dependent wave is Ei(x,y,z)exp(iwt). 
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interface would result in a specularly reflected wave with electric field 

E; = 0, E;(x, y, z) = Rexp(-iko(sin Bx +cos Bz)], E; = 0 

for z > h(x, y), where the specular reflection coefficient R is given by 

1-p 
R=--, 

1+p 

jer + uj(iwco)- sin2 0 
p-- cosO · 

Similarly, the specular wave propagating in the lower medium has electric field 

E; = 0, E~(x,y,z) = Texp[-ik0 (sinBx + a)cr + uj(iwco)- sin2 Bz)], E; = 0, 

for z < h( x, y), where the transmission coefficient T is given by 

T=-2-
1+p 

with pas in Eq.(2-4). Thus, no depolarization occurs in the absence of interface roughness. 

(2-3) 

(2-4) 

(2-5) 

(2-6) 

When the two media interface is rough, however, Eqs.(2-3) through (2-6) are no longer valid and both non
specular reflection and transmission and depolarization of the incident wave occur. The resulting exact scattered 

wave is non-trivial to compute and, in general, one needs to resort to numerical techniques. However, under the 

assumption of "low" frequency w, "small" relative dielectric constant cr and conductivity u, and "small" maximum 
interface height function (maximum of lh(x, y)l), perturbation corrections to Eqs.(2-3) and (2-5) become valid first

order approximations. The resulting expression for the y-component of the electric field is (3] 

E _ { E~ + L::,n=-oo Am,n exp[-i 2
{ (mx + ny)- ia(m, n)z], 

Y- E~ + L::,n=-oo Bm,n exp[-i 2
{ (mx + ny) + ib(m, n)z], 

for z > h(x, y) 

for z < h(x, y) 
(2-7) 

with similar expressions for the x- and z-components Ex and Ez of the electric field. In Eq.(2-7), we have defined 

ia(m, n) = (2-8) 

ib(m, n) = (2-9) 

where a(m, n) is either positive real or negative imaginary and the same would be true for b(m, n) if the lower medium 

were non-conducting. To first order, the coefficients Am,n and Bm,n are given by (3) 

(2-10) 

where 
k6T u U=-(tr-1+-.-) 2 zwc0 

(2-11) 

and 

(2-12) 
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with 

c(m, n) = (2-13) 

and 

d(m, n) = b(m, n) + c(m, n). (2-14) 

We see that besides the specularly reflected and transmitted components, the electric field also contains a non-specular 

reflection and transmission due to the interface roughness. Additionally, depolarization occurs as the electric field 

vector also has x- and z-components. 

B. Relation of Surface Statistics to Clutter Statistics 

Consider now the surface height function as a realization from a periodic Gaussian random process of a certain 

covariance function. Since the Fourier series coefficients Sm,n are given via a linear transformation of the surface 

height function, they constitute a Gaussian vector of a certain covariance matrix IJ:. Similarly, since the electric field 

clutter in Eq.(2-7) is a linear functional of the Fourier series coefficients Sm,n, the clutter will constitute a Gaussian 

process of some covariance function. Relating the covariance function of the electric field clutter to that of the Fourier 

series coefficients, we get: 

< Ey(x,y,z)E;(x',y',z') > 

exp[-i~ (m(x- x') + n(y- y'))- i(b(m, n)z- b*(m, n)z')], (2-15) 

where 

u?n n =< \S(m- v, n) \2 > . (2-16) 

3. MINE TARGET BACKSCATTER SIMULATION FROM ROUGH 

DISPERSIVE GROUND 

A. Frequency Domain Simulation 

Consider again the configuration in Fig. 1, in which a cylindrical object (mine) is buried in soil with its center located 

at (0, 0, zm) (zm < 0) and interrogated by a monochromatic plane wave. We define the (frequency-dependent) object 

function 

0 ( 
. ) _ { D.k

2 
:: w

2 
J.LEo (AEr - ie:J, 

x,y,z,w -
0, 

if \z- Zm\ :5 5z and Jx2 + y2 :5 D.p 

else, 
(3-1) 

where AEr and Au are the differences. in dielectric constant and conductivity, respectively, between the object and 

the soil. 

Under the assumption that the interface between air and soil is perfectly fiat, the signal due to the mine is given 

to first-order by 

E;;(x, y, z) = J J di<:rdi<y ei(K:r:r+Kyy) B(J<x, I<y, I<o:r, I<oy,w)eim 1 (K:r,Ky)z I(I<:r, I<y), (3-2) 



where 

and 

B(}·' .- .- ·' ) . pw[(I<~ + m1m2)(Kgy + m~mg) + K:r:iKa:r:(KyKay- m1 m~)] 
\:r:,l\y,l\a:r:,l\ay = -t - -2 a a 2 · 

161r4(m1 + m2)(K; + Ii.y + m1m2)(m1 + m2)(I<a:r: + K6Y + m~mg) (3-4) 

In Eqs.(3-2), (3-3), (3-4), we have defined 

I<a:r: = ka sin() (3-5) 

Kay = 0 (3-6) 

m1 (I<:r:, Ky) -Jk5-K;-K~ (3-7) 

m 2(K:r:, I<y) k2(€r- i~)- K2- K2 a W€r :r: y (3-8) 

m~ m1 (Ka:r:, Kay) (3-9) 

rna 
2 m2(Ka:r:, Kay)· (3-10) 

We simulated the field in Eq.(3-2) with frequency w = 1 GHz, angle of incidence () = ~' relative dielectric 

constant of lower medium €r = 4, relative dielectric constant of mine €mine = 3.8 (or b.€r = -0.2), conductivity of 

lower medium u = 0.001, and conductivity of mine Umine = 0 (or b.u = -0.001). The mine was buried 5 em in 

the soil (zm = -0.05) had a radius of 2 em (bop= 0.02) and a height of 2 em (6.z = 0.02). The top plot in Fig. 2 

is a contour plot of the magnitude (intensity) lEy I of the electric field in Eq.(3-2) on the plane z = 0.2, i.e., 20 em 

above the air/soil interface. The bottom plot in Fig. 2 is a plot of the values of the electric field intensity lEy I along 

the x-axis at z = 0.02. From Fig. 2, it is clear that, for the given simulation parameters, the mine's scattered field 

propagates mostly in the backward direction. This is in contrast with the observation that reflections from the air/soil 

interface are mostly in the forward direction. Thus, the ratio of the mine signal over the clutter is maximized in the 

backscatter direction and that is the appropriate receiver location for maximum detection performance. 

B. Time Domain Simulation 

The frequency domain analysis presented above is based on first order approximations to the interaction of elec

tromagnetic waves with the mine/air/soil environment. A more reliable analysis needs to be based on the exact 

interaction between the electromagnetic waves and the mine/air/soil environment, as such can be provided by nu

merical techniques. Additionally, the analysis needs to be done in the time domain, to reveal the time separation 

between signals. In our work, we have been combining dispersive soil FDTD modeling with new research in statistical 

rough surface modeling to give a realistic prediction of the scattering from ground with and without a mine target. 

Our results show clearly that even with the very low dielectric contrast of a non-metallic mine buried in sand, the 

backscattered signal from the mine can be readily observed and interpreted. The important aspects of the sensing is 

that the excitation pulse be short and inclined to the ground surface. 
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Our test case consists of a small circular antipersonnel mine; 4 em in diameter, with no metal components-only 

TNT-embedded in either 10% moist clay loam (which is quite dispersive) or dry sand (which has a lower dielectric 

constant than TNT). The ground surface is chosen to be quite rough, with height statistically varying with position 

as much as ±15 em over a 1 m path. The mine target is buried close to the surface (making it notoriously difficult 
to sense with radar), within 5 em. Two conditions enable a radar to detect a mine in this challenging case: 1) the 

radar pulse must be short enough to allow scattering from the ground surface to separate in time from the scattering 

from the buried mine, and 2) the incident pulse must be inclined relative to the surface normal, so that the specular 

reflection propagates away from the source. By positioning a receiver near the surface, slightly behind the suspected 

mine position, and observing the backscattered signal at the time when a signal leaving the suspected mine would 

arrive at the receiver, a received signal above a nominal clutter threshold would unambiguously indicate the presence 

of a mine. For our simulations, a 2 GHz modulated gaussian pulse, incident at 30 deg. from normal, with a single 
receiver 20 em above the ground surface is sufficient to highlight the presence of an entirely plastic mine. 

Observing the total field as a function of position with the mine present (Figs. 3 and 4) and the field due to just 

the ground without the mine (Figs. 5 and 6) shows the difference (the mine's backscattered field) (Figs. 7 and 8) 

quite clearly in the backscattered direction. While most of the wave reflected from the ground surface propagates 
mostly forward, the field scattered from the mine propagates in all directions, and this backward propagation can be 
distinguished even in the presence of the incident and specularly reflected fields. That is, by positioning detectors 

behind the target, illuminating the ground with an inclined wave, and time gating the received signal to correspond 

to the arrival time from a target buried at a given distance, the measured signal (exceeding a tunable threshold) will 
be due solely to the buried object. A receiver positioned as in Fig. 3 (or 4), would measure the signals given in Figs. 

4 and 6 with and without the mine present, respectively. 

Our work continues with the study of polarization effects (specifically TM polarization with Brewster angle in
cidence), the clutter effects of buried rocks and moisture variations, incident pulse tailoring for specific targets, and 

sensor placement for optimal detection. 

4. SUMMARY AND FUTURE WORK 

In this paper, we attempt to combine dispersive soil FDTD modeling with new research in statistical rough surface 
modeling to give a realistic prediction of the scattering from ground with and without a mine target and to allow 

the application of optimum hypothesis testing theory to solve the problem of detection of radar returns from buried 

mines in the presence of rough surface clutter. For the rough surface, we proposed a statistical model that relies 
on the theories of sub-Gaussian random processes [4] and is a generalization of the Gaussian model that allows for 
impulsiveness. 

We reviewed first order field perturbation electromagnetic scattering from rough surfaces and related the electric 

field clutter statistics to the statistics of the rough surface. We showed that within first order theory, a cylindrical 
mine scatters a plane wave mostly in the backward direction, as opposed to ground reflections which are mainly in the 



forward direction. We verified this result with numerical (FDTD) electromagnetic wave propagation and scattering 
analysis. 

Our work continues with the study of polarization effects (specifically TM polarization with Brewster angle in
cidence), the clutter effects of buried rocks and moisture variations, incident pulse tailoring for specific targets, and 
sensor placement for optimal detection. Future work will also be in the directions of validation of the sub-Gaussian 
model on real data and design and performance documentation of algorithms for detection of buried mines for a large 
variety of realistic models for the signals returned by the mine. 
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ABSTRACT 

A laboratory-scale acoustic experiment is desribed where a buried target, a hockey puck cut in half, is shallowly 
buried in a sand box. To avoid the need for source and receiver coupling to the host sand, an acoustic wave is gener
ated in the subsurface by a pulsed laser suspended above the air-sand interface. Similarly, an airborne microphone is 
suspended above this interface and moved in unison with the laser. After some pre-processing of the data, reflections 
from the target, although weak, could clearly be identified. While the existence and location of the target can be 
determined by inspection of the data, its unique shape can not. Since target discrimination is important in mine 
detection, a three-dimensional imaging algorithm was applied to the acquired acoustic data. This algorithm yielded 
a reconstructed image where the shape of the target was resolved. 

Keywords: laser-acoustics, diffraction tomography, maximum likelihood estimation, mine-like targets 

1. INTRODUCTION 

A fundamental limitation in the use of acoustic methods for problems such as mine detection is associated with 
acoustic coupling to the ground. The need for mechanical contact between both sources and receivers makes the 
deployment of sensors slow and, hence, impractical for applications such as mine detection that require rapid data 
acquistion. The use of laser-induced compressional waves can eliminate the need for source-soil coupling and, with 
the laser source, acoustic energy from shallowly buried objects can potentially be recovered with a near-surface air
borne microphone. Such measurements eliminate the need for any sensor coupling to the ground surface. 

In this paper, laser acoustic measurements are described. In a laboratory setting over a simple, shallowly-buried 
mine-like target in a multi-monostatic measurement geometry a laser source and an adjacent microphone are moved 
in unison over a plane above the ground surface. 

Subsequently, a three-dimensional imaging algorithm is applied to these measurements, with the hope of both recov
ering buried targets from within signal noise and, furthermore, distinguish mine-like targets from other targets that 
might be encountered in the shallow subsurface. 

2. THE THREE-DIMENSIONAL IMAGING ALGORITHM 

The three-dimensional imaging algorithm used here is an extension of a two-dimensional multi-monostatic filtered 
backpropagation algorithm developed by Molyneux and Witten1 . Here it is assumed that a co-located acoustic 
source and receiver are moved in unison along the horizontal plane z = 0. The measured acoustic wave field u(r, t) 
is the total field measured at point r on the measurement plane at time t. This total field can be represented by 
the superposition of the incident field u0 , the field that would be measured in the a homogeneous medium, and a 
perturbed field u' associated with any scatterers that are present. 

The imaging algorithm is implemented in the frequency domain so that temporal Fourier transformed wave fields 
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u(r, ko), Uo(r, ko), and u'{r, ko) are introduced and defined as 

f(r, ko) = J dt /(~, t)eieokot, 

where f and f represent the total, incident, or perturbed wave fields and their temporal Fourier transform. The 
background wavenumber ko is defined to be w /eo where w is the frequency and Co is the assumed real wave speed 
in the propagating medium in the absence of any scatterers. For any scatterers located in the half-space z < 0 and 
invoking the Born approximation, the perturbed wave field can be represented as 

u'(r k } = -i k5 J dx' O(x'),,n(x') J d® e-i(®+Jk~-a2 z)·(x'-r) 
' 0 4 ~ Jk2 2 ' 7r o- a 

(1) 

where x' = (x', y', z'), the integral over ® = (ax, ay, 0) is the Weyl expansion for scalar Green's function 2
, z is the 

unit vector in the vertical (upward} direction, and 

O(x) = 1- k2(x) 
k2 

0 
(2) 

is the object function and k{x) is the spatial variations in wavenumber that can be complex. For a point acoustic 
source located at r, the incident field at x' is 

( ') . J a i( -v'k2-.[J2z)·(x'-r) u0 x =t e o • Jk5- {32 
(3) 

Taking ko to be real, the real part of the object function 

(4) 

where c(x) is the spatial variations in wave speed, is one minus the square of the real refractive index. The imaginary 
part of the object function, 0 I is the spatial variations in attenuation per unit length. Given a known background 
wave speed eo, the spatial variations in wave speed c(x) and the attenuation per unit length that characterize 
scatterers can be recovered from the object function via Eqs. (2) and {4}. Thus, an inversion of Eq. {1} subject to 
Eq. {3) whereby the object function is expressed as a function of the temporally Fourier transformed data u' can be 
an imaging algorithm. 

A first step in the inversion of Eq. (I} is to seek a deconvolution by Fourier transforming the acquired data, u' with 
respect to measurement location r. Defining 

ii.'(t , ko) = J dr u'(r, ko}e-i
1 

·r 

substituting Eq. {3} into Eq. (1), the spatially fourier transformed data becomes 

k2! .J 1 ii.'(J.L, ko) = ; dx' O(x')e-' ·r I 

where 

and r' = (x', y', 0}. 

(5} 

(6) 

The fact that the integral I remains in Eq. (5} is an indication that the spatial Fourier transform was not completely 
successful in the required deconvolution. The reason for this is that the measurement geometry is multi-monostatic 
where, by taking source and receiver to be c.oincident, eliminated one independent vector, either the source location 

1386 



or the receiver location, that can used for deconvolution. Had the measurement geometry been multi-bistatic where 

the source and receiver are positioned independently, two spatial Fourier transforms (one for the source position and 

one for the receiver position} could have been employed to completely deconvolve Eq. (1}. For this reason, it is now 

necessary to deal with the integral given by Eq. (6}. No exact, closed-form solution to this integral has been found; 

however, it has been shown1 that for the support of 0 in the far-field of the measurement point, k0 z ~ 1, the integal 

can be accurately approximated by stationary phase to give 

(7} 

where 
(8} 

and 
(9} 

Equation (7} provides the needed relationship between the object function and the acquired data that can be inverted 

analytically. Before implementing this inversion, it is useful to recall that a far-field approximation was necessary 

to achieve the form given by Eq. (7). Consequently, this approximation has the potential to limit the applicability 

of any imaging algorithm based on Eq. (7} to scatterers that are much deeper than one wavelength. Numerical 

analyses performed by Molyneux and Witten 1 have established that, within the Born approximation, the invoked 

far-field approximation is more restrictive in the forward sense, Eq. (7}, than in the inverse sense. In fact, there is 

no loss of image fidelity for scatterers in the near-field when compared with scatterers in the far-field. 

The final form of the imaging algorithm can easily be established by expressing 01 as a function of ii' and inverting 

the indicated three-dimensional Fourier transform to give 

O(x) = -i 4lzl Jdw Jdt ii'(t ,ko) eiKx. 

7r
2

CO V 4k5 - jt 12 
(10} 

In this equation, the integral over the vertical component of the wavenumber, Kz has been cast as an integration 

over the signal bandwidth. In order to obtain some expectation of the results that can be achieved from image 

reconstruction based on Eq. (10}, it is necessary to characterize the K-space coverage. It is clear from Eq. (9} 

that, for a particular frequency w or its associated background wavenumber ko, this coverage will be an upper hemi

spherical surface of radius 2ko centered at Kz = ko. Exploiting bandwidth adds concentric hemispherical surfaces; 

however, there is no K-space coverage at the origin. With no knowledge of 0 1 at K = 0, there can be no spatial 

DC information about the scatterers. Thus, for heterogeneities that relatively large, images will be hollow. For 

smaller objects, their boundaries will blurr together providing an image that is only apparently solid. This absence 

of spatial DC information is typical of reflection-mode signal processing subject to the Born approximation where 

only transitions between objects of differing properties can be recovered. 

3. MAXIMUM LIKELIHOOD ESTIMATION 

The use of an imaging algorithm, such as the one described above, requires some form of visual inspection of the 

reconstructed image to establish that any feature appearing in the image has the size and shape characteristic of a 

target of interest. This inspection step can be eliminated by considering a related signal processing algorithm that 

essentially produces an image related to likelihood of oc.currenc.e of a specified target. The approach considered here 

is referred to as maximum likelihood estimation3 . 

By defining the acquired data as u'(r, w) and a data template U(r, w;Xo} to be either simulated or measured data for 

a target of interest located at xo, it is clear that a good indication that this target of interest is present and located 

at Xo is that the error 

E(Xo) = L j dr [u'(r, w)- U(r, w; Xo)]2 

w 

(11} 
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is below some small value characterized by the signal noise. It is recognized that Eq. (11) is simply the mean square 
difference, over all data, between the data and the data template. While this equation can be applied directly to 
identify targets of interest from measurements, its use will require either measured or simulated data templates for 
all targets of interest at many possible target locations. 

The number of data templates can be reduced to a single data template for a given target type by first using Parseval's 
theorem to express the sum over all data given by Eq. ( 11) as the similar sum of the spatial Fourier transforms of 
the data and the data template 

E(Xo) =I: j d1 [u'( 1
, ko)- ue ,ko;:xo)r 

w 
(12) 

The relationship between the spatial Fourier transforms of the data and the object function derived for imaging can 
be used to analytically move the target. From Eq. (7), the data template can be expressed as 

- ko -
U( 1 

, k0 ; xo) = i B1r 01 (K; Xo). 

If it is now assumed that a data template is available for a target located at Xret, this data templated can be 
represented by 

- - .ko-
Uref( 1 

, ko) = U(t , ko; Xref) = Z B1r 01 (K; Xref ). 

From the shift rule for integral transforms, 

Ot(K;xo) = Ot(K;Xref)e-iK(xo-Xret), 

or 

(13) 

Equation (13) is the desired result in that it allows the synthesis of a data template at an arbitrary location xo from 
a measured or simulated data template at any known location Xref· When Eq. (13) is used in Eq. (12), the errorE 
can be computed by a combination of numerical integrations that are independent of target location and a spatial 
Fourier transform with respect to potential target locations. 

4. THE LASER-ACOUSTIC EXPERIMENT 

An experiment was conducted to acquire acoustic wave reflection data from a shallowly buried object in a sand box. 
The target was a 7.5 em diameter hockey puck that was sliced in half radially and buried 1 em deep in the sand 
box. To create acoustic waves in the sand, a pulsed laser was suspended above the surface of the sand. An impulsive 
acoustic wave was create by the interaction of the laser pulse with the air-sand interface4 . The acoustic receiver was 
a transducer suspended 5 em above the laser spot. The laser-transducer pair were moved in unison above the surface 
of the sand. Figure 1 illustrates this measurement geometry. 

Data were acquired by moving the source-receiver pair along a series of parallel "scan" lines. Each scan line was 7 em 
long and the transducer output voltage as function of time was measured at 15 points along each scan line. Twenty 
five scan lines were acquired over a length of 12 em. (Fig. 2). This provided a uniform, horizontal (x, y) coverage 
at 0.5 em intervals. At each measurement location, 1000 voltage measurements were acquired at 0.5 microsecond 
intervals. Data acquisition began (time zero) at a constant time after the time of the laser pulse. 

Figure 3 is a plot of the output voltage versus time for one of the spatial measurement locations. The acoustic data 
are characterized by strong "ringing" presumably associated with a resonant mode of the tranducer. This ringing 
made the identification of features in the time series assoeiated with reflections quite difficult. For this reason, each 
time series was pre-processed with a filter to suppress the artifacts of resonance. This filter has the form 

u'(t) = J dw h(w)s(w)e-iwt, (14) 
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Figure 1: Illustration of the measurement geometry in a vertical cross-section. 

Figure 2: Illsutration of the spatial measurement configuration. 
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Figure 3: An example of the acoustic tranducer output voltage as a function of time for one measurement location. 

where 
8;e1(w) 

h(w) = * + , (15) 
•'~ref•'~ref f 

s is the temporally Fourier transformed time series for any of the spatial measurement points in a particular scan 
line, Bref is the temporally Fourier transformed time series for the first spatial measurement point in that scan line, 
the* denotes complex conjugation, and f is a constant included to eliminate any singularities in the filter h. 

The filter described by Eqs. (14) and (15) has the added benefit of effectively moving the receiver location to surface 
of the sand. Figures 4(a) and (b) display the time series for every spatial measurement location along scan lines 1 
and 12, respectively. In these figures, output voltage is displayed as gray levels with darker shades of gray associated 
with higher output voltages. Referring to Fig. 2, scan line 1 does not pass over the puck and, as such, there should 
be no evidence of a reflection from this feature. However, scan line 12 passes over the hockey puck at approximately 
is widest part so that a reflection from the sand-hockey puck interface should appear in the data. These data, as 
presented in Fig. 4, are consistent with these expectations. The pre-processed time series can also be pre8ented as 
a time slice where output voltage at a fixed time is presented as a function of measurement position (x) along each 
scan line line for all scan lines (y). Figure 5 is a gray scale presentation of the temporal data time-sliced at 53.5 
microseconds. The horizontal surface of the hockey puck is clearly identified in this figure and its shape is reasonably 
well resolved . 

5. IMAGING RESULTS 

The three-dimensional imaging algorithm, Eq. (10), was applied to the pre-processed laser-acoustic data. Apart 
from the specification of the measurement geometry, the only user inputs to this algorithm are associated with the 
specification of the background wavenumber ko so that a background acoustic wave speed eo and a bandwidth must 
be specified. Most of the power in the acoustic signal was confined to a frequency band between about 10 and 60 
kHz; however, there was limited spectral power out to about 250 kHz. Since a broader bandwidth produces better 
images, a bandwidth between 10 and 250 kHz was used for the reconstructions presented here. The background 
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Figure 4: Transducer output voltage as function of time for (a) scan line 1 and (b) scan line 12. The horizontal axis is measurement position (x) along the scan line and the vertical axis is time in microseconds. The output voltage is displayed as gray scales having values defined by the palette on the right. 

Figure 5: Gray scale presentation of output voltage time-sliced at 53.5 microseconds. 
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wavespeed used was 700 m/ s, a value typical of poorly cemented sandstone. 

Figures 6, 7, and 8 show vertical cross-sectional slices through the three-dimensional image below scan lines 1, 8, 
and 12, respectively. Each figure shows both real and imaginary parts of the reconstruction of the object function 
0 = 0 R + iO 1 where, as noted earlier, 0 R can be consider to be spatial variations in relative reflectivity and 01 can 
be taken to be spatial variations in attenuation per unit length. These images reproduce some expected features. 
First, there is no evidence of the hockey puck in the vertical cross-section below scan line 1 (Fig. 6). The hockey puck 
does appear in the images of both OR and 01 below scan lines 8 (Fig. 7) and 12 (Fig. 8) with the puck appearing 
wider below scan line 12 than scan line 8. Additionally, the puck appears with a positive contrast in On indicating 
that the wave speed of the puck is greater than the host sand. The 01 contrast of the puck is negative suggesting 
that the puck is less attenuating than the sand. 

Figure 6: Reconstructed image of {a) OR and {b) 01 through a vertical cross-section below scan line 1 displayed as gray 
scales. 

Figure 7: Reconstructed image of {a) OR and {b) 01 through a vertical cross-section below scan line 8 displayed as gray 
scales. 

One surprising result is that the 01 reconstruction is more robust than the 0 R reconstruction. This fact can be seen 
by comparison of Figs. 7 and 8. The same plotting contrast was used for 01; however, different plotting contrasts 
were required to make the puck apparent in the 0 R images in both vertical cross-sections. This fact becomes more 
evident when viewing a horizontal slice through the three-dimensional image at a depth of 1.8 em {Fig. 9). Here the 
hockey puck can easily be distinguished in the 01 reconstruction but not in the 0 R reconstruction. 
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Figure 8: Reconstructed image of (a) OR and (b) OJ through a vertical cross-section below scan line 12 displayed as gray 
scales. 

Figure 9: Gray scale image of the three-dimensional image of (a) OR and (b) OJ horizontally sliced at a depth of 1.8 em. 

6. CONCLUSIONS 

One of the objectives of this study was the evaluation of the efficacy of acoustic measurements of scattering from 
subsurface objects when the sensors are not in intimate contact with ground surface. In geophysical acoustic mea
surements, the need for mechanical coupling between both source and receiver with the ground surface is the rate 
limiting factor in data acquisition. For the demining problem, not only does this coupling issue slow the speed of 
data acquisition to point where it becomes impractical, it also presents a risk of inadvertent mine detonation. 

It has been established here, at least for the ideal c.onditions of a shallow object in near-homogeneous background and 
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a planar interface, that reflections from this target can clearly be identified. As evident in Figs. 4 and 5, after some 
slight pre-processing the presence and location of the target can clearly be identified. Even under ideal conditions; 
however, the ground is quite heterogeneous where numerous man-made and naturally occuring objects may be found. 
For this reason, there is an ancillary discrimination problem where a detected buried object must be identified as 
being mine-like with some reasonable level of confidence. There are a number of attributes that can be considered 
for target discrimination. Here, the rather unique shape of the half hockey puck target was used and the objective of 
signal processing was to reconstruct this shape using a three-dimensional multi-monostatic reflection-mode imaging 
algorithm. 

The quantity imaged is the object function which is complex having a real part that is associated with relative spatial 
variations in wave speed and an imaginary part that is associated with relative spatial variations in attenuation per 
unit length. The reconstructed three-dimensional image was displayed as two-dimensional cross-sections representing 
slices of this three-dimensional image that are horizontal and vertical. While both the real and imaginary parts of 
the object function produced images of vertical cross-sections where the target was clearly identifiable (Figs. 6a, 
7a, and Sa), the wave speed contrast (the real part of the object function) varied with horizontal y-direction (Fig. 
2). Consequently, the target could not be distinguished in the horizontally-sliced image based on the wave speed 
reconstruction (Fig. 9a). This was not the case for the reconstruction of attenuation per unit unit length. For this 
variable, the contrast was consistent from vertical cross-section to vertical cross-section so that the target location 
and shape could be clearly identified in the horizontally-sliced image (Fig. 9b). 

While the imaging results obtained here suggest that attenuation per unit length is the more robust image, it is 
important to recall that the target appears as a relative low in this variable. This fact, in turn, suggests that there 
is some background attenuation. If this is indeed the case, the background wavenumber ko taken to be real in 
the imaging algorithm must, more properly, be taken to be complex. For a complex background wavenumber, the 
integral transform defined by Eq. (8) is no longer a spatial Fourier transform so that a different inversion procedure 
must be implemented such as the algebraic one given by Witten et. al.5 . In principle, it is possible to apply such an 
algorithm here; however, in practice it is necessary to have some estimate of the imaginary part of ko. In light of this 
information, it useful to reconsider what was actually imaged. There are two important implications associated with 
a complex ko. First, it must be recognized that there is a depth-dependent attenuation and, as a result, a depth
dependent gain must be introduced into the imaging algorithm. This is not a significant factor here since the target 
was shallow and the absence of this gain factor only serves to slightly reduce the contrast of the reconstructed image. 
More important is the fact that a complex background wavenumber produced a blending of the real and imaginary 
parts of the object function that is not accounted for in the imaging algorithm. Thus, the quantities reconstructed 
are truely not the real and imaginary of the object function but some blending of the two. The interpretation of 
the real part and imaginary parts of the object function as being an indication of relative wave speed and relative 
attentuation, respectively, is now suspect; however, together these two imaged quantities reproduced the shape of 
the target providing the desired discrimination. 

The computational problems associated with imaging when ko is complex can avoided when using maximum like
lihood estimation. In such cases, the imaging algorithm, Eqs. (7) thru (10), requires an inversion of an integral 
transform with a complex wavenumber; however, the maximum liklihood estimator, Eqs. (12) and (13), is a forward 
transform and can be implimented with simple and computationally-efficient numerical procedures. A further bene
fit of maximum likelihood estimation not previously discussed is that the vertical component of the wave vector K, 
Kz = J 4k5 - J.L2 is complex, not only when ko is complex, but also when IJ.LI > 2ko. This fact implies that there 
is little benefit to imaging using a fine spatial sampling since this sampling maps into large values of J.L that must 
be discarded. Since the maximum likelihood estimator does not require an inverse integral transform, both complex 
ko and IJ.LI > 2ko can be incorporated without any computational complications. When IJ.LI > 2ko, evanescent waves 
exist. These waves propagate horizontally and decay exponentially in the vertical direction. When targets are in the 
near-field, there can be significant energy in evanescent modes and, by exploiting this information, target discrimi
nation can be enhanced6 . 
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Abstract. Diffraction tomography (DT) is a quantitative technique for high-resolution 
subsurface imaging. In general, DT algorithms are used for subsurface imaging with propagating 
waves. In this study an imaging algorithm is developed and tested for use with broadband 
electromagnetic induction for a so-called 'multimonostatic' measurement geometry; a primary 
and secondary coil are coincident and move in unison over a uniformly spaced grid, on or above 
the ground surface. The algorithm is formulated in three dimensions and tested on simulated 
data for inhomogeneities that are both two and three dimensional. The algorithm is also applied, 
in two dimensions, to data acquired over a pair of parallel tunnels. One important finding is 
that good images can be reconstructed when the frequency band is limited to the case where all 
skin depths are greater than the depth of inhomogeneities. 

1. Introduction 

Since the early 1980s (Devaney 1982), work has been proceeding on the development 
of a class of high-resolution imaging algorithms that has become known as diffraction 
tomography (DT). The earliest concepts for geophysical diffraction tomography (GDT) 
(Devaney 1984) were for transmission-mode measurements-either offset vertical seismic 
profiling or cross-borehole-where tomographic images are reconstructed for a fixed 
frequency of illuminating wave. 

In a parallel development, Won (1980) showed that broadband electromagnetic induction 
(EMI) could be used to perform vertical soundings of the Earth. By moving a coil pair 
along or above the ground surface and acquiring data over a broad range of frequencies 
at each coil location, a defocused image will result from displaying the secondary coil 
output as a function of skin depth and horizontal coil position. To illustrate this, consider 
an isolated conductive anomaly at some depth d in a homogeneous background and a coil 
pair fixed on the ground surface directly above the inhomogeneity. Increasing the skin 
depth 8 (decreasing the driving frequency) from some small value to successively larger 
values, such that 8 remains less than d, will not produce any significant change in the 
measured secondary field. This is because: (1) the background conductivity is constant; 
and (2) both the primary and secondary field decay exponentially with the skin depth so that 
the conducting anomaly is exposed to a very weak primary field that, in turn, produces a 
weak secondary field that undergoes substantial decay between the anomaly and the ground 
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surface. The secondary field strength is some weighted average of the vertical variations 
in conductivity over the skin depth. Consequently, as 8 is increased to the point where 
it is comparable to d, the inhomogeneity produces a perturbation in the secondary field. 
As 8 increases beyond d, the vertical extent of the anomaly occupies a decreasing fraction 
of the skin depth and the secondary field becomes progressively weaker. Since the field 
from a dipole coil diminishes by geometric spreading at a rate inversely proportional to the 
distance cubed, moving the coil pair laterally away from the inhomogeneity and repeating the 
sounding yields an attenuated and, since the field propagates as well as decays with distance, 
perhaps, phase-shifted replicate of the sounding taken directly over the inhomogeneity. 
Thus, the display of broadband EMI data as a function of measurement position and skin 
depth essentially produces a blurred image of the anomaly that peaks at the lateral location 
of the anomaly and at a skin depth comparable to the target depth. 

More recently, DT algorithms have been developed for ground penetrating radar 
(Molyneux and Witten 1993, Witten et al 1994). This work considers broadband 
electromagnetic wave illumination in a multimonostatic measurement geometry. Since the 
multimonostatic geometry assumed in the above cited radar-based imaging algorithms is 
the same as that typically employed in EMI data acquisition, it would seem that these 
radar algorithms could be extended to the case of a complex background wavenumber and 
thereby allow imaging with broadband EMI. However, there exists decades of experience 
in processing wave-based data; and consequently, optimal spatial and temporal sampling 
is well known. Specifically, in wave-based methods, it is necessary to sample spatially at 
intervals no greater than one-half of a wavelength. In geophysical EMI measurements, the 
wavelength is quite large so that the wave characteristics can be resolved with a coarse 
spatial sampling. It is expected that sampling based on the Nyquist criterion will not yield 
well resolved images and it remains to establish rules for optimal spatial sampling for EMI 
imaging. Because most EMI tools operate at relatively low frequencies, up to tens of kHz, 
an issue of particular importance is whether inhomogeneities; having characteristic depths 
less than the skin depth associated with the highest frequency, can be imaged. 

In this study, a DT -based imaging algorithm is developed for broadband, 
multimonostatic imaging with EMI. A forward model (Witten et al 1994) is first presented 
that serves as the basis for the subsequent imaging algorithm. This algorithm is then applied 
to both synthetic and actual field data. 

2. The forward model 

The background geometry considered (figure 1) is a unform isotropic space characterized 
by constant dielectric €0 , susceptibility J-Lo, and conductivity ao, in which is embedded 
some localized imhomogeneity characterized by a spatially-variable conductivity, a(r) (and, 
perhaps €(r)) having support in the half-space z < 0. The governing equation for an electric 
field E driven at a frequency w is derived from Maxwell's equations 

(V x V x -k~)E = f(r)E (1) 

where k~ = iwJ-to( -iwE"o + ao) is the background square wavenumber and inhomogeneities 
are characterized by the object function f(r) = iwJ-Lo( -iw[E"(r)- E"o] + [a(r)- ao]). For 
simplicity, a low-frequency approximation is assumed where a(r), a0 » w€(r), w€0 , so 
that 
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and 

. 2 [a(r) ] 2 f(r) ~ IWJ.to[a(r)- ao] = k0 ~- 1 = k0 0(r) (3) 

where O(r) is referred to as the object function. 

z 

Figure 1. The host geometry under consideration. The y axis (not shown) is into the plane of 
the figure. A co-located transmitting and receiving coil is located in the box labelled coil pair. 
Each coil is assumed to have an arbitrary orientation. 

Equation (1) can be expressed in the form of an integral equation for the secondary 
field Es as 

Es(r) = J dr' E(r') • Q(r- r')f(r') (4) 

where g is the dyadic Green function. Assuming that z' < z, which will be the case when 
measurements are made on or above the ground surface and the support of f is entirely in 
the lower half-space (figure 1), g can be expressed as the Weyl-type expansion (Morse and 
Feshbach 1953) 

(5) 

where I is the identity dyad, k+ = K + m(K)z, m(K) = Jk5- 1Kl2
, the imaginary part 

of m ~ 0, the hatted quantities are unit vectors, and K is the two-dimensional horizontal 
wavevector. 
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By assuming that the electric field E changes slowly over the support volume of /(r), 
the volume over which f ( r) =f:. 0, the field appearing under the integral in ( 4) can be 
replaced by the primary field Eo. This is the Born approximation. The primary field at 
some r1 with Z1 < 0 can be represented in terms of the primary field at z = 0 by 

Eo(r1
) = -

2

1 
2 
I dK1 eik'_·r' Eo(K1

, z = 0) (6) 
( rr) 

where Eo is the two-dimensional, horizontal Fourier transform of Eo 

Eo(K1
, z) =I dx1 e-iK'·:z:'E0(x1

, z) (7) 

r 1 = (x1
, z1

) and k'_ = K 1
- m(K1)z. 

Invoking the Born approximation, taking the primary coil to be located at point r 0 and 
using (5) and (6) in (4); the horizontally Fourier-transformed secondary field becomes 

Es(K, z; ro) =I dx E 5(x, z) e-iK·:z: 

= eimz(I- k+k+) • 2~ I dK1 Eo(K1
, 0) e-ik'_·ro I dr 1 f(r 1

) e-i(k+-k-)·r' (8) 

and E0(K
1

, 0) characterizes the coil used to generate the primary field. 
The next steps in the development of the forward model formulation involve the 

representation of the transmitter and receiver coils in terms of their orientations and their 
input and output characteristics. The open terminal output voltage from the receiver coil 
resulting from its response to a secondary field Es is given by 

Yoc(ro) = -- r J(r) · Es(r + ro) 1 ld 1 I I 

Io 
(9) 

where /0 is the current across the coil terminals and J(r1
) is the current distribution within 

the coil. It has been assumed that the receiver coil is coincident with the transmitter coil 
at ro. 

The vector magnetic potential for a current distribution J0 in the transmitter coil is 
given by 

A(r) = J.Lo I dr1 Jo(r1)G(r- r 1
) 

where 

G(r - rl) = _i_ I dKI _1_ eik'_ ·(r-r'). 
8rr2 m(K1

) 

Using the relationship between the magnetic potential and electric field 
i 

E= --V xV xA 
WJ.loEo 

the two-dimensional, horizontally Fourier-transformed primary field can be written as 

Eo(K, z) =-WJ.lo (I- k_k_) ·I dr1 Jo(r1
) e-ik_·r'. 

2m 

(10) 

(11) 

(12) 

(13) 

The final introduction of coil-specific parameters is made by assuming that a coil (either 
the transmitter or receiver) is of small radius a, consisting of N turns with its axis pointing 
in the direction n, and is located at some elevation above the ground surface h ;;:;: 0. By 
taking the current to be constant within the coil, 

(I- k±k±) ·I dr1 J(r1)e±ik±·r' = ±irrNa2 eimh;, x k±. (14) 
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Substituting (9), (13) and (14) into (8) yields the final form of the forward model 

Voc(K) = -iwJ.to(rrko)4 I dK' (eiQh / Q)H(K, K'; k+) I dr' O(r') e-i{K·:z:+Qzl 

where Voc(K) is the horizontally Fourier-transformed output voltage, 

Q = m(K/2+ K') +m(K/2- K') 

(15) 

Ns is the number of turns in the receiver coil, No is the number of turns in the transmitter 
coil, as is the radius of the receiver coil, ao is the radius of the transmitter coil, 

H(K, K'; k+) = IoNsNoa?a5[ns x k+(K' + K/2)] ·[no x k+(K'- K/2)] (16) 

and ns and no are the unit vectors defining the direction of the axis of the receiver and 
transmitter coils, respectively. Equation (15) assumes that the coils are imbedded in a 
material having the same conductivity as the material that hosts the support of O(r). A 
two-layer system, such as air over soil or rock, is considered in appendix A. 

3. Inversion and imaging 

The inner integral in (15) is a spatial Fourier transform of the object function 0. This 
form of the forward model is similar to a 'generalized projection slice theorem' (GPST) 
of diffraction tomography. GPSTs are analytic relationships between the spatial Fourier 
transform of the acquired data and the spatial Fourier transform of the object function. With 
a GPST, imaging can be accomplished by inversion using standard numerical techniques. 
The forward model defined by (15) is not suitable for such an inversion due to the outer 
(K') integration. Thus, it is necessary to seek some closed-form evaluation of this integral 
in order to derive a GPST for broadband EMI imaging. 

The procedure employed here parallels that established by Molyneux and Witten (1993) 
whereby the outer integration in (15) is performed approximately by the stationary phase. 
This approximate representation is valid provided that H jm(K /2 + K')m(K /2 - K') 
varies slowly compared to [m(K /2 + K') + m(K /2- K')](h- z) over some range of K. 
This, in turn, requires that there be a large coefficient in the exponential of the integrand 
and this will be the case when (h - z) is much greater than one-half of the skin depth 
8 where 8 = 1/ JaoJ.toW. Rigorously, at least in the forward sense, this weak far-field 
approximation may limit the applicability of this imaging algorithm; however, Molyneux 
and Witten (1993) demonstrated that no such limitation exists in the inverse sense. It is 
hoped that this finding can be generalized to the case of EMI inversion considered here. 
Performing the K' integration in (15) by stationary phase yields the approximate relationship 

where 

y(K) = J 4k5- IK12 

k = K + y(K)z 

(17) 

0 1 (k) = dr ---e-lk·r = dz -- dx O(x, z) e-IK·:z: = dz --O(K, z) = I O(r) . I e-iyz I . I e-iyz -

(h - z) h - z h - z 

O(K, z) =I dx O(x, z) e-iK·:z: (18) 
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and 

(19) 

is a coil-specific filter function. 
Equation (17) is the final form of the GPST for broadband EMI imaging. This equation 

can be rewritten as 

Ot (k) = 
2 

_ e-iyhV, (K) 
W#Lorr 5k'5y(K)H(k) oc 

(20) 

to explicitly represent 0 1 as a function of Voc. An image of the spatial variations in 0 1 

and, hence, 0 or u ( r) can be reconstructed by inverting the integral transform 

01(k) = j dxe-iK·zot(x, k) (21) 

where 

(22) 

Equation (21) is a horizontal, two-dimensional, spatial Fourier transform that can be 

inverted by fast Fourier transform (FFT) techniques; however, (22) is a one-dimensional 

Fourier transform with a complex wavenumber y and, therefore, cannot be inverted using 

an FFT. For this reason, the inversion is a two-step process where, in the first step, the 

integral transform 

(23) 

is inverted and then 01(K, z) is inverted by a standard two-dimensional FFT. Equation (23) 

is inverted by approximating the integral by the quadrature formula 

where 

and 

Ot(K, y;) ~ LAijOt(K, Zj) 
j 

A .. _ e-iyjZ; 
I)-

Yi = J 4if>i-2 
- IK12 

Zj = zo + (j- 1)~z 

f>; = f>o + (i - 1)~6. 

(24) 

(25) 

(26) 

Equation (24) represents a mapping from uniformly spaced sampling in z, beginning at a 

minimum depth z0, in increments of ~z. into a uniformly spaced sampling in skin depth 

from f>o, in increments of ~f>. 
Equation (24) could be solved by inverting the matrix Aii; however, the system of 

equations is ill-conditioned so that it becomes necessary to seek a less direct method of 

inversion. The method used here is regularization where, rather than considering (24 ), the 

equation 

Ot(K, y;) = L(Aij- >..I;j)Ot(K, Zj) 
j 
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is inverted, where /ij is the identity matrix and ).. is referred to as the regularization 

parameter. The inversion of (27) must be optimized with respect to the regularization 

parameter. If).. is too small, the inversion will be unstable and if "A is too large, the image 

will be excessively blurred. 
Following the inversion of (27) by regularization for each value of K, 0 1 (r) can be 

computed by inversion of the two-dimensional Fourier transform. The object function can 

be reconstructed from O(r) = (h - z)01 and the spatial variations in conductivity can, in 

tum, be computed using a(r) = ao(O(r) + 1). 

4. Results 

The forward model derived in section 2 and the inversion algorithm derived in section 3 

are three dimensional and allow arbitrary primary and secondary coil orientations. These 

developments are restricted to cases where both coils are in intimate contact with the ground 

surface. For situations where the coils are above the ground surface, the formulation is 

slightly more complicated and the forward model for this case is given in appendix A. 

This model can be used to develop an inversion algorithm following the procedure given in 

section 3. For all the results presented in this section, a standard numerical scheme (Press 

et al 1992) was used to implement the regularized inversion defined in (27). 

4.1. Two-dimensional synthetic data 

Images from broadband EMI are presented using ( 17) to simulate the broadband data, 

and (20) and (27) are used to reconstruct the image. For simplicity, the targets are taken 

to be two dimensional, varying only in the x, z plane, and only three coil orientations are 

considered. These are: vertical coils-both coil axes are vertical, no = ns = (0, 0, 1); 

horizontal coils-both coil axes are horizontal and parallel to the transect line, no = ns = 

(1, 0, 0); and horizontal coplanar coils-both coil axes are horizontal and perpendicular to 

the transect line, no= ns = (0, 1, 0). 
Extensive testing was performed on all coil orientations for a variety of targets of 

simple shapes. Since the vertical coil orientation produces a smaller gradient in the vertical 

field and a larger gradient in the horizontal field, as compared to either of the horizontal 

coil orientations, the forward model results exhibited noticeable differences with varying 

coil orientation. In contrast, reconstructed images were quantitatively similar for all coil 

orientations and target shapes. For this reason, the results presented here are limited to 

those associated with variations in the parameters that affect the quality of reconstructed 

images: these are the choice of regularization parameter ).. (27) and the skin depth interval. 

For all results presented, a horizontal coil orientation was assumed, the inhomogeneity was 

a 16 by 4 rectangular conducting anomaly centred at (0, -16), and data were synthesized 

at 32 horizontal measurement points at z = 0 and uniformly distributed over the interval 

[ -32, 30]. 
Figure 2 provides simulated results for the above described target and measurement 

configuration displaying the effects of varying the regularization parameter. It is expected 

that, for relatively large values of this parameter, the inversion should be quite stable; 

however, the image will be blurred as a result of excessive smoothing. For an extremely 

small regularization parameter, the inversion will be unstable. Figure 2(a) is the real part 

of the simulated data where the vertical axis is skin depth. For the simulations presented 

in this figure, 16 skin depths uniformly distributed on the interval [2, 32] were used. As 

established by Won (1980), the simulated data appear as an out-of-focus image of the 



1628 A Witten et al 

rectangular target, with the target appearing as a negative anomaly. The reconstructed 

images, figures 2(b) through 2( e), exhibit the expected result of increased image sharpness 

with decreasing regularization parameter. An important finding is that the inversion is quite 

stable and reasonable images were reconstructed over a range of regularization parameter 

that spans six orders of magnitude. 
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Figure 2. Data and images of a 16 x 4 conducting rectangle centred at (0, -16) for 32 

measurement points uniformly distributed over the interval [-32, 30] along the ground surface, 

16 skin depths uniformly distributed on [2, 32] and a horizontal coil axis for (a) the real part of 

the simulated data and images for regularization parameters of (b) le- 4, (c) le- 6, (d) le- 8, 

and (e) le- 10. 

Figures 3 and 4 are reconstructed images displaying the effect of varying the skin 

depth interval. For all reconstructions, data based on 16 skin depths were used. Figure 3 

demonstrates the effect of broadening the range of skin depths and, in this figure, the 

minimum skin depth is always significantly less than the depth of the conducting rectangle, 

while the maximum skin depth is progressively increased from 8 (figure 3(a)) to 128 

(figure 3(e)). Poor images are obtained when the maximum skin depth is less than the 

deepest extent of the inhomogeneity (figures 3(a) and (b)). For a maximum skin depth 

of 8 (figure 3(a)), the reconstructed rectangle has the proper shape, but is too shallow, 

and increasing the maximum skin depth to 16 (figure 3(b)) results in a reconstruction of the 

rectangle that is somewhat deeper; however, it is still too shallow and the contrast is reversed. 

Increasing the maximum skin depth to 24 (figure 3(c)) results in a reasonable reconstruction. 
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The reconstructed image is excellent for a maximum skin depth of 48 (figure 3(d)) and even 

at a maximum skin depth of 128 (figure 3(d)) the reconstructed image is quite good. This is 

a somewhat surprising result, since for 16 skin depths uniformly distributed on the interval 

[2, 128], the skin depth increment is almost 8, which is twice the thickness of the rectangular 

anomaly. While skin depth is somewhat analogous to time in wave-based methods, it is 

clear that a reflector may be entirely absent in the data for a coarse time sampling; however, 

such a coarse sampling in skin depths does not profoundly impact the quality of the EMI 

images . 
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Figure 3. Images of a 16 x 4 conducting rectangle centred at (0, -16) for 32 measurement 

points uniformly distributed on the interval [-32, 30] along the ground surface, a regularization 

parameter of 1e- 8, a horizontal coil axis, and 16 skin depths uniformly distributed over (a) 

[1,8], (b) [1,16], (c) [2,24], (d) [2,48], and (e) [2,128]. 

Figure 4 demonstrates the effects of simultaneously varying the minimum skin depth 

and the skin depth interval. The purpose of these simulations is to investigate implications 

of using a minimum skin depth that is greater than the target depth. Figure 4(a) is a 

reconstructed image for a minimum skin depth of 8 and a maximum skin depth of 32. Here, 

the range of skin depths spans the depth interval of the conductor and the reconstructed 

image is quite good. When the skin depth does not completely span the vertical extent of 

the target (figure 4(b)), the image is still good. This is in complete contrast to figure 3(b) 

where the deeper skin depths, rather than the shallower skin depths, are absent. Increasing 

the minimum skin depth (figure 4(c)) and further increasing the minimum skin depth and 
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broadening the skin depth interval (figure 4(d)) results in a progressive blurring of the image. 
The reason that skin depths less than the target depth are not required to adequately image 
inhomogeneities is apparent in the simulated data (figure 2(a)). It is clear in this figure 
that the gradient with respect to skin depth is much steeper for skin depths less than target 
depth, than for skin depths greater than the target depth. Furthermore, for skin depths less 
than about one-half the target depth, the secondary field is almost zero. For skin depths 
substantially larger than the target depth, the secondary field decays slowly with increasing 
skin depth and there is information regarding target structure encoded in these large skin 
depths. 
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Figure 4. Images of a 16 x 4 conducting rectangle centred at (0, -16) for 32 measurement 
points uniformly distributed on the interval [ -32, 30] along the ground surface, a horizontal coil 
axis, and 16 skin depths uniformly distributed over (a) [8,32], (b) [16,48], (c) [32,64], and (d) 
[64, 128]. The regularization parameter used for (a) and (b) is 1e - 8 and for (c) and (d) is 
1e- 6. 

While the images given above represent quite good reconstructions, they were obtained 
from noise-free simulated data. Since the inversion of (24) can be ill-conditioned, it can 
be expected that signal noise can have a profound impact on image quality, particularly 
when all skin depths are greater than the target depth. To address this problem, additional 
imaging was performed with noise added to the synthetic data. Two noise models were 
considered; the relative noise case where the signal-to-noise ratio was defined relative to the 
maximum signal at each skin depth, and the absolute noise case where the signal-to-noise 
ratio was defined relative to the maximum signal over all skin depths independent of the skin 
depths used in the image reconstruction. Noise was added to the signal by first generating a 
sequence of random numbers uniformly distributed over the interval [ -1, 1]. After dividing 
by the signal-to-noise ratio, these random numbers were added to the simulated data. For 
both noise models, images were reconstructed for a variety of ranges of skin depths. The 
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results of these simulations are summarized below. 

20.0 22.0 24.0 26.0 28.0 30.0 32.0 34.0 36.0 38.0 40.0 

Measurement Distance (m) 

Figure 5. Plot of the real part of the ratio of primary to secondary field as a function of 
measurement location and frequency for EMI data acquired over the top of a pair of subway 
tunnels. 

(1) Decreasing the signal-to-noise ratio produces a degradation in image quality that, to 
a point, can be offset by increasing the regularization parameter but with an associated loss 
of image sharpness. 

(2) There is a signal-to-noise ratio lower limit below which the target cannot be 
reconstructed no matter how large the regularization parameter. These limiting signal
to-noise ratio values are about 100 and 20 for the absolute and relative noise models, 
respectively. 

(3) Signal noise did not affect the images reconstructed for cases where all skin depths 
are greater than the target depth more than for cases where the skins depths span the target 
depth. 

4.2. Two-dimensional field data 

While the results based on synthetic data establish that images can be reconstructed when all 
skin depths are significantly greater than the target depth, it must be recognized that, as skin 
depths increase beyond the target depth, the magnitude of the secondary field decreases 
substantially. Since the signal-to-noise ratio for synthetic data is essentially infinite, an 
important issue related to the viability of geophysical EMI imaging is whether adequate 
images can be reconstructed for large skin depths when the signal-to-noise ratio is finite, or 
more importantly, small. The synthetic data examples considered here use the forward model 
given by (17) and, as such, do not address the issue of the weak far-field approximation 
required to achieve the GPST. The validity of this approximation will be tested provided 
that all, or some, of the frequencies acquired correspond to skin depths greater than the 
depth of inhomogeneities. 
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To address these concerns, broadband EMI data were acquired along a line on the 

ground surface over a parallel pair of subway tunnels near the Washington, DC, Anacostia 

Metro station. The broadband geophysical tool used was the GEM-2 (Won et al 1996). A 

subset of this data set was used for imaging. Sixteen measurement points were uniformly 

distributed over the interval [18 m, 41 m] on the ground surface perpendicular to the axes 

of the tunnel pair. Sixteen frequencies uniformly distributed over the interval [5010 Hz, 

14010 Hz] were used in the reconstruction. Figure 5 is a display of the real part of the 

data as a function of measurement location and frequency. Since the range of frequencies 

shown is quite low, all skin depths are large. As a consequence, the data as displayed do 

not appear as an out-of-focus image, but rather only the tail of the gradient with respect to 

skin depth is evident. Thus, this data set represents a good test of both the impact of a low 

signal-to-noise ratio and the far-field approximation. 
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Figure 6. Reconstructed image of a pair of parallel subway tunnels near the Washington, DC, 

Anacostia Metro Station. The tunnel cross sections appear as the near-circular, low conductivity 

anomalies at a depth of about 12 m. The near-surface high conductivity layer is believed to be 

saturated soil. 

Figure 6 is the image reconstructed from these data based on a regularization parameter 

of 1e- 6 and an assumed background conductivity of 0.1 Siemen m-1• The cross sections 

of the two tunnels are clearly evident as the near-circular low conductivity anomalies at 

a depth of about 12 m. In addition, there is an apparent high conductivity layer in the 

upper 3 m of the image. There was standing water on the ground at the time the data were 

acquired, getti1 
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acquired, getting progressively deeper to about 0.3 m at one end of the measurement line 

(the right-hand side of figure 5), and this layer is likely a result of the presence of surface 

and near-surface water. The depth of the tunnels at the measurement line is not known, 

however, their imaged depth is consistent with available estimates. 

4.3. Three-dimensional synthetic data 

To demonstrate EMI imaging in three dimensions, broadband EMI data was synthesized for 

measurements made over a two-dimensional grid on the ground surface. A 16 x 16 grid 

was employed, where -16 ~ x, y ~ 14. The target was a rectangular solid conductor with 

centre at (0, 0, -16) and having dimensions (8, 16, 4). Data were synthesized for eight skin 

depths uniformly distributed on the interval [2, 32]. The three-dimensional reconstruction 

was based on eight depth points uniformly distributed on the interval [ -9, -23] and a 

regularization parameter of 1e - 8. Figure 7 is a 'chair cut' of the three-dimensional 

image through the centre of the inhomogeneity. This figure is an accurate representation 

of the target location and aspect ratio. While this image is not as sharp as the synthetic 

reconstructions for the two-dimensional rectangle, it must be recognized that this image 

is based on the equivalent of one-quarter of the data points used in the two-dimensional 

simulations. 

)( 

Figure 7. 'Chair cut' through a three-dimensional image of a reconstructed rectangular solid 

conductor. 
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5. Conclusions 

A three-dimensional imaging algorithm for broadband EMI data has been developed and 

implemented. This algorithm has been tested on two- and three-dimensional synthetic data 

and on two-dimensional field data. It has been shown that EMI imaging can yield good 

reconstructions of both conductive and resistive targets, even for a relatively small number 

of frequencies. Perhaps the most important finding is that adequate images can be obtained 

when the highest frequency is so low that all skin depths are greater than the target depth. 

This is exemplified by the reconstructed image of the tunnels (figure 6) where the tunnels 

are manifested in the data as only a gradient in frequency (figure 5), rather than a well 

defined peak in response at a skin depth comparable to the target depth (figure 2(a)). This 

suggests that there is some hope for imaging relatively small and shallow targets with the 

relatively low-frequency EMI tools. 

The imaging approach is based on the concept of diffraction tomography where an 

analytic relationship is established between the spatial Fourier transform of the acquired 

data and a spatial intregral transform of the variations in conductivity. For EMI imaging, 

the integral transform is Fourier (real wavenumber) in the horizontal directions while the 

vertical component of the integral transform is characterized by a complex wavenumber. 

For this reason, the full integral transform cannot be inverted by the computationally 

efficient fast Fourier transform procedure. The mapping from depth into skin depth must be 

inverted by matrix inversion at every horizontal wavevector point, which is far less efficient. 

Despite this limitation, the imaging algorithm is computationally efficient. For example, 

the three-dimensional image reconstruction required only several seconds on a Pentium

based processor. For production-mode processing where image depths and skin depths 

are fixed, the algorithm can be rendered more computationally efficient by employing the 

'pseudo-inverse' concept developed by Deming and Devaney (1996). Using this approach, 

the matrix inversion becomes independent of the acquired data and, as a consequence, can 

be pre-computed and stored. Furthermore, the pseudo-inverse explicitly accounts for the 

band-limited nature of the acquired data and, for this reason, promises better images when 

a limited bandwidth and a small number of frequencies are used. 

In the derivation of the imaging algorithm, it is assumed that the host formation 

is completely characterized by its conductivity and is manifested in the background 

wavenumber k0 ~ JiwJJ-0a0 • This assumption was made as a matter of convenience 

rather than necessity. Since this background wavenumber is complex, no complications 

arise from defining ko = JiwJJ-0 (-iwEo + a0 ) and thereby characterizing the host formation 

in terms of both its dielectric and conductivity. Similarly, the object function was assumed 

real, where O(r) = [(a(r)fao)- 1]. The object function is, in general, complex, so that 

spatial variations in conductivity can be reconstructed from the real part of 0, while spatial 

variations in dielectric can be reconstructed from Im( 0). 

Appendix. Introduction of ground-air planar interface effects 

In section 2 the formulation for imaging a finite support heterogeneity from a suite of 

multimonostatic experiments with loop antennas scanning the z = h, h ~ 0 was presented, 

and it was assumed that the background conductivity (and dielectric) was the same for 

both half-spaces z ~ 0 and z < 0. The fact that the medium is a good conductor 

affects the formulation only in modifying the plane wavenumber from purely real in 

dielectric media to complex with a 45° phase. The 'propagation' effects are now called 

electromagnetic induction or diffusion, but other than terminology, nothing has essentially 
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changed compared to the electromagnetic dielectric case. A significant effect on the problem 

is that the generalized projection slice theorem (GPST) now relates plane wave spectra of 

scattered fields to the Fourier transform of the scatterer profile evaluated at complex spatial 

frequencies, a fact that poses special difficulties for the inverse (imaging) problem. 

In this appendix, the work of section 2 is extended. to the case where the scatterer is 

embedded in a conducting half space at z < 0, where the access for interrogating the object 

is limited to the adjacent free space at z ~ 0. It is assumed that the scatterer is sufficiently 

weak, such that its coupling to the z = 0 interface is negligible, and also that the antennas 

themselves are negligibly coupled to this interface (which is always true in the case of 

loop antennas that are sufficiently small compared to the wavelength and compared to their 

distance from the interface). 

A. I. Dyadic Fresnel coefficients for transmission of plane electromagnetic waves through 

an air-ground interface 

The geometry considered is shown in figure A.l where the ground at z < 0 is characterized 

by a wavenumber k0 = (iwlloa0) 112 and the air at z ~ 0 is characterized by a purely real 

wavenumber k1 = w(/-LoEo)112 • 

The scalar Fresnel transmission coefficients are readily obtained through application of 

the continuity condition of the tangential electric field and its normal derivative across the 

boundary at z = 0 

- 2mo 
T+(K)= --

mo+mt 

- 2mt 
T_(K) = ---

mo+mt 

mo(K) = JkJ- K2 

mt(K) = Jk~- K2 

Im{mo} ~ 0, Re{mo} ~ 0 

Im{mt} ~ 0, Re{mt} ~ 0 

such that the tangential electric fields are related through 

(I- zz) . Et (K) = T+(K)(I- zz) . .E~nc(K) 

(I- zz) · Eo(K) = f_(K)(I- zz) . .E~nc(K). 

(A.l) 

(A.2) 

The full vector electric fields across the z = 0 boundary are thus related through a dyadic 

Fresnel transmission coefficient 

T+(K) =[I- z (z + mt~K)) J T+(K) 

T_(K) =[I- z (z- ~)] f_(K) 
mo(K) 

(A.3) 

where the z components have been derived by invoking the transversality condition of 

the electric field with respect to the plane wavevector (K + m1z) • E1(K) = 0 and 

(K - moz) . Eo(K) = 0. 

A.2. Scattered electric field within the Born approximation in the presence of a planar 

boundary 

In section 2, it was shown (8) that the plane wave spectrum of the scattered field at z = 0, 

due to a source antenna positioned at ro in a homogeneous background k0 , is given by 

E 5 (K'; ro) =(I- k~+k~+) · _i, I dK Eo(K; ro) I dr' f(r') e-i(k~-ko-)·r' 
2m0 

Eo(K; ro) = Eo(K)e-iko-·ro (A.4) 
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Figure A.l. Plane wave spectral relations at an interface between air and ground for the geometry 
under consideration. 

where 

ko±(K) = K ± m0(K)z 

k~± = ko± ( K') m~ = mo(K') 

lm{mo} ~ 0 K=IKI 

(A.5) 

and Eo(K) is the plane wave spectrum of the electric field emitted by the source antenna 
when positioned at reference location r 0 = 0. E 8 (K'; ro) is the plane wave spectrum of 
the scattered field at z = 0 when the source antenna is located at ro. 

If it is assumed that the upper half space z ~ 0 is free space kt =j:. ko, and also assumed 
that the scatterer is negligibly coupled to the z = 0 interface, then the above equation 
provides an expression for the scattered field incident on the z = o- boundary with Eo 
being the source field transmitted into the lower domain at z = o-. In terms of the electric 
fields at z = o+' 

Ef(K'; ro) = T+(K')(I- kb+kb+) · 2~~ I dKT_(K)E~nc(K; ro) 

xI dr' f(r') e-i(k~ -ko-)·r' 
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.Elnc(K; ro) = iJinc(K) e-ik1-·ro (A.6) 

where the plane wavevector in the upper half space is defined by 

Im{m1} ~ 0. (A.7) 

For later use, it is desirable to Fourier transform xo, the lateral spatial variable of r0 , 

according to 

E:::::: s(K'· K ) I d -iK·xoE-s(K'· ) 
1 , , Zo = Xo e 1 , Xo, zo (A.8) 

to obtain the doubly Fourier-transformed multimonostatic scattered field 

E~ (K'; K, Zo) = (21l')c-12 i 'eimlzoiJ(K'; K). iJ~nc( -K) f(k~+ + ko+) 
mo 

V(K'; K) = T+(K')(I- k~k~+)T_(-K) (A.9) 

where the c-dimensional Fourier transform of the object function is defined according to 

f(q) =I dr e-iq·r /(r). (A.lO) 

The doubly transformed multimonostatic scattered field referenced to zo = 0 is therefore 
given by 

As found in section 2, the plane wave spectrum of the transmitting antenna (subscripted by 
0) field is related to its vector effective height iio through 

iJinc(K) = -Io WJ-Lo ho(-K) 1 2m1 
(A.12) 

such that, in terms of the vector effective height of the transmitting antenna, it is given 
by the following expression for the doubly Fourier-transformed multimonostatic scattered 
electric field 

(A.13) 

Note that this is only the component of the field scattered off the interior of z < 0 
and does not contain the undesired (strong) component of the field reflected off the z = 0 
boundary as well as the direct field. The undesired components can be easily incorporated 
into the formulation or, alternatively, if illuminating the ground with short pulses, the early 
arrival of these components can be effectively time gated. 

A.3. Measured signal in a multimonostatic measurement configuration above ground 

In this section we obtain the terminal signal at a receiving antenna, that sweeps a plane 
z = zo in synchronization with the transmitting antenna that is excited with a terminal 
current Io. 



1638 A Witten et al 

Assuming that the scattered signal Ei(K; r 0) is received by a receiving antenna that is 
positioned at r 1 such that if it were to transmit, its current distribution would be J 1 ( r- r1 ), 
with terminal current / 1• By the Lorentz reciprocity theorem, it is known that the open 
circuit terminal voltage is given by 

V(rt; ro) = _ _!_ j dr' J1 (r'- ri) · Ei(r'; ro) = _ _!_ j dr' J1 (r') · Ei(r' + r1; ro) ~ ~ 
= - (2rr) 1-c ;I f dr' JI ( r') . f dK' eiK' ·(x' +xJ) Ei ( K'; ro) eim; (z' +zJ) 

= -(2rr)1-c J dK' h1 (K') · Ei(K'; r 0 ) eik;+·r1 

= -(2rr)2(1-c) J dK' ht(K') · J dK E~(K'; K)ei(k;+.r 1+kwro) (A.l4) 

where the vector effective height of the antenna for fields arriving from z < 0 is defined in 
the usual way (13) 

h1(K') =(I- k:;+k:;+) • _!_ J dr' Jt(r')eik;+·r'. (A.l5) 
~ 

To this point, the measured signal is at r1 due to a source located at ro. In the 
multimonostatic case, r 1 = ro, such that 

V(ro; ro) = Vmm(ro) = -(2rr)2(1-c) J dK' h1 (K') · J dK E~ (K'; K) ei<k;+ +ki+)·ro 

(A.l6) 

where Vmm denotes the multimonostatic signal (now dependent on only one set of 
coordinates). Finally, Fourier transforming with respect to the a::o variable gives 

Vmm(K, zo) = -(2rr)l-c f dK' eilm;+mi(K-K')Jzofti(K')· EHK'; K- K'). (A.l7) 

Now, substituting the expression for the doubly Fourier-transformed field (A.13) yields 

iwjl. f eilm; +m1 (K -K')lzo _ _ 
Vmm(K, zo)/ Io = --0 

dK' K K , h1 (K') · V(K'; K- K') 4 m1( - ')m0 

·ho(K- K') f[k~+ + ko+(K- K')]. (A.18) 

This result is in agreement with (15) when zo is set to zero and the Fresnel transmission 
dyads are set to unity. Compared to the result in section 2 (equation (15)), here the effect 
of the z = 0 interface is embodied in the dyadic denoted by V. 

This result relates V (K) to the Fourier transform of the object function at spatial 
frequencies ko+(K') + ko+(K- K'). It is the K' integral that prevents this last equation 
from being an ordinary projection slice theorem relation. 
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ABSTRACT 

Broadband electromagnetic induction is a promising technique for the detection and location of 
underground structures. Along with being simple to use and allowing rapid data acquisition, under
ground structures can be detected by this method either because the large volume of air necessary for 
human occupancy will be manifested as an electrical conductivity low relative to the host formation or 
because there could exist a· large metallic mass associated with either structural support or the mission of 
the facility that would constitute a relative conductivity high. The use ofbroadband information literally 
offers an additional dimension, that being depth, to the level of information that can be gleaned from 
acquired data since, by varying the operating frequency, the probing depth changes. A three-dimen
sional tomographic imaging algorithm is applied to broadband data acquired at two underground struc
ture sites to reconstruct the relative spatial variations in electrical conductivity. A pair of parallel subway 
tunnels exist at one site and a cloud chamber at the other. At both sites, quite good images of the 
structures were obtained and the structures appeared as relative conductivity lows. 
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Introduction 

Under ideal conditions, almost any geophysical tool can 
be used to detect and located subsurface structures suitable 
for human occupancy. In practice, however, the choice of geo
physical method will be dictated by the anticipated size and 
depth of the underground structure as well as site conditions 
including the mechanical and electrical properties of the host 
geology, whether data can be acquired directly over the un
derground structure, and the presence of surface or near sur
face cultural features. 

data as a vertical slice having a depth axis inversely propor
tional to the square root of the acquisition frequency, a crude 
form of an image of spatial variations in electrical conductivity 
within the cross-section is produced. This technique is re
ferred to as frequency sounding. In a more recent develop
ment, Witten, Won, and Norton (1997) established that fre
quency sounding produced an out-of-focus image of conduc
tivity anomalies and presented a generalized form of diffrac
tion tomography (Devaney, 1984) whereby focused images 
may be reconstructed. 

Beyond the above-cited issues that may influence the 
choice of geophysical methods, there may be operational con
straints that must additionally be considered. There are anum
ber of scenarios under which site access time is severely lim
ited and data must be acquired by operators with no geo
physical training. In such cases, electromagnetic induction 
(EMI) is a strong candidate since EMI tools are relatively simple 
to operate and data can be acquired quite rapidly. Broadband 
EMI is particularly attractive since, by its nature, it offers in
formation about target depth with no additional complications 
in data acquisition. 

It has been shown (Won, 1980) that a pseudo cross
sectional image can be obtained from broadband EMI mea
surements made at intervals along a line. By displaying this 

JEEG, volume 2, issue 2, September 1997, p. I 05-114 

In this paper, the general concept of frequency sound
ing is discussed and a three-dimensional broadband EMI im
aging algorithm is summarized. This algorithm is applied to 
broadband EMI data acquired at two sites known to contain 
underground structures. 

EMI Imaging Concepts 

The use of EMI in geophysics exploits the fact that a 
current will be induced in an electrically conductive anomaly, 
when immersed in a time-varying electromagnetic field. In turn, 
the current induced in conductive anomalies will induce a (sec
ondary) time-varying electromagnetic field. Thus, EMI mea
surements can be used to detect and locate subsurface, elec
trically conductive features by creating a time-varying field 
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Figure 1. Illustration showing transmitting coil produc
ing a primary field (solid contours). This field induces a 
current in a conductor (black mass) that, in turn, pro
duces a secondary field (dashed contours) detected by 
the receiving coil. 

using a transmitting coil and measuring the induced second
ary field with a receiving coil (fig. 1 ). Because rock and soil are 
somewhat conductive and will produce a secondary field when 
exposed to a primary field, EMI can also be used to detect 
anomalous features that are more resistive than the back
ground. 

In general, there are two methods by which depth infor
mation can be extracted from EMI measurements. These are 
geometrical soundings and broadband soundings. In geometri
cal soundings, measurements are made at a fixed frequency 
for a range of separation distances between the transmitting 
and receiving coils while, for broadband soundings, decreas
ing the frequency is associating with deeper probing. This 
study deals only with broadband soundings. In a conducting 
medium, electromagnetic waves will both oscillate and decay 
with distance from the source and both the wavenumber and 
the decay rate are proportional to the frequency. Figure 2 
depicts two conducting targets at two different depths below 
a transmitting coil generating a primary field with conductor l 
being the shallower target. Since this primary field decays with 
distance, conductor 1 is immersed in a stronger field than con
ductor 2 and, hence, a stronger current and, consequently, a 
stronger secondary field is induced in this conductor. Further
more, there will be greater decay of the secondary field from 
conductor 2 since it is farther away from a receiving coil taken 

to be located alongside the transmitting coil. The receiving 
coil will measure a secondary field that is a composite of the 
response of both conductors with this measured response 
being a depth-integrated function of the conductivity inversely 
weighted by the depth. 

Figure 3 is a sequence of illustrations designed to show 
how broadband soundings can be used to quantify target 
depth. In fig. 3a, the driving frequency is sufficiently high that 
the primary field decays to a negligibly small value before it 
reaches the depth of the conductive anomaly. Decreasing the 
frequency (fig. 3b ), decreases the rate of decay ofthe primary 
field such that a measurable response to the anomaly is pro
duced at the receiver coil. When the frequency is so low that 
the primary field penetrated to a depth much greater than the 
conducting target (fig. 3c), the anomaly is only weakly mani
fested in the measured secondary because, as noted above, 
this field is depth average and the anomaly occupies only a 
small portion of the penetration depth. Thus, decreasing the 
frequency below that shown in fig. 3b will produce a gradual 
decay in the measured secondary field. Figure 3d shows an 
idealized magnitude of the measured secondary field as a func
tion of frequency illustrating the broadband sounding con
cept. 

A measure of the penetration depth of a primary field is 
the skin depth, 8, defined to be 

Figure 2. Illustration showing two conductors at dif
ferent depths below a transmitting coil. Since conduc
tor 2 is further away from the transmitting coil than 
conductor 1, a weaker current (indicated by the nar
rower white line depicting the current loop) is induced 
in this feature. 
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(a) (b) 

Decreasing Frequency 

(c) (d) 

Figure 3. Illustration showing the oscillation and decay 
of a time-varying electromagnetic field and a conductor 
below the transmitting coil for a) a high frequency, b) a 
moderate frequency, and c) a low frequency. The varia
tion in secondary field strength as a function of frequency 
is shown in d). 

(1) 

where ro is the frequency, f..lo is the background magnetic sus
ceptibility, and cr0 is the background conductivity. Won (1980) 
demonstrated that broadband soundings such as that shown 
in fig. 3d will peak at a skin depth corresponding to the target 
depth. Figure 4 is simulated data for measurements made by 
traversing the ground surface with a co-located transmitting/ 
receiving coil pair making measurements every meter for a range 
of frequencies corresponding to uniformly-spaced skin depths 
between 1 and 32 meters. The target assumed here is a rectan
gular conductor dimensioned 12 horizontally by 8 vertically 
centered at(15.5,-16.5). This figure displays the in-phase com
ponent of the output voltage from the secondary coil as gray 
levels as a function of measurement location and skin depth. It 
is clear that the data, so displayed, is an out-of-focus image of 
the rectangular target with the target appearing at a skin depth 
near the target depth. The phase changes appearing in the 

pseudo-image are a result of the fact that both the primary 
and secondary field are spatially oscillatory. The next sec
tion will describe tomographic imaging concepts whereby 
out-of-focus images, such as that shown in fig. 4 can be sharp
ened and the phase changes removed. 

Broadband EMI Imaging 

One means to describe the EMI imaging concept is 
through the related problem of imaging using seismic reflec
tion and specifically migration. For a co-located seismic source 
and receiver deployed over the plane r = (x,y), the spatially 
and temporally Fourier transformed received signal 

U{K,ffi) = Jdteirot Jdre-iK•r U(r,f) (2) 

is related to the three-dimensional reflectivity by 

R(x,y,z) ~ J dro J dJc exp{i( .J4k2 
- K2 

Z + K · r)} u(K,OO) 
81t 

(3) 

(Cheng and Coen, 1984), where k= rolc0• c0 is the back
ground wave speed and K is the magnitude of the two-dimen
sional vector K. Spatial variations in reflectivity are recon-

3.50 

1.75 

0.88 

0.00 

.0.75 

·1.50 

·2.25 

·3.00 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 
Measurement Position 

Figure 4. Simulated broadband data for measurements 
made at uniformly spaced points on the ground surface 
over the top of 12 by 8 m rectangular conductor buried 
at an assumed depth of -16.5 m. The horizontal axis is 
the measurement location and the vertical axis is skin 
depth. In this form, the data appears as an out-of-focus 
image. The gray rectangular outline displays the size, 
shape, and depth of the target. 
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0.65 

0.0 25.0 30.0 
Measurement Position 

Figure 5. Vertical cross-sectional image reconstructed 
from the simulated broadband data shown in Fig. 4. The 
outline of the actual assumed target is outlined in gray. 

structed in Eq. (3) by backpropagating (migrating) the data u 
downward to some plane z < 0 and evaluating this data at time 
zero. In a similar approach within the framework of diffraction 
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tomography, the spatial variations of the object function, 
2 2 

O(x,y,z) = 1-c0 /c (x,y,z), are reconstructed by 

O(x,y,z) = ~ J dro J dK H(K,ro) 
87t 

(4) 

where c(x,y,z) are the spatial variations in wave speed about C
0 

and His measurement geometry-specific filter function. The 
three-dimensional spatial Fourier transform ofEq. (4) is 

and it is clear that the object function can be reconstructed by 
applying an invers Fourier transform to Eq. (5). Equations re
lating the spatial Fourier transform of data to the spatial Fou
rier transform of the object function, such as Eq. ( 5), are known 
as generalized projection slice theorems (Devaney, 1984). 

A generalized projection slice theorem for broadband 
EMI imaging (Witten, Won, and Norton, 1997) relating the 
spatially Fourier transformed output voltage from the receiv
ing coil, V(x,y), to an integral transform ofthe object function, 
is 

Quadrature 
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Figure 6. In-phase and Quadrature data at 9810Hz as measured at the Anacostia tunnel site. 
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Figure 7. Pseudo image of the Anacostia data presented 
as measurement location along a line at 21 m north as a 
function of frequency (the vertical axis). 

0(K,.J(32irt 2 /8 2 )-K 2
) = H(K,ro) V(K,ro), 

(6) 

where O(x,y,z) = (a(x,y,z)l cr
0
)- 1 and a(x,y,z) are the spatial 

variations in conductivity relative to a background 0"
0

• The 
most important difference between this relationship and that 
for wave-based imaging, Eq. (5), is that the vertical component 
of the wave vector in Eq. (5) is real while that for EMI imaging, 
Eq. (6), is complex and cannot be completely inverted by Fou
rier transform. The inversion of Eq. (6) can be expressed in 
the form 

1 J . -O(x,y,z) = -
2 

dK eTK·r O(K,z), 
2rt 

(7) 

where the object function is reconstructed by performing an 
inverse two-dimensional (horizontal) Fourier transform of o 
and 0 is the inverse of the integral transform 

0(K,J(32irt2 /8 2 )-K2
) = 

JdzH(K,ro) exp{-iJ(32in 2 /8 2 )-K 2 z} V(K,ro). 

(8) 

Equation (8) is a mapping from depth into skin depth 
and consequently its inverse is a mapping from skin into depth. 
Since this integral transform is characterized by a complex wave 
number, it cannot be inverted by Fourier transform. In the al
gorithm developed here, Eq. (8) is inverted by matrix inver
sion, however, this procedure is ill-conditioned necessitating 
the use of a regularization procedure. 

Figure 5 is an image resulting form the application of 
this reconstruction procedure to the broadband data presented 
in fig. 4. It is clear that this imaging algorithm serves to focus 
the pseudo-image and removes phase changes evident in fig. 
4. 

Case Studies 

The broadband EMI imaging algorithm has been ap
plied to data acquired at two underground structure sites. At 
both sites, data were acquired with the GEM-2 sensor (Won, 
Keiswitter, Fields, and Sutton, 1996). This broadband tool con
sists of a transmitting and receiving coil located at opposite 
ends of a boom that is approximately two meters long. A third 
coil, the "bucking" coil, is used to nullify the primary field at 
the receiving coil so that this coil responds only to the much 
weaker secondary field. The GEM-2 can operate at frequen
cies up to 22kHz. 

There are two notable differences between GEM-2's 
operation and configuration and assumptions made in the 
imaging algorithm. First, the imaging algorithm assumes that 
the transmitting and receiving coils are co-located while these 
coils are separated in the GEM-2. This inconsistency can po
tentially produce errors in the reconstructed images where 

Figure 8: Three-dimensional rendering of the recon
structed image of the subway tunnels at the Anacostia 
site. 
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Figure 9: In-phase and Quadrature data at 9270 Hz as measured at the cloud chamber site. 
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Figure 10: Pseudo image of the cloud chamber data pre
sented as measurement location along a line at 99 m west 
as a function of frequency (the vertical axis). 

the magnitude of such errors will depend on the target depth, 
the coil separation, and frequencies used in the reconstruc
tion. For the parameters appropriate to the case studies pre
sented here, errors associated with the coil separation can 
be shown to be negligible. The imaging algorithm described 
in the previous section is based on output voltage at the re
ceiving coil associated with secondary field. The instrument
specific parameters that influence this voltage are the diam
eter, number of turns, and orientation of both the transmit
ting and receiving coils as well as the amperage and frequency 
applied to the transmitting coil. These parameters appear ex
plicitly in the filter H appearing in Eq. (8). The GEM-2 out
put is the ratio of the secondary to primary field at the re
ceiving coil in parts per million which is linearly related to 
receiving coil output voltage. Because of the difference be
tween the actual output from the GEM-2 and that assumed in 
the imaging algorithm, absolute conductivities cannot be re
constructed, however, reconstructed values of the object 
function are expected to be correct in a relative sense. 

The Anacostia Site 
The Anacostia site is vacant lot about 152 m from the 

Washington, D.C. Anacostia metro station. GEM-2 broadband 
EMI data were acquired over an area approximately 44 m by 30 
m. Part of this area was marshy with standing water varying in 
depth up to about 0.35 m. The target of interest at this site is 
a pair of parallel subway tunnels having a center-to-center 
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Figure lla. Three-dimensional image of the cloud chamber displayed as 16 uniformly spaced vertical cross-sections 
at 76.2 through 97.5 m west. 
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Figure llb. Three-dimensional image of the cloud chamber displayed as 16 uniformly spaced vertical cross-sections at 100.6 through 121.9 m west. 
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separation of about 12 m. The axes of these tunnels are ori

ented in a north-south direction. Each tunnel is approximately 

4.5 m in diameter and the tunnel ceilings are believed to be 

10 to 13m below the ground surface. GEM-2 measurements 

were made at 28 points spaced at 1.524 m in the east-west 

direction and at 11 points spaced at 3.048 m in the north

south direction. At every measurement point data were ac

quired with a vertical coil axes orientation for 23 discrete 

frequencies ranging from 50 10 Hz to 1821 0 Hz in 600 Hz 

increments. 
Figure 6 shows the in-phase and quadrature measure

ments at 9810 Hz from the Anacostia site. Over the northern 

half of the survey area both tunnels are manifested in the in

phase data with the western tunnel producing a stronger 

anomaly. In the southern half, however, there is little evidence 

of the either tunnel presumably because of an increase in tun

nel depth or a change in background conductivity. The exist

ence of the tunnel pair is evident over the entire north-south 

extent ofthe quadrature data, however, in this case the indi

vidual tunnels are indistinct. This general pattern in typical of 

data acquired at all frequencies. Figure 7 is a pseudo cross

sectional image of the in-phase component of a slice occur

ring at 21 m north similar to the synthetic data shown in fig. 4. 

Here the vertical axis is decreasing frequency and it is ex

pected that there should a localized anomaly occurring at a 

frequency associated with a skin depth, Eq. (1), correspond

ing to the target depth. A localized anomaly does occur for the 

eastern tunnel at a frequency of about 17kHz, however, there 

is no relative high or low for the western tunnel. 
Figure 8 is a three-dimensional rendering ofthe image 

reconstructed from the GEM-2 data using the imaging algo

rithm described in the previous section. Sixteen frequencies 

ranging from 5010 Hz to 140 10 Hz were used to compute the 

object function at 16 depths ranging from 1 to 23.5 mandan 

assumed background conductivity of 0.1 Siemen/m. In this 

image, rendered with Earth Vision software 
1
, the lowest values 

of object function (those associated with the lowest relative 

conductivity) were removed to give the subway tunnels a 

hollow appearance. In this image, the tunnels have the correct 

separation and horizontal diameter. The tunnels are vertically 

elongated in the image resulting in a vertical dimension that is 

slightly too large and a depth to tunnel ceilings that is slightly 

too small, however, the depth to the tunnel centers is approxi

mately correct. 

The Cloud Chamber Site 
The cloud chamber site exists on the Department of 

Energy's Nevada Test Site in Nye County, Nevada. As its 

name implies, the target of interest at this site is cloud chamber 

original built to measure certain properties of ionized particles. 

The cloud chamber has not been used since 1968. This under

ground structure is shaped like a quonset hut, 42.7 m long, 

9.75 m wide at its base, with a maximum height of 4.9 m. The 

depth to the roof of the cloud chamber is about 5 m. 

GEM-2 measurements were over a rectangular region 

approximately 30m north-south by 67 m east-west. Data were 

acquired at uniformly spaced intervals of 1.524 m in both di

rections. Thirty frequencies ranging from 270Hz to 17670 Hz 

in intervals of 600 Hz were used for both vertical and horizon

tal coil axis orientation. Figure 9 shows the acquired in-phase 

and quadrature data at 9270 Hz for the vertical coil axis orien

tation. The cloud chamber is clearly manifested in both com

ponents of this data as the rectangular anomaly extending 

diagonally from about 30 m north, 100 m west to about 20 m 

north, 120m west. Smaller anomalous features evident in the 

data are associated with vents and an access shaft. The data 

presented in this figure is typically of the entire frequency 

range. Figure 10 displays the entire acquired vertical coil axis 

frequency band along a line at 99 m west as a pseudo cross

sectional image. As in fig. 7, the vertical axis is decreasing 

frequency (increasing skin depth). The lateral location of the 

cloud chamber is clearly resolved, however, the highest fre

quencies used were too low to allow the resolution of the top 

of this feature. 
A subset of the broadband, vertical coil axis EMI data 

was input to the above-described imaging algorithm. Here, 16 

uniformly-spaced frequencies ranging from 8670Hz to 17670 

Hz were used. The full range of measurement points in the 

north-south direction were used but data in the east-west di

rection were limited to a sub-region extending from 76 m to 122 

m west at 3.048 m intervals. Figure 11 displays the three-di

mensional image reconstructed at a background conductivity 

of 0.004 Siemen/m as 16 parallel vertical cross-sections. Al

though the contrast scale changes from cross-section to cross

section, the cloud chamber appears in these images as a rela

tive conductivity low in approximately the proper horizontal 

location and over the correct approximate depth interval. The 

width of the cloud chamber is about 50% too small in many of 

the cross-sections. 

Conclusions 

Underground structures at two sites have been imaged 

with broadband EMI data. Based on this experience and in the 

absence of any horizontally-broad, near-surface high conduc

tivity anomalies, it is possible to image other underground 

structures of similar size and depth. Furthermore, it is antici

pated that deeper underground structures can similarly be 

imaged since the fundamental limiting parameter in EMI imag

ing is the penetration depth. At least with the GEM-2 EMI 

tool, it is possible to acquire data down to the DC level sug

gesting that great penetration depths can be achieved allow

ing the imaging of much deeper structures, albeit with an at

tendant loss of spatial resolution. 
The ability to image shallow targets within the frequency 

range considered here is somewhat speculative. This is be

cause the lack of high frequency information will, in tum, limit 

mapping between target depth and skin depth to the point 
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where the inversion of Eq. (8) is no longer robust. Although 
the bandwidth used here yielded skins depths that were, at 
best, no less than the target, it is unclear at this time how much 
shallower the imaging algorithm can be stressed. 
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ABSTRACT 
We present an efficient algorithm for computation of the maximum likelihood estimate of the location of a known 
target from short pulse scatter data measured in a suite of tomographic experiments. The algorithm consists of a 
three step procedure: (i) data filtering, (ii) time-domain backpropagation, and (iii) coherent summation and employs 
of a number of forward and inverse Radon transforms integrated in a tomographic scheme. A computer simulation is 
included for illustration purposes. 

Keywords: Inverse Scattering, Tomography, Filtered Backpropagation, Radon Transform. 

1. INTRODUCTION 

Inverse Scattering (IS) is the scientific discipline in which an object (scatterer) is probed with waves in an attempt 
to estimate (reconstruct) its internal structure from scattered field measurements. The scattering object is assumed 
embedded in a known, non-attenuating background medium and the objective of IS is to quantitatively estimate the 
spatial distribution of its complex-valued refraction index by inverting the mathematical mapping relating the probing 
wave, the refraction index, and the measurable total wave [1, 2, 13, 21, 3, 4). This objective is non-trivial to achieve 
due to the non-uniqueness of the mapping in any finite set of experiments and its non-linear and non-local character 
[6, 15, 12). The non-uniqueness issue can be addressed by employing a multiplicity of experiments, whereby the object 
is probed from several incident wave directions with pulses of broad bandwidth. However, the issue of non-linearity 
(and non-locality) is significantly harder to address and, to date, research has only produced mathematical results or 
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computationally intensive iterative algorithms as opposed to practically implementable inversion algorithms. 

Over the past fifteen years, an alternative approach to the IS problem has been followed based on certain linearizing 

approximations to it [7, 9, 10, 8, 11, 13] (see also [14] for a review of the state-of-the-art in linearized scattering models). 

This approach has led to an expanded discipline within the regime of tomography, known as Diffraction Tomography 

(DT), which has reached today the stage of building prototype commercial tomographic scanners for biomedical 

[17, 18, 29, 28, 19, 27, 30, 32] and underground [35, 37, 25, 36, 34, 33] imaging systems based on the algorithms of the 

linearized version of the IS problem. Despite the success of the linearized algorithms in several practical applications, 

their success depends critically on the two assumptions of linearity and availablity of multiple experiments. In many 

cases, the linearity assumption fails, while different constraints (economic, safety, operating, geometric, or physical) 

[26, p.21] limit the number of scattering experiments that can be performed and/or provide low signal-to-noise ratio 

data. As a result, practical scatterer reconstruction algorithms often suffer from high noise levels, poor resolution, 

and artifacts, such as streaking and geometric distortion. 

To overcome these limitations, a more modest inverse problem was addressed, originally within the framework 

of linearized [16] and later exact [31] scattering theory. This inverse problem attempted to detect and classify a 

known target scatterer and estimate its location from wave scatter data. It was found that, for monochromatic plane

wave probing, the optimum (in the maximum likelihood sense) location estimate could be obtained via a filtered 

backpropagation algorithm, in which partial images formed by filtering and backpropagating scatter data for different 

probing directions were coherently summed. The algorithm is optimum (in the maximum likelihood sense) for additive 

Gaussian noise and an arbitrary number of scattering experiments and can yield an estimate of all three coordinates 

of the target even from a single experiment as long as the wavelength of the probing radiation is comparable with the 

typical dimensions of the target [16]. 

The work in [31] can be readily extended to the case of probing with multiple frequencies via frequency-domain 

synthesis. However, a derivation of a time-domain algorithm may be computationally more efficient in the case of 

probing with short pulses. A time-domain algorithm was recently presented for the classical IS reconstruction problem 

of DT for cases where the usual frequency-domain algorithms were not computationally efficient [23]. In this paper, 

we are concerned with the problem of optimally processing (limited and noisy) short pulse scatter data to decide 

whether a certain target scatterer is present in a region of interest and, if so, determine its location. The problem 

arises in a number of inverse scattering applications, such as locating subsurface targets in seismic and electromagnetic 

surveys, detecting tumors in ultrasonic medical imaging, and detecting and identifying radar targets. The main goal 

of this paper is to extend the single frequency maximum likelihood DT algorithms derived in [16, 31] to the time 

domain in a similar manner as was done in [23] for the classical DT reconstruction problem. 

The paper is organized as follows: Section 2 contains a review of the data measurement configuration, the wave 

scattering equations, and frequency-domain and time-domain plane-wave spectra of waves. Section 3 is concerned 

with location estimation algorithms and, including a short review of the frequency-domain solution, derivation of a 

time-domain filtered backpropagation algorithm. Computer simulations are included is Section 4, while Section 5 

contains a summary, a statement of conclusions, and a list of possible research avenues to be followed in the future. 
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The mapping between the scattered wave t/1 3 and the object function 0 is non-linear and non-local, since the 

scattered wave appears at both sides of Eq.(2-6). Linearizing approximations of the Born type approximate Eq.(2-6) 

by replacing the total field in the right hand side has been replaced with the incident field component. A related 

approximation is the Rytov approximation which has been found more accurate than the Born approximation in 

several applications [20, 29, 14]. In the present work, we will not make any approximations to Eqs.(2-2) through (2-6) 

and proceed with exact scattering models. 

Our starting point is the "source translation property," originally derived in [31]. To state the source translation 

property, consider an object function of the form: 

O(r; Rc) = Oo(r- Rc), (2-7) 

i.e., an object function 0 0 that has been shifted in space by a vector Rc. The induced source corresponding to 

illumination with a certain incident wave tPo(r, w) can be expressed as 

p(r',w;Rc)- O(r';Rc)tP(r',w;Rc) 

= eikso·RcpA(r'- R w· 0) 
CJ J ' 

(2-8) 

where so is the unit vector in the direction of incidence of the illuminating wave and tP(r',w;Rc) and p(r',w;Rc) 

denote the field and induced source resulting from the object function O(r;Rc)· Eq.(2-8), which is established in [31], 

relates the source induced by a plane-wave incident on the scattering object Oo(r- Rc) to the source induced by the 

same illuminating wave but incident on the (centered) object Oo(r). Eqs.(2-6) and (2-8) allow us to express the field 

scattered by the object 0 0 (r- Rc) to the field scattered by the (centered) object Oo(r). We find that [31] 

(2-9) 

Eqs.(2-8) and (2-9) lead to a frequency-domain filtered backpropagation algorithm for the object location estima

tion problem within exact scattering theory (31]. They will be employed here to derive the time-domain counterpart 

of that algorithm. For completeness, however, we present their time-domain version, obtained via inverse Fourier 

transforming Eqs.(2-8) and (2-9). The result is: 

p(r, t; Rc) = p(r- Rc, t- so· Ref co; 0) 

t/J 5 (r, t; Rc) t/1 5 (r- Rc, t- so· Rc/co; 0). 

B. Time-Domain Plane- Wave Spectra of Wavefields 

(2-10) 

(2-11) 

Consider a time-domain wavefield t/J(r, t) propagating into the half-space z > 0 and having the boundary value t/J(x, t) 

(x = xi: + yy), on the z = 0 plane, with equivalent frequency-domain representation 

tP(x,w) = 1: dteiwtt/J(x,t). (2-12) 

The frequency-domain plane-wave spectrum of the wavefield is defined as [24] 

(2-13) 
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where k = ~and~ is a frequency-independent wave vector [24]. From Eq.(2-13), one can obtain the frequency-domain 

representation of the wavefield at an arbitrary point r = x + zz in space as 

where 

(= { 
J1-l~l2 , 

iJI~I 2 -1, 

(2-14) 

if 1~1 :s 1 

else. 

Eq.(2-14) is the, so-called, angular spectrum expansion of -rJ;(r,w) and decomposes the wavefield -rJ;(r,w) into a 

superposition of propagating (corresponding to 1~1 :S 1) and evanescent (corresponding to 1~1 > 1) plane waves. 

Eq.(2-13) has a time-domain equivalent, the time-domain plane-wave spectrum of the wavefield: 

(2-15) 

Substitution of Eqs.(2-12) and (2-13) into Eq.(2-15) gives 

- J 2 ~·X 1/;(~,r)= dx'if;(x,r+-), 
co 

(2-16) 

as the time-domain relation between the wavefield and its plane-wave spectrum. Eq.(2-16) is recognized as a Radon 

transform [5] of the wavefield 1/;(x, t) in the three-dimensional space (x, t) and has, thus, been termed a slant-stack 

transform [23]. Eq.(2-16) can be inverted to give the time-domain equivalent of Eq.(2-14). The inversion formula 

that includes the evanescent modes requires use of the analytic signal (see [22] for details). Here we will assume that 

the evanescent modes have been sufficiently attenuated to not contribute to the inversion formula. With this in mind, 

the result is 
1 1 2 [)2 - ~ . X + ( Z 

1/;(r,t)=--(2 )2 d~{) 2 1/;(~,r=t- ), 
1TCO 1~19 T Co 

(2-17) 

and can be recognized as a bank of inverse Radon transforms, each corresponding to a different z [5]. 

3. ESTIMATION OF OBJECT LOCATION 

A. Data Model 

With the definitions and results of Section 2, we are now in position to proceed with the object location estimation 

problem. Consider a scatterer described by the object function: 

O(r; Rc) = Oo(r- Rc), (3-1) 

where 0 0 is a known function and Rc is an unknown scatterer location. The object is probed with short plane-wave 

pulses propagating in the direction of unit vectors so, i.e., plane-wave pulses of the form Pso (t- ~) 1 . We assume 

1 The subscript so is used to indicate that the form of the pulses may, in general, be different from experiment to experiment. 
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that scattered pulse data are measured over planes perpendicular to the direction so of propagation of the incident 

pulses. More specifically, we assume the measurement (data) model 

(3-2) 

where r 50 (rp, t) is a convolutional space-time measurement filter and t/;;
0 

(rp + lso, t; Rc) is the scattered field over 

the planer= rp +ls0 . Additionally, n 50 (rp, t) is zero-mean Gaussian noise, white2 in the variables rp, t, and s0 , i.e., 

(3-3) 

The inverse problem is that of estimating the unknown parameter (object location) Rc from the measurements 

y(rp,t,s0 ) in Eq.(3-2). 

B. Likelihood Function 

We obtain an estimate Rc of the unknown Rc by minimizing the following data functional with respect to a test 

object location rc: 
(3-4) 

where 
(3-5) 

is the scattered pulse on the measurement plane (filtered by the measu·rement filter) for the object located at rc· 

The estimate Rc returned by the above minimization is also the maximum likelihood estimate (MLE) under the 

Gaussianity assumption for the measurement noise in Eq.(3-2) [?]. 

To obtain the MLE Rc directly from Eq.(3-4) is an intensive process, since numerical minimization is required 

of the functional .J(rc)· However, expansion of the square term in Eq.(3-4) shows that the MLE Rc is equivalently 

obtained by maximization of the "log likelihood function" [?] 

L(rc) = L 1: dt j d2rp y(rp, t, so)a(rp, t, so; rc)- ~ L 1: dt j d 2 rp la(rp, t, so; rc)l 2
. (3-6) 

~ . ~ 

Next, we will further simplify the expression for the log likelihood function and obtain an algorithm that can be 

efficiently implemented on the computer. 

Theorem 1 If evanescent plane-wave spectra are ignored, the term ~ Lso I~co dt I d2 
rp la(rp, t, so; rcl 2 in the log 

likelihood function in Eq. (3-6) is constant with respect to r c· 

Proof: From Parseval's theorem: 

1: dt j d2 rpla(rp, t, so; rc)l
2 

= 2
1
7r i: dw j d 2 

rpl&(rp, w, s0 ; rc)l 2
. 

We apply now the fact [31] that, for each temporal frequency w, I d2 rpl&(rp,w,so;rc)l 2 is constant with respect to 

rc, as long as the corresponding evanescent spectra are ignored, and the theorem follows. • 
2 Gaussian noise of arbitrary color can be handled by expanding the algorithm of this section to include a proper whitening filter. 
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Theorem 2 Ignoring evanescent plane-wave spectra, the term I::so f~oo dt J d2 rp y(rp, t, s0 )a(rp, t, so; rc) in the log 

likelihood function in Eq. {3-6} is equal to 

2:100 

dtjd2rpy(rp,t,s0 )a(rp,t,so;rc) = (
2 

1 
)2 L f d 2e :

2

2 [y(e,r,so)a(e,r,so;O)]Ir e·rcp+<•o·rc, 
so oo 1l"Co so }1~1 "51 r co 

Proof: We start again with Parseval's theorem: 1: dt 1 d2
rp y(rp, t, s0 )a(rp, t, s0 ; rc) = 2~ 1: dw 1 d2

rp y(rp, w, s0 )&(rp,w, s0 ; rp) 

= 2~ 1: dw 1 d2rpy(rp,w,so)&(rp-rc,w,s0 ;0)e-i~so·rc, 
where we used the translation property in Eq.(2-9). We now apply Eq.(2-14) and obtain 1: dt 1 d2

rp y(rp, w, so)&(rp,w, so;rc) = 

1 1oo dw w2 1 d2r y~(r w s ) 1 d2 ~e -i~~·rpei~[~·rcp+(C-1)so·rcl;i"(~ w s . 0) = 
(2 )3 2 p P> ' 0 '> c,, , o, 

1l" co -oo 1~1"51 

13 2 { d2e 1oo dw ei~(~·rcp+((-l)so·rc]w2K(~,w,so; 0) 1 d2rpe-i~~·rpy(rp,w, so)= 
(211") Co }1~1"51 -oo 

1 1 d2~ loo dw e -i~(~·rcp+((-1)so·rc]rw2K(~ w s . O)y~ (~ w s )eiwr]l - = 
(2 )3 2 '> ~ '>> l 0, '>> l 0 T-0 

1l" co 1~1"51 -oo 
(
2 

1 
)2 { d2~ :

2

2 (:ij(~,r,so)a(~,r,so;O)]I =-e·rcp+(<-ll•o·rc 
1l"Co }1~1$1 ur T co 

from which the theorem follows. 

(3-7) 

• 
Eq.(3-7) can be interpreted as follows: For each pulse, the scattered pulse data are Radon-transformed with 

respect to their space-time coordinates,3 filtered in Radon space, and inverse Radon-transformed (one inverse Radon 

transform per value of s0 · r c) into object space to form partial images of the log likelihood function. The Radon-space 

filter consists of the complex conjugate of the time-domain plane-wave spectra of the field scattered by the centered 

object Oo (r). Finally, the partial images are coherently superimposed. 

4. COMPUTER ILLUSTRATION 

For simulation purposes, we consider a single scattering experiment in a two-dimensional geometry in which a target 

lies in the (x, z)-plane and is infinitely long and uniform along the y-axis. The probing pulse is incident from the 

direction of the positive z-axis and data are measured along the line ( x, z = l). The target signature (scattered pulse 

1/;g(r, t) corresponding to the target located at the origin) is a pulse 

·'·s() o-2P(t-JE) 
'f/ 0 r,t =-z li:T r=(x,z), (4-1) 

Co v lrl 

3 Equivalently, the scatter data are measured in the far field of the scattering object. 
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F 

where cr2 is the scatterer cross section, 

p(t) = { 

and i> denotes second derivative, i.e. 

i> (t) = { 
0, 

0, 

if 0 < t < T 

else 

ifO<t<T 

else. 

(4-2) 

{4-3) 

Eq.(4-1) gives the far field of the Born approximation to the field scattered by a point scatterer of cross section cr2 

when probed with the plane-wave pulse corresponding to p(t). The scattered field for arbitrarily located target is 

subsequently generated according to Eq. (2-11). 

We assumed the scatterer to be located at the origin of the ( x, z )-plane and chose the parameters cr2 = 1, co = 1, 

{3 = 1, T = 1, and l = 5. For the additive Gaussian noise, we examined three different cases with corresponding 

variances 0, 0.25, and 1. Figs. 2 show the field at (x = 0, z = 5) for the time interval 0 < t < 16 for three different 

noise levels. Finally, the likelihood functions computed via Eq.(3-7) are shown in Figs. 3 for the three noise levels. 

5. SUMMARY, CONCLUSIONS, AND FUTURE WORK 

In this paper, we derived an efficient algorithm for computation of the log likelihood function for estimation of the 

location of a target object from noisy short pulse scatter measurements. We assumed that the target object signature, 

i.e., the wave scattered by the object centered at the origin of the coordinate system was known and established 

that the log likelhood function could be computed in a three step procedure in which the measured data were firstly 

convolutionally filtered, then time-domain backpropagated, and finally the partial likelihood functions were coherently 

summed. The convolutional filter of the first step was the filter matched to the object signature and the procedure 

was implemented via a sequence of direct and inverse Radon transforms of the space-time measurements. Target 

identification can also be performed via a similar algorithm, in which a bank is employed of filters matched to various 

target signatures. 

A computer simulation of a single scattering experiment was performed to illustrate the procedure, in which 

rather than the target object, a target signature was assumed. The simulation revealed very high performance even 

in the case of very low signal-to-noise ratio. Further performance improvements can be achieved if multiple scattering 

experiments are utilized. 

Further research in this area seems appropriate. Issues to be addressed in the future include the derivation 

of proper location estimation algorithms for the cases of measurement planes that remain fixed from scattering 

experiment to experiment. This is the case in geophysical surveys in which the sensor array is fixed in space and 

several scattering experiments are performed, each with a different probing plane-wave pulse. Another avenue of 

future research seems to lead to the derivation of nonparametric algorithms for detection, location estimation, and 

classification of stochastic scattering objects. This problem appears in several underwater surveys. This and related 

research is currently pursued and its results will be announced shortly. 
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Hyperspectral IR polarimetry with applications in demining and 
unexploded ordnance detection 

Herman E. Scott, Stephen H. Jones, Frank Iannarilli, and Kurt Annen 
Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821-39761 

ABSTRACT 

Several years of effort in IR polarimetry have brought us convincing evidence of its effectiveness in differentiating man made 
objects from natural backgrounds. Adding modern focal plane array (FPA) technology (either cooled or uncooled) makes it 
possible to combine the benefits of polarimetry with the power of hyperspectral imaging. Aerodyne Research is embarked on 
a stepwise, controlled-risk development program with the objective of fielding an innovative and affordable hyperspectral 
imaging IR polarimeter. Proof-of-concept demonstrations are conducted for each significant technology increment as part of 
the prototype development effort. These steps, two demonstrated and two yet to be demonstrated, are: (1) LWIR (non
imaging) Specu·al Polarimeter to demonstrate the effectiveness of combined polarimetric and hyperspectral discrimination 
capabilities in observations on static scenes; (2) L WIR Uncooled FP A Imaging (broadband) Polarimeter to test the sensitivity 
of an affordable Uncooled FP A in a broadband configuration against static scenes; (3) Multispectral Imaging Polarimeter to 
quantify clutter rejection performance improvements to be realized in multispectral polarimetry; and (4) Hyperspectral 
Imaging IR Polarimeter designed with optimal spatial and spectral resolution and sufficient throughput to achieve the reliable 
performance required in surface mine and UXO detection applications. Results from the ongoing proof-of-concept 
demonstrations in simulated surface mine detection will be presented. 

Keywords: Infrared polarimetry, hyperspectral imaging, demining, unexploded ordnance 

1. INTRODUCTION 

1.1 Background 

For more than 15 years Aerodyne Research has worked systematically toward the development of passive IR spectral 
and polarimetric discrimination techniques. In the first 10 years of these activities Aerodyne focussed on thedevelopment 
and validation of a first principles computer model called POLAR1

'
3 that computes the spectrally dependent Stokes vector 

and user-selected in-band IR polarimeteric images of targets given the geometry, optical properties4
, and thermal description 

of the target. Support for the POLAR model came from Northrop5
, the NADC/Warminster6

-
9

, and internal R&D. Then in 
recent years, emphasis has turned to the systems applications of polar attributes such as non-cooperative target 
identification9

•
10 and the discrimination of targets in highly cluttered natural backgrounds. 

In 1993 - 95 several important steps were accomplished: Aerodyne and the Boeing Defense and Space Group with the 
support of NA WC/Warminster used the modified IRAMMP sensor, POLIRAMMP, to collect polar IR imagery of aircraft on 
the ground to validate the POLAR model. 11 Results showed a strong correlation between the analytic model predictions and 
measured data. Subsequently in 1994 Aerodyne produced a seminal paper10 on a polarimeter sensor concept (3-Channel 
Simultaneous Acquisition Polarimeter) specifically designed for the long range Counter-Air Target Identification application. 
Shortly thereafter, Boeing and Aerodyne applied the Improved POLIRAMMP sensor in the 1994 Navy Long Jump Tests at 
China Lake to collect surface-to-air polarization imagery of aircraft and thereby further validate the POLAR model. 12 It was 
at this test site that we conducted our first primitive simulation of surface mine detection using the two-channel 
POLIRAMMP sensor. Even though this test13 simulated only surface mine detection, it provided quite convincing evidence 
of the clutter suppression capability of IR polarimetry. 

In 1997 under a Phase I SBIR for the Air Force Research Laboratory (AFRL), Aerodyne invented a Hyperspectral 
Imaging IR Polarimeter concept capable of providing the co-registered, polarimetric imagery desired for locating polarized 
objects in a dynamic scene and cluttered background. We are in the process of building the prototype hyperspectral IR 

1 Fw-ther author information -
Email: scott@aerodvne.com; www.aerodvne.com; TEL: (978) 663-9500; FAX (978) 663-4918 

Part of the SPIE Conference on Environmental Monitoring and Remediation Technologies 
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polarimeter under Phase II SBIR support from the AFRL. In a parallel project sponsored by the Army Research Office (ARO) Humanitarian Demining MURJ I Northeastern University (NEU) Team, we are taking incremental steps to demonstrate the value and reliability of L WIR polarimetry in the detection of antipersonnel (AP) mines, especially plastic flush-:buried and scatterable types. Our stepwise progress and the L WIR polarimetry proof-of-concept demonstrations in the demining application are the topics of this paper. 

1.2 Scope 

Many researchers have investigated LWIR and multiband passive infrared sensing techniques for applications in demining; 14 a few investigations have considered passive IR polarimetry and costly hyperspectral imaging methods separately for locating land mines; 15 yet insofar as we have found, no previous investigators have pursued the combination of hyperspectral IR polarimetry and affordable L WIR uncooled focal plane arrays. Effort in this Demining MURI is devoted to deliberate, controlled-risk, proof-of-concept demonstrations that verify our particular innovative combination of L WIR hyperspectral polarimetry and affordable uncooled FPA technology can be reliable and effective in surveying and locating exposed surface mines of any material type. The exploitation of polar attributes that are demonstrated in this project effort were in most cases suggested and supported by our earlier analytic investigations into systems applications of IR polarimetry.9
• 

10
• 

16 In addition to the proof-of-concept tasks, we are investigating surface optical properties of the relevant classes of materials and coatings for mine fabrication; this is a concurrent laboratory effort to fill the important gaps remaining from prior optical properties measurements. 

The present effort is focused on antipersonnel mines, many of which are partially exposed on the surface or are buried in a very shallow manner. Therefore, we are placing much greater emphasis on the optical properties of materials, emissivity and reflectance, and less emphasis than usual on the material thermal properties. We make no claims to be dealing with the full complexity of thermal conduction issues associated with buried mines, consisting of a wide range of materials in all manner of soils and terrain. Many investigators14
•
17 have examined the conductance and differential heating/cooling effects for opportunities to exploit in locating buried mines using passive IR techniques. Our premise is simple; IR Polarimetry is only one of a large arsenal of affordable and reliable technologies required to deal with the extensive, worldwide demining and unexploded ordnance problems. Our objective is to make IR Polarimetry an affordable and reliable technique to locate mines having any significant exposure on the surface, regardless of the material composition and including common types of paints and coatings. If we are successful, our method simultaneously positions us to include and exploit significant thermal effects as well since these effects exhibit themselves in the same LWIR wavelength regime. We must give close attention to the magnitude and impact of the heat transfer effects even as we examine the optical properties of materials and coatings. 

Since we are implementing a controlled-risk, step-by-step effort to demonstrate a new combination of technologies including the uncooled focal plane array (uncooled FPA) microbolometer, it is important that we establish the terminology for these steps and the technologies to be demonstrated: 

Step ( 1) - L WIR Spectral Polarimeter 
(8 - 12 ~Spectral Region, Non-Imaging). 

Step (2) - L WIR Uncooled FP A Imaging Polarimeter 
(8 - 12 J.Lm Broadband, No Spectral Resolution, Static Scenes). 

Step (3) - LWIR Uncooled FPA Multispectral Imaging Polarimeter 
(Multiple Bands in 8 - 12 J.Lffi Spectral Region, Static Scenes). 

Step (4) - Uncooled Hyperspectral Imaging IR Polarimeter 
(8- 12 ).liD Spectral Region, Spectral Resolution- 0.02 ~.Imaging, 
Registration and Simultaneity in Polar Channels for Dynamic Scenes). 

2. LWIR SPECTRAL POLARIMETER DEMONSTRATION TEST 

The data reported in this first proof-of-concept demonstration were collected for a variety of mine-like materials and coatings, including Army CARC (Chemical Agent Resistant Coating, both tan and green), a plastic frisbee, asphalt, and quartz sand. The backgrounds consisted of sand or sandy asphalt in all cases. The asphalt is a particularly challenging background, having a degree of polarization in the infrared that is comparable to or higher than many paints and plastics. Table I summarizes the data collection geometries and simulated mine target areas for each location. It is particularly 
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important to note the ranges and the grazing angles between the sensor (polarimeter) line-of-sight and the target normal. 
These geometries closely approximate a reasonable deployment geometry for an LWIR spectral polarimeter mounted on 
either a land vehicle with boom or a low flying UAV platform; however, the modified FTIR spectrometer used in this proof
of-concept demonstration was in no way related to our concept for a field deployable multi-channel polarimeter. 

The L WIR spectral polarimeter consisted of an FfiR spectrometer with a wire grid analyzer adapted to it. For this 
demonstration we used 4 cm·1 resolution at 10 scans/sec and collected 200 scans per data point per analyzer angle. The 
detector was MCT with D* peak= 4 x 1010 em Hz112 w·1

• The wire grid analyzer was 1200 lines/mm on a ZnSe substrate with 
antireflection coatings on both sides. 

As illustrated in Fig 1, reflections from a flat surface produce polarization perpendicular to the plane of incidence (the 
plane of the page). Emission is polarized parallel to this plane. 18 Wire grid polarizers transmit radiation when theE-vector is 
perpendicular to the wire and reflect radiation when theE-vector is parallel to the wire. We use the convention of 0-degree 
polarizer angle to mean the wire grid is oriented vertically. Also, we use the spectroscopic notation sigma(cr) for 
wavenumber (cm·1

), and our plots will appear reversed to many readers. The materials used in this demonstration do not 
transmit in the spectral region of interest, so the simple relationship between the reflectance and emissivity of the materials 
applies, a(cr) = 1- p(cr). 

This proof-of-concept demonstration was set up locally in a parking area (see Fig 2) surrounded by several large white 
pine trees and on the northwest side by a steep embankment of rock outcroppings, rocky soil and scrubs. The parking surface 
was asphalt, and in the winter months when these data were collected, the asphalt was lightly covered with a residue of sand. 
The data of interest were collected at locations 4 and 5 as shown in Fig 2 and consisted of fifty polarimeter spectra for the 
various combinations of target, background, target angle, wire grid analyzer angle, ambient temperature and cloud cover. 
Again, the setup geometry details are listed in Table 1. Most of the data for these locations were collected in the late 
afternoon, both before and after sunset, on two successive days with the ambient temperatures between 0- and 15-C. Each 
spectrum required 20 sec to collect. Since the data collection time was not a primary driver in this demonstration, we made 
no effort to minimize the time, but it is quite clear that the SNR achieved will allow the collection time to be less than 2 sec 
per data point per analyzer angle with no important degradation of the results. 

2.1 Interpretation of the L WIR spectral polarimeter data 

For a view of the spectral data and an understanding of the analysis procedures, we show several overlays of the spectral 
data in Figs 3 and 4, each at two angles of the wire grid analyzer. As called for in our analysis procedure discussed below, 
data were normally collected for wire grid analyzer angles of 0-deg (vertical wire grid) and 60-deg; for verification and 
redundancy we also collected data intermittently at wire grid orientations of 90-deg and 120-deg. Our convention in this 
analysis is to use the 0-deg and 60-deg wire grid angles as the orthogonal components to differentiate the reflected and 
thermal emitted radiation components coming from the target and background sources within the field-of-view. The spectra 
are plotted with the envelope of the shaded area being the spectrum for 0-deg analyzer angle; this spectrum represents the 
polarized reflection component in the 'horizontal earth' geometry selected for the demonstration. Relative to this the emission 
component, passed by the wire grid analyzer in the 60- or 90-deg position, is plotted as a thin solid line lying close to and just 
above the envelope of the shaded area. The band, or the difference, between these two envelopes is a measure of the degree 
of linear polarization (DoLP) of the spatially unresolved scene in the field-of-view of the spectral polarimeter. When the 
source radiation is totally unpolarized, the orthogonal polar component spectra are coincident over the full spectral range of 
sensitivity for the polarimeter. Here the spectral region of interest is 800 -1250 cm·1 (or 8 - 12.5 Jlm). The general procedure 
for extracting DoLP from the spectra is given below, and the results are plotted in Fig 5. 

Alternatively, the narrow bands in between the shaded area envelop and the line plot above represents the spectrally 
dependent, available polarimetric signal to be exploited. For any given broadband polarimeter the integrated area under the 
appropriate greybody plot such as Fig 3(a) is a measure of the total signal while the difference of these integrated areas for 
the orthogonal polarizations is a measure of the polarization signal or the fraction of target radiation that is linearly polarized. 
From the integrated areas measured for the materials in Figs 3(c), 3(d) and 4(a), we find the fraction of target radiation that is 
linearly polarized when weighted to fill the IFOV of the sensor to be of the order of 0.1 or 10%. 

Upon closely examining the polar component spectra in Figs 3(a) and 3(b, we find that the 0-deg and 60-deg spectra are 
coincident over the 800- 1250 cm-1 region for each of these materials- soil and sand near normal incidence, so we may 



Table 1. Summary of the Data Collection Geometries and Results of the LWIR Spectral Polarimeter 
Measurements for the Target and Background Materials at Locations 4 and 5. 

Target Name Sandy Tan Plastic Green 
and Location Asphalt CARC Frisbee CARC 

Location 4 Location 4 Location 5 Location 5 

Plane of Target 86 66 85 79 
Relative to Vertical (deg) 

Background Type Sandy Sandy Sand Sand 
Asphalt Asphalt Mound Mound 

Range (ft) 30 30 28 28 

Target Total Area (sq in) 737 64 33 56 
Exposed 

Angle Between Sensor 79 ·59 75 69 
LOS and Target Surface Normal (deg) 
Target Area Projected onto 140 33 9 20 
FTIR FOV (sq. in.) 

FTIR Weighted FOV Footprint at 140 140 130 130 
Target (sq. in.) 

Fractional Area of Total Weighted FOV Do Not Know 0.24 0.07 0.15 
Occupied by Projected Area of Target Frac of Asphalt 

Covered by 
Sand 

Percent of Target Material Radiation 
that is Linearly Polarized When ---- 8% 14% 13% 
Weighted to Fill the IFOV of Sensor, 
for the Indicated Angle Between Sensor 
LOS and Targ_et Surface Normal 
DoLP of Material with DoLP of Sand 
Removed, for the Spectral Region 0.02 0.02 0.01 0.02 
800-1250 cm·1 

expect the degree of linear polarization (DoLP) for the materials to be very small or zero. Below, we compute the DoLP 
spectra and indeed show these materials are substantially unpolarized. 

This is not the case, however, when we examine the polar component spectra for the plastic frisbee on sand, CARC on 
sand and sandy asphalt in Figs 3(c), 3(d) and 4(a), respectively. In Figs 3(d) and 4(a) we find large separations in the polar 
component spectra indicating that CARC and asphalt exhibit strong LWIR polarization effects. Furthermore, the separations 
in CARC and asphalt show an interesting spectral dependence, being very strong near the greybody curve peak at 925 crn·1 

and gradually narrowing until the gap closes at about 1250 crn·1
• While the general shape of the spectra are determined by 

the greybody temperature and the spectral polarimeter response function (including the optics, analyzer, antireflection 
coatings and detector), the sharp spectral features in the 1100 - 1200 cm·1 region are attributed to quartz sand. Notice these 
features are not present in the soil spectrum, Fig 3(a). These spectra, rich in features, demonstrate very clearly our interest in 
the L WIR and our rationale for pursuing hyperspectral polarimetry as a powerful technique to discriminate man made target 
materials against natural background clutter. 
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2.2 Analysis of polarimetric measurements 

The degree and angle of linear polarization (DoLP and AoLP) of a partially linearly polarized wave can be obtained 
from measurements made at three different analyzer angles. The intensity measured at the output of the analyzer oriented at 
angle a. is given by10

· 
18

: 

where 
fu 

fu-tgt 

fu.bkg 

fu 
DoLP 
ep 

= Polarized light from target 
= Unpolarized light from target 
= Unpolarized light from background 
= fu-tgt + fu-bkg 

= 1/(/u.cgt + lp) = Degree of linear polarization 
= Angle of linear polarization. 

(1) 

As is frequently the case with simultaneous trigonometric equations, general solutions in terms of well known functions are 
difficult to find; a numerical solution can be obtained by searching for it using Newton's method or, alternatively, minimizing 
an objective function such as the sum of the squared differences between the measurements and the theoretical value (i.e. left 
hand side minus right hand side of Eq (1)). The field measurements obtained at Aerodyne were performed such that the 
surface normal vector of the targets was in the plane of incidence, thereby constraining the emitted light to a 90-degree 
analyzer angle and the reflected light to a 0-degree analyzer angle. Careful attention was paid to orienting the spectral 
polarimeter such that cold sky was reflected. Under these circumstances, it is reasonable to make the simplifying assumption 
that 8p=90 degrees. Equation ( 1) then becomes 

(2) 

By choosing an analysis angle of 0-degrees, the unpolarized intensity is immediately obtained. The polarized intensity can 
then be obtained by using any other angle (except 180-degrees). In the present case of 90-degree angle of polarization, the 
greatest signal to noise ratio is obtained by using 90-degrees for the second analysis angle. A 1.25 dB loss in SNR results 
from the use of 60-degrees instead of 90 in this case. 

2.3 Results 

Using the simplified analysis approach represented in Equation (2), we extracted a DoLP spectrum for each of the 
materials observed in this demonstration. Since the quartz sand background was present in the field of view for all of these 
data, it was subtracted in each case. Otherwise, it region of low emissivity, 1100- 1250 em·', introduces a substantial step 
function into the DoLP spectra. Other features in the DoLP spectra deserving comment are: 

1. Soil is effectively unpolarized and provides a point of reference for the other materials plotted in Fig 5. 
2. CARC and sandy asphalt exhibit essentially the same DoLP, indicating they will not be easily distinguished using a 

broadband polarimeter. Refer ahead to view the CARC panel on sandy asphalt in Fig 9. 
3. In the 1000- 1100 cm-1 region the trace effect of ozone remains visible in the spectrum. 
4. Fringes apparent in the spectra are attributed to a polarization sensitive beam splitter effect in the FTIR 

spectrometer. 

2.4 The special case of CARC target on sandy asphalt background 

The combination of the CARC target imbedded in a sandy asphalt background is a key piece of data from our proof-of
concept demonstration. The reason for this can be seen in Fig 5. Over the spectral interval 800 - 1250 cm·1 the measured 
DoLPs are the same for CARC on sandy asphalt and sandy asphalt alone; CARC and sandy asphalt cannot be differentiated 
solely by the linear polarization attribute, i.e. by a single broadband imaging polarimeter. In Section 4 we show image data 
to confirm this. However, this case provides an excellent example of the powerful tool obtained when the polarimetric and 
spectral capabilities are combined in an LWIR spectral polarimeter. One set of the data for tan CARC on sandy asphalt 
collected with our basic combination of FTIR spectrometer and wire grid polarizer are shown on a magnified scale in Figs 



4(a), 4(b) and 4(c). Figure 4(c) is an overlay of four plots- two for the 'CARC present' and two for 'only sandy asphalt'. By 
inspection of their spectral dependence we can easily distinguish the presence of CARC in the sandy asphalt background. At 
900 cm·1 the 0-deg and the 60-deg analyzer plots are identical with and without the CARC present~ no differentiation here. 
However, as we move along the wave number axis toward 1200 cm·1

, two effects are evident. First, the separation by 
analyzer angle for each pair of curves (with and without the CARC present) is becoming less and washes out completely by 
1250 cm·1 (see Fig 4(c) for this to be apparent in the 'CARC present' case). Secondly, the 'CARC present' traces are 
decidedly higher than 'without CARC' plots over the spectral region 1050- 1250 cm·1

• This effect is shown clearly in Fig 
4(c). Therefore, in the spectral dimension (at 1050 - 1250 cm·1

, not 900 cm-1
) we have a very strong differentiation of the 

CARC present in the sandy asphalt background even though the DoLP for the combined CARC and sandy asphalt 
background afforded no differentiation. This is true even though separately both the CARC and the sandy asphalt exhibit 
strong polarization effects. These data make a clear case for the importance of adding the spectral dimension to the LWIR 
polarimeter. Our goal in the demining application is to demonstrate an affordable and effective polarimeter having both 
spectral and imaging capabilities. 

3. LABORATORY MEASUREMENT OF GRAZING ANGLE IR SPECULAR REFLECTANCE OF 
ANTIPERSONNEL MINE CASINGS 

In order to exploit unique spectral features (particularly low emissivity regions) of land mine casings and similar man made 
objects (typical plastics such as ABS and blended polymers) we must know the spectral features of both the man made 
materials and the natural backgrounds in these spectral regions. Our laboratory measurement of grazing angle specular 
(80-deg) reflectance of four AP mine casings and several related, simulant materials of interest confirm the availability of 
many L WIR spectral features to be exploited in multi- or hyper-spectral polarimetry. These reflectance spectra exhibit the 
characteristic dispersion curve shape near the centers of absorption features in the materials. 

Our laboratory grazing angle reflectance spectra were collected with an FTIR spectrometer at a resolution of 4 cm·1 and 
generally covering the range of 3 - 15 microns (666 - 3333 cm-1

). In each case the sample spectrum has been ratioed to the 
spectrum of a front surface gold mirror that has a reflectance greater than 0.99 over the entire spectral range covered here. 
The inerted AP mine casings that were available for study are listed in Table 2 and pictured in Fig 6. In addition, Table 2 
includes several related or simulant materials of interest for which we collected reflectance spectra, but not all of these will be 
discussed here. 

Sample grazing angle reflectance spectra are plotted in 
Figs 7(a), (b) and (c). To make the examination of these 
spectra easy it is important frrst to eliminate from further 
consideration all spectral features attributed to the 
incomplete removal of water vapor and carbon dioxide 
from the optical path in the laboratory spectrometer~ even 
though the path was constantly under purge with dry 
nitrogen, this did not completely remove all atmospheric 
gases from the sample compartment of the instrument. The 
spectral features to be ignored are water vapor bands at 2.7 
and 6.3 microns and carbon dioxide bands at 4.3 and 
15 microns. Then it is important to remember that the 
dispersion features in the reflectance spectra mark the 
locations of absorption features for the material. Since the 
material does not transmit radiation at these characteristic 
absorption wavelengths, the grazing angle reflectance, like 
the index of refraction, shows a strong change across the 
width of an absorption feature. 

Our hyperspectral polarimetry approach to developing 
a reliable detection method for partially exposed scatterable 
land mines ex{>loits differences in the emissivity and polar 
attributes of mine materials and coatings relative to these 

Table 2. List of Anti-Personnel Mine Casings and Related 
Materials Included in Laboratory Measurement 
of Grazing Angle IR Reflectance Spectra. 

Anti-Personnel Mine Related Materials 
Component or Simulants 

M-14 Plastic CARC (Chemical Agent 
Resistant Coating), 

PFM-1 (Butterfly) Both Green and Tan 

TS-50 Rubber Center RTV 3110 Silicone Rubber 

TS-50 and VS-50 Plastic Floppy Diskette Plastic Shell 

VS-50 Rubber Center Rubber Hockey Puck 

Asphalt 

Sand 

Soil 
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same properties for natural backgrounds. Typically; we will examine the spectral reflectance, and thereby the spectral 
emittance, of the mine materials for unique spectral features and high grazing angle reflectance compared to the backgrounds. 
With this in mind the measured reflectance spectra presented in Fig 7 have a number of features of interest. First, examining 
the spectra in Fig 7(c) for similarities, we find the M-14 and Butterfly (PFM-1) mine casings very similar in having very little 
spectral structure and a difference in overall reflectance level that is accounted for simply by the difference in surface 
roughness. Although not shown here, the one band at 14.3 microns is common to both the M-14 mine and the floppy 
diskette shell, making the latter a very sensible simulant for M-14 surface properties. Also in Fig 7(c) the plastic shells of the 
TS-50 and VS-50 (not over plotted to avoid confusion) have identical spectral features at 8.1, 8.9 and 10.7 microns and are 
apparently the same polymer blend. We believe this to be an ABS (acrylonitrile butadiene styrene) plastic, but we have more 
work to do in matching spectra to polymer blends before claiming to have identified the materials. 

Second, examining the spectra of the rubber materials in Figs 7(a) and (c), we find that the TS-50 rubber center and 
RTV 3110 have the same spectral features at 7.87, 8.96, and 12.2 microns. We conclude the TS-50 center element is actually 
an RTV silicone rubber. Comparing these same features to the reflectance spectrum for the VS-50 center element in Fig 7(c), 
we find them to be wholly different and learn by comparison to another spectral database that the VS-50 center element is 
natural rubber. 

In Fig 7(b), we examine the spectrum of an Army camouflage paint of interest, green and tan CARC, because it is a low 
reflectance coating purposefully formulated to have the optical properties of the natural background. The grazing angle 
spectral reflectance features measured for tan CARC are located at 9 and 12.5 microns, with the 9 micron feature being very 
robust. The infrared spectral features of CARC have been studied extensively in the Joint Multispectral Program (JMSP)19 

for the purpose of identifying spectral bands that provide a dependable two-color discriminant for CARC in a variety of 
backgrounds. Using apparent spectral contrast data collected over a wide range of backgrounds and local meteorological 
conditions, this study concluded that the 9 micron feature provides a persistent two band spectral contrast discriminant for 
CARC (8.73 I 9.23 microns). This is a successful illustration of our effort to use narrow band spectral features for 
discrimination of mines within clutter when broadband polarimetry alone cannot eliminate all of the clutter. 

In general, our laboratory measurements of grazing angle specular reflectance for the materials listed in Table 2 compare 
well to the more comprehensive and dedicated measurement efforts of Salisbury and D'Aria20 on the spectral reflectance of 
terrain background materials, of Johnson and coworkers21 on the spectral emissivity variations in disturbed soils, and of 
Cederquist and coworkers22

• 
23 on the spectral reflectance of target materials and coatings. For insight into the spectral 

features of blended polymers we found the book by Garton24 to be very useful. Our purpose in making comparisons to these 
dedicated studies is to confirm our approach and to put a quantitative foundation under our efforts to apply spectral 
polarimetry to mine detection. 

Given that reliable mine detection has proven to be a difficult and frustrating challenge for many qualified investigators, 
we stand firmly by our stepwise, controlled risk approach as outlined above, and note here again that our laboratory 
measurement of mine materials spectral reflectance features is a key element in out approach. These data tell us if and where 
we can expect to apply spectral polarimetry to antipersonnel mine detection successfully. Overall we are encouraged by the 
availability and robustness of spectral features for plastic mine casing materials found in the L WIR region of interest. 
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4. LWIR IMAGING POLARIMETER DEMONSTRATION MEASUREMENTS 

A series of demonstration measurements were performed on a sampling of inerted non-metallic antipersonnel (AP) mines in 
various natural backgrounds. The images were collected using an uncooled microbolometer imager operating in the 

8 - 12 J.lm band. A manually rotated wire grid polarizer (1200 lines/mm) was mounted to the camera in front of a 25 mm 
focal length f/1.0 germanium lens. Although complete characterization of the polarization state requires four independent 
measurements (three if partial linear polarization is assumed), only two measurements were made in this proof-of-concept 
demonstration. The justifications for this are twofold. First, it can be assumed that the elliptical polarization is small. Second, 
the geometry of the scene was chosen such that the angle of polarization for the objects of interest was either vertical or 
horizontal, in which case the maximum image contrast will be seen in the difference between images made with the polarizer 
in these two orientations. A sequence of 10 frames was co-added for each polarization angle before subtraction. 

The Fresnel reflectance relations indicate that the angle of polarization of reflected radiation is perpendicular to the plane 
defined by the incident and reflected beams while that of emitted radiation is parallel to this plane. Wire grid polarizers 



transmit radiation when the £-vector is perpendicular to the wire and reflect radiation when the £-vector is parallel to the 
wire. In this paper we use the convention of 0-degree polarizer angle to mean the wire grid is oriented vertically. 
Consequently, in the intensity difference images (0 - 90 degrees) shown below, reflected (emitted) polarized regions appear 
brighter (darker) than unpolarized regions. For smooth, horizontal man made surfaces and observing sensor angles near 
Brewster's angle, the reflected radiation component (£-perpendicular) is near zero, and the emitted component (£-parallel) 
dominates. 

4.1 Discussion of the L WIR imaging polarimeter data 

Figure 8(a) shows four mines, a disk of RTV 3110, and a rubber hockey puck buried flush to the surface in sand. The 
mines, from front to back, are as follows: TS50, VS50, M14, and PFM-1 (Butterfly), followed by the RTV disk and the puck. 
It is clear from the image that these materials are easily distinguished from this relatively unpolarized and clutter free 
background. The polarization appears due to reflection of the warm surroundings. It is noteworthy that the top surfaces of the 
sandbox frame appear significantly polarized, wood being a material used in the construction of certain land mines. A more 
subtle, yet equally important feature of this image is the contrast evident between the disturbed and undisturbed regions of the 
sand. A horizontal (i.e., left to right) strip at the rear of the sandbox, extending to the butterfly mine was purposefully raked 
with a spring steel rake, and the areas surrounding the mines were disturbed to bury them. These areas are clearly 
distinguishable in the original images. This effect is attributed to a combination of contrast reduction caused by fine-grained 
particle coatings on the disturbed soil and the increased moisture content of the surface sand in the disturbed regions.20

"
21 In 

these measurements the undisturbed sand had received two days of sun since the last rainfall, so the surface was very dry. 
The disturbed areas brought noticeably moist, but not wet, sand to the surface. 

Figure 8(b) shows the sandbox rotated 180° so the objects are in reversed order. In this case, the entire surface was well 
raked and graded to a uniform depth. The uniformity in the image is evident. 

Figure 10 shows the same objects in a more natural background consisting largely of undisturbed aged bark mulch. Other 
elements in the scene include a rock (about 15 em diameter), a bush, and some small weeds. The two objects labeled "CARC 
panel" are metal panels painted with CARC. In this image, the absolute value of the polarization difference is taken so emission and reflection polarization energy both appear bright. The bush, a small central portion of the rock, and the rear 
CARC panel were deliberately underexposed while the front CARC panel and the left edge of the mulch were overexposed. 
This was done to achieve maximum sensitivity in the region containing the mines and is a limitation of the 8-bit digitizer in 
the frame grabber rather than the imaging polarimeter itself. Clearly, the mines are evident in Fig 10, yet there is much less 
contrast against the bark mulch, which itself yields partially polarized radiation, compared to the sand in Figs 8(a) and 8(b). 
Although the contrast is low, most of the clutter in the thermal image has been suppressed. By contrast, Fig 11, showing only 
the 0-degree image component of Fig 10, exhibits the wide range of thermal variations present in the scene. Notice that in polarization the two CARC panels appear very similar on the gray scale in Fig 10 while in the intensity image (Fig 11) the 
sunlit CARC panel appears quite hot in comparison to the shaded panel near the bush. 

Figure 9 shows the sandbox using the same camera and lens but now at a greater range (about 4 m). The mines and soil 
disturbances are still evident, but the scene also includes a large wood guardrail, a strip of aged bark mulch below it, and a 
vertical asphalt curbing. For two materials in the scene, wood and asphalt, we have both horizontal and vertical surfaces of 
the same materials in view at the same time. It is useful to observe how the contrast flips for the same material as the 
orientation and therefore the plane of incidence changes between horizontal and vertical. The vertical surfaces of the 
guardrail, sandbox wall, and curbing are bright in this difference image (0- 90 degrees) because the plane of incidence is now 
horizontal. 

There are several other basic polarization phenomena to be observed in this scene (Fig 9). The railing is painted dark 
brown and consequently heats up considerably during the day. The left end of the railing is seen to yield polarized emission 
as the view angle increases off-normal. The mulch exhibits polarized reflection when viewed at this grazing angle. The odd
shaped reflective lines near the sandbox are tar-filled cracks in the asphalt. One of the CARC panels is located on the asphalt 
just beyond the top left corner of the sandbox. Even though the CARC can be distinguished from the asphalt when we know 
where to look for it, the two exhibit nearly the same degree of linear polarization as seen here in the gray scale image. This 
confirms the quantitative DoLP results (Fig 5) obtained earlier in the LWIR spectral polarimeter data for CARC on an asphalt 
background. The top horizontal edges of the wood sandbox are dark, indicating polarized emission from the wood. Since the 
wood is in contact with the hot sand and asphalt, it can be expected to be warm; however, when wood is in contact with cool 
moist soil, this may not be the case. Finally, notice the rings of disturbed soil around the mines in the sandbox. Our 
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consistency of detecting disturbed soil encourages us to refine our approach by using narrow band filters (multispectral) that 

are optimized for the characteristic spectral features of various soil types.2°· 21 

4.2 L WIR imaging polarimeter - importance of spatial scale 

These imaging polarimeter data yield an empirical understanding of the spatial scale requirements for a polarization 

sensor. If the sensor instantaneous field-of-view (IFOV) is too large for the spatial scale of the target features in the scene, 

the signal at the detector will be a superposition of the polarization contributions within one IFOV (and similarly, for an 

imaging spectrometer, the spectral features will be a weighted mixture of the target and background features within the 

IFOV). Consequently, the distinctive polarization attributes of the target can be washed out and lost in the clutter. Even 

though it does not provide a direct example of a wrong choice of spatial resolution, the degree of polarization exhibited by 

the bark mulch, that is the clutter, in Fig 10 illustrates the importance of spatial scale. Here the bark mulch and the flush

buried mines are similar in dimensions. As a result the bark mulch is an effective background clutter for mines in this 

instance where the only attribute being measured is the degree of polarization with a broadband polarimeter. It is correct to 

infer from this that an investigator who chooses to apply broadband polarimetry alone to scenes of arbitrary spatial scale will 

fail. 

For a more direct illustration of the importance of spatial scale, Figs 12(a) and (b) are polarization difference images, 

recorded under controlled conditions, of the box of bark mulch shown in the photograph, Fig 13. For Figs 12(a) and (b) the 

angles between the illuminator, the normal to the bark mulch box and the polarimeter were held constant while the range 

between the bark mulch and the polarimeter increased from 12ft in Fig 12(a) to 45ft in Fig 12(b). The IFOV footprint at the 

bark mulch is about 1/2 inch in Fig 12(a) and 2 inches in Fig 12(b), compared to a mean dimension of 3/4 inches for the bark 

mulch chips. As expected the polarized reflectance from individually resolved bark mulch chips are visible in Fig 12(a) but 

washed out by the coarser spatial resolution in Fig 12(b). 
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Clearly, in the design of a hyperspectral polarimeter, the spatial resolution is an enabling design parameter, making the 

spectral and polarization attributes of the target accessible to be used as additional discriminants. At the same time, no 

amount of effort in tailoring the spatial resolution will help in the event the spatial dimension of the clutter is the same as that 

of the target. In this situation the broad spectral band imaging polarimeter will not be successful, and the need to invoke 

hyperspectral polarimetry, thereby adding the spectral attributes for discrimination purposes, is clear. 

5. RESULTS 

5.1 LWIR imaging polarimeter- performance 

The microbolometer FP A demonstrated strong performance when applied in the broad spectral band imaging polarimeter 

mode with the 1200 line/mm polarizer mounted in the optical train. In addition to the imaging polarimeter that we have 

assembled around an uncooled FP A being affordable, we can report the following performance on static scenes: 

1. With f/1 optics and modest additional effort to hold the temperature of the optics constant when operating in the field, 

the polarimeter delivered a NEDT < 0.1° C. 
2. The polarimeter consistently detected disturbances in sand, soil and bark mulch created by burying objects and bringing 

fresh sample to the surface. 
3. The system detected flush-buried antipersonnel mine casings and simulants both night and day, with and without cloud 

cover. 

Even though we are quite pleased with the performance of the uncooled FPA microbolometer in the mode of a broadband 

imaging polarimeter, we have yet to demonstrate its performance as a multispectral imaging polarimeter. Recognizing that 

the NEDT of the current uncooled FP A technology is an order of magnitude higher than for cooled FP As, we know the 

division of the available polarization signature into say 10 (multispectral) or 100 (hyperspectral) bins implies the best 

uncooled FP A performance as a multi- or hyper-spectral polarimeter will be marginal. Nevertheless, we intend to determine 

this experimentally since our experience to date with the uncooled FP A indicates that its actual NEDT performance can be as 

much as a factor of two better than the nominal specification. 

----------~~~~~-------------------a 



5.2 Polarimeter design process and some useful insights 

Our current understanding of the best design process for an imaging multi- or hyper-spectral polarimeter 
application 10

·
15

•
16

•
25

-
28 includes the following points: 

1. The spatial resolution will be determined and even constrained by the spatial scale of the target and primary clutter 
sources in the scenes and scenarios of interest. A polarimeter geared toward mine detection requires a spatial scale 
consistent with the mine dimensions and respective of the spatial scale of primary clutter sources. Recall the bark 
mulch images in Figs 12(a) and (b). 

2. Given this spatial scale constraint the spectral range, resolution, and choice of detector are a compromise between 
the need for signal (broadband operation) and the availability of distinguishing "narrow" spectral features to exploit 
(multi- or hyper-spectral operation). 

3. Prerequisite to this process is a very clear realization 10 that at least two, and preferably three, independent 
polarization measurements must be acquired simultaneously at near perfect registration. Otherwise the polarization 
signal can be washed out by time-dependent effects such as sensor platform motion, substantial changes in the 
downwelling radiation incident upon the target, and even small temperature and sensitivity drifts in the detector. 

4. Hyperspectral polarimetry offers essential advantages over broadband polarimetry in applications such as demining 
where small targets occupy one IFOV or less (subpixel) and require the use of spectral discrimination techniques. 

6. CONCLULSIONS 

6.1 Rationale for combining hyperspectral and polarimetric IR imaging 

We have presented several pieces of evidence to motivate the marriage of hyperspectral and polarimetric IR imaging. 
Basically we recognize that polarimetric and hyperspectral attributes supplement one another, and that all available 
independent supplemental pieces of information can be used to advantage for discriminating target objects from background 
clutter. While we expect to exploit the broadband attributes of man made objects, knowledge of the characteristic spectral features for a large number of both man made and natural background materials (for example, quartz sand and the mine 
casing spectra presented above) enables an additional hyperspectral polarization discrimination capability that comes in the 
form of the narrow spectral features. The reflected radiation from the sun, sky, clouds and local environment can either 
enhance or wash out the contrast provided by the target emitted radiation and spectral features, but polarization segregates the 
emitted and reflected radiation so as to maintain the contrast of the emitted component which is characteristically strong in 
man made objects. Hyperspectral polarimetry offers one more attribute, angle of polarization (AoP), to be used as a 
discriminant; AoP is a very sensitive and therefore powerful discriminant, but it also demands the very best in sensor 
performance to measure. 10 

Then, there is the issue of spatial scale. On the one hand, we have confirmed that broadband polarimetry alone cannot 
eliminate background clutter when the man made objects of interest cover a wide range in size from land mines to trucks. On 
the other hand, imaging polarimetry relieves the exceedingly heavy computational and signal processing burden of pure 
hyperspectral sensing while still allowing the sensor to be customized to the application. Neither hyperspectrometry nor 
polarimetry taken separately is as effective as when these tools are combined. 

6.2 Overall status of IR polarimetry effort 

More important than any one of the above proof-of-concept demonstrations, each of which represents a successful step in the risk-reduction sense, is to put all these elements together into the same sensor, a Hyperspectral Imaging IR Polarimeter; 
this is our goal and represents our most significant effort to go beyond state-of-the-art. If we are successful, we will have 
captured the spectral, spatial and polarimetric attributes in one sensor, all simultaneous in time and perfectly registered spatially. 

Going beyond the current proof-of-concept sensor configuration intended for static scenes, we now have an innovative sensor design in hand and are building the prototype hyperspectral imaging IR polarimeter. We have verified in a laboratory 
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visible-band implementation that our design allows us to extract any angle or degree of polarization in the scene at a frame 
rate determined by the multiplexer and signal processor. For initial application purposes we are using a cooled FPA in theIR 
prototype, yet we anticipate the opportunity to test uncooled FP As for the demining!UXO applications. Having all of the 
spectral, spatial and polarimetric attributes available to us at the same time provides a powerful discrimination and clutter 
suppression capability that is quite unique. All indications from analyzing our sequentially collected data are that these 
attributes taken together will comprise a reliable sensor for the detection of surface and flush-buried land mines, as well as for 
disturbed soil and shallow-buried mines over diurnal cycles or with microwave enhance heating. 

Laboratory measurements or other knowledge of the spectral reflectance and polarimetric properties of the targets in 
each application are necessary to support hyperspectral polarimetry. Our laboratory data help directly to (a) determine the 
locations and widths of spectral features needed to infer the value added of hyperspectral over multispectral polarimetry and 
thereby to (b) determine in potential applications whether broadband, multispectral or hyperspectral polarimetry applies. 

In summary, using somewhat sparse, but very reproducible, data from field and laboratory measurements to date, we 
have presented a case for hyperspectral L WIR polarimetry in applications requiring the detection of plastic, as well as metal, 
flush-buried and scattered surface mines. This approach applies equally well to partially exposed unexploded ordnance 
(UXO) and to shallow-buried mines subjected to microwave enhanced heating and diurnal cycles. Our rationale for 
combining hyperspectral and polarimetric imaging was presented. 
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graded to a uniform depth. 
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Figure 9. Polarization difference image (0- 90 degrees) of landmines in sand. Note the polarized emission 
from the vertical faces of the guardrail and asphalt curbing and the polarized reflection from the 
horizontal strip of bark mulch beneath the railing. 
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Figure 10. Polarization absolute value difference image, Abs(0-90 degrees), of landmines 
in bark mulch background with various natural debris and small plants. 
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Figure 11. Intensity image (at 0-degree analyzer angle) of landmines in bark mulch 
background with various natural debris and small plants. 
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Figure 12. Polarization difference image (0-90 degrees) of bark mulch (a) at a range of 12ft. Note the 
polarized reflection from individual bark mulch chips at this range where detector IFOV footprint is 
about 0.5 inches; (b) at range of 45ft. Note the bark mulch, directly below the black body illuminator, is 
not discernible from the background at this range where detector IFOV footprint is about 2 inches. 
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Figure 13. Bark Mulch Spatial Scale 
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ABSTRACT 
The problem of low metal content mine characterization from broadband electromagnetic induction {BEMI) 
data is addressed. A stochastic model describing the spatial distribution of clutter is developed and methods 
for estimating and removing this unwanted interference are described and tested. After removing the 
clutter from the signal, a technique is introduced for extracting from BEMI data information describing 
the location, orientation and structure of the buried object. Examples are provided for spherical and 
ellipsoidal mines. 

1. INTRODUCTION 
Broadband electromagnetic induction {BEMI) methods represent a new and very promising sensing tech
nology for the detection, localization, and characterization of buried metallic objects such as landmines and 
unexploded. ordinance. 2 The data taken over a broad frequency range (tens of hertz to tens of kilohertz) 
convey information which can be used for not only to detect the presence or absence of an object but also 
to determine the shape, size, orientation, and material characteristics. · 

In this paper, we look into problems related to the application of BEMI systems to the characterization 
and classification of low metal content buried objects. In previous work, we have developed physical models 
to describe a BEMI system and associated processing methods to extract from BEMI data collected over 
a grid of points in the neighborhood of the object information regarding the location, orientation and 
structure of a buried object by estimating dipole moment spectra {DMS).3 We have verified the ability 
of these methods for purposes of classification using real sensor data for problems where the objects 
contain significantly metal. However, for problems involving low metal content objects, new processing 
techniques are needed. In particular, for these cases the signal arising from volumetric inhomogeneities in 
the electromagnetic properties of the earth (permittivity and conductivity) can be of the same order or 
magnitude if not larger than the signal arising from the object under investigation. Moreover, this "clutter 
signal" is known to enter the data additively suggesting one method of mitigating the clutter would be to 
estimate and subtract it from the data. 

We propose to model the clutter as a correlated random field which can be described using a polynomial 
regression model the structure of which is motivated by examination of real clutter data collected with a 
GEM-33 sensor. The estimate then subtract processing strategy we propose is designed to reflect the way 
in which BEMI-type sensors are employed in the field. Currently clutter mitigation amounts to subtracting 
from data taken in the immediate vicinity of the object target-free secondary data taken on the boundary 
of this area. Thus, the correlation structure of the clutter is not properly accounted for in the mitigation 
procedure. Moreover, this approach completely ignores the fact that the sensor is often calibrated in a 
region close to a suspected target. Thus any information which the calibration data may be able to yield 
regarding the clutter structure over the object is also absent from the processing. 

In Detection and Remediation Technologies for Mines and Mine/ike Targets V, 
Abinash C. Dubey, James F. Harvey, J. Thomas Broach, Regina E. Dugan, Editors, 
Proceedings of SPIE Vol. 4038 {2000) • 0277·786X/00/$15.00 
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Here we consider a model-based approach to BEMI clutter mitigation. The data from the calibration 

region as well as the boundary of the object region are all used to estimate and remove the clutter in the data 

containing the object signal. After cleaning the data in this manner, we describe a new set of methods for 

estimating the object characteristics: location, orientation, and DMS. Relative to the statistically optimal 

algorithm proposed in [3] for this task, the one developed here, though theoretically suboptimal, is faster 

and still highly accurate. 

The remainder of this paper is organized as follows. The BEMI physical model is reviewed in §2. In §3 

the clutter model is described while §4 is devoted to the development of our processing methods. Examples 

demonstrating the performance of this approach are provided in §5. Finally, in §6, we provide conclusions 

and indicate the future work. 

2. PHYSICAL MODEL 

We consider an extension of a physical model for EM! proposed in [1] describing the scattering of low 

frequency electromagnetic radiation by spherical or spheroidal objects of known conductivity and per

meability. As seen in Fig. 1 the transmitters and receivers are taken to be square coils (not necessarily 

co-located) with sides of length 2A. The target center is located at ro = (xo, y0 , zo) in the x- y- z 

coordinate system. We are concerned with processing methods based on multi-frequency data obtained 

z 

Transmit coil 

X 

Figure 1. One sensor comprising sensor coils and target object. 

from multiple transmitter /receiver locations. Assuming we collect M frequency samples from each of N 

combinations of transmitters and receivers positions then under the model the kth frequency sample at 

the nth position is 
(1) 

where Ak is the normalized polarizability tensor for the kth frequency, R is the rotation matrix, g is a 

3 x 1 vector holding the x, y, and z components of the magnetic field produced at r 0 by a current I flowing 

in the receive coil, gT indicates the transpose ofg, f is the excitation field vector evaluated at the dipole 



position and has a similar functional form to that of g, w is the operating frequency, i = v=T, p.0 is the 
permeability of free space, wn,k is measurement no~e, and finally Cn,k is the clutter in the data for the 
kth frequency sample at the nth position. Details about f and g are provided in Appendix A of [1]. The 
matrix A takes the form: 

A(w) = [ Al (w) A2(w) ] • (2) 
A3(w) 

The three frequency dependent A's (here referred to as dipole moment spectra) each are associated with 
one of the principal axes of the object. For a sphere, all three are identical and closed form expressions 
can be found for all orders of multipoles.2 Finally, R represents a rotation matrix used to transform field 
quantities between a global frame of reference and the local frame of the object. Here R is parameterized 
by 3 Euler angles 7 and explicitly takes the form 

[ 

cos </> cos '1/J - sin </>cos () sin '1/J - cos </>sin '1/J - sin</> cos () cos '1/J sin </>sin () ] 
R = sin </>cos '1/J + cos </>cos () cos '1/J - sin</> sin '1/J + cos </> cos () cos '1/J - cos </>sin () 

~()~,P ~()~,P ~() 
(3) 

From this data set, our goal is to determine the position, the orientation, and the moment spectra of 
the buried object. 

3. CLUTTER MODEL 
For low metal content objects a simple additive white Gaussian noise model is not satisfactory. The 
interaction of the transmitted signal with the background medium, usually negligible for sensing metal 
objects, become prominent here. These effects are manifest in the form of additive, correlated noise in the 
signal which we term "clutter". In this work we develop a stochastic model describing the distribution of 
clutter which provides for the spatial correlation seen in this portion of the sensor signal. 

Specifically, we consider the following polynomial regression model in the spatial variables Xi and Yi, 
the x and y position of the ith sensor to describe this clutter at frequency WJc: 

c(xi, Yi, w~c) = I>~p,q,kxfY{ + ni,k (4) 
p,q 

where the a's are unknown, random expansion coefficients, and ni,k represents residual, "white" variations 
not captured by the regression. Collecting the clutter samples at all locations and all frequencies into a 
signal vector we write the overall model as 

c=Xa+n. {5) 

For M frequencies X =1M® X' where IN is theN x N identity matrix, ® denotes the Kronecker product 
and X is the block diagonal matrix obtained from all the X''s, where the element of X' for {i,j)th position 
is xfyJ, a is the vector containing ap,q,k, and n is the noise vector. 

As described in §1, we use (5) to describe the distribution of clutter over two regions of space: a 
calibration area and a region containing an object to be characterized. As illustrated in Fig. 2 the clutter 
mitigation procedure we propose makes use of all the calibration data and the data taken on the boundary 
of the object region to estimate the clutter signal on the interior of the object region. One supposition 
here is that the boundary data do not contain any mine signal. Another is that there is some correlation 
in the clutter from one region to the next which can and should be exploited in the processing. Thus, 
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Figure 2. Clutter Model. 

we introduce a simple statistical model linking the a vector from. the clutter region to that of the object 
region. Formally, over the calibration region we write the clutter as 

co= Xoao +no (6) 

while over the object area we have 

(7) 

with X l,i built from points interior to the mine region, X l,b from the boundary points (marked by "X" in 
Fig. 2), n 1,i interior noise samples and n 1,b boundary noise samples. To complete the model of the clutter 
we assume that the vector a1 is N(O, a~I), and we hypothesize that a0 and a 1 are related via random 
walk type model of the form 

ao = a1 +n2 

Finally, for simplicity we take nj I"V N(O, aJI) for j = 0, 1, 2. 

4. PROCESSING 
4.1. Clutter estimation and mitigation 

(8) 

Given the clutter model described in the previous section, our first objective is to find an estimate of 
a1 given co (the calibration region data), and c1,b (the clutter data taken on the boundary of the object 
region), so that we can estimate the clutter data for the whole mine present region. Toward this end, we 
substitute (8) into (6) to obtain; 

(9) 



Combining this with (7), yields the complete clutter model 

{10) 

with En I"V N (0, R) and R = E blockdiag (u5I, ufl, u~I) Ffl'. Eq. {10) provides a linear model relating all of the clutter data of interest to the expansion coefficients over the region containing the object. Using this 
model, the linear least squares estimate of a1 based on the clutter data taken over the calibration region 
and the boundary of the mine region is3 

{11) 

where M0 is a selection matrix that extracts from c the eo and c1,b subvectors, Dr = M0D, and Rr = 
MoRMf. Then, the estimate of the clutter data for the interior of the mine present region is 

(12) 

We mitigate the clutter in the signal as follows: Collecting the data over all frequencies and positions 
we write the model in ( 1) as; 

s = so + Ct,i + w = so + M2c + w (13) 
with so the vectorized form of the first term in (1), Ct,i clutter on the interior of the object region, and M2 
the matrix which extracts from c the c1,i subvector. The noise vector w is N{O,~J). Then, subtracting c 
from the data vector s yields the clutter mitigated data, or cleaned data, s, 

s=so+M2c-c+w = s0 +(M2-Mt)c+w=so+Mc+w 

Thus, the cleaned data are N(so, R 8) with (after some algebra) 

Rs = M RcMT + u~l 
Rc = u~DTD+R 

4.2. Target parameter estimation 
Givens, our aim is to estimate the parameters of the detected object: the co-ordinates of the object center, 
the moment spectra, and the three rotation angles. Here we take a two-step approach to this procedure. 
First, we use the data to estimate the three location parameters of the object, (xo, y0 , zo) and a collection 
of quantities related to the Euler angles and the DMS. Second, we use these estimates to separately 
extract orientation and DMS information. The motivation for this approach is primarily computational. 
As described in greater detail below, each stage requires the solution of a problem involving a single large 
parameter vector which is linearly related to the data and a substantially smaller set of parameters for 
which the relationship is non-linear. By pursing a two step strategy, we can exploit this structure to 
obtain an estimation approach requiring two small non-linear search routines rather than one larger one. 
Moreover, the first such routine for the location parameters is better behaved in terms of local minima 
than the second search for the Euler angles. Thus, we are able to effectively partition the overall estimation 
problem. 
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Our approach to the first subproblem is to starts by defining the symmetric matrix Mk 

[ 

/.tll,k /.t12,k /.tl3,k ] 
Mk = RT AkR = lt12,k /.t22,k /.t23,k 

/.t13,k /.t23,k /.t33,k 
(14) 

Substituting (15) into (1), "stacking'' the data from all transmitter-receiver pairs for all frequencies, we arrive at the following model for the cleaned data 

s = B(ro)p, + n. {15) 
where, forM frequencies B =1M® B1 with B1 a matrix constructed from the fn and 9n vectors. The vector p, is comprised of the six unique elements of each Mk. Finally, the noise vector n is zero mean and Gaussian with variance Rs. 

Eq. (15) is used in a least squares approach to determine the location of the object, r0 and p, , as follows: 

fJ,o, fo = arg min lis - B( ro)~tll~. J,J,ro 

The solutions3 are found: 

fo = arg min lis- B(ro)(BT (ro)R§1 B(ro))-1 BT (ro)R§1 sll~ ro 

jJ, = (BT(fo)R§1B(r0 })-1BT(fo)R§1s 

(16) 

(17) 

(18) 
The goal of the second processing step is to use jJ, to estimate ). and o=the vector of three Euler angles. Via (14), we start by using jJ, to build Mk in the obvious manner. According to (14), we should be able to find a single rotation matrix which simultaneously diagonalized all of the Mk 's to produce the diagonal Ak 's. We use this observation to construct the following penalized least squares cost function 

C(ak,>.) = L II R(o:)MkRT(a) -AA: IIF +penalty 
k 

where IIXIIF is the Frobenius norm of the matrix X, 

[ 

).~l,k ).~2,k ).~3,k ] 
AA: = >.~2,k >.~,k >-k,k 

>-ia,k >.~a,k >.~,k 

(19) 

is the matrix containing the moment spectra and it is not generally diagonal due to the fact that the noise in the data will prevent the exact simultaneous diagonalization of all the Mk. With this in mind, the goal of penalty is to (a) discourage nonzero off diagonal entries in every AA: and (b) to encourage smoothness in the Ai,k from Wk to Wk+1·3 

Stacking the unique unknown >.~,j,k's (6 per frequency) into one large vector>.', we write (19) as; 
C(a, >.) =II fJ,'(o)- >.' 11~6 +.81IILov>-'ll~ + .8211Lv>.'ll~- (20) 

where {1.1 is the vector of unique elements from R(o:)MkRT(o:) over all k. The Li are used to regularize the problem; specifically, Lov is for off-diagonal elements, and Lv is for diagonal elements. They are built such that 

M 3 

IILv>.ll~ = L :L)>.~p(wk)- >.~p(wk+1)) 2 
(21) 

k=lp=l 

M 

IILov>-'11~ = I:<>-i2(wk))2 + (>.~3 (wk)) 2 + (A~3 (wk)) 2 . (22) 
k=l 



The regularization parameters f3i in {20) are used to determine the tradeoff in the reconstruction 
between the two terms in the cost function. The first terms enforces fidelity to the data while the second 
ensures smooth spectra in {21). We note that in general, the on-line determination of f3i is a well-studied, 
non-trivial issue beyond the scope of this paper.4-6 For simplicity, in the examples in Section 5, we assume 
that j3 is known. 

To minimize the cost function, we note first that because {21) is quadratic with respect to A, ~can be 
explicitly stated in terms of a and fo via 

~ = ( R§1 + f31LbnLon + f32L'£Ln) -l R§1P,' = Q(ro, a)P,' 

so that we can write: 

& = argminC{fo, a, Q(fo, a)P,') a 

~ = Q{fo, &)P,' 

{23) 

{24) 

{25) 

In our experiments we have found that C exhibits many local minima in terms of the orientation angles. 
Thus, we have adopted the following strategy: We first impose a coarse grid on the three dimensional space 
of all permitted orientation angles, then, for each a-value in the grid, the value of the cost function Cis 
found. We use that a values with the smallest overall cost for that cell to initialize a full 3D non-linear 
least squares scheme to find the final values of&. Using these values, we construct~ according to {25). 

5. EXAMPLES 
In this seCtion, we compare our processing approach to that of a baseline method in which clutter mitigation 
is performed by subtracting from the interior data at a fixed y the average of the two corresponding 
horizontal samples taken on the boundary. We demonstrate and analyze the performance of the parameter 
estimation of our approach under two mine shapes. We simulate data taken on a 9 x 9 grid of 81 em 2 

pixels by a monostatic transmit/receive system comprised of square coils 5 em on a side. Ten frequencies 
logarithmically spaced between 0 and 4.3kHz are used. One corner of the grid is taken to be ( -0.4, -0.4)m 
while the opposite is at {0.4, 0.4)m. 

As a first example, we consider a spherical object located at (xo, yo, zo) = {0, 0, .lO)m*, and with radius 
5cm. The medium as well as the object are taken to be non-ferrous and the conductivity of the sphere is 
1068/m. We assume that the sphere's response can be modeled as a dipole and we use the results of [2] to 
compute the dipole moment spectrum {DMS). The real and imaginary garts of this spectrum are shown 
as a solid line in Fig. 3. Because the sphere is rotationally invariant, for this problem there is no need to 
estimate the rotation angles so that the problem here reduces to determining the location and the DMS. 
To demonstrate the performance of our approach, we perform 100 Monte Carlo simulations at a signal to 
clutter plus noise ratio (SCNR) of 10 dB. In our model, the sample mean of the estimated object center 
is ( -0.0004, -0.0009, 0.1017)m with a standard deviation of ±{0.0003, 0.0010, 0.0021)m. In the baseline 
method, it is (0.0237, -0.0059, 0.1144) with a standard deviation of ±{0.0156, 0.0035, 0.0123)m. In Fig. 3 
the dotted lines show the sample mean of the estimated DMS according to both methods. We see from 
these results that our approach is highly accurate and better when compared with the baseline method 
both in terms of estimating the position as well as the moment spectrum. 

As a second example, we consider an ellipsoid object again located at (xo, yo, z0 ) = {0, 0, .10)m and 
which has been rotated using¢= 1.70 radians, '¢ = 1.70 radians and() = 1.70 radians. In this case, we 

• Increasing depth here corresponds to increasing z 



52 

0.1 

0.08 

0.04 

0.03 

0.02 

O.Q1 

* ¢ 

The real part of estimated(dashdot) and true( solid) moment spectra 

true MS · · · · · ··· ~ . .:- -:- : -:-:-:.: 
est. MS in our model . . ..... . 
est. MS in baseline mode ~. -~· ~- ~ ~-~-~-~-. ·: ··:···: .. ·::··:::~· 

··~··([·L(i· : : ··········· ···i··trrH:t·(·······)·· 
............................. . . . . .... 

-:--:--:--:-:-:-:-:--
. .\'::: :::: . 

:·:¢·.; .. : .. :.; .:.:.:.: ...... : .... . . . . . . .... . . . . . . . 

The Imaginary part of estimated(dashdot) and real(solid) moment spectra for the first axis 

* ¢ 

........ ......................................... 

. . : . . ·>.:-: -:-:-:::..... . -:--:--:- -:-:-:-:-:-. 

Figure 3. The real and imaginary part of estimated and real moment spectra of sphere mine 

presently have no closed form expression for the frequency dependent DMS of such an object. However, 
under the assumption that the scattering characteristics of an eccentric object will be substantially different 
among axes, we hypotheses DMS spectra shown in Fig. 4, Fig. 5, and Fig. 6 as solid lines and examine the 
performance of our approach under these conditions. 

In this case, we estimate the center of object, moment spectra for all three axes and three rota
tion angles. After performing 100 Monte Carlo simulations at 10 dB SCNR, for our approach the 
sample mean of the estimated object center is ( -0.0005,0.0001, 0.0985)m with a standard deviation of 
±(0.0004, 0.0003, 0.0012)m. For the baseline case the mean is (0.0578, -0.0011, 0.1107)m with a standard 
deviation of ±(0.0562, 0.0025, 0.0129)m. The sample means of the estimated rotation angles under our 
processing scheme are ¢ = 1.66751 radians, 'ljJ = 1.7163 radians, and (} ~ 1.9097 radians with standard 
deviations of ±{0.0041), ±{0.0014), and ±{0.0073), respectively. Using the simpler clutter mitigation al
gorithm, the results are means of ¢ = 1.5050 radians, 'ljJ = 1.2052 radians, and (} = 2. 7 402 radians with 
standard deviations of ±{0.072), ±{0.0371), and ±{0.0053), respectively. Finally, the real and imaginary 
parts of the estimated and actual DMS using both clutter reduction methods are shown in Fig. 4- 6. 

For completeness we have gathered the sample means and standard deviations of our parameter esti
mates for both objects and both processing methods in the following table. These results along with those 
seen in Fig. 4- 6 clearly point to the utility of taking a rigorous processing approach to clutter modeling 
and mitigation. 
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Figure 4. The real and imaginary part of estimated and real moment spectra of spheroid mine for the 
first axis. 

Sphere Case Ellipsoid Case 
Our Model Baseline Model Our Model Baseline Model 

Standard Standard Standard Standard 
mean Deviation mean Deviation mean Deviation mean Deviation xo -0.0004 0.0003 0.0237 0.0156 -0.0005 0.0004 0.0578 0.0562 

Yo -0.0009 0.0010 -0.0059 0.0035 0.0001 0.0003 -0.0011 0.0025 zo 0.1017 0.0021 0.1144 0.0123 0.0985 0.0012 0.1107 0.0129 ¢ - - - - 1.6675 0.0044 1.5050 0.0072 
{/; - - - - 1.7163 0.0014 1.2052 0.0371 
iJ - - - - 1.9097 0.0073 1.7402 0.0053 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we have presented an approach for the estimation of the dipole moment spectra, the co
ordinates of the object center, and rotation angles from BEMI data after estimating and removing clutter 
from the signal. Our work has been aimed specifically to the problem of characterizing low metal content 
objects. Using simulated data, we have demonstrated some clear performance gains using our method 
relative to simpler clutter mitigation approaches. 

In the future, we plan to extend this work in a number if ways. First, we intend on validating and 
modifying (as needed) these models and processing methods based on the use of real BEMI sensor data 
collected for example using a GEM 3 sensor. On the theoretical side, our interests are in the development 
of performance analysis metrics both for the estimation of the clutter parameters as well as the object 
characteristics. Specifically, the Cramer-Rao lower bound (CRLB) is a useful statistical tool for this effort. 
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Figure 5. The real and imaginary. part of estimated and real moment spectra of spheroid mine for the 
second axis. 

The information provided by the CRLB can be used for example to optimize sensor configuration for a 
particular characterization task such as maximally distinguishing object X from Y. 
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Optimum PML ABC Conductivity Profile in FDFD 
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Abstract-We address the problem of optimally choos

ing the conductivity (a) profile of a perfectly-matched-layer 

absorbing boundary condition (PML ABC) with prescribed 

number of layers so as to minimize reflections for a wide 

range of incidence angles and for a narrow ( CW) or broad 

frequency-band. A new one-dimensional (1-D), frequency

domain description of 2-D PML performance is developed, 

validated and used in PML-a profile optimization. An ex

haustive search for PML-a profiles that minimize reflections 

over a prescribed wide angle-range is carried out. Our pro

cedure yields PML-a profiles with better performance than 

previously reported values, for given number of layers. 

Index Terms-Perfectly-matched-layer (PML). 

I. INTRODUCTION 

The optimal specification of Berenger's perfectly
matched-layer absorbing boundary condition (PML ABC) 
[1] in finite-difference frequency-domain (FDFD) and 
finite-difference time-domain (FDTD) EM-field computa
tions is an open question of much interest to the compu
tational electromagnetics community [2]. The challenge 
translates into profiling the PML conductivity <Y so as to 
minimize discretization and material-contrast reflections 
(predominant at small incidence angles e and high fre
quencies w) while also allowing strong decay at grazing 
angles of incidence (say, () > 65°). In this paper, two
dimensional (2-D) PML performance is modeled using a 
new 1-D PML formulation which is later used in PML-<Y 
profile optimization. While past efforts [3]-[5], with the 
exception of Ref. [2], were aimed mostly toward optimizing 
normal-incidence performance, our focus is on wide-angle 
and narrow- and/or broad-bandwidth performance. 

Our goal is to find conductivity profiles of the form 
<Yi = <Y 1 ( 2N2-~± 1 )P, where <Y 1 and p are parameters that 
need to be chosen so as to minimize reflections from a PML 
with N layers and grid-spacing ~ with i = 1, 2, ... , 2N 
indicating twice the half-layer index in Yee's lattice [6] 
(with i = 2N at the free space/PML interface). (We as
sociate distinct values of <Y to each electric and magnetic 
field point of the PML, doubling the number of param
eters from the original [1].) We consider separately the 
cases of CW and broad-band operation: In the former, <Y
profiles that minimize reflections for a specified incidence 
angle-range at prescribed, stepped frequencies are com
puted, which can be used in FDFD; the latter yields a PML 
that is (globally) optimum over a wide incidence angle
range and a specified broad-bandwidth; hence, it applies 
to FDTD simulation of broad-band EM pulses. We tackle 

This work was supported by the US Army Research Office, MURI 
Demining Grant No. DAAG55-97-0013. E.A.M. is now with the 
E.C.E. Dept., University of Arizona, Tucson, AZ 85721. 

both cases numerically by minimizing a cost function, say 

F = J dwW(w) J01r
12 d()8(()) log 10 [1 + lf((),w)l], where lfl 

is the PML 's reflection coefficient magnitude while 8( ()) 
and W(w) are weighting functions defining, respectively, 
the relevant ranges of incidence angles e and frequencies w. 
For example, later we will consider hard-weighting func
tions 8(()), W(w) where 8 = 1 over a prescribed angular 
range [0, Bmax] (where, e.g., ()max = 65 or 75°) and is zero 
elsewhere, and W(w) = 1 only within the bandwidth of 
interest and is zero elsewhere. 

The technique developed in the paper is validated with 
computer-simulated results both in FDFD and in FDTD. 
We find PML-<Y profiles with better performance than pre
viously reported values, for given number of layers. Atten
tion is restricted to the 2-D transverse magnetic (TM) con
figuration (relative to the PML 1

) schematically depicted in 
Fig. 1. The associated TE results follow by duality. 

II. FORMULATION AND VALIDATION 

Time-harmonic TM waves inside a PML perpendicular 
to the x-axis satisfy the equations [7] 

-jwjlo'liz (1) 

where €
1

, considered here to be c' = 1, is the PML dielectric 
constant. For a y-independent PML configuration such 
as that in Fig. 1 we obtain, for propagating wave-mode 
solutions of Eqs.( 1), 

ddxEy (1-j~/wt:o) 
ddxHz (1-j~/wt:o) -jwt:oEy (2) 

where Ey and Hz are the x-dependent parts of the electric 
and magnetic field components Ey and 'liz, respectively, 
and () is the propagation angle associated with the prop
agating wave-mode considered. Next we finite-difference 
Eqs.(2) while adopting the notation in Fig. 1, obtaining 

E~- 1 1 2 + (jw + <Y2n/t:o)Jlo~ cos2 ()H~ 

H~- 1 + (jw + <Y2n-I/t:o)t:o~E~- 1 / 2 (3) 

1 The configuration in Fig. 1 is TE according to the standard 
convention wherein the z-axis in Fig. 1 is the reference axis (since 
2-D objects associated with Fig. 1 are z-independent). We refer to it 
as 'TM' to avoid confusion with the mode notation of a parallel plate 
waveguide configuration to be used later on. 
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Fig. 1. PML and incident TM wave in 2-D. 

for n = 1, 2, ... , N. Any PML analysis based on Eqs.(2,3) 
can only approximate the numerically-measured value of r 
since Eq.(2) assumes waves with y-dependence e±jksinBy 

where k = w,jiiOfO, which are only approximated in the 
2-D finite-difference (FD) solution. In particular, Eqs.(3) 
yield an approximate (yet useful) expression for the PML's 
reflection coefficient r, to be discussed next. Numerical 
FDFD and FDTD experiments are discussed at the end 
of this section which confirm our model's validity for the 
purposes of the present study. 

By defining the normalized transverse impedance 'f}n = 
( E;-1/ 2 j H~- 1 )/'fJo of one PML layer relative to that of the 
subsequent layer, where 1J0 = ~' one obtains from 
Eqs.(3) 

.- ) 2 1 
1Jn+ 1 = (yk+S2n cos e + .k S +1/ 

J + 2n-1 'fJn 
(4) 

where we have introduced the unitless quantities k = k/::;,. 
(the normalized phase constant) with k = w,jiiOfO and 
Si = G'i'TJot:;,. (the normalized ith half-layer decay rate). Un
less otherwise stated, we will consider perfect magnetic 
conductor (PMC) loading, H~ = 0, so that 1J1 = oo. In 
order to obtain an approximate expression for r, we com
pute next the numerical transverse free space impedance 
Z 0 defined, following Eq. ( 4), via 

.- 2 1 z o = J k cos e + i k + 11 z o , (5) 

I.e., 

Z _ 2 _ Oej sin- 1 (kcos9/2) 
o- -COS 

-jk+J-k2+4(cos e)-2 
(6) 

(Zo is normalized relative to 1J0 ). Termination of a free 
space FD grid with Z 0 (e.g., 'T]1 = (E1;2/ Ho)/'fJo = Zo in 
the equations above, with si = 0, i = 1, 2, ... )results in a 
measured standing-wave-ratio SWR = 1. Thus, Z 0 is the 
free space impedance in FDFD (again, as described by the 
model FD equations (3)). 

We can now use Eqs.( 4,6) to approximate r by 

r ~ 'fJN+1- Zo. 
'fJN+1 + Zo 

(7) 

Zo behaves like cosOejkcosB/2 at low frequencies (k ~ 1) 
but its phase differs from the theoretical value for a con
tinuum, k cos e /2, by about 2% for k = 2n-j10 at e = 0. 
The additional phase is a consequence of dispersive effects 
of discretization: It was shown in [8] (see Eq.(2.19), pp. 24) 
that for a 1-D free space FD grid 

(8) 

where ~~:( =/= k = w,jiiOfO) is the wavenumber in the FD 
model (i.e., Eq.(8) is the discretization-corrected disper
sion relation). Eq.(8) applies to our framework with the 
substitution k --+ k cos e (and K; --+ K; cos 0) and thus 
the discretization-corrected phase-shift between adjacent 
E- and H-field points in one-way wave-propagation in free 
space is sin- 1(kcos0/2), which is the result in (6). 

To examine the validity of the model above we used both 
FDFD and Fourier-transformed FDTD data. Fig. 2 shows 
plots of lfl versus e and parameterized by various values 
of k for an 8-layer PML proposed in [2]: G'J = 0.018/ /::;,. 
and p = 3.7. The figure shows data points for If! as mea
sured in (2-D) FDFD (using the measured SWR) for a 
parallel plate waveguide excited by single TM modes and 
terminated by an x-normal PML with PEC-wall termina
tion. The TM mode corresponding to e = 0 is the TEM 
mode. For given TM mode, e and w, the transverse waveg
uide dimensions are given by well known formulas (see [9], 
pp. 287-290) and can be used to compute other operational 
parameters [9]. Also shown are values of If! correspond
ing to Fourier-transformed FDTD data. In contrast to the 
FDFD results - all of which involve a parallel plate waveg
uide grid - our FDTD simulations correspond to transient 
plane-wave propagation in a (2-D) PML-terminated free 
space grid (time-gating was used to isolate the PML re
flections). In particular, our FDTD simulations were used 
to measure the PML response to an incident, wide-band 
Gaussian pulse of the form e(x-ct)

2 
/W

2 
with c = 1/ ,jiiOfO, 

W = 6/:::,. and Courant number r = c/::;,.tj /::;,. = 0.08 (see also 
[2]). In addition, Fig. 2 provides data points for the reflec
tion coefficient as measured in the time-domain (FDTD) 
by the ratio of the peak amplitudes of the reflected and in
cident wave-pulses. The results based on Eqs.( 4,6,7) (solid 
lines labeled k = 2n-j10 and k = 2n-j100) are seen to fol
low closely those of FDFD and Fourier-transformed FDTD 
simulations (the FDFD lfl-values for k = 271' /25 also agree 
with Eqs.(4,6,7) (results not shown for clarity)). Those as
sociated with the continuum analog of formula (7) (curves 
marked with a triangle) differ visibly from the FDFD and 
Fourier-transformed FDTD results for non-grazing inci
dence and high k (they behave well only for low k and 
high e (values for k = 271' /100 marked with a small+), as 
expected (inter-grid phase-shift is then negligible)). Other 
profiles were studied in a similar fashion and analogous 
results were obtained where model predictions based on 
Eqs.( 4,6,7) were consistent with FDTD and FDFD reflec
tion coefficient measurements. We may now proceed with 
confidence to use Eqs.(4,6,7) as design tools in the search 
for optimum G' coefficients. 



_ Model predictions for k = 27t/1 0, k = 27t/1 00 
• Fourier-transformed FDTD for l< = 27t/100 
• Fourier-transformed FDTD for k = 27t/1 0 
0 FDTD (Peak amplitude) 
• FDFD for k = 27t/25 
• FDFD for k =27tl10 
a Theoretical, un-corrected phase, k = 27t/10 

Fig. 2. Reflection coefficient results for PML-a profile in [2]. 

III. RESULTS AND DISCUSSION 

Using the PML-model in Sec. II, an automated search 
for optimum values of (Jf and p for an N-layer PML pro
filed via (Ji = (Jf (2N2-~+ll, i = 1, 2, ... , 2N (i = 2N for the 
half-layer at the free space/PML interface) was carried out 
both for fixed k (CW case) and for 271'/100 :::; k :::; 271'/10 
(broadband case). We considered the cost function F = 
fBw dw J~max delog10 [1 + lf(O,w)l] defined in Sec. I, where 
BW is the relevant bandwidth, as well as the L2 norm of 
lf(O,w)l, R = JBwdwJ~maxdBif(O,w)l 2 , i.e., the energy 
reflection coefficient for bandwidth BW averaged over the 
relevant O-range, where, e.g., Bmax = 65 or 75°. The later 
characterization applies to both frequency and time do
mains. It turns out that for low If I (e.g., in the vicinity of 
the optimized solution) F ~ fBw dw J~max dBif(O,w)l (the 
L1 or area norm); it follows that ((JJ,p)-searches based on 
F and R should yield similar results. 

Table I summarizes the results ofthe search for an 8-layer 
PML, obtained using both F and Rand for Bmax = 65 and 
75°. The ((J1 , p)-values in Table I correspond to absolute 
minima ofF and R in 10-3 :::; (Jf :::; 103 and 0 :::; p :::; 7 
(values obtained via exhaustive numerical search). The 
search reveals the need for (J-profiles that are low enough 
to minimize discretization and material-contrast reflections 
at close-to-normal incidence while being also strong enough 
to absorb waves propagating at close-to-grazing angles. For 
example, we see that the best (J-profiles for Bmax = 65° are 
consistently lower than for Bmax = 75°. This results in re
duced reflections in the small e region in the Bmax = 65° 
case. Besides, the Bmax = 75° case demands higher (J to en
hance wave attenuation in the large e region 65° :::; e :::; 75°. 
The results of broad-band optimization are in between 
those of low- and high-frequencies, as expected. Remark
ably, the broad-band case optimization with Bmax = 75° 
yielded a (J-profile very similar to that reported in [2] 
and obtained from wide-band and wide propagation-angle 
FDTD simulations (the same profile used in Sec. II, i.e., 
(Jf = 0.018/~ and p = 3.7). We also note that there is lit
tle variation among the optimum ( (J f ,p )-values correspond
ing to various values (ranges) of k due to the broadband 

nature of the PML. Furthermore, we have found by numer
ical experiments that lfl varies little with k for k .:S 271'/50; 
hence, our results for k = 271' /100 represent well the PML's 
low frequency behavior. 

TABLE I 

SUMMARY OF OPTIMIZATION RESULTS 

Cost Function k Bmax (J J ~ P 
F 271' /10 75° 0.019 3.49 
R 271' /10 75° 0.018 3.51 
F 271'/100 75° 0.026 3.71 
R 271'/100 75° 0.026 3.72 
F 271' /10- 271' /100 75° 0.022 3.65 
R 271' /10- 271' /100 75° 0.021 3.65 
F 271'/10 65° 0.014 3.47 
F 271' /100 65° 0.020 3.82 
F 271'/10- 271'/100 65° 0.016 3.73 

Fig. 3 shows plots of lfl VS e and parameterized by vari
ous values of k for an 8-layer PML with (Jf = 0.019/ ~and 
p = 3.49 (optimum coefficients for k = 271' /10 and Bmax = 
75°). Fig. 4 shows analogous results for (J f = 0.026/ ~ 
and p = 3.71 (optimum coefficients for k = 271' /100 and 
Bmax = 75°). The values of lfl in the figures were cal
culated from the measured SWR in FDFD simulation of 
a parallel plate waveguide excited by single TM modes 
and terminated by an x-normal PML with PEC-wall ter
mination (the same configuration outlined in connection 
with Fig. 2). The broadband time-domain performance of 
(Jf = 0.022/ ~and p = 3.65 (results not shown) is similar to 
that reported in [2] for (Jf = 0.018/ ~and p = 3.7. Figs. 3 
and 4 show that, for fixed normalized decay rate profile 
Si = (Ji''lo~ and as function of k alone, PML performance 
tends to degrade with increasing k as a consequence of dis
cretization ( cf. Eq.( 4) and associated discussion). The 
PML performance at grazing incidence is, on the other 
hand, less sensitive to discretization (since k cos e ---+ 0 as 
e---+ 71'/2); the latter effect is also apparent in Figs. 3 and 
4. We see that large-angle PML performance improves no
ticeably for low-frequency optimal profiles (compare results 
in Fig. 4 to those in Fig. 3) due to reduced optimization
constraints deriving from discretization effects at small e. 
When compared to its high-frequency counterpart, the low
frequency-optimized PML design has, thus, higher conduc
tivity, which improves large e decay rate. For the same rea
son, however, the 1r 1-values fork: = 271' /25 at e < so are vis
ibly worse in Fig. 4 than in Fig. 3 (the low-frequency design 
is too agressive). The results shown in Fig. 3 are compa
rable but slightly better than those for (J f = 0.018/ ~ and 
p = 3.7 (see Fig. 2) at the same k. Finally, the best PML 
performance in Fig. 4 (at k = 271'/100) is somewhat better 
than the best PML performance in Fig. 3 (at k = 271' /25). 

Fig. 5 summarizes optimization results for other values of 
N (in the 0-to-75° angular range). Similar ((J1 , p)-behavior 
with N was reported in [5] for normal-incidence PML per
formance. For 16 layers, we have found that, for the opti
mum (J-profiles shown, lfl ranges from -150 to -180 dB 
fork= 271'/100 and from -130 to -160 dB fork= 271'/10 
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and the range k = 21r /10-27r /100. The figures above corre
spond to the 0-to-75° angular range. 

Finally, the same procedure can be applied to u-profiles 
of other forms. For example, next we used the PML-model 
and performance measures above to search for PML O"-

profiles of the form u· - O"a (2N-i±1)Pa. + O"b (2N-i+1)Pb 
2 - f 2N f 2N 

An extensive numerical search based on the cost function 
F for N = 8, k = 27r /100 and Bmax = 75° with integer 
pa and pb yielded pa = 2, ujD.. = 0.0018, pb = 4 and 

O"~D.. = 0.0265. Plots of lfl VS e corresponding to this 0"

profile for k = 21r /25 and k = 27r /100 are shown in Fig. 6. 
The performance of this PML is a little better than that 
obtained with two search-parameters (i.e., O"f, p) (compare 
results in Fig. 6 with those of Fig. 4, both of which corre
spond to optimization at k = 27r /100). For k = 21r /100, 
we note improvement of about 10 dB at () = 60° and of 2 
dB at () = 75° with respect to the profile in Fig. 4. On the 
other hand, for k = 27r /25, If!-values for () ~ 30° in Fig. 6 
are 1 dB lower than in Fig. 4 while for () > 30, lfl-values 
in Fig. 6 are 2 or more dB below those in Fig. 4. Thus, it 
appears that there is a limit to PML performance near our 
optimized solutions (for the number of PML layers consid
ered, N = 8). It is expected that for larger N, the increase 
in number of u-profile parameters will have greater impact. 
This subject will be addressed elsewhere. 

Despite its simplicity (relative to PML descriptions in
cluding 2- and 3-D discrete dispersion [8]), our 1-D based 
PML performance predictor (i.e., Eqs.(4,6,7)) has been 
found to work well in connection with 2-D FDFD and 
FDTD simulations, yielding a powerful tool for PML op
timization. The sought-after PML-u profiles were found 
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to exhibit better CW and/or broad-band and wide-angle 
performance than the best reported values to date [2]. The 
optimal u-profiles reported in the paper were found to be 
consistent with optimal u-profile recipes proposed in [3] 
and [5] for the normal-incidence case. As expected, our 
PML designs were, however, more agressive (larger u) in 
order to accomodate for large-angle performance which was 
not addressed before. 
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IMPLEMENTATION OF A TWO DIMENSIONAL PLANE WAVE FDTD 

USING ONE DIMENSIONAL FDTD ON THE LATTICE EDGES 
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Abstract Development and testing of angle independent absorbing boundary conditions 
(ABCs) can be improved by simulating waves incident on the ABC at a single angle. By using 
one-dimensional Finite Difference Time Domain (FDTD) as the lattice side edge condition, 
the creation and numerical propagation of a two dimensional plane wave with arbitrary inci
dent angle is possible. The application and extent of usefulness of the method are examined 
and extensions to increase the range of usefulness are introduced. 

I. INTRODUCTION 

Until recently, the use of the FDTD method for numerical solutions of electromagnetic scattering 
problems was severely hampered by the poor performance of absorbing boundary conditions used 
to prevent reflections of EM waves at the lattice edges. With the advent of the Berenger Perfectly 
Matched Layer[l], this problem has been significantly reduced and the computational efficiency of 
FDTD problems has been significantly improved. 

Understandably, this has created considerable interest in improving and optimizing the PML and 
angle-independent ABCs as a whole. But this effort has been impaired by the fact that commonly 
used excitations, such as point or line sources, generate waves incident on the ABC at all angles. 
This complicates the analysis of the performance of the ABC and impairs design optimization. The 
problem is ameliorated by introducing plane wave sources incident on the ABC at a single angle. 
With such an excitation, the performance of the ABC is clearly defined. However, because of the 
difficulty in dealing with propagation on the lattice edge ,the creating and propagating such a wave 
is difficult. 

For a two-dimensional FDTD simulation using the standard Yee cell formulation[2], the update of 
a given spatial grid point requires data from the four adjacent grid points. Clearly this creates a 
problem at the lattice edges. Typically, in scattering simulations, a Mur total/scattered field region 
separation avoids the need to calculate incident waves on the edgesr3]. However, to test ABCs, the 
incident wave must be a uniform plane wave without deformations along the edge. ABCs cannot be 
used at these edges since they fail for plane waves propagating at steep grazing angles. Furthermore, 
the values on the edges must not be specified analytically because the numerical values of the fields 
inside the discretized ABC under test are not known. 

II. INTEGRATION OF ONE-DIMENSIONAL EDGE FDTD 
WITH A TWO-DIMENSIONAL GRID 

For the following discussion, consider a two-dimensional grid on which a boundary value FDTD 
simulation will be run. The "front" of the grid is the source boundary value while the ABC to be 
tested is positioned at the "back". What is desired is the create a plane wave with a phase front 
at an angle () with respect to the front wall. For this discussion a transverse electric (TE) wave is 
considered. The x directions is front to back and the y direction is left to right as shown in Figure 
1. 

1 



Instead of ABCs at the "left" and "right" edges, 1-D FDTD is used. The update of each spatial 
point on these edges will require data from only the grid points preceding and succeeding it. At 
each time step, information from this 1-D FDTD is passed to the larger 2-D FDTD to update 
spatial points adjacent to the left and right edges. If the wave is normally incident on the ABC, 
the formulation of the plane wave is quite simple. In this case, Hx is zero and both Ez and Hy are 
uniform left to right. Therefore, no information is obtained from the transverse difference and the 
calculations along each grid line running front to back reduces to as a 1-D FDTD algorithm. To 
illustrate this, consider the time harmonic Maxwell's curl equations for TE waves in lossless media: 

8Ez . H -- = -)WJ.L X 

8y 

8Ez . H 
8x = JWJ.L Y 

8Hy 8Hx . 
OX + 7iY = JWEEz 

These have the familiar (forward propagating) solutions: 

Hy = -cos (}Eo e-jk(xcos B+ysin B) 
TJ 

Hx = -sinBEoe-jk(xcosB+ysinB) 
TJ 

(1a) 

(1b) 

(1c) 

(2a) 

(2b) 

(2c) 

It is clear that for normal incidence, (B = 0), this becomes a TEM wave with no y dependence. 
Equations (1a) and (2c) become unnecessary and the 1-D FDTD and the 2-D FDTD calculations 
are identical. 

The situation is more complicated when B is nonzero. Now Hx is nonzero and the 1-D wave is no 
longer identical to the 2-D wave. In order for the 1-D FDTD simulation to supply the correct data 
to the 2-D grid, the 1-D wave must propagate with a velocity that keeps pace with the 2-D wave. 
This velocity is simply the phase velocity of the 2-D wave in the x direction, i.e. VID = v0 jcosB, 
where V 0 is the velocity of the 2-D wave in the direction B. This is analogous to taking a slice along 
the right (or left) edge of the grid, of an infinite 2-D plane wave. Clearly this "slice" must travel 
along the edge with greater velocity than the the wave traveling an angle B. Since the velocity, v1v 
of this wave is given as v1v = ~, we can write Eq. (2) for the 1-D wave at y = 0 as: 

(3) 

Eo ·k B H = -cos B-e-1 xcos 
YlD TJ 

The solution in Eq.(3) does not satisfy Maxwell's curl equations. This problem can be addressed 
by modifying Ampere's Law. By taking the partial derivative of Eq.(2c) at y = 0 one obtains: 

8Hx ·k · 2(}Eo -jkxcosB -- = J sm -e , 
8y TJ 

which, using Eq.(2b) becomes 

8Hx (1 - cos2 B) W;-
8y cos2 B 
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Thus, 
oHy oHx 1 oHy -+-=----
ox oy cos2 () ox 

Now Eq.(1), for the 1-D wave will become: 

1 oHy10 . 

2 () 0 = JWEEzw COS X 

(4) 

Having described the changes to Maxwell's equations needed to integrate the 1-D FDTD into the 
2-D grid, it is worthwhile examining the discretization of the modified 1D curl equations. 

III. DISCRETIZATION OF MODIFIED EQUATIONS AND STABILITY CONSIDERATIONS 

Through a straight forward discretization process[4], the discretized 1-D modified Maxwell's curl 
equations for lossless media become; 

E n+! _En-! R (Hn Hn ) 
i - i + -2 () 'TJ i+.!. - i-.!. cos 2 2 

(5) 

where n is the time index, i is the space index and R = v0 /:).tj /:).x is the Courant Number, and the 
vector component designations has been suppressed. Note that the velocity of the modified 1-D 
wave is VID = c~; 8 as is apparent in the discretized wave equation based on Eq.(5). 

Of particular importance is the Courant Number, R. Stability analysis indicates that for a FDTD 
simulation to be stableR:::; 1. For Equation (5), a new Courant number RID= co~ 8 must be used 
instead. Since RID :::; 1, the usefulness of this method is limited to smaller angles. For example, let 
R9 be the Courant Number of the 2-D FDTD simulation. If R 9 is chosen to be 0.5, then the largest 
angle that may be used is 60°. Clearly larger angles may be used if R 9 is chosen to be smaller. 
However, since R9 is also a measure of how fast the wave moves througli the grid, choosing it too 
small increases computational expense for the entire 2-D grid. 

IV. LARGE ANGLE SOLUTIONS 

For applicability with large propagation angles without decreasing R9 , changes must be made to 
the method. This is done by adjusting the Courant Number of the 1-D FDTD edge simulation. 
A smaller Courant number R~D = v 0 /:).t' / /:).x cos() may be chosen such that R~D :::; RID· Since 
/:).x remains the same, two simulations using R~D and RID would be spatially similar at the same 
physical time t, whenever n' /:).t' = n/:).t for some different number of new time steps. The the 
stability condition is now R~D :::; 1 and thus () may be increased. 

Some care must be exercised in order to insure that the correct data is being passed to the 2-D 
grid. Let m = /:).tj/:).t'. Ifm is an integer(= n'/n), then the mth iteration ofthe 1-D FDTD is used 
to update the 2-D interior of the grid. If m is not an integer, then the correct value of Ez on the 
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edge of the lattice must be interpolated with respect to time from two or more iterations of the 1-D 
FDTD and then supplied to the 2-D grid. 

The interpolation process is quite straight forward, with emphasis given to insuring the correct 
timing. Assume the 1-D FDTD simulation has a time sample interval of ~t' and the 2-D simulation 
has a time sample interval of ~t. To meet the above criteria, ~t' ::; ~t. In order to insure that 
interpolation, and not extrapolation, is being performed, the 1-D simulation must be performed 
until n' ~t' 2: n~t. The number of previous time values that must be stored in order to perform 
the interpolation is equal to the order of interpolation desired. Increasing the order will increase 
accuracy, but since previous values must be stored for every point on the 1-D grid, the order 
should be kept as low as possible. 

Once the values needed for interpolation have been identified and calculated, any standard inter
polation algorithm, such as Lagrange Interpolation, can be used. After the interpolated edge Ez 
values have been calculated, they can then be supplied to the 2-D grid. The edge Hy values need 
not be interpolated. 

V. FDTD SIMULATION RESULTS 

Several experiments were performed using the methods described above using a variety of parame
ters. Excellent results were obtained for angles ranging from 0 to 85 degrees. The general method of 
each experiment was the same. A Gaussian pulse plane wave was created along the initial boundary 
at x = 0 with time variation corresponding to various propagation angles and with various values 
of R9 • In each of these experiments, the plane wave encounters a PML ABC at the back of the 
grid. The ABC in question is from [5] with 8 PML layers and conductivity profile ai = a 1 ( i/8) 3 ·7 . 

Figure 2a shows a 50x50 view sampled from a 200x200 grid. The propagation angle is 45° degrees 
and the Courant Number R9 is 0.5. Note that the wave propagates without edge distortion. Figure 
2b is the same wave 200 time steps later. The wave has encountered the ABC and no reflection is 
visible, even in the lattice corner, where the 1-D FDTD accurately extends the 2-D ABC interaction 
calculation to the edge. In the scattered field view 2c, which is at the same time step as 2b, the 
magnification has been increased by 5 orders of magnitude and the incident field has been removed. 
The features to note are that the scattered wave satisfies Snell's law and that the scattered wave is 
uniform along the 45° angle, i.e., the introduction of the 1-D FDTD on the right edge of the grid 
has not introduced any additional reflection artifacts. Figure 3a is once again a 50x50 view of a 
200x200 grid. Here the Gaussian pulse plane wave is incident on the ABC at 70°. Once again R9 

is 0.5 but now Rs' = 0.25/ cos 0. The 1-D wave is traveling at one-half the velocity needed to keep 
pace with the 2-D wave, so only every second time sample is passed to the 2-D grid. Figure 3b is 
the same wave 150 time steps later. As with 45° wave, the interaction with the ABC has produced 
no visible reflection. Once again it may be noticed that the scattered wave, Figure 3c, obeys Snell's 
law and is uniform along the Snell angle. Clearly the visible reflection is due solely to the plane 
wave interacting with the ABC, which is the desired information. 

VI. CONCLUSIONS 

A method for testing angle-independent ABCs has been described. By using a one-dimensional 
FDTD simulation on the left and right edges of a two-dimensional grid, a plane wave incident on 
a ABC at the back edge of the grid at a single angle can be created and propagated. This method 
will greatly simplify the analysis of angle-independent ABC performance. The method has been 
tested using a Gaussian pulse plane wave with a variety of parameters and has been shown to give 
excellent results. Finally, since all of the desired information is found in the 1-D simulations, it 
can be concluded that the analysis of angle-independent ABCs may be carried out using only 1-D 
simulations. 
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Figure 2a Gaussian pulse plane wave generated at x = 0 incident on the ABC at 45°. After 500 
time steps, the 1-D FDTD simulation at y = 200 aligns perfectly with the 2-D FDTD 
simulation throughout the grid. ABC exists for 192 :=; x :=; 199. 

Figure 2b Gaussian pulse of Figure 2a, 200 time steps later: total field. The pulse has encountered 
the ABC, and is almost completely absorbed. 
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Figure 2c Scattered field at the same time of Figure 2b showing the residual reflection of the ABC. 
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Figure 3a Gaussian pulse plane wave generated at x = 0 incident on the ABC at 70°. After 375 
time steps, the 1-D FDTD simulation at y = 200 aligns perfectly with the 2-D FDTD 
simulation throughout the grid. ABC exists for 192 ::; x ::; 199. 

Figure 3b Gaussian pulse of Figure 3a 150 time steps later: total field.The pulse has encountered 
the ABC and is almost completely absorbed. 

50 

Figure 3c Scattered field at the same time of Figure 3b showing the residual reflection of the ABC. 
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Modeling Dispersive Soil for FDTD Computation 
By Fitting Conductivity Parameters 
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Abstract The electrical parameters of soils 
are strongly dependent on their type, physical 
characteristics, and electromagnetic excitation fre
quency. When numerically modeling soil for sub
surface sensing simulation, it is particularly im
portant to account for this dispersion. When 
computations are done in the time domain, this 
dispersion becomes problematic. Using a differ
ence equation relation-and its corresponding Z
transform-to model dispersion between electric 
field and current leads to an approximation of 
complex conductivity in the form of a ratio of 
polynomials in z- 1 (where z = ejwt). 

It is shown that if the real dielectric constant 
is held constant at an average value and conduc
tivity only is matched with a single (2,2) Pade 
approximant O"(j) = (bo + b1Z- 1 + b2Z- 2)j(I + 
a 1z-l + a2Z- 2 ), then the resulting propagation 
number f](f) and decay rate a(!) will both closely 
match those corresponding to real soil measure
ments. In particular, a simple relation governing 
the frequency behavior of conductivity as a func
tion of soil moisture and density is presented, 
allowing for the efficient numerical prediction of 
wave propagation in soils of varying environmen
tal characteristics. Computed FDTD results for 
scattering in soil-with the computational lat
tice terminated with a "soil-tuned" PML absorb
ing boundary condition-clearly show the signif
icance of media dispersion 

l. INTRODUCTION 

Recent interest in ground penetrating radar for 
locating and identifying buried waste, land mines, 
and excavation obstacles has motivated the develop
ment of advanced computational tools to simulate 
wave propagation in soil. In particular, the need ex
ists to analyze ultra-wideband signals which might 
balance the trade-off between penetration depth and 
target resolution. Soil is a difficult medium to model 
since it is inhomogeneous, lossy, dispersive, and has 
an irregular surface boundary. For flexibility in pre
dicting radar scattering from both metal and plas
tic targets buried in soil with rock inclusions and 
topped with vegetation, the Finite Difference Time 
Domain offers significant advantages over other stan
dard computational techniques. 

To include the effects of frequency-dependent 
conductivity and dielectric constant, a dispersive 
variant of the FDTD algorithm must be employed. 

This variant is nontrivial, since unlike with the fre
quency domain constituitive relation, electric flux 
and field are related by convolution in the time do
main: D = f *E. The electric current is also a more 
complicated function of electric field in the time do
main, since conductivity cannot merely be included 
as part of a complex permittivity. 

The standard approaches to modeling disper
sion in the FDTD method involve either recursively 
computing the convolution (as cleverly developed 
by Luebbers, et. al. [1]); or by approximating the 
frequency domain dispersive complex dielectric con
stant with a series of simple rational functions (De
bye or Lorentz models) of jw [2,3], and then by mul
tiplying the constituitive relation by the denomina
tor and inverse Fourier transforming the result into 
the time domain. While these methods are effective, 
they are suffer from the limitations of numerical 
computation. Namely, that for good dispersive me
dia modeling, higher-order, multiple-pole dielectric 
constant functions are necessary; but as the order 
of the function increases, so does the required stor
age of previous time field values for the entire grid, 
along with the sensitivity and numerical instability 
of the algorithm. In particular, to suit the concep
tual elegance and simplicity of the FDTD method, 
it is important to keep the media model to at worst 
second-order. This presents a problem for the con
ventional complex dielectric constant models, which 
must accurately approximate both real and imagi
nary frequency dependencies simultaneously, using 
at most two poles. 

For certain types of media, however, it is pos
sible to separate the modeling of real dielectric con
stant and conductivity. In both biological tissue and 
soil, for instance, the lossy dispersive wave propa
gation is governed almost entirely by the frequency
dependent conductivity. For these media, the real 
dielectric constant, though frequency-dependent, does 
not significantly affect either the real propagation 
constant f], nor the decay rate a [4]. As such, their 
electrical characteristics can be well-modeled with 
a constant relative permittivity t

1
, and a second

order-in-frequency conductivity O". Further, by mod
eling O" in terms of powers of the Z-transform vari
able z- 1 (which readily transform to time delays), 
the conversion of the generalized dispersive Ohm's 
Law J(Z) = O"(Z)E(Z) to the time domain is partic
ularly straightforward [5]. The problem addressed 
with this report is the specific selection of modeling 
parameters for a typical, well-studied soil, that sim
ply and efficiently accounts for variations in density 
and moisture content. 



MoDELING PUERTO RICAN CLAY LoAM 
USING SECOND-ORDER CONDUCTIVITY 

Arguably the most widely-cited soil measure
ment study is that of Hipp [6], which provides con
ductivity and real permittivity of San Antonio and 
Puerto Rican clay loam as a function of moisture (as 
a percent of dry weight) m, and density (g/cc) d, for 
the frequency range 30 to 3840 MHz. The method 
for developing the general second-order conductiv
ity soil model is based on this experimental data set. 
While other soils will have different electrical char
acteristics, it is expected that general trends will be 
similar to that of Puerto Rican clay loam. Also, 
because of the wide variety of soils, and the diffi
culty in obtaining carefully generated soil measure
ments. every attempt was made to keep the model 
parameters as simple as possible, with mostly linear 
dependence on their physical characteristics. 

First, to maintain easy conversion to time do
main it is essential that the conductivity for all mois
ture and density cases have the form: 

The bi and ai coefficients will each be independent 
functions of m and d. The actual measured val
ues of conductivity correspond to the real part of 
O"(Z), with Z = ej 21rff:::..t, for FDTD time step .6.t. 
The imaginary part, divided by j2nJEo adds to the 
frequency- independent dielectric constant f

1
• In the 

time domain, Eqn. ( 1) becomes: 

and Ampere's Law, as usual, is given by: 

(3) 

In a previous publication [7], the best coeffi
cients for Puerto Rican clay loam were determined 
for each separate sample of moisture and density. 
Although useful from a numerical view, these coef
ficients are not very helpful for the practical problem 
of determining wave propagation for an intermedi
ate soil condition. To address this difficulty, a more 
unified approach is developed. 

For the various moisture and density cases mea
sured in [6], the best modeling coefficient values of 
Eqn. (1) vary considerably. However, the denom
inator coefficients: a 1 and a 2 . only differ at most 
by about 15%. Choosing fixed values a 1 = -1.6 
and a 2 = .64 and allowing variation of the bi co
efficients gives up a little accuracy but provides a 
more simple model. Instead of finding the values 
of bi which minimize a non-linear cost function for 
each moisture/ density case, the current modeling 

2 

method simply solves for b1, b2 , and b3 by setting 
the real parts of O"( Z) in Eqn. ( 1) to the measured 
values, at three particular frequencies: 120, 960, and 
3840 MHz. While this method arbitrarily empha
sizes the fit at these frequencies, it avoids justifying 
what type of cost function to use. A least-squares 
cost function for normalized error in O" and E', for 
example, is not as precise as for normalized error 
in the real and imaginary parts of the wave num
ber k = f3 - jo:; and neither appropriately weighs 
the error on decaying wave amplitude across the fre
quency range. 

The bi coefficients for constant density and mois
ture levels m = 2.5, 5, 10, and 20 are first de
termined, and then fit to simple functions of m: 
bi ~ biO + bi1 log m. It was found that while a very 
good fit is possible for each bi, the numerator of 
Eqn. (1) is small for low frequencies (where Z ~ 1), 
so that small errors in the bi approximations lead 
to large errors in O"(j). To avoid this cancellation 
problem, approximations are determined for b1 , b2, 
and the sum bs = bo + b1 + b2, with the sum having 
the form bs ~ bs0 +bs1m+bs2m 2. The resulting co
efficients for d = 1.2, 1.4, and 1.6 are given in Table 
1. The average dielectric constant chosen for these 
models is simply the measured value at 960 MHz. 
A quadratic least-squares fit to these data for each 
density, E( m) = Eo+ E1 m + E2 m 2 is given in Table 2. 

Table 1: Conductivity Numerator Coefficients 

Density (g/cc) 

Coeff. 1.2 1.4 1.6 

ho 0.0484917 0.0540739 0.0160977 
bn -0.136191 -0.162553 -0.188476 

b2o -0.0125623 -0.0220495 -0.0004839 
b21 0.0574154 0.0722359 0.0808164 

bso 1.14562E-4 7.06024E-5 1.1323E-4 
bs1 -3.9964E-6 -4.218E-6 -1.2685E-5 
bs2 1.01241E-6 1.92513E-6 3.54086E-6 

Table 2: Dielectric Constant Coefficients 

Density (g/ cc) 

Coeff. 1.2 1.4 1.6 

Eo 2.8 2.817 3.95 
fl 0.14 0.171 0.0632 
f2 0.012 0.0181 0.0318 

Figure 1 shows the accuracy of the approxima
tion for d = 1.4, and the extreme moisture cases, 
m = 2.5 and 20%. Plotted in this figure are the mag
nitude of the propagation constant f3 and decay rate 
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a of the model and the measured values of Puerto 
Rican clay loam as a function of frequency for the 
entire measured frequency range 30 to 3840 MHz. 
Also shown in the inserts are the fractional errors 
!:!:../3 I f3 and D.. a I a. The agreement is surprisingly 
good for such a simple model across two decades of 
frequency. It should be noted that the fit is even 
better for the intermediate moisture values 5 and 
10%, and similar for the other density cases. 

SOIL- TUNED PML ABC 

With all FDTD scattering problems, it is neces
sary to minimize reflections from the lattice bound
aries with absorbing boundary conditions (ABC). 
A novel ABC, the "soil-tuned" Perfectly Matched 
Layer (PML), has been developed. The soil-tuned 
PML is a modified version of the Berenger ABC (8,9) 
which specifically absorbs waves incident from dis
persive media. Since the efficiency of transmission 
of waves into the PML is dependent on the closeness 
of match of the transverse wave impedance on both 
sides of the layer, it is essential to select the electri
cal parameters of the PML appropriately. For soil 
parameters f~oil' (T soil' JL~oil' the desired impedance 
match conditiOn is: 

7Jsoil = 

= 
JL~oilJLo(1- juplwt:o) (4) 

(t:~oil- jusoi!lwt:o)t:o(1- juplwt:o) 

= 1JPML 

where up is the usual increasing conductivity profile 
of the PML layer. While the relations of Eqn. ( 4) 
correspond to the transverse impedance only for 
normal incidence on the PML layer, the split-field or 
auxiliary equation PML formulation ensure impedance 
match for all incidence angles, provided a match oc
curs for normal incidence. 

Eqn. ( 4) therefore specifies the effective dielec
tric constant and conductivity in the PML layer, 

f~ML = f~oil 

JL~ M L = JL~oil 
UpM L = Usoil + f~oil(T P 

uPML = UpJLolt:o 

(5) 

where the double conductivity term -Usoi!CTP/(wt:o? 
is neglected as negligible compared to f~oil for all 
but the largest PML conductivity layers. If Usoil 

were frequency independent, Eqn. (5) would pro
vide constant constituitive parameters for the PML 
equations which could be used directly in the time 
domain. Since Usoil is dispersive, however, the PML 
equations must make use of the auxiliary difference 

Eqn. (2), with bi coefficients in Eqn. (1) adjusted to 
account for the new conductivity values ofEqn. (5c). 
The soil-tuned PML can be thought of a modifica
tion of the dispersive media calculation with split 
fields and magnetic loss. 

NUMERICAL TEST CASE 

Using the formula derived in the above section 
to specify the electrical characteristics of Puerto Ri
can clay loam with density 1. glcc, and 10% mois
ture, a 2-dimensional FDTD calculation simulating 
plane wave scattering from a buried one wavelength 
diameter circular metal cylinder was performed. The 
geometry of the scattering lattice is shown in Fig
ure 2. The lattice is oversized in width, 500 grid 
points, to prevent reflections from the sides, and is 
terminated with an 8-cell soil-tuned PML, to pre
vent reflections from the back lattice boundary. A 
0.96 GHz modulated, gaussian envelope plane wave 
is initiated along the front grid boundary. One
dimensional FDTD calculations on the left and right 
edges ensure that the plane wave propagates from 
front to back without distortion. The time and 
space steps used are D..t = 20 ps and D..x = 4.6 mm, 
the nominal phase velocity is v = cl R = .383c, 
and the Courant number is held at 0.5. 

Rl 

Figure 2 Geometry of the scattering problem 

The four surface plots of Figure 3 show the elec
tric field distribution across the central 200 by 200 
grid point section of the computational grid (indi
cated in Figure 2) at various times. The upper left 
and right plots show the total and scattered field 
as the incident wave begins scattering from the cir
cular cylinder. The lower two plots show scattered 
field 100 and 300 time steps later. The scattering is 
symmetric, as expected. For the llOOD..t plot, the 
residual reflections from the PML ABC, at x = 100, 
are visible. The amplitude of these reflections are 
of the order of 10-3 , which is about 3% of the field 
amplitude incident on the back boundary. Although 
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still rather significant, the soil-tuned PML gener
ates about one-half the reflections of generated by a 
conventional PML used to terminate this dispersive 
medium. 

Figure 4 compares frequency independent and 
dispersive propagation, by showing the received sig
nals at a single point (R1 in Figure 2) 150 grid 
points, directly in front of the circular scatterer. 
For the frequency independent case (left plots), the 
conductivity is kept constant at the measured value 
at 960 MHz, 0.032 S/m. The upper plots give the 
total field for the two cases, indicating only minor 
differences in the modulated plane wave propaga
tion. It is interesting to note the much more signif
icant differences in the lower, scattered field plots. 
In particular, the wave amplitude of the dispersive 
medium is twice that of the uniform conductivity 
case, the propagation speed is slightly different, and 
the higher frequencies have been attenuated-with 
only nine discernible maxima compared to ten in 
the uniform case. 

CoNCLUSIONS 

A model of dispersive soil-with simple func
tional dependence on moisture and density-that 
can easily be adapted into the FDTD method has 
been developed. Based on a (2,2) Pade approxi
mant in transform variable z-t, the model requires 
storing at most four additional arrays per time cal
culation. For simplicity, the model maintains con
stant denominator coefficients, with numerator co
efficients being limited to a worst second order in 
moisture. 

Also presented is a soil-tuned PML absorbing 
boundary condition, which is a modified variant of 
the PML used to terminate dispersive media lat
tices. In this new formulation, the PML constitu
itive parameters are adjusted to ensure transverse 
impedance matching with the dispersive medium. 
Its performance for soil is twice as good as the con
ventional PML. 

Clearly, dispersion is important, and may have 
a greater effect in two or three dimensional scatter
ing applications. Neglecting to model the frequency 
dependence of soil in wave propagation simulation 
can lead to significant errors. The current model 
simply and effectively approximates the dispersion 
for Puerto Rican clay loam through the entire 30 to 
3840 MHz band. 
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A General Method for FDTD 
Modeling of Wave Propagation in 

Arbitrary Frequency-Dispersive Media 
William H. Weedon, Member, IEEE, and Carey M. Rappaport, Senior Member, IEEE 

Abstract- A general formulation is presented for finite
difference time-domain (FDTD) modeling of wave propagation 
in arbitrary frequency-dispersive media. Two algorithmic 
approaches are outlined for incorporating dispersion into the 
FDTD time-stepping equations. The first employs a frequency
dependent complex permittivity (denoted Form-1), and the 
second employs a frequency-dependent complex conductivity 
(denoted Form-2). A Pade representation is used in Z-transform 
space to represent the frequency-dependent permittivity (Form-
1) or conductivity (Form-2). This is a generalization over 
several previous methods employing either Debye, Lorentz, 
or Drude models. The coefficients of the Pade model may be 
obtained through an optimization process, leading directly to 
a finite-difference representation of the dispersion relation, 
without introducing discretization error. Stability criteria for 
the dispersive FDTD algorithms are given. We show that several 
previously developed dispersive FDTD algorithms can be cast as 
special cases of our more general framework. Simulation results 
are presented for a one-dimensional (1-D) air/muscle example 
considered previously in the literature and a three-dimensional 
(3-D) radiation problem in dispersive, lossy soil using measured 
soil data. 

Index Terms-Dispersive media, FDTD methods. 

I. INTRODUCTION 

T HE finite-difference time-domain (FDTD) technique is 
one of the most popular computational electromagnetic 

techniques for modeling time-domain wave propagation [ 1]. 
One of the advantages to using the FDTD technique is 
that all of the frequency components of the scattered field 
resulting from a broadband transmitted pulse may be com
puted simultaneously. The standard Yee FDTD algorithm 
[2] models inhomogeneous materials using spatially varying, 
but frequency-independent permittivity and conductivity. To 
model dispersive media, the standard Yee time-stepping equa
tions need to be modified. 
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Several techniques have been introduced recently to incor
porate frequency dispersion into FDTD models [3]-[ 17]. These 
dispersive FDTD algorithms have been shown to be important 
for computing optical pulse propagation [7], [II], predicting 
wave propagation in magnetized plasmas and in biological 
tissue [8], [14], [15]. One of our interests is in utilizing 
dispersive FDTD algorithms to model wave propagation in 
lossy, dispersive, inhomogeneous soils. This type of modeling 
is extremely useful for predicting the performance of ground
penetrating radar (GPR) systems in specified inhomogeneous 
environments, computing the electromagnetic fields scattered 
by various types of scattering objects such as buried waste 
drums, metallic or dielectric pipes, and pollution plumes, 
and for testing GPR detection and imaging algorithms with 
synthetic data. 

The existing frequency-dependent FDTD methods can 
roughly be categorized into three types: 1) methods that 
efficiently implement a discrete convolution of the dispersion 
relation D(r, t) = E(t)*E(r, t) [3], [4], [12]-[15]; 2) methods 
that discretize a differential equation relating D( r. l) to 
E(r. t) [5]-[9], [16]; and 3) Z-transform methods [10], [11]. 
The discrete convolution methods [3], [4] rely on either a 
Debye model involving single [3] or multiple [14] first-order 
poles, a Lorentz model utilizing second-order poles [ 4], or 
a Drude model [ 12], to implement the discrete convolution 
efficiently with a minimal storage requirement. The differential 
equation methods offer a more general representation for the 
dispersion relation, but they typically reduce to using either 
a De bye or Lorentz model [ 1 ]-[9]. One disadvantage of the 
differential equation method is that it is not clear which 
discretization formula to use (forward difference or backward 
difference) when high-order derivatives are involved [ 16]. In 
the Z-transform method proposed by Sullivan [I 0], [II], 
[ 17], a Debye or Lorentz dispersion model is converted 
to the time domain and sampled, a process analogous to 
impulse-invariance filter design in the signal processing 
literature. 

Here, we present a more general approach for disper
sive FDTD modeling, utilizing a Pade approximation of the 
complex frequency-dependent permittivity or conductivity in 
Z-transform space. This new method characterizes the disper
sive medium as a bank of digital pole-zero infinite-impulse 
response (IIR) filters [ 18], which leads directly to FDTD 
implementations. The generation of appropriate filter functions 

00 I 8-926X/97$ I 0.00 © I 997 IEEE 
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Fig. I. Representation of a dispersion medium as a subwavelength spatial 
array of linear time-invariant filters. 

for specific dispersive media is reduced to a digital-filter design 
problem, where both the magnitude and phase characteristics 
are specified. 

Two new dispersive FDTD algorithms employing Pade 
approximations in Z-transform space are developed here. The 
first method, which we shall refer to as Form-1, utilizes a Pade 
model of dielectric permittivity E(Z), while the second, Form-
2, utilizes a Pade model of conductivity O"(Z). We discuss 
some subtle differences between the two methods, particularly 
in terms of their stability and flexibility in fitting measured 
data. 

The design problem of finding optimal filter coefficients to 
match measured permittivity and conductivity data, that result 
in stable, accurate FDTD algorithms is touched on briefly here, 
but shall be considered in more detail in a future paper. 

II. DEVELOPMENT OF FORM-I AND 
FORM-2 DISPERSIVE FDTD ALGORITHMS 

Formulation of the dispersive FDTD algorithms begins with 
the assumption of a general inhomogeneous, isotropic, and 
causal dispersive medium. Throughout this paper, attention 
is restricted to the case of dispersive dielectrics, where we 
assume that J.L = J.Lo. All of the results, however, may 
be extended to the case of dispersive magnetic media in a 
straightforward manner. 

If a volume V of the dispersive dielectric medium is 
divided into subwavelength cells of volume .6.x.6.y.6.z, as 
in Fig. 1, each subwavelength cell in the dispersive medium 
can be thought of as a linear time-invariant filter that acts 
on the electric field E(r, t). The entire medium may be 
viewed as a spatial filter array, which can be implemented 
in two particular ways: 1) as a complex permittivity filter 
D(r. Z) = E(r, Z)E(r, Z) (Form-1 algorithm) or 2) as a 
complex conductivity filter Jc(r, Z) = O"(r, Z)E(r, Z) with 
constant real permittivity E( r) (Form-2 algorithm). 

A. Permittivity Filter (Form-1) Algorithm 

In developing the permittivity filter (Form-1) algorithm, we 
include dispersion in the Maxwell equations as a frequency
dependent permittivity. In the time-domain Ampere law 

oD(r. t) 
V' X H ( r' t.) = at + J s ( r' t) (1) 

J s ( r, t) represents a driving source current and 

D(r, t) = E(r, t) * E(r. t). (2) 

In (2), the frequency-dependent dispersion is represented as 
a temporal convolution of the electric field with a time
dependent permittivity. The convolution integral implied by 
(2) has limits t = 0 to t = oo since we consider only causal 
media and do not consider spatial dispersion. The vector r in 
(2) is treated only as a parameter. 

To derive the dispersive finite-difference algorithms, we first 
define the Z-transform of the temporal vector field 

n = 0, 1, · · ·, Nt - 1 (3) 

with A(r, t) representing either E(r, t), H(r, t), D(r, t), 
E(r, t), or O"(r, t) as1 

A(r, Z) = .6.t L A 11 (r)z-n. (4) 
n=O 

Equation (2) becomes 

D(r, Z) = E(r, Z)E(r, Z) (5) 

in Z-transform space. 
The permittivity Z-transform function E( Z) may be effec

tively modeled using a Pade approximation in Z; that is given 
in 

E(r, Z) 
Eo 

bo(r) + b1 ( r )Z- 1 + b2(r)Z-2 + · · · + b1vb-1 (r )z-UVb- 1) 
1 + a1 (r)Z- 1 + a2(r)Z- 2 +···+aNa (r)z-lva 

(6) 

One major advantage to using a Pade approximation in Z 
is that such a dispersion relation leads directly to a finite
difference implementation. 

Consider the one-dimensional (1-0) case of a plane wave 
(Ex, H y) traveling in the z direction. The Form-1 dispersive 
FDTD algorithm may be summarized as follows: 

Hn+1/2 = Hn-1/2 _~[En _En ] (7) y, k y, k J.Lo .6.z x, k+1/2 x, k-1/2 

nn+1 Dn .6.t [Hn+1/2 Hn+1/2] 
x, k+1/2 = x. k+1/2 - .6,z y. k+1 - y. k 

_ .6.tJn+1/2 (8) 
s, x, k+l/2 

En+1 _ 1 { ~ [Dn+1 
X, k+l/2 - b LC X, k+l/2 0, k+1/2 '-0 

+ a1, k+l/2D~. k+1/2 

+ · · · + al\·0 .k+1/2D:.~~l~-2] 
b En b En- 1 

- 1, k+1/2 x, k+l/2 - 2, k+l/2 x, k+l/2 

b En+2-Nb} -. '.- Nb-1, k+l/2 x, k+l/2 (9) 

1 The .6. 1 factor [10]. [11] in (4) allows us to approximate the continuous
time Fourier transform of A(r. t) as 

A(r ...... •) = 1= dt A(r, t)e-J"' 1 
::::: A(r, Z = e1 ~· 6.t) 

where we assume that A(r. t) = 0 fort< 0. 
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where the electric field Ex and flux density Dx are evaluated at 
t = n .6.t and z = (k + 1/2) .6.z, and the magnetic field Hy is 
evaluated at t = (n + 1/2) .6.t and z = k .6.z on the staggered 
Yee grid. The two-dimensional (2-D) and three-dimensional 
(3-0) Form-1 dispersive FDTD algorithms may be derived in 
a similar manner. 

B. Conductivity Filter (Form-2) Algorithm 

For the conductivity filter (Form-2) algorithm, we rewrite 
Ampere's law (1) as 

BE(r, t) 
V' X H(r, t) = EoEr(r) at 

+ Jc(r, t) + Js(r, t) (10) 

where J c ( r, t) represents an induced source current given by 

Jc(r. t) = a(r, t) * E(r, t). (11) 

and J s ( r, t) is again a driving source current. In (1 0), Er ( r) 
is not time-dependent and, therefore, not dispersive. The 
dispersion is included only in the time-dependent conductivity 
a(r, t). In Z-transform space, (11) becomes 

Jc(r, Z) = a(r, Z) E(r, Z). (12) 

The conductivity Z-transform functions may be effectively 
modeled using a Pade approximation in Z 

a(r, Z) = 
do(r) + d1(r)Z- 1 + d2(r)Z- 2 + · · · + dNr 1(r)z-(Nr 1) 

1 + c1(r)Z- 1 + c2(r)Z-2 + · · · + CNc(r)Z-Nc 
(13) 

Oiscretizing (10) and, again, examining the 1-D case for 
brevity 

En+1 En 
X, k+1/2 = X, k+l/2 

.6.t [Hn+l/2 _ Hn+1/2] 
EoEr, k+l/2 .6.z y, k+1 y, k 

.6.t Jn 
E E 

c.x,k+l/2 
0 r, k+1/2 

__ .6._t __ 1 n+1/2 
EoEr, k+1/2 s, x, k+1/2' 

(14) 

The 1;~~,~ 112 term can be obtained by the usual averaging of 
the conduction current at time steps n and n+ 1. In Z-transform 
space, the above becomes 

(15) 

where 

(16) 

The rational function F(r, Z) may be written explicitly in the 
form 

F(r, Z) = 
eo(r) + e1(r)Z-1 + · · · + eN,- 1(r)z-(Ne- 1) 

1 + c1(r)Z-1 + c2(r)Z- 2 + · · · + cNJr)Z-Nc 
(17) 

where eo = Er + (.6.t/2Eo) do, e1 = Er(c1 - 1)+ (.6.t/2Eo) 
(d1 +do), · · ·, en= Er(Cn- Cn-1) + (.6.t/2Eo) (dn + dn-1), 
etc., and Ne =max {Nc + 1, Nd}· Combining (15) and (17), 
the 1-D Form-2 dispersive FDTD algorithm is then 

Jn+1/2 _ ~[Hn+1/2 _ Hn+1/2] 
x, k+1/2 - Eo.6.z y, k+1 y, k 

En+1 -1 {Jn+1/2 Jn-1/2 
x, k+1/2 = e x, k+1/2 + c1, k+l/2 x, k+l/2 

0, k+l/2 
Jn+1/2-Nc + · ·' + CNc,k+1/2 x,k+1/2 

(18) 

En En-1 + e1, k+1/2 x, k+1/2 + e2, k+l/2 x, k+1/2 
En+2-Ne + ... + eNe-1, k+1/2 x, k+l/2 

+ .6.t [Jn+1/2 + c1Jn-1/2 
Eo s,x,k+1/2 s,x,k+1/2' 

Jn+1/2-Nc]} + ... + CNc s, x, k+1/2 (19) 

along with the discretized Faraday's law (7). The 2-D and 3-0 
dispersive algorithms follow in a similar fashion. 

C. Comparison of Form-] and Form-2 Algorithms 

Comparing the Form-1 and Form-2 dispersive FDTD al
gorithms, it may at first appear that the choice of modeling 
complex permittivity E(Z) versus complex conductivity a(Z) 
is merely definitional. However, there are significant differ
ences in terms of stability2 and their ability to model arbitrary 
dispersion functions . 

Beginning with a permittivity function E(r, Z) of the form 
(6), and substituting (5) in (8), (8) may then be written in the 
form of (15) if we let 

Then, equating (20) with (16), we find that E(Z) and a(Z) are 
related by the biline~ form 

[ 
.6.t (1 + z- 1

) ] 
E(Z) = Eo Er + 2Eo (1 _ z- 1 ) a(Z) · (21) 

2 Stability relations for Form-1 and Form-2 algorithms are given in 
Section III. An air/muscle example is shown in Section V-B, whereby stability 
is improved by converting from a Form-1 to a Form-2 algorithm. 

3 Equation (21) may also be obtained from the continuous Maxwell equa
tions in the Laplace transform (s) domain with the substitution s = (2/ 6.t) 
[(1- z- 1 )/(1 + z- 1 )]. This technique, known as the bilinear transform 
method, is commonly used in signal processing to convert analog filters to 
digital filters. 
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Equation (20) allows us to convert between Form-1 and 
Form-2 dispersive FDTD algorithms. Note, however, that 
(21) typically increases both the numerator and denominator 
polynomials by one degree, whether it is used to convert 
(J(Z) -----+ E(Z) or E(Z) -----+ (J(Z). 

The Form-1 and Form-2 algorithms differ in their ability 
to match measured data with fixed-order polynomials in the 
numerator and denominator of E(Z) and (J(Z). This may be 
seen by examining their asymptotic properties. Setting Z = 
ejwb., and examining the limit w ---+ 0, limw-+O 'Sm[E(Z)] = 
w ~ 0 while limw-+O Re[(J'(Z)] = Constant. The imaginary 
part of E(Z) gives rise to an effective conductivity, which 
is zero in the de limit. Many materials containing polar 
molecules, such as soil with any significant moisture content, 
have a nonzero de conductivity. This finite de conductivity 
may be modeled with a Form-1 algorithm with a pole on 
the real Z-axis, but is more naturally modeled with a Form-2 
algorithm. 

III. STABILITY CRITERIA 

One of the most important considerations for a time
stepping algorithm such as the Form-1 and Form-2 dispersive 
FDTD algorithms is its stability. Stable physical phenomena 
can lead to unstable time-stepping algorithms, if algorithmic 
parameters are not set properly. 

The stability formulas for the Form- I and Form-2 dispersive 
FDTD algorithms are more complicated than the standard Yee 
algorithm due to the presence of the IIR filter arrays modeling 
E(r, Z) or (J(r. Z). As shown below, the stability formula is 
not determined by the poles of E(Z) or (J(Z) alone, but is 
complicated by the frequency of the wave component and the 
direction of wave propagation inside the FDTD grid. A similar 
stability analysis was presented recently for the differential 
equation methods employing the Debye and Lorentz formulas, 
although we derived our stability analysis independently. 

For a homogeneous dispersive medium, the Ampere and 
Faraday laws may be written in Z-transform space as 

Ex, i,j, k+1/2F(Z) 

.6.t { 1 -- -H.·· -H · · - A [ Z,t,J+1,k z,t,),k] 
Eo uy 

--H · · -H · · 1 } .6..:[ y,t.y,k+1 y,t,y,k] (22) 

(1-Z-1)H ··k y, t, J, 

.6.t -1 { 1 [ ] =-Z -E· ·-E· · A Z,t+1/2,y,k z,t-1j2,),k 
/lo Ll.x 

- ~z [Ex,i,j,k+1/2- Ex,i,j,k-1/2]} (23) 

and similarly for the other field components. We now de
fine the time-space transform, analogous to the temporal Z 
transform as 

N; N 3 Nk 

Hy(U, V. W. Z) = L L L Hy,m,n,p(Z)Umvnwp 
m=1 n=1 p=1 

(24) 

where (Ni, Nj, Nk) represent the number of space points in 
the FDTD lattice. The space-time transform of the other field 
components follow in a similar fashion. Equations (22) and 
(23) then become 

- .6.t [ 1 -1 - 1 -1 - ] ExF(Z) =- - (V - 1)Hz- -(W - 1)Hy 
Eo .6.y .6.z 

(25) 

and 

- .6.t [ 1 - 1 - ] (Z- 1)Hy = - -. (1- U)Ez- -(1- W)Ex . 
/lo .6.x .6..: 

(26) 

Similarly, we find that 

- .6.t [ 1 - 1 - l (Z- 1)Hz = - - (1- V)Ex- -(1- U)Ey . 
/lo .6.y .6.x 

(27) 

Substituting (26) and (27) into (25) 

(Z- 1)ExF(Z) = .6.; [A\ (V- 2 + v- 1 )Ex 
JloEo uy 

1 1 -+ - (W- 2 + w- )E .6_2 X 
z 

1 1 -- -- (V- - 1)(1- U)Ey 
.6.x.6.y 

1 1 - ] --- (w- - 1)(1- U)Ez . (28) 
.6.x.6.z 

Equation (28) is essentially the time-space transform of 
the x component of the vector wave equation. For a source
free homogeneous medium,4 \7 · E = 0. Enforcing the 
divergenceless condition on the electric field, we can rewrite 
(28) as 

(Z- 1 )ExF(Z) 

= _t -(u- 2 + u- 1
) +- (V- 2 + v- 1 ) .6.

2 
[ 1 1 

JloEo .6.; .6.~ 

1 -1 ] -+ .6.; (W- 2 + W ) Ex. (29) 

Setting .6.x = .6.y = .6.z, we can rewrite the above as 

(30) 

where r = .6.t/ .6.z ..jiiOE is the usual Courant number and 

s 2 = - i [(U- 2 + u- 1
) + (V- 2 + v- 1

) 

+(W-2+W- 1
)]. (31) 

From (24), the choice U = eJk:r f1x, V = ejky b.y, W = 
ejk. b.= corresponds to a plane wave with wave vector k = 

4 Imposing the v · E = 0 condition can also be justified by assuming plane 
wave propagation. If the FDTD algorithm is not stable for plane waves, the 
algorithm is not stable at all. 
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ikx+ :Oky + zkz. Then, 

8
2 = sin2 ( kx ~x) + sin2 ( ky ~Y) + sin2 ( kz ~z) 

(32) 

and it is clear that .-; 2 varies between zero and Ndim· where 
Ndim is the number of spatial dimensions in the simulation. 
Moreover, s depends on the frequency of the plane wave as 
well as the propagation direction, since k = w / ck, where 
k = k/lkl. 

Equation (30) is the discrete dispersion relation for the 
dispersive FDTD algorithm. The Z variable can be thought of 
as the gain of the Ex field from time step n to n + 1. Stability 
requires that this gain satisfy I Z I < 1. Indeed, the discrete 
dispersion relation (30) will have several roots Z1, l = 1, 2, 
· · · , Nroots and the stability criterion for the dispersive FDTD 
algorithm requires that all of the roots Z1 to (30) satisfy 
IZ1I < 1, l = 1, 2, · · ·, Nroots· 

We now consider certain special cases of (28). First, for a 
nondispersive, lossless medium, (16) gives 

F(Z) = Er(1- z- 1
) (33) 

which reduces (30) to the usual Courant condition. For a 
Form-1 dispersive FDTD algorithm 

F(Z) = E(Z) (1- z- 1 ). 

Eo 
(34) 

For a Form-2 algorithm 

F(Z) = Er(1- z- 1
) + .6.t (1 + z- 1 )0"(Z). (35) 

2Eo 

The above development of the stability criterion involved 
the source-free wave equation. The stability criterion given 
by (28) may also be derived from the poles of the source
driven wave equation. That is, if we add a free source current 
.Is, x term to (22), and solve for the Ex field in terms of 
the free source current, we find that (28) is exactly the 
denominator polynomial containing the poles of the transfer 
function mapping .Is, x to Ex. 

Because the dispersion relation given by (28) is dependent 
on the model parameters, the maximum allowable value of r 
cannot be independently specified as it is with nondispersive 
media. Given a set of parameters for a second-order filter, the 
model can be tested for the stability of a particular choice of 
.6.t and .6.z by numerically finding the roots Z1 of the resulting 
polynomial when s2 is swept from zero to Ndim• and ensuring 
that all roots are within the unit circle. For a Form-2 dispersion 
with Nc = Nd - 1, Nroots = Nc + 2. 

IV. MINIMUM STORAGE IMPLEMENTATIONS 

The goal of a computationally efficient FDTD algorithm is 
to perform accurate field calculations with minimal computer 
tiflle and data storage requirements. The Form-1 and Form-
2 dispersive FDTD algorithms require only a few additional 

calculations per time step over the standard Yee algorithm. 
The modification of the standard Yee FDTD algorithm to 
include dispersion can significantly increase the storage re
quirement. We can minimize storage while maintaining the 
accuracy of the computations in two ways: 1) by choosing 
filter functions E( Z) and O"( Z) that contain just sufficient 
order to accurately model the wave physics for the fre
quency range of interest and 2) ensuring that the underlying 
computer algorithms do not contain unnecessary storage ar
rays. 

Equation (9) appears at first to require storage of the 
previous time values of both the Ex and Dx fields. This 
observation was made by Joseph et al. [7], and later claimed 
by Luebbers [4] to be an advantage of the discrete convolution 
method over the differential-equation method. Similarly, (19) 
appears to require previous time storage of both the Ex and 
Ix fields. However, storage of both Ex and Dx or Ex and 
Ix is unnecessary, as was pointed out by Young [9] using a 
state-space approach. Other filter implementations may also 
be used that eliminate the need for storing both D x and Ex 
or Ex and Ix. 

We illustrate minimum storage implementations of the 
Form-1 and Form-2 dispersive algorithms. For the Form-
1 algorithm, we assume for demonstration a second-order 
permittivity model. Dropping the space dependence for 
notational convenience, (9) becomes 

(36) 

A direct implementation of (36) above would required five 
storage arrays: E~, E~- 1 , D~+ 1 , D~, and D~- 1 . Storage is 
not required for E~+ 1 since E~+ 1 and E~ overwrite their 
previous values stored in E~ and E~- 1 , respectively. 

Equation (36) above may be rewritten in the form of the 
following three equations: 

En+1 = ~ [~Dn+1 + wn] 
X bo Eo X 1 

(37) 

wn+1 = a1 Dn+1 _ b En+1 + wn 
1 Eo X 1 x 2 (38) 

W n+1 = a2 Dn+1 _ b En+1 
2 X 2 X ' Eo 

(39) 

The filter structure represented by (37)-(39) is known in 
the signal processing literature as a transposed direct Form-2 
structure (not to be confused with a Form-2 dispersive FDTD 
algorithm). Note that (37)-(39) do not require previous time 
storage of the Ex or Dx field, but do require storage of Wf 
and W4 at time step n only, since W1 and W2 overwrite their 
own previous time values. Hence, (36) may be implemented 
using four storage arrays instead of five. As usual, H;+112 

must also be stored to implement Faraday's law. Although 
the savings does not appear significant, it would increase with 
higher order permittivity functions. 
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For the Form-2 dispersive FDTD algorithm, with a second
order conductivity model, (19) may be rewritten as 

En+1 = -1 {Jn+1/2 + C Jn-1/2 + C Jn-3/2 x x 1x 2x eo 

E n+ En-1 En-2 + e1 x e2 x + e3 x 

+Dot [Jn+1/2 + C Jn-1/2 + C Jn-3/2]} s,x 1 s,x 2 s,x . Eo 
(40) 

The direct implementation of this equation requires five stor-
E n En-1 En-2 Jn-1/2 Jn-3/2 · l age arrays: x, x , x , x , x , smce on y 

the three most recent E fields need be stored. Equivalently, 
H;-112 and H;- 312 may be stored in place of J;- 112 and 
J;- 3

/
2

, respectively, by (18). The minimal storage represen
tation of the above is then 

(41) 

(42) 

(43) 

W n+1 = e En+1 
3 3 X • (44) 

Four storage arrays are required in the above: £';):+ 1, w~+ 1 , 
w;+l, and w;+1

. Again, one additional array is required for 
H;+l/2 in implementing Faraday's law. Note that although 
Ne = max{Nc + 1, Nd}, the Form-1 and Form-2 algorithms 
require the same storage for this case. 

V. RELATION TO PREVIOUS METHODS 

We now demonstrate that nearly all of the dispersive FDTD 
methods that have been considered in the literature may be cast 
as either Form-1 or Form-2 dispersive FDTD algorithms. The 
advantage to using our approach here is that special algorithms 
do not have to be developed for Debye, Lorentz, Drude or 
other media models. Once the Form-1 and Form-2 algorithms 
are developed, specific E(Z) or CJ(Z) model parameters may 
be generated for a particular situation, without the need to 
develop a new computer code. 

A. Differential Equation-Based Algorithms 

We begin by considering the differential equation methods 
[5]-[8]. The idea behind these methods is that the time-domain 
dispersion relation is modeled as a differential equation relat
ing D(r, t) to E(r, t) 

a a2 

h0 E(r, t) + h1 at E(r. t) + h2 at2 E(r, t) + · · · 

a a2 

= D(r, t) + 91 a D(r, t) + 92-2 D(r, t) + · · · . (45) t at 

TABLE I 
COEFFICIENTS OF FoRM-) DEBYE AND LORENTZ MEDIUM-DISPERSIVE 

FDTD ALGORITHMS CONSIDERED BY JOSEPH et a/. [7] 

Debye Model 
bo = E,.::lc±2noo 

.::lr±2r 
b _ E,.::lc-2TE 00 

1 - .::lr+2r 

a _ .::l,-2r 
1 - .::lr+2r 

Lorentz Model 
J... _ _ ~.o.~3.::l~t.±26.::lrEco±2Eo 
UO- w5.::lt+26.::lr+2 
b _ -4Eoo 

1 - ~.o.~~.::lt+26.::lr±2 
J,.. _ _ ~.o.~~.::l~E 1 -26.::lrEoo±2Eoo 
~ - w~.::l~+26.::lr+2 

-4 
a1 = ~.o.~g.::lt+26.::lr+2 

w .::l 2 -26.::lr+2 
a2 = ~.o.~~.::l~+26.::lr+2 

In Fourier space, the permittivity function can be seen as a 
Pade approximation in jw: 

E(w) = ho + h1(jw) + h2(jw)
2 

+ · · · 
1 + 91(jw) + 92(jw) 2 + · · · 

(46) 

The differential equation is then discretized, using either 
forward, backward, or central difference approximations for 
the partial derivatives. There is some discretization error that 
is introduced by the discretization process, resulting in error 
between the discrete spectrum and the continuous spectrum. 
This discretization error has also shown to give rise to a 
misrepresentation of the actual relaxation time of the medium 
and to produce phase errors . 

One of the benefits of using this technique is that (46) seems 
to offer flexibility in fitting arbitrary permittivity functions. 
However, we must keep in mind that when (45) is discretized, 
a difference equation will result, and the actual discretized 
permittivity function can be represented as a Pade model 
in Z-transform space. Hence, for fitting arbitrary media, the 
differential equation methods offer no advantage over our 
technique, and it is preferable to optimize the Pade model 
coefficients in Z-transform space to avoid introducing dis
cretization error. 

We have developed the equivalent Form-1 Pade models 
for E(Z) directly from the difference equations presented by 
Joseph et al. [7]. For the first-order Debye algorithm, the 
permittivity function is of the form 

Es - Eoo 
E(w)=Eoo+ .. 

1 + JWT 
(47) 

For the second-order Lorentz algorithm 

Es - Eoo 
E(w) = E00 + 2 .

2 
b 2 . (48) 

w0 + J w - w 

The coefficients of the Form-1 dispersive FDTD algorithms 
corresponding to (47) and (48) are listed in Table I. 

B. Z-Transform Algorithms 

The Z-transform algorithms [ 1 0] are the most similar to our 
formulation of all dispersive FDTD algorithms. The essence 
of the Z-transform method is that one begins with a specific 
frequency-domain analytic form for the dispersion relation, 
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such as the Debye or Lorentz model, which is inverse Fourier 
transformed to obtain a time-dependent permittivity function 
E( t ). The time-dependent permittivity is then sampled by 
setting t = n~t. and its Z-transform is computed analytically. 

This procedure is exactly analogous to the design of dig
ital filters via the impulse invariance method. One of the 
advantages to the impulse-invariance technique is that a stable 
continuous filter always results in a stable discrete filter 
E(Z) [18]. However, note that a stable permittivity filter 
does not guarantee that the resulting FDTD algorithm will 
be stable. Aliasing problems encountered in the design of 
high-pass digital filters using impulse invariance are avoided 
because of the stringent FDTD .X/10 minimum grid sampling 
requirement, which ensures that the FDTD algorithms always 
operate far below the Nyquist frequency. 

Sullivan considered a Debye model with an added conduc
tivity term as an approximate model for muscle tissue in the 
frequency range 10-915 MHz [10]. The model is given as 

( ) 
E1 a 

E W = Er + . + -.-
1 + )Wt1 JWEo 

(49) 

where Er = 50, E1 = 110, a = 0.62 S/m, t1 = 5.88 ns. 
From (49), we apply the impulse-invariance procedure [18] 

to obtain 

b + b z-1 + b z-2 
( Z) o 1 2 (50) 

E = (1-Z- 1 )[1-e-i~qft~z- 1 ] 

where bo = Er+E1~t/t1 +~ta/Eo, b1 = -[Er(1+e-~,ft 1 )]+ 
E1~t/t1 + ~ta/Eoe-~,ft 1 ,b2 = Ere-~,ft 1 • We have tried 
implementing this permittivity filter as a Form-1 dispersive 
FDTD algorithm, but have found that the algorithm is unstable 
due to the fact that the denominator polynomial of (50) 
contains a pole on the unit circle. Sullivan was able to 
implement a stable algorithm by isolating the pole on the unit 
circle in a parallel filter. 

An alternate, more convenient way to implement the disper
sive model given by (50) is to convert the Form-1 algorithm 
to an equivalent Form-2 algorithm, since the conversion factor 
contains a pole at Z = 1. Employing (20) 

(51) 

Note that the pole at Z = 1 in (51) has been cancelled by a 
zero at Z = 1 that is inherent in the Form-2 algorithm. The 
Form-2 algorithm with F(Z) given by (51) was found to be 
numerically stable. 

We simulated wave propagation in a medium consisting 
of a 1-0 air/muscle interface. For this problem we chose a 
1000 cell simulation and chose time and space step sizes of 
~t = 6.65 ps and ~z = 2.0 mm. Sullivan [10] reported using 
a grid-space size of ~z = 10.0 mm. However, this space step 
size is too large for this problem since it does not satisfy the 
~z < Amin/10 grid-dispersion requirement for this medium. 
For example, at 915 MHz, the permittivity may be determined 
fmm (49) to be t:(w) = 50.096 -j15.448, which corresponds 
to a wavelength of .X = 44.78 mm in the medium. 

0.95 .-----...----......----.----....,......---, 

~ 0.9 
·;:; 
s 
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. 2 
u 
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c 
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+ FDTD (dz= 2.0mm) 

0 FDTD (dz= 10.0 mm) 

0. 75 .___ __ ......._ __ __._ __ ___._ __ __. __ ____. 
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Fig. 2. Magnitude of reflection coefficient for air/muscle interface computed 
using analytic solution and Form-2 dispersive FDTD algorithm. Solid line is 
analytic solution, Form-2 dispersive FDTD algorithm results are represented 
by(+) symbols for~= = 2.0 mm and (o) for~= = 10.0 mm. Sullivan's 
algorithm [ 10] gives identical results to Form-2 dispersive algorithm. 

The reflection coefficient for the air/muscle interface com
puted using the Form-2 dispersive FDTD algorithm is shown 
in Fig. 2 and is compared against the analytic frequency
domain normal-incidence reflection coefficient, where the per
mittivity was determined from (49). Note in Fig. 2 that we 
calculated the reflection coefficient for both ~z = 2.0 mm and 
~z = 10.0 mm. The reflection coefficient with ~z = 2.0 mm 
is very close to the exact result, while the result for ~" = 10.0 
mm contains significant error at the higher frequencies. We 
have implemented Sullivan's model for this case, and it yields 
identical results. 

C. Discrete Convolution Algorithms 

In the discrete convolution approach, the dispersive FDTD 
problem is solved by first assuming a particular analytical 
form for the permittivity function E ( w) in the frequency
domain, and implementing a discrete convolution using only a 
very small time history. We examine two discrete convolution 
approaches: one based on the Debye model [3], and the other 
based on a multiple Lorentz approximation [4]. 

The algorithm involving a first-order Debye model [3] may 
be implemented exactly using our general framework. The 
algorithm that involves multiple Lorentz poles [4] involves 
a complex filter operation. We have successfully modeled the 
air/fourth-order medium using a Form-1 dispersive algorithm 
with a real filter. However, we shall defer discussion of 
this example to another paper since the implementation is 
somewhat involved and the example does not illustrate how 
to model arbitrary media. 

We have converted first-order Debye model algorithm into 
the form of our Form-2 dispersive algorithm, with the parame
ters of F(Z) listed in Table II. In the limit ~t « t 0 , which is 
generally true when the dispersion occurs within the operating 
frequency band of the FDTD algorithm, we have that xo :::::::: 
( E8 - E00 ) ~t/t0 • The above algorithm is then identical to 
the algorithm that we used to model the air/muscle interface 
without the conductivity term. 
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TABLE II 

PARAMETERS FOR F(Z) FOR FORM-2 DISPERSIVE FDTD ALGORITHM 

CoRRESPONDING TO LUEBBER'S FIRST-ORDER DEBYE MODEL ALGORITHM [3) 

bo = Xo + Eoo 

b1 = - [xo + Eoo(l + e-~tfta)] 
~ = Eooe-~tfta 

a1 = -e-~•/ta 

Xo = (t.- Eoo)[l- e-~tfta] 

TABLE III 
MODEL COEFFICIENTS FOR FORM-2 DISPERSIVE FDTD ALGORITHM MODELING 

PuERTO Rico CLAY LOAM WITH D = 1.4 glee AND M = 10% 

do = .0901332 
dt = -.0792821 
d2 = -.00947176 

Ct = -.87 
C2 = .06 
Er = 6.2 

VI. DISPERSIVE SOIL MODELING 

We now consider the problem of modeling wave propaga
tion in an arbitrary dispersive dielectric based on measured 

data. In particular, we investigate the modeling of wave 

propagation in dispersive, lossy soils. The permittivity and 

conductivity of soils at microwave frequencies is known to 

vary with density D and moisture M as well as frequency. 

Representative variations for San Antonio and Puerto Rico 

clay loam, as functions of D, M, and f, are given in [19]. 
This soil medium is notoriously difficult to model with a low

order Debye, Lorentz, or Drude model. Finding parameters 
which provide adequate simultaneous agreement for both the 

real and imaginary permittivity functions is problematic. 
To model the wave propagation, we use a Form-2 dispersive 

FDTD algorithm that is second-order in both numerator and 

denominator. A conductivity function of the form given by 

(13) is used with Nd = 3, Nc = 2. The specific model 
coefficients that we have obtained for Puerto Rico clay loam 

with D = 1.4 glee and M = 10% are given in Table III. 

The time and space step values used are ~t = 20 ps and 

~x = ~Y = ~z = 5 mm. The design problem of obtaining 
the model coefficients will be discussed in a following paper. 

Fig. 3 shows the real components of the effective relative 

permittivity (a) and conductivity (b) for the clay loam based 

on the Parle approximation given by (6) and the data in Table I 
(solid lines), where we have substituted Z = ej2-rrftJ.t in (13). 

The data measured by Hipp is indicated by the crosses (x) in 
Fig. 3. 

It is interesting to note in Fig. 3 that although we speci

fied a real frequency-independent relative permittivity Er (see 

Table III), there is some variation in the Pade model's effective 

permittivity. The reason is that the conductivity filter cr(Z) 
has an imaginary component that gives rise to an effective 

permittivity. This is a direct result of the fact that it is not 

possible to design a causal, stable IIR filter with zero phase 
[ 18]. 

To illustrate that our Form-2 dispersive FDTD algorithm is 

accurate and stable for 3-D wave propagation, we investigated 

the fields radiated by a short electric dipole. The electric field 
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Fig. 3. (a) Real component of relative permittivity. (b) Conductivity for clay 
loam with density D = 1.4 glee and moisture Af = 10%. Pade model (solid) 
is compared to measured data (x) [ 19]. 

radiated by the dipole is given as 

E(r, w) = -jw 11(1 + \7\72 ) . ille-jkr s(w) 
k 4?Tr 

(52) 

where 1 is the identity operator and s ( w) is the source 
frequency spectrum. The time-domain analytic solution for the 
3-D radiated fields from the small dipole was generated by 
numerically inverse Fourier transforming the field computing 
using (52). The source function s(t) was derived from a Kaiser 
wavelet with a passband extending from 30.0 MHz to 2.5 GHz. 

Fig. 4(a) shows the Ey component of the 3-D Form-2 FDTD 
solution and the analytic solution for the fields radiated by the 
short dipole located at the origin, and observed at (x = 1.10 
m, y = .420 m, z = .420 m) in the clay loam. Note in the 
figure that only the time window [10 ns, 18 ns] is shown, since 

the fields are insignificant outside this region. Fig. 4(b) shows 
the difference between the numerical and analytic solutions. 
The Ex and Ez components were computed and have similar 
characteristics, but are not shown here. 

VII. CONCLUSION 

We have developed a new method for modeling wave 
propagation in arbitrary frequency-dispersive dielectric me
dia using a FDTD methodology. This new method involves 
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Fig. 4. E y component of electric field radiated by a small .:-directed electric 
dipole in dispersive clay loam with D = 1.-l glee and .\I = 10%. Dipole is 
located at origin, and Ey computed at (.r = 1.10 m. y = .-!20 m, :; = .-!20 
m). (a) Numerical solution (solid) computed using 3-D Form-2 dispersive 
FDTD and analytic solution (dashdot) superimposed. (b) Ey field error for 
numerical solution. 

modeling the simulation region as a spatial array of IIR 
digital filters, whereby a Pade approximation in Z-transform 
space is used to model arbitrary permittivity and conductivity 
functions. Two algorithms were developed, one involving a 
Pade approximation for E( Z) (Form-1 ), and the other for 
a(Z) (Form-2). Differences between the Form-1 and Form-
2 algorithms were discussed in terms of their stability and 
ability to model arbitrary data. Stability formulas were derived 
for both the Form-1 and Form-2 algorithms. Minimum storage 
implementations were also presented. 

Our algorithms were compared to several previous methods 
for FDTD modeling of dispersive media. These algorithms 
were classified as discrete convolution methods, differen
tial equation methods, and Z-transform methods. We have 
demonstrated that all of the previously published dispersive 
FDTD algorithms of which we are aware, with the exception 
of the discrete convolution algorithm involving a complex 
filter operation, may be cast in our more general framework 
using their exact implementation. In this sense, the Form-1 
and Form-2 dispersive FDTD algorithms may be seen as a 
generalization of previous algorithms. 

The main advantage of our new formulations is in their 
a.Pility to more directly model arbitrary dispersive dielectrics 
based on measured data. We demonstrated that the permittivity 

and conductivity filters lead directly to FDTD implementations 
without introducing discretization error. An accurate model 
for Puerto Rico clay loam was presented and demonstrated 
in a 3-D FDTD simulation. The radiation from a small 
vertical electric dipole was considered, and the FDTD solution 
compared against the analytic solution. The agreement was 
found to be excellent. 
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M. B. Silevitch·, S. W. McKnight, and C. Rappaport 

Center for Subsurface Sensing and Imaging Systems (CenSSIS) 
Northeastern University, Boston, MA 02115 

ABSTRACT 

Subsurface sensing and imaging problems arise in a variety of contexts: underground, underwater, inside the human body, and 
inside a cell or a collection of cells. All of these problems require reconstruction of internal structures or functions from a highly 
distorted probe or wave sampled outside of an obscuring surface. There is an emerging common framework of physics-based 
signal processing which will allow progress in any of these areas to be applied to create advances in the other areas. The 
recognition of the essential similarity of these problems and the development of the common framework is a key to the next 
generation of environmental and biomedical imaging systems. 

Keywords: Subsurface sensing and imaging, tomography, inverse problems, underground, underwater, and medical imaging, 
3D microscopy. 

1. INTRODUCTION 

The problem of imaging under a surface arises is a wide variety of contexts, and these problems are among the most difficult and 
intractable system challenges known Spread one hundred plastic landmines on top of a farmer's field and they can be safely 
removed in hours by a worker with a minimum of training. Bury them under one centimeter of soil, and you have a problem that 
has been the subject of intensive research for over half a century and remains far from solved. State-of-the-art inductive sensors 
in the hands of an experienced operator can detect non-metallic mines from the signal received from the firing pin and other small 
metal parts. In typical operation, however, over 300 false alarms are recorded for every mine identified, each requiring lengthy 
and delicate examination. In the end, operational mine detection systems have little, if any, advantage over probing each square 
centimeter of the ground with a titanium rod, a process that can clear a field at a rate of 1 meter by 25 meters of ground per person 
per day. No one has any idea how the three million landmines buried in Bosnia or the 10 million in Cambodia can be removed 
at any reasonable cost.' 

De-mining, in common with nearly all subsurface sensing and imaging problems, is an information problem. If we knew where 
the mines were buried, world-wide humanitarian de-mining would require relatively few physical resources. Yet in an 
Information Age, when the cost of computation and communications is reduced by a sizable fraction each year, the full potential 
of applying our exponentially expanding information technology sector to subsurface problems has not been realized because 
of lack of equivalent progress in subsurface detection and identification. 

In addition to the technical problems of probes and processing that we will discuss below, we identify two major systems 
obstacles to progress in subsurface sensing and imaging: 
1) the problems of sensor design, modeling, image processing, and recognition have been compartmentalized, viewed as separate 
disciplines rather than as integrated parts of a system optimization problem. 
2) the subsurface problems in different media and different length scales are commonly viewed as unrelated problems and 
addressed with ad hoc solutions. Lessons learned in one subsurface technology are rarely applied to other problems, and no 
overarching theory exists to identify fundamental limitations, predict what can be detected and the optimal way to do it. 

·E-mail: msilevit@lvnx.neu.edu: CenSSIS Tel. (617)373-511 0; WWW: http://www.censsis.neu.edu 

Part of the SPIE Conference on Subsurface Sensors and Applications 
Denver. Colorado • July 1999 SPIE Vol. 3752 • 0277-786X/99/$10.00 
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Figure L Subsurface problems can be classified on the basis of 
the probe-medium-target interactions. 

Figure 2. A unified physics-based approach can unite subsurface 
problems from many domains at different length scales. 

The subsurface sensing and imaging problem is to extract information about a subsurface target from scattered and distorted 
waves received above the surface. Imaging techniques, whether ultrasound sensors in tissue or electromagnetic probes in soil, 
can be described by the properties of probe wave, the wave propagation characteristics of the medium and surface, and the nature 
of target/probe interaction as shown in Figure 1. 

The framework of Figure I describes not only underground imaging, but also underwater imaging, medical imaging inside the 
body, and 3D biological microscopies inside a cell or collection of cells. A unified theory of subsurface sensing and imaging, 
as illustrated in Figure 2, should encompass all of these applications and permit progress in one domain to be transparently 
applied in other domains with similar elements in the taxonomy of Figure 1. 

For example, diffusive wave optical imaging for medical diagnosis and crosswell radar/EMI tomography for geophysical 
exploration both involve extracting an image of, or information about, anomalous regions (e.g., diabetic lesions under the skin 

or oil-bearing rock formations under the ground; see 

Air 

Optical Diffuse 
Wave Tomography 

Source Receiver 
Array J{Array 

•••• At' • ••••. ... ~ ..... . 

Crosswell Radar 
Tomography 

lnterwell 
Region-

Figure 3). Although the problems occur on vastly 
different length scales, both require solution of the 
frequency-domain diffusion equation in the presence of 
an inhomogeneous, layered medium, and a need to filter 
large data sets from multiple transmitters and receivers 
that are, nevertheless, sparse compared to the information 
set sought. Attacking these two problems within the same 
framework allows the synergy of the two solutions to be 
exploited. Thus, even the critical differences between the 
two problems (lossy vs. lossless propagation, Poisson vs. 
Gaussian noise statistics, the diffusion equation as a limit 
of the radiative transfer equation vs. the diffusion 
equation derived by neglecting the displacement current 
in Maxwell's Equations) become a basis for more 
complete understanding of the unified problem, rather 

NU-014 than just an obstacle to applying the same specialized 
Figure 3. The physical/mathematical framework of diverse problems can 
be very similar. 

algorithm to each problem. 
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2. PHYSICS-BASED SIGNAL PROCESSING 

It is rarely the case that we cannot get any information from the subsurface region. The concealing media, while not transparent, 

can usually be penetrated to a considerable depth by a variety of acoustic and electromagnetic wave probes. The problem is that 

the target signal is distorted by complex absorption, dispersion, diffraction, and refraction of the wave through the media and 

obscured by surface reflection, subsurface clutter, and scattered energy from unknown inhomogenieties on many scales. The 

signal received, y, depends on the target information x and various signal-dependent clutter and nuisance parameters z through 

the function C which describes the physics of the probe-wave generation, propagation, and target and clutter interaction: 

y = C(x,z)+n (1) 

The inverse problem ofun-encoding the signature of the target objectx from the received signaly in the presence of unpredictable 

clutter signals due to z and noise, n, is the challenge of subsurface sensing and imaging. 

Since the mapping from the target to the sensor depends on unknown information about the subsurface media and target, the 

inversion from the scattered wave to the target properties is a nonlinear mathematical problem. 2•
3 The use of appropriate physical 

models of the probe/surface/media/target/ receiver interaction ( C in 

Equation 1) to assist in the solution of that inverse problem is what 

is referred to as physics-based signal processing (PBSP). PBSP 

has been identified in a seminal 1998 review article as a key to 
progress in image formation in complex media.4 Physics-based 

reasoning through the entire image understanding process and goal

directed processing will produce algorithms which are robust to 

modeling errors and generate accurate reconstructions of the 

critical information. 

The fundamental problem of subsurface sensing and imaging is to 

differentiate the target of interest from irrelevant clutter and scatter, 

to distinguish a landmine from roots, stones, shell-casing, or 

ground-surface reflections. In the pulse-reflection ground
penetrating radar (GPR) simulation in Figure 4, for example, the 

signal from the plastic cylinder in the lower figure is obscured by 
the rough-surface reflection in the upper figure. The task is to 

extract the signal from the complex scattered field of random 
surface irregularities. In principle, if the surface profile and the soil 

dielectric properties were precisely known, one could subtract the 
background from the received signal to extract the target signature, 

but a full 3D calculation of the scattered field for a single pulse 

could take on the order of 1 0 hours on a 450 MHz desktop Pentium 

computer. Problems where the target distinguishing features are 

comparable to the clutter size, such as demining, are among the 

most challenging subsurface problems that exist. 

One of the primary differentiating features is shape. Since 

resolution in the far-field is limited to order ofthe wavelength, it is 
desirable to use probes with wavelengths smaller than the size of 

identifying features. Unfortunately in most subsurface modalities, 
absorption increases with increasing frequency (smaller 
wavelengths). For example, the attenuation of medical ultrasound 

increases at the rate of 1 dB/em for every megahertz of frequency. 

Arterial plaque, which can be resolved by inserting catheters 

containing 30 MHz (A. = 50 J.lm) ultrasonic probes, cannot be 

noninvasively imaged from outside the body because the 

0.2 
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Figure 4. Clutter from rough-surface reflection in the top 
frame obscures the signature of the buried object in the 
bottom frame in this pulse GPR simulation. 



attenuation is too severe (about 30 dB per centimeter of depth at 30 MHz). This range/resolution trade-off is a fundamental 

limitation on many subsurface modalities including underground seismic imaging and underwater sonar imaging. 

Alternatively, probes which are sensitive to target material properties, such as to material spectral response (color), conductivity, 

or magnetic susceptibility, can offer advantages for target differentiation. For example, medical imaging probes such as magnetic 

resonance imaging or nuclear medicine molecular tags which are sensitive to target chemistry can be used to differentiate targets 

on the basis of physiology (functioning) instead of anatomy (structure). Imaging the subtle physiological differences between 

cancerous cells and normal cells would be a medical breakthrough. 

Nonlinear material properties are used for subsurface discrimination in two-photon microscopy5·6
•
7 or ultrasonic harmonic 

imaging. Harmonic imaging can yield diagonostically useful information on the 25% to 30% of the population that cannot be 

imaged well by ultrasound due to high clutter levels, distortions, and artifacts. Although harmonic imaging is already 

commercially available, the physical mechanisms behind it are poorly understood. 

3. INFORMATION EXTRACTION STRATEGIES 

Despite the bewildering variety of imaging modalities and techniques covered in the Figure 1 taxonomy, subsurface problems 

can be organized into a relatively small number of information 

extraction strategies which use similar algorithmic tools. Three 

broad information extraction strategies are discussed here. 

Localized probing and mosiacking 

(LPM) concentrates the probe wave on 

a local subsurface region by focusing or 

time-gating and then assembles these 

individual pieces of information into an 

information mosaic. Common to these 

techniques are problems of 

concentration, aberration, and 

registration which may use tools as simple as a lens or as 

complex as three-dimensional image matching and 

reconstruction. For example, medical reflection ultrasound and 

confocal microscopy both collect scattered energy from a 

subsurface target voxel. In both cases, precise focusing assumes 

a uniform homogeneous wave velocity, rarely the case in 

subsurface imaging, and resulting aberrations impede accurate 

imaging. LPM techniques are subject to obstruction by opaque 

objects (e.g., bones), and because reflection geometries are 

sensitive to high spatial frequencies (interfaces) LPM techniques 

are poor at detecting low-contrast or phase-only objects. 

Wide-scan, high resolution LPM imaging usually requires 

mosiacking of multiple frames. Figure 5 shows an image of an 

ocean-floor hydrothermal vent assembled in this way by our 

collaborators at Woods Hole Oceanographic Institution. Errors 

in image registration and composition techniques contribute to 

errors on the scale of meters in the large-scale representation of 

imaged objects, reducing their utility in quantitative 

oceanography. The use ofhigh-resolution sonar maps to register 

the optical images is a multi-modality path to the desired 

capability for high-resolution mapping ofhundreds of thousands 

of square meters with an accuracy of centimeters. 

NU-006 

Figure 5. High-resolution underwater optical image of an 

ocean-floor thermal vent is assembled by 3D photo-mosaicking 

techniques. (Photo courtesy of Woods Hole Oceanographic 

Institution.) 
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In contrast to LPM where the sensor 
information is spatially isolated, in multi
view tomography (MVT) correlated 
information from multiple sensors is 
combined mathematically to create a 
virtual map of the physical properties of 
the target. These systems all involve 
mathematical inversion of integral 

equations through linearization, regularization, and integral 
transforms. Examples include x-ray CAT scanning, diffraction 

tomography, and synthetic aperture radar. 

If multiple view angles are possible, MVT techniques can image 
obstructed/occluded objects and yield quantitative maps of wave 
velocity as well as absorption, allowing imaging of phase-only 

objects. For wavelengths that are short compared to feature 
dimensions, as in CAT scans8

•
9

, Radon convolution-backprojection 

Figure 6. In Cardiac Electrical Imaging (CEI), near-field 
MVT inversion yields the electric potential on the heart from 
measured voltages on the torso. 

algorithms combined with Fast Fourier Transforms (FFT) can achieve 3D feature imaging. 

Diffraction tomography 10 is the technique of image reconstruction and resolution enhancement by multiple-view imaging when 

the wavelength is comparable to feature size. The development of the theory of diffraction tomography by the linearization and 

Fast Fourier Transform (FFT) inversion of the wave diffraction equations using the filtered back-propagation algorithm was 

pioneered in the early 1980s.ll·12 Diffraction tomography has been successfully applied for seismic imaging of near-surface 

objects, including fossil dinosaur bones13 and to ultrasonic imaging14
•
15

•
16

• Applications of diffraction tomography with limited 

or obstructed field-of-view or with higher-order, non-linear models is at the forefront of the state-of-the-art. 

When the wavelength is long compared to feature size, near-field tomographic techniques can still yield useful information in 

geophysical or medical applications. In Electrical Resistance Tomography and Electromagnetic Induction Tomography, quasi

static probes and models are used to image contaminants in soil and groundwater and leaks from storage tanks on scales much 

smaller than the electromagnetic wavelength. 17
·
18 Applications in medical imaging include Electrical Impedance Tomography 19 

and Cardiac Electrical Imaging 20
•
21

•
22

• Figure 6 shows the electric potential on the heart imaged from the measured potential on 

the torso by Cardiac Electrical Imaging. The potential benefits of the enhanced information gained by this technique over standard 

electrocardiograms (ECGs) are enormous. ECGs have a rate of false diagnosis of myocardial infarctions ("heart attacks") as high 

as 30% which results in unnecessary health-care costs in the U.S. estimated at $4 billion per year 2\ while up to 25% of actual 

heart attacks go unnoticed until evidence of cardiac damage is detected in annual checkups. 

Multi-spectral discrimination (MSD) adds the element of frequency discrimination to the spatial 

resolution sought by LPM and MVT giving a 4-dimensional map (3-space plus frequency) ofthe object. 

Combinations of MSD with LPM are common (a color photograph or hyperspectral image are 

examples). Joint methods for MSD and MVT have received little attention. MSD information extraction 

methods focus on material dispersion, parameter estimation, image registration, and fusion. Multi

sensor fusion can be viewed as an MSD problem involving, in some cases, probes that differ in modality 

(acoustic and optical, for example) as well as frequency. 

For example, the work illustrated in Figure 7 shows that subtractive imaging at two nearby optical wavelengths can map specific 

chemical concentrations, such as oxygenated /deoxygenated hemoglobin (Hb).24 This use of optical spectroscopy to detect 

chemical indicators of physiological function in vivo is promising for diagnostic discrimination. The rich spectral interaction 

of IR-VIS-UV light with biological molecules, however, causes absorption and strong scattering in tissue 25
•
26

•
27 and makes the 

localization of emergent light difficult. Diffusive Wave Imaging28
•
29 in strongly scattering media is the focus of much current 

research, including optical coherence tomography 30
•
31

'
32 and CenSSIS work in dual-wave acousto-photonic imaging which seeks 

to improve spatial resolution from centimeters to millimeters for precise quantitative diagnosis. 



Satellite hyperspectral imaging of the Caribbean Basin has been 
used to determine the health of coral reef ecosystems and measure 
coastal erosion33

• Reflected light is strongly scattered in the water 
column, by the ocean surface, and by the atmosphere, distorting the 
frequency spectral information as well as the position of underwater 
objects. This problem is similar to medical diffusive imaging except 
on a length scale that differs by orders of magnitude. The physics 
of both are modeled by the radiative transfer equation (RTE) 34

• 

However, in diffusive medical imaging, the ratio of absorbed to 
scattered light is assumed to be small leading to the diffusion 
equation, while in ocean scattering Beer's law is often applied by 
assuming the ratio is large. In reality, the physical situation in both 
cases may be intermediate, and there is a need for more rigorous 
forward models and more robust inversion algorithms. Current 
spatial resolution from space-based platforms is approximately 1 
meter; processing techniques that take advantage of accurate 
physical models may improve the resolution limit to I 0 centimeters. 
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Figure 7 MSD analysis of diffusive optical waves images 
areas of activity (high blood oxygenation levels) in infant 
brain_ 

4. RESEARCH NEEDS AND BARRIERS TO PROGRESS 

Progress in subsurface sensing and imaging approaches within these information extraction strategies has been documented in 
the feature articles in a recent issue of Science ("Imaging: New Eyes on Hidden Worlds")35

• Key elements in these advances 
include the increase in computation power, the application of new mathematical algorithms and advanced sensing strategies, the 
exploitation of wave coherence, and the fusion of multiple sensing modalities (e.g., microwave and infrared) to extract 
increasingly detailed information from physical systems. 

Still, the need for new technologies is clear. The General Accounting Office has stated, "the dimensions and potential costs of 
cleaning up our environment are so great that, without innovative technologies, we may find the solution cost prohibitive and 
impacting on our ability to address other national needs." By using current technologies, the costs ofremediating Superfund and 
Resource Conservation and Recovery Act sites, Federal facilities, and other known hazardous waste sites may total $750 billion 
over the next 30 years36

• Humanitarian de-mining remains an unsolved problem. No current imaging technique can adequately 
detect precancerous cell masses in soft tissue or noninvasively diagnose arteriosclerosis, and there is no way to collect and 
correlate the images from different modalities to automatically identify incipient health problems. 

Barriers to such advanced civil-environmental and biomedical detection systems lie both in unsolved fundamental research 
problems and in lack of adequate technology tools. Some of the major barriers are: 

Barrier I: Fundamental knowledge is lacking about nonlinear interactions, dual-wave sensing mechanisms, and coherent imaging 
in scattering media. While linear acoustic and electromagnetic interactions can be modeled and characterized by well-understood 
linear response functions, advanced imaging techniques using non-linear or dual-wave (e.g., acoustic/optical) probes require 
fundamental investigations to determine appropriate physical models. 

Barrier 2: The present formulation of coherent inverse scattering is inadequate to quantitatively image objects in highly-scattering 
random inhomogeneous and cluttered environments. In these situations the non-linear character of the inverse problem defeats 
tomographic reconstruction and adequate alternatives do not yet exist. 

Barrier 3: Recognition strategies for obscured and limited-view subsurface applications are not well developed, and we have no 
theory for combining different sensor inputs to optimize the information obtained. 

Barrier 4: Forward modeling of large complex scattering geometries is too slow for real-time inverse-processing applications. 
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Progress is required in both efficient approximate forward solvers and in hardware/software implementation of processing. 

Barrier 5: There are few widely-available test facilities with sufficient flexibility and sensor reconfigurability to permit the 
optimization of sensor modality/configuration and processing strategies based on recognition and decision objectives. 

Barrier 6: Techniques for rapid processing, cataloging, storage and retrieval of large image databases are not sufficiently 
developed. Data and metadata standards will need be instituted so that processing algorithms can be routinely tested on 
experimental results from diverse experimental domains. 

5. CONCLUSION 

The pieces are in place for a major advance in the field of sensing and imaging. The development of a common framework and 
unified disciple of subsurface sensing and imaging promises to allow the field to emerge as a co-pillar of the Information Age, 
along with computation and communications. We can look forward to systems-level advances such as integrated, field-tested, 
algorithmic and computational tools for the entire range of subsurface problems, and standards and criteria for the use of multiple 
sensing modalities to achieve subsurface sensing system goals. These, in turn, will open the door for the next generation of 
systems for environmental sensing underground or under the water, medical imaging and automatic diagnosis inside the body, 
and biological microscopy to reveal fundamental processes inside living cells. 
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ABSTRACT 

In this paper, we develop a statistical detection system exploiting sensor fusion for the detection of plastic A/P 
mines. We design and test the system using data from Monte Carlo electromagnetic induction (E:Yll) and ground 
penetrating radar (GPR) simulations. We include the effects of both random soil surface variability and sensor noise. 
In spite of the presence of a rough surface, we can obtain good results fusing EI\U and GPR data using a statistical 
approach in a simple clutter environment. 

:Yiore generally, we develop a framework for simulation and testing of sensor configurations and sensor fusion 
approaches for land mine and unexploded ordinance (UXO) detection systems. Exploiting accurate electromagnetic 
simulation, we develop a controlled environment for testing sensor fusion concepts, from varied sensor arrangements 
to detection algorithms. In this environment, we can examine the effect of changing mine structure, soil parameters, 
and sensor geometry on the sensor fusion problem. We can then generalize these results to produce mine detectors 
robust to real-world variations. 

Keywords: mine, sensor fusion, statistical, radar, induction, model, UXO, detection 

1. INTRODUCTION 

The need for mine and unexploded ordnance (UXO) detection and removal is growing in both military and humani
tarian applications. Civilian casualties from landmines are on the order of hundreds per week, and in some locations 
around the world, landmines are emplaced faster than they can currently be removed. The current U.N. standard 
for humanitarian mine detection probability is set at 99.97%. But with any single current buried object detection 
technology, such a high Pd results in an unacceptably large number of false alarms, particularly when searching 
for plastic anti-personnel (A/P) mines. However, through information fusion, we can combine the best aspects of 
multiple sensor technologies to achieve the goals of landmine removal. 

To achieve an optimal information fusion system, we must start from fundamental, controlled studies of system 
design tradeoffs, taking into account every aspect of the problem, from sensor physics and configuration to fusion 
and detection. Unfortunately, little work has been done to date on such a comprehensive approach to system design. 
"While some researchers have studied individual sensors and detection schemes extensively, sensor fusion researchers 
have not conducted necessary controlled studies of the effects of design choices on the fusion and ultimate detection 
problems. 

This paper represents a first effort toward filling in this gap in our knowledge. Our goal is to develop a framework 
for mine detection system research and design that includes the critical aspects of a sensor fusion scenario. We have 
chosen to focus on detecting plastic A/P mines because their detection represent a particularly challenging problem 
for which there is currently no satisfactory fielded solution. Information fusion appears to be the solution for this 
difficult detection problem. 

In this work we concentrate on fusing information from t·wo sensors, a Ground Penetrating Radar (GPR) and an 
Electro-Magnetic Induction Spectroscopy (EMIS) sensor. We demonstrate that even a simple sensor fusion design 
can be quite successful over either individual sensor when the physics of their operation provides complementary 
information. However, we show that individual sensors can be strongly affected by variations in soil parameters and 
sensor configuration, and this in turn can affect our design choices sensor fusion and detection. which supports our 
contention that more extensive controlled studies are necessary. 
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2. BACKGROUND 
Our current approach to detecting plastic A/P mines is based on fusing data from two sensors, a Ground Penetrating 
Radar (GPR) array similar to that operated by Geocenters1 and an Electro-Magnetic Induction Spectroscopy (EMIS) 
sensor such as those developed by Geophex.2 Each type of sensor has its advantages and drawbacks, but neither 
alone is sufficient to the problem of reliably detecting plastic A/P mines with sufficiently low false alarm rates. A 
visualization of the basic GPR sensing concept appears in Figure 1 (a) and a photo of one kind of EMIS sensor 
appears in Figure l(b). 

~ 
Transmitter 

(a) GPR visualization (b) EMIS photo 

Figure 1. Ground penetrating radar and electromagnetic induction spectroscopy sensors 

To date, GPRs have been the favored electromagnetic technology for detecting plastic A/P mines. 3 GPRs operate 
by emitting wideband electromagnetic pulses, which propagate into the earth and reflect from subsurface structures. 
The reflections are then measured and, in the case of arrays, fused. GPRs are good for detecting shallow dielectric 
cavities, of which plastic A/P mines are examples. Unfortunately, plastic A/P mines are not the only examples of 
dielectric cavities, with rocks representing a significant potential confusing class of objects. This potential confusion 
is especially true since random reflections from a rough air/ ground interface can swamp the mine or discrete clutter 
signatures, making distinguishing between these two classes difficult. Similarly, soil inhomogeneity, such as soil 
compaction or moisture content, can lead to numerous false alarms. Also, very small metallic objects, such as the 
firing pin found in many plastic A/P mines, are almost invisible to GPR, which would remove a significant potential 
characteristic for discerning plastic landmines if GPR were used alone. 

An EMIS sensor can complement a GPR by detecting and recognizing the small metal content of many plastic 
AjP mines. By emitting sinusoidal signals and sweeping across multiple frequencies, an EMIS sensor can obtain 
information that depends on metal material properties and spatial structure, even for very small amounts of metal. 2 

Also, EMIS sensors are less likely to be affected by soil variations, unlike GPR. However, at gains high enough to see 
the small metal content of many plastic A/P mines, such an inductive sensor is also highly sensitive to, and frequently 
confused by, discrete metallic clutter such as small shell fragments, pop-tops from soda cans, or many other kinds 
of metallic clutter. Additionally, EMIS sensors cannot distinguish landmines with zero metallic content. Thus, an 
EMIS sensor alone also cannot successfully discriminate plastic A/P mines. But many potential false alarms in the 
GPR domain are not the same as those in the EiviiS domain, and vice versa, i.e. we expect that in most cases, 
dielectric cavities and metallic objects that coincide in space are likely to be plastic A/P mines and not random 
clutter. 

3. METHOD 
As stated in Section 1. our goal is to develop a framework for testing a wide range of possible sensor and fusion 
scenarios for landmine detection, far more cases than is possible with currently available landmine data sets. By 
providing an environment in ·which we can control every aspect of the problem, from rough soil surfaces and soil 
inhomogeneity to variations in mine pose and sensor geometry to different clutter environments, we can conduct 

1180 



.. 
I 

fundamental tradeoff studies for sensor fusion. With this approach, we will be able to find optimal solutions that 
account for the wide range of possible situations that can arise in real, practical problems. In this paper, we present 
an initial study that uses this approach to examine array GPR and E1viiS data fusion. 

3 .1. Sensors 
Our detection system consists of two sensors, one a GPR array and the other an electromagnetic induction spec
troscopy (EMIS) sensor, and a set of detection and fusion algorithms. Figure 2 shows the basic sensor and landmine 
geometry. 

20cm 

30cm 

JOcm 

I 

Figure 2. Geometry of the sensor /mine configuration 

Our GPR array uses four antennae with transmit/receive capability. We locate these sensors approximately 30cm 
from the nominal soil surface, corresponding to a vehicular mounting arrangement. The antennae are spaced at 20cm 
intervals. We choose to use a short, wideband pulse. Our pulse width is about 0.8ns, corresponding to a 1.25GHz 
band width. The observed signal from the GPR consists of 16 time traces, one for each transmitter /receiver pair. 
It is important to note here that we are not explicitly focusing the array. We simply transmit a pulse from a single 
antenna while receiving at all four antennae, and then transmit from the next antenna while again receiving with all 
four, and so on. This approach maximizes the amount of information available to the detection algorithm. We show 
a noiseless example set of time traces for one transmit/receive pair in Figure 3. The two overlaid traces correspond 
to the cases with and without a mine in dispersive soil for a single example of a rough ground surface. 

Our EMIS sensor is a single square induction coil located approximately 30cm above the nominal soil surface. 
The frequency is swept over a 30Hz-20kHz range, which we have sampled logarithmically. Multiple such sensors 
could be place in an array, but here we have only considered the single coil case. Our observed data is a vector of 
samples of the observed EMF signaL logarithmically spaced over the frequency range. 

3.2. Physical Models 
To generate our data, we use accurate electromagnetic software tools. In the case of the GPR array, we use a Finite 
Difference Time-Domain (FDTD) algorithm.cJ With FDTD, we can generate data corresponding to a variety of 
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Figure 3. 1\oiseless GPR time traces; transmitter 2, receiver 3 

situations that we can control explicitly: varying rough ground surfaces, different soil parameters, and alternative 
sensing geometries, for cases with plastic A/P landmines or discrete clutter such as rocks or no subsurface objects at 
all. For the EMIS sensor, we use a quasi-static magnetic moment physical model, for which we can control sensing 
geometry and the properties of mine or clutter. 5 For this study, we choose to assume that our sensors are centered 
over the section of ground we are testing, and that we are merely trying to test whether or not a landmine is located 
directly below the sensors at a known depth. 

For the GPR, we include a random, but correlated, air/ ground interface as a source of uncertainty, as well as 
white, Gaussian sensor noise of about 20dB per channel signal to noise ratio. In our physical GPR modeL we 
construct three cases. In the first, we include a plastic landmine of known shape, using a relative permittivity of 
2.9, corresponding to TNT. In the second, we include a discrete clutter object, with a relative permittivity of 2.8, 
that is approximately an ellipsoid of roughly the same size as the landmine. In the last case, we modeled no discrete 
object at alL measuring the response from the empty, homogeneous soil. The soil's relative permittivity is 2.6. and 
we studied both dispersive, lossy and non-dispersive. lossless cases. 

For the EMIS sensor, we model the plastic landmine as having a small, steel firing pin centered in the mine, 
approximately lcm in size, with a relative permeability of 5000 and a conductivity of 107 S/m. We assume the 
earth is essentially invisible to the sensor at such low frequencies. We also model a discrete metal fragment as 
approximately 4cm in size, with the same material properties as the firing pin. For sensor noise, we include \vhite, 
Gaussian noise for 14dB signal to noise ratio. Note here that, at this noise level, the resulting clutter object looks 
indistinguishable from the firing pin. In addition to the mine and clutter situations, we include empty soil by simply 
using the sensor noise with zero mean. 

In modeling this system. we only include single objects within the field of view. Thus, the landmine and discrete 
clutter cases are mutually exclusive. To stress this physical model of clutter versus target, we include the chnrt of 
Figure 4, sho\ving how the GPR and El\II clutter characteristics relate. "~;Ve also never vary the pose of the objects; 
we assume they lie flat. We will explore more complicated models in future work. 
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Figure 4. Clutter versus target domains 

3.3. Statistical Models 

Clutter 

Target 

Our statistical models are related to, but quite distinct from, our physical models. Our goals in doing statistical 

modeling are threefold. First, by allowing statistical error into the problem, we can make our approach robust to 

modeling error. Thus, the statistics can absorb any differences between our physical model and reality, particularly 

difficult-to-manage nonlinearities. Second, statistical approaches usually can provide measures of error, so that we 

can estimate how well we are doing. Third, by using a statistical approach, we open a wealth of available techniques 

and knowledge for sensor fusion and detection. 

For the GPR our statistical model assumes that the data comes from three additive vector sources: the rough 

ground return, g; white Gaussian sensor noise, :!Q; and possibly a buried landmine, ~- \Ve formulate our two detection 

hypotheses by the presence or absence of the landmine signal, ~: 

Hr.O: 

Hr.!: 

y =g+:!Q. 
-r -

"Lr = ~ + [!_ + 1Q 

(1) 

where ~' g, and 1Q are simply the time signals corresponding to the mine signal, the ground return, and the white 

sensor noise, fused at the data level by vectorization: 

{ 
j, ~ = 1, 2, 3~ 4 
n- 1, ... , 7-':>0 

(2) 

where j and k denote the specific transmit/receive antenna pair, and n is the time sample. The sum of these signals, 

JLr' is what we can observe as output from the antenna array. We assume that these signals are independent Gaussian 

random vectors, distributed as follows: 

(3) 

where !:!:.s and !:!:.
9

, and 2: 5 and 2:9 , are the means and covariances, respectively, of their distributions, and the elements 

of w are zero-mean and identically distributed, so Lu· = CJ"~l. For computational tractability, we currently assume 

2: 5 and 2:9 are diagonal. though in future \vork we may introduce tractable correlation structure. 

For El\US, we have a single sensor, with data from a sweep over frequency, and this data is corrupted by Gaussian 

noise. Going immediately to vector notation, we assume that the signal f is a known deterministic signal and that 

:y,_ is independent and identically distributed. zero-mean, Gaussian noise, so our two cases are simply: 

JLe = ]!,_ 

JLe = f+ ]!,_ 
(4) 
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where 

(5) 

It is important to note that in this preliminary study, we elected not to explicitly model the discrete clutter in our 
statistical detection problem, but we do include such clutter in the physical model for generating the data. ="Jowhere 
in any of the statistical models do we include a discrete clutter case, i.e. a rock or metallic clutter. \Ve did this 
because we wanted to explore the problem of model mismatch and the advantages of detection-leYel fusion when 
discrete clutter models are unknown or ignored. 

3.4. Detectors 

Given the statistical models above, it is relatively easy to formulate an "optimal" maximum likelihood detector, 
based on a likelihood ratio test. In the GPR case, we assume the three Gaussian signals are independent, so we can 
simply add their means and covariances 

Hr.O: Y..r "'N(f:!.
9

, 2:9 + Z:w) = N(f:!.0 , Z:o) 
Hr.l : Y..r ""'N(f:!.

5 
+ f:!:.

9
, Z:s + 2: 9 + 'Ew) = N(f:!.1 , Z:I) 

(6) 

The detector resulting from this model and a likelihood ratio test is the full quadratic classifier: 

(7) 

We estimate the parameters from a large number of Monte Carlo runs by estimating f-L and 2:9 for the case with 
-g 

empty soil, and f.1 + f.1 and Z:s + 2:9 for the landmine case. These parameters are averaged over many different, -s -g 
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random rough soil/ air interfaces. Because we control the sensor noise, we can add the known vvhite noise covariance 
to each case ourselves. 

Similarly, we develop the maximum likelihood detector for the EMIS case. However, because the signal is a known 
deterministic signal and we control the noise, we can simplify both the equations and the detector: 

He.O: 

He.1: 

y "'N(O, l:u) 

~: "'N(f,l:u) 

H1 

fT"E.;;_ 1Ye ~ 'Ye 

Ho 

(8) 

(9) 

While this approach is adequate for our current simulations, in practice, our detector and noise parameters will need 
to be estimated from data. 

From these models, we perform three detection experiments to demonstrate the advantages of fusion. First we 
test the GPR alone, then we test the EMIS sensor alone. Lastly, we fuse the two sensing modalities with detection
level fusion, using an AND detector. To build an appropriate optimal detector, we need to explicitly model the 
confusing clutter classes statistically. The advantage of the AND detector is that it can approximate the optimal 
multi-class detector without explicit clutter models. While it is always better to obtain the optimal detector by 
explicitly modeling clutter. in cases where this is infeasible, an AND detection rule will win. In future work. we 
intend to formulate an optimal detector by determining and using appropriate multi-class clutter models. 

4. RESULTS 
We conducted three major experiments, over which we varied soil parameters and mine depth. In each of our 
experiments, we ran 400 :..ronte Carlo runs with different rough air /soil interface and sensor noise realizations. In 
100 cases, we placed a landmine. In another 100 cases we placed the GPR clutter object (the "rock"). In the next 
100 cases, we used the ErviiS clutter object (the small metal fragment). In the last 100 cases, we included no discrete 
clutter or mine at all, only empty soil. In each of the three experiments, we used each of the three detection methods: 
GPR alone, EMIS alone, and their detection-level fusion. 



For each of the 400 1'v1onte Carlo runs, we generated the random soil surface using a correlated Gaussian random 
model with approximately ±Scm of deviation from nominal, maximum, and an Scm correlation length. In every case, 
we set the soil's relative permittivity to 2.63, but in two cases we used a lossless, non-dispersive soil model, while in 
the third, we implemented a lossy, dispersive model based on data from the Bosnia Steele Castle site. In this case, 
the moisture content was 4.7% and the density was 1.181 g/cm3 , and we modeled the loss and dispersion using a 2-1 
Pade approximation. 

In one of the two lossless, non-dispersive cases, we placed a landmine ·with its upper surface ·at a depth of Scm 
below the nominal soil surface, while in the other we placed it 12 em below the nominal soil surface. In the lossy, 
dispersive case we placed the landmine Scm below the surface. Our landmine was 6cm in thickness, with a diameter 
of 15cm. Except for the firing pin, we assumed the mine was filled with TNT, with a relative permittivity of 2.9, 
relative permeability L and conductivity 0. Vie also assumed that the mine contained a small, lcm firing pin \Vith 
a relative permeability of 5000 and a conductivity if 1078/m. 

For our clutter, we assumed that the rock was roughly the same size and shape as the mine, but approximately 
ellipsoidal with major axis 17cm and minor axis 7cm, oriented similarly to the landmine. Vve assumed the rock had a 
relative permittivity of 2.S, with relative permeability of 1 and no conductivity. We assumed that the metal fragment 
clutter about 4cm in size with the same material properties as the landmine firing pin. 

Figure 5 shows the ROC curves for the case of a mine at a depth of Scm in lossless, non-dispersive soil. First, note 
that the ROC curve for the El\US sensor alone shows good correspondence to what we expect for the case that the 
metal clutter object is nearly indistinguishable from the landmine. The straight line ROC is indicative that guessing 
is as good as any other technique when trying to distinguish the metal clutter from the firing pin when using the 
EMIS sensor. The GPR is better at distinguishing between the rock and the landmine than the El\HS sensor is for 
the metal clutter, but it still has a significant number of false alarms for Pd ::::::: 0.99. However, the detection-level 
fusion scheme has a much lower false alarm rate for comparable Pd. 
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Figure 5. ROC curves for mine nt Scm depth, non-dispersive soil 

In Figure 6, we see the ROC curves for the mine at a depth of 12cm, \Vith the same soil parameters. As we 
expect, the increased distance makes the EMIS sensor perform slightly worse than before. The GPR alone, however. 
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gets significantly improved performance. This improvement comes from the time delay of the mine signal. V\"hile 
the mine signal is attenuated due to the increased distance, the distance attenuation of the reflection from the rough 
ground surface is much stronger, resulting in a much smaller interfering signal relative to the mine signal at this time 
delay. This improvement would be mitigated somewhat by lossy soil. Also, as expected, the fused detector performs 
better than either sensor alone, despite its simplicity. 
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Figure 6. ROC curves for mine at 12cm depth, non-dispersive soil 

Lastly, in Figure 7, we show the ROCs for the case of a mine buried at a depth of 8cm in lossy, dispersive soil. 
The EMIS ROC is essentially the same as the first case, but the GPR curve is much different. Here we begin to 
see problems with model mismatch. Because we have not explicitly modeled clutter statistically, we have found 
a situation where the GPR clutter signal is much stronger than the mine signal. Thus, despite the differences in 
the two signals, the clutter signal is detected as a mine more often than the mine is. This poor GPR detector 
performance suggests that we can do much better if we model the clutter explicitly in our statistics. The AND 
detection rule again does quite well; in fact it appears to do perfectly. This is an artifact of ROC estimation from 
discrete, experimental data and the small number of :\Jonte Carlo runs. More l'vionte Carlo samples, or another 
approach, such as importance sampling, would help rectify this issue. \Vith more samples, our ROC estimates and 
confidence in them would improve. 

5. CONCLUSIONS 
\Ve have developed a framework for studying the system design tradeoffs in sensor fusion for landmine detection 
applications. We can now conduct controlled experiments that examine the effects that soil or landmine parameters, 
,;ensor geometries, clutter. and fusion algorithms have on the landmine detection problem. V\'ith this approach, we 
c-tim to identify the optimal sensor configurations and fusion algorithms for generaL real-world landmine problems. 
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We have used this framework to study the effect of variations in soil parameters and mine depth on GPR and 
E:\HS data fusion, particularly for the case of plastic A/P mines. We also focused on the issue of model mismatch 
and the advantages of accurate clutter modeling for detection. \Ve found that even simple detection-level sensor 
fusion techniques can pro\·icle a large improvement in our ability to detect plastic A/P mines. 
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FDTD Wave Propagation in Dispersive Soil 
Using a Single Pole Conductivity Model 

Carey M. Rappaport, Shuang Wu and Scott C. Winton 
Center for Electromagnetics Research, Northeastern University, Boston, MA 

Abstract-In FDTD modeling of lossy, disper
sive soil for subsurface imaging and detection appli
cations, the electric flux and the current are con
volutions of E(t) with E(t) and CJ(t) respectively. To 
avoid these memory-intensive computations, the con
volutions can often be accurately and simply mod
elled as second order difference equations. In partic
ular, by matching the corresponding Z-transform of 
theE-field/current relation to frequency-dependent 
conductivity results in a ratio of polynomials in z-1 

(where Z = ejwlit). A good fit to measured soil 
data over two decades in frequency is possible us
ing only a single pole, two zero conductivity model. 
Compared to a similarly accurate three-term De
bye model, this one-pole model requires one-third 
the storage of previously computed field values. 

Index terms-FDTD, Soil Modeling, Disper
sion, Mine Detection 

I. BACKGROUND 

There is growing interest in simulating wave propa
gation for underground microwave and RF sensing and 
imaging applications. Soil is a good candidate for the 
finite difference methods since it is usually inhomoge
neous, lossy, and has an irregular surface boundary. It 
has been challenging to accurately compute wideband 
wave behavior in realistically modelled soil because of 
its dispersive nature, requiring either many individual 
frequency domain calculations or a robust deconvolu
tion of E(t) from D(t) in the time domain. A sim
ple dispersive variant of the FDTD algorithm which in
cludes the effects of frequency-dependent conductivity 
and dielectric constant enables the use of this prevalent 
and efficient modeling method. 

The conventional approach to modeling dispersion 
in soil approximates the frequency domain dispersive 
complex dielectric constant with rational functions (De
bye or Lorentz models) of jw [1,2), multiplies the consti
tuitive relation by the denominator and inverse Fourier 
transforms the result. We improve on this method by 
modeling solely the conductivity as a simple rational 
function of the Z-transform [3,4), based on the obser
vation that the frequency variation of the real dielec
tric constant does not significantly affect either the real 
propagation constant f3 or the decay rate a:. By mod
eling CJ in terms of powers of the Z-transform vari
able z- 1 (which readily transforms to time delays), 
the conversion of the generalized dispersive Ohm's Law 
J(Z) = CJ(Z)E(Z) to the time domain is particularly 
straightforward. 

Manuscript received June 1, 1998. 
This work has been supported by The Army Re

search Office, Multidisciplinary University Research Ini
tiative Grant No. DAAG55-97-0013 
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II. MODEL FORMULATION 

To preserve the conceptual elegance and simplic
ity of the FDTD method, it is important to keep the 
media model to at worst second-order. In previous 
reports, a quite satisfactory two-pole, two-zero ratio
nal function conductivity model was presented. This 
current work shows that a model with a single pole 
can often be just as good. The right hand side of 
Ampere's Law \7 X H = 8D I at + J Z-transforms to: 
[(1-Z- 1 )I ~t]EoEAvE+CJ(Z)E (where it is assumed that 
EAv is frequency independent). The time-dependent 
conductivity may thus be modelled as 

(1) 

Both the real and the imaginary components of 
CJ(Z) depend on the frequency sampling interval ~t and 
the coefficients of the rational function ( a 1 , b0 , b1 , and 
b2). The imaginary component corresponds to an ef
fective permittivity. This model is implemented by fit
ting Re{ CJ} to measured conductivity and Im { CJ} I wEo to 
measured real dielectric constant less an average value 
EAv· To simultaneously solve for b0 , b1 , and b2 , an 
initial guess is made for a 1 . The conductivity and di
electric constant at three representative frequencies for 
the measured data and the model are equated. Further 
simple optimization is performed by trial and error, 
varying either a1 or one of the three frequencies. Com
plex wave number k(w) is then calculated from both 
the model and the measured data, and the real prop
agation constant /3 and the decay rate a: are derived 
from k = wlcJEAv- jCJIWEo. 

Once the a and b parameters of CJ have been deter
mined, integration into the FDTD algorithm is straight
forward. If the temporal average of the current density 
J is used, Ampere's law in the Z domain becomes: 

1- z-1 1 + z-1 
\7 X H(Z) = fAv E(Z) + CJ(Z)E(Z) 

~t 2 
(2) 

Using (1) in (2) and noting that z- 1 corresponds to the 
time index shift n -t n -1, theE-field update equation 
for a 2-D Transverse Magnetic (E = zEz) simulation 
is: 

1 En+1 = -(-e En- e En-1 - e En-2 + AH) z eo 1 z 2 z 3 z u 

~t ( n+ l _l +I I) ~H = - -Ix 2 
- a1I~ 2 + 1; 2 + a 1I;- 2 

fAv 
(3) 

where eo= 1+bo~ti2EAv, e1 = al-1+(bo+bl)~ti2EAv, 
e2 = -al + (b1 + b2)~ti2EAv, e3 = b2~ti2EAv and Ix 
and Iy are the spatial first differences of the Hx and Hy 
fields with respective to y and x (spatial indices have 
been suppressed for clarity). 
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The one-pole model of a-(Z) requires storing Ix 
and Iy (and I= in a three-dimensional simulation) a 
single additional time compared with non-dispersive 
FDTD. For each additional conductivity pole, this same 
amount of storage space must be additionally allocated. 
Fig. 1 shows the fit of the model (at flt = 20 ps) to 
the conductivity and dielectric constant data measured 
from Puerto Rican clay loam (PRCL) with 1.4 g/cm3 

density and 10% moisture [5]. The difference between 
the imaginary conductivity of the model and the mea
sured E (lower panel) is used to determine the constant 
real soil permittivity EAv· Fig. 2 shows the fit of the full 
model to f3 and a. The maximum amount of error is 
less then 20%, which is close to the measurement error 
of the soil sample. 
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Fig. 1. (a) Measured (circles) versus single pole model (contin
uous curves) of a(Z): (a) real conductivity and (b) imaginary 
conductivity (real relative dielectric constant) for Puerto Rican 
clay loam, 10% moisture, 1.4 g/cm3 density [5]. The constant 
real dielectric constant EAv is the average difference between the 
curve and the measured circles of (b). 

The use of the average value of the current density 
is well established and produces accurate results. How
ever, using only the present value of the current density 
in the update equation results in the savings of another 
storage location. To facilitate this savings without sac
rificing accuracy, a(Z) is multiplied by (1+Z- 1)/2 and 
a new set of model parameters is determined to fit this 

product over the frequencies of interest. In this case, 
(3) is additionally simplified with e0 = 1 + b0 flt/EAv, 
e1 = a1 - 1 + blflt/EAv, e2 = -a1 + blflt/EAv, and 
e3 = 0, and this dispersive model requires only one 
additional storing of each field value compared to non
dispersive FDTD. This compares with two field stor
ings for the (2,2) model and three field storings for the 
comparably accurate three-term Debye model. 

Similar modeling for several different types of soil 
with widely varying density and moisture [5,6] at flt =20 
ps is summarized in Table 1. All models have wave 
numbers in agreement with measured values within 20%. 
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Fig. 2. Measured (circles) versus model for single pole model of 
a(Z) with constant EAv (continuous curves): (a) Real and (b) 
imaginary parts of wave number for Puerto Rican clay loam, 10% 
moisture, 1.4 g/cm3 density [5] as a function of frequency. Insets 
show normalized error for this model. 

Ill. STABILITY CONSIDERATIONS 

The Courant stability analysis in [3] shows that 
in a source-free homogeneous medium, the time-space 
transform of the wave equation for a plane wave ( ~x = 
~y = ~z = 6.) is: 

(Z- 1)F(Z) = -4r2 s 2 (4) 

j 



where from (2), F(Z) = EAv(1- z-l) + (.6.t/2co)(1 + 
z- 1 )a-(Z), and r = c.6.tj yEA;.6., and s2 = sin2 kx.6. + 
sin2 ky.6. + sin2 kz.6. with maximum value of s equal to 
the spatial dimension of the FDTD simulation. Ex
pressing F(Z) in rational form: 

Using ( 4), (3) becomes a third order polynomial in z- 1 . 

The solution to this equation yields one real root and 
two complex roots that are a function of .6.. Stability 
requires IZI < 1. For .6. within the range of 4.6mm to 
120mm, all three roots are within the unit circle. 

NUMERICAL TEST CASES 

Several numerical experiments were performed to 
validate this method. The simulations were run in one 
dimension for simplicity. The choice of .6.t is criti
cal since it defines the model, determines the range 
of usable frequencies and determines the limits on .6. 
through the Courant condition. For these experiments, 
the spatial increment was 2.5 mm. The incident field 
is a modulated gaussian pulse, used to excite many fre
quencies simultaneously. The modulation frequency is 
3 GHz for the Alicia and A.P. Hill soils and 1.5 GHz 
for the PRCL soil sample. 

In order to compare the results of the FDTD simu
lations with the measured data, the frequency-dependent 
wave number k must be extracted. Fast Fourier Trans
forming the time domain fields gives 

1 Ez(w,£) 
kFDTD =- j£ ln Ez(w, O) (6) 

Fig. 3 shows the real and imaginary parts of the 
wave number versus frequency for measured values and 
either the "Time-Averaged" or "Model-Averaged" kFDTD. 

These latter "Model-Averaged" simulations use only 
the current value of the conduction current Jn. The 
parameters in Fig. 3 correspond to the three separate 
sites of Table 1. Both the real and imaginary wave 
numbers agree well for each soil, for both types of mod
els across the entire two decades of bandwidth from 45 
MHz to almost 4 GHz. It should be noted that the 
"Time-Averaged" FDTD computation is more robust, 
with less sensitivity to excitation function and Courant 
number. 

CONCLUSIONS 

A minimal-storage time-domain model for frequency
dispersive soil based on a constant real dielectric con
stant and a (2,1) rational function of z- 1 conductiv
ity function has been developed and tested. By pre
multiplying the measured conductivity data by the Z
transform of the time average function, the resulting 
model avoids requiring conduction current time aver
aging in Ampere's law. Without this time averaging, 

TABLE I 
ONE-POLE CONDUCTIVITY PARAMETERS 

Puerto Rican Clay Loam: m = 10, d = 1.4t 
av? a1 bo b1 b2 EA.v 

no -0.88 0.91625 -1.67662 0. 761072 4.18775 

yes -0.9 0. 7983 -1.4695 0.67176 4.282 

A.P. Hill, Firing Point 22: m = 19.3, d = 1.527 
no -0.975 1.51947 -2.97284 1.45362 5.25834 

yes -0.97868 1.5473 -3.036 1.4888 4.7731 

Bosnia, Test site Alicia: m = 25.3, d = 1.263 
no -0.925 

yes -0.93 

1.76106 -3.32102 1.56193 5.03815 

1.6325 -3.0827 1.4521 4.9831 

t m is percent moisture content of the soil, d is soil density 
(g/cm3

). 

a one-pole conductivity model requires just one addi
tional store of electric and magnetic field compared to 
the non-dispersive FDTD algorithm. This is half the 
required additional storage of the previously reported 
(2,2) model, and even less than standard Debye and 
Lorentz models. In addition, fitting parameters to a 
single, real conductivity function -rather than to both 
parts of a complex permittivity function - is quite ad
vantageous. 

Numerical simulations on measured data show that 
this simple model is efficient and accurate across a wide 
frequency band for both real and imaginary parts of 
wave number, giving good predictions of velocity and 
decay rate. A stability analysis shows that the model 
is stable for one, two, and three dimensions, for a wide 
range of grid spacings. 
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ABSTRACT 
We present an analysis of statistical model based data-level fusion for near-IR polarimetric and thermal data, par
ticularly for the detection of mines and mine-like targets. Typical detection-level data fusion methods, approaches 
that fuse detections from individual sensors rather than fusing at the level of the raw data, do not account rationally 
for the relative reliability of different sensors, nor the redundancy often inherent in multiple sensors. Representative 
examples of such detection-level techniques include logical AND/OR operations on detections from individual sensors 
and majority vote methods. In this work, we exploit a statistical data model for the detection of mines and mine-like 
targets to compare and fuse multiple sensor channels. 

Our purpose is to quantify the amount of knowledge that each polarimetric or thermal channel supplies to the 
detection process. With this information, we can make reasonable decisions about the usefulness of each channel. 
We can use this information to improve the detection process, or we can use it to reduce the number of required 
channels. 

Keywords: mine, sensor fusion, statistical, multispectral, polarimetric, thermal, REMIDS, UXO, detection 

1. INTRODUCTION 
The need for mine and unexploded ordnance (UXO) detection and removal is growing in both military and human
itarian applications. In places like Cambodia, the threat of mines to the general populace is overwhelming. Since 
the end of the Cold War, there has been a growth in smaller, regional conflicts where threats are often not from 
high-tech weaponry, but from inexpensive ordnance. Bosnia is just one example. Mines are one of the least expensive 
weapons available, and their threat often far outlasts the conflict for which they are emplaced. Mine detection is 
therefore necessary in two roles: detecting minefield obstacles for military intelligence and detecting individual mines 
for eventual removal. 

One specific subject of mine detection involves wide-area surveillance. In one case, military forces need to chart 
possible impediments to ground movement accurately over broad swaths of territory. In humanitarian applica
tions, surveyors examining terrain for mine clearance can limit the area searched with wide-area surveillance. For 
both situations, it is highly desirable to conduct mine searches from the air to minimize the danger to personnel. 
Unfortunately, ground penetrating radar and quasistatic electromagnetic approaches are somewhat limited in range. 

Optical techniques can meet many of the requirements of wide-area minefield detection. One area of much interest 
is polarimetric sensing. In the near infrared domain, surface mines have a highly polarizing characteristic. Disturbed 
soil, indicative of buried objects, may also have such a polarizing nature. In fact, mine detection rates are high 
using only polarization information, but reducing the false alarm rate is a harder problem, requiring that we apply 
additional information. · While this feature alone is inadequate to detect mines, it can be a powerful tool when 
combined with multispectral information, such as thermal imaging or imaging spectrometers. 

However, fusing information from multiple sources in a rational, statistical way is often neither simple nor obvious. 
In previous work, we showed that fusing local spatial information with polarization and thermal observations can 
reduce false alarms, either through a statistical prior model or local adaptivity. 1 In this paper, we focus solely on the 
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relative advantages of fusing combinations of polarization, reflectance, and thermal data for distinguishing mine-like 
targets from background. Counterintuitively, we find that fusing only polarization and thermal information gives 
better results than any other combination, including the combination of all channels together, even under conditions 
of low thermal contrast. This finding is likely caused by model mismatch, but it clearly points out the complexity 
of choosing an appropriate fusion method. System designers should not develop sensors, models, and algorithms in 
isolation. We must develop these technologies together to achieve optimal soluti_9ns. 

2. SENSOR BACKGROUND 
Our data consist of three infrared imagery channels generated by the U.S. Army Engineer Waterways Experiment 
Station's Remote Minefield Detection System (REMIDS).2'3 The system images the first two channels using an 
active infrared system at the 1.05 J..Lm wavelength. One channel is percent polarization, (P- S)j(P + S), and the 
other channel is total reflectance, (P + S), where Pis reflectance in parallel polarization and Sis reflectance in cross 
polarization. The third channel is a passive thermal infrared channel operating over the 8-12 11m range. The sensor 
is mounted on an airborne platform, represented in Figure 1. The data that we use for this study has a resolution 
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Figure 1. REMIDS Thematic Representation 

of 2-3 inches per pixel, depending on altitude, although later system upgrades have increased this resolution. 
Several researchers have shown that polarization characteristics are advantageous in the mine detection pro

cess.2·4·5 Man-made objects such as mines and other unexploded ordnance (UXO) are significant near infrared 
polarizers compared to natural backgrounds, which tend to be uniformly random polarizers. Disturbed earth can 
indicate buried objects, and may also be a source of polarization features. REMIDS only uses linear polarization 
features, but we can extend the same algorithmic techniques to circular polarization as well. Additionally, thermal 
data alone is sensitive to weather and time of day, especially diurnal thermal crossover. 



The active near-IR sensor used in REMIDS is capable of all-weather imaging, but this all-weather capability comes at the price of a laser source, its power supply, and other support equipment. A passive polarization sensor could be implemented cheaply, but would have weather-dependent detection and false alarm rates. An alternative system is a passive hyperspectral polarimetric imager,4 but this again increases the system cost. Additionally, the computational requirements of the system increase approximately as the square of the number of channels used in the detection process, so every channel that we can ignore reduces the overall cost of the system. This last cost is the main reason we are fusing different combinations of sensors in this study: to determine if intelligently choosing channels to fuse can provide such savings with little loss in detection capability. 
One difficulty with the data set used in this study is that the percent polarization channel had been saturated prior to the signal processing stage to "improve" usage of available dynamic range. Unfortunately, doing so results both in a decrease in signal-to-clutter ratio in the percent polarization channel and an unrealistic decrease in the variance of the mines in this channel. This approach also saturated many background pixels, and thus these pixels cannot be distinguished from mine pixels through the percent polarization channel alone. To distinguish these pixels, we must use data from the other channels or prior information. We will return to this issue in Section 4. 

3. METHOD 
To analyze and compare the advantages of the various channels and their combinations, we choose to use a simple Maximum Likelihood (ML) approach to detection: 

x = argmax p(yix) = argmax lnp(yix) (1) X X 

where y is the multichannel image and x is the hypothesis image of mine locations, each represented as a vector, 

_ [ T T]T y- Yl , ... ,yN 

{ 
1 if pixel i is a mine 

Xi = 0 if pixel i is not a mine 

and N is the total number of pixels. Thus, each element of the observation image, Yi, is a 3-vector where the superscripts p, r, and t denote the three channels, percent Polarization, total Reflectance, and Thermal, respectively. For our channel comparison analysis, we sometimes ignore one or two channels. For these cases, Yi becomes either a 2-vector or a scalar, respectively. 

For our observation model, we assume that each pixel of data, Yi, is conditionally independent of all other data pixels, conditioned on knowledge of mine presence at that pixel, Xi. Formally, 

N 

p(yix) =p(yl,···,YNixi,···,xN) = ITP(Yilxi) (2) 
i=l 

This assumption allows us to perform the maximization in Equation 1 individually for each pixel, 

x = argmax lnp(ylx) = argmax 2.:~ 1 lnp(yilxi) 
X X 

ii = argmax lnp(yilxi) (3) 
Xi 

Thus, we formulate the problem as a likelihood ratio test, 

(4) 

where a is a threshold chosen by the user. 
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We also assume that each pixel is a conditionally identically distributed Gaussian, with parameters that are a 
function mine presence at the pixel of interest, 

(5) 

where J.L(Xi) and I:( xi) are the mean and the covariance, respectively, of the observation variable, Yi· For the purposes 
of this paper, we assume that the mean and covariance are known for both background and mines, and we estimate 
the mean and a full covariance matrix for both mines and background directly from the data. We make no attempt 
to model or adapt to nonstationarity of the background in this study. The likelihood ratio test then simplifies as 
follows, 

(6) 

Note that these decision threshold surfaces are quadratic, not linear, because the covariances are not equal. 

The simplicity of this model is desirable because it makes the resulting analysis and comparison of the channels 
easier to understand. One possible drawback, however, is that this very simplicity may not be a good match to 
reality, and may produce unexpected results. 

4. RESULTS 

For our test we have access to only two data sets, both from 1991 test flights of REMIDS over Fort Drum, New 
York. The first flight took place at 9 am on an overcast day, resulting in low thermal contrast between mines and 
background, but also low thermal variance. The second flight occurred at 3 pm on a clear, sunny day. We show 
representative segments of all channels of both scenes in Figures 2 and 3. The mines in these images are surface 
patterned anti-tank mines, but this approach to comparing the relative usefulness of the ~hannels is equally applicable 
to scattered mines as long as sufficient spatial resolution is available. The applicability to buried mines depends on 
whether the advantages of polarization information extend to buried mines that disturb the surface of the soil in 
which they lie. Thermal detection of buried mines is an established technique. 

For the purposes of our analysis, we define a detection as any continuously 8-connected region of pixels labeled 
as a mine by the ML approach. Using an image ground-truthed by hand, we define a correct detection as any single 
detection that coincides with at least one pixel of any continuously 8-connected region of pixels in the ground-truth 
image. If two such detection regions coincide with a mine region, we only count one as a correct detection. We 
define the total number of false alarms as the difference between the total number of detections and the number of 
correct detections. This definition is imperfect; as the threshold, /, of Equation 6 increases, an initially continuous 
detection region can break into multiple disjoint regions, resulting in an increase in the number of false alarms, 
without a related increase in correct detections. Using a Maximum A Posteriori (MAP) detector with a smoothness 
prior model can relieve this problem. 1 

We show the resulting empirically derived Receiver Operating Characteristic (ROC) curves for the clear and cloudy 
days in Figures 4 and 5, respectively. Each graph contains multiple curves, one for each possible combination of 
the three channels: percent polarization, total reflectance, and thermal. We label the graph legends with the same 
convention used in the superscripts of Section 3: 'p' for percent Polarization, 'r' for total Reflectance, and 't' for 
Thermal. We denote combinations of channels by multiple letters, e.g. 'rt' represents the combination of the total 
reflectance and thermal channels. Since these are semilog plots, we assigned a value of 0.99 to any cases of zero false 
alarms, for display purposes. 

There are three unusual features of these ROC curves that we must interpret. We explained the first such feature 
previously, the occasional increase in false alarms as correct detections decrease, as the breaking of a detection into 
multiple smaller detections as detection threshold increases. The second is the square ROC curve associated in each 
graph with the polarization channel alone: a sudden decrease from 1 to 0 in the probability of correct detection as 
you trace the curve from the right with no change in false alarms, followed by an immediate decrease in the number 
of false alarms to zero. This odd characteristic is a result of the saturation of the polarization channel described in 
Section 2. There are a fixed set of false alarms and correct detections that exactly attain the upper limit of the range 
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of values on which the polarization channel is defined. As the detection threshold approaches this upper limit it rules 
out all other false alarms. As the threshold crosses the top of the range, both correct detections and false alarms 
plummet to zero immediately. While the graph we chose to represent this is not unique, it is the closest match to 
our intuition about the shape and structure of ROC curves. 

The third unusual feature involves the order of the ROC curves from lower right to upper left. From a statistical 
viewpoint, adding channels, and hence adding information, cannot result in a worse detection characteristic unless 
the model used does not match the data. Yet our ROC curves in both types of weather clearly show an increase 
in false alarms as the reflectance channel is included with the polarization and thermal channels. Similarly, the 
reflectance channel alone appears to perform better than the combined thermal and reflectance channels on the 
overcast data. There are two possible ways that we can explain this counterintuitive result. One is our simplifying 
assumption of background stationarity, which a cursory perusal of the data will show is clearly inaccurate. Including 
model adaptivity may fix this problem. Another possibility could be a sensitivity in the reflectance channel to 
the parameter estimates, particularly its covariance with the thermal channel. Each of the unusual cases involves 
combining the reflectance channel with the thermal channel. 

In the other cases, the ROC curves follow our intuition about fusing channels: fusing one channel with another 
results in an improvement over either channel separately. The interesting result is the amount of improvement. First, 
note that the polarization and reflectance false alarm rates, alone and separately, do not change much as a function 
of the weather conditions. We could anticipate this, since a narrowband active sensor should be influenced little by 
ambient radiation. The thermal channel and all of its combinations outstandingly improve on a clear, sunny day. 
Again, we could anticipate this since thermal contrast increases dramatically with input radiation. Surprisingly, even 
on the overcast day, the thermal channel in conjunction with the polarization channel gives a significant and useful 
improvement, more than halving the number of false alarms of either channel separately. The reflectance channel, on 
the other hand, provides a much more limited improvement when used in conjunction with the polarization channel 
under all conditions. 

5. CONCLUSIONS 
In this research, we have examined the relative value of polarization, reflectance, and thermal information in the 
particular context of the mine detection problem. Using a particular simplified model we have shown that polarization 
and thermal information, when fused in a statistically rational way, can significantly improve the detection process 
over either alone, primarily through a reduction in false alarm rate. Also the thermal channel provides significant 
information, even under conditions of low thermal contrast. 

The advantages of expending the computational effort to include the reflectance channel appear more dubious. 
The improvements in false alarm rate that this channel provides are relatively small when compared to the other two 
channels. Also, it appears from a cursory examination of the results that the reflectance channel may be particularly 
sensitive to model mismatch. However, a careful analysis of the causes of this difficulty will require further study. 

) 
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Laser-induced acoustic generation for buried object detection 
S. W. McKnighta, C. A. DiMarzioa, W. Lia, R.A. Rol 

acenter for Electromagnetics Research, Northeastern University, Boston, MA 02115 
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ABSTRACT 
Mechanisms for the production of acoustic energy in soil by pulsed C02 laser excitation of the surface are reported. When the 
laser pulse in unfocused with a spot size about 1 em in diameter, a single narrow acoustic pulse is observed with a spectral content 
near the detector limit of 100 kHz and a velocity of 255 m/s, close to the speed of sound in air. When the laser is focused to a 
spot size on the order of lmm diameter, the audible acoustic intensity in greatly increased and we observe a second broad acoustic 
feature. This feature has a much lower frequency (near 3kHz) and velocity (75 m/s). We have tentative identified the fast mode 
as a normal compressive mode and the slow mode as a Biot slow-wave. A study of visible light emission when the focused C02 laser beam strikes the sand surface indicates ionized nitrogen, oxygen, and silicon are present. This implies that the mechanism 
for sound production with the focused beam involves ionization by the optical electric field, expansion, and subsequence collapse 
of the air. The mechanism for sound production by the unfocused beam, which produces better imaging of underground objects, 
appears to be quite different. 

Keywords: laser-induced, acoustic, landmine detection, Biot waves, porous media 

1. INTRODUCTION 
The use ofhigh-frequency (~30kHz) acoustic waves produced by a pulsed C02 incident on the surface of dry sand for imaging 
of shallow buried objects such as anti-personnellandmines has been demonstrated in the laboratory 1

•
2

• The mechanisms for the 
conversion oft}le optical pulses into sound, however, is poorly understood. Since the optimization of the process of optical to 
acoustic conversion in a porous media depends on understanding and modeling the physical processes, we have initiated an 
experimental investigation of the behavior of the acoustic modes created in soil under different laser pulse focusing conditions. 
For a broad, unfocused laser spot, modeling the soil as a uniform effective medium as in Figure 1 a may be appropriate. If the laser 
is focused to a small spot comparable to the size of the sand grains as in Figure 1 b, a more complex calculation may be necessary 
which takes into account the random position and orientation of the sand grains and the intervening air spaces. In addition, under 
focused beam conditions the optical field intensity can become very large, leading to different physical effects. We have observed 

Two Models of Surface Interactions 
(Unfocused Beam) 

u 
\ 

Frame 

Effective Medium Random Porous Medium 

Figure I Conceptual models of optical-to-acoustic conversion 
in soil. a) An effective medium approximation may be adequate 
when the laser spot is much larger than the structure of the soil, 
b) The details of the interaction of the light with the discrete 
particles of the poro-elastic medium may be critical when the 
beam size is comparable to the particle size. 

Scanner 

·Focal lens 

Figure 2 Photograph of experimental setup. The 
pulsed C02 is at top left and the experimental sandbox 
is below. Objects to be detected or hydrophones to 
study the laser-to-acoustic coupling are buried in the 
sand. 
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that focusing the laser beam to a spot size on the order of I mm in diameter greatly increases the audible acoustic sound associated 
with the laser pulse and, in addition, can cause the production of a flash of visible light at the point where the infrared C02 pulse 
impinges on the sand. We have studied the time-dependence of the acoustic pulse at various depths and angles in the soil for both 
focused and unfocused laser pulses. For unfocused pulses we find a single acoustic mode with a velocity slightly less than the 
spe~d of sound in air with a directionality perpendicular to the soil surface. With a focused beam we detect two distinct acoustic 
features in the time trace: a sharp pulse with a velocity and spectral content similar to that achieved with the unfocused beam, and, 
in addition, a second broad pulse with a much lower frequency content which propagates at a slower velocity. We suggest that 
these two modes may be related to the two Biot modes allowed in poro-elastic media3

• 

2. EXPERIMENT 
A photograph of the experimental setup is shown in Figure 2. The source laser is a LSI pulsed 1 0.6J.l C02 TEA laser with a pulse 
length of 1 OOns, a pulse energy of 150mJ, and a repetition rate less than 20Hz. The laser is incident on a 1 m2 surface of dry sand 
about 60 em deep in which we would bury detectors or various types of subsurface targets. In the present studies of the optical
acoustic conversion mechanism, the acoustic signal was measured with a wide-band hydrophone (0-1 OOkHz) which was buried 
at various depths and positions in the sand. This configuration contrasts with the experimental setup that we used to image 
underground objects. For imaging, our best results were obtained with a narrow-band (30kH) tuned PZT detector which was 
suspended in the air above the position of the laser pulse on the surface of the sand. 

The laser was used in two configuration: unfocused or with a focusing lense to reduce the spot size. The unfocused laser spot is 
an oval approximately 1.1 x 0.7 em in size. A germanium lens with a focal length of25cm was used to focus the beam to a spot 
size less than 1mm in diameter, comparable to the size of the sand grains. 10.6J.llight is very effectively absorbed in soil with a 
reflection less than I 0% and skin depth of approximately 5 J.l. The sound produced by both the focused and the unfocused beams 
was audible across the room. With the focused beam the sound was considerably louder and there were flashes of visible light 
emitted and some movement of sand grains at the spot where the laser hit the surface. 

The acoustic signal detected by the buried hydrophone for the focused and unfocused beams is shown in Figure 3 and Figure 4. 
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Figure 3 The time trace of the acoustic signal measured by a 
buried hydophone as a result of a pulse from the unfocused laser on 
the sand surface. 
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Figure 4 The time trace of the acoustic signal measured by a 
buried hydophone as a result of a pulse from the focused laser on 
the sand surface. 
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Scanning laser pulse from d=O to 
d=7.5cm the speed of sound can be 
calculated by lhe arrival lime C02 laser pulse 

Figure 5 Experiment to measure the velocity in sand of the 
acoustic features in Figure 3 and 4. 
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Figure 6 The arrival time vs. distance for the features indicated 
by the arrows in the inset. The propagation velocity in sand of 
the two features is determined as indicated from the slope of the 
lines. 

The initial spike is electrical noise caused by the laser discharge. The acoustic pulse is dominated by a sharp peak with a width 
(about 1 O~s) that is probably limited by the bandwidth of the I OOkHz detector. For the focused beam only, there is a second, 
much broader feature with a peak-to-peak width of about 300~s. 

To determine the propagation speed of these two different acoustic features observed with a focused laser beam, we measured 
the change in the acoustic signal as a function of distance from the laser spot to the detector using the configuration in Figure 5 
The time trace. of the acoustic signal measured by a buried hydophone as a result of a pulse from the focused laser at two different 
positions on the sand surface are shown on the left in Figure 6. Identifying the sharp feature by the initial spike, and the broad 
feature by the dip between the two broader peaks, in Figure 6 we plot the time delay after the laser fires of these two features as 
a function of distance from the laser spot to the detector. By taking the slope of these two curves, we find the velocities of the 
two features are dramatically different. The sharp feature propagates with a velocity around 255 m/s, while the broad feature 
propagates with a velocity of about 75 m/s. 

The observation of acoustic modes with two different velocities in porous media is a well-known phenomena. In the theory of 
Biot, the solution for acoustic propagation in a random porous elastic media gives rise to two modes: a mode in which the frame 
and the fluid move in phase (compressional wave) and an addition mode in which the motion of the frame is out of phase with 
the motion of the fluid. Typically the in-phase mode has a velocity 
which is close to the velocity of sound in the fluid, while the out-of
phase mode, the "Biot slow wave" has a lower velocity. If we 
tentatively make an identification of the features we observe with the 
Biot modes, the sharp feature which travels at 255 m/s, close to the 
velocity of sound in air, could be the Biotin-phase mode, while it is 
natural to identify the broader feature, low-velocity feature with the 
Biot slow wave. Note that we only observe this second, slower 
wave under excitation with a focused laser beam. 

To measure the angular dependence of the magnitude of the acoustic 
signal from the focused beam, we positioned hydrophones at 
different angles along an arch buried in the sand centered on the 
position ofthe laser spot, as shown in Figure 7. In Figure 8 and 9, 
we plot the peak amplitude of the sharp "fast-wave" signal and the 

Figure 7 Experimental setup to measure the angular directivity 
of the acoustic features in Figure 3 and 4. 

736 



Fast Wave Angular Distribution 
(Focused laser beam) 

90 

270 

Rayleigh distance=D211~ O.Olcm 

Figure 8 Angular dependence the amplitude of the "fast wave" 
feature produced with a focused laser beam. 

Slow Wave Angular Distribution 
(Focused laser beam) 

90 

Figure 9 Angular dependence the amplitude of the "slow 
wave" feature produced with a focused laser beam. 

broad "slow-wave" signal as a function of angle from the normal. The two modes show a dramatic difference in angular 

distribution, with the slow wave signal propagation peaked at angles perpendicular to the surface, while the fast-wave signal 

strength is peaked along the surface of the sand. The angular dependence of the fast-wave mode is hard to understand, since when 

the beam is unfocused we observe only a single mode with a shape and velocity similar to the fast-wave signal, but with an angular 

distribution sharply peaked at a direction normal to the surface, as shown in Figure 10. 

The unfocused beam has a Rayleigh length d2/A on the order of 1 em, so for distances into the sand on the order of lcm the 

unfocused beam looks like an extended source. The focused beam, on the other hand, has a Rayleigh length less than a millimeter 

and is a point source to a good approximation. Since the radius of the detector arch was about 10 em, it is unlikely, however, the 

difference between the fast-mode angular dependence seen in Figure 9 and 10 can be accounted for by such physical optics effects. 

It is more likely that the different acoustic excitation physics between the broad laser beam and the focused beam, such as 

illustrated in Figure 1, may account for these differences. We will return to this question later. 

Table I summarizes the differences between the two acoustic modes that are observed with the focused laser beam. We note that 

these differences may impact on the utility of the two modes for underground detection and imaging. The fast mode, having a 

Angular distribution 
(Unfocused Laser Beam) 

90 

Rayleigh distance=D11 ).~ 1 em 

Figure 10 Angular dependence of the amplitude of the fast
wave feature produced by an unfocused laser beam. 

Table 1: Comparison of Fast-Wave and Slow-Wave 
laser-induced acoustic features produced with a 
focused laser beam. 

Comparison of Fast and Slow Acoustic Waves 

*Band-width of detector= 100kHz (Jib,.,., =10 MHz) 
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higher spectral frequency content may be more useful for high
resolution imaging where a small wavelength is desired. On the 
other hand, if we have correctly identified the slow wave as a Biot 
out-of-phase wave, it will see an exceptionally large contrast 
between the porous soil where the slow wave is allowed and any 
subsurface non-porous object where, since there is no longer any 
differentiation between frame and fluid, its propagation is 
forbidden. There may also be implications about detection 
strategies, since to the extent that the energy of the slow-wave is 
carried in the fluid, techniques that measure the motion of the solid 
surface, such as laser vibrametry, will be less effective than with 
an ordinary compressional wave. On the other hand, for the same 
reason the mismatch between the poro-elastic wave and the wave 
in the air may be less for the slow-wave than the fast wave, so that 
detection by means of a microphone above the soil may be more 
favorable for the slow wave. 

It is noteworthy that our attempts so far at subsurface imaging with 
the focused beam have been less successful than our previous 

Spectral Signature of Laser Flash 
(Focused beam) 

Figure 11 Experimental configuration for measuring the 
spectrum of visible light produced when a focused laser beam is 
incident on sand. 

work with the unfocused beam. These imaging studies were carried out with an acoustic detector suspended in the air above the 
surface. It is not possible to say at present whether the lack of success was due to an inherent effect such as the longer wavelength 
of the slow wave, less efficient acoustic coupling to or from the soil and air, or some interference effects between the fast and slow 
acoustic waves, or more incidental effects such as noise from the movement of sand grains and drifting of the laser focus due to 
heating of the air and movement of the surface. 

One clue about the mechanism for acoustic excitation is that a flash of visible light is observed which the C02 pulse hit the surface 
of the sand when the beam is focused, but not for the unfocused beam. Origins ofthis visible light that we considered were black
body incandescence ofthe sand surface, photoexcitation and luminescence of the sand material, and electric field ionization and 
recombination. The energy density of the focused beam is sufficient to heat the sand over 106 oc if the effects of radiant emission 
and conduction are neglected, but this does not seem likely on the relatively long (0.1 JlS) timescale of the pulse. Luminescence 
of Si02-based materials is usually very broad-band and can extend into the ultraviolet. 

To gather more information about the light emitted when the focused C02 laser pulse strikes the sand surface, we measured the 
spectrum of the emitted light using a multispectral filter and a photomultiplier detector as in Figure 11. The measured spectrum 
is reproduced in Figure 12 and Figure 13. The emission peaks are negative, because the electron current ofthe photomultiplier 
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Figure 13 Spectrum of visible light produced by focused laser 
beam incident on surface of sand (long wavelength). Emission 
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is converted to a negative voltage by a voltage-to-current amplifier. 
Electron photocurrent resulting from the detected light yields a 
negative voltage. 

We have identified emission lines in the spectrum by comparison 
with the CRC Handbook of Physics and Chemistry. We note that 
large emission lines associated with ionized nitrogen, oxygen, and 
silicon are present in the spectrum which implies that the model for 
optical field ionization is the best model for the production of the 
light. The concentration of the electric field of the optical signal 
near the sharp points of the sand grains is the most likely 
mechanism for the breakdown and ionization of the air and sand. 

The acoustic production for the focused beam can then be best 
explained by the collapse of the air following the rapid expansion 
associated with the ionization and plasma formation as shown in 

Focused Beam Surface Interactions 

I 

1. Field concentration 
/

1 

at point 

</-2. Air/sand ionization 

\ 
\ 

3. Compressional shock wave 

Figure 14 Model for production of light and sound by focused 
laser beam impinging on soil surface. 

Figure 14. The intense audible noise associated with the focused beam is analogous to the crack associated with an electrical arc 
or with thunder. One implication of this model is that the sound production for the focused beam is probably primarily as a 
compressional wave in the air above the soil. The reduced effectiveness of imaging with the focused beam may be a result of the 
poor coupling of this acoustic compressional wave in air into the soil. 

The unusual angular dependence of the compressional fast wave for the focused beam seen in Figure 9 may represent the more 
effective transport of acoustic energy in the air along the surface of the sand than propagation in the sand. In effect, the sound 
produced by this ionization and collapse travels through the air to a point close to the high-angle, near-surface sensor and then 
propagates only a short distance into the soil to the detector. Since the velocity of the fast wave is very near the speed of sound 
in air, it is very diffi"cult to distinguish this propagation channel from propagation through the soil. The slow wave may not have 
the same channel available to it because a Biot wave will not propagate in a single component fluid such as the air. 

3. CONCLUSIONS 
The production of acoustic energy in soil by a pulsed C02 laser has been studied. When the laser beam is focused to a spot size 
comparable to the soil grains, a much louder acoustic sound is observed and two different acoustic modes are detected in the soil. 
One mode, which we identify with a normal compressional acoustic wave has a velocity (255 m/s) close to the speed of sound 
in air, and a bandwidth of at least I OOkHz. The second mode, which we have tentatively identified as a Biot slow-wave 
phenomena, has a velocity of only 75 m/s and a spectral peak near 3kHz. By analyzing the visible light emitted by the focused 
laser beam, we conclude that for the focused laser pulse the acoustic energy is produced by ionization of the air and soil 
components, with a rapid expansion and subsequent collapse of the air column. Preliminary investigations have indicated that 
imaging of subsurface objects with the focused beam laser is not as successful as with a broader unfocused beam. This may be 
a result of the poor coupling of sound produced in air into the soil. Studies to measure the attenuation and dispersion of the 
acoustic signals produced by the focused and unfocused laser beams are underway. 
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Laser-induced acoustic detection of buried objects 
S. W. McKnight, C. DiMarzio, W. Li, D. 0. Hogenboom, G. Sauermann 

Center for Electromagnetics Research, Northeastern University, Boston, MA 02115 

ABSTRACT 

We have investigated the use of acoustic energy produced by a pulsed C02 laser to detect objects underwater or buried in sand. 
The C02 laser produced 150 mJ pulses of duration 100 ns. The resulting acoustic pulses were detected with an audio microphone 
with a response to 15 kHz or a PZT transducer with a resonant frequency at 28 kHz. With the laser incident on the surface of 
a water-filled tank, acoustic echos were observed from the tank walls and from objects in the tank. For objects buried in sand, 
changes in the acoustic line shape related to the presence of subsurface objects were observed. Analysis of the data to extract 
clear signatures of the mine are in progress. 

Keywords: laser-induced, acoustic, land mine detection, photoacoustic, optoacoustic 

1. INTRODUCTION 
The large acoustic mismatch between granular soil and solid subsurface objects suggests that acoustic methods have considerable 
promise for land mine detection. Sound velocities in sand or granular soil can be on the order of or less than the velocity in air 
(330 m/s ) 1 while in metals or plastics characteristic ofland mine casing or fillers, sound velocities are typically greater than 2000 
m/s. The velocity and/or density mismatch between soil and mine creates a large acoustic reflection from the mine. 

In common with other anomaly detection techniques, the challenge of acoustic detection is to distinguish the effect of a buried 
mine from stones, roots, and other clutter in the ground. Two separate approaches to acoustic discrimination depend on the 
identification of acoustic resonances of the target object, or the resolution of the target shape. While mine-like objects may have 
identifiable acoustical resonances from a few kilohertz to hundreds of kilohertz, these resonances are strongly damped when the 
object is in soil. Target identification through shape resolution, on the other hand, requires multiple acoustic sources or receivers 
to correlate the received signal with the position or angle of the source. Coupling acoustic energy from the air into the soil or 
matching of separate movable ground-contact transducers makes spatial resolution with acoustic transducers difficult. 

Optical methods for the detection or generation of sound have advantages for remote position-sensitive acoustic detection. 
Optical laser vibrometry is a commercially available tool for the 
detection of sound at a solid surface which has been applied for the 
detection of subsurface objects.2 The photoacoustic effect, 
production of sound by laser pulses, has been applied for ultrasonic 
material characterization3

·
4 and for the study of liquid droplet 

dynamics.5
•
6 In addition, microwave detection of surface acoustic 

vibrations has also been used for land mine detection.7 These 
optoacoustic techniques create a number of options for the acoustic 
detection of land mines. First, acoustic transducers can be used 
both to generate the acoustic signal and to detect the scattered 
acoustic energy. Second, sound generated by acoustic transducers 
can be detected by optical (or microwave) signals. This is the 
approach of References 2 and 7. Alternatively, sound produced by 
laser pulses can be detected by acoustic transducers. This method 
is described in this paper. 

Figure 1 presents a concept of how a laser-induced acoustic system 
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pulses striking the soil is detected by a rolling, ground-contact 
transducer. Changes in the acoustic signature when the laser 
pulses are over a subsurface object are encoded into a heads
up display registered with the operator's field-of-view. The 
correlation ofthe acoustic signature of an underground object 
with the position of the laser pulse allows an identification of 
the location and possibly the shape of the buried object. In 
concept, this method is sitp.ilar to location of a structure 
behind a wall by the change in sound when a percussion 
source is struck near the target. 

It is also possible that sound could be both produced and 
detected by optical means. This could make possible a remote, 
non-contact, scanning probe system that could be effective for 
underground object location and identification. The results of 
the present investigation will clarify prospects for such a 
system. 

Optical to Acoustic Conversion 
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Figure 2. Model for conversion of optical to acoustic energy. 

2. EXPERIMENTAL RESULTS 
A Laser Science LS 150 pulsed C02 laser was used to create acoustic pulses on striking a surface. The laser was operating at a 
wavelength of 10.6 flm and pulse length was 100 ns with an energy per pulse of 150 mJ. Although the pulse repetition rate could 
be as high as 50 Hz, the data here were taken at a repetition rate of 8 Hz. Acoustic pulses when the laser struck a solid surface 
were audible at distances of a few meters. 

Optical radiation at 10.6 flm is typically over 90% absorbed in soil. Our model for the generation of acoustic energy is that the 
rapid heating and expansion of the soil in the skin depth of the optical radiation leads to a pressure wave in the solid. This 
process is illustrated in Figure 2. The thermal expansion is also coupled into an acoustic wave in the air above the surface. 

Acoustic energy was detected by two transducers: an audio microphone with a high-frequency cut-off near 15kHz, and a PZT 
transducer with a resonant frequency of28 kHz. Experiments in soil were conducted in a 28x32 em box filled to a depth of about 
7 em with dry sand. Some experiments were also conducted in a 50x30 em tank filled to a depth of30 em with water. Simulated 
mine targets were metal disks between 3-10 em in diameter and 1.5-3 em in height. While metal targets were chosen for 
convenience, the acoustic mismatch between soil and plastic is nearly as great, and we expect that equivalent results would be 
achieved with plastic targets. 

Figure 3 shows a typical geometry for experiments in the 
sand box. The PZT transducer is half-buried in the sand 
approximately 1 0 em from the target, and the laser pulse is 
scanned in rows across the position of the target. The target 
is buried 2 em under the surface of the sand. The experiment 
is then repeated with the target removed from the sand box. 
Figure 4 shows the transducer voltage as a function of time 
after the initial laser pulse when the laser pulse is directly 
over the target position (Scan 3, y=13.5cm, x=13.5cm). The 
dotted lines in the same figure show the response when the 
laser is at the same position, but the target is removed. 

While it is clear from Figure 4 that there are differences in 
the signal caused by the target, it is not clear how to process 
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the data to display these changes. In Figure 5 we have taken Figure 3. Geometry for experiments in sand. 
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Figure 4. PZT transducer response as a function of time delay Figure 5. Fourier transform of the data of Figure 4. Solid line is with 
following the laser pulse for the geometry of Figure 3 with the laser the target present and the dotted line is with no target. 
pulse incident at y=l3.5 ern, x=l3.8 ern. The solid line is with the 
target present and the dotted line is with no target. 

a Fourier transform of the data in Figure 4. The dominant feature in the plot here is the 28kHz response peak of the PZT 
transducer. While there are consistent differences from run to run between the data with the target and without the target, there 
is no obvious unique identifying feature of the target. 

In Figure 6 the difference between the transducer signal with and without the target present is plotted in gray-scale intensity as 
a function of time delay and laser position for scan number 3 in Figure 3. The effect of the target at x=I3.8 em is obscured by 
the increase in signal strength as the laser excitation approaches and recedes from the point closest to the fixed detector position 
at x=13 .8 em, y=20.1 em. In addition, the difference signal is dominated by changes in the phase ofthe received signal that may 
be caused by increased propagation velocity through 
the target or by slight repositioning error between the 
data with and without the target. 

The arrival time of the initial acoustic pulse is 
consistent with a propagation velocity near 350 m/s. 
While as noted above the velocity of sound in sand is 
highly variable, this is close enough to the velocity of 
sound in air to leave doubt whether the acoustic 
signal is propagating primarily through the air or 
through the sand. 

In order to demonstrate conclusively transfer of 
acoustic energy from the laser pulse into the medium 
and to improve the chances for detection of a target, 
we performed experiments on underwater targets in 
an experimental water tank as illustrated in Figure 7. 
C02 radiation is absorbed very efficiently in water 
with a reflection coefficient of less than 1% and an 
absorption length of a few microns. The response of 
a completely submerged detector was measured as 
the laser beam was scanned toward an aluminum 
target extending nearly to the surface of the water. 
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Figure 6. Difference signal for transducer voltage with target present minus 
voltage with no target present as a function of time delay and laser position x 
for scan with y=13.5 ern (see Figure 3). The grayscale calibration is in 
microvolts. 
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Figure 7. Experimental setup for laser-induced acoustic detection in 
water tank. As indicated, the time delay between the reflection from 
the target and the direct reception from the excitation pulse will be 
expected to decrease as the laser moves closer to the target. 
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Figure 8. Transducer voltage as function of time delay and laser 
position for detection of a target in water. The reflection of the target 
is indicated. The grayscale calibration is in volts. 

The target reflection is clearly visible in Figure 8 as the acoustic reflection feature that approaches the direct acoustic reception 
time delay as the laser excitation approaches the target. From the slope of the target track the propagation velocity can be 
determined to be consistent with the known speed of sound in water (v.=l500 m/s). In contrast to the situation in sand or soil, 
sound propagation in water is only weakly attenuated. The significance ofthis experiment is that it conclusively demonstrates 
that laser-induced acoustic signals are transmitted through the target medium (and not just through the air), and that under ideal 
circumstances reflections from a target can be directly observed. 

Acoustic reflections from the enclosure walls have also been observed in experiments in sand. Figure 9 and 10 show the 
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Figure 9. Experimental setup for detection of target in dry sand with 
acoustic microphone detector. 

Figure 10. Acoustic microphone signal as function of time delay and 
laser position. Calculated acoustic arrival times are shown for direct 
transmission from the laser to the detector(+), for reflection from 
sides of box (x, <>, o, o), and for reflection from the box bottom (v). 
The calculated arrival time for reflections from the target is indicated 
by the triangles (.e.). 
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experimental setup and data taken with the acoustic 
microphone in sand. Reflections from the sides of the box are 
observed in the diagonal bands in Figure IO. The calculated 
arrival times for direct transmission from the laser spot to the 
detector and for reflections from the four sides and bottom of 
the box are indicated by lines in Figure I 0. The calculated 
lines agree well with the features observed in the data using an 
acoustic propagation velocity of260 m/s in dry sand under the 
soil packing conditions ofthe experiment, about 75% ofthe 
velocity of sound in air. There is no obvious feature at the 
expected arrival time for reflection from the target, indicated 
in the figure by the triangles. While there are modifications in 
the acoustic line shape when the target is removed as shown in 
Figure II, it is not easy to identify these subtle changes from 
the data in the absence of a control data set without a target. 
What is needed is a way to process the data to extract out the 
differences in the signal with and without the target present. 

One possible processing technique is to use the acoustic signal 
when the laser spot is far from the target as a control to 

:\/No Target 

0.5 1 1.5 

Time Delay (ms) 

Figure 11. Microphone signal received with and without buried 
target between laser spot and detector. Experimental configuration is 
illustrated in inset. 

compare to the signal when the laser spot is near the target. In this way the signal received when the laser is over clear ground 
could be used as a background to detect the anomaly when the laser is over a buried object. Unfortunately, if the separation 
between the laser spot and the detector position is changing as the laser is scanned, as in Figure 10, changes in the signal as the 
laser excitation is over the target are difficult to extract from the changes caused by the spot moving closer to or farther from the 
detector. 

A solution to this problem may be found if the separation between the laser excitation source and the detector can be fixed as 
the laser spot is scanned. This may be achieved in a practical mine detection system if the detection system as well as the 
excitation system is laser-based. For example, the C02 laser excitation system could be maintained in registration with a laser 
vibrometer acoustic detector as the two are scanned across the ground. 

~aser• 
Detector 

-Mine 

Figure 12. Experimental setup for the acoustic difference 
experiment. To simulate the registered motion of the laser and 
detector, the sand box with the mine-simulant target is moved with 
respect to the laser and detector. The target is buried about I em 
below the surface of dry sand. 
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Figure 13. Acoustic anomaly detection as a function oftime delay 
and laser position. The gray scale represents the absolute value ofthe 
difference between the time record of the microphone voltage at any 
laser position and that measured at x=l em when the laser is far from 
the target. A clear anomaly is observed near the target position at 
x=7 em. 
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As a test of acoustic anomaly detection when the source and detector are maintained in registration, we mounted a microphone 
in the air over the sand and simulated the coordinated movement of the source and detector by moving the sand container with 
the detector and laser spot fixed. This experimental configuration is shown in Figure 12. The mine-simulant target was a metal 
cylinder about 3 em in diameter and 2 em high buried with its top about 1 em under the surface of dry sand. While the acoustic 
signal will be received in the air above the soil in this configuration, it is reasonable to assume that there will be modification 
in the sound when the excitation over a near-surface buried object due to changes in the acoustic resonant structure of the soil. 
In fact, this is the method by which percussion is used to detect objects behind a wall. It is also notable that the configuration 
in Figure 12 is a non-contact measurement, a considerable advantage in detection of mines. 

We processed the data by subtracting the detector signal when the excitation was far from the target from the intensity vs. the 
time scan at each position. The result of this difference signal is shown in Figure 13, where the data from the third distance bin 
is subtracted from each of the other data sets and the absolute value of the difference is plotted vs. position and time delay. A 
clear anomaly is observed at x=7 em when the laser spot is over the position of the mine. Localized anomalies with strong 
contrast as seen in Figure 12 were not observed in scans taken with no target present. We have not completed experiments to 
determine if the time delay where the largest difference is observed is correlated to target depth. 

3. CONCLUSIONS 
Pulsed C02 laser-induced acoustic excitation has been shown to be an effective way to get localized acoustic excitation in soil 
without directly contacting the ground. The acoustic signal detected by a PZT transducer or by an audio microphone has been 
shown to be sensitive to the presence of near-surface buried objects. While direct target echos have been observed in experiments 
with laser-induced sound in water, the modification of the acoustic signal by objects under dry sand is complex and not easy to 
interpret. In experiments with a fixed acoustic receiver in contact with or under the sand, the changes in the acoustic signal when 
the laser excitation is close to the target position are difficult to distinguish from the changes that result from the change in 
separation between the scanned laser pulse and the receiver. By maintaining a fixed separation between the laser spot and the 
acoustic receiver, we have been able to identifY acoustic anomalies by taking a difference of the response when the laser is near 
the target and the response when the laser is far from the target. 

These experiments indicate that laser-induced acoustic detection ofland mines is a promising area for further study. Our results 
indicate significant modification of the acoustic signal when the laser is directly over a buried object, so shape discrimination 
of man-made objects from natural underground objects is possible. Processing of the acoustic signals to identifY anomalies from 
buried objects is complex. Background subtraction has been shown to be feasible, but it is necessary to take account of the 
changing distance between the scanned laser spot and the microphone. Optical detection by laser vibrometry may be particularly 
effective in conjunction with laser excitation since the excitation and detection positions can be kept in registration without 
ground contact or mechanical detector movement. 

Additional experiments are required to determine if target depth can be correlated with the time delay associated with the 
anomaly. In addition, the application of the technique in different types of soils needs to be established. The experiments in dry 
sand reported here may represent one of the more difficult mine detection scenarios since acoustic propagation in sand is strongly 
attenuated and depends in a complex way on the packing of the sand grains. Clay soils may allow acoustic detection at greater 
distances. More sensitive acoustic detectors or accelerometers may improve prospects as well. 
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Imaging of Buried Objects by Laser-Induced Acoustic Detection 

S. W. McKnight·, W. Li, and C. A. DiMarzio 

Center for Electromagnetics Research, Northeastern University, Boston, MA 02115 

ABSTRACT 

We report here on the use of acoustic pulses generated by a pulsed-laser incident on the ground surface for the depth- and shape
resolution of buried objects. The laser-induced acoustic wave has considerable advantages over other acoustic wave generation 
techniques for landmine detection applications. (1) It is efficient because the sound is generated directly in the ground. (2) The 
acoustic source can be precisely positioned or scanned by optical redirection of the laser spot. (3) Remote, non-ground-contact 
detection can be accomplished with a receiving microphone in the air or by using optical vibrometry of the soil surface for 
detection. Research has been focused on the data acquisition and signal processing applicable to de-mining scenarios. A 
de-convolution method using a Wiener filter is introduced to the processing of data. By scanning the laser position and filtering 
the time-trace of the reflected acoustic pulse, we have obtained 3D images of the underground objects. The images give us the 
clear discrimination of the shapes of underground objects. The quality of the images depends on the mismatch of acoustic 
impedance ofburied objects, the bandwidth of acoustic sensor, and the selection offilter function. 

Keywords: Laser-induced acoustic imaging, buried-object detection, landrnine detection, photoacoustic, optoacoustic 

1. INTRODUCTION 

Current de-mining techniques are limited in their ability to resolve sufficient detail to allow the land mine to be identified and 
differentiated from stones, roots, or stray metal particles. Standard inductive techniques can fmd low-metal-content mines, but 
over 300 false alarms must often be investigated for every mine found. These false-alarm rates are unacceptable, even for non
time-critical humanitarian de-mining efforts, due to the enormous areas that need to be cleared as well as the risk of carelessness 
and inattention caused by a large number of false alarms. A technique that would allow imaging of the shape of a buried object 
would enable an enormous reduction in the number of underground clutter objects that would need to be investigated. 
Unfortunately, electromagnetic or acoustic wavelengths that easily penetrate the ground are too long to adequately resolve the 
shape of scattering objects in the far-field. However, near-field resolution on a sub-wavelength scale is possible with long
wavelength probes in attenuating media if sources can be localized within a few absorption lengths of the object. 

Acoustic probes ofburied objects are attractive because of the large impedance contrast between solid underground objects and 
granular soil even for non-metallic targets. Since coupling of sound into and out of the soil is difficult because of the mismatch 
at the air-ground interface, previous work has used opticaP or microwave2 vibrometry to directly detect the motion of the ground 
surface. Others have proposed the use of ultrasonic vibrometers to identify landrnines by the discrimination of characteristic 
acoustic non-linear effects.3 We have reported on the use of a short-pulse C02 laser to generate acoustic pulses directly in the 
ground. 4 Detection was by means of a PZT transducer either buried in the ground or suspended in the air above the laser pulse 
spot. The acoustic signal was dominated by detector ringing at the 30 kHz resonant frequency, but we were able to detect 
acoustic anomalies by background subtraction when the laser source was incident on the surface directly over the position of a 
buried object. In this paper we report on the application of a Wiener filter deconvolution to recover the acoustic pulse echo from 
our resonant PZT detector and demonstrate that depth resolution can be obtained by time-sampling the filtered signal. Scanning 
the laser source in registration with the transducer suspended above the ground allows us to map out the shape of a buried object. 
We demonstrate the application of this technique in determining the shape of a shallow buried non-metallic target, and in 
differentiating two closely buried objects. 

*Correspondence: E-mail: mcknight @neu.edu; Telephone: 617-373-2060; FAX: 617-373-8627 

Part of the SPIE Conference on Detection and Remediation Technologies 
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2. EXPERIMENT 

The experimental configuration is indicated in Figure 1. The laser source is a Laser Science C02 laser with a pulse width of 100 
ns and a pulse energy of 150 mJ. Our experiments were carried out with a laser pulse repetition rate of 8 Hz, corresponding to 
an average power less than 1.2 W. The laser spot is about 1 em in 
diameter without focusing. 

Our target is a hard rubber hockey puck buried between 0.1 and 
2.0 em under the surface in a box of dry sand. The velocity of 
sound in hard rubber, about 1600-1800 m/s, creates a good 
contrast with the velocity in dry sand which we have measured to 
be 300 mls, in good agreement with the literature.5 The sound 
velocity in plastic landmine materials are likely to be in the range 
1600-2800 mls.6 

The laser pulse is strongly absorbed within the first 1 Jlm of the 

'-... Detector 
Lase~·-. •-----+ 

·•··· ............ ~ -Target 

surface, instantaneously heating the sand about 3°C, and the Figure 1. Experimental configuration for laser-induced acoustic 
accompanying pressure wave creates an acoustic pulse. The experiment with background subtraction or Fourier filtering. 
surface displacement of the sand was measured by a laser 
vibrometer at about 2 nm, and although we have not measured the energy of the sound pulse, it is clearly audible across a 5 m 
room. 

The detector is a PZT transducer with a resonant frequency of 30 kHz suspended 10 em over the surface of the sand. Since 
ambient room noise is small at 30 kHz, the data could be taken without averaging. Data with a lower-frequency (f~ 15 kHz) 
broad-band microphone were typically averaged over eight laser pulses. The microphone data were not as successful for imaging 
purposes, either because of the lower signal-to-noise or possibly because of the longer acoustic wavelength. During the 
experiment the laser spot and the detector are traversed in tandem across the sand box, with the laser spot/detector distance kept 
as nearly fixed as possible. In some cases the surface of the sand was not level, and that caused the distance to vary as we 
scanned over the mine location. 

3.RESULTS 

In Figure 2 we show a time trace of the detector voltage as a 
function of time for two single laser pulses--one when the 
laser and detector are over our target, and one when they are 
far from the target. The dominant feature in both of these 
traces is the detector ringing at 30kHz. While the difference 
between the traces with and without the target is well above 
the noise, it is difficult to distinguish characteristics of the 
target from this data. We have processed this data by using a 
background subtraction method. In this method, as the laser 
and detector are scanned across the target we take the acoustic 
signal as a function oftime at each laser position, y(t,x), and 
subtract the acoustic signal at some reference position where 
we know there is no mine, y(t, xJ. 
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An example of the application of this technique is shown in 
Figure 3. The top panel illustrates on a gray scale the detector 
signal as a function of time for 25 different positions x as the 
laser and detector are scanned across the position of a target. 
The target in this case in a hockey puck buried vertically (with 
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Figure 2. Unprocessed detector signal for a single laser pulse when 
the laser is over the target (solid) and when it is not over the target 
(dotted). 



its curved side up) with its center at x=6 em. Since the initial 
acoustic pulse arrives at the detector at the same time for each trace, 
subtraction of data from the second position (x=0.5 em) from 
each of the traces reveals the presence of the buried object as 
illustrated in the bottom panel. 

For this technique to be successful, it is necessary that the t=O 
point be perfectly correlated for each trace. Since the beginning 
of each time trace is triggered by the laser pulse, this requires the 
surface of the ground to be perfectly level. If the distance 
between the laser spot on the ground and the detector changes as 
the laser beam is scanned, the phase difference between the 
signals will cause large spurious differences. In addition, as seen 
in Figure 3 this subtraction does not remove the 28 kHz detector 
ringing. 

To remove the background, including the detector response, in all 
cases, we have implemented a normalization procedure on the 
Fourier-transformed data. The justification of this processing is 
as follows. We assume that the received signal y(t,x) is a 
convolution of the actual acoustic signal s(t,x) and an unknown 
time-dependent detector response h£t-t '), with an added noise 
term n(t), as shown below in Equation L 

y(t,x)= Js(t 1,x)hd(t-t 1)dt 1+n(t) (1) 

The Fourier transform of this equation is: 

Y( w,x) =H( w )S( w,x) +N( w) (2) 

Since we assume that the detector response H ( w) is independent 
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Figure 3. Example of background subtraction technique. Top: A 
series of time traces of the detector signal a function of time delay 
after the laser pulse, taken at different positions as the 
laser/detector are scanned over a target (vertical hockey puck). 
Bottom: same data with the data in the second horizontal position 
subtracted from each time trace. 

of position, we can use the data when there is no target Y(cu,xJ to get an estimate ofH(w). Assuming thatS(w,xJ is an impulse 
function, since the laser pulse width is instantaneous on the acoustic timescales, we fmd that H(w) =Y(UJ,x). In the absence of 
noise, we can then recover the real acoustic signal S(cu,x), assumed to be an impulse plus one or more echo signals, from the 
unknown data Y(cu,x) by dividing by Y(w,xJ. 

This process gives rise to singularities at frequencies where there is little amplitude in the Fourier spectra of the reference signal 
(Y( UJ,xJ =0). To allow for these cases we add a small real constant e to the Fourier spectrum that we use for a reference. This 

process is implemented to get an estimation ofthe acoustic signal S(w,x)as shown in Equation 3. 

S(w,x)=Y(w,x)F(w)=Y(w,x) ----,.. [ Y*(W,XJ l 
IY(w,x0)12+e 

(3) 

The filter function F( w) defined in Equation 3 is a variation of a Wiener filter7
• At frequencies where Y( UJ,xJ is large compared 

toe, F( w) achieves a deconvolution of Y( cu,x). At frequencies where Y( UJ,xJ is small compared toe, F( UJ) reduces to a matched 
filter. 

The selection of the constant e and the maximum spectral frequency included in the filtering process,.fmar, is illustrated in Figure 
4. The values in the FigureJmar = 52.3 kHz and e=l.75, were chosen empirically, based on the consideration that almost all of 
the signal strength is concentrated below 50 kHz. In fact, the results of the filtering process are not drastically affected by the 
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Figure 4. Fourier transform of reference laser-induced acoustic pulse received by PZT 
transducer, illustrating the selection of the frequency cut-offfmax and the constant e. 

choice of !max and small variations in e do not have a significant effect. The result of the application of the filtering process in 
Equation 3 to the data in Figure 3 is shown in Figure 5. The filter has removed the detector ringing and the surface of the puck 
is clearly indicated by the echo pulses. 

The effectiveness of this Fourier filtering technique underconditions where the ground surface is not level is shown in Figure 
6 where the top surface of a hockey puck that was deliberately placed under the ground in a tilted position. In this Figure, the 
strong return from the ground surface is shown as well as the weaker return from the puck surface. The variation in the time 
delay of the surface return with laser position indicates that the ground surface is uneven in this experiment, so an intensity 
subtraction as performed in Figure 3 would be impossible. Nevertheless, the Fourier filtered signal effectively images the puck 
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Figure 5. Data of Figure 3 after processing with Fourier filter 
described in the text. The target is a vertical hockey puck buried 
6mm under the surface. The top curved surface is effectively 
imaged. 
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Figure 6. Fourier-filtered acoustic data for tilted hockey puck under 
uneven ground surface. The high intensity return near 40Jls is the 
ground surface and the return from the puck surface is visible from 
50-l30J.!S. 
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Figure 7. Fourier-filtered acoustic data for hockey puck buried horizontally 

under surface of dry sand. Echoes from the top and the bottom of the puck are 

visible. 

surface underground. Using a velocity vs=300 rnls that we have measured for the speed of sound in dry sand, we can convert 

the time difference between the surface return and the return from the puck into a distance under the surface: d=vs 11t/2. (The 

factor of2 here corresponds to the round trip of the sound from the surface to the puck and then back to the surface.) The data 

indicate the surface of the puck slopes from about lmm under the surface to 1.2cm under the surface, in good agreement with 

the actual puck placement. 

Figure 7 shows the Fourier-filtered return from a hockey puck 

buried horizontally with its top surface 4mm under the surface of 

the sand. In this Figure, not only is the top surface of the puck 

well imaged, but the return from the bottom of the puck is also 
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Figure 8. Experimental configuration for laser-induced two

dimensional scanning. The detector and laser are scanned in 

registration in the x- and y-directions. The time delay At identifies 

the depth of the object. 
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Figure 9. Results oftwo-dimensional scanning of underground 

target The return signal strength is indicated at two different delay 
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shift of the signal from the left half of the target the right half at 

longer At is due to a slight tilt of the puck. 
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apparent near a time delay of 60Jls. The time delay between the return from the top surface and bottom surface of the 2.5cm thick 
puck is consistent with a velocity of sound in the hard rubber of 1600 rnls, within the range expected for this material. The ability 
illustrated in Figure 7 to image both surfaces of an object may be a powerful tool for object identification. 

Three-dimensional imaging of object shape can be accomplished by combining a two-dimensional horizontal scan with the 
information on depth gained by the time delay measurements. This is illustrated in Figure 8. The laser spot is moved across the 
surface over the position of the underground object in registration with the suspended acoustic receiver. When the spot is over 
an underground object, an acoustic return will be detected at a time delay characteristic of the depth of the surface of the object. 
The results of applying this technique to a buried test target consisting of a hockey puck cut in half are shown in Figure 9. The 
actual position of the target is indicated by the dotted lines on the figure, and the acoustic return at two different delay times, 
L1t=48 and 52 JJ.S are shown in the upper and lower part of the figure. The shape of the target is well indicated and the 
approximately 1 mm tilt of the surface results in the right half of the surface being imaged at the earlier time delay and the left 
half of the surface selected at the later time delay. By summing up the returns over all time delays, the composite object shape 
is determined in Figure 10. 
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Figure 11. Experimental configuration for determining 
horizontal resolution of scanning laser-induced acoustic 
detection. The targets are half-hockey pucks set vertically 
in sand with flat edge up. 
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separation d=2 em. 



To determine the horizontal resolution limit of the scanning 
technique, we used as a target two half hockey pucks buried 
vertically so their horizontal cross sections were rectangular 
as shown in Figure 11. We then varied the separation 
between the two pucks to see when we could not distinguish 
them as two separate objects. An x-y scan across the two 
half pucks when they were separated by 2cm is shown in 
Figure 12, and the acoustic signal vs. time delay and 
horizontal position for a single scan perpendicular to the 
two pucks is shown in Figure 13. It is clear that the two 
objects are well resolved and imaged at a separation of 
d=2cm, and even at a separation of d=O .5 em it is apparent 
that there are two objects. This resolution might be 
improved by focusing down the size of the laser spot which 
was about 1 em in diameter for these experiments. 

4. CONCLUSION 

We have shown that sound pulses induced by a pulsed C02 

laser incident on the surface of dry sand and detected with 
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Figure 13. Fourier-filtered acoustic return as a function of time 
delay and laser position as the laser is scanned across the center of 
the two targets separated by d=0.5 em as shown in Figure 11. The 
two objects are resolved in the data. 

an acoustic transducer suspended over the surface can be used to determine the shape of buried objects. The ringing of the 
acoustic transducer was removed by a Fourier filtering technique similar to a Wiener filter. The technique is able to image the 
vertical dimensions of the underground object with a resolution of better than 2mm and the horizontal resolution is better than 
0.5 em. This ability to do three-dimensional acoustic imaging of underground objects has great potential for reducing the false 
alarm rate in de-mining operations by discriminating target from clutter on the basis of shape. The technique is does not require 
any ground contact and the laser acoustic source can be easily redirected by scanning mirrors. A promising extension of the 
technique would be to use a laser Doppler vibrometer to measure the vibration of the ground surface in conjunction with the laser 
source, so that both source and receiver could be remotely located and scanned either together or independently. Experiments 
along this line are underway. 
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ABSTRACT 

The use for subsurface buried object detection of high-frequency (15-30kHz) acoustic waves generated by CO~ laser pulses 
incident on the surface of dry sand has been demonstrated previously. In this work, field tests of the technique have demonstrated 
imaging of landmine simulants buried 2.5 em below the smface in an outdoor test track. Acoustic finite-difference time-domain 
calculations have given insight into the observed acoustic lineshapes and verified that the over-estimate of the target dimensions 
in the outdoor field trials may be related to the lower frequency detector used in these measurements. The models also suggest 
that a large increase in detected signal may potentially be gained by the use of a Laser Doppler Vibrometer interfacial velocity 
detector in the place of the present airborne microphone. 

Keywords: Laser-acoustic, underground imaging, land mines 

INTRODUCTION 

Acoustic sensing is a promising technique for the detection of low-metal-content buried land mines due to the large impedance 
mismatch between the porous soil and the solid non-metallic mine case. As in most mine detection strategies, however, the key 
is reducing false alarms by distinguishing the buried mines from clutter objects (rocks, roots, etc.). Most of the work in acoustic 
detection has focused on relatively low acoustic frequencies (<1kHz) where resonant oscillations of the soil above the compliant 
mine cover plate have been observed in both frequency-domain detection of ground motion above the insonified soil 1 and in the 
time-domain response to surface wave pulses.2 In addition, acoustic non-linearities in the mine casing have been exploited to 
distinguish mines from other underground objects. 3 

In contrast to these low-frequency techniques, we have reported previously on a technique to probe buried objects with high
frequency (f>20 kHz) acoustic waves generated by directing a pulsed C02 laser at the ground surface.4

-
6 At these frequencies 

acoustic waves are attenuated within a fraction of a meter in soil, but with the laser source it is possible to create an acoustic wave 
in close proximity to the buried mine, even at a safe stand-off distance. We have demonstrated that it is possible to detect the 
echoes from a buried object with a non-contact microphone in the air above the laser source. Since the acoustic wavelength in 
soil at these frequencies is about a centimeter, it is possible to probe the shape of the buried object by scanning the laser spot. 
In experiments in a laboratory sand box, we have demonstrated shape resolution in the horizontal plane of 05cm, with depth 
resolution of a few millimeters. 5 Shape and depth resolution of this order could provide a powerful discriminator for clutter 
objects, drastically reducing the false-alarm rate. 

In this work we report on the application of our technique to image mine simulants in an outdoor field trial. We also report on 
computational simulations of the laser-induced acoustic effect which have enabled us to identify the source of image features and 
make predictions of the Sensitivity limits of the technique. 

EXPERIMENTAL RESULTS 

C02 radiation is efficiently absorbed in the first few microns of soil. With a sufficiently energetic pulsed source, the rapid heating 
and thermal expansion caused by the absorption creates a broad-band acoustic pulse. Our laser source is a pulsed laser 
manufactured by LSI, Inc. with a lOOmJ pulse energy, lOOns pulse length, and 20Hz repetition rate for a modest 5W average 

Detection and Remediation Technologies for Mines and Minelike Targets VI, Abinash c_ Dubey, 
James F_ Harvey, J_ Thomas Broach, Vivian George, Editors, Proceedings of SPIE VoL 4394 
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Figure 1. Laser-generated acoustic pulse measured by 
wideband hydrophone located a few millimeters under the 
surface of dry sand. 

Figure 2. Amplitude of Fourier transform of laser-generated 
acoustic pulse in Figure I, indicated bandwidth of laser
generated acoustic source. 

power. It creates an acoustic "snap" which is audible at in air a distance of several meters from the approximately I em-diameter 
laser spot. The acoustic pulse as detected with a wide-band B&K. Inc.l OOk:Hz hydrophone 8 mm under the surface of dry sand 
is shown in Figure I. The magnitude of the Fourier transform of this pulse, shown in Figure 1, indicates a peak energy intensity 
between 15 and 15 kHz with significant amplitude from DC to 60kHz. Note that the data in Figures 1 and 1 have not been 
corrected for the frequency-dependent attenuation in the propagation path. The wide-band nature of this source contrasts sharply 
with the low-frequency sources employed in other acoustic detection schemes. 

In our previously reported imaging results, we used a narrow-band 30kHz PZT detector suspended in the air over the laser spot 
to detect the sound reflected from buried objects. This detector had the advantage of removing the omnipresent low-frequency 
acoustic noise from our signal. but required a Fourier-domain filtering technique to deconvolve the echo pulse from the detector 
ringing. It also exploited the bandwidth of our acoustic source and permitted high-resolution shape- and depth-imaging of buried 
non-metallic objects. 

To test this technique under more realistic field 
conditions, we took our laser source to the 
Northeastern University Dedham test track 
facility, where nine mine simulants are buried 
along with several clutter objects in a 2.3m x 
21m track filled with screened loam and spanned 
by a concrete and metal track that carries an 
instrument cart. A photograph of the laser source 
on the instrument cart is shown in Figure 3. The 
acoustic detector for this experiment was an 
Radio Shack 33-1 073A unidirectional acoustic 
microphone with a nearly flat audio response 
below 15kHz. This relatively low frequency 
detector proved to be overly sensitive to low
frequency noise and degraded the resolution of 
the detector as shown below. 

The target we concentrated on was an M-14 
antipersonnel land mine simulant with the charge 
removed and replaced with silicone filler, buried 
with its top plate 2.5cm below ground smface. 
This mine is small in size (56mm diameter x 
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Figure 3. Field test of laser acoustic detection at the Northeastern University 
Dedham test track. The laser, power supply, and data acquisition computer are 
mounted on the cart, and the microphone detector is suspended just above the 
ground over the focused laser spot. 



LIA Dedham Test Track Data [July 2000] X 10-3 
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Figure 4. Processed acoustic signal as a function of position as the laser source is moved across a buried M -14 land mine 
simulant. The detector was an acoustic microphone with bandwidth 0-lSkHz and the mine simulant was located near the 
25 em point. 

40mm high) and has almost no metallic content. It is considered very difficult to detect by convention means. We moved the laser 
cart over the centerline of the mine, stopping to take a series of eight shots every 1.2 em. The laser was focused to a spot about 
0.5cm in diameter and the microphone was suspended about 4cm over the laser spot. We processed the microphone data first by 
normalizing the peak amplitude of the signal to correct for different acoustic intensity created when the laser pulse struck different 
parts of the soil surface (embedded pebbles, etc.). Then we applied the Weiner Fourier filter as described in Reference 6. The 
data is shown in Figure 4. The Weiner filter was not as successful in removing detector characteristics as in our experiments in 
the lab with the PZT detector, and the uncanceled detector ringing is the dominant feature of the processed data. Nevertheless, 
there is a clear anomaly at the position of the M-14. The size of the anomalous region exceeds the 5.6cm diameter of the mine 
by a factor of two, but is still considerably less than the region of soil disturbed during mine emplacement (-20 em diameter). 
We will demonstrate in the next section that the most likely cause of this is the reduced resolution caused by the lower frequency 
detector. 

ACOUSTIC MODELING 

To understand the line shapes and acoustic effects in the laser-induced acoustic detection technique, we have applied a two
dimensional acoustic Finite-Difference-Time-Domain (FDTD) computation to model the problem. The soil was modeled as a 
linear and lossless effective media-no attempt was made to simulate the porous nature of the medium. The laser source was 
assumed to be a point source excitation at the surface of the soil and we did not model the surface roughness or the noise 
environment. The calculation was second-order in space and time on a two-dimensional Cartesian grid with a march in time. The 
density and sound speed were taken from empirical data, and an absorbing boundary was placed at the edge of the domain. The 
parameters for the calculation are indicated in Figure 5, which also indicates the alternative positions of the acoustic point source 
and three modeled detectors: a microphone in the air above the source, a hydrophone in the soil under the pulse, and a surface 
motion sensor such as a laser Doppler vibrometer. The goals of this calculation were: 1) to understand the time-domain acoustic 
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Figure 5. Parameters for acoustic modeling of laboratory experiment in dry sand. The position of the laser 
source, airborne microphone, buried hydrophone, and an interfacial velocity sensor (LDV) are indicated. 

wavefonn we measure in the experiment, 2) to compare the effects of different detection bandwidths, and 3) to predict relative 
detection performance from different detector types, airborne or buried pressure sensors and interfacial velocity sensors. The 
sensitivities of the three receivers were selected to mimic the following commercial sensors: a Radio Shack Model 330-1052 
Electret Condenser Microphone, with a nominal sensitivity= 2.5 nV/ Pa (airborne microphone), a B&K 8103 Hydrophone with 
a nominal sensitivity= 12.6 pV/ Pa (buried sensor), and a Polytec Model OVD-02 Laser Doppler Vibrometer with a nominal 
sensitivity= 0.2 V/(rnrnlsec) (intetfacial velocity sensor). The frequency dependencies of the detectors are not considered in the 
calculation, and they were all taken as point receivers. 

With the target modeled as a 25mm x 60mm hard rubber disk to simulate the laboratory hockey puck targets, we calculated the 
response at the airborne sensor as the acoustic source was moved from a horizontal offset of -20mm from the target edge to +5mm 
from the target edge (over the target). The airborne receiver is maintained at a constant offset of +15mm from the source. (The 
target edge is taken as the zero point of the distance scale.) The data for several positions of the source and receiver as they 
approach and overlap the target position are shown in Figure 6. 

The direct reception from the source to the receiver is the first feature in each trace. This is reduced from the signal in the ground 
by a factor of over 100 due to the impedance mismatch at the air-ground interface. The small feature following the direct pulse 
that appears in every trace is an artifact due to incompletely absorbing boundary conditions. When the source is -1 Omm away 
from the target edge (and the receiver is at +5mm over the target), a second feature appears in the traces at a later time. This 
feature grows in size as the source approaches closer to the target. By observing the time evolution of the pressure waves in two
dimensional movies. the source of this second feature becomes apparent: it is a second bounce from the top smface of the target 
by the acoustic pulse which reflects from the top of the target, then off the air-ground interface, reflects off the target again, and 
transmits across the intetface to the receiver. While this signal will cettainly be reduced from the model calculation by the actual 
acoustic attenuation of the soil (which is not modeled), we have observed this second signal in our data. Figure 7 shows previously 
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laser source is moved closer to the edge of the mine simulant. Ds-t is the horizontal distance from the 
laser source to the edge of the target. Dr-t is the horizontal distance from the microphone receiver to 
the edge of the target. 

published data showing the time signal as a function of position as the laser is moved over a rubber hockey puck buried 4mm 
below the surface. The direct signal between 0 and 20~s, the return from the top ofthe target near 30~s, and the second bounce 
at 60~s (previously misidentified as a reflection from the bottom of the puck) are all clearly visible. 

A second question that can be addressed by the model calculations is to what extent the apparent increased size of the target in 
Figure 4 can be attributed to the lower resolution caused by the 
lower frequency of the microphone detector (<15kHz as 
opposed to -30kHz for the PZT detector used in Figure 7). 
We modeled this by observing the response at an airborne 
detector as the laser point-source is moved across the top of a 
56mm dia x 40 mm target buried 25mm below the surface, as 
in the acoustic field tests. The positions of the source and 
receiver with respect to the target are as in Figure 6. The 
acoustic source is taken to be a single cycle at 30kHz, a signal 
which has significant intensity across the frequency spectrum 
from DC to above 50 kHz. The signal received at the detector 
position is Fourier transformed and the magnitude of the 
Fourier component at three frequencies, 7, 14, and 28kHz are 
compared with the actual target extent in Figure 8. The 
decrease in target resolution is apparent in the figure, and the 
signal extent at 7kHz. in the midband of the microphone used 
in the experiment, is approximately twice the true target extent. 
This suggests that bandwidth considerations may well explain 
the larger extent of the image in the experiment of Figure 4, 
and emphasizes the resolution advantage of utilizing the entire 
bandwidth of the laser-acoustic source. 
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Figure 7. Laboratory data image of target (hockey puck) buried under 
4mm of dry sand, showing the second return predicted by the acoustic 
model in Figure 6. 
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A major loss mechanism for laser-acoustic detection is the impedance mismatch at the air-ground interface which causes a 

reflection of about 99% of the signal reflected off the target. While the laser source produces acoustic signal directly in the 

ground, thereby bypassing this loss in transmission, the received signal has to be transmitted to the airborne detector above. The 

solution suggests itself to use a Laser Doppler Vibrometer (LDV) to detect the motion of the free surface of the ground instead 
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of the weak transmitted pressure signal. This configuration could not only result in increased sensitivity. but would pem1it look
ahead. stand-off detection which is very desirable from a counter-mine operations point of view. 

Using the configuration of Figure 5. and the detector sensitivities as given above. we modeled the received detector voltages as 
a function of time when the laser excitation was directly over the target. No attempt was made to estimate the different noise floors 
of the detectors. Nevettheless, as shown in Figure 9, the predicted detector voltage output from the LDV is a factor of 100 greater 
than that predicted at either the airbome microphone or the bmied hydrophone. The potential signal-to-noise gain of this detector 
configuration would be an enom1ous step toward making laser-acoustic detection a reality. Tests of LDV detection with laser
acoustic excitation are underway to confirm the advantage suggested by the model. 

CONCLUSION 

Laser-acoustic imaging of underground objects has been shown in the laboratory to allow detailed imaging of the shapes of buried 
objects. The shape and depth resolution could contribute to a drastic reduction in the false-alam1 rate for underground clutter. 
We have demonstrated the practicality of the technique in tests using realistic antipersonnel mine simulants at an outdoor test track. 
The images obtained with laser-acoustic excitation and a low-frequency (<15kHz) microphone detector indicate anomalies 
associated with the position of the mine simulant, but the size and depth of the simulant are not as clearly defined as in the 
laboratory measurements in dry sand with a higher frequency (30kHz) detector. 

Acoustic modeling has been performed using a two-dimensional FDTD code, assuming linear and lossless propagation in a single
phase effective media. The results of the simulation accurately predict lineshape features observed in the data, and indicate that 
the excessive size of the image in the field trials at the test track may be a result of the lower frequency of the detector. compared 
with the detector used in the laboratory experiments. The acoustic model predicts a factor of 100 gain in the signal voltage may 
be obtained by using a LDV interfacial velocity sensor to avoid the acoustic loss at the air-ground interface. 
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Abstract 
 
The finite difference frequency domain is used to study the scattering of buried non-
metallic mine-like targets to determine the feasibility of identifying mines from shape 
features.  It is shown that for constant cross-sectional target area  -- approximately 100 
cm2 -- the scattered fields of targets with roughly the same height-to-width aspect ratio at 
500 MHz are virtually indistinguishable regardless of burial depth.  A comparison of the 
field obtained for mine-like targets of different aspect ratios, but with constant area, 
buried at a depth of 5 cm, shows marked differences, as does scattered field for GPR 
frequencies above 700 MHz.   
 
The conclusion of this study is that while low GPR sensing frequencies may help to 
detect shallow anomalies, they do not supply any useful information about the shape 
details -- particularly the edges -- of the buried non-metallic mine-like targets. 
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GPR, mine detection, dielectric target imaging. 
 
 
 

1. Introduction and Computational Electromagnetic Background 
 
For many underground detection problems, it is important to know what target features 
are characteristic and most easily detectable.  For metallic targets in free space, edges 
provide strong scattering centers and are often used for scattering signature analysis.  For 
buried non-metallic objects, however, edges do not provide as strong a scattered signal.   
 
To determine the importance of edges -- and shape in general -- as discriminating 
features, the scattered signal from two-dimensional objects buried in a lossy, dispersive 
soil medium can be simulated using finite difference computational methods.  Both the 
finite difference time domain (FDTD) and the finite difference frequency domain 
(FDFD) algorithms discretize the scatterer and its surrounding space, and hence can 
model any target shape, soil inhomogeneities, and rough surface boundaries [1,2]. 



 
The FDFD method is preferable to the time domain algorithm in the present analysis, 
because it computes the scattering response at a single frequency, giving the field 
distribution throughout the problem space.  Since knowledge of the frequency 
dependence of the scattered signal is an important sensing parameter, and since there is 
no need to iterate until transients have died out, FDFD is the method of choice.  An 
additional advantage of FDFD is that there is no need to rely on special methods to 
handle frequency-dependent soil media in the time domain [3-5]. 
 
Contrary to common perception, the FDFD method is relatively fast.  For a 100 by 100 
point grid, terminated on each side by a Perfectly Matched Layer (PML) absorbing 
boundary condition [6,7], the entire evaluation on a 233MHz Pentium Pro running the 
Matlab 5.0 sparse matrix solver is about one minute.  Using a preconditioned QMR 
iterative solution method [8], the CPU time for large two dimensional grids of N 
unknown field values grows as N ln N. 
 
One important requirement for efficient FDFD code is the PML material absorber ABC.  
Since the PML is composed of just layers of propagation media with particular values of 
electric and magnetic conductivity, the sparse, symmetric structure of the simultaneous 
equation matrix is unaffected by the ABC.   
 
Care must be used to tune the PML to the air/soil interface.  With the usual PML 
boundary, it is assumed that this ABC terminates a region of free space.  The electric and 
corresponding magnetic conductivity of the PML sub-layers build up from zero to the 
maximum value at its termination.  For the PML termination to a uniform conductive 
scattering space, the conductivity of the first sublayer must be slightly greater than that of 
the scattering space.  Subsequent sublayer permittivity and conductivity increase 
according the the anisotropic space mapping principle[9], with corresponding magnetic 
conductivity increasing to keep the impedance of each PML sublayer constant. 
 
To compute the scattered fields due to plane wave incidence on a target in a lossy half-
space, the incident field in the half-space is first determined analytically, using the 
standard transmission coefficient, and then this field across the support of the target is 
used as the excitation.  That is, the source-free Helmholtz equation for total field: 
 
 
 
 
is rewritten in terms of material variations from the constant soil background, k(x,y) = k0 
+ ktarget, and incident (in the soil background) and scattered electric field, E z tot = E z inc + 
E z scat.  Since E z inc solves the Helmholtz equation with background k0, Equation (1) 
becomes: 
 
 

[∇2 + k2(x,y)] E     = 0     (1) z 
tot 

[∇2 + k2(x,y)] Ez      = - [∇2 + k2(x,y)] Ez             (2)         
                               

           = - ktarget Ez 
 

scat inc 

inc 2 



Note that this formulation is exact, unlike the Born approximation.  Approximation is 
unnecessary since FDFD calculates field values across the grid for all types of materials 
in any shape or form. 
 
 

2. Target Shape Scattering Characteristics 
 
The effects of scattering by corners of a dielectric target, typical of buried mine-like 
objects, can be studied by examining the scattered fields throughout space, and in 
particular above the surface of a lossy dispersive soil model half-space.  Figure 1 shows 
the geometries of two representative scattering cases.  In both cases a target with material 
characteristics of TNT (dielectric constant, ε' = 2.9, loss tangent tan δ = 0.001) is 
embedded in a half space of material with electrical charateristics of dry sand (ε’= 2.5, 
loss tangent tan δ = 0.01) [10].  The targets have the same cross-sectional area of 100 
cm2, and are buried at a nominal depth of 5 cm.  In the first case the target is circular, 
obviously with no corners, while the second target case has a square cross-section. 
 

 
Figure 1: Nominal geometry of buried targets, 5 cm below ground surface.  Soil assumed 
to be dry sand, targets modeled with electrical characteristics of TNT. 
 
A normally incident time harmonic plane wave excites each target case. The scattered 
fields, as determined by the FDFD discretization of Equation (2), are presented in the top 
row of Figure 2.  The excitation frequency is 500MHz, corresponding to a wavelength of 
about 40 cm in dry sand.  The targets are roughly one-quarter of one wavelength in 
extent, so it is not surprising that the resolving power of the scattered field is limited. 
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Figure 2: Real parts of scattered fields from mine-like targets with circular (top left), 
square (top right), and rectangular cross-sections:  progressively taller (middle row), and 
progressively wider (bottom row).  All shapes have the same cross-section, 100 cm2.  
 

 
Figure 3: Magnitude of scattered field on the ground surface for circular and square 
target shapes, each with 100 (left), 225 (middle), and 400 cm2 (right) cross-sectional area. 
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While the corners do not appear to be a detectable scattering feature at 500 MHz, the 
width-to-height aspect ratio does affect the scattered fields.  The second row in Figure 2 
shows the scattered fields from rectangles that are taller than wide with aspect ratios: 
9/16, 1/4, and 1/16; while the third row shows wider rectangles, with aspect ratios: 16/9, 
4, and 16.  Despite all targets having the same area, the taller rectangles have a upward 
shattered field with roughly semi-circular contours with greater curvature than that of 
wider targets.  
 
Figure 3 shows the dependence of scattered field for circular and square targets of various 
sizes.  As expected, both the magnitude of the scattered signal and the differences 
between target shapes become more apparent with increasing size.  In addition, the 
horizontal variation of scattered field is greater for the larger targets. 
 
Several additional target shapes are presented in Figure 4, including a square tilted 45 
degrees, an asterisk, and an asymmetric, irregular shape.  The real part of the scattered 
fields for these shapes are given in Figure 5 for 500 MHz incident field.  Note again that 
it is very difficult to ascertain any shape information from these scattered fields. 
 

 
Figure 4: Various target shapes, each with 100 cm2 cross-sectional area. 
 
Figure 6 shows the scattered fields for the same target shapes of Figure 4, but for 1 GHz 
incident field.  At this higher frequency, the differences in the scattered fields are visible.  
In particular, the scattered signal due to the finned structure in the lower right is weaker 
under ground, and that of the diamond target in the upper right is weaker above the 
ground.   
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Figure 5: Real parts of fields scattered from the target shapes of Fig. 4 for 500 MHz 
excitation. 
 

 
Figure 6: Real parts of fields scattered from the target shapes of Fig. 4 for 1 GHz 
excitation. 
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The surface scattered fields for the two excitation frequencies are shown in Figure 7.  
These would be the signals measured by radar near the surface of the ground across the 
target from 40 cm to one side to 40 cm to the other.  Although slight differences are 
visible for 500MHz scattering, these would be difficult to detect in practice.  However, 
for 1 GHz, there are quite visible differences due to shape.  For example, a tilted square 
has almost an order of magnitude lower scattered signal than the level square. 
 
 

Figure 7: Magnitude of scattered field at the ground surface for the target shapes of Fig. 
4:  500 MHz excitation (left) and 1 GHz (right). 
 
Clearly, between 500 MHz and 1 GHz, the appearance of shape features becomes 
apparent.  Figure 8 shows this effect along with burial depth dependence for the 100 cm2 
cross-section circle and square.  At 750 MHz there are several slight differences between 
the scattered signals for each target depth: 1 cm, 5 cm, and 10 cm below the surface.  
However, these differences are not nearly as prominent as those for 1 GHz incident 
waves.   
 
Finally, Figure 9 shows that the angle of incidence of the exciting wave does not help to 
distinguish target shape.  Once again, 100 cm2 cross-sectional targets are illuminated with 
500 MHz plane waves.  While the pattern of scattered field is indeed different for  
incidence angles of 30 or 45 degrees, there is no noticeable difference between scattering 
from the circle as oppose to the square target. 
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Figure 8: Surface field magnitude at the ground surface for circular and square targets 
for 600 MHz (top row), 750 MHz (middle row), and 1 GHz (bottom row); and burial 
depths 1 cm (left), 5 cm (middle), and 10 cm (right). 

 
Figure 9: Real part of scattered field from circular (left) and square (right) targets at 500 
MHz for inclined incidence angle excitation. 

-40 -20 0 20 40
0

0.05

0.1
750 MHz
d = 1 cm

40-40 -20 0 20
0

0.05

0.1
1 GHz
d = 1 cm

-40 -20 0 20 40
0

0.05

0.1
750 MHz
d = 5 cm

-40 -20 0 20 40
0

0.05

0.1
750 MHz
d = 10 cm

-40 -20 0 20 40
0

0.05

0.1
1 GHz
d = 5 cm

-40 -20 0 20 40
0

0.05

0.1
1 GHz
d = 10 cm

-40 -20 0 20 40
0

0.05

0.1
600 MHz
d = 10 cm

-40 -20 0 20 40
0

0.05

0.1
600 MHz
d = 5 cm

-40 -20 0 20 40
0

0.05

0.1
600 MHz
d = 1 cm

square
circle

Surface Field - Frequency/Depth Dependence

Horizontal Position (cm)

In
te

ns
ity

Scattered Field - Incident Angle Dependence
frequency = 500 MHz, d = 5 cm

Horizontal Position (cm)

H
ei

gh
t (

cm
)

-40 -20 0 20 40

Circle, angle = 30o

-60

-40

-20

0

20
Square, angle = 30o

-40 -20 0 20 40
-60

-40

-20

0

20

Circle, angle = 45o

-40 -20 0 20 40
-60

-40

-20

0

20
Square, angle = 45o

-40 -20 0 20 40
-60

-40

-20

0

20

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04



3. Conclusions 
 
The scattered fields from various two-dimensional non-metallic mine-like target shapes 
have been calculated and compared.  Although the target models are relatively simple, 
analysis of these fields indicates that for typical antipersonnel mine sizes of 10 cm, there 
is very little shape-distinguishing feature information available when the incident wave is 
at frequency 600 MHz or below.  Aspect ratio appears to be the dominant discriminator 
of target shape, while corners, rotational symmetry, tilting, depth of burial, even 
concavity of target boundary do not seem to contribute much information to the scattered 
signal.  At 1 GHz, shape features of 10 cm targets are quite evident, but a wide aperture 
of multiple sensors across the ground surface are needed to measure the variations of 
scattered field. 
 
Clearly, for non-metallic antipersonnel mine detection, frequencies above 600 MHz must 
be employed if there is to be any hope of distinguishing mines in terms of the shape of 
target anomalies in soil. 
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Abstract A comparison between two forward solving methods, recursive T-matrix and FDTD, is presented. 

The strengths and weaknesses of both methods are discussed. The recursive T-matrix method is a fast 

solver that is well suited to solutions in homogeneous media where the scatterers are bodies of rotation. The 

FDTD method is best suited to complicated and realistic problems involving inhomogeneities, rough surface 

interfaces and irregular shaped scatterers. Numeric results from both methods are presented. 

I. INTRODUCTION 

Interest in land mine remediation has helped to initiate development of techniques to accurately simulate electro
magnetic waves propagating in a lossy dispersive mediwn, such as soil. Development of different techniques has 
indicated that the 'best' method to be used may depend greatly on the specific problem to be solved. With this 
in mind we discuss two such methods, the Recursive T Matrix method and the Finite Difference Time Domain 
method in order to compare and contrast the two methods to illustrate their respective strengths and weaknesses 
and therefore give an indication as to which types of problems each is best suited. 

We begin with a brief description of each method, including a general overview as well as identification of the 
parameters required for comparison. This will be followed by a comparison of results from several numeric exper
iments. Then a detailed discussion is given which cites specific difference between the methods and how changing 
the problem to be solve effects each method. 

II. THE RECURSIVE T MATRIX METHOD 

For a single scatterer, the T-matrix method involves finding the coefficients to describe the scattered field as an 
expansion of basis functions(e.g. Bessel functions for 2-D problems). The elements of the T-matrix are found 
by using a Greens function and applying Poincare-Huygens principle. For multiple scatterer, the T-matrices from 
individual scatterers are incorporated into a single T-matrix through a recurrence relation. This single T-matrix 
will include all multiple scattering effects. For a detailed analysis of single and recursive T-matrix algorithms, the 
interested reader is referred to [1-3]. 
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Unlike finite difference techniques, the T-matrix methods do not require an absorbing boundary condition and sub
stitutes the discretization of space with harmonic expansions of the fields thereby reducing the number of unknowns 
for a wide range of problems. Chew and co-workers have pioneered development of a number of fast, recursive 
T-matrix algorithms for determining the scattered fields in a variety of scenarios [4-6]. These methods basically 
function by tessellating electrically large objects into small sub-scatterers whose individual T matrices can be well 
represented using low-order harmonic expansions. A recursive formula then is used to aggregate the effects of all 
the sub-scatterers to compute the fields. 

In [7], ~ahin and Miller have extended the results of recursive T-matrix techniques to near field scattering problem 
using high-order harmonic expansion while keeping the computational cost at reasonable levels. This is an important 
extension since ground penetrating radar problems often require looking at near field solutions. The shortcoming 
of these recursive T-matrix methods is that they require a homogeneous background, since the Green's function 
needs to be expanded in ~ylindrical (or spherical in 3-D) harmonics in closed form. There has been some work 
on T-matrix techniques with inhomogeneous medium , but a computationally effective, and accurate technique is 
required for inhomogeneous background. 

In order to use the T-matrix method for wide band excitation, the technique must be run several times at different 
frequencies. This may be seen as a disadvantage, but is allows dispersion to be dealt with in a straightforward 
manner, since electrical parameters may be defined for each frequency. 

Before continuing, we must identify the parameters of the T-matrix method that will be important in the subsequent 
discussions. IT Bessel functions (of spherical Bessel functions) are to be used as the basis functions, then clearly 
cylinders (or spheres) are the elemental type of scatterer. The previously mentioned tessellation of large or irregular 
shaped objects would be into small cylinders. For the single scatterer matrix the infinite series of basis functions 
will be truncated to M harmonics. It can be shown that for accurate representation of the fields due to this single 
scatterer, M must be increased as the radius of the scatterer is increased. In order to relate the T-matrices of the 
single scatters for the multiple scatterer case, there must be a common reference point called the scattering origin, 
which is different from the global origin of the problem geometry. In [7) it is stated that a circle around the scattering 
origin must include all scatterers and none of the observation points. Furthermore, for accurate results, it is required 
that N harmonics are used to relate the individual T-matrices together. It can be shown that N must be increased 
as the distance from the scatterers to the scattering origin is increased. 

III. THE FINITE DIFFERENCE TIME DOMAIN METHOD 

The Finite Difference Time Domain method addresses the forward solving problem by discretizing the entire problem 
space and time stepping through spatial updates based on nearest neighbors. The use and development of the FDTD 
method has seen exponential growth over the last decade [8). One of the primary reasons for this growth is that the 
technique is basically quite simple and so readily adaptable to a wide variety of problems. 

Unlike the T-Matrix method, inhomogeneity is trivially modeled in FDTD since all that is required is to defined 
the electrical parameters at each grid point. Scatterers are defined in the same way. For ground penetration radar 
applications, an air-ground interface is easily incorporated. 

The use of the time domain allows wide band excitations, such as gaussian pulses or Ricker wavelets to be easily 
implemented. However, the inclusion of dispersion is problematic since multiplication in the frequency domain 
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. in the time domain. Considerable effort has been expended on this problem with impressive 

;r:l:' ;~:;~;.0 ;:::bvious disadvantage is that to include these techniques greatly increases the complexity of the 

~-"·:_·;~~-
~1'"~:-. . -. . . ;~_-' ·- .. -
,·.. . >1\ .rta.nt consideration with FDTD is the requirement of an Absorbing Boundary Condition(ABC) to eliminate 
:: · -. An t.JD:Ons that would otherwise be caused by the abrupt termination of the discretized problem space. Great 
~:" -zoceiJ1~t in ABCs have been made over the las~ few years. Most notably the introduction of Berenger's Perfectly 

i'· ~Layer (12], which has h~lped to greatly mcrease the ~sefulness of. the FDTD method. Unf~rtunately, as 
_, : t.be:~plexity of the medium is mcreased, the_ problem of finding an effective_ ABC be~omes more difficult. Once 
'~ :aP', considerable work has been done on th1s problem and has led to the mtroduct10n of ABCs fo~ lo~sy ~d 
~i<~ )~-ve material. However, in general, the performance of these ABCs tends to far well short of therr d1electnc 
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'*'''-· ~~-- IV. NUMERICAL EXPERIMENTS 
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-ti{~ to facilitate a comparison between the two methods and to help illustrate the relative advantages of the 
~. Four numerical experiments have been performed. In each case, a Transverse Magnetic continuous wave 
(CW}uniform plane wave at 1Ghz is incident on the scatterer(s) in a homogeneous medium typical of~~Q.with 

dleleCflic constant, f.r = 6.0 and a conductivity a= .058/m. 
- L 

~-the.FDTD method, it will be shown that the two critical parameters are the spatial increment~ and the Courant 

.~, ~R. The Courant number the is the ratio of the distance moved by the wave in one time increment to the 
> . spatial increment, i.e. R = v~t/ ~- Stability analysis reveals that for a simulation on a cubical grid to remain 
·~ ~~e~:.R ~ 1/..fd, where dis the dimension of the simulation. 

--- -_- - . :~'·;· -----~-

- ::_~~~-

'Ftgnie 1 shows the geometry for the first experiment. A single non-conducting dielectric scatterer is 15cm away 
,, _ frOm the array of receivers. The radius r of the scatterer is 3.75cm. For the FDTD, R = 0.5 and~= 5mm which 

'"·-=-· ttaDalates to a sampling of about 25 points per wavelength in the soil and about 38 points per wavelength in the 
-dielectric scatterer, which should be more than adequate. However, using ~ = 5mm means that there are only 
· ab?ut'7points along the radius of the scatterer. If~ where any larger, the outer surface of the scatterer would not 
be'~th, effecting the scattered field. For the T-matrix, Jvf = 20. Figure 2 shows the magnitude of the solutions 

. oh,.~e<i from both the T-matrix method and the FDTD method. 

~ 3 shows the geometry of the second experiment. Here the dielectric scatterer has been replaced with a perfect 
electric conductor a __,. oo. As with the dielectric scatterer, the radius r = 3.75cm. As with the previous experiment, 
M = 20 for the T-matrix solution. Figure 4 shows both the T-matrix and FDTD solutions for this geometry. 

For these first two experiments, the agreement between the two methods is excellent. Clearly both methods are 
·,capable of producing accurate results for these simple cases. For the T-matrix method, no recursion is required to 
&nd the scattered field. And since the scatterer is a cylinder, no tessellation is required. 

Figure 5 shows the geometry for the third experiment. Here there are two PEC scatterers of radius r = 30cm. The 

~ation is lm. Because the radius of there scatterers is considerable larger than the previous case the spatial 
lnaement of the FDTD method has been increased to no more than 2cm. For the T -matrix, M = 25 and N = 110. 
Figure 6 shows the T -matrix solution as well as two FDTD solutions. 
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Figure 6 shows that the FDTD solution with .6. = 2cm is noticeably different than that of the T -matrix solution. At 

lGhz, .6. = 2cm represents a sampling of only 6 points per wavelength, which is clearly inadequate. By decreasing 

.6. to lcm, the sampling becomes about 12 points per wavelength and the solutions achieved good agreement. 

Figure 7 shows the geometry for the fourth and final comparison. Here there are two dielectric scatterers with 

r = 3.75cm, the separation is 25cm. For the T-matrix solution, M = 12 and N = 120. Figure 8 shows the T-matrix 

solution and the FDTD solutions for this case. 

Figure 8 shows that although there are three different levels of spatial resolution, there is still a discrepancy, mostly 

to the left and right of the scatterers, between the two methods. Since there is no analytic solution available, 

it is difficult to ·determine which method is inaccurate. Resolution of this discrepancy is the focus of continuing 
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investigation. However, there is good agreement in the region between the scatterers, were most of the interaction 

between the scatterers takes place. 

IV. COMPARISON 

As part of the comparison between the two methods, the issue of 'speed' should be addressed. A comparison of 

execution speed is, unfortunately, not easily accomplished. H FDTD were a matrix problem, like T -matrix, we 

could just compare the number of computer program flops. However, the FDTD code used in these experiments 

was written in Fortran and executed on a PC using the Linux operating system. As it turns out, a high resolution 

comparison is not required because for every case considered here, the T-matrix method has a shorter execution 

time. For the cases of high spatial resolution, i.e. ~ < < 1, the execution time for the T-matrix method is significantly 

shorter than that of the FDTD method. To include some approximate numbers, all of the the T -matrix solutions may 

be obtained using Matlab and a PC in less than 10 minutes. Comparable speed may be obtained with FDTD using 

the largest D. possible and a suitable ABC. For example, for the geometry of Figure 7, with D. = 5mm and using 

an 8-layer Perfectly Matched Layer [12] ABC, the simulation can be completed in less than 8 minutes. However, 

in order to decrease the programming complexity, the grid can be enlarged and the ABC omitted. This was done 

for each of the experiments. For the geometry of Figure 7 with D.= 5mm, the run time was about 20 minutes, for 

6. = 2.5mm the run time was about 70 minutes and for 6. = 1.25mm the run time was over 7 hours. These numbers 

are clearly not representative of all FDTD or T -matrix solutions, since specific problems, requirements, hardware 

and software can vary widely. It can, however, be said with confidence, that for case where there is homogeneity 

and simple scatterers, the T-matrix method will be faster, and in many cases, considerably faster. 

The effect that changes in the problem have on the execution time should not be understated and it is worthwhile 

to examine these effects for both methods. Changing the medium from homogeneous to inhomogeneous requires 

minimal effort for the FDTD method. However, since the T-matrix method for inhomogeneous material is still under 

development. Changing to an inhomogeneous material is quite difficult. Changes in the size of the problem can effect 

both methods in different, sometimes opposite ways. For example, increasing the size of scatterers may actually 

decrease the computational cost of the FDTD method, since D. may be larger to achieve the same number of points 

per wavelength. However, an increase in the size of the scatterers requires an increase in the number of harmonics 

M for the single scatterer matrices. In other words, FDTD is better suited to electrically large curved scatterers 

while T -matrix is better suited to electrically small curved scatterers. If the scatterers are held at the same size 

37 



38 

but moved apart, this would probably most adversely effect the FDTD method since more spatial points would be necessary. This not only effects the size of the grid, but the amount of time required to propagate the waves between the scatterers. This amount of time may be decreased by increasing the temporal increment. However, the temporal increment cannot be increased without bound since the Courant condition would not be satisfied and the simulation would become unstable. For T-matri.x, if a suitable scattering origin can be found, moving the scatterers further apart simply requires increasing the number of harmonics N which are required to relate the matrices together. Adding dispersion to the problem will increase the execution for both methods, but the relative increase between the methods will require further investigation. For the T-matri.x method, the solution must be set up and solved for each desired frequency. This will require multiple runs. For FDTD, dispersion can be accomplished in one simulation, but incurs a computational cost in additional difference equations and increased storage space. 

y Incident , """' .-k /'- / 
Planewave~ 

15cm 

~P\.------l·----· u····u 7.5cm 

' ' ' ' ' ' 
37.5cm 25cm! 

Figure 7: Geometry of experiment #3. 
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Although the T-matri.x solution for these problems may be obtained more quickly once the problem is set up, the actual creation of the program to solve the problem numerically is more involved. The FDTD method requires less understanding of the physics of the problem and fewer programming skills. 

Changes in the problem can also effect the complexity of the program for each of the two methods. Changes in the size of the problem are very easily dealt with in FDTD, usually only requiring changing a few variable. For T -matrix, if the size of the problem is changed, it may require locating a new scattering origin. Changes in the shape of the scatterer are also relatively easy for FDTD. The scatterers can be determined by changing the electrical parameters point by point. For the T-matrix, changes in the shape of the scatterers can have drastic effects of the complexity of the problem. If a scatterer i~ tessellated, the final T-matri.x must incorporate the T-matrices of all of the smaller scatterers. Furthermore, care must be taken to ensure that the small scatterers make an accurate representation of the larger scatterer. For example, if many small cylinders are to make up a large irregular shaped scatterer, there will be gaps in between the cylinders that represent errors. Special algorithms must be incorporated to minimize these gaps. Also tessellation is not really appropriate for highly lossy metallic scatterers since the fields inside the scatterer are zero (or very small). If a metallic scatterer is irregularly shaped, schemes must be employed to only incorporate the effect of the outside edge of scatterer into the recursive T-matrix. Adding dispersion to the problem has the opposite effects to changing the shape of the scatterers, i.e, it is much more detrimental for FDTD computation. For the T -matrix, the electrical parameters for a given frequency are easily incorporated into the algorithm, the method is simply employed several times. Because dispersion in the time domain requires 



convolution, it can be quite problematic to incorporate it into the FDTD method. With the addition of dispersion, 

the relative simplicity of the FDTD algorithm is lost and much greater complexity is required to insure accurate 

results. 

In order to be useful, a forward solver must be accurate. As mentioned previously the accuracy of the T-matrix 

method is controlled by the number of harmonics used while for the FDTD method, the accuracy is controlled by 

the spatial increment. There is also a temporal increment used in FDTD, but if the Courant condition is met, the 

accuracy can be seen to be controlled by ~. Ten to twenty spatial points per wavelength are usually considered 

adequate to obtained sufficient accuracy. However, this also puts a limit on the size of the grids that can be 

discretized as discussed above. Also, there is another source of error in FDTD known as numerical dispersion. 

Numerical dispersion arises from the fact that in FDTD, k =I= wjvp, where k is the wave number, w is the radial 

frequency and vp is the phase velocity. Solving the dispersion relation for the discretized wave equation reveals that 

there is another term in the dispersion relation that is directly dependent on ~ and can be shown that numerical 

dispersion can be reduce by reducing ~. Numerical dispersion is usually not a problem for short simulation, but 

can cause inaccuracies in lengthy simulations. 

For FDTD, it was mentioned that the Courant condition, R ~ 1/ sqrtd must be met to insure stability. It should be 

seen by now that the Courant number is the critical parameter for the method since it effects not only the stability, 

but the execution time and the complexity of the problem. These facts in turn limit the types of problems that 

can be solved with FDTD. For the T-matrix method, it was originally found that instability could arise with higher 

order harmonics, hence the motivation to tessellate larger objects in order to be able to use lower order monopole 

expansions. However, that problem has been eliminated for many problems of interest (7J and it has been shown that 

the use of higher order expansions in un-tessellated scatterers can actually reduce the complexity of the problem. 

V. CONCLUSIONS 

Through numerical experiment and the subsequent discussion, a comparison of the T-matrix and the FDTD method 

for electromagnetic forward solving problems has been performed, the relative strengths and weaknesses of each 

method has been discussed. It should be clear that the advantages of the T-matrix solution are speed with accuracy 

whereas the advantages of FDTD are simplicity and the ability to adapt FDTD to a wide variety of practical 

problems. 

Obviously, these strengths should effect the decision of which method to use for a given situation. For problems 

with bodies of rotation in a homogeneous environment, T-matrix is a clear choose. ButT-matrix may also be used 

as an approximation to a more realistic problem in order to perform a proof of principle solution. For the situation 

that requires more unusual geometries, and especially for wide band excitation or where the transient responses 

are desired, the FDTD is obvious chose. Both methods represent powerful tools in electromagnetic forward solving 

problems for use in land mine remediation. 
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The Perfectly Matched Layer (PML) proposed by Berenger (Berenger J. Comp. Phys., 
1994) is an extremely effective lattice termination condition in both time domain and 
frequency domain field computation. The ideal, continuous specification of the PML can 
have arbitrary loss characteristics, which can absorb without reflection waves incident 
from any angle. In finite difference wave modeling, however, the staggered electric and 
magnetic field grids prevent the specification of the same medium at a given position for 
both E-field and H-field, leading to numerical reflections. To minimize these reflections, 
the value of conductivity in each PML layer must be profiled so that it is smallest next to 
the free spaceiPML boundary, and rises for subsequent layers. The optimal specification 
of this profile is an open question of much interest to the computational electromagnetic 
community. 

Unlike the in time domain case (Gedney, ACES 1997, and Fang and Wu, IEEE Micro. 
Guided Wave Let. 1996), the FDFD formulation of a multilayer PML can be stated ex
plicitly and exactly. One way of doing this is to use the discretized impedance of one 
layer relative to that of the subsequent layer to iteratively determine the impedance "look
ing into" the PML at its boundary, relative to the PML termination. For normalized 
impedance of the i-th layer of width~ ' TJi = (EdHi+l)ITJo , for a plane wave incident with 
angle () on a planar layer boundary normal to x, the ~ecursive relation is: 

. 2 si+~ + si 2 1 
TJi = J k ~ cos e + cos e + . k ~ ( 8 8 ) I I 

2 J + i-.!. + i 2 + 1 'TJi+l 
2 

where k = wVJIE and si = k~(JilwEo ( = (Ji'TJO~ when all PML layer dielectric constants 
are 1). Note that this formula allows the specification of conductivity values at every half 
layer, doubling the number of layer parameters from the original. Also, the effects of a 
tuned PML termination, given by TJmax (Rappaport, IEEE Trans. Mag., 1996) can be 
carefully examined. 

To find the best conductivity coefficients for a wide range of angles and frequencies, nu
merical optimization is performed to minimize a cost function based on the error between 
the free-space transverse wave impedance, cos() ejk~ cos 812 , and the impedance looking 
into the PML, 1]1 . The goal is to find a set of (Ji and a termination TJmax that keeps the 
weighted error small for all frequencies of interest (0 to 75°, say) and all frequencies of 
interest. The solution to this problem also applies to the coefficients for the FDTD PML 
layer. 



Advanced Land Mine Detection Using a Synthesis 
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The humanitarian need for new, technologically advanced yet cost-effective approaches to demining has 
recently become critical. First, the proliferation of mines has increased to the extent that not only are 
there more than 100 million mines buried throughout the world, but new mines arc being placed faster 
than they can be cleared. And second, newer types of mines with inexpensive plastic and non-ferrous metal 
casings which are difficult to detect with conventional methods are becoming more prevalent. 

Developing the next generation of demining technology requires using multiple sensors and signal pror:essing 
algorithms which take into account the way in which the sensor data is gathered rather than treating the data 
as generically-derived information. \Ve at ~ortheastern University are leading a team to develop and optimiz;e 
land mine detection based on ground-penetrating radar (CPR), infrared thermography (IRT), electromagnetic 
induction (Er), and high frequency acoustic (HFA) sensors. \Ve are implementing sophisticated, physics-based 
mathematical models to describe the interaction of E.\t or ar:oustic waves with mines buried in realistic 
(electromagnetically lossy, inhomogeneous) soil and a.':i a result are developing "smart" signal processing 
algorithms to identify and classify mines. These mathematical models are derived from actual soil and land 
mine measurements, and include detection statistics of the sensors. In addition, 'vc arc building prototype 
land mine detection systems using currently available industrial hanhvare configured in novel ways based on 
the physical models under development.. This approach allows us to utilize cheap, off-the-shelf r:omponents 
and "smart" algorithms with the hope of providing developing countries with reliable and cost-effective 
sensor systems. Finally, we arc working to integrate these components into a set of scenario-tunable systems 
for person-portable, vehicle-mounted, and/ or airborne usc that. will be effective for dcmining operations in 
both hostile and peaceful areas. 

To achieve these goals requires a research program based on a first-principles understanding of the technical 
challenges posed by the demining problem and the development of an integrated framework for addressing 
these issues. At its root, the demining problem is particularly challenging because it is an inverse problem. 
That is, one can often obtain information regarding the presence of mines only through indirect measurements 
using electromagnetic, chemical or thermal sensors. Ivlost sensing systems operate by transmitting energy 
into the earth and measuring the scattered fields arising from the interaction of the energy with sub-surface 
structures. All mine-related information to be extrar:ted from the data is encoded by the complex scattering 
processes underlying these non-inva.':iive detection methods. 

I\on-ferrous mines are undetectable with magnetometry, while quick mobile deployment precludes particle 
beam and spectrometry methods. Shallow wave penetration in soil limits millimeter and visible frequency 
techniques, 'vhilc resolution limitations create difficulties for seismic and gravity sensing. Although olfactory, 
chemical, and biologir:al sensing rnay offer advantages for detecting older mines (and hence be useful for 
humanitarian purposes), they have limited sensitivity, especially in battlefield situations where pervasive 
explosive residues may be widely scattered across the ground. Newer mines do not give off significant 
chemical vapors and there is no direct means of continuously sampling soil. 

By concentrating our efforts on m, GPn., nn, and TTFA sensors, we feel that we have the best opportunity for 
making significant advances in dcmining. These technologies have been available for many years, and have 
individually met with limited success. Ivlost importantly, all four technologies are easily integrated sinr:e they 
possess similar modalities, involve similar wave propagation, can be addressed 'vith unified mathematical 
models, and can be mounted on a variety of demining platforms. \Ve are performing experiments to determine 
the optimal platforms, sensors, and frequency ranges for specific dcmining situations and plan to exploit 
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the capability of multiple sensors and physically-based signal processing algorithms to generate substantial 
improvements over currently available land mine detection schemes. 

Ultrawideband Array-Based Ground-Penetrating Radar 

As with standard radar, Gl'H. is useful for the remote sensing of submerged targets. It. is an important. tool for 
determining the locations of unexploded ordnance, land mines, underground installations, and hidden anns 
caches, but also offers many dual-usc applications, including precisely identifying the positions of buried 
waste drums (for environmental clean-up), finding pipes or cables (of interest to utilities), and identifying 
cavities or obstacles (for construr:t.ion applications). Ground penetrating radar has been available for many 
years, and has been fairly sur:cessful at. the remote ident.ifir:at.ion of buried objer:t.s. However, by making use 
of short pulse and shaped pulse signals, several important advantages become apparent. First, for wet, lossy 
soils, the wave penetration depth is severely limited for high frequency signals, \vhilc the detector resolution 
is limited at lmv frequencies; short pulse signals can be tailored to optimize the trade-off between penetration 
and resolution. Second, since most of the targets are in the nearfield of the radar source, the signal phase 
effects are unusually important. By mixing the phases of a wide bandwidth of frequencies appropriately, the 
signals scattered by the target can be more sharply analy;,ed, and the targets more accurately identified. 

Soil is inhomogeneous and dispersive, \Vith dielectric and electrical conductivity parameters depending on 
the soil composition, density, and excitation frequency. One research effort at Northeastern Cnivcrsity 
uses measured soil data to form a simple clutter model appropriate for both time- and frequency-domain 
computational wave propagation simulations. In addition, we will include the effects of dielectric: constant 
and conductivity variations as well as rock inclusions as perturbations of the propagation medium. Instead of 
having to guess soil characteristics or use a look-up table, this model \Vill provide high-accuracy predictions 
of the penetration depth, resolving capability, and sensitivity to noise and clutter of the EM signals. 

It is only through usc of the entire RF frequency band and the largest possible aperture that sufficient 
sensing information becomes available for sophisticated inversion processing. \Vhilc monostatic data from 
various lor:at.ions r:an be combined for rudimentary imaging, collecting the scattered response \vit.h multiple 
receivers simultaneously provides the extra dimension of information necessary to detect low contrast mine 
targets. \Ve are developing strategies for optimi;,ing element positioning in one- and two-dimensional arrays, 
considering synthetic aperture radar (SAR) antenna optimization, and testing tradc-offs between array size 
and platform geometry for synthesizing the best practical sensing aperture. 

For the ultra-widcband radar systems \Ve will be developing, it is essential to make usc of antenna clements 
whir:h are compar:t., efficient, inexpensive, and can faithfully radiate all of the frequency components in the 
generated radar signal. Geo-Centers, Inc., an industrial partner of ~ortheastern University, ha.':i developed 
a novel wide band antenna based on a transverse electromagnetic horn with rhombic taper, folded back into 
itself and terminated with a 50 ohm resistive load used for both transmitting and receiving. The measured 
performance of this transverse electromagnetic rhombus (TE1IR) indicates a very uniform radiation pattern 
in the plane of curling flare, perpendicular to the metal plates. It is also a wide-band antenna; throughout 
the 200 1-IHz to 2.0 G Hz range, the radiated signal faithfully duplicates the input signal shape for all 
angles. Tnus, cne TJ-:I'vl H appears w De clOse w an opnmum ant.enna elemenL ror a nme-nomam ranar array. 
This wideband antenna has been incorporated into a time domain array as part of a vehicle-mounted CPR 

counterrnine system. The detection results for this system have been very encouraging, with 100% of all 
metal mines and over 90% of plastic mines deter:t.ed in realistic simulations. 

Microwave Enhanced Infrared Thermography 

In addition to using individual micrmvave and infrared sensing systems, \ve propose a hybrid sensor in 
which a high-power micrmvave transmitter is combined \:Vith an infrared camera. The transmitter introduces 
energy into the ground which is absorbed at a different rates by buried objects and the surrounding soil. The 
resulting differential heating is sensed by the infrared camera thereby leading to an image of the underground 
object. 
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"While careful modeling \Vill be required to evaluate performance and optimize the transmitting antenna. 
design, the basic soundness of the approach has been demonstrated \Vith simulated differential sunlight 
heating. \Ve are examining the selection of a. microwave wavelength to penetrate to the desired mine depth 
making usc of the dielectric contrast of the mine as well the contrast in its thermal parameters. :.\!Iicrowavc 
energy can be focused and directed into the ground at the pseudo-Brewster angle to minimize reflection 
and thus maximize r:oupling. For the common variations in soil characteristics, an elliptical reflector-type 
antenna could be positioned so that its major axis aligns with the Brev.rster angle far in front of a detector. 
The converging rays from all parts of the elliptical reflector will arrive at the target focal point with a 
range of angles. Finally, by taking IR images before and after energy is delivered, difference images can be 
constructed \vhir:h will reduce the masking. 

Acoustic Phenomena 

Although the acoustic mismatch bchvccn particulate soils and solid mines makes acoustic sensing a promising 
area of research for mine detection, previous studies have demonstrated the diffir:ulty of coupling sufficient 
acoustic energy from air into the ground. Contact sensors, on the other hand, are slow and awkward for use 
by moving troops, and dangerous in applications \vhere pressure must be minimi11ed. 

One alternative is laser-induced acoustic-wave generation. CO~ laser pulses are strongly absorbed in the 
surface of most solids. 1\Iodulating the laser power at acoustic frequencies produces audible and trans
audible sound vibrations. The dominant frequencies have been identified with dimensional resonances in a 
300 ern~ irregular sample. Applied to a mine deter:tion system, the laser could be raster-scanned across the 
area under investigation with detection through a remote ground contact or rolling sensor array. Acoustic 
resonance \vhen excitation is near a mine could be correlated with the mine position by knowing the laser 
excitation position. 

Acoustic array signal processing '"ill benefit from the concurrent vmrk in electromagnetic signal processing. 
Multistatic processing of acoustic signals \Vill closely parallel the work on multistatic EI and CPR. Algorithms 
for multistatir: GPH. and El will be tested with simulated or experimental HFA data to mea .. c;ure the enhanced 
probability of acoustic detection from array processing. 

Summary 

Although there undoubtedly exist more exotic: sensors which could be used for detecting land mines, we 
expect that clever use of mature technologies will ultimately prove to be efficient, cost effective, reliable, 
and with a shorter development horizon since we '"ill utili~c commercial, off-the-shelf components which 
already exist. The novel aspects of l\orthcastcrn University's approach arc: (1) to combine multiple sensors 
synergistir:ally, yielding more information than \vould be available to any single sensor technology operating 
alone, and (2) to use "smart" signal-processing algorithms derived from physics-based models which take into 
account the actual sensor parameters as \Yell as material and electrical characteristics of the soil and land 
mines. By processing data in an intelligent manner, rather than simply treating it as a generic bit stream, 
we hope to utilize information that would otherwise be discarded, and \vhich \Vill make mine detection much 
more successful. 
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Abstract

In this paper we consider a wavelet based edge-preserving regularization scheme for use in

linear image restoration problems. Our e�orts build on a collection of mathematical results indi-

cating that wavelets are especially useful for representing functions that contain discontinuities

(i.e. edges in two dimensions or jumps in 1-D). We interpret the resulting theory in a statistical

signal processing framework and obtain a highly exible framework for adapting the degree of

regularization to the local structure of the underlying image. In particular, we are able to adapt

quite easily to scale-varying and orientation-varying features in the image while simultaneously

retaining the edge preservation properties of the regularizer. We demonstrate a half-quadratic

algorithm for obtaining the restorations from observed data.
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1 Introduction

In many applications recorded images represent a degraded version of the original scene. For

example, the images of extraterrestrial objects observed by ground based telescopes are distorted by

atmospheric turbulence [1] while motion of a camera can result in an undesired blur in a recorded

image. Despite the di�erent origins, these two cases along with others from a variety of �elds, share

a common structure where the exact image undergoes a \forward transformation" and is corrupted

by observation noise. The source of this noise is the disturbance caused by the random uctuations

in the imaging system and the environment. The goal of image restoration is to recover the original

image from these degraded measurements.

Often the forward transformation acts as a smoothing agent so that the resulting restoration

problem is ill-posed in the sense that small perturbations in the data can result in large, non-

physical artifacts in the recovered image [1, 2]. Such instability is typically addressed through

the use of a regularization procedure which introduces a priori information about the original

image into the restoration process. The prior information underlying the most commonly used

regularization schemes is that the image is basically smooth [2]. While the regularized restorations

are less sensitive to noise it is well known that the smoothness assumption impedes the accurate

recovery of important features, especially edges.

In response to this problem, there has recently been considerable work in the formulation of

\edge-preserving" regularization methods which result in less smoothing to areas with large inten-

sity changes in the restored image. These methods necessarily require non-quadratic regularization

functions and therefore result in nonlinear image restoration algorithms. Along these lines, Yang

and Geman [3] introduced the concept of \half quadratic regularization"which addresses the nonlin-

ear optimization problem that results from using such functions. Later, Charbonnier-Aubert-Blanc

Feraud-Barlaud [4] built upon the results of this work by providing the conditions for edge preserv-
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ing regularization functions. Another recent advance in this area is the Total Variation (TV) based

image restoration algorithms [5]. In this approach, images are modeled as functions of bounded

variation which need not be continuous. Therefore, formations of edges are encouraged and the

restorations obtained by the TV based algorithms look sharper than those obtained by conventional

techniques, especially if the exact image is piecewise continuous.

In this work, we consider a statistically based, wavelet-domain approach to edge-enhanced image

restoration in which we employ a stochastic interpretation of the regularization process [6{8]. We

note that most all of the work to date on wavelet-based, statistical regularization methods has

concentrated on the use of multi-scale smoothness priors [9{12]. While Wang et. al. did consider

issues of edge preservation in [12], their method was based on the processing of the output of an edge

detector applied to the noisy data to alter the degree of regularization in a multiscale smoothness

constraint. As described below and in subsequent sections, our approach is signi�cantly di�erent

as the edge preservation is built directly into the regularization scheme itself.

Speci�cally, we regard the image as a realization of a random �eld for which the wavelet co-

e�cients are independently distributed according to generalized Gaussian (GG) distribution laws.

This model is motivated by two factors. First, recent work [6,7,13,14] suggests that these models,

which have heavier tails than a straight Gaussian distribution, provide accurate descriptions of the

statistical distribution of wavelet coe�cients in image data. Second, in addition to being a basis

for L2(R), wavelets also are unconditional bases for more exotic function spaces whose members

include functions with sharp discontinuities and thus serve as natural function spaces in which to

analyze images [8,15{17]. Because the norms in these Besov spaces are nothing more than weighted

lp, 0 < p, norms of the wavelet coe�cients, it is shown easily that deterministic regularization with

a Besov norm constraint is equivalent to the speci�cation of an appropriately parameterized GG

wavelet prior model. From this perspective, our work can be viewed as an extension of the research
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done mostly in the area of image denoising. Speci�cally, the wavelet domain image model of interest

in this paper and the resulting nonlinear restoration algorithm are related to the large body of work

originating from the wavelet shrinkage estimators �rst proposed by Donoho and Johnstone [18]. In

a series of papers, Donoho and Johnstone have shown that wavelet shrinkage estimators achieve

near optimal estimation performance when the unknown signal belongs to Besov spaces. Later,

several authors contributed to the advancements in the area. The notion of Besov regularization has

been introduced by Amato and Vuza [17] and Chambolle-DeVore-Lee-Lucier [8] and the resulting

theory was interpreted in a function space setting. On the other hand, Simoncelli and Adelson [6]

developed a similar denoising scheme, which they called Bayesian wavelet coring, by stochastically

modeling the image subbands.

In this work, we make use of GG wavelet priors in a number of ways. We show that their use in an

image restoration problem does in fact signi�cantly improve the quality of edge information relative

to more common smoothness priors. Inspired by the \lagged di�usivity" �xed point iteration

proposed by Vogel and Oman [19] for the solution of the TV problem, we also provide an e�cient

algorithm for solving the non-linear optimization problem de�ning the restoration. By appropriately

structuring the weighting pattern on the wavelet lp norm, we demonstrate that these models provide

an easy and exible framework for adaptively determining the appropriate level of regularization as a

function of the underlying structure in the image; in particular, scale-to-scale or orientation based

features. This adaptation is achieved through a data-driven choice of a vector of regularization

parameters. For this task, we introduce and make use of a multi-variate generalization of the

L-curve method developed in [20] for choosing a single regularization parameter. We verify the

performance of this restoration scheme on a variety of images, comparing the results both to

smoothness constrained methods and the TV restorations.

We recognize that there are asymptotic results which state that the L-curve does not provide
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consistent estimates of the regularization parameters either as the noise level goes to zero or the

data length goes to in�nity [21, 22]. In the non-asymptotic regime however, empirical results do

point to the practical utility of this method. Moreover, as described in [20], the L-curve framework

is easily adapted to handle multiple regularization parameters, a feature required for the work here.

The remainder of this paper is organized as follows. In Section 2 we give the wavelet domain

formulation of the image restoration problem. In Section 3 we introduce a multiscale prior model

for images and use this model in Section 4 to develop an image restoration algorithm. In Section 5

we apply the \L-hypersurface" method to the simultaneous multiple parameter selection problem

posed by our image restoration algorithm. In Section 6 we demonstrate the e�ectiveness of our

algorithm by comparing our results with existing image restoration schemes. Finally, in Section 7,

conclusions and future work are discussed.

2 Regularized Image Restoration

A grey-scale image, f , can be considered as a collection of pixels obtained by digitizing a

continuous scene. The image is indexed by (m;n), 1 � m;n � 2J , and the intensity at the position

(m;n) is denoted by f(m;n). In image reconstruction and restoration problems, the objective is to

estimate the image f(m;n) from its degraded measurements. Mathematically, such a scenario can

be adequately represented by the following linear formulation

g = Hf + u (1)

where the vectors g, f and u represent, respectively, the lexicographically ordered degraded im-

age, the original image, and the disturbance. The known square matrix H represents the linear

distortion. H is typically ill-conditioned. This implies that the exact solution, f = H�1g, to

(1) is extremely contaminated by noise. Rather, a unique and stable estimate f� is sought by

incorporating prior information on the original image. This has the e�ect of replacing the origi-
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nal ill-conditioned problem with a well-conditioned one whose solution approximates that of the

original. Such a technique is called a regularization method [23{26].

In the Bayesian image restoration method of interest here the prior information is quanti�ed

by specifying a probability density on f and combining this with the information contained in g

to produce an estimate of the unknown image. We assume here a linear, additive white Gaussian

noise model so that the probability density for g is P (gjf ; �) = 1

(2��2)N
2=2

exp
�
� 1

2�2
kg �Hfk22

	
where N2 = 22J is the number of pixels in the image and �2 is the noise variance. If it so happens

that the probability distribution for f is in the form P (f j�) / exp f��(f ; �)g then by Bayes's rule,

the MAP estimate, f�, is obtained by minimizing the following log-posterior density with respect

to f [27, 28]

L(f ; �; �) =
1

2�2
kg �Hfk22 +�(f ; �): (2)

The function �(f ; �), called the energy function in the context of Bayesian estimation, is the energy

attributed to the image f , and � is the vector of possibly unknown model parameters. We give low

energy to the images which coincide with our prior conceptions and high energy to those which do

not. Thus, if our prior belief about the image is that the original image is smooth, then the energy

is a measure of the roughness.

2.1 Wavelet Representation of Image Restoration Problem

In this paper, we adopt a wavelet domain approach to the image restoration problem. A

comprehensive introduction to the wavelet theory can be found in [14, 15, 29]. It is possible to

obtain the wavelet transform of images through a separable representation. This decomposition

can be implemented by 1-D �ltering of rows and columns of images. In Fig. 1, we have schematically

illustrated a 1-level wavelet decomposition of an image f(n;m) with f
(0)

J
(n;m) denoting the �nest

scale scaling coe�cients. The 1-level wavelet decomposition of the image f
(0)

J
(n;m) produces four

sub-images of size 2J�1�2J�1, f
(k)

J�1; k = 0; : : : ; 3. f
(0)

J�1 represents the scaling coe�cients at scale
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J�1 and f
(k)

J�1; k = 1; : : : ; 3 are the wavelet coe�cients at scale J�1 corresponding to the vertical,

horizontal and diagonal orientations in the image plane. Multi-level wavelet decompositions of the

image f(n;m) can be obtained by applying the 1-level wavelet decomposition scheme, outlined

above, recursively to the scaling coe�cients f
(0)

J�1(n;m). For an l-level wavelet decomposition,

j0 = J � l denotes the lowest resolution at which the image is represented. We will use f
(k)
j

to denote the vector of wavelet (scaling) coe�cients obtained by lexicographically ordering the

elements of the 2-D array f
(k)

j
(m;n) and f̂ to denote a lexicographically ordered version of all

wavelet coe�cients f̂(n;m).

With the conventions above, we can represent the problem in (1) in the wavelet domain as

Wg =
�
WHWT

�
Wf +Wu

ĝ = Ĥf̂ + û; (3)

where W is the 2-D wavelet transform matrix, ĝ, f̂ and û are the vectors holding the scaling and

wavelet coe�cients of the data, the original image, and the disturbance, Ĥ is the wavelet domain

representation of our linear degradation operator H, and WTW = I follows from the orthogonality

of the wavelet transform. Note that since the wavelet transform is orthonormal û is again Gaussian

with zero mean and variance �2.

3 A Multiscale Image Model

A key component of our image restoration algorithm is the use of a multiscale stochastic prior

model for f . To motivate the particular choice of prior model used here, consider the wavelet

coe�cients of a typical image at a particular resolution. Wavelet coe�cients are obtained by

di�erentiation-like operations. Since the spatial structure of many images typically consists of

smooth areas dispersed with occasional edges, the distribution of wavelet coe�cients should be

sharply peaked around zero, due to the contribution of smooth areas, and have broad tails repre-
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senting the contribution of the edges [6].

Following the work in [6,7] on image coding and denoising, we model the distribution of wavelet

coe�cients of images by a Generalized-Gaussian (GG) density [13,14]

P
�
f
(k)

j
(m;n)jp; �

(k)

j

�
/ exp

8<
:�1p

�����
f
(k)

j
(m;n)

�
(k)

j

�����
p
9=
; ; (4)

where 0 � p � 2 is a parameter which determines the tail behavior of the density function and

�
(k)
j

is a scale parameter similar to the standard deviation of a Gaussian density. We will refer to

the zero mean density in (4) as GG(0; �
(k)
j
; p). For p = 1 we have the Laplacian density and for

p = 2 we have the familiar Gaussian density. The tails of the GG distribution becomes increasingly

heavier as p approaches zero. We assume that the mean of the image is subtracted from the image

and that the scaling coe�cients f
(0)

j0
(m;n), are i.i.d. GG(0; �

(0)

j0
; p).

The speci�cation of one � parameter for each scale and orientation results in an image model

far too complex to be of use in a restoration procedure. Nonetheless, the structure of the model

in (4) coupled with the speci�cation of the problem in the wavelet domain does suggest a variety of

simpli�cations which are of use for the restoration problem. In this work, we consider the following

three models:

1. Model 1: The scaling coe�cients f
(0)

j0
(m;n), are i. i. d. with GG(0; �

(0)

j0
; p) and the wavelet

coe�cients are i. i. d. with exponentially decreasing variances, i.e. f
(k)

j
(m;n) �

GG(0; �2��(j�j0); p); i = 1; 2; 3; j0 � j � J � 1 with j0 the coarsest scale, � the scale

parameter corresponding to j0 and � � 0. The rationale behind this model is that it is

equivalent to a deterministic modeling of the image as a member of a Besov space [15].

2. Model 2: The scaling coe�cients f
(0)

j0
(m;n), are i. i. d. with GG(0; �

(0)

j0
; p) and the wavelet

coe�cients at a particular scale are i. i. d. with GG(0; �j; p); j = j0; : : : ; J � 1. This model

is useful in cases where the variance of the wavelet coe�cients at di�erent scales cannot be
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well-approximated by a simple exponential law.

3. Model 3: The scaling coe�cients f
(0)

j0
(m;n), are i. i. d. with GG(0; �

(0)

j0
; p) and the wavelet

coe�cients at di�erent orientations (horizontal, vertical or diagonal) are distributed with

GG(0; �(k)2��(j�j0); p); i = 1; 2; 3; j0 � j � J � 1. Such a model is most suitable for

images with signi�cantly di�erent characteristics in di�erent orientations as might arise in

geophysical restoration problems involving layered structures.

We make several observations regarding these models. First, they are indeed of low dimensionality.

In addition to the � and p parameters, Model 1 is characterized by two � coe�cients: one for the

coarsest scale scaling coe�cients and one multiplying the exponential for the wavelet coe�cients.

There are a total of J � j0 + 1 �'s for Model 2 and four � values required to characterize Model 3.

In subsequent sections, we shall see that the number of regularization parameters to be determined

in the restoration algorithm is equal to the number of �'s characterizing the prior model being

used. Moreover, an appropriate on-line choice of the model parameters provides a mechanism for

adapting the level of regularization in an image to the underlying scale-to-scale structure (Models

1 and 2) or to orientation-dependent structure (Model 3). While, the above three models certainly

do not represent an exhaustive enumeration of all possible multiscale regularization approaches,

as seen in Section 6, they do provide a strong indication as to the utility of this type of modeling

technique for image restoration.

Finally, we comment on the estimation of the hyper-parameters, p, �, and �
(k)
j
. In a restoration

algorithm, these parameters could be estimated from the data by assigning appropriate priors to

each and maximizing the resulting log-posterior function with respect to the hyper-parameters and

the image. However, such an approach presents many computational di�culties and unnecessarily

complicates the problem. Instead, for the remainder of this paper we choose to simplify the problem
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by �xing the p and � a priori. Generally, the performance of the regularizer is impacted to a greater

extent by the on-line identi�cation of the � parameters [30] (or as explained in subsequent sections,

quantities closely related to �) so we concentrate our e�ort on identifying good choices of �.

The issue of selecting an appropriate p is extensively discussed in Section 4.1. As for the selection

of �, we propose using a �xed a priori choice obtained from the empirical study of a number of

images. According to our �ndings, for most images representing natural scenes the � value which

produced the best �t to the image data under the Model 2 scheme (for p = 1) fell between 0:6

and 1:6 with mean � � 1:2. We evaluated the e�ects of varying the � value on a number of

restoration problems and saw that the results were relatively insensitive to variations in � in the

range suggested by the observations. The �rst example in Section 6 supports this. Note also that

past research reveals similar conclusions [30] indicating that the performance of the estimator is

degraded little by the error in �. Therefore, for all experiments performed we used � = 1:2 as our

�xed a priori choice.

4 A Multiscale Image Restoration Algorithm

The MAP estimate of the wavelet coe�cients of the original image is found by maximizing the

log-posterior function in (2). Substituting the prior probability density developed in Section 3 into

(2), the MAP estimate of f̂ is seen to be the minimum of the following cost function with respect

to f̂ (assuming for the time being that �
(k)

j
is known)

J(f̂ ;�) = kĝ� Ĥf̂k22 + �
(0)
j0
kf

(0)
j0
kpp +

J�1X
j=j0

3X
i=1

�
(k)
j
kf

(k)
j
kpp (5)

where �
(k)
j

= 2�2

p

�
�
(k)

j

�p are weighting parameters and � = [�
(0)
j0
; �

(1)
j0
; : : : ; �

(3)

J�1]
T . The formulation in

(5) easily accommodates the Model 1-3 regularization schemes discussed in Section 3 by de�ning

the appropriate relationships for �
(k)
j
. For example, putting �

(0)
j0

= �1 and �
(k)
j

= �22
�(j�j0) results

in the Model 1 regularization scheme while assigning a di�erent �j to each scale in the wavelet
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domain without regarding the orientation we obtain the Model 2 regularization scheme. Suppose

that J(f̂ ;�) has a minimum in f̂ , then at a stationary point f̂ s, the gradient of J(f̂ ;�) must vanish.

Unfortunately, the lp norm terms appearing in (5) is not di�erentiable for p � 1. Hence, we propose

the following smooth approximation to the lp norm, raised to the power p, as in [19]

kxkpp �
X
i

��
jxij

2 + �
�p=2

� �p=2
�

(6)

where � � 0 is a stabilization constant and xi denotes the i-th element of the vector x. Substituting

(6) into (5) and taking the gradient of the cost function we arrive at the following equation

D� = diag

"
�i

(jf̂�
i
j2 + �)1�p=2

#
N

2

i=1

(7)�
ĤT Ĥ+

p

2
D�
�
f̂� = ĤT ĝ; (8)

where f̂� is the minimum of J(f̂ ;�) with the approximation in (6), f̂�
i
is the i-th element of f̂� and

�i is the associated regularization parameter. The above equation gives the �rst order conditions

that must be satis�ed by f̂�. By direct analogy with the lagged di�usivity method of Vogel and

Oman [19], we can develop a �xed point iteration to solve for f̂�. Starting with an initial point f̂0,

we solve the following equation for f̂k+1�
ĤTĤ+

p

2
Dk

�
f̂k+1 = ĤT ĝ; (9)

where Dk is obtained by replacing f̂�
i
by f̂k

i
in (7)1. The iteration is terminated whenever

kf̂
k+1

�f̂
k
k

kf̂kk
< , with  being a small positive constant. We use 10�5 in our simulations. The

�xed point iteration in (9) is a special case of the \half quadratic regularization" scheme intro-

duced by Geman et. al. [3] and the ARTUR scheme due to Charbonnier et. al. [4]. Adopting the

notation in [4] we de�ne the following function

�(t) =
�
t2 + �

� p
2 � �

p
2 : (10)

1The iteration index for the iterative optimization, k should not be confused here with the index (k) used to
describe the orientations of the wavelet/scaling coe�cients.
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Then, the approximated cost function can be expressed in terms of the function �(t). Furthermore,

�(t) satis�es the conditions (a)-(i) presented in [4](page 300, equation (12)). Roughly speaking,

these conditions ensure that the �(t) function applies less and less penalty as the magnitude of the

wavelet coe�cients increase (so that the large-magnitude wavelet coe�cients, primarily associated

with edges, are well-preserved) and that the restoration algorithm is convergent in the sense that

the sequence J(f̂k;�) is convergent and that
�
f̂k+1 � f̂k

�
!

k!+1
0. In the special case where �(t)

is convex (which occurs if p � 1) and Ĥ is full-rank, the iterates f̂k converge and the computed

solution is the unique minimum of (5). However, when p < 1, �(t) is concave and the algorithm

computes a local minimum of (5) [4].

The iterative algorithm in (9) requires the solution of a very large linear matrix equation.

Note that the matrix appearing on the right hand side of (9) is symmetric and positive de�nite.

Therefore, the conjugate gradient (CG) algorithm [31] can be conveniently used to compute the

solution f̂k+1 in (9) at each step. In this way, the algorithm given in (9) is doubly iterative in

that an outer iteration is used to update the solution f̂k and an inner iteration is used to solve

the system of equations in (9) by the CG method. The special structure of the matrices Ĥ and

Dk could be used to decrease the computational cost substantially. The �rst matrix, Ĥ is merely

the wavelet domain representation of our degradation operator. If the kernel is convolutional, it

has been shown by Zervakis et. al. [32] that this matrix can be diagonalized by a special Fourier

transform matrix by invoking the circulant assumption. On the other hand, the second matrix D

is diagonal in the wavelet domain. Therefore, the vector matrix multiplications required for the

implementation of the CG algorithm can be computed in an e�cient way by going back and forth

between the wavelet and the Fourier transform domains. In this case, the cost of multiplying a

vector with the matrix ĤT Ĥ+ p

2D
k is dominated by the cost of the FFT which is O(N2 logN).

We note that the iterative algorithm in (9) can be e�cient even in the case where Ĥ is not convo-
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lutional since the wavelet domain representation of a wide range of operators is sparse [18]. In those

cases, standard techniques for sparse matrices can be used to reduce computational complexity.

4.1 Selection of Appropriate p and � values

The possibility that multiple local minima of (5) may exist for p < 1 presents an interesting

trade-o�. From a computational viewpoint, it is highly desirable to use p � 1, since in this case the

cost function is convex and global convergence is guaranteed. However, based on empirical studies

of the wavelet coe�cients of images it has been shown that the GG model for the distribution of

the wavelet coe�cients usually corresponds to p < 1 and a typically recognized value is p = 0:7 [13].

Analysis of the use of GG priors in the context of image denoising has been performed by Moulin

and Liu [33]. The results in [33] suggest that only modest improvement can be achieved by using

p < 1 as compared with p = 1. In our experiments, we essentially arrived at the same conclusion.

That is, the restored images obtained by using the best value of p (in terms of model �t) were

visually almost the same as the results obtained by using p = 1, although slightly lower estimation

errors were observed for p < 1. Therefore, we propose using p = 1 as the �xed a priori choice for

the shape parameter of the GG distribution. Note that we do not claim that p = 1 is the right

value for all types of images. Rather, we are saying that the estimation of p directly from the data

is a complicated problem and in the absence of accurate prior information on p, p = 1 provides

strong restoration results with guaranteed global convergence properties.

The role of the parameter � is two-fold. First it controls how close the approximation in

(6) is to the original lp norm. Using a relatively small � provides better restoration of edges

in the image since a smaller � value provides better approximation to the lp norm. Second, it

essentially determines the convergence speed of the algorithm. While we do not intend to carry

out a numerical analysis of the �xed point iteration in (9), the basic reason is that for � = 0, �(t)

in (10) is not di�erentiable at t = 0 and instability in the numerical computations may arise. If �
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is relatively large, the algorithm is fast, and the convergence speed deteriorates as � gets smaller.

Therefore, � should be set so as to achieve a compromise between the convergence speed and the

edge preservation. Based on our experience on natural scenes, we found that restorations obtained

for � � 1 were visually indistinguishable from the restorations obtained for � � 1. We note that

a similar value is recommended for the TV algorithm [19].

5 Regularization Parameter Selection

In this paper, we use a multi-dimensional extension of the L-curve method [20], called the

L-hypersurface method [34], to determine � in (5). In order to describe the method thoroughly,

we consider the following generalized image restoration scheme where the estimate of the original

image f is obtained by minimizing the following cost function

J(f ;�) = kg �Hfk22 +

MX
j=1

�jkRjfk
p

p
(11)

where �j ; j = 1; : : : ;M are the regularization parameters and Rj are the corresponding regular-

ization operators. The cost function in (11) represents a multiply constrained least squares problem

and includes many popular image restoration schemes as its special cases. Our wavelet domain im-

age restoration algorithm is obtained if g,H and f are in the wavelet domain and Rj ; j = 1; : : : ;M

are the operators which extract desired portions of the wavelet transform of f . For example, we can

take R1 as the operator extracting the coarsest scale scaling coe�cients and R2 as the operator

extracting the wavelet coe�cients for a doubly constrained, Model 1-type problem.

To extend the L-curve, we �rst introduce the following quantities

f�(�) = argmin
f

J(f ;�) (12)

z(�) = log kg �Hf�(�)k22; xj(�) = log kRjf
�(�)kpp; j = 1; : : : ;M (13)

With the above de�nitions, the \L-hypersurface" [34] is de�ned as a subset of RM+1 associated
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with the map s(�) : RM

+ ! RM+1, such that

s(�) = (x1(�); : : : ; xM(�); z(�)) (14)

For a single constraint, the L-hypersurface reduces to the conventional L-curve which is simply a

plot of the residual norm versus the norm of the restored image in a doubly logarithmic scale for

a set of admissible regularization parameters. In this way, the L-curve displays the compromise

between the minimization of these two quantities. It has been argued and numerically shown that

the so called \corner" of the L-curve corresponds to a point where regularization and perturbation

errors are approximately balanced [20].

Analogous to the one dimensional case, the L-hypersurface is a plot of the residual norm z(�)

against the constraint norms xj(�), 1 � j � M . Intuitively, the \generalized corner" of the L-

hypersurface should correspond to a point where regularization errors and perturbation errors are

approximately balanced. By a generalized corner, we mean a point on the surface around which

the surface is maximally warped. We can measure how much a surface is warped around a point

by computing the Gaussian curvature [34]. In Fig. 2 we plot a typical L-hypersurface along with

its Gaussian curvature and the error between the original and the restored images for a range of

regularization parameters. The experiment for which the L-hypersurface was computed was the

restoration of a 32�32 image degraded by a Gaussian blur of variance 1 pixel and corrupted by white

Gaussian noise at 30dB SNR. We used our multiscale algorithm with p = 2:0 and Model 1 regular-

ization scheme as shown in Fig. 3(a). Figure 2(b) shows the curvature of the L-hypersurface shown

in Fig. 2(a) with �1 (resp. �2) being the regularization parameter for the scaling (resp. wavelet)

coe�cients. Figure 2(b)-(c) clearly indicate the usefulness of the Gaussian curvature plot in as-

sessing the goodness of regularization parameters. It is observed that the curvature is signi�cant

along an extended maxima which is very close to a region in the error norm, kf � f�(�)k22, plot in

Fig. 2(c) where the error between the actual and the restored images is minimized. Moreover, the
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curvature plot indicates that there is in fact more than one good regularization parameter for the

scaling coe�cients, and as long as we choose the correct value for the regularization parameter cor-

responding to the wavelet coe�cients the restorations should have approximately the same quality.

The error norm plot in Fig. 2(c) supports this point of view.

For the numerical experiments described in the following section, the regularization parameters

are selected by searching over a grid of parameter values in � space and choosing that point whose

curvature is maximum. The computational complexity of this technique is clearly quite high. The

major di�culty here is that the curvature of the L-hypersurface possesses many maxima/minima

as seen in Figure 5(c) and therefore the use of well-known optimization techniques such as the

Gauss-Newton method would fail. As the primary issue of interest here is in demonstrating that

there is utility to the L-hypersurface method, we leave the considerable e�ort of �nding a more

e�cient implementation to future work.

6 Experimental Results

In this section, we illustrate the performance of our proposed multiscale image restoration algo-

rithm. All computations were carried out by using the Matlab commercial software package with

double precision arithmetic. We used the routines in Donoho's Wavelab toolbox [35] for the com-

putation of forward and inverse wavelet transforms with Daubechies' eight tap most symmetrical

wavelets [29]. In all cases below, we limited the number of levels of wavelet decomposition to 3.

In the �rst example, we used a Gaussian convolutional kernel, h(x; y) = 1
4�x�y

expf�x2+y2

2�x�y
g, with

�x = �y = 2:0 to blur the 256� 256 Mandrill image. Zero mean white Gaussian noise was added

to set the SNR to 30dB. In Fig. 4 (a)-(b) we display the original and the blurred, noisy images.

We restored the degraded Mandrill image using three regularization techniques: our proposed

multiscale regularization scheme, the Constrained Least Squares (CLS) algorithmwith a 2-D Lapla-
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cian regularizer [2], and the TV algorithm. The CLS and the TV algorithms are special cases of

the generalized image restoration scheme in (11) for j = 1 in which taking p = 2, and R1 = �

(i.e. 2-D Laplacian) results in the CLS cost function and p = 1 and R1 = r gives the cost func-

tion corresponding to the TV algorithm. The action of the 2-D Laplacian operator �f at the

pixel (m;n) is �f(m;n) = �4f(m;n) + f(m;n + 1) + f(m + 1; n) + f(m;n � 1) + f(m � 1; n)

and the action of the gradient operator rf is given by rf(m;n) = [rxf(m;n);ryf(m;n)]T with

rxf(m;n) = �f(m;n) + f(m + 1; n) and ryf(m;n) = �f(m;n) + f(m;n + 1). Both operators

are implemented by circulantly wrapping the image at the boundaries. The relevant regularization

parameters were determined using the L-curve or the L-hypersurface method. For the TV algo-

rithm and our algorithm we used � = 1:0. Experimental results obtained for � = 10�10 indicate

that smaller choices of � do not improve the visual quality of the restorations (see Fig. 4(g)-(h)

and Fig. 7(e)-(f)).

In Fig. 4(c)-(h) we display the restored Mandrill images corresponding to the CLS, the TV

and the multiscale algorithm. For our multiscale image restoration method we computed four

restorations, displayed in Fig. 4(e)-(h), according to the Model 1 and Model 2 regularization schemes

described in Section 3. Figure 4 shows that both the TV algorithm and our algorithm produce

restored images visually superior to the CLS algorithm. We also observe that the images restored by

our algorithm are a little sharper than the image restored by the TV algorithm and that the texture-

like regions abundant in the Mandrill image (e.g. the hairs around the mouth of the Mandrill) are

better recovered by our algorithm. The Root Mean Square Error (RMSE),
q

1
N2 kf � f�(�)k22,

between the original and restored images are listed in Table 1.

For the Model 1 restoration in Fig. 4(e) the L-hypersurface was used to determine two param-

eters, �1 and �2 corresponding to the coarsest scale scaling coe�cients and the wavelet coe�cients

respectively as shown in Fig. 3(a). In this case, the curvature of the L-hypersurface is a 2-D function
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of the regularization parameters as seen in Fig. 5(a). Also shown in Fig. 5(b) is a plot of RMSE

as a function of these regularization parameters. Examining these plots shows that the curvature

surface has a distinct extended maxima along which the norm of the error is very close to being a

minimum. Thus, we see that the restoration algorithm is not overly sensitive to the scaling coef-

�cient regularization parameter and locating the correct regularization parameter for the wavelet

coe�cients is more important.

In the Model 2 restoration in Fig. 4(f), each scale in the wavelet domain is assigned a di�erent

regularization parameter as seen in Fig. 3(b). Based on the L-hypersurface obtained for the Model 1

restoration in Fig. 5(a), we set the scaling coe�cient regularization parameter to 10�5. Figure 6(a)-

(c) shows the curvature of the L-hypersurface obtained for this experiment. Since in this case the

curvature is a 3-D function (one parameter for each wavelet scale), each of the 2-D plots in Fig. 6(a)-

(c) is actually a slice of the curvature hypersurface with the regularization parameter corresponding

to the coarsest scale being constant. Again, the maxima of the curvature of the L-hypersurface

track well the minima of the RMSE surface so that we are close to the \optimal" regularization

parameters. We see little di�erence either in terms of the error norm or in terms of visual quality

between the Model 1 and Model 2 restorations in Fig. 4(e) and (f). This example veri�es the

primary assumption of Model 1 scheme where it was assumed that the variance of the wavelet

coe�cients decrease uniformly across scales according to an exponential law.

Finally, in Fig. 4(g)-(h) we display the Model 1 restorations corresponding to an idealized case

where the parameters � and p were estimated directly from the original image. Clearly, this is not

a realistic situation since in practice the original image is not available. Nonetheless, this example

is interesting since it gives us an idea about how much improvement can be expected when using

the optimal � and p values as opposed to �xed a priori choices � = 1:2 and p = 1:0. The optimal

p was estimated by using the method proposed in [14] and was found to be popt = 0:7280. The

18



exponential parameter �opt was estimated by computing the slope of the line �tted to the log�j for

j = j0; : : : ; J � 1. It was found to be �opt = 0:6117. Since popt yields a non-convex optimization

task, we computed the restorations for this case in 2 stages. The �rst stage starts with computing

the restoration for p = 1:0, which is unique and then the restored image for p = 1:0 is fed as

the starting point to the restoration algorithm with p = 0:7280. There is no guarantee that the

restored image for popt corresponds to the global minimum of the cost function, nevertheless we

obtained good results with this scheme. Figure 5(c)-(d) shows the L-surface and the RMSE surface

for popt, respectively. Figure 4(g)-(h) are the restorations obtained for this case. Figure 4(g)-(h)

di�ers only in the value used for � which was set to 1:0 in (g) and 10�10 in (h). As already pointed

out the two restorations are visually indistinguishable, though the convergence of the algorithm

took signi�cantly longer for � = 10�10. Finally, comparison of Fig. 4(g)-(h) with Fig. 4(e)-(f)

reveals that there is visually little di�erence between the restored images corresponding to popt and

p = 1:0 cases. This example shows that using p < 1 does not yield a signi�cant improvement in

the performance of the multiscale algorithm.

In our second example, we �rst blurred the original Bridge image in Fig. 7(a) with a 9 � 9

uniform motion blur and added white Gaussian noise to the degraded image to set the SNR at

40dB. The blurred image obtained by this way is shown in Fig. 7(b). Having established the edge

preserving utility of the TV and the proposed algorithm over the conventional CLS method, we

only display the restorations obtained by the TV and the proposed algorithm in Fig. 7(c)-(f). For

our multiscale algorithm, we applied the Model 1 and Model 2 regularization schemes with the

L-hypersurface choice of regularization parameters. As in the previous example, we determined

2 regularization parameters corresponding to the scaling and the wavelet coe�cients for Model 1

and 3 parameters corresponding to the wavelet coe�cients at each scale for Model 2. In Model 2

restoration, the regularization parameter for the scaling coe�cients were set to 10�4 from Fig. 8(a).
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Figure 7(d) shows the Model 1 restoration and Fig. 7(e) and (f) show the Model 2 restorations. In

Fig. 7(e)-(f) all parameters except for � are the same (� = 1:0 in (e) and � = 10�10 in (f) ).

Although the RMSE values in Table 1 were similar, the restored images in Fig. 7(c)-(d) exhibit

vastly di�erent visual characteristics. The TV algorithm fails to recover many of the small features

in the image and produces an overly homogenized restoration resembling an \oil painting" of the

original scene. The multiscale algorithm is able to reproduce �ner detail thereby yielding a more

visually appealing restoration. As in the previous example, we see little di�erence in terms of the

visual quality between the Model 1 and Model 2 restorations. Note that we used the same value

� = 1:2 in both Mandrill and Bridge examples regardless of the image considered.

In our �nal example, we demonstrate the orientation adaptive nature of our approach. In

Fig. 9 (a), we display an arti�cial 32 � 32 image which has signi�cant structure in the horizontal

direction, but little in the vertical and diagonal directions. This image was blurred by a Gaussian

convolutional kernel with �x = �y = 1, and zero mean white Gaussian noise was added to set the

SNR at 30dB. Because of the large di�erences between the structure in the horizontal and verti-

cal directions, an ideal image restoration algorithm should use di�erent regularization parameters

for vertical, horizontal and diagonal directions. With this in mind, in Fig. 9(c)-(d) we display

the restorations obtained using Model 1 and Model 3 schemes which require three regularization

parameters, �1, �2 and �3, as displayed in Fig. 3(b)-(c), respectively. The L-hypersurface was em-

ployed to determine the required regularization parameters. For both Model 1 and Model 3 schemes

we set the scaling coe�cient regularization parameter to 10�5. For the Model 3 restoration, the

regularization parameters obtained for the vertical and diagonal orientations (in which the image

is constant) were approximately two orders of magnitude larger than the regularization parameter

obtained for the horizontal orientation. It is clear from Fig. 9(c)-(d) that the orientation adaptive

algorithm produces a much better restoration than the scale adaptive algorithm.
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7 Conclusions

In this paper, we introduced a wavelet domain multiscale image restoration algorithm for use

in linear image restoration problems. Following the recent results in the area of image denoising

and coding, we developed a statistical prior model for the wavelet coe�cients of images. Our

priors are able to capture spatial, scale and orientational characteristics of images accurately. We

developed a half-quadratic algorithm to solve the nonlinear optimization problem resulting from

using such priors and utilized the L-hypersurface method for choosing the required regularization

parameters. Experimental results show that our algorithm can produce restorations which are

visually signi�cantly better than that of the traditional techniques and at least comparable, if not

better, than that of the the edge-preserving algorithms.
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8 Figure and Table Captions

Table 1 RMSE values for each experiment.

Figure 1 Wavelet decomposition of an image.

Figure 2 (a) L-hypersurface, (b) Gaussian curvature of the L-hypersurface in (a), (c) the norm of

the di�erence between the actual and restored images. �1 regularizes the coarsest scale scaling

coe�cients and �2 is used to penalize the wavelet coe�cients in a Model 1 regularization

scheme.

Figure 3 (a) Model 1 (b) Model 2 (c) Model 3 regularization schemes as used in our experiments.

In each Model, the required regularization parameters, �j , are selected by the L-hypersurface

method. In Model 1 and 3 � is set to 1:2 a priori.

Figure 4 (a) Original Mandrill image. (b) Blurred image, 30dB SNR. (c) Restored by the CLS

algorithm. (d) Restored by the TV algorithm. (e) Restored by the proposed algorithm using

Model 1 regularization scheme with p = 1:0 and � = 1:2 (f) Restored by the proposed

algorithm using Model 2 regularization scheme with p = 1:0 (g) Model 2 restoration with

optimal � and p. (h) Model 2 restoration with the same parameters as in (g) except that

� = 10�10.
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Figure 5 (a) Curvature of the L-hypersurface for Model 1 with � = 1:2 and p = 1:0 and (b) the

corresponding RMSE surface (c) Curvature of the L-hypersurface for Model 1 with � = 0:46

and p = 0:7280 (optimal parameters) and (d) the corresponding RMSE surface (e) L-curve

for the CLS algorithm and (f) corresponding RMSE curve. (g) Curvature of the L-curve for

the TV algorithm and (h) corresponding RMSE curve.

Figure 6 (a)-(c) Curvature of the L-hypersurface and (d)-(f) RMSE plots for the mandrill exper-

iment.

Figure 7 (a) Original Bridge image. (b) Blurred image, 40dB SNR. (c) Restored by the TV

algorithm. (d) Restored by the proposed algorithm using (d) Model 1 regularization scheme

(e) Model 2 regularization scheme. (f) Model 2 restoration with the same parameters as in

(e) but with � = 10�10.

Figure 8 (a) Curvature of the L-hypersurface for the proposed algorithm. (b) Curvature of the

L-curve for the TV algorithm. (c)-(d) Corresponding RMSE plots.

Figure 9 (a) Original image. (b) Blurred image, 30dB SNR. (c) Restored by the proposed algo-

rithm with Model 2 (scale adaptive) regularization. (d) Restored by the proposed algorithm

with Model 3 (orientation adaptive) regularization.

CLS TV Model 1 Model 2 Model 3 Model 1 with best p &�

Mandrill 24.11 23.73 23.75 23.86 - 23.71

Bridge - 19.43 20.31 20.13 - -

Strips - - - 11.96 9.17 -

Table 1:
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Outline

• Accurate modeling of subsurface wave 
scattering 

• Plane wave FDFD computation with rough 
ground surfaces

• Method validation

• Computational examples for mine detection
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Numerically Modeling EM Wave 
Propagation in Soil to Aid Sensor Design

• Only with knowledge of the environment surrounding 
mines can efficient advanced sensors be developed.

• Soil environment is extremely varied and inhomogeneous.
• Propagation is quite different in different soils.
• Numerical modeling is the only viable means of testing 

candidate sensing concepts on the wide variety of 
conditions.

• Simple flexible models that capture the essential electrical 
characteristics are best.

• Visualization of wave propagation assists in sensor 
synthesis.



Finite Difference Modeling

• Finite Difference Time 
Domain (FDTD) is fast, 
accurate, easy to 
implement, and intuitive.

• FDTD is best for 
wideband (short pulse) 
scattering in non-uniform 
media.

• Special means have 
been developed for 
Dispersive Media, such 
as soil.

• Finite Difference 
Frequency Domain 
(FDFD) is also good for 
non-uniform media.

• FDFD handles frequency 
dependent media easily.

• FDFD is particularly useful 
for signal processing 
forward models

• Using Pre-Conditioning, 
FDFD is less 
computationally expensive.

Time Domain Freq. domain



PML Absorbing Boundary Condition is 
perfectly suited to FDFD half-space problems

• PML necessary for wide-angle absorption
• Frequency independence useful for 
general use
• PML loss profile can be added to lossy 
material characteristics 
• Horizontal layering is amenable to sparse 
storage/computation 



Two-Dimensional Finite Difference Computational Geometry
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2 Orders of Magnitude Speed-Up Using 
Pre-Conditioner for Big Problems



Dealing with rough surfaces with 
plane wave FDFD computation

• Analytically determine half-space reflection and 
transmission for nominal flat ground

• Consider buried objects as scattering sources 
in soil background

• Consider depressions and protrusions as 
perturbations to flat ground surface
vProtrusions above nominal ground = soil scatterers in air 

background
vDepressions  = air void scatterers in soil background



Rough surface as perturbation to 
flat half space 

Soil in air, ks

Dielectric 
in soil, kt

Air in soil, k0



Scattering formulation of surface 
and subsurface perturbations 
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Over the buried object

Over the depressions

Over the protrusions

Helmholtz Equation with varying background:

Separate scattered field:

Cancel unperturbed field:

where the object function is given by:



3 GHz 45 deg. incident plane wave on 
rough surface, with buried TNT ellipse



Validation:  FDFD vs. FDTD run at 3 GHz 
for 4000 time steps with PML ABC

45 deg. incident plane wave on rough surface, dispersive soil 
with buried TNT ellipse with specular wave removed

~10 min. on 850 MHz Pentium with 512 MB ~45 min. on 850 MHz Pentium with 512 MB



Validation:  FDFD vs. Semi-Analytic Mode 
Matching (frequency domain) method



Flat surface simplifies scattered wave pattern

45 deg. incident plane 
wave on flat surface, 
dispersive soil with 
buried TNT ellipse 
with specular wave 
removed



3D FDFD v. 3D Semi-Analytic: Bosnian Soil

75 hours on Compaq Alpha

40 min. on a Pentium desktop

eg = (9.19 + 1.27 i) e0; normal incidence; TNT mine



TNT mine, f=3GHz, R=5cm, d=5cm, normally-incident plane wave
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AIR DRY SAND BOSNIAN SOIL

2D Scattering from Circular Cylinder in 
Different Soils at 3 GHz
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Mine scattered field: rough surface

960 MHz
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1920 MHz

Transverse Position (cm)

D
ep

th
 (c

m
)

Mine scattered field: smooth surface

-20 -10 0 10 20

0

10

20

30

-0.1

-0.05

0

0.05

0.1

Transverse Position (cm)

D
ep

th
 (c

m
)

Scattered field: rough surface with mine

-20 -10 0 10 20

0

10

20

30

-0.1

-0.05

0

0.05

0.1

Transverse Position (cm)

D
ep

th
 (c

m
)

Scattered field: rough surface only

-20 -10 0 10 20

0

10

20

30

-0.1

-0.05

0

0.05

0.1

Transverse Position (cm)

D
ep

th
 (c

m
)

Mine scattered field: rough surface

-20 -10 0 10 20

0

10

20

30

-0.1

-0.05

0

0.05

0.1

A
m

plitude R
elative to Incident

A
m

plitude R
elative to Incident

A
m

plitude R
elative to Incident

A
m

plitude R
elative to Incident



3840 MHz
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3D Target Scattered E-Field, 
Real Part, 960 MHz



Cylindrical Scatterer Under Rough 
Surface:  Scattered Field Only

Relative Height 30

TNT in 25% moisture Bosnian soil at 960 MHz



Conclusions

• FDFD is effective in efficiently analyzing 
subsurface scattering of objects buried 
under rough surfaces

• Plane wave FDFD is validated by FDTD and 
semi-analytic methods

• Subsurface scattering effects are often non-
intuitive 
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Abstract 
The detection of landmines and buried objects requires methods that can cover large areas rapidly while providing the required 
sensitivity to detect the optical and spectroscopic contrasts in soil properties that can reveal their presence. These conditions 
on contrast and coverage can be met by capturing images of the soil at wavelengths which are sensitive to the properties 
modified by the presence of buried objects. In this work we investigate both imaging and scanning methods which may have 
some utility for the detection problem. In the imaging approach, we capture hyperspectral reflection images using an acousto
optic tunable filter (AOTF) and fluorescence images using a long-pass filter. For the scanning method, we acquire data point
by-point over a two-dimensional grid with a single emitter/detector pair. The results illustrate the potential of these two 
approaches for detection of landmines and buried objects. 

I. Introduction 

Indirect methods of detecting buried objects involve looking for differences between undisturbed soil and soil directly above a 
buried object. The detection of landmines and buried objects requires methods that can cover large areas rapidly while 
providing the sensitivity to the contrasts in soil properties that can reveal the presence of foreign objects. The conditions on 
coverage can be met by acquiring images of large areas or rapidly scanning over the ground. The contrast is provided by 
acquiring the data at specific wavelengths or over continuous spectral bands which are particularly sensitive to the properties 
affected by the presence of buried objects. In this work we look at both imaging and point-by-point (scanning) methods which 
can be adapted for use in the detection problem. The images were acquired by a charge-coupled device (CCD). Two types of 
images were captured: (1) narrowband reflection images using an acousto-optic tunable filter (AOTF) and (2) fluorescence 
images using a long-pass filter. The scanning method employed a near-infrared (NIR) emitter/detector pair where data were 
captured point-by-point over a two-dimensional grid. 

II. Imaging-Based Methods for Object Detection 

lla. Reflection Imaging with an Acousto-Optic Tunable Filter 

By taking two-dimensional images of a target zone, a large area can be spectrally mapped quickly given that the contrast 
between the background soil and burial sites are sufficiently strong to allow rapid detection. One method of increasing contrast 

I 
is to image at/over wavelengths \vhere the differences in reflection or fluorescence properties are maximized. These types of 
images can be captured rapidly by using an acousto-optic tunable filter (AOTF) for wavelength discrimination. The AOTF is 

Part of the SPIE Conference on Environmental Monitoring and Remediation Technologies 
Boston. Massachusetts • November 1998 
SPIE Vol. 3534 • 0277-786X/99/$10.00 
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a narrowband optical filter with a electronically-selectable passband and a two-dimensional aperture. It can quickly jump 

between remote wavelengths or be rapidly scanned across some continuous spectral range. Band-limited (i.e., a spectral range 

wider than the resolution width of the filter) imaging can be performed by scanning the AOTF across a specific range of 

Te02 AOTF 

wavelengths while exposing the image-capturing elements 

(e.g., film or charge-coupled device array (CCD)). Our 

laboratory has previously reported on the use of AOTF/CCD 

based systems for hyperspectral imaging[l-3]. 

Figure 1: AOTF mode of operation. When a 
ultrasonic wave propagates in the crystal, a specific 
wavelength component of the incident light is diffracted 
into the two first-order beams. The wavelength in the 
diffracted beams is tuned by changing the frequency of the 
ultrasound propagating in the crystal. 

The AOTF operates by propagating ultrasonic waves through 

an anisotropic crystal. The strains induced by the ultrasound act 

to spatially modulate the indices of refraction of the crystal. 

The device is essentially a three-dimensional grating whose 

spacing can be tuned by changing the wavelength of the 

ultrasound in the crystal. Since the AOTF has no moving parts 

and can be rapidly moved to the desired wavelength, it is ideal 

for use in portable instrumentation where spectral selectivity 

and timely feedback are required. Figure 1 shows the how the 
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light is discriminated by the Te02 AOTF used here. 

In this work our imaging system was limited to wavelengths 

shorter than 700 nm. Thus to demonstrate the capabilities of 

an AOTF-based system to make wavelength-resolved images, 

we have examined a landmine casing both above and partially 

buried in sand (see Figure 2) illuminated by an incandescent 

lamp and imaged at wavelengths from 525 to 700 nm. A 

white-light image of the casing is shown in Figure 3. The 

imaging system is diagrammed in Figure 4 and employs a 

Te~ AOTF (Brimrose, Inc. tunable from 450 to 700 nm), a 

thermoelectrically cooled CCD (Santa Barbara Instruments, 

Model ST-6) and a camera lens with adjustable aperture and 

focus. At each wavelength, in addition to the landmine images, 

Mine casing at surface 

~······· ~casing -+sand 
Mine casing partially buried 

-r-l'·J --<,~~'> ~·r -- >~ '1 ,<',) 

... 

Figure 2 Orientation of the landmine casing for the two 
sets of images taken with the AOTF. 

an image of a white card was also recorded along with the landmine casing for use in data normalization. The normalization 

process is diagrammed in Figure 5. 

The normalized images for the exposed casing are displayed in Figure 6. The casing has five indentations on its surface (four 
( 

around the rim and one arrow-shaped) which were filled with sand in the wavelength-resolved images. The best images in 



3" 
Figure 3 Reflection image of the Jandmine casing 
in white light. 

~•ceo 
~ • camera lens 

[).... path of narrowband 
~ image (6° tilt) 

AOTF -.o 
collection ~ . 

lens ~ light source 

object~/ 

Figure 4 The wavelength-resolved 
imaging system built around the AOTF. 

terms of clarity and contrast between the sand and casing are the three 

images taken at 600 nm, 625 nm, and 650 nm respectively. The 

images of the partially buried casing, as displayed in Figure 8 

(Figure 7 gives the orientation of the casing as seen in Figure 8), showed similar results. For these, the 625-nm and 650-nm 

images display the best contrast. The resulting contrasts in these reflected-light pictures are of course related to the respective 

colors of the casing and sand. The casing is mostly green and as one moves to longer wavelengths (starting from 525 nm) the 

casing reflects Jess light while the background sand reflects more evenly across the spectrum. Thus the contrast between the 

two increases as one moves from green wavelengths to the red end of the spectrum. Future work will involve investigating 

local reflection properties of the soil at NIR wavelengths. By performing narrowband or wavelength-resolved imaging, the 

contrast in soil properties can be maximized. 

I 

I 

! 
! . ·Flat Field Image of 

Casing at·~· 
Normalized 

1111age 
'. .... . 

~m~geatA_ 

Figure S Normalization process for the images. The image of a white background at the wavelength of 
interest is divided by the image of the casing at the same wavelength. This processing was used to produce 
the images shown in Figures 6, 7, and 8. 
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525 nm 550 nm 575 nm 

600nm 650 nm 

700nm 

Figure 6 Normalized images of the landmine casing at seven wavelengths. The contrast between the 
sand and casing is greatest in the 600, 625 and 650 nm images. 

lib. Fluorescence Imaging 

In addition to reflected light, we also captured images of the fluorescence emission from the partially-buried object. In this 

mode, the AOTF was replaced by a 525-nm long pass filter, the focusing lens/camera were axially aligned with the collection 

lens and the object was illuminated by the 488-nm line of an Argon laser. The captured image is shown in Figure 9. The high 

contrast between the casing and sand is readily apparent. If a condition of the soil above a buried mine can be detected via 

fluorescence, this method could be useful in low-light situations where the fluorescence can be measurably detected over 

ambient reflected light. 
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Region of casing 
pictured at left 

Figure 7 The right panel shows the region of the casing displayed in the 
partially-buried object images. The left panel is an image of the partially
buried casing at 625 nm. The ovals identify where the casing breaks 
through the surface 

525 nm 550nm 575 nm 

625nm 650 nm 

!<'igu re 8 Normalized reflection images of the partially-buried landmine casing at seven wavelengths. 

The degree of contrast between the sand and casing is greatest in the 625 and 650 nm images. 
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Exposed portion of casing 

Figure 9 Auorescence image of the 
landmine casing. The sample area was illuminated with 

488 nm line of an Argon laser. A 520 nm long pass filter 
was used to remove the 

III. Point-by-Point Scanning in the NIR 

In contrast to the direct imaging methods, we also performed a 

point-by-point reflection-mode scan in a 2-D grid pattern at 

NIR wavelengths over the surface of sand with wet and dry 

areas. The idea behind this experiment is that the soil above 

the buried object may contain less moisture - the flow of 

moisture being drawn up to the surface (due concentration 

gradients stemming from surface evaporation) may be affected 

by the presence of the object. A casing for a landmine was 

buried under 5 mm of material in a tray that measured 

30x16x8 mm (LxWxD). In order to simulate the dry and wet 

areas found in the field, a piece of plastic wrap was used to 

separate the dry material from the wet. Using an infra-red 

emitter/detector matched pair operating at 915 nm, a light

emitting diode (LED) and a photodetector were mounted side-by-side on perforated board and soldered in place. The orientation 

was chosen to maximize the detection of reflected IR from the infrared LED. The photodetector has a sensitive area of about 1 

mm 2 while the LED has a collimating lens mounted in place and a radiant power of 0.5 m W. The detector and experiment are 

depicted in Figure 10. 

The photodetector was used in the passive mode and voltages were measured with a digital multi-meter. The device was 

Figure 10 Diagram of the sensor and the experimental 
used for the IR scan. 
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positioned using an optical rail system marked in mm. The 

LED and photodetector were held about 30 mm above the 

surface of the soil and a reading was taken, in a darkened 



room, every 20 mm in the x andy direction. The surface scanned in this procedure covers a 12x20 em area. The resulting 

image is illustrated in Figure 11. 

The experiment provided an image of medium resolution where the wet sand reflected enough radiant energy to produce a 

signal on the order of 27- 40 mY and the dry sand that of 50- 60 mY. The variation of the signal at any given point was 

about one millivolt. The device was able to differentiate between wet and dry material and produce an image that roughly 

corresponds with that of the buried landmine. Further work will focus on improving the sensor and more accurately 

simulating field conditions in the laboratory. 

Conclusion 

In this paper, we have reported on some preliminary work evaluating methods that could be used in the detection of buried 

objects. We examined imaging techniques using both reflected and fluorescent light as well as point-by-point scanning with a 

single infrared emitter-detector pair. Each of the methods shows some promise and will be evaluated under more stringent 

conditions in the future. 
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Introduction 1111iBackground 
The analysis of lo'X,,grazing angle (LOA) electromagnetic scattering from two dimensional 

random rough surfaces iS"' a challenging research problem. In spite of several analytical and 
numerical techniques that have been developed during the last few years, the problem of LOA 
scattering from practical random rough surfaces remains unsolved. The memory and CPU 
requirements of classical computational techniques prohibit the analysis of the LOA scattering 
phenomena, and the accuracy provided by many of these techniques simply is not adequate to solve 
this problem. 

The objective of this work is to analyze LOA electromagnetic scattering for practical 
random rough surfaces using an enhanced SDFMM. This technique is a hybridization of the 
Multilevel Fast Multipole Algorithm (MLFMA) and the Steepest Descent Path (SOP) method. It 
has been successfully used to analyze electromagnetic scatteriilg from two dimensional quasi planar 
surfaces. Recently, the SDFMM has been enhanced by parameter selection ruler that provides a 
priori error estimates [1). The SDFMM dramatically accelerates the iterative solution of the method 
of moments equations for a large class of structures. When using an iterative solver, both the 
memory and the computational cost for the SDFMM are of O{N) while they are of O(N2) for the 
conventional MOM technique. 

For the LOA scattering problem, accuracy is an important factor in any numerical technique 
because of the shadowing effects that occur at these angles. In the SDFMM, there are tradeoffs 
between accuracy and both the CPU time and the required memory that can be fully controlled by 
the proper choice of SDFMM parameters. This makes the SDFMM a prime candidate for solving 
the LOA scattering problem. 

Results 1111d Discussion 
A random rough surface is modeled as a finite object chosen large enough such that a 

practical LOA antenna beam does not excite the surface edges. An example considered in this paper 
is a surface of llSA. x .. 28A. whl.ch results in a number of MOM current unknowns equal to 617,096 
(using eight unknowns per wavelength). A Gaussian beam (with half beam width equal to 4A.) 
excites the surface at an angle of so• from the normal direction. The surface is assumed to be perfect 
conductor with Gaussian statistics. The roughness parameters are 05A. for the rms height and l.OA. 
for the correlation length. Preliminary results show that the SDFMM is efficient for analyzing LOA 
scattering problem. 

Reference 
[1] M. El-Shenawee, V. Jandhyala, E. Michielssen, and W. C. Chew, Proceedings of the IEEE 
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multiple frequencies (It i11 swtpl· (r¢(J1.1CilC}' mode bctwe~:n 90 
I It ;tt"l\,) <lbOut 24 kHz.. The GEM·2 OJ>emli•lS prillCiples ;)n(i 
::asc. histories arc desc.-iW(I in Woo t l ;::1. (1996}. 

Ot1~;: ot'thc major mo1ivcs fo r GEM-J w:t.<) 10 increase 
lmcral and St>alial fi!.SOI~1 1 io-n. A bi$t<1tic.: sensor. b~x·ause of 
tht long p<lth b<tw<.~en the source attd receiver, is inhcrcmly 
poor in spatial r<:sohuion p.'lnicul:.'lrl)' fo: sm;::ll. shzdluw lar
£;C1$. Figur-e I sltowsGEM-3 in operation asof August, 1996. 
f:or this pro<olypc .. the electronic co~tsole incloding 1.he dill<l 
lozgcr is ve•y sinlilil.r to that ufGL::M-2. Fig.ure 2 shows the 
d ;:ctronic.block dingram ofGEM·3. 

The GEM·3 sensor <.:Ontains a pair of oone<:nlric trans
minercoilsand a small receiver coil at the ceme•-. Wt call thjs 
concentl'iC geometry a "mc:mo:s.l~lt iC:·• c.onli.guralion because 
a ll coils :ne cs..~n l i all~· co-loc:ucd. The GEM·3 is :;1 ttaasmi~4 

lt'r4 bm:kcd se-nsor. as will be discussed in a later section. All 
coils ane ;nolde.d into- a si ;~le. lig.ht. cirtular d isk in a tixed 
zcometr;', ·rendering 1l ve~y I)Onable p(IC~?.ge . the disk. \!IO•l& 

wi~h a handle boom. is m;~dt of a Kt \' l<tr-sldnn::d foam brnttd. 
Attached to the CJ>hcr end of 1hc boom is a removable etec· 
UOiliC COI"tS<>It (tig.l). 

For a frequency-domain operntion, lhc0EM·3 promp1s 
for <1 stt of desired tr;msmitt~r frtqu~~ncies. Uuih-in softwar~. 

convcrt<o these frequencies imo a dif>ital "bi1·s•ream,>' •,vhich 
is used 10 eonstn.t<:t Lhe desir-ed 1ransmittcr wavefonn for a 
panicular suro.·cy. This bi!-srrcam rc~wese.n1s ti le inSIJ\ICiiOI) 
Olt J10w 10 contrOl ta set of digital switches (called H-b;idge) 
conne-cted ac-ross the tr~lnsmincr coil, and sencrn1cs a <:om· 
plex w;.veforn\ dtilt contain:;; all fre<1 uencies sp¢(;ified by the 
op::rator. This. me; hod of cons1n1cting rm nrbirrary wavefQtm 
fro:n.a <ligim1 bit·S'tre.'llu is knQwn <'is the pulse-width modula4 

tion (P\\,.M) <ec.hnique. 
The l>il.St perioc.l M llie biHtre<"un ibr Gi.iM.:> is seltu 1/ 

301h of a second for areas h~\' ins a 60-H:r. power supply, as 
does the U.S. The periOO is I/2S~h of a~conc.l <it 50-Hz il.re<t$, 
as in Europe and Japan. The GEM-3 H4 bridge switc-h::s a.la 
l'ate of 96 kHz. and, ;hetcfote:, tlte bi•·smarn COnt:;I~)S 3.200 
steps witMn the 1/30-s~"l(:ond b~se period . .-'\ny integral num
ber of the l>asc period may 1::.: us.cd for a consect.!livc tftl rlSl\liS· 
sion in order to enhance the signill-tu-noise rmio (SNR). For 
del!lilcd exi)Ja,t:uiMofhow ~he GEM ·2 consnttClS a ti'Ml.Sn\il· 
t<•r wa\'efonn ;mdactual examples. rerer to Won e1 al. (19?6). 

Ui~t:ttic :tnd Mono~t:llic Sensors 

rne. t<:rms "bisU11ic .. and .. monos::atk." may lx: n~:.w to 
some ne\l.ders: hetlCe, ~ brief djsc~•ss ion is ai>I)I'OI)I'iatc. As~ 
simple analogy, an underground miner who uses a h1:adlamp 
operates a monOSt<\tic :w;t.sor because his tig.ht i<>ur<:e and 
eyes Me essentially co·loea!¢d. A. <:Mlel"l wi1h a b1.1ih4 in fl:>sh 
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AIISTltACT 

An objce.l. made p.1r1ly or wholly or metals. has a distinct combinmio:1 of elccuic~LI <:on.<.fuctivity. 
m:~s,ne1 ic t~•wme:)bili•y. :• ;~<.1 goomelfiC<ll sh<l~X! ;1.11(1 s;,.t. Wh¢(l llte ol>ject is expo..~d to :·! l<>w·fte<J.'.ICJ~<::)' 

c.k"l:Homagnctk licld. i l produce:~: n so.::ondary magnetic field. By measuring the bro..<tdb.:md s~ctrum 
<)i 11\e sec<:>nd3J)' field. we <lbt;;.in a dislin<:t spe<:tr:d si!_!.l);).hJ•X: dt<"•t lll~(y tmi(ltltl y illemify the <>bje<;t. 
B;,scd on tiK~ r~·sponsc spectrum. we. auc.mpt to ' 'lingcrprim .. the objcC"L This is the bask concept of 
Cll:c:,YJmtJS,nctlc frld:rc.•ion Spcctros<W'Y (EM IS}. 

EM IS tc-.::.hnology c:m be p:.niculad y uscf1tl for dclccting buried l:utdmincs nnd uncxplod,~d or.:l· 
•l\u:-¢¢, By fllllr <:h<lrtlCteri:dng ~nlc.l il.l~utif)'ing (~n object without txCa\·(ttiOn, we sJtOl11ll b..: :·101~ to 
reduce ):!;;nilicamty the number of fal!:c t:tr;;eL'I. Ei\HS is :.pplicable to mt~n)' other lltoblcms \\'here 
t:·11get i<.k:nlifi.ct•tioo and recogrtition {wit)iQlll intn.ISi\·t ~;:;.rch) ··ue iri1 JX)I1~nt . for instanC<:-. (~n :·ld· 
\'anced EM IS device :u .on .nirpon scc-urily ;;ate may be able to identify :1 p:.tticlllnr wco;pon .nccor.:ling to 
its 10r1ker :t11d type. Other poteutial applk.iltions n1~\}' indudt inllustrial i:t•rting prQ(:..:Si:cs anll robotics:. 

When :·ur eJe<:tric;:,Uy l.."OI)(IliCti\'e rutd/01.' tot~g,aetil-.ally 
p~·mlC:IbiC Obj~'\:1 is pi :teed in tllinlC· V:ll')'ing e JC.:-tl'Onl:!£!lCtic 
field. :·~ S;>:itt.m of induced C11rri.:nt flows thn:wg,h th..: object. 
By observing the !:m:tll sec-ondary magn::--tic fid d cm:mming 
from th¢ i!"1<.l tt<:~ll Cl•rt-e'''· w¢ auerllpt to detecttbeobj.x:t: thjs. 
is the foundation of the timc~pro\'Cil clectmmt~g.netic indue· 
tiOtl (.GMI) m..:th(XI, CMl physics i..s.t.:ompl..:td y describ::c.l by 
Max weir s four e<ptt~t ion.<~. nldlO\tgh anal)'tical solu t ion~ ~
)'(>Jtd the.simpk:>t geometry are r<u~ due to ma.th..:matical corn· 
pk:-::ity. 

Oul.' main iutCft~t iulbis ··•rtk le ii: the fr«Juencr dcpcn· 
dcnce of the EI\H rc~ponsc. By mec:.sutins an object's EMI 
resp<>ns..: in,., br(>..;"""d fn:tlutncy b;md. we ~llle-mptto d(.:l(l;;t ···ud 
c-har-a.:-tcri;:c the ol~ic.:< · ~:;come-try :.nd m:!tcri:.l composition. 
We n:unt this p(>lcntial ntw technology exploiting the Sp::c· 
1r~l E~11 rC.'-I)I)MC F:!e~~.'l'f)maj!tll!!h'; h :dfiCti()ll S;n:~·rrOS(;l)Jf}' 
f t:.•4tSJ, 

Fot low-frequency geophysical apl)H~·:~Iion~, the clis
pkll'.e-tuent <.' U.rrt.'-41lresultiug fro111 tbe diele.~.·trk: property may 
I~ iz:norcd up to a mcg.~hcm: and high,~r. A11.ero f1\~quen<:~\ 
we ob.st•r\·t~ the iJtdue<d mag_ncli:>m from a pem1cable (i.e .. 
m~snct ic) objc.c t ~ •his is the foundation <>f 1hc m~si\Ciic 
m<.•thod. In this :sen:;e. thc magnetic method is a .subset of the 
EM I OlCthc:d :II 1.C(()·fi\.'<}UCilCY with theca.-th. s lll:!SilCliC field 
a~ th;:. indudng :SOUIX.'C. 

From l\um¢•'<>us s•.li'Ve)'S th;)t,. we h:lV¢ <::on(lul':te<l t1si.n,g 
our multifre<I U'I:.ncy sensors (GE~1-2 and GEM-3: Won Cl al.. 
1996 :wd 1997), we h:'IVl~ aoc1umJb ted s:ig.nific:M•J evide11¢e 
lhm a me~allk object und~~rgoe.s cominuous (.h:utg~ in re
sponse :~s the t•t •nsmith:!•' fre.we*~Y ch:~••tes· .For in&~:J•.'ce.. 
we ha,·ecommonly twtked thm the obscr,·~'\J anomalie.s hzwc 

OI)P<>Site. polarities :H ce•·t:1in frequencies. <.li:J)~t~ding on 
whether the t:.r;;ct i ~ fcn ous-or nonfermus. It :.ppcars that the 
phi'I.S¢ also llcpt nlls ou thc laJ1!..:t's: geometl'iC:d i;h;:tpi.:. Tbcst 
obscr\'ations suggc..o;t !<trongly tha11h-c EM anomaly mc:tSurcd 
it• a bro:.:.<.J tx·md m<•Y offer Ute :·tbili ty tu bulh <Jctect and i<.1C•l· 
tify a t ~rgct. 

O<ii:-.x1 l ltl cle.meut<\l'y EM tbe(•rr. <m object I IlllS! ex
hibit different re~ponscs at dil'fercm freqli'Cncies. Th;: reason 
why this f~1c.t ha.s lltlt been e.x.plt1itOO is due to dtt l<'ld;. (t f pr•·•c· 
t ic:.l b•\Xldb:.nd EMI ir.s.uumcms <o smdy 1hc pheno-menon. 
Most commercial 6.~11 sensors (inl~luding t.:ommon metal de· 
tcct()r.>) <>ptmtc at single frequency or. r:~rcly. m a few dis· 
crete freti\I<.'Udl<;.:;. Howc\''l:.f. with lite l'el'<-ttl dc\'elopmcut of 
the GF.M·scrics scMors, it is now !W!'lctieal to cxploil broad· 
band CMl $JX:·ctra in order to l.lcttCl ;utd identify U);:, t~r<~cts . 

Because of this spec-uallimilmion. therc h:~s been mor~· 
int<r<:.sl in the ·'goomeuical w undin.g" method (an expanding 
l f:l. OSilli tt•~I'·I\~Cd\'CI':'!rr:I Y:'!t Sin.g:Je fl\.'<jUCilCY) th:!1l i1l lhC "ftc~ 
qucnc.r sounding" nl'l:d tod (a fixed tr<•u.sntitter·«'cdvt•r ge· 
O•net.-y With \':'!IYi•lS fi\."(Jucneies). W.:: USC such l)()l)tldiog 
methods to Oblain <.•nough data w ~olve t•or unkJtO'•VIl J~llant· 
tt.~•'S of :1 (>fCC<>•lceived ma1hcmati.::al model. l1l comr~s1. 
B1.1$ looks for a spcaroscopic idcmit)' by mmching an ob· 
serve(! EMI Sl)e<:ttl.llll 10 :1 spcctmm of \:Mw•l obje<:ts. 

On llte r<.·s..:an;h level. ltowe \'Cr. there ha\'C b<.•..:n many 
c.>:pcfime111:1l "''Otks th:ll stu.:l ied bro>."lilb.'lnd E~·lf phtnomcn:.. 
To mcmion a few. Ryu et at. (l972) mcn.$urcd ;u 14 di.s<:rt.tc 
(te.queJ)Cies bet wee'' 200 Ht :1.11<.! lO k} :lt ·,\'ith :.'1 hori-.:o:u al 
loop and measured tilt angtcand e.Uiptid !y toe.xplorc ground· 
w:~te•· i11 C:llifot'Jii.:l~ \V:)•'d ~~ :l). ( 1974) tested ;l simil:'. t 14· 
fn.•qucn::.y~)'.$!Cm betwccn 10.5 Hz ;md S6kH7- Won ( t9S0) 
showed bl'\>."l<l t>:•t•<.lth¢oretic:.J models :·1.1td e:<~rime1H:'ll .te• 
~~~h~ using a saltwntcr tan\: :md graphite t:1rgets in the labora· 



99 

M ulti.fn.'quent.•y Elcctromaguetic.Signature of the Cloud Chamber, Ne\·ada Tt.llt Site 

Dean Kciswcncr:!.nd U. Won 
Ceophex. Ltd. 

Rnlcisb. Nonh Carolina 

ABSTRACT 

Muhirrc<Jucncy ·::lcc.Lro-magnclic (EM) d:un ac.quircd over 1hc Cloud Ch:.!mber (CC). Nev:"tda Test 
Site (NTS). cle\!l'ly cleliJJe<tte the );::tcr;~ l bounds ol' the f<~cility and deJect the line-of-sight pipe - a OA-m 
di;·l;n('ter stablcss-st;.ocl piJ)C b~!rid nine mclcrs below £/~!llCI Icvc l . The J>li (I)<>Se of dl¢ £_r¢tltld ·b.'IS¢d 
cl«::romasrw:ic SI)I'\'C)'S w:ts. {() dtn~<)n:;tr<·• tc thai lit::. CC could be det<:ct;.<:d using the GE~·l-2 . and 
~IXJt•i re mt•lli -fr~xwcnc)' da1<1 for in\'crsion procc-5Sing nnd alsorilhm dc"clopmc•lL We t)resen! hel'ein 
GEM-2 dstn acquired at <he CC ar•d <Jjsct•SS lftt impUrt<mcc of widcb;:.nd EM dat<L 

lotrnduction 

G~ophex ac<lllin.'d broodbn.'ldel«<rQm:tg•tcticd::tt~ ove•· 
the Cloud Chambc••(CC) f;.cil ity. Nev;~d<l 'l'"est Si:c(NTS). dur· 
ing, t99S ilJtd 19')6 to suppo11 a Dcpar<mcm ofE•!CtSY (POE) 
funded, mulli-ycal', muhi·:~ge.ncy restarth progr.1m to goo· 
pltysic.dly chardcterizc u11<krg.round structures. This msnu· 
scrip! prcsems comQ~lr<ed (U;:ipS of multifr<:que.ncy ~M datil 
3•'1<1 describ<!.s the S<nsor and l!cquisition methods. Witten c< 
al. ( 1997) presents d•Wtils of lll\•hif~quency-b<~~sed invi.'r.sion 
th¢Ory. and imaging results of tl!e.sc da1a. 

Cloud Chamber 
Tile CC is located io north central Yucc~1 ~lats, an allu· 

"i;.:l basin on l11c NTS that llll'> be<:n used rcpc::trcdly for un· 
derground nuclcanests (Omceofl!xtenml An'airs. 1988). Htc 
shallow geologic strat;:, arc c.omposed oi'Tcr.ia•)' tutd Quatcr
nal)' volcanic and elsstic f0¢ks(Ooekery et al .. 1985). 

l'he CC. built in 1968 as pa.n of a diagnes<ics C:<()Crimcn
tal program, was used to rne3Sl•re ionized particles fro;n th i.' 
7.4-k.iloton (KT) HUP~·10BILf..cvcm (OI'fice-ofEx ternal Af· 
l3ir$, 1988). The quonset hut CC structure is approximately 42 
min length. 10m \\'ide at its ba.">c, :md 5 m hi ghat i<s maximum. 
Semicircular steeltnemt>erssup~<>rt;). woO<.! en fr.;.meas shown 
io fig. I. 'fhc re info~OO·concrctc floor of the CC is 9 m below 
ground surfsce. 

Mu ltifrcgucncv Elccn·omagnctic A p()toac h 
The el¢ctJomag,netic induction method c~m be usOO to 

target dille rem depths of interest by chnngi•)S cirherthe sp."'c· 
i1lg f.>e(wt~n tr<tnSJoiner<md rC~Ceiver coils. or the frequ~o,ncyof 
the-tr.msmincd Held ([\lira 3•ld Mam'¢k, 1980: Won. 1980}. 'Ot<: 
fi1:>t metitod is known as _geometrical sounding and involves 
recording data lLc;ins sc"ernl tl'a•l &miner·~eceiver coil :;~tC• 
i•.lg.s ¢entered ow:r fixed location; the de-pth of cxploracion 
increases ·.vi<h the coil wadil_g. The 1wo coils sysNms. at· 
tho•.lg:h typit<tlly conn::.cted by an umbilical cord, are physi· 
cally scp.1m:c and require tw~ol' mol'e field opermors. 

Th~ St.CO<ld melhod is known ~1S freql•MCy SOlmdUQ!: 
and involves changing the 1r:msmi<tcr frcql!ency, but keeping 
the l•'3.1 1Sillitter-~oeiver separmion con slant (fig. 2). '11te d<:plh 
of cxp!ormion (also caned the depth of penctmlion or skin 
dep•h) is mail)ly deteJnlirted by tb<: source f~quency ami 
ground c.onduc.Jivily ( Won, 1980). In simple tcmls. low iic
qltcncy s igti:~ls lt::tvel fu1.'tl1er !h\ln l1igh (cequencies 1h.rougb 
conductive media and. !llus .• dc<cct deep structures. Con
versely, hi£.h ffe-quencies detect sh<d low fezstures beuet •.ban 
tow frequencies. Broadband frequency soundin_g is therefore 
2na!ogous to depth SOlllldinr. ::tnd can be used 10 ere:ue a 
pseudo 3-D subsud~1oc: image (Won. 1983) or for 3-Dcondu-c.
tiYi!yi•wersion processing (UeetaL 1987: Wiuen et ;.L t 997). 

Freque-ncy so~mding possesses inhc-rcnl advantages 
OYet geomwi¢ sounding for depth imagit•t bec<1l•Se ir is lo· 
gi:xically and opcralionally simple (due ::o a one-person op
CI"aliO•l) art(.! iflli)I'OVeS Sl)31ial l'tSOhlliOfl (by avef:l:J.tillf.t VCI'Ii· 
calty instead oflat<:.rally: iig. 2). Thoorelical it!ld prac1ical dis
C•lSSiO:'lS on these mer hods may ()e io•.Jnd iil GratH snd Wesr 
( 196S). Keller and Frisc.hknockt(I966).<U1d K;:.ufinan and Kclk-. 
(19&3). 

GF.M-2Se.nsoralld ])at:\ Acqui.~ ii ion Method~ 

We acquired broadband elccrromagnctie data using the 
Gf::M-Z. (fig. 3: Won o.::t al .. 1996) . amultifreqvency Uldt•Ction 
sensor developed at Gcophcx. The GEM-2 conlnins a ;:ran.s· 
mirter, rt¢eiver. a.nd bvekil)g ¢Oil i.n a siJ)gle ligh.tweig,hr, por· 
table. <1nd c.ompact p.1ckagc. The sigrwl-proccssing electron
ics, analog circllit•y(fOI'Sig•):)l condiliO•tins). a;'ld power sup· 
ply arc housed in <1 removable console. 

ihe primary field g<:n<:r<"tttd by theGEM·2~osor is C<>ll· 
trolled via a digitally conmuctcd w·avcform. The <ra.'l.smincd 
:;it_w;;l C\Ul vttry (ron• <• COmpte~ waveform OOnl~"l.in i•)& \!Jl}' 111!111• 

bcr of frequencies (use-r-defined) to a simple square wave. 
Althoutb lltt desig(l of the GEM·2 :~llows i••o ope.-are in ll•e 
either the time-or frequency-domain, only fn.o_qucncy domain 
dttt;). w~rt ~cordeddl~ting dl iSproj~C:I . Thema~i!tl l)ln C't! l'ren! 
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ASSJ'RA(,"f 

~~ ~ c::~n.ttK ( F.M) lndhods are JkAi.ltp$ Lnt. &~Mol coo"auuot ~ pupu~ ll•:v 

'"') Nell SU!"V'eYmtmods fOt dccocdo~ bwied W311t:aadr ob)c:cu, wttkh is due ro their non:.irnn.a.i.-mm. 

liat't field bgi.stia., high wrv.y .sptcd. and tbe q-e.1Ji:y tl(infonn~•ion. One shou!d always con.udn ch<: 

1wo methods as the ptecunor 10 :any geophysical survey. Often. the daua rts~tlti"& fmM tho rwo rne.thods 

art 5u0iclent forcharacttrilil'l& buried objetts. 
(n this p~)>Cf. we pctJent m.u,;netic t~nd EM dala coUc-c:tod .u four stltS: (l} Cloud Cluunber ~t tJ,~ 

Nevada Test Site. (2) Ari11COtti~ Metro T'unncls in Washin&e6n, D.C., {3) Cold Test Pit.,, Idaho National 

En&illt~fi,,g. Lal>ora.loty. and (4) UneKploded ordl'ltii'ICC sito 11 Jctl'ccson rroving. Ground. lndiMJD. 1'ht 

FirM m•o sites may be oontidered t)'pkalondcr~ound facilities. The la.'>t 1wo sites, hu\''t~·tr. contain 
W :tll buried Objet:l$ ($tMI£C Wlks. ordnaoc::~. tiC.) S.ptelflc:all)' prepared to 1tSC \'ltriOUJ geophysi<:al 

lnetbods rcr <bc:aion lind. ~bly. di$crirniutioft. 
Wt fmd through thtsc Md n~s <Otr <OIIIIIpvisoM INI. b«»dbaod EM dau ate: l&lpCrior to 

~lie dilta in ttrmS of l~t lmiO'IIM aad the q1.1odk )' o( informatioA. The mooopotar EM anomaly is 

invatiabb' easi.n to in1erpn:c, aMI thv$ can 10C3tt a butitd l»t;ct mort accuratelyth3n rho dlpol~ tUg• 

nctkanomaly. In addition, tht EM method :senses b01h t lcctriull)' conduc:1ive and mllgnelitally pcrmc> 

able: largtt$. ln oonlra.n, tho muam:tit mtthod respl)ft.d!l only co pecm.t11blt. or ftrmus.. mctzlb. ln that 

tense. the m,.gnetle rncchod $tlould be conside1ed a subiet ore he F.M method. or ill special "'ptstlvc' ' EM 

entthod at 7.£1'0 frequency, 

rntroduction site wichi11 a ftw min~t~. 
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... "'*' ~ vwwpoirus orht~n·inlru:inenr$~ ftdc:l fOJ:i$· 
a..~wld"""ey""'ed.lt"'mosn<~i<aodt~cti<(EM) 
m~thocb stand far ah<ad of othet :f:IOI'I\ytical iedlaiqu~ 
includin: annity. etec"ieal ~$i$tiviryJ !lels.mk: tc(racti.oo or 
~fl~C'fi<W', tl)d SJOund-probins rndar(GPR), 

8ase:d on lhesc advii.Dt~IU, OllC ~hl:l"-td ........ oll)'i COli· 

sicb" ecnd.cti..& rNgnede u d EM surveys as cbt prtt:orsot 

10 In) 1.-.1 g<ophys;..l -~ r,. """''"" boried ol> 
jta:1., indudln& u11dergroond fa.;ilitics. If 1t01hing else, they 

htmni•~C$1: Mlii&!Wticand F.M sensorsare oommun1y 
man•portAble. 'The methods do n~ rt(tube &rO"llnd contac1 
(e.g •• seismic and elt<:lricaJ resistivity)or demand a stabilized 
$\I.TVC)" plfllfOml (~.g .• gra\'lty). The GPR lnensilivt tO ground 
rooghncn, pr¥ti<:u1Mly 31 higl1 frequcl'lcitt 
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ABSTRACT 
 
We present dispersive soil finite difference time domain wave propagation simulations to study the effects of 
realistic multilayered soil moisture on modulated short pulse Ground Penetrating Radar mine detection 
exciations.  Our conclusions suggest the amount of water and application time -- as a function of soil 
hydraulic conductivity – that is necessary for modifying the ground to most effectively detect non-metallic 
anti-personnel mines.  
 
Keywords:  GPR, mine detection, dielectric target imaging. 
 
 
 

1 INTRODUCTION 
 
There is considerable interest in detecting buried dielectric mines by modifying the electromagnetic 
characteristics of soil.  It has been suggested that since wetting the ground increases its effective dielectric 
constant and therefore also increases the dielectric contrast relative to non-metallic mines, this modification 
may improve detectability.  
 
When water is applied to the ground, the soil becomes saturated on the surface, but remains relatively dry 
below the wetting front.  The wetting front descends with continual watering with time.  If insufficient water 
or time is used in the soil environment modification, there is a multi-layer effect to the electromagnetic 
scattering of incident radar pulses.  In particular, with a rough ground surface, a layered soil moisture 
content profile may make the target detection problem more difficult than for a uniform, dry soil volume. 
 
 
 

2  DISPERSIVE MEDIA FDTD 
 
The finite-difference time-domain (FDTD) method [1] is a straightforward means of modeling wide-band 
wave propagation in inhomogeneous media. For wave propagation in most real materials, the constituitive 
parameters are frequency dependent. This dispersion – which is just a multiplication in the frequency 
domain – become a convolution operation in the time domain. Dispersion can be modeled in the time 
domain in three main ways: 1) Discrete convolution of constitutive relation D (t) = ε(t)*E(t) for Debye and 
Lorentz models of complex permittivity [2]; 2). Discretization of a differential equation approximation 
relating D(t) to E(t) [3]; and 3) Direct discrete modeling using the Z-transform of either constituitive relation 
J(ω) = σ (ω)E(ω) or D(ω) = ε(ω) E(ω) [4,5]. 
 
For soil propagation problems, the third method, modeling conductivity, has been found to be most suitable.  
By expressing the soil conductivity as a ratio of polynomials in Z-domain, the conversion to discrete time 
domain is quite straightforward, since factors involving Z-1 correspond to sample time delays. We can 
approximate it using the single pole approximant[6]. 
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By setting  Z=exp(iω∆t), the real part of Eqn. (1) can be fit to experimentally measured soil conductivity 
values.  The imaginary part of Eqn. (1), divided by ωε0 added to an average dielectric constant parameter εAv 
is then fit to measured dielectric constant.  This model can be compared to the standard Debye model, which 
consists of sums of terms with single poles.  A two-term Debye model has been fit to Puerto Rican clay loam 
with 1.2 g/cc density for three typical moisture levels [3].  This soil has measured conductivity that varies by 
almost one order of magnitude across two decades of frequency 30 to 3840 MHz [7].  A comparison of the 
modeled dielectric constant and conductivity for the two different models is shown in Figure 1. 

 
Figure 1 Puerto Rican clay loam, density = 1.2g/cc 

 
Although the Debye model fit is better than that of the Z-transform model for the dielectric constant, the 
latter is a closer match for conductivity.  A more important performance metric than these electrical 
parameters is the complex wave number, k, which specifies wave velocity and decay rate.  The real and 
imaginary parts of k are shown in Figure 2.  Note that the agreement between the values corresponding to 
measured decay rate α and the Z-transform model for α is far superior to that of the Debye model.  This is 
particularly surprising since the former specifies only one pole, while the two-term Debye model has two 
poles, and thus requires more storage and computation. 
 

Table 1:  Puerto Rican clay loam, density = 1.2g/cc 
 

Moisture (%) 2.5 5 10 20 
b0 0.2401 0.6344 0.9162 1.1482 
b1 -0.4336 -1.1647 -1.6766 -2.0672 
b2 0.1937 0.5308 0.7611 0.9218 
a1 -0.88 -0.88 -0.88 -0.88 
εAv 2.18 4.39 8.74 11.84 
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While the measured soil data gives important information at particular moisture levels, it is necessary to 
interpolate model parameter values between measured levels to accurately represent realistic continuously 
varying wetting profiles.  Using the best fit values for b0, b1, b2, a1, and εAv  for the specified moisture 
levels – presented in Table 1 – a simple set of interpolating functions have been generated.  We interpolate 
using the function: iii qmpb += ln ,  i=0,1,2, with the goal to find values for pi and  qi [6].  

  
Figure 2 Puerto Rico clay loam, density = 1.2g/cc 

 
The interpolating functions are shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Continuous moisture variation parameter functions.   
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To model the effect of non-uniform watering of dry soil, we first determine the wetting profile.  Water 
movement in a vertical column of a medium is described by the advection-dispersion equation in the z-
direction, as [8]: 

                 (2) 
 
Where z is the depth of the water column,n (z) is the moisture content, D is the dispersion coefficient of 
water, K is the hydraulic conductivity of the soil (a measure of the rate of water to pass through).  By 
numerically solving Eqn. (2) we can plot the moisture profile as a function of depth and time.  
 
Figure 4 shows profiles for 0.1, 1, 2, 3, 4, and 5 minutes of watering for soil with saturation hydraulic 
conductivity of 0.2. From these profiles and the parameter functions derived above, the material 
characteristics of the wave simulation can be specified to arbitrary accuracy. 

 
Figure 4. Moisture profile for several watering duration times. 

 
 

3 SCATTERING SIMULATION  
 
Using the dispersive FDTD code along with the model for continuously varying moisture, we have 
simulated the two dimensional TE (single longitudinal magnetic field component into the plane of 
calculation) scattered field from non-metallic mine-like targets for three different cases:  1) constant 
moisture at 5% (by weight), typical of the residual background moisture in clay loam; 2) constant 20% 
moisture, representative of  clay loam after a long steady rain; and 3) a continually varying moisture profile 
from 20% down to 5% for the one minute profile as described above.  The geometry of the test cases is 
shown in Figure 5, with a two-dimensional 1GHz modulated gaussian point source 30 cm above the nominal 
ground surface (which can be chosen to be either planar or rough), and a 10 cm by 5 cm plastic mine-like 
target buried 10cm below the ground surface.  The entire computational grid is terminated with a soil-tuned 
Perfectly Matched Layer absorbing boundary condition [9]. 
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Figure 5 FDTD scattering geometry 

 
 
Figure 6 shows the total field with target, the incident  field with no target, and the scattered field due just to 
the target, for a flat ground surface with constant residual moisture at a time when the initial circular wave 
has propagated out past the lattice boundary.  The first image is representative of  the actual field available 
to be measured when the mine is present. Clearly, only the field above the ground can be measured, but the 
field distribution below the ground surface around the mine gives information about how the surrounding 
environment effects the target scattering.  The second image would in general not be available, since it 
represents the given environment after the mine has been removed.  The third image represents the field 
scattered solely by the mine-like target.  It is the job of the mine detection algorithm to recognize the 
features of the third image in the first image, by ignoring the fields scattered by the soil boundary of the 
second image.  For the 5% constant background soil moisture with planar boundary, picking out these 
characteristics is relatively easy. 
 
For uniformly wet soil, the dielectric contrast of the non-conducting, non-metallic mine target with the 
surrounding background is greater than for the previous dry soil case.  The target scattering is stronger, and, 
since the wave velocity is slower in wetter soil, the delay between ground surface scattering and target 
scattering is greater.  The target should thus be easier to detect.  Figure 7 shows this case with 20% constant 
moisture and a planar boundary.  It is apparent that the scattered amplitude in the third image is greater, and 
that it appears later compared to the ground scattered wave.  The longer delay makes it easier to separate the 
target scattered signal from the surface signal. 
 
A more realistic moisture model for a manually applied water scenario is considered in generating Figure 8.  
For this case, the previously developed continuously varying moisture model causes a stronger surface 
scattered signal, but weaker target scattered signal.  Also, the target delay is not a great as for the uniform 
wet soil.  In fact, this realistic wetting situation combines the worst aspects of the two previous constant 
cases:  the ground clutter is greatest, while the target signature is weakest. 
 
These three cases are repeated in Figures 9-11 for a rough ground surface.  With this configuration, the 
ground clutter confuses the target signal considerably.  For 5% moisture, Figure 9, the short delay between 
the target scattered wave and the ground scattered signal makes it more difficult to distinguish the two.  In 
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Figure 10, the stronger scattered wave from the ground, and the subsequent multiple scattering effects of 
local surface perturbations makes the target signal much harder to recognize.  For the realistic moisture 
profile, Figure 11, it is almost impossible to separate the target scattered field from the ground scattered field 
in the total field image at the top. 
 
 

4 CONCLUSIONS 
 
The effects of non-uniform wetting of soil on the scattered field of small buried non-metallic mine-like 
targets has been explored.  For smooth, flat ground surfaces, there are target detection advantages to both 
uniformly wet and dry soil backgrounds.  However, when water is added to dry soil in an attempt to enhance 
the dielectric contrast, if insufficient water is applied, the ability to detect target signals is degraded.  With 
rough ground surfaces, wetter, high dielectric contrast soil contribute more surface scattering clutter, which 
may overwhelm the larger target signal.  For continuously varying soil moisture on a rough surface, the 
target signal is much harder to recognize than for either uniformly moist soil background.  The main 
conclusion is that adding water will only enhance target detectability if the ground is saturated for several 
minutes. 
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Abstract—This paper addresses the problem of both segmenting
and reconstructing a noisy signal or image. The work is motivated
by large problems arising in certain scientific applications, such as
medical imaging. Two objectives for a segmentation and denoising
algorithm are laid out: it should be computationally efficient
and capable of generating statistics for the errors in the recon-
struction and estimates of the boundary locations. The starting
point for the development of a suitable algorithm is a variational
approach to segmentation [1]. This paper then develops a precise
statistical interpretation of a one-dimensional (1-D) version of this
variational approach to segmentation. The 1-D algorithm that
arises as a result of this analysis is computationally efficient and
capable of generating error statistics. A straightforward extension
of this algorithm to two dimensions would incorporate recursive
procedures for computing estimates of inhomogeneous Gaussian
Markov random fields. Such procedures require an unacceptably
large number of operations. To meet the objective of developing a
computationally efficient algorithm, the use of recently developed
multiscale statistical methods is investigated. This results in the
development of an algorithm for segmenting and denoising which
is not only computationally efficient but also capable of generating
error statistics, as desired.

Index Terms—Denoising, multiscale statistical models, segmen-
tation.

I. INTRODUCTION

M UMFORD and Shah have developed a theoretical frame-
work in which to address the problem of simultaneous

image denoising and segmentation [2], [3]. In this framework,
the goal is to decompose a given noisy image into piecewise
smooth regions bounded by contours on which the image inten-
sity is allowed to change abruptly. This is accomplished by min-
imizing a particular functional jointly over the image boundaries
and a reconstruction of the image. The minimizing reconstruc-
tion of the original image has been denoised through smoothing
everywhere except along the detected boundary contours. The
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Mumford and Shah functional has many nice mathematical and
psychovisual properties [4]; however, it is difficult to compute
minimizers because of the discrete nature of the image boundary
terms.

Various people have tried to address these computational dif-
ficulties by making small alterations in the Mumford and Shah
framework [5]–[7]. In this revised setting, there are also two ob-
jects computed by the algorithm: a reconstruction of the orig-
inal image and a continuous-valued edge-strength function. The
reconstruction is a denoised version of the unprocessed, noisy
image which does not suffer from the edge blurring effects of
some simple linear reconstruction algorithms (e.g., low-pass fil-
tering). The edge-strength function provides information about
the optimal spatially-varying amount of smoothing that should
be applied to produce the reconstruction. The function varies
between the values 0 and 1, taking on the value 1 where no
smoothing should be done and 0 in areas where full smoothing
is performed. While the edge-strength function itself is not an
explicit estimate of image edges, it is demonstrably a more ro-
bust indicator of edge likelihood than standard gradient maps.
In particular, the edge-strength function displays substantial ro-
bustness to noise and automatically avoids problems of dynamic
range exhibited by gradient maps of noisy images (see Section
VI). As a consequence, generating explicit edge contours from
edge-strength functions can be accomplished robustly as shown
in [1] using thresholding and [8] using curve evolution.

The approach to segmentation and denoising taken in this
paper begins with a novel Bayesian interpretation of the revised
Mumford and Shah variational approach to segmentation. This
interpretation follows in the footsteps of some recent work in
which close connections are made between certain variational
and statistical approaches to image processing [9], [10]. The
principal advantage of the Bayesian framework is that it pro-
vides a theoretical structure for the interpretation and compu-
tation of error statistics. Error statistics provide a quantitative
measure of the quality of the reconstruction and estimate of the
edge-strength function. Such a measure of quality is very im-
portant in certain scientific applications. One of the main con-
tributions of this paper is the development of a segmentation al-
gorithm which produces not only a reconstruction of the image
and an estimate of the edge-strength function but also error sta-
tistics. Furthermore, this paper contains a careful evaluation of
the nature and quality of the information provided by these error
statistics.

While the Bayesian interpretation can be equally well applied
to both one and two-dimensional (2-D) signals, there is a sig-
nificant difference in computational complexity in solving the

1057–7149/00$10.00 © 2000 IEEE
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resulting problems. As a consequence, a thorough analysis of
the problem is first presented in a one-dimensional (1-D) setting.
Markov random field prior (MRF) models appear in the corre-
sponding 2-D Bayesian estimation problems. Unfortunately, al-
gorithms for solving estimation problems involving 2-D MRF
priors require a large number of computations to generate exact
estimates and a prohibitively large computational load to cal-
culate error statistics. Our objective here is to develop an al-
gorithm with constant per-pixel complexity that also produces
useful error statistics.

There are two possible approaches to achieving such an
objective, namelyapproximating the solution(i.e., replacing
the solution to the estimation problem with one which is easier
to compute) orapproximating the problem(i.e., replacing the
estimation problem with one which has similar characteristics
but which can be solved exactly using an efficient algorithm).
An approach of the former type is described in [11]. In this
paper, an approach of the latter type is developed by altering
the prior model appearing in the problem formulation. In
particular, this paper examines the usefulness of multiscale
prior models for image segmentation. Multiscale models,
which were introduced and studied in [9], admit algorithms
with constant per-pixel complexity for the calculation of both
estimates and error variances. They have also been shown to be
useful in defining alternative approaches to problems in com-
puter vision which are often posed in a variational context [9],
[10], [12], [13]. These previous investigations, however, dealt
with problems that resulted in linear estimation algorithms.
In contrast, image segmentation is fundamentally a nonlinear
problem, and thus, this paper represents the first work on using
multiscale stochastic models to solve a nonlinear problem in
image processing and computer vision. The algorithm that
results not only has a modest computational load but also yields
good performance.

The work presented in this paper builds primarily upon the
two areas of variational methods for segmentation and multi-
scale methods for image processing. Section II summarizes the
relevant material on variational methods for segmentation. Sec-
tion III provides an overview of the multiscale modeling frame-
work. The overview is not meant to be comprehensive, however,
and many details are not discussed but may be found in the lit-
erature [9], [10], [12]–[15]. The subsequent Sections IV and V
discuss the specifics of the 1-D scenario, and Section VI is de-
voted to the 2-D scenario.

II. V ARIATIONAL METHODS IN IMAGE SEGMENTATION

A family of functionals proposed by Ambrosio and Tortorelli
for image segmentation and denoising [5], [6] lies at the core of
a segmentation and denoising algorithm developed by Shah [1]
and extended by Pien and Gauch [7] among others. A member
of this family of functionals, parameterized byρ, is of the form

(1)

where is the image domain, is the image
data, is a piecewise smooth approximation to
and is an estimate of the edge-strength function,
indicating high probability for the presence of an edge where it
takes values close to one. The first and second terms constrain
the approximating surfaceto match the data as best as possible
and also to be smooth in those places whereis close to zero.
The third term ensures that remain reasonably smooth and
does not tend to 1 everywhere. As shown in [6], the minima of
(1) converge to a minimum of the Mumford and Shah functional
as The general approach Shah and Pien use to minimize
(1) is coordinate descent: one alternates between fixingand
minimizing

(2)

over possible and fixing and minimizing

(3)

over possible Based on empirical evidence, Shah [1] and Pien
and Gauch [7] have noted that this coordinate descent scheme
converges to a reasonable solution and that the results are not
significantly affected by the initial condition or whether one
starts by estimating or

III. M ULTISCALE MODELS

Consider a prototypical quadratic minimization problem:
minimize

(4)

where and are vectors consisting of a lexicographic ordering
of pixels in an image and is a matrix chosen to ensure that the
minimizer of (4) is smooth (e.g., could take first differences
of nearest neighbors as an approximation of a derivative). Min-
imization of (4) is equivalent to maximization of

(5)

One can now view as a joint Gaussian probability distri-
bution. In fact is the joint distribution for and given
by the measurement and model equations

(6)

where and are independent zero-mean Gaussian random
vectors with identity covariance. For a given value ofthe
maximum of over occurs at the conditional mean of
the Gaussian, E What’s more, E is the Bayes least-
squares estimate of according to the distribution induced by
the modeling equations (6). Thus, one can view the problem of
minimizing (4) from the perspective of optimization or of sta-
tistical estimation [9], [10], [16].

The main advantage of the Bayesian interpretation is that it
casts the problem into a probabilistic framework in which it is
natural to examine the accuracy of the resulting estimates. This
is especially relevant in scientific applications such as remote
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Fig. 1. Nodes of a tree, such as the quad-tree pictured here (typically one uses
a binary tree for 1-D applications and a quad-tree for 2-D applications), are the
index sets of the multiscale processes discussed in this paper. The operation of
 on an index is described as follows: if� is the index of some node, then�
denotes the parent of that node.

sensing, in which one may be, for example, assessing if fea-
tures in a reconstruction are meaningful or statistically insignif-
icant artifacts. In addition, this statistical formulation brings into
focus the role played by the regularization term as a prior model,
opening up the possibility of using alternate models that offer
certain advantages.

Specifically, one can consider modeling a 1-D or 2-D phe-
nomenon as the finest scale of a stochastic process on a tree.
Doing so provides important computational advantages when
performing estimation. The tree modeling framework used in
this paper was introduced in [14] and further developed in [9],
[10], [12], [13], [15]. In these references, one can find more de-
tailed discussions of the following concepts.

The multiscale processes that are of interest in this paper are
specified in terms of an autoregression on a tree (see Fig. 1). The
root-to-leaf recursion takes the form

(7)

where the notation refers to the parent of node This re-
cursion is a generalization of the standard state-space recursion
for modeling a phenomenon evolving in time. In (7), the
and the state root at the root node are independent zero-mean
Gaussian random vectors, the’s with identity covariance and

root with prior covariance The and matrices are
deterministic quantities which define the statistics of the process
on the tree. Observations of the state variables have the
form

(8)

where the are independent Gaussian random vectors, and
the matrices are deterministic. The least-squares estimates
of process values at all nodes on the tree given all observations
and the associated error variances can be calculated with an

recursive algorithm [14], [17], where is the number
of finest scale nodes on the tree. The algorithm consists of a
fine-to-coarse recursion in which data in successively larger
subtrees are fused up to the root node of the tree, and a sub-
sequent coarse-to-fine recursion which produces both the op-
timal estimates and their error covariances. This algorithm gen-
eralizes the standard Kalman filter and Rauch–Tung–Striebel
smoother.

The class of processes representable as the finest scale of a
tree process includes some very important processes. In par-
ticular, Luettgen [18] has shown that any 1-D Gauss–Markov
process can be represented on a tree using a model with a three-
dimensional (3-D) state. The 1-D results in this paper make
use of this model. The 2-D results make use of and extend the

-like model used previously for the computation of optical
flow and ocean surface reconstruction [10], [13]. This -like
model and its extension are presented in Section VI.

IV. STATISTICAL INTERPRETATION OFSEGMENTATION IN ONE

DIMENSION

The first step in applying the multiscale modeling framework
to segmentation in 1-D is to develop a statistical interpreta-
tion of the discretized version of (1). One possibility for dis-
cretizing this functional is to replace the functions
and with regularly spaced collections of samples
and the integrals with sums overand the derivatives with
first differences. The result in 1-D is the discrete functional

(9)

where denotes the number of data points 1. As was done in
[1], [7], one can use coordinate descent to minimize (9), thereby
decomposing this complex problem into two simpler ones.

The problem of fixing and finding the that minimizes
(9) is equivalent to finding the that minimizes the discrete
functional

(10)

A slightly more compact form can be written by collecting
the samples and into vectors and
and Specifically, let be the the
matrix that takes first differences of samples, and let

diag Then, (10) simplifies to
where

Finding the minimum of for fixed invertible is then
equivalent to finding the least-squares estimate ofassuming
the following measurement and prior model

(11)

1In this discretization,s has a length which is one sample less than that off:

This is because the samples of the discretizeds lie between the samples of the
discretizedf: More details are provided in [19].
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where and are independent zero-mean Gaussian random
vectors with identity covariance. Notice that forsuch that

the multiplier of is very large.
Thus, at these locations, the variance of in the
prior model is high, and a least-squares estimator will allow big
jumps to occur in the estimate of This is exactly what one
wants the estimator to do at edge locations.

The problem of fixing and finding that minimizes (9) is
equivalent to minimizing

(12)

Defining
and one finds that, after completing the
square, (12) can be rewritten

(13)

Ignoring terms which do not depend on one observes that
minimizing (12) over is equivalent to minimizing

(14)

By defining the diagonal matrix

diag

and the vector

where corresponds to theth row of one can
rewrite (14) as

(15)

In the original functional (1), is constrained to lie within [0,1].
If one removes this constraint, the problem of finding the
that minimizes (15) is equivalent to the problem of estimating
given the following measurement and prior model:

(16)

where and are independent zero-mean Gaussian random
vectors with identity covariance. Notice thatγ plays the role of
an observation of and that its components take on values near
one where the difference between consecutive samples ofis
large and near zero where the difference is small. Observe also
that lies within [0,1); thus, the first term in (15) provides
an increased penalty forthat does not stay within [0,1]. This

is desirable because a solution to the unconstrained minimiza-
tion of (15) that lies within [0,1] is an optimal solution of the
constrained problem. As it turns out, this is often the case, as
discussed in Section V.

As an aside, we note that one of the benefits of formulating a
minimization problem in terms of statistics is that it yields nat-
ural interpretations of the parameters. These interpretations, in
turn, can be used to form a loose set of guidelines for picking
parameter values suitable for a particular segmentation applica-
tion. Specifically, simple calculations lead to the following ob-
servations which can be used to pick the signal-dependent pa-
rametersλ, and .

• λ is inversely proportional to the variability in the recon-
structed signal at locations where no edges are present.
In particular, E

• is the measurement noise variance term, determined in
many applications by sensor specifications.

• is proportional to the width of the edges. Specifically, the
model for the edge-strength functionimplies E

• controls the degree of edginess. In particular, choosing a
value for it is related to the issue of defining what level of
variability in we wish to call an edge. Since the observa-
tions appearing in the model for the edge-strength function

have the form

one desires that forat edge locations

E

These rules guided the choice of parameter values used for the
numerical results presented in the subsequent section. More dis-
cussion concerning the parameters, including Monte Carlo re-
sults, can be found there and in [19].

V. NUMERICAL RESULTS

Based on the Gauss-Markov estimation problem formulations
specified by (11) and (16), one can compute estimatesand
using any one of a variety of efficient methods. These include
direct methods for solving the associated normal equations and
Kalman filter smoothing. For the simulation results that follow,
estimates and as well as error variances and were
computed by a multiscale recursive estimation algorithm [13],
[17], [18] (see also Section III). One detail concerning the im-
plementation of this and other algorithms is that they require the
specification of prior variances on and the first
samples of the probabilistic models forand However, the
precise interpretation of the variational formulation as an esti-
mation problem corresponds to viewing the initial value as un-
known, which is equivalent to an infinitely large prior variance.
While it is possible to accommodate this in the estimation for-
mulation with no effect on algorithmic complexity, it is common
to use an alternate approach in which one closely approximates
the solution to the original problem by setting the prior covari-
ance to a relatively large number. For the purposes of this
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TABLE I
DESCRIPTION OFPARAMETERS IN 1-D SEGMENTATION ALGORITHM

(a)

(b) (c)

(d) (e)

Fig. 2. The results for segmenting the data pictured in (a), a noisy observation of a process whose statistics are dictated by (11) for the true edge-strength function
given by (17). The measurement noise is white and Gaussian with unit variance. All parameters are set as in Table I. (a) Datag, (b) reconstruction^f , (c) estimate
of the edge-strength function̂s; (d) reconstruction error standard deviationsP ; and (e) estimate of edge-strength function error standard deviations

p
P .

paper, is set large relative to and This segmentation
algorithm requires the specification of two parameters in addi-
tion to that of :

• : Since estimating requires that be well-
behaved, we must also enforce a constraint on the range of

A simple solution is to clip each estimate of the edge-
strength function so that for some small,
This solution proves adequate.

• : As the segmentation algorithm is iterative in nature,
one must specify a stopping criterion. For all of the results
in this section, the algorithm stops when the percentage
change in the functional (9) falls below.

Our experience has been that a single pair of values ofand
can be used to produce good segmentations of a variety of signal
types. The parameter specifies when to stop, but one also
needs an initial guess with which to start the iterative algorithm.
For the results in this section, the algorithm starts by estimating

using an initial estimate of the edge-strength function
A list of all of the algorithm’s parameters are listed in Table I.

To illustrate the operation of the algorithm, some examples
follow. These, in turn, are followed by some Monte Carlo ex-
periments designed to assess quantitatively the performance of
the algorithm.

A. Examples

Fig. 2 illustrates a segmentation of a synthetic signal. The data
in Fig. 2(a) consists of a signalto which unit intensity white

Gaussian measurement noise has been added. The signalis a
realization of a Gaussian process described by (11). The process
is started with initial condition and generated using
for the double-sided exponential function

(17)

The values of the parameters used are listed in Table I. Now, re-
call that where the edge-strength function is approximately one,
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(a)

(b) (c)

(d) (e)

Fig. 3. Segmentation of a noisy unit step as plotted in part (a). The measurement noise is white and Gaussian with standard deviation 0.2. All parameters are
given in Table I. (a) Datag, (b) reconstruction^f , (c) estimate of the edge-strength functionŝ, (d) reconstruction error standard deviationsP , and (e) estimate
of edge-strength function error standard deviations

p
P

the variance of the increment in the model ofincreases. This
is clearly evident in Fig. 2(a) in which the particular realiza-
tion of displays a clear jump in its value in the vicinity of the
edge-strength function’s peak.

The data in Fig. 2(a) are then fed into the iterative segmen-
tation and denoising algorithm. The results displayed in the re-
maining parts of Fig. 2 are after five iterations of the algorithm,
at which point, the value of the functional (9) was changing by
less than No clipping was necessary during the
course of the run, and thus, the results are true to the discrete
form of the variational formulation (9). The final reconstruc-
tion is a smoother version of the data, but the edge has not been
smoothed away. The final estimate of the edge-strength func-
tion has a strong peak at the location of the edge. These are the
desired results of the segmentation algorithm. In addition, the
estimation error variance for in Fig. 2(d) displays the charac-
teristic one would expect: away from the expected edge, con-
siderable lowpass filtering is effected, reducing the noise vari-
ance. However, in the vicinity of the edge, one expects greater
variability and, in essence, the estimator performs less noise fil-
tering, resulting in a larger error variance. Note also that the vari-
ance in the estimate of the edge process is almost constant, with
a slight drop in the vicinity of the edge, i.e., wherechanges
abruptly, reflecting greater confidence that an edge is present
in this vicinity. The results for the preceding example are good,
but not completely convincing by themselves sinceis matched
to the algorithm by its construction. Consider a prototypical
signal not matched to the model, namely a step edge. Fig. 3
displays results for data consisting of a unit step embedded in
white Gaussian noise. The estimates are shown after 12 iter-
ations. Once again, no clipping was necessary in the iterative
process. The results demonstrate that the algorithm works as
desired. It removes almost all of the noise away from the edge,
while accurately preserving the discontinuity. Note thatin-
creases near the outer ends because there are fewer measure-

ments in the vicinity andλ is large. As in the case of the first
example, however, the error statistics reflect the fact that, near
the edge, one expects less noise reduction in estimatingand
has higher confidence in the estimate of the edge process be-
cause of the abrupt change in value of

B. Monte Carlo Experiments

Two different sets of Monte Carlo experiments are presented
here. The first set provides some information for interpreting the
error statistics. The second set shows that the algorithm is robust
to parameter settings.

1) Error Statistics: In this section, a more careful look is
taken at the error statistics provided by the segmentation al-
gorithm in order to assess their accuracy and utility. Since the
full iterative algorithm is nonlinear, the exact error variances
in estimating and are not easily computed. The statistics
calculated by our algorithm represent approximations that re-
sult from the linear estimation problems for each of the two
separate coordinate descent steps forand Fig. 4 presents
Monte Carlo results comparing the error statistics computed
by the segmentation algorithm with the actual error variances.
Each experiment in this simulation corresponds to (a) gen-
erating a realization of the process described by (11) for
the fixed edge-strength functiongiven by (17) and with the
initial value set to 0; (b) adding white Gaussian mea-
surement noise with unit intensity; and (c) applying the seg-
mentation algorithm using the parameters in Table I to obtain
the estimates of the realization and of the edge-strength
function as well as and the error variances for these
estimates that the algorithm generates.

The quantities of interest for each run are
and the error statistics and computed by the

algorithm. From 100 independent runs, the following quantities
are estimated: E Var E E Var and E
These are plotted in Fig. 4 along with Monte Carlo error bars
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Fig. 4. Comparison of various error statistics compiled using Monte Carlo techniques for segmenting synthetic data. The data are realizations of a process whose
statistics are given by (11) for the exponential edge-strength function given by (17). Part (a) of this figure displays statistics concerning the reconstruction errors,
e = (f̂ � f); and the reconstruction error standard deviations generated by the algorithm,P : Part (a-iv) displays the optimal error standard deviations for
estimatingf given that the true edge-strength function given by (17) is known. Part (b) of this figure displays the statistics concerning the errors in estimatingthe
edge-strength function,e = (ŝ�s): (a-i) Mean squared error for estimatingf (Ee ), (a-ii) variance of the error for estimatingf (Var(e )), (a-iii) segmentation
error variance for estimatingf (E P ), (a-iv) true segmentation error variance for estimatingf (P ), (b-i) mean squared error for estimatings (Ee ), (b-ii)
variance of the error for estimatings (Var(e )), and (b-iii) segmentation error variance for estimatings (E P ).

set at 2 standard deviations. Comparing Fig. 4(a)-i for Eand
Fig. 4(a)-ii for Var one sees that these are quite close in
value, indicating that the estimate produced by our algorithm is
essentially unbiased. Comparing these two figures with the plot
of E one observes that the error variance computed by our
algorithm has essentially the same shape, reflecting the fact that
it accurately captures the nature of the errors in estimating
Fig. 4(a)-iv shows a plot of the error variance for an estimator
that is given perfect knowledge of the edge process. Comparing
this to Fig. 4(a)-iii, one notices that the segmentation algorithm
performs nearly as well as ifwere known perfectly and did not
have to be estimated.

The error statistics for the edge-strength function are depicted
in Fig. 4(b). E and Var being small relative to one indicate
that the estimate of the edge-strength function is quite accurate
and that the error does not vary considerably from sample path
to sample path. In addition, the shapes of these plots have sev-
eral interesting features related to the behavior of the estimator
in the vicinity of the edge. Note first that, as can be seen in Fig. 2,
the algorithm tends to estimate edge-strength functions that are
slightly narrower than the actual edge-strength function. This is

actually preferable for segmentation, for which the peak loca-
tions in the estimates of the edge strength-functions are more
important than the estimates’ shapes. Because of this bias to-
ward tighter edge localization,is a slightly biased estimate of

given by (17), as evidenced by the broader peak of Eas
compared to Var

A second interesting point is that E increases slightly in
the vicinity of the edge, while the variance computed by the es-
timation algorithm, E decreases. The reason for this can
be explained as follows. Specifically, the estimator believes that
it is has more information about when the gradient of is
large. Thus, in the vicinity of an edge, the estimator indicates
a reduction in error variance for estimatingHowever, if the
estimate of thelocationof the edge is in error, then the differ-
ence will exhibit large, very localized errors, both
positive and negative (just as one would see in the difference
of two discrete-time impulses whose locations are slightly dif-
ferent). Thus, rather than providing an accurate estimate of the
size of the estimation error variance in this vicinity, this dip in
the error variance should be viewed as a measure of confidence
in the presence of an edge in the vicinity.
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Fig. 5. Average value ofW for the step edge example of Fig. 3 but for different
values ofλ.

2) Parameter Selection:Fig. 5 presents results from a
Monte Carlo simulation designed to characterize how well
the algorithm can segment signals for different values of the
parameterλ. In this experiment, the algorithm is segmenting a
unit step edge. The quantity computed from each segmentation
is the number of values of the estimated edge-strength
function that lie above a given threshold set close to one. This
corresponds roughly to the sum of the widths of the edges in
the segmentation. In the case of the step edge, the desired value
of is one. Except forλ, the algorithm’s parameters take on
the values listed in Table I for Fig. 3. The threshold is set to
0.9. The results in Fig. 5 are for 500 runs, and the error bars are
set at one standard deviation.

Recall that the amount of smoothness the algorithm expects
in where there is no edge is directly related toλ. For

the algorithm generates the very flat step estimate of
Fig. 3. However, one can not setλ too high because, as Fig. 5
shows, the average value of increases withλ. Remember that

is a measure of how many points are very likely to be edges.
If λ is set too high, the algorithm will put edges in many places
and set the estimate of the functionalmost constant between
edges. Although the results of the algorithm depend onλ, the
slope of the curve in Fig. 5 is not very steep. This indicates that
small perturbations in the value ofλ will not severely diminish
the performance of the algorithm.

Similar experiments have been performed in which other pa-
rameters were adjusted. These can be found in [19]. To sum-
marize, the effect of these parameters on the results coincide
with the simple guidelines presented in Section IV. Furthermore,
these Monte Carlo experiments indicate that the results are ro-
bust to small changes in the parameter settings.

VI. A M ULTISCALE METHOD FORIMAGE SEGMENTATION

As discussed in [19], solving the exact 2-D counterparts to the
estimation problems in the 1-D segmentation and denoising al-
gorithm is not an easy task. In particular, the calculations in 2-D
correspond to solving estimation problems with prior models
that are 2-D Markov random fields (MRF) or, equivalently, to
solving elliptic partial differential equations and computing the
diagonal elements of the inverses of elliptic operators [9]. There

Fig. 6. How discontinuities are incorporated into the1=f -like multiscale
model.

exist no known algorithms which can compute the necessary
quantities for this general problem with fewer than oper-
ations, where is the linear dimension of the image.

Since the objective is to generate estimates and error
variances with constant computational complexity per pixel
(i.e., with operations), one is confronted with the need
to develop approximations. The approach taken here is to
alternately estimate a reconstruction and an edge-strength
function assuming multiscale prior models. When the prior
is a multiscale model, there is an efficient algorithm for
producing the estimates, and the associated error variances of
the reconstruction and edge-strength function [14], [17] (see
also Section III). These two estimation steps replace the two
coordinate descent step in Shah and Pien’s variational approach
to segmentation as discussed in Section II. The estimation is
performed in an overlapped domain, as described in [20]. Thus,
the multiscale models do not directly modeland but the
corresponding lifted versions and The two models, one
for each of the lifted fields and are described in Section
VI-A. Note that there are two principal distinctions between
our multiscale modeling approach and some other quad-tree
approaches to solving image processing problems. The first is
that the variables on the tree are states that decorrelate regions
of the image, and the second is that the associated estimation
algorithm passes information everywhere along the tree so as
to produce globally optimal estimates of the lifted fields.

A. Multiscale Models for Segmentation

Consider first, the model used for the estimation ofAs dis-
cussed in [9], [10], [12], [13], [16], the smoothness penalty as-
sociated with the gradient, used for example in (2) and (3), cor-
responds to a fractal penalty in that it is roughly equivalent to
a -like prior spectrum for the random field being modeled.
This type of spectrum has a natural scaling law; namely, the
variances of increments at finer and finer scales decrease ge-
ometrically. In [9], [10], [12], [13], it was demonstrated that a
very simple multiscale model having this same scaling property
leads to estimates that are very similar to those produced using
the original smoothness penalty. A model of this type is used for
the lifted version of the edge-strength function. Specifically

(18)
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TABLE II
DESCRIPTION OFPARAMETERS, IN THE MULTISCALE METHOD

where is a constant, and the are independent unit
variance Gaussian random variables. As described in [12], [15],
the are constants that decrease from one scale to the next
finer scale and depend on the amount of overlap used. The mea-
surements and measurement error variances used in conjunction
with the model for in (18) are exactly analogous to those spec-
ified by γ and in 1-D. The only difference in 2-D is that a
sum of the squares of the first differences in each direction re-
places the square of the first difference in one direction. Details
are specified in [19].

The multiscale model for the lifted version of the reconstruc-
tion is, to some extent, similar to the one for the edge-strength
function. However, significant modification to this model is
needed in order to capture the presence of discontinuities, as
indicated by the edge estimates. In particular, in the 1-D case,
as captured in (11), the increments ofhave a variance which
is inversely proportional to the corresponding value of
Thus, the variance of the increment ofis large near an edge
(i.e., where is approximately one in value). In a similar
manner, one needs to capture the idea that increments ofas
one moves to finer scales, should have variances that reflect the
presence of edges (i.e., that are again inversely proportional to

This is done as follows. Note that each node on the
tree can be thought of as representing the center of a subregion
of the image domain. A 2-D example is depicted in Fig. 6. The
dots in this figure correspond to the center points of the regions
associated with different nodes on the tree. The dots are shaded
according to the scale of the corresponding node on the tree;
the darker the dot, the coarser the scale. Thus, for example,
the node represents the entire large square region, while
the node at the next finest scale represents the upper-right
quadrant of this large square. Now, if there is an edge located
between and (i.e., if the values of at image domain

pixels between these nodes indicate the presence of an edge),
the variance of the scale-to-scale increment ofbetween these
two nodes should increase. More precisely, the model foris
specified by the recursion

(19)

where is a constant, are independent unit vari-
ance Gaussian random variables, and is the sum of

for estimates of the edge-strength function
values which fall on the line connecting and In this
manner, additional uncertainty is put into the recursion forat
the appropriate locations.

B. Numerical Results

This section presents numerical results on two test images, a
synthetic image of a circle and an MRI brain scan. Table II lists
the algorithm’s parameters and values2. The execution times for
each example were on the order of minutes when run using
MATLAB on a Sparc Ultra.

The segmentation of a synthetic 64 × 64 image of a circle is
presented in Fig. 7. The circle image provides a simple example
for which one can observe the desired outputs of the algorithm.
The reconstruction contains very little of the noise present in
the original data. Furthermore, the edges of the circle have not
been smoothed over in the reconstruction. The estimate of the
edge-strength function is close to zero everywhere except at the
edge of the circle, where the estimate tends to unity. This indi-
cates the algorithm has successfully identified edges and has ig-
nored the spurious changes in intensity in the data due to noise.

2The parametersb; λ, B ;B ; andr have interpretations analogous to those
presented in Section IV for the parametersb; λ, c; andr appearing in the 1-D
problem. The interpretations were used to guide the choice of parameters used
in the numerical examples of the multiscale method for segmentation.
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(a)

(b) (c)

(d) (e)

Fig. 7. Segmentation of a synthetic circle image computed using the multiscale method. (a) Datag, (b) reconstruction^f , (c) estimate of the edge-strength function
ŝ; (d) reconstruction error standard deviationsP ; and (e) estimate of edge-strength function error standard deviations

p
P .

(a) (b) (c)

Fig. 8. This figure illustrates the difference between a gradient map and the estimate of the edge-strength function for a noisy circle image. (a) Datag, (b)
magnitude of the gradient, and (c) estimate of the edge-strength functionŝ.

Fig. 8 illustrates the difference between a gradient map and
the estimate of the edge-strength function. As for the example
in Fig. 7, the unprocessed image is a circle embedded in white
noise. The standard deviation of the noise is six. The magnitude
of the gradient is very noisy, but the edge-strength function is
only moderately noisy and clearly indicates the location of the
underlying circle.

In addition to the reconstruction and estimate of the edge-
strength function, the multiscale algorithm computes the stan-
dard deviations of the error in the reconstruction and estimate
of the edge-strength function. Notice that the error standard
deviations for the reconstruction increase near edges and, for
the estimate of the edge-strength function, decrease near edges,
as in the 1-D case. Thus, one expects that the error standard
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(a)

(b) (c)

(d) (e)

Fig. 9. MRI segmentation computed using the multiscale method. (a) Datag, (b) reconstruction^f , (c) estimate of the edge-strength functionŝ; (d) reconstruction
error standard deviations P ; and (e) estimate of edge-strength function error standard deviations

p
P .

deviations in Figs. 7 and 9 are of similar significance to those
generated in 1-D. Another consequence of the above-mentioned
properties of the error standard deviations is that they can be
used not only to estimate one’s confidence in segmenting the
image but also to improve one’s estimate of the boundary lo-
cations. This is a consequence of the error standard deviations
marking the edges in the image as well or better than the esti-
mate of the edge-strength function.

Fig. 9 displays a multiscale segmentation of a 256 × 256 MRI
brain scan3. There are many different potential uses of MRI
brain segmentation. Associated with each of these different uses
are different goals of the segmentation. One of these goals is to

3An MRI image with pixel values ranging over more than 800 integers was
shifted and scaled to produce the data for this figure. The dynamic range of the
scaled MRI data is close to that of the circle images.

demarcate the boundaries of the ventricles, the two hollow re-
gions in the middle of the brain. Another goal is to determine
the boundary between gray and white matter in the brain. The
estimate of the edge-strength function displayed in Fig. 9 does
a good job at indicating likely boundaries both of the ventricles
and of the gray and white matter.

VII. CONCLUSION

In this paper, we have described a new approach to the recon-
struction and segmentation of noise corrupted signals and im-
ages. The points of departure for our work are the variational
formulation of Mumford and Shah [2] and, more explicitly, the
relaxed variational formulation of Ambrosio and Tortorelli [5].



SCHNEIDERet al.: SEGMENTATION AND RECONSTRUCTION OF SIGNALS AND IMAGES 467

The latter formulation leads to the simultaneous computation
of both a reconstructed signal or image and an edge-strength
function which provides a measure of the likely locations of
edges or abrupt changes in the image or signal values.

The contributions of this paper are several. First, we provide
precise statistical interpretations of the steps involved in esti-
mating both the reconstructed signal or image and the edge-
strength function. This interpretation not only establishes an in-
tellectual bridge to statistical estimation, but it also leads di-
rectly to the extension of the algorithm to produce error vari-
ances for the reconstructed image and edge-strength function.

Moreover, this statistical interpretation leads us to another
significant extension and new algorithm, in the case of 2-D
image processing. In particular, replacing the random field
image models implied by the variational formulations in [1],
[7] with a multiscale prior model with similar characteristics
yields an extremely efficient algorithm for the simultaneous
estimation of the reconstructed image and edge-strength func-
tion. Furthermore, the new algorithm can efficiently compute
the variances of the errors in these estimates. The algorithm
for computing both estimates and error variances given a
multiscale model has constant computational complexity per
pixel. In contrast, the best known algorithm for computing
estimates and error variance given a random field model has
a complexity per pixel that increases as the square root of the
total number of pixels.

In addition to these substantial computational advantages, we
have also demonstrated the efficacy of these algorithms through
several experimental studies. In 1-D, we demonstrated the ac-
curacy of the error variance calculations that our algorithm au-
tomatically produces for the reconstructed image. In 2-D, we
also demonstrated the ability of our algorithm to produce reli-
able estimates even in the presence of very high noise. In partic-
ular, we demonstrated that the estimates of edge-strength func-
tions produced by our approach are much more robust to noise
than image gradient maps. Thus, the edge-strength function es-
timates can be subsequently processed to produce robust and
accurate edge estimates, e.g., by thresholding [1] or more so-
phisticated methods such as curve evolution [8].
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A Statistical Method for Efficient Segmentation of MR Imagery ∗

J. Kaufhold†, M. Schneider‡, W. C. Karl§, A. S. Willsky‡

Abstract

Magnetic resonance imaging (MRI) has become a widely used research and clinical tool in
the study of the human brain. The ability to robustly, accurately, and repeatably quantify
morphological measures from such data is aided by the ability to accurately segment the MRI
data set into homogeneous regions such as gray matter, white matter, and cerebro spinal fluid.
The large amount of data associated with typical MRI scans makes completely manual segmen-
tation prohibitive on a large scale. In this paper an efficient approach to the segmentation of
such MRI imagery is presented. The approach uses an estimation-theoretic interpretation of the
segmentation problem to develop a computationally efficient, statistically-based recursive tech-
nique for its solution. Being statistically based, the method also provides associated measures
of uncertainty of the resulting estimates, which are extremely important both for evaluation of
the estimates as well as their combination with other sources of information.

1 Introduction

Magnetic resonance imaging (MRI) has become a widely used research and clinical tool in the
study of the human brain. The size and shape (i.e. the morphology) of the various structures of the
brain which can be obtained from such imagery correlate with various developmental differences,
disease states, and injuries. In [1] independent measures of brain volumes, shapes, and positions
are readily correlated with behavioral as well as physiological measures. For instance, [2] suggests
that Rett syndrome, a progressive disorder associated with regression of psychomotor development
and slow brain growth to age one, could be diagnosed by precise volumetric analysis of cortical and
nuclear structures over time. Also, in [3], it was shown that the female brain is approximately 10%
smaller than a male brain but the disproportionate variation in the volumes of male and female
brain regions and substructures reported was not consistent with a simple allometric explanation
for the sexual dimorphism. Shenton et. al [4] measured post mortem left temporal lobe volumes
in schizophrenics. Certain anatomical differences from normals in these volumes correlated with
schizophrenia. In [5], clinically relevant frontal brain lesion volumes were measured morphologically
∗This work was supported by by the National Institutes of Health under Grant NINDS 1 R01 NS34189, by
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by MR imaging and validated by measuring CT blood flow in the same volume. These are only
a few examples which strongly suggest the ability to robustly, accurately, and repeatably quantify
such morphological measurements is extremely important.

Accurate and reproducible quantification depends on accurate segmentation and classification of
the MRI brain data set into constituent functional parts. In particular, this overall goal is aided by
the segmentation of the raw MRI data into homogeneous regions such as gray matter, white matter,
and cerebro spinal fluid (CSF). These regions and their boundaries have typically been delineated
through a labor intensive procedure by specially trained technicians, at great expense in time,
money, and effort and with the greater variability that comes with human intervention [6]. The
incorporation of automation in the segmentation process has been shown to reduce variability across
technicians and across morphological structure measurements [7]. Such results have prompted
greater interest in increasing the automation of this component of the analysis process, which is
the long term focus of this work.

One promising approach that has been taken to automating such segmentation problems in
the computer vision literature is the use of a variational or cost-functional framework [8–14]. In
these approaches to segmentation an energy functional captures desired properties of the resulting
segmentation, such as smoothness within homogeneous regions, preservation of boundaries between
homogeneous regions, etc. The minimum energy the functional can attain given the observed image
is chosen as the segmentation. The advantage of such methods is the ease with which various de-
sirable effects can be directly incorporated into the energy functional and reflected in the resulting
segmentation. Unfortunately, obtaining the minimum of these energy functions leads to large and
computationally taxing optimization problems. In addition, while these deterministic methods can
provide estimates of the underlying components and their boundries, they do not provide informa-
tion about the uncertainty in these estimates. Such measures of uncertainty are important both for
direct evaluation of the estimates themselves, as well as providing the information necessary to fuse
these estimates with other sources of knowledge, such as probabilistic atlases, images from other
modalities, etc. Further, while the addition of many terms capturing various effects is conceptually
simple, the specification of the corresponding weights or importance given to these terms can be
challenging.

Alternative statistical formulations of such segmentation problems based on Markov random
field (MRF) prior models [15–17], while also providing visually desirable solutions, also lead to
computationally taxing optimization problems. Indeed, the resulting optimization problems are
very similar to the variationally derived ones. Furthermore, while these Bayesian approaches con-
ceptually provide a framework for the calculation of measures of uncertainty (i.e. estimation error
variances), in practice, such measures are virtually never obtained due to the great computational
cost involved. Thus current methods for the automation of MRI segmentation are computationally
costly and, further, do not provide rational measures of uncertainty.

To overcome the above limitations of existing methods, in this paper we present a statistically-
based recursive approach to the segmentation of MRI imagery which is computationally efficient
and provides measures of uncertainty of the resulting estimates. The approach is based on an
interpretation of the segmentation problem as an equivalent recursive estimation problem. This
enables the use of efficient, near-optimal recursive filtering methods for its solution. As a result,
rather than solving the large overall segmentation problem all at once, the problem is decomposed
into a sequence of smaller estimation problems, yielding computational efficiency in addition to
uncertainty measures.

The paper is organized as follows. In Section 2 we present a summary of the variationally-based
image segmentation on which we build. We then present an interpretation of the segmentation

2



problem as an estimation problem in Section 3. In Section 4 we show how this problem may be
solved recursively and thus efficiently. In Section 5 we show examples of brain segmentations using
our approach. We then present our conclusions in Section 6.

2 A Variational Formulation of the Segmentation Problem

2.1 Problem Statement

We base our approach to the segmentation of MRI imagery on a variational formulation of the
segmentation problem presented in [8,9,12]. This formulation simultaneously produces a segmented
image estimate f̂ and edge map estimate ŝ as the minimizers of the following energy functional:

E(f, s) =
∫ ∫

Ω

µ(g − f)2︸ ︷︷ ︸
Data Fidelity

+λ(1− s)2 |∇f |2︸ ︷︷ ︸
Smoothness

+ ν

(
ρ |∇s|2 +

1
ρ
s2
)

︸ ︷︷ ︸
Edge Penalty

dx dy (1)

where g denotes the observed image data, f denotes the piecewise smooth approximating field, s
denotes the corresponding continuous edge strength image, Ω is the image domain and µ, λ, ν,
and ρ are scalar weights specifying the relative importance of the terms. The edge image s can be
viewed as an indication of edge or boundary strength at each location in the observed image, and
ranges in value between 0 and 1. There are three types of terms in (1) – a data fidelity term, a
smoothness term, and edge penalty terms. These terms ensure that the pair f̂ , ŝ that minimizes
(1) has the properties that f̂ is close to the data g, that f̂ is nearly flat except where s is close to
1 (indicating the presence of an edge), that the edge field ŝ itself is smooth, and that the number
of edges (i.e. the size of ŝ) is not too great, preventing over-segmentation. Note that as ρ→ 0 it is
shown in [12] that the solution of (1) approaches the binary edge formulation of [10].

In practice, (1) is solved by alternatively fixing s and minimizing with respect to f and then
fixing f and minimizing with respect to s, as shown in Figure 1. This corresponds to alternatively
estimating the values of homogeneous image regions assuming that the location of the boundries
between them are known and then estimating the location of the boundries assuming the values
within the smooth, homogeneous regions are known. In particular, with the edge field s considered
fixed, the following energy functional is minimized for the segmented image values f :

Es(f) =
∫ ∫

Ω

µ(g − f)2 + λ(1− s)2 |∇f |2 dΩ (2)

Note, in this step a penalty, |∇f |2, enforces smoothness on the resulting estimated field f except
where the edge field s is close to 1.

For the other step, the image f is considered fixed and the minimum of the functional with
respect to s is sought. This step can be shown to be equivalent to minimizing the following energy
functional for s [18]:

Ef (s) =
∫ ∫

Ω

(
λ |∇f |2 +

ν

ρ

) λ |∇f |2

λ |∇f |2 + ν
ρ

− s

2

+ νρ |∇s|2 dΩ (3)

The second term is a penalty that will impose smoothness on the resulting edge field everywhere,
while the first term contains an equivalent derived “observation” of the edge field based on a
normalized gradient of the image f . In particular, note that this observation, λ |∇f |2/(λ |∇f |2 + ν

ρ ),
has values in the range [0, 1] and will be close to 1 where the gradient of f is large.
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2.2 Discretization

In practice, we work on a discrete grid of sample points and approximate the gradient operator with
a finite difference scheme. In particular, we assume that both f and s are sampled on the same n×n
row-column grid containing a total of n2 points. It will prove convenient to define the n-vectors f(j)
and s(j), obtained by stacking the sampled image values (f)ij and sampled edge field values (s)ij in
column j, respectively, as illustrated for the f field in Figure 2. We also define f and s as the overall
n2-vectors of these sampled points, obtained by stacking the f(j) and s(j), respectively. Similarly,
we define g(j) to be the n-vector obtained by stacking the sampled observation values (g)ij in
column j and define h(j) to be the n-vector obtained by stacking the sampled values of the s-field
“observation” λ|∇f |2/

(
λ|∇f |2 + ν/ρ

)
in column j. In particular, the latter samples are given by

h(j)i = ([(f)ij − (f)i,j−1]2 + [(f)ij − (f)i−1,j ]2)/([(f)ij − (f)i,j−1]2 + [(f)ij − (f)i−1,j ]2 + ν
λρ ) and

serve as a normalized gradient observation, lying in the range [0, 1].
With this notation, a discrete version of the field energy term Es(f) given in (2) may be obtained

as1:

Es(f) =
n∑
j=1

‖g(j) − f(j)‖2µI + ‖Drf(j)‖2V (j) + ‖f(j) − f(j − 1)‖2V (j) (4)

where ‖x‖2M = xTMx and Dr is a first-order difference operator along the rows of each column
given by:

Dr =

 −1 1
. . . . . .

−1 1

 . (5)

The weighting matrices V (j) are diagonal and capture the spatially varying, edge-dependent weights
on column j of the gradient term in (2). In particular, V (j)ii = λ[1− (s)ij]2.

Similar to (4), a discrete version of the edge energy term Ef (s) given in (3) may be obtained
as:

Ef (s) =
n∑
j=1

‖h(j)− s(j)‖2W (j) + ‖Drs(j)‖2νρI + ‖s(j) − s(j − 1)‖2νρI (6)

where Dr is the row-derivative operator defined in (5) and the weighting matrices W (j) are diagonal
and capture the spatially varying weights on column j of the data term in (3). In particular,
W (j)ii = λ[(f)ij − (f)i,j−1]2 + λ[(f)ij − (f)i−1,j ]2 + ν

ρ .
The solution to the overall segmentation problem is then obtained by alternately minimizing

each of the two quadratic energies Es(f) in (4) and Ef (s) in (6), as shown in Figure 1. Each
of these minimizations is a large, computationally intensive, optimization problem, which must
be performed repeatedly to obtain a segmentation. Direct solution of the system of equations
defining the minimum of (4) or (6) at any stage of the algorithm would involve O(n6) calculations
and, since n is typically in the range of 102–103, would be prohibitively expensive. In practice,
therefore, the solution is approximated to an arbitrary degree of accuracy via an iterative method,
such as conjugate gradient [19] or multigrid [20]. Even with such methods, solution of the large set
of equations is computationally challenging. Further, only the estimate of the image field f̂ or edge
process ŝ is provided, with no measure of reliability.

To avoid these difficulties we use an interpretation of the problems (4) and (6) in an estimation
theoretic context [18]. Such an interpretation of this segmentation problem allows a variety of

1For clarity of presentation we ignore edge effects in the discrete formulations of (4),(5). Such edge effects only
increase the notational complexity of the development.
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statistically-motivated approaches to be taken. For example, in [18] a novel multiresolution esti-
mation approach is used. In this work, however, we interpret the underlying spatial estimation
problem as an equivalent dynamic estimation problem. Based on this interpretation we are able
to formulate an efficient, statistically-based recursive solution. This statistically-based approach
provides not only estimates of the fields themselves, but also corresponding measures of uncertainty.
For simplicity we focus on the problem of processing two-dimensional MRI slices – i.e. images. The
development to follow, however, carries over naturally to the case of three (or even higher) dimen-
sional fields (i.e. volumes), where the computational gains should be even greater. Such results are
the focus of present research.

3 An Estimation-Theoretic Interpretation

We now provide an estimation-theoretic interpretation of the quadratic minimization problems (4)
and (6) as equivalent recursive estimation problems. To this end, note that (4) and (6) have the
following common form:

E(x) =
n∑
i=1

‖d(j) − x(j)‖2R−1
1 (j) + ‖Drx(j)‖2R−1

2 (j) + ‖x(j) − x(j − 1)‖2Q−1(j) (7)

where the weighting matrices R1(j), R2(j), and Q(j) are diagonal, and the vector x(j) contains
the elements from column j of the overall unknown desired image vector x = [xT (1)| · · · |xT (n)]T .

Now, it is straightforward to show [21–23] that the value of x̂ or, equivalenty, x̂(j) for each j,
that minimizes the quadratic energy (7) is the same as the maximum-likelihood estimate of x(k)
for each k based on the following set of observations and constraints:

x(j) = x(j − 1) + q(j − 1), q(j) ∼ N (0, Q(j)) (8)
y(j) = C(j) x(j) + r(j), r(j) ∼ N (0, R(j)) (9)

for j = 1, . . . , n, where x ∼ N (m, P ) denotes a Gaussian random vector with mean m and covari-
ance P , the initial condition is given by x(0) = 0 and Q(0) = lim

α→∞
αI, and the variables y(j), C(j)

and R(j) are defined as:

y(j) =

[
d(j)

0

]
, C(j) =

[
I

Dr

]
, R(j) =

[
R1(j) 0

0 R2(j)

]
(10)

Given the form we have written (8)–(9) in we can see that another, equivalent interpretation of
these equations specifies a dynamic estimation problem for the x(j). In particular, the components
x̂(j) of the minimizer x̂ of (7) are precisely the same as the series of smoothed estimates of x(j)
based on the dynamic equation (8) and the observation (9) for 1 ≤ j ≤ n. The advantage of the
formulation (8)–(9) is that we may use efficient, recursive Kalman filtering based techniques for
its solution. In effect, by recursively processing x(j) we are recursively estimating the columns
of the segmented image. In effect, we trade solving a single large problem (estimating the entire
image) for solving a series of smaller problems (estimating the values in a column). In addition,
these estimation-theoretic methods provide not only estimates of the field, but also corresponding
measures of uncertainty. Finally, the statistical smoothing view of (8)–(9) suggests a statistical
interpretation of the parameters of the original formulation, which can provide a rational guide to
their selection in practice.
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4 A Recursive Filter-Based Solution

In this section we show how to efficiently solve (8),(9). First note that what is needed is the optimal
estimate x̂(j) for each j based on all the data y(k), k = 1, . . . , n. This is known as the optimal
smoothed estimate [24]. There are a number of efficient ways to generate this estimate, as described
in [25–27]. In this work we use the Mayne-Fraser two-filter form of the optimal smoother [25, 26].
In this approach, the smoothed estimates and associated error variances are obtained by combining
the outputs of two independent Kalman filters based on (8),(9) – one starting at column j = 1 and
running forward (i.e. left to right) and the other starting at column j = n and running backward
(i.e. right to left), as depicted in Figure 3. Since each filter is independent, they may be run in
parallel for greater throughput. The separate forward and backward estimates are then combined
by weighting them by the inverse of their respective error variances, as detailed in [25,26]. The key,
then, is to find an efficient method for performing the independent filtering steps, which we focus
on next. In particular, we focus on the forward filtering step. The backward step is equivalent and
the weighted averaging operation straightforward.

4.1 An Information Form Filter

To perform the filtering based on (8),(9) we will use an efficient version of the information form of
the Kalman filter developed in [22]. In particular, an optimal information-form filtering algorithm
for the system (8)–(10) is provided by the following recursive algorithm [22]:

Information Filter Algorithm:

Prediction:

L(j) = Q−1(j)−Q−1(j)
(
Q−1(j) + L̃(j − 1)

)−1
Q−1(j), (11)

x(j) = x̃(j − 1), (12)
z(j) = L(j)x(j) (13)

Update:

L̃(j) = L(j) +R−1
1 (j) +DT

r R
−1
2 (j)Dr , (14)

z̃(j) = z(j) +R−1
1 d(j) (15)

L̃(j)x̃(j) = z̃(j) (16)

where Dr is the derivative operator defined in (5) and note that R1(j), R2(j), and Q(j) are diag-
onal matrices. The matrices L(j) appearing in the above algorithm are the information matrices
corresponding to the estimate, and are equal to the inverse of the estimation error covariance for
the filtered estimate of column j. The filtered solution to (8)–(10) provided by the use of (11)–(16)
is exact and, when optimally combined with the corresponding backward filtered estimates pro-
vides an estimate which is the same as the minimizer of (7). However, the above algorithm and
interpretation break the problem into a series of smaller recursive steps and also provide measures
of uncertainty for the estimates through the associated estimation error variances, which are the
diagional elements of L−1(j).

For the sake of computational efficiency we go even further and approximate this exact solution.
In particular, as done in [22], we use a two term series expansion of the matrix inverse in parentheses
and replace the exact expression (11) for the predicted information matrix with:

L(j) ≈ Q−1(j)−Q−1(j)
(

Λ−1(j)− Λ−1(j)Ω(j)Λ−1(j)
)
Q−1(j) (17)
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where where Λ(j) is the diagonal part of Q−1(j) + L̃(j − 1) and Ω(j) is the remaining, off-diagonal
part. This simple approximation to (11) yields results close to the exact solution of the variational
formulation in most cases. If greater fidelity to the original variational formulation is required
additional terms may certainly be added to the above approximate expansion, at the cost of more
computation, larger models, and greater storage requirements. The fidelity of such approximations
will depend on quantities such as the specific choice of parameters for the original variational prob-
lem along with the structure of the image. Such relationships are a topic of current investigation.

Finally, note that calculation of the updated estimate in (16) requires the solution of a system of
equations. While this system of equations is much smaller than that appearing in the original prob-
lem, it can still be a computationally intensive task. Fortunately, the structure of this segmentation
problem coupled with the approximation (17) combine to ensure that L̃(j) will remain sparse and
banded (in particular, tridiagonal). In this case, the inversion operation implied in (16) can itself
be efficiently performed via iterative methods, such as multigrid [20] or preconditioned conjugate
gradient [19]. In our present implementation we use the conjugate gradient method preconditioned
with the diagonal of L̃(j).

4.2 The Smoothed Estimate

Once the separate forward and backward filtered estimates are found using (8),(9) together with the
efficient variant of (11)–(16), the individual estimates are then combined to obtain the resulting
smoothed estimate x̂(j) together with its uncertainty. Let x̂f (j) and x̂b(j) denote the output
of the forward and backward filtering operations, respectively, and let Lf (j) and Lb(j) denote the
information matrices corresponding to these filtered estimates. Then the overall smoothed estimate
at column j, x̂(j), is obtained as the solution of:

[Lf (j) + Lb(j)] x̂(j) = Lf (j)x̂f (j) + Lb(j)x̂b(j) (18)

which we again solve using the diagonally preconditioned conjugate gradient technique. The cor-
responding error variances are given by the diagonal elements of (Lf (j) + Lb(j))

−1, which we ap-
proximate by the reciprocal of the corresponding diagonal elements of Lf (j) + Lb(j). These error
variances give us a measure of the uncertainty of the corresponding estimates.

5 Examples

In this section, we present numerical examples of segmented MRI imagery using the techniques
we have described. We use the global segmentation algorithm shown in Figure 1 with the energy
terms Es(f) and Ef (s) described in (4) and (6), respectively. We initialize the s field estimate
to zeros and terminate the iteration when the percent change in E(f, s) falls below a threshold.
For the experiments shown here we used a 2% change as the indication of convergence. This
structure is common to all the examples. What will differ is how the subproblems of minimization
of Es(f) or Ef (s) are performed. In particular, we compare straightforward solution of (4),(6) to the
proposed recursive estimation-theoretic based technique. In both cases note that the formulation
of (1) assumes that the value of the edge field s lies in the range [0, 1] while our solutions to
the subproblem (6) contain no such constraint. To ensure the global iterations are well defined
we simply truncate the edge function to the range [0, 1 − ε] for some small ε at each iteration if
necessary. In practice, the solution to the unconstrained problem almost always lie in the required
range anyway.
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Comparison of estimates obtained with direct and recursive approaches

Here we compare images segmented using the algorithm of Figure 1 and exact solution of the normal
equations to those obtained using the proposed efficient recursive technique. For these experiments
we used parameter values of µ = 1, λ = 3, ν = 1200, and ρ = 1

2 . In Figure 4 we show the original
proton density weighted MR image. In Figure 5, the two segmentations are shown. On the left is
the solution obtained through direct minimization of the energy functionals (4) and (6) via exact
solution of the corresponding normal equations or, equivalently, Euler equations. On the right is the
corresponding solution for both f and s obtained by using the near optimal recursive approach. The
images show that the recursive technique produces results that are almost identical to the direct
solutions. To emphasize this point, in Figure 6 we show a histogram of the differences between the
field estimates obtained by the two techniques. These histograms show the relative frequency (i.e.
the histogram area equals one) of the corresponding errors as a percent of the corresponding full
scale value. As can be seen all the values are clustered around zero. Both segmentations appear
to do well in capturing the main boundaries between gray and white matter despite the presence
of a significant gradient in absolute intensity across the image. In Figure 8 we show the result of
thinning the thresholded edge field obtained in Figure 5.

Uncertainty Estimates

While the segmentations obtained by direct energy minimization and our recursive approach are
quite similar, since our Kalman-filter-based technique is derived from an estimation-theoretic inter-
pretation of the segmentation problem, we also generate associated error variance information, and
thus measures of segmentation uncertainty. Such measures are important not only for the direct
evaluation of the estimates themselves, but also for the fusion of such estimates with other sources
of information, which we demonstrate later. While many approaches have been proposed for the
segmentation of such MRI imagery, few have addressed this issue of error statistics. In Figure 9 we
show the error standard deviation fields corresponding to the estimates in Figure 5. On the left is
the standard deviation field corresponding to the smoothed field while on the right is the standard
deviation field corresponding to the edge field. As can be seen, the error standard deviations for
the field itself increase near edges while those of the edge field decrease near edges, as we would
expect. In areas where the edges are weak, the corresponding error field indicates low reliability.
These error measures are obtained as a by product of the processing in the recursive technique,
and thus are obtained for free.

Computational Cost

We compare the computational cost of solving the segmentation problem represented in Figure 1
both through direct minimization of the energies and by our recursive method. The direct method
finds the minimum of the energies (4),(6) at each iteration by explicitly solving the resulting system
of so called normal or Euler equations. In practice, such large systems of equations are usually
solved via iterative techniques, such as preconditioned conjugate gradient. Thus, for our comparison
here we find the minimum of the energies (4),(6) at each stage using the conjugate gradient tech-
nique preconditioned with the diagonal of the corresponding normal equations [19]. Our recursive
approach has already been described.

First we consider only the field estimates. In this case, both techniques took 4 global iterations
to converge. Our recursive approach required approximately 20% fewer computations per iteration
compared to the direct minimization approach. These solutions were obtained in a few minutes on
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a SPARC 20 using unoptimized MATLAB code.
Next we compare the cost of calculating both the estimates of f and s together with the cor-

responding error measures (i.e. the error variances). For the direct approach, this calculation
essentially corresponds to finding the diagonal elements of the inverse of the large matrix arising
in the normal equations of the optimization problem, and since it requires inverting the matrix, is
extremely costly. In constrast, for our recursive approach these error measures are obtained as a
by product of the processing and thus are effectively free. In particular, in computing both these
quantities the direct approach required a factor of approximately 104 more computations than our
recursive method.

Fusion of Multichannel Data

Here we demonstrate the use of the error statistics provided by our technique for the fusion of
edge information from multichannel data, in particular from registered T1, T2 and PD imagery.
Our goal here is to demonstrate the potential usefulness of such uncertainty information through
a prototype fusion problem.

There are at least two ways our approach can accomplish this fusion of edge information.
The first method is based on the direct use of the three channels in a single overall variational
formulation, as proposed in [8]. In this case all three channels are simultaneously used to directly
obtain a single edge field. This single edge map is used as the basis for the generation of a
piecewise smooth estimate of the intensity of each separate channel. Our approach to this method
also provides the associated uncertainty measure for the aggregate edge map and individual channel
estimates, and thus provides one rational means to obtain such overall measures for multichannel
data. In particular, note that the measures obtained for each channel will reflect the effects of the
information in all the channels. Since this approach is a direct extension of that in [8] we will not
pursue it here.

An alternative approach to the fusion of the edge or segmentation information from such mul-
tichannel data is to perform a segmentation on each channel separately and then use the resulting
uncertainty measures obtained for each edge image to subsequently fuse the individual edge maps.
In effect, this approach treats the separate edge field estimates from each channel as independent
observations of the edge field with uncertainty provided by the associated error variance measure.
Such an approach serves as a paradigm of a variety of similar fusion problems, in which it is desired
to combine information obtained from a variety of sources. In particular, suppose at a given image
pixel location (i, j), each channel provides a corresponding edge field estimate at that pixel, denoted
by sT1 , sT2 , sPD, respectively. In addition, suppose that σ2

T1
, σ2

T2
, σ2

PD are the corresponding error
variances associated with that pixel value as, for example, provided by our technique. If these edge
estimates are uncorrelated from pixel to pixel and from channel to channel, then the optimal linear
estimate of the overall edge field value at that pixel is provided by the quantity:

s =
σ−2
T1
sT1 + σ−2

T2
sT2 + σ−2

PDsPD

σ−2
T1

+ σ−2
T2

+ σ−2
PD

(19)

and the associated overall error variance σ2 for the combined edge field estimate at that pixel is
given by:

σ2 =
1

σ−2
T1

+ σ−2
T2

+ σ−2
PD

(20)

As stated above, this assumes that the edge estimates obtained for each channel correspond to
uncorrelated random variables. While this will not be the case, in general, the formulas (19) and
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(20) still provide a rational way to combine such data. Note that if other sources of edge information
are available with associated uncertainty measures, they may also be included in this framework.

Figure 10 shows T1 and T2 weighted MRI images that correspond to the PD weighted image in
Figure 4. We generated separate edge estimates for each of these images using our technique. For
the T1 image we used the parameters µ = 1, λ = 3, ρ = 1

2 and ν = 1000, while for the T2 image we
used the parameters µ = 1, λ = 3, ρ = 1

2 and ν = 1000. In Figure 11 the resulting estimated edge
fields for the T1 and T2 images are shown. The edge field for the PD weighted image was shown
on the right in Figure 5. We then combined these individual edge estimates and corresponding
uncertainty measures using the formulae in (19) and (20) The resulting fused edge image is shown
on the left of Figure 12. Note that it contains edge information that does not exist in the edge
image of any single channel. For instance, in the fused edge estimate, the boundary indicated by
the arrow has been reinforced, indicating the incorporation of collateral edge information, since the
same boundary in the PD edge estimate is incomplete. Note also how the estimation error, shown
on the right of Figure 12 decreases as more information is added to the fused estimate of the edge
field and more confidence in its value is developed.

6 Conclusions

In this paper we have presented a recursive approach to the segmentation of MRI imagery. This
approach was based on an estimation theoretic interpretation of the segmentation problem and
while efficient, provides solutions indistinguishable from direct solution of an equivalent variational
problem. In addition to its efficiency, being statistically based the method also provides associated
measures of uncertaincy of the resulting estimates. Such measures are critical not only for evaluation
of the segmentation but also for subsequent stages of the processing. An illustration of the use of
such information was demonstrated through the fusion of edge information obtained from registered
multichannel (PD, T1, and T2) imagery. This example demonstrated how the collateral information
present in such data can be rationally combined when such measures of uncertainty are available.
We are in the process of extending this approach to the 3-D case, which while providing greater
computational challenges, should also provide greater gains. A systematic study of the robustness
of this approach in a clinical setting together with the usefulness and interpretation of the associated
uncertainty measures that are generated is also currently being undertaken.
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Figure 1: Segmentation Algorithm
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Figure 3: Recursive segmentation via recursive smoothing.
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Figure 5: Comparison of answer obtained by direct solution of the normal equations and our
recursive estimation-based approach. The top figures are the f field estimates and the bottom
figures are the corresponding s field estimates.
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Figure 10: T1 and T2 weighted images.
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Figure 11: T1 and T2 weighted edge estimates.
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Abstract

Many large multidimensional space-time signal pro-
cessing and data inversion applications (e.g. decon-
volution) require some form of regularization to ex-
tract meaningful information. A popular approach
to regularizing such problems in a statistical context
is via a Gauss-Markov Random Field (GMRF) prior
model in a Maximum A Posteriori (MAP) estimation
framework. While providing good reconstructions, the
high dimensionality of these problems can lead to pro-
hibitive computational constraints which limit their
practical applicability, particularly in real or near-real
time applications. It has recently been shown that
GMRF models posess a particular recursive structure.
Conversely, complementary work in suboptimal filter-
ing has been based on reduced order GMRF modeling.
In this work, we combine these two results to present
a suboptimal filter design which repeatedly takes ad-
vantage of this recursive GMRF structure to subdi-
vide a large problem into a series of smaller, more
tractable problems. In this way we present a method
for approximate, model-based, recursive solution to
such high dimensional problems based on their inher-
ent recursive structure.

1 Introduction

Many large multidimensional space-time signal pro-
cessing and data inversion applications require a
method of regularization to extract meaningful in-
formation. These applications include large static
spatial deconvolution problems, such as noise supres-
sion in 3D diffusion-weighted (vector-valued) mag-
netic resonance imagery (MRI) and mine detection
in EM ground sensor array data, as well as space-

∗This work was supported by a Whitaker Foundation Grad-
uate Research Fellowship, the National Institutes of Health un-
der Grant NINDS 1 R01 NS34189, by the Air Force Office of
Scientific Research under Grant F49620-96-1-0028, and by the
Army Research Office under Grant ARO DAAG55-97-1-0013.

time problems, such as arise in physical oceanogra-
phy, space-time inverse scattering problems, visual
field reconstruction and functional MRI (fMRI). A
popular approach to regularizing such problems in
a statistical context is via a Gauss-Markov Random
Field (GMRF) prior model in a Maximum A Poste-
riori (MAP) estimation framework. While such ap-
proaches provide good reconstructions, the difficulty
in their direct application to large spatial or space-
time problems is that their exact solution leads to im-
practically large and complex optimization problems
due to high dimensionality. This limits the practical
applicability and power of such GMRF-based formu-
lations, particularly in real or near-real time appli-
cations. In this work we combine existing results on
the recursive structure of GMRFs with reduced order
model-based recursive filtering techniques to present
a rational basis for approximate, model-based, recur-
sive approaches to efficiently solve such problems.

2 Problem Statement

For simplicity, we will consider MAP estimation prob-
lems of the following form:

y = x+ w, w ∼ N (0, R) (1)
x ∼ N (0,M) (2)

where M corresponds to the covariance of a GMRF
and R is the diagonal covariance of the observation
noise, w. In particular, M−1 has a sparse banded
structure reflecting the nearest neighbor interactions
of the lexicographically ordered data [1]. The prob-
lem in (1) and (2) is representative of many esti-
mation problems. For example, M is often cho-
sen to capture a “smoothness prior” in which case
M−1 ≈ DTD, where D is a derivative operator. The
challenge posed by the applications we are consider-
ing is due to size and dimensionallity. For example,
consider the space-time problem posed by enhancing
a 3D fMRI data set. In this problem, we would need

1
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to estimate over 109 elements (e.g. typical dimen-
sions are 256 columns × 256 rows × 60 slices × 60
time points). Direct solution or inversion of corre-
sponding normal equations is currently prohibitive if
not impossible.

3 Dynamic Reformulation

It is known that the inverse of the covariance matrix
of a GMRF, M−1 in equation (2), termed the “poten-
tial matrix” in [3] and more commonly known as the
“information matrix” [4], is sparse and banded with a
particular structure. Recently, it was shown that the
information matrix, M−1 of a GMRF possesses a cer-
tain highly interesting recursive structure [3]. Specif-
ically, it was shown that the structure of the informa-
tion matrix can be exploited to define an equivalent
implicit autoregressive model on the subelements of
the field of the form:

yk = xk + wk, wk ∼ N(0, Rk) (3)
xk+1 = Akxk + vk, vk ∼ N(0, Qk) (4)

where the subelements xk and yk now define a “slice”
(e.g. the rows or columns of an image) of the original
field, andRk and Qk are diagonal covariance matrices
with compatible partitions. For appropriate choices
of Rk, Ak, and Qk, It can be shown that that equa-
tions (3) and (4) yield the same overall covariance
structure as the GMRF defined by M in the original
problem. This equivalent dynamic model is derived
through a Cholesky factorization of the correspond-
ing information matrix, M−1.

To understand this, suppose we have a symmetric
positive definite block tridiagonal matrix, M−1 = U
of the following form:

U =


U11 U12

UT12 U22 U23

UT23 U33

. . . U(n−1)n

UT(n−1)n Unn


where U is composed of block tridiagonal subblocks,
Uii on the block diagonal and diagonal subblocks,
Uii+1 on the upper block off diagonal. Then we can
uniquely decompose it as M−1 = U = GTG where G
is the Cholesky factor of U and is of the form:

G =


G11 G12

G22 G23

G33

. . . G(n−1)n

Gnn

 . (5)

The blocks of G are related to the blocks of U as
follows: G11 is the Cholesky factor of U11. Gij =
G−1
ii Uij for all off-diagonal blocks where i = j − 1,

and Gjj is the Cholesky factor of Ujj−GTijGij for all
other diagonal blocks.

Equations (3) and (4) can be derived from equa-
tion (1) and the Cholesky factor of M−1 in equation
(5). First, defining equation (3) entails decomposing
the diagonal covariance, R, and the observation vec-
tor, y, of equation (1) into subelements indexed to
be compatible with the partitioning the equation (4).
Now equation (4) is defined using the Cholesky factor
in equation (5). In particular, Q−1

n−i+1 = GTiiGii and
An−i+1 = (GTiiGii)

−1Gij where j = i+1. This fact al-
lows us to recast (1) and (2) as an equivalent dynamic
estimation problem of the form given in equations (3)
and (4). Note that this equivalence is exact, with no
approximations. Conceptually, this dynamic model,
obtained via Cholesky factorization, enables the op-
timal processing of the field with efficient techniques
such as Kalman filter-based smoothing (e.g. Rauch,
Tung, Striebel; Mayne-Fraser) algorithms.

While this approach indeed transforms the origi-
nal large problem into a sequence of smaller prob-
lems and while providing storage advantages, the
overall amount of computation is still the same as
that obtained if we exploited the banded MRF struc-
ture from the outset in the solution of the original
complete normal equations. As we have argued, for
the large practical problems we are considering, this
amount of computation is still too large. Thus, to re-
duce the computational burden, some form of subop-
timal approach is necessary. We discuss next a partic-
ular suboptimal approach to recursive filtering based
on reduced order GMRF modeling of the estimation
error field [1] which is particularly well-matched to
our proposed solution.

4 GMRF-based Kalman Filter

In [1], an efficient suboptimal approach to Kalman
filtering for large problems, such as in (3) and (4), is
presented. In this development, a suboptimal variant
of the information form of the Kalman Filter for (3)
and (4), consisting of the following prediction and
update steps is implemented:

PREDICTION STEP

D
∆= diag(ATkQ

−1
k Ak + L̂k) (6)

Ω ∆= (ATkQ
−1
k Ak + L̂k)−D (7)

Kk+1 = D−1 −D−1ΩD−1 . . . (8)

2
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L̄k+1 = Q−1
k −Q−1

k AkKk+1A
T
kQ
−1
k (9)

x̄k+1 = Akx̂k (10)
z̄k+1 = L̄k+1x̄k+1 (11)

UPDATE STEP

L̂k+1 = L̄k+1 +R−1
k+1 (12)

ẑk+1 = z̄k+1 +R−1
k+1yk+1 (13)

L̂k+1x̂k+1 = ẑk+1 (14)

where, in the filtering equations above, as applied
to (3) and (4), Kk+1 is a series expansion to
(ATkQ

−1
k Ak + L̂k)−1, L̄k+1 is the predicted informa-

tion matrix, x̄k+1 is the predicted state, L̂k+1 is the
updated information matrix, and x̂k+1 is the up-
dated state as described in [1]. The suboptimal fil-
ter structure of [1] is based on the idea of impos-
ing a reduced order GMRF-type model of the er-
ror field, as reflected in the structure of L̄k+1, the
predicted information matrix in (9). In particular,
L̄k+1 is constrained to have a sparse, banded MRF
structure with the number of bands reflecting an im-
posed reduced-order GMRF neighborhood. Notice
that such a structure, once imposed on L̄k+1, is main-
tained throughout (10)-(14) and imparted to L̂k+1.
In summary, at each iteration, L̂ and L̄ are con-
strained to have an MRF-like structure.

5 Nested Solution

The main computational bottleneck in the approx-
imate implementation of (6)-(14) can be traced to
solving the implicit equation (14) for the updated
state x̂k+1. In [1], (14) was solved iteratively by
Gauss Seidel Successive Over Relaxation (SOR), ex-
ploiting the sparse structure of L̂k+1. Note, however,
that (14) can be viewed as another static spatial es-
timation problem, which is of the following form:

yk+1 = x̂k+1 + v̂k+1, v̂k+1 ∼ N (0, Rk+1)(15)
x̂k+1 ∼ N (0, L̄−1

k+1) (16)

where the prior model, L̄−1
k+1 again corresponds to

a covariance of a GMRF. This is true precisely be-
cause of the GMRF approximation imposed in (9).
It is not true in the exact Kalman filtering equations
where L̄k+1 is full in general. The problem in (15)
and (16) is of the same form as the overall prob-
lem stated in equations (1) and (2). Therefore, we
can apply the same technique we applied to solve the
original problem, by performing a Cholesky factor of
L̄ to again repose this subproblem as a dynamic esti-
mation problem amenable to Kalman smoothing. In

this way, we nest the recursive solution to the over-
all high-dimensional problem, casting it as a series of
progressively lower dimensional problems. This is the
original contribution of this work.

6 Approximations

6.1 Incomplete Cholesky

While conceptually, a Cholesky factorization of M−1

in (2) provides the dynamics necessary to define
an equivalent recursive smoothing problem, per-
forming such a factorization is computationally pro-
hibitive. The computational cost of computing an
exact Cholesky factor of the block tridiagonal matri-
ces we are considering following the definition given
in Section 3 isO(nn3

b) where n is the number of blocks
on the block diagonal, and nb is the dimension of each
block. For instance, for the fMRI example discussed
previously, n may correspond to 60 time points, and
nb would be the number of voxels in each volume.
In addition to the prohibitive computational cost of
computing the Cholesky factor, fill-in occurs between
the diagonal and off diagonal bands, destroying the
structure of the problem so carefully preserved for
efficiency in the suboptimal Kalman filter design in
(6) through (14). Thus, in keeping with the reduced
order GMRF modeling philosophy, we instead find
an incomplete Cholesky factor, Ginc [2], such that
GTincGinc ≈ L̄. In particular, the incomplete Cholesky
factorization we use maintains the structure of the
nearest-neighbor approximation scheme set up in the
information form Kalman filtering equations.

A range of incomplete Cholesky factorization al-
gorithms appear in the computational linear algebra
literature for preconditioning sparse linear systems.
A problem with most incomplete Cholesky factor-
ization algorithms is that their computational cost,
although smaller than O(nn3

b), is not linear in the
block size. For the problem sizes we are considering,
we seek an incomplete Cholesky factorization with
computational cost linear in the block size.

The prohibitive computation in this process de-
scribed in Section 3 can be traced to the inverse re-
quired for computing every off-diagonal block of the
factor; this inverse is also the operation which leads
to fill-in. For diagonally dominant diagonal blocks,
Gii, this inverse may be well-approximated by the
inverse of each block’s diagonal, which has computa-
tional costO(nnb) rather thanO(nn3

b). This diagonal
approximation to the inverse also imposes the overall
sparsity pattern of the U matrix onto its factor, G.
For applications we have examined, this approxima-

3
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tion is usually reasonable.

6.2 Dynamic and Observation Equa-
tions

Although the exact dynamic reformulation of the
GMRF MAP estimation problem in equations (1)
and (2) is given in Section 3, and the reformulation
is analogous for the incomplete Cholesky factor we
compute, certain operations in the reformulation de-
stroy the structure of the subproblems. In particu-
lar, the inverse in the definition of each Ak destroys
its GMRF structure, making it full in general. Be-
cause Q−1

k is constructed from the multiplication of
two nondiagonal matrices, it is no longer diagonal in
general. As has been the modeling philosophy to alle-
viate similar issues in the rest of this paper, to main-
tain the required sparsity patterns for Q−1

k and Ak,
we make sparse approximations to each. For Q−1

k , we
retain only its diagonal elements. For Ak, we make
the same two-term series expansion approximation
we make to Kk+1 in equation (8) of the Kalman fil-
ter, which again, is a rational approximation to the
inverse which preserves the sparsity pattern of the un-
derlying GMRF model. However, even this approxi-
mation to Ak is not completely adequate for the filter
structure as it is presented in equations (6) through
(14). Specifically, the bandwidth of L̄k+1 will grow in
equation (9). To remedy this issue, the L̄k+1 matrix is
truncated at every step through the filter, preserving
its structure to reflect the original GMRF structure
of the overall problem.

7 Examples

We have implemented our nested recursive approach
to MAP estimation of Markov Random Fields on a
test volume. The small example problem is an edge-
preserving smoothing operation. Three simultaneous
cross-sections of the underlying volume, a sphere of
ones on a background of zeros, are shown in a slice
display format in Figure 1. This underlying volume
is the state, x, we are trying to estimate in equa-
tions (1) and (2). This sphere is observed in white
Gaussian additive noise with diagonal covariance, or
r ∼ (0, R = 1/µI) in equation (1). The observation
is y = x + r, shown in Figure (2). The prior model
for the volume in equation (2) is a 3D GMRF prior
where M−1 is a discrete approximation to the gra-
dient operator weighted by a function of the given
edge process shown in Figure (3), such that the 3D
GMRF prior has a large covariance at the pixels in-
dicated by the edges, and a small covariance at all
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other pixels. In Figure 4, we show an example of our
nested recursive filtering method applied to process-
ing the observed volume shown in Figure 2 given the
normal equations corresponding to the GMRF model
discussed above.
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8 Discussion

In the edge-preserving smoothing example above, we
illustrate 3 concepts. Most importantly, it demon-
strates Kalman filtering as a means for volumetric
data processing. Specifically, it illustrates the idea
of splitting the GMRF neighborhood structure in
3D into an equivalent neighborhood structure in 2D
along with a prior term which depends on the previ-
ous slice of data. This splitting is powerful, and can
be used for multidimensional data where the state
dimension may be much larger. Secondly, for such
an approach, the storage space for the sparse matri-
ces required to define the dynamic and observation
equations in the Kalman filtering grows linearly with
the number of pixels in the volume. Finally, the com-
putation is O(n) rather than O(n3), where n is the
total number of elements in the field. for comput-
ing simultaneously the approximate MAP estimate
of the state as well as the approximate MAP estima-
tion error. These are the primary motivations for the
suboptimal nested recursive filtering approach.

The specific performance of our method depends
on a host of factors, including the degree of diagonal
dominance of the information matrices, and the or-
der of the GMRF being processed. These factors are
consequences of the overall parameterization of the
GMRF. Thus, the parameterization of the GMRF im-
pacts the approximation error of the proposed nested
recursive method. Specifically, for GMRFs enforcing
strong regularization (i.e. for a large local correlation
strength and large neighborhood sizes), approxima-
tion error will be larger. The relationship between
smoothing in the GMRF definition and approxima-
tion error is of practical importance and is a focus of
current investigation.

9 Conclusion

We have combined a recursive interpretation of
GMRF’s with an approximate information form
Kalman filter based precisely on reduced order
GMRF spatial models to develop a nested and ef-
ficient recursive approach to solution of GMRF regu-
larized spatial estimation problems. In particular, we
exploit the specific structure of the overall problem to
reduce a large optimization problem into a series of
dynamic equations amenable to solution by Kalman
filtering techniques. We choose a specific informa-
tion form Kalman filtering technique which allows us
to exploit the sparse banded structure of the informa-
tion matrix to make rational approximations to the
prediction and update step. These approximations
preserve the sparse banded GMRF structure of the
original problem. Preserving this structure allows us
to reformulate subproblems arising in the informa-
tion form Kalman filter as a series of yet smaller dy-
namic equations. This nested recursive structure of
the overall problem is elegant and also serves to make
the solution more efficient. For higher dimensional
problems, preliminary calculations suggest that this
method will save more computation than traditional
techniques for solving spatial estimation problems.
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Abstract. A generalized diffraction tomographic (DT) algorithm is derived for subsurface
imaging from multifrequency multi-monostatic ground penetrating radar (GPR) data. The
algorithm is based on the Born approximation for vector electromagnetic scattering and
incorporates realistic nearfield models for the receiving and transmitting antennas. The forward
scattering model is inverted analytically using the regularized pseudoinverse operator to yield
an algorithm for imaging the underground region based on scattered field measurements at a
set of receiving antennas. Whereas the usual inversion algorithms of DT require a lossless
background medium and ideal point sources and receivers, the algorithm described here allows
an attenuating background and arbitrary transmitting and receiving antennas. The algorithm
places no restrictions on the radar frequency, and can thus include shallow imaging applications
where the wavelengths are on the same order as the depth of buried objects of interest. Versions
of the algorithm are given for both the three dimensional and the 2.5-dimensional cases. Results
are given of computer simulations designed to test the algorithm.

1. Introduction

In this paper we present a new approach for subsurface imaging from multifrequency multi-
monostatic data measurements obtained using ground penetrating radar (GPR) in a reflection
geometry. The method employs a linear scattering model for electromagnetic wavefields
based on the Born approximation, which is inverted analytically to yield an image of the
subsurface based on scattered field measurments. Thus, our imaging algorithm is related to
the well established method ofdiffraction tomography(DT), which is used in various forms
for such applications as optical inverse scattering [15], medical ultrasonic imaging [6, 14],
and geophysical imaging [7, 8, 20, 26–29]. However, in contrast with many applications
of DT [6, 7], in GPR imaging background losses are significant, and evanescent wavefield
components are important since radar wavelengths are often times on the same order as the
depth and size of underground objects of interest [22]. Therefore in this development, unlike
the usual treatments of DT, we incorporate soil attenuation into the mathematical inversions,
and include evanescent components to help combat the restrictions on image resolution
imposed by the relatively low frequencies used. Moreover, we employ realistic nearfield
models for the transmitting and receiving antennas, in contrast with most treatments of DT
that employ ideal point sources and receivers. Our method can be used with bandlimited
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USA. This publication represents research carried out by the author in the doctoral program at Northeastern
University.
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pulses, and can include a constant spatial offset between the transmitter and receiver in each
monostatic experiment.

Several authors have addressed, within the context of DT, the problem of inverse
scattering using multi-monostatic field measurements. In [19] exact inversion formulae,
within the Born approximation, are derived using broadband multi-monostatic measurements
conducted on planar, spherical, and cylindrical surfaces. The authors use an ideal point
source and receiver approximation, and assume the distance to scattering objects is much
greater than a wavelength. This treatment requires transmitted pulses which are not
bandlimited although the authors suggest Wiener filtering as a means to circumvent this
restriction. An iterative, time domain, approach to the multi-monostatic imaging problem is
suggested in [25] based on the Born approximation. The background medium is assumed
to be lossless and nondispersive, and the ideal point source and receiver approximation is
used. In [27] DT algorithms for GPR imaging are derived and tested on experimental data.
The Born approximation is employed, as well as the approximations that the background is
lossless and the distance between antennas and scatterers is much greater than a wavelength.
A target detection algorithm is also given which can incorporate an attenuating background.
Efficient DT imaging methods are described in [29] using multifrequency multi-monostatic
data for both constant and vertically varying backgrounds. Inversion formulae are given
using both the Born and the physical optics approximations, assuming a lossless background
medium and ideal point sources and receivers. With these algorithms the final image is
formed by coherent superposition of subimages from each frequency, whereas we show in
this paper that an optimum multifrequency algorithm must exploit the correlation between
the data at different frequencies.

The approach employed in this paper consists of several steps. We first define a
vector electromagnetic forward scattering model based on the Born approximation, which
incorporates nearfield characteristics of the transmitting and receiving antennas via the
scattering matrix models developed by Kerns [13]. This model then yields a coupled
set of integral equations relating the data at each excitation frequency to the sought after
‘object function’ defining the complex index of refraction profile of the subsurface. After
casting the integral equations in a mathematical operator formalism, we are then able
to find the minimumL2-norm solution to the object function by deriving and applying
the regularized pseudoinverse operator [2, 17, 21]. The method is found to be similar to
filtered backpropagation algorithmsof DT described in the literature [4, 6, 7], and like these
algorithms it is quantitative, and is designed to yield a solution which is mathematically
consistent with the measured data. The inversion is fully analytic, and therefore relatively
efficient to compute.

In section 2 we derive the forward scattering model in detail, then in section 3 we derive
the regularized inversion of this model for the case when the scatterer is three dimensional
and monostatic experiments are conducted over thexy plane defining the ground surface.
In section 4 we modify the three-dimensional method to the 2.5-dimensional case where
the scatterer is invariant in thêy-direction and experiments are conducted along thex̂-axis.
The paper includes computed results from synthetic data in section 5, as well as a discussion
of future directions for the methodology of this paper in section 6.

2. Forward model for electromagnetic scattering

By probing the earth with electromagnetic wavefields we wish to estimate the electrical
permittivity distribution in the underground regionz < 0 from scattered field measurements
at the surfacez = 0 (where the orientation of the coordinate axes is illustrated in figure 1).
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Figure 1. Geometry for multi-monostatic radar imaging.

The incident (probing) fields are generated by a ground penetrating radar (GPR) system
operating in either a pulsed time domain or step frequency mode. Our scattering model is
developed here in the frequency domain, related to the time domain through the standard
Fourier and inverse Fourier transform definitions.

The GPR survey is assumed to consist of a number of monostatic experiments,
each corresponding to a different location of the transmitting/receiving antenna on the
ground surface, and each incorporating data collected over a band of frequenciesω. In
each experiment the scattered field results from the interaction of the incident field with
inhomogeneities in the subsurface, described by theobject function

O(r, ω) = 1 − ε(r, ω)

ε0(ω)
.

Here, r = (x, y, z) is the three-dimensional spatial coordinate andε(r, ω) = ε′(r, ω) +
iσ(r, ω)/ω is the complex permittivity in the underground, i.e. the soil with the embedded
inhomogeneities. The quantityε′(r, ω) is the real dielectric constant andσ(r, ω) is the
conductivity, whileε0(ω) is the complex permittivity of the homogeneous background soil
medium. It is assumed that the magnetic permeability in the underground is equal toµ0 in
a vacuum. Throughout the discussion, MKS units are used.

The Fourier amplitude of the electric field vector generated in any given experiment
satisfies the well known Lippmann Schwinger equation [3, 11, 16]

E(r, ω) = Einc(r, ω) + Escat(r, ω)

= Einc(r, ω) − k2
0(ω)

∫
d3r ′ Ḡ(r − r′, ω) · E(r′, ω)O(r′, ω)

(1)

whereEinc(r, ω) is the incident field for the experiment,Escat(r, ω) is the scattered field
component of the electric field vector,k0(ω) = ω

√
ε0(ω)µ0 is the complex wavenumber of

the homogeneous background soil medium, and the Green’s dyadicḠ(r, ω) satisfies

∇ × ∇ × Ḡ(r, ω) − k2
0(ω)Ḡ(r, ω) = Īδ(r).

In the above equation the scattering effects of the air–soil surface interface are ignored but
could, in principle, be incorporated in the Green’s dyadic.

The Born approximation to the electric field is the leading term in the Liouville Neumann
expansion of the solution of the above integral equation and results in the following
expression for the scattered field component of the electric field vector [7, 16]:

Escat(r, ω) = −k2
0(ω)

∫
d3r ′ Ḡ(r − r′, ω) · Einc(r

′, ω)O(r′, ω). (2)
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It is evident that the Born approximation results in the replacement of the total fieldE(r′, ω)

within the r′ integration by the incident fieldEinc(r
′, ω). Thus, the Born approximation

is valid for applications where multiple scattering effects can be neglected. The Born
approximation is convenient for us because it allows a linear relation betweenO(r, ω) and
Escat(r, ω), which will generally be easier to invert than the nonlinear equation (1), where
Escat(r, ω) appears implicitly both on the left-hand side and within ther′ integration. It
has been shown [24] that DT using the Born approximation is adequate for quantitatively
reconstructing objects with roughly(

0.8 6
∣∣∣∣ε(r, ω)

ε0(ω)

∣∣∣∣ 6 1.2

)
or a 20% contrast, when the object size is on the order of a wavelength. This size-to-
wavelength ratio is not unrealistic for GPR imaging, therefore the Born approximation
should not be overly restrictive. Generally, as the object size decreases the allowable
contrast increases. Thus, our algorithm is suitable not only for imaging larger weak
scatterers, but also for imaging smaller diameter strong scatterers such as metal pipes.
The Born approximation is often used, either implicitly or explicitly, for inverse problems
in geophysics [7, 20, 26, 27] and it is assumed to be valid throughout this discussion.

To incorporate the characteristics of the transmitting and receiving antennas into the
scattering equation, we first transform equation (2) into the spatial frequency domain,
and then use Kerns’ antenna scattering matrix formulation [13] to model the near-field
interactions between antennas and scatterers. To convert equation (2) to the spatial frequency
domain we employ theplane wave expansionfor the Green’s dyadic [3]

Ḡ(r − r′, ω) = i

8π2

∫ ∞

−∞

d2K

γ (K, ω)

[
Ī + k+(ω)k+(ω)

k2
0(ω)

]
eik+(ω)·(r−r′) (3)

where we have assumedz > z′ and whereK = Kxx̂ + Ky ŷ is the spatial frequency
variable, k+(ω) = K + γ (K, ω)ẑ is the wave vector for each planewave eik+(ω)·(r−r′)

in the expansion, andγ (K, ω) = ±
√

k2
0(ω) − K · K with the sign chosen to render

=(γ ) > 0. For the lossless case (realk0) the above plane wave expansion includes both
homogeneous(propagating) plane waves (|K| 6 k0) having purely real wave vectorsk+(ω)

andevanescent(non-propagating) plane waves (|K| > k0) whose wave vectors are complex
and which decay exponentially with increasing(z − z′). In the lossy case treated here
(complexk0) all plane waves will have complex wave vectors, however those corresponding
to the higher spatial frequency range|K| > <[k0] will decay quickest with increasing
(z − z′). Thus, in the lossy case the term ‘evanescent’ is often applied to planewaves
corresponding to the range|K| > <[k0]. In most formulations of DT the evanescent waves
are discarded [7] since it is tacitly assumed that the measurements are conducted more than
several wavelengths from the scatterers, i.e.(z − z′) � 2π

<[k0] . In GPR imaging we should
not discard evanescent components since objects of interest may be near the surface and
wavelengths are relatively long (for adequate penetration), and therefore evanescent waves
may contain valuable information [22].

We substitute equation (3) into equation (2) and evaluate the resulting expression atz = 0
to find the scattered electric field at the ground surface. We then convert this expression
to the spatial frequency domain by Fourier transforming relative to theX = xx̂ + yŷ
coordinate to obtain

Ẽscat(K, ω) = 1

(2π)2

∫ ∞

−∞
d2X e−iK·X [Escat(r, ω)]z=0
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= −ik2
0(ω)

8π2γ (K, ω)

∫
z′<0

d3r ′ e−ik+(ω)·r′
[
Ī + k+(ω)k+(ω)

k2
0(ω)

]
· Einc(r

′, ω)O(r′, ω).

(4)

Using Kerns’ scattering matrix formulation, a transmitting antenna centred at a position
Xj ≡ xj x̂ + yj ŷ on the ground surface and driven by matched terminal voltageC(ω) will
give rise to the following plane wave expansion for the incident electric field propagating
in the negativêz-direction: [13, 23]

Einc(r, ω) = C(ω)

∫ ∞

−∞
d2K0 e−iK0·Xj S10(K0, ω)eik−

0 (ω)·r (5)

whereK0 = K0xx̂+K0y ŷ andk−
0 (ω) = K0−γ (K0, ω)ẑ. Similarly, the matched terminal

voltage at a receiver centred atXj (a monostatic experiment) is given by [13, 23]

V (ω; Xj) =
∫ ∞

−∞
d2K eiK·Xj S01(K, ω) · Ẽscat(K, ω). (6)

In equations (5) and (6),S10 and S01 are off-diagonal scattering matrix coefficients for
the antennas, with each vector component corresponding to a Cartesian electric field
polarization. It should be emphasized that equations (5) and (6) are valid in the nearfield
of the antennas, thus, we need not make the point source approximation typical to other
inversion algorithms of diffraction tomography. If the transmitting and receiving antennas
are reciprocal, as would be the case for a typical monostatic radar system, then [13, 23]

Y0(ω)S01(K, ω) = γ (K, ω)

ωµ0
S10(−K, ω) (7)

whereY0 is the antenna terminal admittance.
Combining equations (4)–(7), the measured voltageV (ω) for a single monostatic

experiment with the transmitter/receiver centred atXj is:

V (ω; Xj) = P(ω)

∫ ∞

−∞
d2K

∫ ∞

−∞
d2K0 e−i(K0−K)·Xj B(K, K0; ω)

×
∫ 0

−∞
dz′ e−i[γ (K,ω)+γ (K0,ω)]z′

∫ ∞

−∞
d2X′ e−i(K−K0)·X ′

O(r′) (8)

where

B(K, K0; ω) ≡ S10(−K, ω) ·
[
Ī + k+(ω)k+(ω)

k2
0(ω)

]
· S10(K0, ω)

and

P(ω) = −iC(ω)k2
0(ω)

8π2ωY0(ω)µ0
.

If the receiver in each experiment is spatially offset from the transmitter by a constant
amountX0, then we must multiplyB(K, K0; ω) given above by the factor eiK·X0.

Notice that in equation (8) the object function is expressed as a frequency independent
(dispersionless) quantityO(r, ω) = O(r). This assumption, although not necessary, allows
us to couple the measured data at each frequency, thus, incorporating more information
into the mathematical inversions and leading to ‘better’ solutions for the object function.
There are alternatives to this approach that will work using the methodology of this paper,
including: (i) solve for the frequency dependent object functionO(r, ω) independently
at each single radar frequency; (ii) treat the object function as the product of a known
frequency dependent factor2(ω) and an unknown frequency independent factorO(r),
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then incorporate the known function2(ω) into P(ω) given above, subsequently solving for
the unknownO(r) in the standard manner discussed below. In any case, we note that the
assumption of a dispersionless object function in GPR is common (e.g. [27]) and models
many important applications over relatively large frequency bands.

A typical GPR survey consists of multiple experiments, each corresponding to a different
positionXj for the transmitting/receiving antennas, thus we have a coupled set of equations,
each in the form of equation (8). The objective of the present work is to estimate the
object functionO(r) by inverting the coupled equations using the regularized pseudoinverse
formula as described below.

3. Data inversion for three-dimensional surveys

In this section we construct a mathematical operator formalism for the coupled set of
equations (8), where each equation corresponds to a different transmitter/receiver position.
This mathematical framework allows us to use well known linear inversion methods to
analytically solve for the object function in terms of the measured data.

We consider a three-dimensional survey where a series of monostatic experiments are
performed over the ground surface at evenly spaced locations corresponding to points on
a two-dimensional grid. For each experiment we store data fromN different excitation
frequenciesωn. If the grid spacing is small enough to satisfy the Nyquist sampling
criterion for the voltage measurements, we can treat the transmitter/receiver position as
a continuous variableX = (x, y) (below we discuss the spatial sampling requirements in
further detail). Thus, from equation (8) the measured voltage as a function of frequency
and transmitter/receiver position is

V (ωn; X) = P(ωn)

∫ ∞

−∞
d2K

∫ ∞

−∞
d2K0 e−i(K0−K)·XB(K, K0; ωn)

×
∫ 0

−∞
dz′ e−i[γ (K,ωn)+γ (K0,ωn)]z′

∫ ∞

−∞
d2X′ e−i(K−K0)·X ′

O(r′).

We make the change of variablēK = K − K0, and drop the bar notation on̄K to yield

V (ωn; X) =
∫ ∞

−∞
d2K eiK·XP(ωn)

∫ ∞

−∞
d2K0 B(K + K0, K0; ωn)

×
∫ 0

−∞
dz′ e−i[γ (K+K0,ωn)+γ (K0,ωn)]z′

∫ ∞

−∞
d2X′ e−iK·X ′

O(r′). (9)

We now spatially Fourier transform equation (9) with respect to theX variable to obtain

Ṽ (ωn; K) ≡ 1

(2π)2

∫ ∞

−∞
d2X e−iK·XV (ωn; X)

= P(ωn)

∫ ∞

−∞
d2K0 B(K + K0, K0; ωn)

×
∫ 0

−∞
dz′ e−i[γ (K+K0,ωn)+γ (K0,ωn)]z′

∫ ∞

−∞
d2X′ e−iK·X ′

O(r′). (10)

It is important to define Hilbert spaces for the various quantities entering into
equation (10) and to express this equation in compact operator formalism. Thus, we
introduce the vector spaceU of object functionsO(r) and the vector spaceY of transformed
measured voltages̃V (ωn; K). We will employ the standardL2-inner products in both spaces
and will assume the elements of each space to have finiteL2-norms, i.e.
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• O(r) ∈ U , whereU is the space of square integrable functions on−∞ < (x, y) < ∞,
−∞ < z < 0;

• Ṽ (ωn; K) ∈ Y , whereY is the direct product space of square integrable functions
on −∞ < (Kx, Ky) < ∞ with the finite-dimensional vector spaceY0 of functions of the
discrete variableωn.

With these definitions we can write equation (10) in the compact form

Ṽ (ωn; K) = HO(ωn; K) (11)

whereH is a linear operator which mapsU into Y .
Our goal is to find the object functionO(r′) which satisfies the set of equations (11).

Since we use only a finite number of excitation frequencies, the set of equations (11)
are underdetermined so that there are an infinite number of object functions which will
produce the data. The minimumL2-norm solution is approximately found by applying the
regularized pseudoinverse operator [1, 2, 12, 17] to the data, i.e.

Ôβ(r) = H †[HH † + βI ]−1Ṽ (r) (12)

whereH † is the Hermitian adjoint ofH . In the limit asβ goes to zero,Ôβ(r) is equal to the
minimum L2-norm solution to equation (11)†. The numberβ is known as the Tikhonov–
Phillips regularization parameter [21, 17], and is necessary to stabilize the inversion against
noise from measurements or numerical truncations. The regularization parameter is also
necessary in the event that(HH †)−1 does not exist. Generally there is a tradeoff between
selectingβ small enough such that̂Oβ(r) approximately satisfies the data yet large enough
that the inversion is stable, and typicallyβ is selected by trial and error. We show below that
equation (12) is in the form of a filtered backpropagation operation, where [HH † + βI ]−1

is the filtering operator and theH † is a coherent sum over frequencies of the filtered,
backpropagated, data.

Before proceeding with the inversion algorithm, we should make several comments
about our solution strategy. First, in GPR imaging there will be a significant amount of
noise associated both with the receiver electronics and scattering from ground clutter, and
this noise may profoundly affect computed solutions. One can modify equation (11) to
include this additive noise componentn explicitly as follows:

Ṽ = HO + n.

The minimum variance (Wiener filtering) solution [2, 12] to this equation is

ÔW = RV H †[HRV H † + Rn]−1Ṽ (13)

where Ṽ and n are assumed to be zero-mean random processes having covariancesRV

andRn, respectively. IfṼ andn are Gaussian white processes with variancesσ 2
V andσ 2

n ,
respectively (the Gaussian white assumption may be sensible if no other information is
available), then equation (13) reduces to [2, 12]

ÔW = H †[HH † + σ 2
n /σ 2

V ]−1Ṽ . (14)

Note that equations (12) and (14) are identical forβ = σ 2
n /σ 2

V , and thus we expect that
the optimum value forβ in Tikhonov–Phillips regularization is roughly proportional to

† In practice one does not have access to an infinite number of monostatic measurements, rather the received
voltage is sampled at discrete spatial intervals over a finite area of thexy plane. Representing this sampled voltage
asV̄ = RF−1Ṽ = RF−1HO, whereR is the sampling operator andF−1 is the inverse Fourier transform, we can
show thatÔβ=0 from equation (12) is also the minimumL2 norm solution toV̄ = RF−1HO if the linear operator
(RF−1) can be inverted. In practice,(RF−1) can be inverted if the Nyquist sampling criterion is satisfied and the
spatial extent of the sampling area is large relative to the support region dimensions (depth and horizontal) of the
object function.
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the noise variance. Note that there are other robust alternatives to Tikhonov–Phillips
regularization and Wiener filtering, for example the reduced rank pseudoinverse operator
[1, 10]. We choose the method of Tikhonov–Phillips regularization because it allows us to
derive analytical formulae.

Let us now analytically expand the operator notation in equation (12) to obtain explicitly
the pseudoinverse solution. Given the vector space definitions, the Hermitian adjointH † of
H maps the spaceY onto the spaceU so that

〈HOβ, Ṽ 〉Y = 〈Oβ, H †Ṽ 〉U .

From this inner product relation the action ofH † is found to be

H † ˆ̃
V (r′) ≡ Ôβ(r′) =

N∑
n=1

P ∗(ωn)

∫ ∞

−∞
d2K ′

∫ ∞

−∞
d2K ′

0 B∗(K ′ + K ′
0, K

′
0; ωn)

×ei[γ ∗(K ′+K ′
0,ωn)+γ ∗(K ′

0,ωn)]z′
eiK ′·X ′ ˆ̃

V (ωn; K ′) (15)

where the (∗) denotes the complex conjugate,r′ = (X ′, z′), and where we have added a ‘hat’
to Ṽ for later notational purposes. In typical filtered backpropagation algorithms [4, 6, 7] the
backpropagation operation is the adjoint of the forward propagation. Similarly, each term in
the summation in equation (15) is the adjoint of the forward scattering operator at a single
excitation frequency. Because of this analogy, we refer to each term in the summation as
a backpropagation, although this is not true in the usual sense.

Let us now consider the operatioñ̂V = [HH † + βI ]−1Ṽ , which corresponds to the

filtering operation in standard DT filtered backpropagation algorithms, whereˆ̃
V is the filtered

data andṼ is the raw, unfiltered, data. From equations (10) and (15), the inverse of the
filtering operation is

Ṽ (ωm; K) = [HH † + βI ] ˆ̃
V (ωm; K)

=
N∑

n=1

P(ωm)P ∗(ωn)

∫ ∞

−∞
d2K ′ ˆ̃

V (ωn; K ′)

×
∫ ∞

−∞
d2K0

∫ ∞

−∞
d2K ′

0 B(K + K0, K0; ωm)B∗(K ′ + K ′
0, K

′
0; ωn)

×
∫ 0

−∞
dz′ e−i[γ (K+K0,ωm)+γ (K0,ωm)−γ ∗(K ′+K ′

0,ωn)−γ ∗(K ′
0,ωn)]z′

×
∫ ∞

−∞
d2X′ e−i(K−K ′)·X ′

+ β
ˆ̃
V (ωm; K).

The integral overX ′ reduces to a Dirac delta function, and the integral overz′ can be
solved since=(γ ) > 0, therefore

Ṽ (ωm; K) =
N∑

n=1

Rmn(K)
ˆ̃
V (ωn; K) + β

ˆ̃
V (ωm; K)

where

Rmn(K) =
∫ ∞

−∞
d2K0

∫ ∞

−∞
d2K ′

0

× 4iπ2P(ωm)P ∗(ωn)B(K + K0, K0; ωm)B∗(K + K ′
0, K

′
0; ωn)

[γ (K + K0, ωm) + γ (K0, ωm) − γ ∗(K + K ′
0, ωn) − γ ∗(K ′

0, ωn)]
(16)
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For each value ofK this set of equations can be written in the matrix notation
Ṽ (ω1; K)

Ṽ (ω2; K)
...

Ṽ (ωN ; K)

 =


R11(K) + β R12(K) · · · R1N(K)

R21(K) R22(K) + β · · · R2N(K)
...

...
. . .

...

RN1(K) RN2(K) · · · RNN(K) + β




ˆ̃
V (ω1; K)
ˆ̃
V (ω2; K)

...ˆ̃
V (ωN ; K)


(17)

which can be inverted by standard methods of linear algebra to yield the filtered dataˆ̃
V in

terms of the raw, unfiltered datãV . The regularized pseudoinverse solutionÔβ(r) can then
be found by operating on the filtered data by the backpropagation operatorH † as given in
equation (15).

As an example of the object function reconstruction, let us consider the case where
there are two radar frequenciesω1 andω2. Inverting the 2× 2 version of equation (17), we
have the following solutions for the filtered data:

ˆ̃
V (ω1; K) = (R22(K) + β)

1(K)
Ṽ (ω1; K) − R12(K)

1(K)
Ṽ (ω2; K)

and

ˆ̃
V (ω2; K) = −R21(K)

1(K)
Ṽ (ω1; K) + (R11(K) + β)

1(K)
Ṽ (ω2; K)

where

1(K) = [R11(K) + β][R22(K) + β] − R21(K)R12(K).

According to equation (12), we then reconstruct the object functionÔβ(r) by
backpropagating the filtered data using equation (15) withN = 2.

4. Data inversion for 2.5-dimensional surveys

The 2.5-dimensional case corresponds to assuming a two-dimensional object function
O(x, z), invariant in theŷ-direction, but fully three-dimensional incident and scattered
wavefields. We can treat the 2.5-dimensional case in a manner completely analogous to
the three-dimensional analysis of section 3. Whereas for the three-dimensional case we
conducted a series of monostatic experiments over a two-dimensional grid on thexy plane,
here we conduct experiments at intervals along a one-dimensional line corresponding to the
x̂-axis. From the scattered field measurements we wish to reconstruct the object function
O(x, z). The receiver voltage for each experiment is related to the object function by
equation (8). We emphasize that the antennas are three dimensional, such that the incident
and scattered electric fields vary in three dimensions and have three Cartesian polarizations.

For each experiment we store data fromN different excitation frequenciesωn. We
assume the interval spacing along thex̂-axis is small enough to satisfy the Nyquist sampling
criterion for the voltage measurements, thus we can treat the measured voltageV (ωn; x) as
a function of the continuous variablex (the discussion of the sampling requirements from
the footnote in section 3 is valid here also). The data are defined as the spatial Fourier
transform relative to thex coordinate of the measured voltage. By methods similar to the
three-dimensional analysis, these data are found to be

Ṽ (ωn; Kx) ≡ 1

2π

∫ ∞

−∞
dx e−iKxxV (ωn; x)
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= 2πP (ωn)

∫ ∞

−∞
d2K0 B(Kxx̂ + K0, K0; ωn)

∫ 0

−∞
dz′ e−i[γ (Kx x̂+K0,ωn)+γ (K0,ωn)]z′

×
∫ ∞

−∞
dx ′ e−iKxx

′
O(x ′, z′) = AO(ωn; Kx). (18)

Here we use the Hilbert space definitions;
• O(x, z) ∈ W , whereW is the space of square integrable functions on−∞ < x < ∞,

−∞ < z < 0;
• Ṽ (ωn; Kx) ∈ Z, whereZ is the direct product space of square integrable functions

on −∞ < Kx < ∞ with the finite-dimensional vector spaceY0 of functions of the discrete
variableωn;

• A is a linear operator which mapsW into Z.
We seek the regularized pseudoinverse solution for the object function

Ôβ(x, z) = A†[AA† + βI ]−1Ṽ (x, z)

= A† ˆ̃
V (x, z).

(19)

Given the vector space definitions, the adjoint ofA is specified by the action

A† ˆ̃
V (x ′, z′) ≡ Ôβ(x ′, z′) =

N∑
n=1

2πP ∗(ωn)

∫ ∞

−∞
dK ′

x

∫ ∞

−∞
d2K ′

0 B∗(K ′
xx̂ + K ′

0, K
′
0; ωn)

×ei[γ ∗(K ′
x x̂+K ′

0,ωn)+γ ∗(K ′
0,ωn)]z′

eiK ′
xx

′ ˆ̃
V (ωn; K ′

x). (20)

The filtered dataˆ̃
V and the raw, unfiltered, datãV are related by the filtering relation

ˆ̃
V = [AA† + βI ]−1Ṽ , which is expanded by combining equations (18) and (20) and
evaluating thex ′ and z′ integrals as in section 3. In this manner we obtain the following
relation between the filtered and unfiltered data:

Ṽ (ωm; Kx) =
N∑

n=1

Qmn(Kx)
ˆ̃
V (ωn; Kx) + β

ˆ̃
V (ωm; Kx) (21)

where

Qmn(Kx) =
∫ ∞

−∞
d2K0

∫ ∞

−∞
d2K ′

0

× 8iπ3P(ωm)P ∗(ωn)B(Kxx̂ + K0, K0; ωm)B∗(Kxx̂ + K ′
0, K

′
0; ωn)

[γ (Kxx̂ + K0, ωm) + γ (K0, ωm) − γ ∗(Kxx̂ + K ′
0, ωn) − γ ∗(K ′

0, ωn)]
.

For each value ofKx , equation (21) can be written in the matrix notation
Ṽ (ω1; Kx)

Ṽ (ω2; Kx)
...

Ṽ (ωN ; Kx)

=


Q11(Kx) + β Q12(Kx) · · · Q1N(Kx)

Q21(Kx) Q22(Kx) + β · · · Q2N(Kx)
...

...
. . .

...

QN1(Kx) QN2(Kx) · · · QNN(Kx) + β




ˆ̃
V (ω1; Kx)ˆ̃
V (ω2; Kx)

...ˆ̃
V (ωN ; Kx)


(22)

which can be inverted by standard methods of linear algebra to yield the filtered dataˆ̃
V in

terms of the raw, unfiltered datãV . The regularized pseudoinverse solutionÔβ(r) can then
be found by operating on the filtered data by the operatorA† as given in equation (20).
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5. Computed results from synthetic data

We present here the results of computer simulations designed to test the reconstruction
algorithm. For simplicity, we treat the two-dimensional problem where the transmitted
electric field has only ây polarization, and the antennas and scatterers do not vary in the
ŷ-direction†. Thus,K = Kx̂, K0 = K0x̂, X = xx̂, andS10(K, ω) = S10(K, ω)ŷ. Using
this two-dimensional model, we can simplify all results in sections 2 and 3 by converting
vector quantities to scalars, reducing by one the-dimensions of all integrations overK, K0,
andr, and changing some constant factors.

Figure 2. Original object function for frequency domain simulations.O(x, z) = 0.2 within the
cross region at all frequencies.

More explicitly, the forward model for the two-dimensional case can be shown to be

Ṽ (ωn; Kx) = 2πP (ωn)

∫ ∞

−∞
dK0 B(Kx + K0, K0; ωn)

∫ 0

−∞
dz′ e−i[γ (Kx+K0,ωn)+γ (K0,ωn)]z′

×
∫ ∞

−∞
dx ′ e−iKxx

′
O(x ′, z′). (23)

As we discussed in the previous sections, the object function is reconstructed by a
filtered backpropagation algorithm. The filtering operation consists of inverting the matrix
equation (22) for each value ofKx where, for the two-dimensional case, the matrix elements
can be shown to be

Qmn(Kx) =
∫ ∞

−∞
dK0

∫ ∞

−∞
dK ′

0

× 8iπ3P(ωm)P ∗(ωn)B(Kx + K0, K0; ωm)B∗(Kx + K ′
0, K

′
0; ωn)

[γ (Kx + K0, ωm) + γ (K0, ωm) − γ ∗(Kx + K ′
0, ωn) − γ ∗(K ′

0, ωn)]
. (24)

† In practice, this model will be valid for one-dimensional linear antennas, and scatterers that vary slowly in the
ŷ-direction.
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Figure 3. Magnitude of the filter versus spatial frequencyKx andβ = 10−3, 10−6, 10−9 for a
single frequency simulation withλ = 1.5 m.

Figure 4. Pseudoinverse reconstruction based on a single excitation frequency corresponding to
λ = 1.5 m. The penetration depth in the soil is 3 m.

Once the data is filtered, the object function is reconstructed by the following two-
dimensional backpropagation, analogous to equations (15) and (20):

Ôβ(x ′, z′) =
N∑

n=1

2πP ∗(ωn)

∫ ∞

−∞
dK ′

x

∫ ∞

−∞
dK ′

0 B∗(K ′
x + K ′

0, K
′
0; ωn)

×ei[γ ∗(K ′
x+K ′

0,ωn)+γ ∗(K ′
0,ωn)]z′

eiK ′
xx

′ ˆ̃
V (ωn; K ′

x). (25)

Figure 2 shows a purely real two-dimensional object functionO(x, z) which is
embedded in a soil background having a penetration depth of 3 m at all frequencies. The
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Figure 5. Pseudoinverse reconstruction based on nine different excitation frequencies
corresponding to 0.375 m < λ < 3.375 m. The penetration depth in the soil is 3 m for all
frequencies.

Figure 6. Cross sections atx = 0 for pseudoinverse reconstructions computed from 9, 15, and
24 frequencies corresponding to 0.375 m< λ < 3.375 m.

value of the object function isO(x, z) = 0.2 within the cross region at all frequencies,
therefore the dielectric contrast isε(r,ω)

ε0(ω)
= 0.8. The antennas are characterized as being

fairly directional, with (two-dimensional scalar) transmitting coefficients given by†

S10(K, ω) = e−a(ω)K2

γ (K, ω)
(26)

† For comparison, it can be shown from the planewave expansion of the Green’s dyadic in equation (3) that a thin
linear antenna, exciting an omni-directional field, will have the transmitting coefficientS10(K, ω) = 1/γ (K, ω).
The exponential numerator in equation (26) makes the antenna directional.
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Figure 7. Error = ∫
d2r |O(r) − Ôβ(r)|2 versus number of frequencies used in the

reconstruction. Frequencies correspond to the range 0.375 m< λ < 3.375 m.

where a(ω) is a constant chosen such that e−a(ω)[<(k0)]2 ≈ 1
10. For each simulation, the

synthetic data are obtained by numerically applying equation (23) to the object of figure 2.
We initially compute a reconstruction based on a single radar frequency corresponding

to the wavelengthλ = 1.5 m. To accomplish this task we first filter the data according to
the equation

ˆ̃
V (ω1; Kx) = Ṽ (ω1; Kx)

Q11(Kx) + β
(27)

(with Q11(Kx) given in equation (24)) which is the inverse of the 1× 1 version of
equations (22). The minimum norm reconstruction is then obtained by backpropagation
as defined by equation (25) withN = 1. The magnitude of the filter 1/(Q11(Kx) + β)

is plotted versus the spatial frequencyKx in figure 3 for several different values of the
regularization parameterβ. It is evident that this filter tends to amplify the high spatial
frequency components of the data relative to the low frequency components. Without
regularization, high frequency components from additive noise will be amplified without
bound, thus leading to unstable inversions. By using a non-zeroβ this amplification is
limited, thus stabilizing the inversion. The real part of the minimum norm reconstruction
is shown in figure 4, whereβ = 1e − 9 was chosen by trial and error. The criterion used
in the selection ofβ was that both the original object of figure 2 and the reconstruction of
figure 4 should yield nearly identical data since they are both solutions to equation (23).
Note from figure 4 that the outline of the original object function is evident, however, there
is considerable periodic ambiguity in the image.

Next we compute a reconstruction based on nine frequencies corresponding to
0.375 m < λ < 3.375 m using theN = 9 versions of equations (25) and (22). The
regularization parameter is set toβ = 1e − 9, as before. It can be noted from the real part
of the reconstruction, shown in figure 5, that by using multiple frequencies the periodic
ambiguity observed in figure 4 is diminished, and we obtain a fairly good representation
of the original scattering object. In figure 6 we plot the cross section of figure 5 along
the linex = 0, as well as cross sections from reconstructions using 15 and 21 frequencies
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Figure 8. (a) Real part of the datãV (ωn; Kx) corresponding toλ = 1.125 m as computed from
equation (23) on both the original object of figure 2 and the reconstruction of figure 5 computed
with nine frequencies. (b) The same plot as (a), for data from the frequency corresponding to
λ = 2.25 m.

corresponding to the range 0.375 m < λ < 3.375 m. It is evident that increasing the
number of frequencies leads to a significant quantitative improvement. This concept is
also supported by figure 7, which shows decreasing error= ∫

d2r|O(r) − Ôβ(r)|2 with
increasing numbers of frequencies corresponding to the range 0.375 m< λ < 3.375 m.

As a test that the minimum norm reconstruction is consistent with the data, and therefore
satisfies equation (23), we implement the forward scattering relation of equation (23)
on both the original object function of figure 2 and the reconstructed object function of
figure 5 computed from nine frequencies. The real part of the dataṼ (ωn; Kx) is plotted in
figures 8(a) and (b) for both the original and reconstructed object functions, at two of the
nine frequencies corresponding toλ = 1.125 m andλ = 2.25 m (to avoid redundancy, data
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from all the frequencies are not plotted). Based on the excellent match obtained between
data from the original and reconstructed objects at all frequencies (the plots are almost
completely overlapping in the scale shown), we conclude that the reconstruction in figure 5
is consistent with the data, as expected.

6. Discussion

In this paper we derived a direct, non-iterative, inversion formula for multi-monostatic GPR
data which was tested successfully on synthetic radar data. To solve this problem we cast the
forward scattering relation in a mathematical operator framework, allowing computationally
efficient, analytical expressions to be found for both the adjoint and pseudoinverse operators.
This type of approach has been used with similar success in other tomographic imaging
applications [4], and we anticipate future uses as well.

We mentioned above that significant noise will be inevitable in realistic GPR imaging
applications. In preliminary studies, we have verified that our algorithm is robust in the
presence of both additive noise at receivers, and noise due to scattering from ground clutter.
In these noisy simulations, the results were quite sensitive to the value of the regularization
parameterβ, as expected. In a future publication we plan to present the results of these
noisy simulations, as well as results using experimental GPR data.
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Abstract 

A rigorous three-dimensional (3-D) electromagnetic model is developed to analyze the 

scattering from anti-personnel (AP) nonmetallic mine-like target when it is buried near a clutter 

object under two-dimensional (2-D) random rough surfaces. The Steepest Descent Fast 

Multipole Method (SDFMM) is implemented to solve for the unknown electric and magnetic 

surface currents on the ground surface, on the target and on the clutter object. A comprehensive 

numerical investigation of two clutter sources; the ground roughness and the nearby benign 

object, is presented based on using more than 800 random rough surface realizations which could 

not be achieved without using fast algorithms such as the SDFMM. The statistics of the scattered 

near-electric fields are computed using the Monte Carlo simulations for both polarizations. For 

the parameters used here, the results show that the average and the standard deviation of the 

target signature represent 5-7% and 3-3.5% of the total scattered signal, respectively, while they 

represent 16-20% and 7-12% of the signal for the clutter object, respectively. This study 

indicates the high possibility of a false alarm during the detection process when the target is 

located nearby a realistic object such as a piece of a tree root. 
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Key words: Multiple buried objects, subsurface sensing, rough surface scattering, SDFMM, 

Monte Carlo simulations, clutter statistics. 

I. INTRODUCTION 

Electromagnetic sensing of targets buried in soil with two-dimensional random rough surface 

necessitates the investigation of clutter sources that may cause false alarms in the detection 

process. In real minefields, there are a variety of clutters that can easily obscure the signal of the 

target such as: the roughness of the ground, nearby benign objects (e.g., tree roots, rocks, etc.), 

spots of concentrated inhomogeneity in the soil, etc. Detecting small anti-personnel nonmetallic 

mines is very difficult as it is, but proximity of clutter objects obscures target detection 

considerably. 

The statistics of the scattered waves from the random rough ground were previously 

investigated in the literature either analytically, [1]-[4], or computationally using the Monte 

Carlo simulations, [5]-[10]. The challenging part of conducting the Monte Carlo simulations is 

to run a 3-D computer code hundreds of times when the rough ground has large electrical size 

and contains multiple penetrable objects buried under the interface. In [1]-[4], integral 

expressions were developed to calculate the incoherent radar cross section (RCS) of the rough 

ground (no buried objects). These integrations were basically obtained by considering the 

ground heights and slopes as random variables producing analytic closed forms in some cases 

(e.g. at high frequency). On the other hand, conducting the Monte Carlo numerical simulations 

were used to obtain the incoherent RCS of the rough surface without buried objects in [5]-[8], to 

obtain the RCS and/or the angular correlation function of a PEC sphere buried under the rough 

interface [9], and to obtain the statistical average of the scattered near-fields when a penetrable 

object was buried under the interface in [10]. 
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In our previous work [10] and [11], we implemented the Steepest Descent Fast Multipole 

Method (SDFMM) [6], [12] to investigate the effect of the ground roughness on the signature of 

a single target buried under the ground. The O(N) computational complexity of the SDFMM 

accelerated the calculations of the unknown surface currents on the shallow mine-like object 

buried beneath a moderately random rough ground especially in conducting the Monte Carlo 

simulations. Similarly, to study the influence of the ground roughness (with no buried targets) 

on the scattered signals for different minefields, the SDFMM was used to run the Monte Carlo 

simulations from Puerto-Rican and Bosnian soils [13]. 

To the best of our knowledge, no work is published for investigating the statistics of multiple 

objects buried under the 2-D random rough ground, which is the objective of this paper. In [14], 

rigorous generalized electromagnetic formulations were developed for scattering from multiple 

objects buried under the rough ground, where the SDFMM was implemented to speed up the 

computations. A parametric investigation is conducted in [14] to study the effect on the 

scattered signature due to the objects proximity, ground roughness, object’s material, shape, 

location, etc. A variety of object shapes were studied in [14], e.g., one object is spheroid and the 

second object is ellipsoid, spheroid, disk, or horizontal cylinder. 

In this paper, we are using the Monte Carlo simulations to conduct a statistical study of mine-

like dielectric target’s signature versus the clutter signature due to both the ground roughness 

and a benign object as shown in Fig. 1. Even though, we are emphasizing here only on these 

two types of clutter, however, there are additional types of clutter that may significantly affect 

the target signature such as the soil inhomogeneities and the multilayered nature of the ground, 

which are not accounted for in this work. According to the United States Department of Defense 

data (US DoD), European agencies and others, it is a fact that there are hundreds of different 
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types, shapes and manufacturers of the AP-plastic mines. This is one of the reasons that these 

mines are difficult to detect. In this work, we are not modeling a specific type of these mines but 

instead modeling a plastic-mine-like target that has a shape very close to an oblate spheroid. 

Several examples of spheroid-shape types can be obtained from the US DoD CD-ROM 

Humanitarian Demining Equipment database. 

In Section II the formulations of the electromagnetic model developed in [14] are 

summarized, numerical results are shown in Section III and conclusions are drawn in Section 

IV.  

II. PROBLEM FORMULATIONS 

The rigorous electromagnetic model developed in [14] is employed in this work to conduct 

the Monte Carlo simulations for two objects buried under the 2-D random rough ground as 

shown in Fig. 1. The inhomogeneous scatterer is composed of four different regions; air 1R , 

ground 2R , target 3R  and clutter object 4R  where the relative permittivity and permeability are 

( )11,µε , ( )22 ,µε , ( )33 ,µε  and ( )44 ,µε , respectively, as shown in Fig. 2a. The unknown 

equivalent electric and magnetic surface currents are ( 11, MJ ) on 1S , ( 33 , MJ ) on 2S , and 

( 55 , MJ ) on 3S . The final set of surface integral equations on 1S , 2S , and 3S  in Fig. 2a are 

given by [14]: 

( ) ( ) ( )[ ] (1a)    , 1 tang.54543333121121tang.
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in which the intrinsic impedance is iii εµ=η /  in region iR  with 4... ,2 ,1=i  and jL  and jK , 

6... ,2 ,1=j  are the integro-differential operators given in Appendix A. The tangential 

component of the incident electric and magnetic fields on the rough surface 1S  are given by 

( )
tang

rE inc  and ( )
tang

rH inc . The surfaces 1S , 2S  and 3S  are discretized into triangular patches 

where the unknown equivalent electric and magnetic currents in (1) are approximated by using 

the Rao, Wilton and Glisson (RWG) vector basis functions ( )rj  [15], [16] as: 
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and ( ) 2/1+= ik . Upon substituting (2) in (1), and testing using the same vector basis functions, 

the linear system of equations is obtained [14]: 
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The total matrix Z  has order of ( ) ( )321321 22 NNNNNN ++×++ , where the number of 

unknowns on the ground, on the target and on the clutter object are 12N , 22N  and 32N , 

respectively. It is necessary to emphasize that this rigorous electromagnetic model considers all 

scattering and interaction scenarios; the self-interactions of the ground ( 11Z ), target ( 22Z ) and 
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clutter object ( 33Z ), the target with the ground and with clutter object ( 12Z , 23Z ) and the clutter 

object with the ground 13Z , etc. The expressions of these submatrices are given in Appendix B. 

The tested tangential incident electric field incE  and the tested normalized magnetic field incH1η  

on the exterior surface of the ground are expressed as part of vector V  in (3) while the vector I  

represents the unknown current coefficients on all involved surfaces. 

The emphasis of this study is to investigate the statistics of the target signature versus the 

clutter signature. The proposed strategy is to use the same sample of random rough surface 

realizations four times as follows: (i) once to compute the scattering from the rough ground alone 

(no buried objects); (ii) once to compute the scattering from the rough ground when both the 

target and clutter object are buried beneath the interface; (iii) once to compute the scattering 

from the rough ground when only the target is buried beneath the interface; and (iv) once to 

compute the scattering from the rough ground when only the clutter object is buried beneath the 

interface. The scattered electric near-fields are obtained in this procedure at single incident angle, 

single frequency, for specific polarization (e.g., vertical or horizontal), etc. This shows that 

conducting the Monte Carlo simulations is computationally expensive requiring fast methods 

such as the SDFMM. In this case, the computational complexity of the problem will be of 

O( 321 222 NNNK ++= ) as described earlier. Once the electric and magnetic surface currents 

are obtained, then the scattered fields above the ground and in the near-zone can be calculated 

using the surface integrations given by [17]: 
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where the total electric field is FA EE + , the superscripts A and F refer to the vector potentials 

A  and F , the point source ( )zyx ′′′ ,,  is located on the ground while the observation point 

( )zyx ,,  is located above the ground, R̂  and R  are the unit vector and the distance between the 

observation and the source points, 0k , 0ε  and 0µ  are the wave number, the permittivity, and 

permeability of the free space, respectively, and Sd ′  is the differential surface element on the 

rough ground. Every source point ( )zyx ′′′ ,,  in (4) is the centroid of every triangular patch on the 

ground at which the surface currents are approximately evaluated [15]. 

III. NUMERICAL RESULTS 

The principle of computing the target signature at multiple views was employed in [9] and 

[11] by rotating the incident beam around the target, i.e., changing the azimuth angle of the 

incident waves. As presented in [14], when the target is buried nearby a second object, a 

significant electromagnetic interference between the two objects is observed in the scattered 

fields at single azimuth angle. In this work, the Monte Carlo simulations will be conducted using 

the incident beam view (azimuth angle) that largely indicates the presence of a clutter object 

buried nearby the target. 

Trying to simulate the ground penetrating radar (GPR) of center frequency 1GHz 

experiments reported in [18]-[19], the scattered electric fields at 2/0λ  above the rough ground 

mean are computed, where 0λ  is the free space wavelength. In addition, to simulate the GPR 

experimental track, the ground is modeled as a plane of dimensions 00 88 λ×λ . For the same 

reason, all simulations are conducted here at 1GHz; however, the current technique was 

successfully applied for the frequency band 800MHz-1.4GHz (not presented here). The rough 

ground surface is characterized with Gaussian statistics for the heights, assuming zero mean and 
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root mean square (rms) σ, and for the autocorrelation function with correlation length lc. It was 

observed that the incident beam pattern of the GPR parabolic antenna reported in [18], [19] 

resembles a Gaussian beam. Thus for simplicity, the incident wave in the current simulations is 

assumed to be a Gaussian beam tapered toward the edges of the ground with half-beam width of 

06.1 λ  centered at 04λ== yx  [9], [20]. The incident angle of the beam, measured from the z-

direction, is �30=θi  while the azimuth angle iφ  will be described. As mentioned in Section I, 

the AP-mine-like target is modeled here as an oblate spheroid with dimensions 

00 3.0 ,15.0 λ=λ= ba  (Fig. 2b) where its center is located at 00 5.3 ,5.4 λ=λ= yx  and 

04.0 λ−=z  (lower right quadrant of the ground as shown in Fig. 3a). While, the clutter object is 

modeled as a horizontal cylinder (Fig. 2b) such as a piece of a tree root with radius 015.0 λ=a  

and height 09.0 λ=h  with its axis tilted at angle �30  with the x-direction and located at 

00 375.4 ,01.4 λ=λ= yx  and 04.0 λ−=z  measured from the axis mid-point (upper left quadrant 

of the ground as shown in Fig. 3a). This implies a 00.1 λ  distance separating the centers of the 

two objects. In [14], a parametric study was conducted for different ground roughness in which 

the clutter for 01.0 λ=σ  was shown, as expected, to be stronger than that of 004.0 λ=σ  [11]. 

Therefore, in this work, the rms height is assumed to be 01.0 λ=σ  with correlation length 

05.0 λ=cl . The relative dielectric constants of the soil, the AP-mine-like target, and the tree root 

object are assumed to be 18.05.2 jr −=ε  (Bosnian soil with 3.8% moisture at 1GHz) [21], 

072.09.2 jr −=ε  (TNT) [22], and 0.4=ε r  (dry wood) [23], respectively. The near-electric 

fields are computed using (4) at point receivers located at 05.0 λ=z  above the ground with 

resolution equal to 004.0 λ== yx . Several numerical experiments, depending on the dielectric 
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constants and on the ground roughness parameters, were conducted to choose the discretization 

distances on all surfaces. The adopted criterion is to obtain a solution that is independent of these 

distances. In this work, 008.0 λ  discretization distance on the rough ground is used leading to 

60,000 (2N1) current unknowns on its surface. For the two objects, approximately the same 

discretization distances are used leading to 600 (2N2) on the AP-mine-like target and 600 (2N3) 

on the tree root. The triangular mesh for the rough ground, the target (oblate spheroid) and the 

tree root (horizontal cylinder) is shown in Fig. 2b. To speedup the solution’s convergence, a pre-

conditioner consists of the diagonal self-elements of Z  in (3) is used. A relative residual error of 

10-3 is used in the Transpose-Free-Quasi-Minimal-Residual (TFQMR) iterative solver [24] and 

00 32.032.0 λ×λ  is assumed for the smallest Fast Multipole Method (FMM) block size. 

Moreover, the SDFMM is validated with the method of moments (MoM) as discussed in [14]. 

The complex subtraction process is used in this work to remove the clutter due to both the 

random rough ground and the benign object (tree root) leading to obtain a statistical study of the 

target signature compared with these sources of clutter [25]. The numerical results are divided 

into sub-sections as shown below. 

A. Multiple views 

The azimuth angle of the incident beam is varied as ����

� 360,,60,30,0=φi  (i.e., the 

azimuth angle of the plane of incidence). The fields scattered from just the rough surface 

realization (no buried objects) is computed and subtracted from those scattered from the same 

rough surface realization when both the AP-mine-like target and the tree root are buried, and 

shown in Fig. 3a. The results for the incident horizontal polarization are considered in this case 

where the electric field is perpendicular to the plane of incidence. Only four results are presented 
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for ,120,60,0 ���=φi  and �240  in Figs. 3b-e. The results show almost no indication to the 

presence of two separate objects except at �120=φi  where the mine-like target signature can be 

distinguished from that of the tree root. At this azimuth angle, the plane of incidence is 

perpendicular to the tree root axis. The results of Figs. 3b-e are for single rough surface 

realization. The interesting view at �120=φi  will be used in all Monte Carlo simulations 

considered in this work for both polarizations. 

B. Monte Carlo simulations 

A sample of 100 independent random rough surface realizations was used in this work. 

However, the fields scattered from the geometry shown in Fig. 1 and described above was 

computed 800 times; 400 times for the horizontal polarization and 400 times for the vertical 

polarization as described in cases (i-iv) in Section II. The statistical average of the electric fields, 

i.e., E , and the standard deviation (STD), i.e. 
22

EE − , are presented [10]. It is 

necessary to mention that in the horizontal polarization case, the incident electric field is parallel 

to the tree root axis, while in the vertical polarization case it is perpendicular to its axis. 

(i) Horizontal polarization 

The results of the cases (i-iv) are plotted versus the x- and y-directions and shown in Figs. 4a-

d, respectively. The slight differences between the results in these figures clearly indicate that the 

rough ground is dominating the scattering scenario. Then, the results of case (i) are subtracted 

from those of case (ii) and the output is plotted in Fig. 5a where the average signature of both the 

clutter object and the target are shown. In addition, a clutter due to the interaction between the 

tree root and the rough ground is clearly observed in Fig. 5a. Similarly, the results of case (iii) 
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are subtracted from those of case (ii) and the output is plotted in Fig. 5b where the average 

signature of just the tree root is shown in addition to clutter due to interaction with the nearby 

target. Finally, the results of case (iv) are subtracted from those of case (ii) and the output is 

plotted in Fig. 5c where the average signature of just the target is shown in addition to interaction 

with the clutter object. It is important to mention that the subtraction process does not completely 

remove the effect of the rough ground or the nearby object; however, the remainder of these 

interactions depends on the ground roughness and the object proximity [14]. The results of Figs. 

5-c show a remarkable difference between the magnitude of the clutter object average signature 

(max. of 0.037 V/m) and that of the target average signature (max. of 0.009 V/m). Moreover in 

Fig. 5a, the presence of the target causes the magnitude of the clutter object signature to slightly 

increase due to the interactions with the target as discussed in [14]. All these results, which are 

obtained using the same 100 rough surface realizations, show that a false alarm is highly possible 

due to the presence of a nearby clutter object (a piece of a tree root in this case). 

(ii) Vertical polarization 

Upon changing the incident fields to the vertical polarization, then cases (i-iv) are re-

computed and plotted in Figs.6a-d, respectively. In these figures, the maximum magnitude of the 

average scattered electric fields has dropped by almost 50%, even for the case of rough ground 

alone, compared with the horizontal polarization results in Fig. 5. This is because the incident 

electric fields at oblique angle are decomposed into two components; a component in the z-

direction and a component parallel to the x-y plane (perpendicular to the tree root axis). While 

for the horizontally polarized incident fields, all the electric fields are parallel to the x-y plane 

(parallel to the tree root axis). Similarly, results of Figs. 6a-d show that the rough ground is 

dominating the scattering mechanism such that a slight difference between the results in Fig6a-d 
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can be observed. The subtraction process is repeated in this case and the average signature of 

both the clutter object and the target is shown in Fig. 7a, of just the clutter object is shown in Fig. 

7b and of just the target is shown in Fig. 7c. The magnitude of the average target signature (max. 

of 0.0075 V/m) is smaller than that of the clutter object (max of 0.018 V/m), which agrees with 

the observation in the horizontal polarization case. 

The standard deviation of the scattered fields is plotted in Fig. 8a for just the tree root, in Fig. 

8b for just the target for the horizontal polarization. In theses figures, the maximum standard 

deviation occurs almost at the location of the tree root as shown in Fig. 8a and of the target as 

shown in Fig. 8b. For the vertical polarization case, the standard deviation is plotted in Figs. 8c 

and 8d for the tree root and for the target, respectively. However, the results show that the 

maximum standard deviation of the clutter object is shifted from the location of the object. This 

could be attributed to the electromagnetic interference between the target and the clutter object 

[14]. In addition, the maximum magnitude of the standard deviation of the target signature is 

almost the same for both polarizations, however, for the tree root it is reduced by almost 50% in 

the vertical polarization. Therefore, the relative statistics are computed with respect to signature 

of the ground without buried objects (i.e. object signature/ground signature) as summarized in 

Table 1.  

The total CPU time required for computing the scattered electric fields from one surface 

realization is less than 3 Hrs (after almost 200 TFQMR iterations) and the required computer 

memory is 850 MB. These computations were conducted using the Compaq Alpha Server 

(GS140 EV6) with 667MHz clock speed [14]. 

 



 13

Table 1. Maximum relative statistics for the scattered electric fields 

 Maximum relative average Maximum relative STD 

 Clutter object Target Clutter object Target 

H-Pol. 20% 5% 12% 3% 

V-Pol. 16% 6.5% 7.5% 3.5% 

It is necessary to mention that the current work is not a signal processing technique that can 

be applied to the real measured data [26]. However, the current technique presents a powerful 

computational tool to analyze, study and statistically estimate some of the causes of false alarms 

encountered in the detection process. 

IV.  CONCLUSIONS 

The statistics of the target, the rough ground and the clutter object signatures depend on 

several factors such as the orientation, dielectric constants, proximity between objects, burial 

depth, etc. For the parameters used in this work, the statistical study showed that the target 

signature appears much weaker than the clutter object signature even for a small realistic nearby 

buried object such as a piece of a tree root. Moreover, consistent with our previous work [10]-

[11], the rough ground clutter dominates the scattering scenario necessitating its removal in the 

detection process. The conducted statistical study is based on running the 3-D scattering 

computer code more than 800 times which could not be achieved without using a fast algorithm 

such as the SDFMM.  
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Appendix A 

With representing the surface electric and magnetic currents J and M  on 1S , 2S  and 3S  by the 

vector X , the integro-differential operators jL  and jK , j=1, 2, … 6, are [14], [16]: 

( ) ( ) ( ) (A1)              ,  
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Appendix B 

The elements of the submatrix 11Z  in (3) are given by [14], [16] 
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in which 
S

BA,  denotes the complex inner product between vector functions A  and B  on a 

surface S . The submatrices 12Z , 13Z , and 23Z  are given by 

(B2)       
,,

,,

,
,,

,,

1

1

11

1

1

11

32
2

42
113411

3411341

13
22

2

32
112311

2311231

12




























η
η−η−

η−

=



























η
η−η−

η−

=

S
S

SS

S
S

SS

jLjjKj

jKjjLj

Z
jLjjKj

jKjjLj

Z

(B3)                                 
,,

,,

2

2

22

32
2

42
123412

3412342

23



















η
ηη

η−

=

S
S

SS

jLjjKj

jKjjLj
Z

 

Similar expressions can be obtained for all other submatrices in (3). 
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Figure 3a.  Top view of the target (oblate spheroid) and the tree root (horizontal cylinder). 
 
 

 

 
Figure 3.  The scattered electric field at multiple views for both the buried mine-like target and 
the tree root upon removing the scattering from ground when: (b) �0=φi , (c) �60=φi , (d) 

�120=φi , and (e) �240=φi . All results are for �30,5.0,1.0 00 =θλ=λ=σ i
cl  and H-polarization. 
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Figure 4.  The average scattered electric field at 05.0 λ=z  from (a) the ground with no buried 

objects, (b) the ground with both the buried mine-like target and tree root, (c) the ground 
with only the buried tree root (no mine), and (d) the ground with only the buried mine-like 
target (no tree root). Data are from Fig. 3c (H-polarization). 
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Figure 5.  The average scattered electric field upon removing the scattering from the rough 

ground for (a) both the mine-like target and tree root, (b) just the tree root, (c) just the 
mine-like target. Data are from Fig. 3c. (H-polarization). 
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Figure 6.  The average scattered electric field at 05.0 λ=z  from (a) the ground with no buried 

objects, (b) the ground with both the buried mine-like target and tree root, (c) the ground 
with only the buried tree root (no mine), and (d) the ground with only the buried mine-like 
target (no tree root). Data are from Fig. 3c for V-polarization. 
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Figure 7.  The average scattered electric field upon removing the scattering from the rough 

ground for (a) both the mine-like target and tree root, (b) just the tree root, (c) just the 
mine-like target. Data are from Fig. 3c but for V-polarization. 
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Figure 8.  The standard deviation of the scattered electric fields for (a) just the tree root, (b) just 

the AP-mine-like target, for the H-polarization, (c) just the tree root, and (d) jut the AP-
mine-like target, for the V-polarization. Data are from Fig. 3c. 
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Using the PML ABC for Air/Soil Wave Interaction Modeling 

in the Time and Frequency Domains 

Carey M. Rappaport , Scott Winton 
Northeastern University, 235 Forsyth Building, Boston, MA 02115 

email: RAPPAPORT@NEU.EDU 

Abstract- The Perfectly Matched Layer (PML) 

absorbing boundary condition (ABC) is applied 

to two-aimensionai J< "UTU ana J< ·uJ< ·u simula

tions of wave interactions with a two-layer air 

and soil geometry. Since the soil medium is lossy 

and dispersive, modeling of wave propagation 

and scattering is significantly more difficult than 

for free space and pure dielectrics. In addition, 

specifying an ABC which efficiently prevents re

flections from both the free space t e rmination 

and the adjacent soil is challenging. The the

ore tical basis for terminating dispersive media 

for both the time and frequency domains is pre

sented, and simulation results for plane wave and 

point source excitations are demonstrated. For 

the former case, scattering is computed from a 

buried mine-like target . Although the absorbing 

characteristics of the PML for the air j soil inter

face are not as good as for free space, it is shown 

that maximum local reflections of as low as -15 

dB for FDTD and -50 dB for FDFD are possible. 

Keywords- FDTD, FDFD, PML, ABC, GPR, 

Ground Penetrating Radar, Computational Mod

eling. 

I. I NTRODUCTIO N 

To understand the effects of the environment sur
rounding scattering targets, it is important to sim
ulate numerically the propagation, interaction, and 
scattering of electromagnetic or acoustic waves by 
buried objects in the surrounding modelled clutter. 

This work has been supported by The Army Re
search Office, Mult idisciplinary University Research 
Initiative Grant No. DAAG55-97-0013 

1 

The short pulse and stepped-frequency ground pen
etrating radar problems are open scattering geome
~;nes, wnn wssy, rrequency aepenaen~; ~ ~;emporauy 

dispersive) media, requiring high performance ab
sorbing boundary conditions [1-2] . Finite difference 
methods are very effective in modeling small-scale 
variations of environment, including: particular tar
get shapes, rough surface boundaries, and volume 
inhomogeneities. The time domain version (FDTD) 
[3-5] is an efficient discretization of Maxwell's equa
tions, which is robust and flexible and can conve
niently deal with multiple inhomogeneities. The 
computation is particularly well-suited to supercom
puter platforms, and it yields results that are suit
able for animation and other high quality computer 
graphics capabilities. Memory requirements involve 
storage of the field values in each of millions of 
cells. For frequency-dependent media, such as soil, 
the convolutional relationship of permittivity and 
electric field requires storage of field values for sev
eral time cycles. The finite difference frequency do
main method is similar to FDTD, but solves the 
self-consistent field distribution in open and closed 
spatial volumes for single frequency [6-8]. 

Berenger's Perfectly Matched Layer (PML) absorb
ing boundary condition (ABC) [9] has significantly 
increased the performance and popularity of the fi
nite difference methods of electromagnetic field com
putation. While many analyses have considered ap
plying the PML ABC to terminate layered media 
[10] and lossy dispersive media [11-13] computational 
grids , its application to layered dispersive media is 
less well-understood. In particular, the application 
to the common and important problem of a real
istic soil half space, with sources in air above has 
seen little exposure in the literature. In the subse
quent sections, this paper discusses layered, disper
sive, lossy PML theory for the frequency and time 
domains , and then presents numerical examples to 
confirm this theory. 



11. J:< HJ:<;(..,!UJ:;;NCY lJOMAlN .L lVlL .1 HJ:;;OKY 

FOR GENERAL LAYERED MEDIA 

In the frequency domain, the equations for a two
dimensional transverse electric (relative to the lon
gitudinal direction z into the paper) PML region 
terminating a lattice at x = Xmax have the form 
[14]: 

8Hz . 
ay = JWE 8 Ex (1a) 

8Hz ( 1 ) . --- = JWE 8 E (1b) 
OX 1- jae(x)jwEo y 

8Ey ( 1 ) 8Ex . ( 
--;::;- 1 . ( )/ ---;::;- = -JWJ.LoHz 1c) ux - Jam X WEo uy 

where the medium (soil) permeability is assumed to 
be that of free space, and its complex permittivity 
is: 

(2) 

In general, E~ and a 8 are functions of frequency. The 
electric and magnetic PML conductivities a e ( x) and 
am ( x) govern the rate of wave attenuation in the ab
sorbing layers. For the continuous case in which the 
PML medium is impedance matched to the scatter
ing space it terminates, ae(x) = am(x) and each 
increases with distance x- X max from the scattering 
space. However, for finite difference computation, in 
which theE-fields and H-fields are calculated on in
terlocking grids, these conductivities are alternately 
sampled values of the continuously increasing func
tion. For a typical eight grid cell PML layer, the 
conductivity profile is specified as a power function 
of position with the form [15]: 

ai- ~ = ( 2i - 1 ) p Smax 
16 ~ ' 

i = 1, ... ,8 (3a) 

ai = ( 2i) p Smax 
16 ~ ' 

i = 1, ... , 8 (3b) 

for a PML beginning at i 0. Note that mag
netic conductivity am((i- ~)~) is associated with 
ai_ l values if the PML begins on an electric field 

2 

point. For a PML terminating a free-space scatter-
ing region, quasi-exhaustive search studies in both 
the time and frequency domains have shown that 
tne oest vames or p ana 0max are 0. r ana u.u:u, re
spectively [6 , 15]. With this choice, the maximum 
reflected signal for typical time pulse signals for in
cident angles from normal through 60° is -100 dB. 

Viewing the PML as an anisotropic mapping of the 
normal coordinate (x, in the case above), it is clear 

2 

tnat regarmess or tne matenal cnaractenstlcs or tne 
scattering medium E8 , the profile of PML conduc
tivities is unchanged from those of free-space , Eqns. 
(3). While the actual conductivities of the indi
vidual grid cells within the PML will incorporate 
both the background conductivity of the soil and 
the PML conductivities, as long as the frequency 
domain TE curl equations are written and evalu
ated as in Eqns. (1) , there is no need consider these 
actual values. 

If instead of separate first-order curl equations, the 
FDFD computation makes use of Helmholtz equa
tion - by substituting Eqns. (1a) and (1b) into (2) 
- the same approach applies: 

_1_~_1_8Hz +82Hz + k2Hz = O (4) 
krel(x) ax krel(x) ax 8y2 8 

where krel(x) = 1- jam(x)jwEo, for the continuous 
PML case. The complete scattering medium mate
rial characteristics are included in the wavenumber 
k8 =W~. 

To terminate a parallel layered region in the fre
quency domain with a PML ABC , all that is re
quired is to specify the free-space PML conductivity 
profile as the termination for each layer. Again us
ing the mapped coordinate interpretation, the com
mon transverse wavenumber along the air/soil in
terface (that is, normal to the PML), kx maps to 
kxkrel(x) in the PML which terminates both layers. 
The wavenumber normal to the air/soil interface, 
ky(x), for any of the ith PML sublayers is the same 
as in the scattering space. As a result, the reflec
tion and transmission properties across the air/ soil 
interface are the same within the PML as they are in 
the scattering region, with only a relative wave at
tenuation normal to the PML boundary (and along 
the air/ soil interface) applied to waves in all layers. 

III. TIME DOMAIN PML THEORY 
FOR GENERAL LAYERED MEDIA 

The relative elegance of the layered PML in the pre
vious section is lost in conversion to the time do
mam. .1ms nappens oecause tne matenal parame
ters of each cell in the PML must be specified explic
itly. The background a 8 and E~ must be combined 
with the ae and am of the PML for each layer. 

The time domain version of Eqns. (1) is readily 
available in the literature in several forms, but the 



most common splits the H-field into a part associ
ated with the first term of Eqn (1c), H zx , and an
other with the second term of Eqn (1c), H zy· Thus, 
in preparation for converting to the time domain, 
Eqn (1c) splits into two equations: 

8Ey [· C!m] --- = J.lo JW+- H zx 
OX Eo 

Using Eqn. (2), Eqn. (1b) becomes: 

(5a) 

(5b) 

8Hz [. 1 C!s E~C!e . C!sC!e ] ---= Eo J WE 8 +- + --- J-2- Ey (6) 
OX Eo Eo WEo 

Transforming Eqns. (1a, 6, 5a, 5b) yields the set: 

(7a) 

_8Hz = EoE~ [8Ey + (_!_ + _!_) Ey + J Eydt ] 
OX Ot Ts Te TsTe 

(7b) 

_ 8Ey = f.lo [[)Hzx + H zx ] 
OX at Tm 

(7c) 

8Ex 8Hzy 
ay = J.lo ----at (7d) 

with T(:,) =Eo/a(,:'.)' T8 = E~Eo/a8 , and H z = H zx+ 

Hzy· A similar set exists for the TM polarization. 

If the PML terminates a scattering medium with 
frequency-dependent lossy permittivity, a separate 
dispersive FDTD model must be used. Recursive 
convolution [16], differential equation [17-19], and 
Z-transform methods [20] can be used for this pur
pose. The conventional Debye and Lorentz disper
sion models attempt to match both the real and 
imaginary parts of the complex material permittiv
ity at once. Although these model parameters exist 
for many soils, once the conductivity of the PML 
layers are included - as in Eqn (5a) - new model 
parameters must be determined for each value in the 
.t' lVlL. A less complicated and more automatiC ap
proach is to use a dispersion model which matches 
conductivity separately, keeping the real part of the 
complex permittivity constant with frequency. Ex
cellent agreement with this type of model for soils 
is possible [21]. In this case, the first two terms on 
the right hand side of Eqn (6) are not changed in 
the presence of PML conductivity, the third term is 

3 

merely a constant scaling of the profiled PML con
ductivity, and the fourth term is small enough to be 
ignored for typical soils and most of the conductivi
ties in the PML profile. Thus, for the dispersive con
ductivity/ constant dielectric constant model , the in
tegration term in Eqn. (7b) is neglected, and the 
dispersive model for the scattering space is modi
fied by the addition of simple frequency-independent 
constants. 

The choice of conductivity profile in the PML at the 
air/soil interface follows the same argument in the 
time domain as previously for the FDFD case. The 
CJe and CJm values have the form given by Eqns. (3). 
Many trials have suggested that a simple parabolic 
profile with p = 2 and Smax = 0.0063, gives the best 
absorption performance for dispersive layered soil 
media, so the effective conductivities of the progres
sive PML sub-layers (starting on an E-field point) 
are given by: 

_ _ 0.0063E~ (2i -1) 2 

C!m- C!s , i- ~- ~ ~ ' 

i = 1, ... ,8 (8a) 

( ) 0.0063E~ 
C!e = C!s ,i = C!s W + ~ ( 2i ) 2 

16 ' 

i = 1, ... ,8 (8b) 

That is , the conventional PML is modified when 
terminating the lossy dispersive soil region by re
placing the real permittivity Eo with that of the soil 
E~Eo, and using a conductivity profile with electric 
and magnetic conductivities given by Eqns. (8). 

IV. N UMERICAL RESULTS 

Numerical experiments were conducted to validate 
the theory presented above. Two scattering cases, 
representative of typical ground penetrating radar 
applications, were considered: a point-source above 
a lossy, uniform half-space of soil; and a plane wave 
normally incident on a soil half-space with a landmine
like rectangular target buried 4.5 em below the in-
Lenace. .u1 UULII ca,:;e:; Llle :;uu jJ<:tl"<:tJIIeLer:; u:;eu are 

those of Puerto Rican clay loam, measured at 10% 
moisture with density 1.4 g/ cc [22]. At a typical 
GPR center frequency of 960 MHz, this soil has di
electric constant E1 = 6.2 and electrical conductivity 
a = 0.035 S/m. The target has the dielectric prop
erties of TNT: E1 = 2.9, loss tangent 0.001 , corre
sponding to a= 0.00015 S/m at 960 MHz. 



The FDFD modeling was performed in two dimen
sions, with field sampled in 1/20 soil wavelength 
increments (~ = 6.3 mm). First , a point source, 
located at 14 points above the ground surface and 
14 points to the left of the center of the scattering 
space (to examine symmetry) , was simulated in a 61 
by 41 point grid surrounded by a free-space PML on 
exterior boundaries of the upper half-plane, and a 
lossy medium PML for the lower half plane. The to
tal, real part of the electric field Hz is displayed in 
Figure 1. Clearly, the left/right symmetry, relative 
to the source point indicates that there are very few 
numerical artifacts from the left and right bound
aries. To further verify the reflectionless nature of 
the combined PML, a scattering region with twice 
the horizontal and vertical dimensions was exam
ined. The resulting calculation of real electric field , 
Figure 2, includes the previous simulation as a sub
set centered about its origin. Since the agreement 
between the two simulations is very close over their 
common region, it is reasonable to conclude that 
the absorbing boundary surrounding the smaller re
gion is not contributing significantly to the calcu
lated field, even when this ABC is only 6 grid points 
(0.12 .\)from the source point. Figure 3 presents ex
plicitly the magnitude of the difference between the 
electric fields calculated with the two different size 
grids. The differences are normalized to the calcu
lated electric field at the upper right corner (27,20). 
It is clear that the worst error occurs in this cor
ner, where the wave from the source encounters the 
upper boundary with 82° grazing incidence angle. 
Even so, this error represents a reflection artifact of 
0.17%, or about -55 dB. 

The second case modelled by FDFD, is representa
tive of target scattering by a buried 7.6cm by 4.4cm 
rectangular non-metallic mine-like target. For this 
calculation, first the unperturbed normally incident 
plane wave Hunp is determined analytically, using 
standard reflection/ transmission theory, with trans
mission coefficient given by [23]: 

2 
T = -----;====:==;=== 

1 + Jc'- ja/wco 
(9) 

for free space permeability. Thus, for normal inci-
dence, 

H - TE ~8 e - jks(Yo - y) unp - 0 
J.Lo 

(10) 
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with E-field magnitude E0 at the ground surface at 
y = y0 . The total field , Ht = Hs + Hunp satisfies 
the Helmholtz equation: 

(11) 

for space-dependent wavenumber k(x, y). Since the 
unperturbed magnetic field in the soil satisfies the 
Helmholtz equation with the constant scatterer-free 
wavenumber k 8 , Eqn (11) can be separated into an 
inhomogeneous Helmholtz equation as: 

where the right hand side is non-zero only over the 
support of buried target. 

Using the combined PML, applied just to the scat
tered field, completes the specification of the FDFD 
calculation. The field scattered from the rectangular 
target buried in soil, added to the unperturbed re
flected and transmitted plane wave was again com
puted across a smaller and a larger grid. The real 
part of this total field for the 61 by 41 grid is shown 
in Figure 4. The target occupies horizontal grid 
points -18~ < x < -6~, and vertical points -6~ < 
y < -13~. Once again, the field is symmetric with 
respect to the symmetric rectangular scatterer. The 
computation over the larger grid is presented in Fig
ure 5, and the magnitude of the difference between 
the two computations divided by the computed field 
value where the largest error occurs at (-12,-20) is 
shown in Figure 6. The largest error is even lower 
than for the point source illumination case above, 
0.018% (-75 dB) , occurring in the lower left bottom 
boundary at the point closest to the target. 

For time domain calculations, the PML performance 
is considerably worse. For the point source case, the 
excitation was chosen to be a gaussian pulse, mod
ulated at 960 MHz, at the same position as for the 
FDFD example: (-14,14). The spatial sampling is 
also the same ~ = 6.3mm, and the time step is 
selected to be well within the FDTD Courant sta
bility condition to be ~t = 10 ps. The soil model 
parameters are those of Rappaport, et. al. [21]: 

D(t) = EAvE(t) (13) 

bo + b1Z- 1 + bzZ- 2 

a(Z) = 1 z-1 + a1 
(14) 

where Z = exp(jw~t), corresponding to a unit time 
delay in FDTD calculations. Parameter value which 



match the measured values of Puerto Rican clay 
loam to with 10% from 30 lVIHz to 3840 ::VIHz arc: 
fAv = 1.171, bo = 4.386, b1 = -8.637, b2 = 4.251, 
and a 1 = -0.975. Csing Eqn. (14), the electric 
current density is related to the electric field in the 
time domain by: 

where the superscript denote time step. Eqn. (15) 
can be used along with Eqn. (13) in the discretized 
Ampere's law for dispersive FDTD calculations [20]. 

For the point source case, at the time just after the 
time pulse peak has entirely penetrated the ground 
surface, the H-field pattern is fairly symmetric with 
respect to the line of symmetry passing through the 
source point, as shown in Figure 7. The error is 
calculated by subtracting the field values from this 
61 by 41 cell grid from those calculated on a much 
bigger grid (361 by 341 cells, centered at the same 
point as the 61 by 41 cell grid). This difference, 
divided by the field value at the point of maximum 
error (-30,-18) is displayed in Figure 8. The largest 
error is 15% (-16 dB). Although this error is quite 
large, most of the reflection comes from the wall 
terminating the soil rather than from the air soil 
interface. 

The buried rectangular T='JT mine case was also 
examined using FDTD. Figure 9 shows the total 
H-field for the same parameters given above. the 
left /right symmetry is better than for the point. sourr:e 
FDTD case. Again error is calculated by compar
ison with the larger grid. Figure 10 shmvs the dif
ference between the sample grid calculation and the 
much larger reference calculation normalized to the 
value of H-field at the point of largest error (28,-40). 
The largest magnitude errors arc at the corners cor
responding to deepest soil locations, with a value of 
20% (-14 dB). 

lV. CO:-!CLUSIOI\S 

The theory of Pl\IL grid terminations for both FDFD 
and FDTD for an air/dispersive soil half space has 
been developed and analyzed. The frequency do
main results are considerably better than the FDTD 
results, with local reflection errors of -55 dB com
pared to -14 dB respectively for an 8 layer parabol
ically profiled Pl\IL. The need to match the PiviL 
attenuation profile in air \Vit.h that of soil at the 
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air/soil boundary decreases the FDTD P::VIL ab
sorption performance compared to that of a uniform 
scattering volume. Further \vork to determine the 
best P::VIL conductivity for the air/soil media prob
lem is \vcll indicated. For many practical FDTD 
simulations, reasonable results arc possible by en
larging the grid enough to prevent side and back 
grid termination reflections from rcintcracting with 
the target region. 
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V. FIGCRE CAPTIOI\S 

Figure 1 Real part of the magnetic field computed 

using the Finite Difference Frequency Domain method 

for a 960 l\JH~ point source S.S2cm above a clay loam 

soil half space. This 61 by 41 point grid is terminated 

by an S-layer combined air /soil PML. 

Figure 2 Real part of the magnetic field computed 

using the FDFD method for the same physical configu

ration of Figure 1, except >vith a larger computational 

grid: 121 by S1 points, terminated by the same S-layer 

combined air/ soil P::viL. 

Figure 3 .:viagnitude of the difference over the cormnon 

space between the magnetic fields calculated by FDFD 

on the small grid of Figure 1 and the big grid of Figure 

2, normalized to the field value at the point (27,20). 

Figure 4 Real part of the total magnetic field com

puted using the FDFD method for a 960 l'viHz plane 

wave normally incident on a day loam soil half space 

with a 7.6 by 4.4cm rectangular TNT target buried 

3.liicm below the ground surface. This 61 by 41 point 

grid is terminated by the same P:\IL as in Figure 1. 

Figure 5 Real part of the total magnetic field com

puted using the FDFD method for the same physical 

configuration of Fignw 4, except with a larger compu

tational grid: 121 by S1 points, terminated by the same 

S-layer combined air/soil P::viL. 
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Figure 6 ::viagnitude of the difference over the cormnon 

space behveen the magnetic fields calculated by FDFD 

on tht~ small grid of Figure 4 and the big grid of Figure 

5, normalized to the field value at the point (-12,-20). 

Figure 7 Real part of the magnetic field computed 

using the Finitt~ Difference Time Domain method for 

a point source gaussian pulse modulated at 960 IVIHz, 

8.S2cm above a clay loam soil half space. This 61 by 41 

point grid is terminated by an S-layer combined air/soil 

P:\IL with the same conductivity profile a.'i for the FDFD 

simulations. 

Figure 8 l'viagnitude of the difference between the mag

netic fields calculated by FDTD on the grid of Figure 7 

and a much bigger grid >vith extent 361 by 341, normal

ized to the field value at the point (-30,-1S). 

Figure 9 Real part of the magnetic field computed 

with FDTD for a plane wave gaussian pulse modulated 

at 960 l'viH~, normally incident on a day loam soil half 

space, terminated by t,lw same S-layer combined air/ soil 

P:\-IL. 

Figure 10 l'viagnitude of tht~ difference between the 

magnetic fields calculated by FDTD on the grid of Fig

ure 9 and a much bigger grid with extent 361 by 341, 

normali~ed to the field value at the point (2S,-40). 
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Analysis and Characterization of Ultrawide-Band 
Scalar Volume Sources and the Fields They Radiate: 

Part 11-Square Pulse Excitation 
Edwin A. Marengo, Member, IEEE, Anthony J. Devaney, Member, IEEE, and Ehud Heyman, Senior Member, IEEE 

Abstract-In a previous paper [1], we studied transient radia
tion from scalar collimated volume source distributions subjected 
to impulsive excitation. In this paper, we extend our analysis 
and results to the case of nonimpulsive excitation, paying special 
attention to the parameterization of the radiation pattern of 
three-dimensional (3-D) ellipsoid source distributions driven by 
square pulses of finite duration. We study the role both of the 
source's space distribution and of the square pulse duration on 
the generation of well-collimated short-pulse fields. In particular, 
we explore the source's angular and range resolutions as func
tions of the transverse and longitudinal dimensions of the source 
(for a fixed source volume) and of the pulse duration. 

Index Terms- Transient propagation. 

I. INTRODUCTION 

I N a previous paper [1] we investigated the radiation prop
erties of scalar wave fields U ( r, t) radiated by three

dimensional (3-D) sources to the scalar wave equation 

( 
1 8

2
) \72 - c2 8t2 U(r, t) = -47rQ(r, t) (1) 

paying special attention to sources Q(r, t) having the space
time separable form of a "traveling wave" 

Q(r, t) = qo(r)G(t- z · r/c) (2) 

where, without loss of generality, the main beam direction was 
chosen to be the positive z axis (z) and the space distribution 
qo ( r) was normalized so that 

j dr' qo(r') = 1. (3) 

In order to compare the radiation performance for different 
source parameters we have considered the source's volume V 
as invariant. 

The class of sources defined in (2) represents a distribution 
of nondispersive isotropic point radiators, all of which radi
ate the same time signature G(t) but with space-dependent 
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strength q0 ( r). The source defined in (2) could represent a 
discrete collection of point radiators (e.g., a 3-D antenna array 
of isotropic radiating elements) or a spatially continuous distri
bution of such radiators (note that in the discrete realization, 
the spectral shaping of the far field is also affected by the 
interelement spacings). A special case of such distribution is 
a uniformly distributed source wherein all point radiators are 
driven with the same strength: specific examples of uniform 
parallelepiped source distributions have been considered in [1]. 

In the present paper, we explore uniform ellipsoidal source 
distributions whose axis coincide with the z axis in (2) 
for which closed-form expressions can be obtained for all 
radiation directions and for all observation times. Furthermore, 
since the ellipsoidal shape may be continuously changed 
from a prolate to an oblate spheroidal shape, the closed-form 
results explain the different radiation characteristics of both 
elongated, quasi-linear traveling wave source distributions and 
quasi-planar broadside pulsed distributions, as well as those 
of 3-D sources with comparable longitudinal and transverse 
dimensions. Finally, while the analysis in [1] has concentrated 
on impulsive sources [i.e., G(t) = 8(t) in (2)], which gen
erate near the beam axis singular field terms that cannot be 
parameterized, the emphasis here is placed on finite pulses 
(specifically on square pulses). 

Our interest in the source distributions considered above 
arises from the fact that they yield highly collimated pulse 
beam fields with high degree of angular and range resolutions 
when they are driven by very short pulses G(t) [1]. Motivation 
for the source structure in (2) is also provided by the possibility 
of building 3-D pulsed antenna arrays composed of identical 
electrically small photoconducting elements [2]-[4]. These 
antennas, made of III-V compound semiconductor wafers, 
radiate microwave pulses when triggered by short duration 
(e.g., picosecond) optical pulses. A 3-D array of such pho
toconducting elements can thus be realized using fiber optics 
and optical splitters, the latter to control the excitation strength 
associated with each element as dictated by q0 ( r) in (2) 
(the excitation strength can also be controlled by the voltage 
bias applied to each element [2], [3]). The progressive time 
delay in (2) can be controlled either by a delay network or 
simply by taking advantage of the propagation delay of the 
exciting optical wavefront along the z axis [5]. In addition, 
the antenna arrays described above are expected to have 
reduced microwave interelement coupling due to the short 
periods of photoconductivity associated with each element [5]. 

0018-926X/98$10.00 © 1998 IEEE 
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The source model defined in (2) can thus be viewed as an 
approximation to a 3-D distribution of electrically small (and 
thereby quasi-isotropic) photoconducting elements excited by 
a space-dependent amplitude q0 ( r) and with progressive time 
delay z · rIc along the main beam direction z. 

This paper generalizes our work in [ 1] by considering 
transient radiation from volume source distributions excited by 
finite duration square pulses. Our goal is to explore the role 
both of the excitation pulse duration W and of the length-to
width ratio f. = Lla (where L and a are, respectively, the 
longitudinal and transverse dimensions of the source distri
bution) in establishing a highly collimated pulsed field with 
a high degree of angular and range resolutions. The angular 
resolution will be quantified from the directional properties of 
the time-domain radiation pattern F(r, t) characterized by the 
peak amplitude and energy patterns while the range resolution 
will be determined from the pulse duration of F ( r, t). Special 
emphasis will be placed on the far-field properties near the 
main beam direction. 

The work reported here encompasses that of Harmuth [6] 
where the peak amplitude, energy, and slope patterns of a lin
ear (one-dimensional) array composed of elements that radiate 
far-field square pulses are derived using simple geometrical 
arguments. Also, the Radon transform radiation integral, which 
is the starting point of the present analysis, is a special case 
of the theory in [7] (formulated for electromagnetic sources) 
that applies to any time-dependent source distribution [not 
necessarily of the form in (2)]. We would also like to mention 
that even though we restrict our attention to ellipsoidal volume 
source distributions, the formulation presented here is rather 
general and can be applied to any 3-D source configuration of 
the form in (2). In what follows, we adopt the notation used 
in [ 1]. 

II. REVIEW OF THE GENERAL THEORY 

The time-domain radiation pattern F(r, t) is obtained by 
asymptotically evaluating the radiation field U(r, t) as r---+ oo, 
thus yielding [7], [8] 

U(rr, t) rv ~F(r, t- ric). (4) 
r 

For the special case of the source in (2), F(r, t) reduces to [1] 

F(r, t) = G(t) * F0 (r, t) (5) 

where * is used to denote temporal convolution and where 
the time-domain pulsed-radiation pattern F0 (r, t) (e.g., the 
source's impulse response) is given by [1] 

c ~ I Fo(r, t) = 'j qo(e, 8) 
., s=-ct/e 

(6) 

where e = ~~ = r-z (hence,~= 2 sine 12) and qo(~, 8) is the 
Radon transform of q0 (r) evaluated at the planer·~= 8. Thus, 
for fixed r, the time-domain pulsed-radiation pattern F0 (r, t) 
is defined by the projection of q0 ( r) onto the line directed 
along the unit vector { 

A schematization of (6) is depicted in Fig. 1, which shows 
the planes r · ~ = 8 that lie perpendicular to the unit vector 

" planes:r·~ =-c~ 

Fig. 1. Schematization of (6). qo(~, s) is the Radon transform along the 
~ axis obtained by integrating q0 ( r) on surfaces orthogonal to { The 
time-domain pulsed-radiation pattern Fa ( r, t) is related to q0 via the scaling 
in (6). 

~ along which the projection is computed. q0 ( ~, 8) is shown 
in the left portion of the figure as the plot of the area of qo 
computed along the planes r · ~ = 8 with 8 being a parameter 
along the ~ axis. The time-domain pulsed-radiation pattern is 
shown in the right portion of the figure and is obtained from 
q0 (~, 8) by mapping 8---+ -ctl~ and scaling the amplitude by 
cl~· Referring to Fig. 1, we see that if the source dimension 
in the ~direction is ~(~), then the pulse duration of F0 (r, t) 
along the observation direction r is 

(7) 

Similarly, the temporal peak amplitude-defined as the max
imum amplitude (over all time t) of the time-domain pulsed
radiation pattern F0 (r, t) in a given direction-is given by 

(8) 

where Amax(~) is the maximum projection of the source's 
space distribution q0 ( r) onto the ~ axis. 

III. TIME-DOMAIN PULSED-RADIATION 

PATTERN: ELLIPSOID DISTRIBUTIONS 

We consider uniform volume-source distributions q0 ( r) with 
the shape of an ellipsoid that has rotational symmetry with 
respect to the z axis and with radial and axial dimensions a 
and L, respectively. To comply with the source normalization 
in (3), the source's magnitude is taken to be 

qo(r) = {liV, 
0, 

(9) 

with V = ~a2 L being the source's volume. Henceforth, we 
shall express the source dimensions a and L in terms of 
the volume V and the length-to-width ratio f. = L I a. Thus, 
a= (617r) 113 V 113R.- 113 and L = (617r) 113 V 1£213 . By doing 
this we may now compare sources with the same volume 
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Fig. 2. Peak amplitude pattern of ellipsoidal source distributions under 

impulsive excitation Fo,max as function of(} (in degrees) for f = 0.2, 1, 5. 

V (and thereby the same input energy1) for different values 

of the parameter f.. Furthermore, when comparing elongated 

sources (I! > 1) with flat sources (I! < 1 ), we shall consider, in 

particular, sources with the same maximum dimension defined 

as the diameter of the smallest sphere completely enclosing 

the source. Therefore, we shall compare the results for an 

elongated source with, say, I! = fe > 1 with those of a flat 

source with I! = 1!-;2 . 

Using the general Radon transform relation in (6), it is 

found in the Appendix that the time signature of F 0 (f, t) 

for the ellipsoidally shaped distribution in (9) has, at a given 

observation direction f with polar angle (), the shape of a 

parabola 

where 

{ 

3 6 t2 
Fo(e, t) = 2T(e) - [T(e)p 

0, 
it! :S ~T(()) 
else 

(10) 

T(()) = c- 1 (6/'rr) 113£- 113 V 113 sin()V1 +1!2 tan2 (()/2) 

(11) 

is the time duration of F0 ((), t). The peak amplitude Fo,max(()) 

is readily seen from (10) to be (see Appendix) 

3 
Fo,max(()) = maxt[IFo(e, t)l] = 

2
T(()). (12) 

Following the discussion in [1], we define the energy 

radiation pattern 

S(f) = 1r j_: dt!F(f, t)1 2 = 1= dwlf(f, w)l 2 (13) 

where f(r, w) is the frequency-domain radiation pattern, i.e., 

the temporal Fourier transform of F(f, t). Thus, the energy ra

diation pattern of ellipsoid distributions subjected to impulsive 

excitation is found to be 
67r 

S(()) = 5T(()) 

1 Valid for sources of the form (2) that are uniformly excited. 

(14) 

5 

1='4 
~ 
z 
Q 

~3 
::::> c 
w 
~ 
~2 

0.5 

L/a-5 

L/a•1 (sphere) 

.......................... :: .. -~.:>-·,·:::·:~::~················· 

1 1~ 2 ~5 3 3.5 
OBSERVATION ANGLE, radians 

Fig. 3. Far-field pulse duration T of ellipsoidal source distributions under 

impulsive excitation versus(} (in radians) for f = 0.2, 1, 5. 

hence, the peak amplitude radiation pattern Fo,max(()) and the 

energy radiation pattern S(()) under impulsive excitation are 

identical within a multiplicative factor. 

In the limit () -t 0 we obtain from (11) 

(15) 

hence, T(()) decreases monotonically with I! (for fixed()~ 0), 

while from (12), (14), (15), both Fo,max(()) and S(()) increase 

monotonically with 1!. Under impulsive excitation, elongated 

(large/!) sources thus produce far-field pulses of higher ampli

tude and shorter duration in the main-beam direction () ~ 0. 

Fig. 2 shows plots of the peak amplitude radiation pattern 

Fo,max ( ()) for ellipsoid source distributions with length-to

width ratios I! = 5, 1, and 0.2. These plots reveal that for a 

given () ~ 0, higher radiated energy and peak amplitude (and 

thereby peak power) is available for larger I! (i.e., elongated 

distribution case). The presence of a secondary radiation lobe 

at () = 1r for the small I! (planar source) case is also observed. 

Plots of the pulse duration T(()) for the cases I!= 5, 1, and0.2 

are shown in Fig. 3. We found that the () dependence of 

the pulse duration is monotonic only for I! ::; 1 and, more 

importantly, that the pulse duration for a fixed() in the vicinity 

of the main-beam axis (i.e., () ~ 0) is shorter for larger £. 

For physical interpretation of the abovementioned effects, the 

interested reader is referred to [1]. 

IV. TIME-DOMAIN RADIATION PATIERN 

UNDER SQUARE-PuLSE EXCITATION 

In this section, we investigate the properties of the time

domain radiation pattern generated by scalar ellipsoid source 

distributions driven by unit amplitude square pulses having 

time duration W, i.e., 

G(t) = {1, 0::; t::; W 
0, otherwise. 

(16) 

We shall present the results in terms of the normalized pulse 

duration 

(17) 
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The time-domain radiation pattern F ( r, t) is now computed 
by convolving the square pulse G(t) of (16) with the time
domain pulsed-radiation pattern F0 (0, t) of (10) and (11). In 
performing the convolution, one identifies two distinct angular 
domains (} ~ 8c(f, W) and (} ;:::: 8c(f, W) where 

8c(f, W) 

- . -1 [-1 + yf1 + (7r/6)2/3f2/3(£2- 1)W2]1/2 
- 2sm 2(£2- 1) 

(18) 

For (7r/6)213£213(£2 - 1)W2 ~ 1 this expression yields 

8c(f, W) = 2 sin-1 [~ (if13 
£1131¥ J. (19) 

This approximation also provides the limit of ( 18) at f = 1. 
8c is defined by the condition that for (} < 8c, T( 0) < W 
while for 0 > 8c, T(O) > W where T(O) is defined in (11). 
Accordingly, for (} < 8c there is a time interval denoted as 
T /2 < t < W - T /2 where 

G(t)*Fo(O,t) = j dtFo(O,t) = j dr'qo(r') = 1 (20) 

where we have also used the normalization in (3). By manip
ulating the convolution G(t) * F0 (0, t) separately in these two 
angular regions we obtain (21), shown at the bottom of the 
page, for (} ~ e c and (22), shown at the bottom of the page, 
for (} ;:::: 8c. From (11), T(O = 0) = 0. Hence, from (21), 
F(O = 0, t) = G(t) as expected. 

A. Peak-Amplitude Pattern 

The peak-amplitude radiation pattern Fmax(O) is found from 
(21)-(22) to be 

Fm=(O) = max,[IF(O, t)ll = { ~~'[.) - 2[,':(;)1' 

(23) 
Note that in the small W limit, (23) yields Fmax(O),...., 2~(e), 
which agrees with the impulsive excitation result (12) (apart 
from the factor W arising from the fact that in the square 
pulse case J dt G(t) = W). 

Fig. 4(a)-(f) explores the combined role of the pulse width 
W and of the radiator shape on the peak amplitude radiation 
pattern Fmax(O). The figure shows plots of Fmax(O) for f = 
100, 10, 1 (sphere), 0.1, and 0.01 and for various normalized 

2 + 2T - T3 

F(O, t) = f dt F0 (0, t) = 1 

pulse durations W [see ( 17)]. Note the angular region near the 
beam axis where Fmax = 1, which is more visible for the large 
W case. As expected, high directivity is obtained in the large 
or small f limits. This result is related, of course, to the overall 
linear dimension of the source distribution (i.e., the diameter 
of the smallest sphere completely enclosing the source), which 
becomes increasingly larger for f ~ 1 and f ~ 1. The plots 
also provide insight into the need for excitation pulses of short 
duration (relative to the source's size) in order to achieve good 
angular resolution. 

B. Peak-Amplitude Beamwidth: 8c 

In order to explore the effect of f and W on the beamwidth, 
we shall refer to the angle 8c defined in (18). From (23) this 
angle is readily identified as the 0-dB beamwidth. We have 
also studied numerically the behavior of the 3-dB beamwidth 
of the peak-amplitude radiation pattern Fmax(O), but the results 
(not shown) where similar to those obtained for ec. 

We consider first the limiting case W ~ 1 (quasi-impulsive 
excitation). In this case, we obtain from (18) 

ec(f, W)lw_, 0 ,...., (7r/6)113£113w. (24) 

For large planar sources ( f ~ 1 ), this approximation is valid if 
fW 3 ~ 6j1r, while for large elongated sources (f ~ 1), it is 
valid if £1¥3/ 4 ~ (6j1r)1/4. Thus, under these conditions the 
flat sources are seen to yield better peak amplitude directivity 
than the elongated ones. Note also that the impulsive excitation 
limit (W = 0) yields ec = 0 independently of f. This, of 
course, is in agreement with results reported in [1], where 
the normalized peak amplitude radiation patterns of elongated 
and planar sources were found to exhibit identical angular 
dependence in the vicinity of the main beam direction. 

The condition in (24) applies for both elongated and flat 
sources as long as the excitation pulse is short enough as 
specified above. Another possible limit is for a large elongated 
source ( f ~ 1) excited by a relatively long pulse such that 
£1¥3/4 ~ 1. In this case (19) yields 

8c(f, W) :::::- J2(7r/6)1/6g-1/3w1/2 (25) 

which tends to zero as f ~ oo subject to the condition 
£1¥3/4 ~ 1. 

Fig. 5 shows plots of 8c versus f and parameterized by 
different values of W. For a fixed W, there is a value off (say 
£0 ) where 8c reaches a maximum and the angular resolution 
is poorest (for a source with a given volume and pulse length). 

-T/2 ~ t ~ T/2 
T /2 ~ t ~ W - T /2 (21) 

{ 

1 3 t 2 t3 

~ + 2~ (W- t)- ,}3 (W- t) 3 - T /2 + W ~ t ~ T /2 + W 

{ 

1 + 2~ t - ,}3 t3 
- T /2 ~ t ~ W - T /2 

F(O, t) = ~~ - ,}3 (W3
- 3W2t + 3Wt2

) W- T/2 ~ t ~ T/2 
2 + 2~ (W- t) - ,]3 (W- t) 3 T /2 ~ t ~ W + T /2 

(22) 
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Note also that for large W's, there is a range of 1!. where ee 
reaches its maximal possible value 1r so that the source does 
not exhibit any peak-amplitude directivity. 

We also explored analytically the variation of 1!.0 with 
W using ( 18), thus finding that 1!.0 decreases monotonically 
with W. Moreover, 1!.0 --+ oo as W --+ 0 (quasi-impulsive 
case). Hence, optimal selection of the shape of the radiator is 
accomplished in the quasi-impulsive case (W --+ 0) by using 
the smallest possible value of 1!. (i.e., a planar source). 

C. Energy and Correlation Patterns 

Next, we shall explore the directional dependence both of 
the energy radiation pattern [defined in (13)] and of a radiation 
characterization we shall call the "correlation" or "matched 
filtei"" pattern L( B), which we define as 

L(B) = maxt[IF(O, t) * F(B = o, t)l] 
maxt[IF(() = 0, t) * F(() = 0, t)IJ (

26
) 

where * denotes temporal convolution. L( ()) provides a mea
sure of the directional dependence of the (normalized) peak 
amplitude at the output of a matched filter tuned to the far
field pulse in the main-beam direction F(() = 0, t) = G(t) 
(where a target or receiver may be expected to be located). This 
characterization thus simulates the angular resolution available 
in target detection or secure communication applications. 

The normalized energy radiation pattern S( ()) 
S(O)/S(() = 0) = !W is obtained from (13), (21), and 
(22) and is given by 

- 9 
S(B) = 1-

35
WT (27) 

for() :::; ee, where T(B) is given in (11), and by 

_ 6 w (w) 3 

3 (w) 4 
2 (w) 6 

S(B)=5y;- T +5 T -35 T (28) 

for () 2: ee. (We normalize S so as to be able to compare 
sources excited by pulses of different duration.) 

The "correlation pattern" L( B) is obtained from (26), (21 ), 
and (22), giving 

L(0)={1-;163WT(B),l 3 e:::;eeL (29) 
2T(O) W- [T(O)J3 W ' () 2: eeL 

where eeL is defined by T(eeL) = 2W. 
1) Special Case: Quasi-Impulsive Excitation: Consider 

first the limit W ~ 1. We examine this case using the small 
W limits of S( B) and L( B) as computed using (27), (28), and 
(29). Here, ee ~ 1 as described in (24). We use the small () 
approximations of T(B) from (15). For():::; ee we therefore 
obtain from (27), with (15) and (24) 

( 1/3 
S(B) ~ 1- _2._ (~) I!.- 113 W- 1B = 1- ~_f_. (30) 

35 7r 35 ee 

This expression describes S(B) near the beam axis for():::; ee 
but, as follows from the second expression in (30), it does not 
describe the relevant range fore> ee where S(B) may still be 
nonnegligible [note that S(ee) is about 0.75 of the value of S 
at() = 0]. Hence, the effective beamwidth of the energy pattern 

will be found from the analysis of s in the region () 2: ee 
where S is described by (28). The leading term (in W) in this 

expression is given by S(B) ~ ~lj: ~ ~(~) 1 /3 f. 1 /3e-IW, 
where the second approximation follows from ( 15). The 3-dB 
beamwidth obtained by solving S( ()) = ~ is therefore given by 

e = 12 (~) 1/3f.l/3W = 12 e (31) 
3dB 

5 6 5 
e 

and is smaller for fiat sources (small /!.). One therefore con
cludes that fiat sources provide better energy focusing than 
elongated sources of comparable volume. Note in addition that 

since S(B) = 1rWS(B) we have S(B)Iw__. 0 "' 
6~~

2

, which is 
consistent with the impulsive source case in (14). 

A similar analysis applies to the correlation pattern in (29). 
Thus, for small W and () 

{
1- ~( .§. )1/3f_.-1/3w-1() () < eeL 

L(()) ~ ~ w16 "'7r ~(E)l/3f_.l/3We-I ()>eeL 
2 T(O) - 2 6 ' 

(32) 

Thus, comparing (32) and (30) we note that the energy and 
correlation patterns exhibit a similar behavior in the vicinity 
of the main beam direction for sources with W ~ 1. 

In summary, the results above support the conclusion ob
tained in connection with the peak-amplitude pattern Fmax(B), 
namely, that in the quasi-impulsive limit flat broadside sources 
provide narrower beamwidth than elongated sources. 

2) General Case: Simulation Results: Plots of S( B) for the 
length-to-width ratios 1!. = 100, 10, 1, 0.1, and 0.01 and for the 
normalized square-pulse durations W = 0.1 and W = 1.0 are 
shown in Fig. 6(a) and (b). These plots are also very similar 
to those of L( B) (not shown here). Referring to Fig. 4, we also 
find that S(B) [and, thus, L(B), too] depends on (), W, and 1!. 

essentially in the same manner as the peak-amplitude pattern 
considered in Fig. 4. Furthermore, the numerical study also 
revealed that the 3-dB beamwidths of both S(B) and L(O) 
depend on 1!. and W essentially in the same manner as the 
peak-amplitude beamwidth ee considered in Fig. 5. 

D. Pulse Duration and Range Resolution 

The far-field pulse duration T(B) is given by [see (21) and 
(22)] 

T(B) = w + T(B) (33) 

where T( B) of (11) is the pulse duration under impulsive 
excitation (i.e., Tlw=o = T). Plots of the normalized pulse 
duration 7( B) = T( B)cjV113 for various values of 1!. and W 
are shown in Fig. 7. Note that near the main-beam direction 
7(0) is mainly controlled by W. The shape of the radiator (i.e., 
1!.) has, on the other hand, a significant effect away from the 
main direction (for example, one can easily show that away 
from the main direction, 7 varies monotonically with () only 
for 1!. 2: 1). 

3) Range Resolution for Highly Directive Sources: For 
highly directive sources we may consider only the angular 
range near the beam axis. Specifically, we shall consider the 
angular range () < ee where ee is peak amplitude beamwidth 
in ( 18), which provides a reasonable figure of merit to the 
relevant angular domain. 
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Fig. 4. Peak-amplitude pattern Fmax versus 8 for £ = 0.01, 0.1, 
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behavior of (a). (c) W = 0.1. (d) Small angles behavior of (c). (e) W = 0.5. 
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Using (33) together with (15) and (24) for small e and 8c, 
the normalized pulse duration reduces to 

Next, we calculate the average pulse duration within the main-
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Fig. 6. Energy pattern S versus 8 for£ = 0.01, 0.1, 1, 10, 100, and for 
various values of W. (a) W = 0.1. (b) W = 1.0. 
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Fig. 7. Normalized far-field pulse duration f versus 8 for £ = 0.01, 
0.1, 1, 10, 100, and for various values of W. (a) W = 0.1. (b) W = 1.0. 

beam zone. Denoting this parameter as ( f") we find from 
(34) 

1 lee 3 -
(r)=- der(e)~-w. ec 0 2 

(35) 

Thus, for highly directive source distributions, (7) is--apart 
from an unessential factor --equal to the normalized pulse 
width W, thereby being independent of the source shape 
parameter f. 

A drawback of the above definition is that 8c depends 
both on f and W. Hence, the average value of the far-field 
pulse duration is computed within different angular regions for 
different source configurations. An alternative approach would 
be to measure the average of f" within a fixed angular region 
e ::s; e0 where e0 is some fixed small angle in the vicinity of 
the main direction. Analytical and computer-simulated results 
obtained for this case (not shown here) revealed that elongated 
sources provide better range resolution than planar sources of 
comparable size in the quasi-impulsive excitation case. 
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Fig. 8. Cross section of an ellipsoid volume source distribution used to 

compute the time-domain pulsed-radiation pattern Fo(r, t) analytically. 

V. CONCLUSION 

This two-part sequence has dealt with the (far-field) radi

ation characteristics of collimated pulsed-source distributions 

having the "traveling-wave" form in (2). We have parame

terized the radiation properties for sources of this class in 

both frequency and time domains. The time-domain route is 

based on radiation integrals in the form of planar projections of 

the time-dependent source distributions along the observation 

directions, thereby providing simple analysis and optimization 

tools with direct physical (geometrical) interpretation. 

The general analysis tools were developed in the first paper. 

In that paper, we also considered explicitly the radiation 

characteristics of canonical parallelepiped source distributions 

under impulsive excitation. Such sources produce, however, 

singular field solutions along the main beam axis and, there

fore, cannot be properly parameterized. This paper has consid

ered finite duration signals. We studied, analytically, canonical 

source distributions with the shape of an ellipsoid whose 

axis coincides with the main-beam direction. Furthermore, by 

changing the ellipsoidal shape from a prolate to an oblate, we 

have clarified the different radiation characteristics obtained by 

an elongated quasi-linear traveling-wave source distribution or 

by a quasi-planar broadside source distribution. 

We have been mainly concerned with the role both of the 

width of the excitation pulse and of the length-to-width ratio f 

of the source for fixed-source volume. The source's focusing 

properties associated with the peak amplitude, energy, and 

"correlation" patterns were found to be strongly affected by 

both the excitation pulse width and the shape of the source. 

High directivity is achieved using either large planar ( f ~ 1) 

or elongated ( f » 1) sources and short-duration excitation 

pulses (such that W ~ 1). 

We also found that the angular dependence of all patterns 

studied (peak amplitude, energy, "correlation pattern," etc.) 

and, of the pulse duration, is monotonic only for f 2: 1 and that 

this result is independent of the normalized excitation pulse 

width W. Planar broadside sources thus generate undesirable 

backward radiation lobes, which are not produced by elongated 

endfire sources. 
We also explored the role of the length-to-width ratio on the 

directivity of the source when the normalized pulse duration 

is kept fixed. It was found that there is a breakdown region 

(or point f = £0 ) where the beamwidth reaches its maximum 

(keeping W fixed). Optimal selection of the shape of the 

radiator is accomplished at any of the extremes f » £0 

or f ~ £0 (i.e., choosing f away from the breakdown 

region). Moreover, we have also investigated the variation of 

the suboptimal length-to-width ratio £0 as a function of the 

width of the excitation pulse. Interestingly, £0 was found to 

decrease monotonically with the normalized pulse width W. 
Moreover, £0 - oo as W - 0. Hence, minimum beamwidth 

is accomplished in the quasi-impulsive excitation case by using 

the smallest possible value off (i.e., a planar source). 

The range resolution in the neighborhood of the main-beam 

axis was found to be controlled mainly by the width of the 

excitation pulse. For highly directive sources (such as quasi

impulsively excited sources) the average range resolution as 

computed within the peak amplitude beam region 0 ::::; 8 c was 

found to be independent of the shape of the radiator. 

APPENDIX 

We refer to the geometry in Fig. 8, which schematically 

shows a cross section of the source in the direction e = 

cos 0 /2X. - sin 0 /2z where, without loss of generality, the e 
axis is taken to be in the ( x, z) plane. Denoting the point of 

intersection of the cross-sectional plane with the x axis as x 0 

and the cross-sectional area by A( 0; x 0 ), we obtain from (6) 

c 
Fo(O, t) = 'qoA(O; Xo)lxo cos0/2=-ct/~ (36) 

where, from (3), qo = 1/V = 1ra~L and~= 2sin(0/2). 

The line that delimits the cross section shown is a second

order polynomial with the shape of an ellipse with axes dA-A' 

and dB-B' given by 

LJ 11-(0) - 4x6/ a2 

dA-A' = --~-.----.--.---

dB-B' =a 

11-( 0) cos( 0 /2) 

M( 0) - 4x6/ a2 

M( 0) 

(37) 

(38) 

where 11-(0) = 1 + £2 tan2 (0/2). The area of this ellipse is, 

therefore, given by 

1r La[Jl-(0)- 4x6/a2
] 

A( O; xo) = 4 [M( 0)]312 cos( 0 /2) 
(39) 

Substituting (39) in (36) yields (10). The peak amplitude 

is calculated using (8) with Amax = qoA( 0; xo = 0) = 
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1 cos 0 ;~J JI(&), thus yielding 

R (O) _ 3c 1 
O,max - 2~ acos0/2ViJJf)' (40) 

The pulse duration is calculated using (7). The quantity 
A(t) is obtained by finding the points Q and Q' in Fig. 8 
where the ellipsoid is tangent to the plane x = tan() /2 z + x 0 

and later computing the projection of the distance Q - Q' in 
the direction t, giving A(O) = a cos() j2ViJJf). 
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Estimation of Object Location 
from Wideband Scattering Data 

George A. Tsihrintzis, Anthony J. Devaney, and Ehud Heyman 

Abstract- We present a time domain algorithm for computation of 
the maximum likelihood estimate of the location of a known scattering 
object from wide-band scattering data acquired in a suite of scattering 
experiments. The algorithm consists of a three-step procedure: 1) data 
filtering, 2) time-domain backpropagation, and 3) coherent summation 
and is implemented via a number of forward and inverse Radon trans
forms integrated into a tomographic scheme. A computer simulation is 
included for illustration purposes. 

Index Terms- Filtered backpropagation, inverse scattering, radon 
transform, tomography. 

I. INTRODUCTION 

Inverse scattering is the scientific discipline in which a scattering 
object is probed with incident waves in an attempt to estimate 
(reconstruct) its structure from scattered field measurements [1]. The 
scattering object is generally assumed to be embedded in a known, 
nonattenuating background medium and the objective is to quantita
tively estimate the spatial distribution of its complex-valued index of 
refraction by inverting the mathematical mapping relating the probing 
wave, the refraction index, and the measurable total wave. This 
objective is nontrivial to achieve due to the ihherent nonuniqueness 
and nonlinearity of the mapping from index of refraction to scattered 
field in any single scattering experiment [2]. The nonuniqueness issue 
can be partially addressed by employing a multiplicity of experiments, 
where the object is probed from several incident wave directions, and 
the full scattering data set is then available for the inversion. However, 
the issue of nonlinearity is significantly harder to address and, to date, 
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research has only produced mathematical results or computationally 
intensive iterative algorithms as opposed to practically implementable 
inversion algorithms. 

Over the past 20 years, an alternative approach to the inverse 
scattering problem has been employed based on certain lineariz
ing approximations [3]-[6]. This approach has led to an expanded 
discipline within the regime of tomography, known as diffraction 
tomography (DT), which has reached today the stage of being 
implemented in prototype commercial tomographic scanners for 
ultrasonic [7], [8], seismic [9], [10], and optical [11] imaging systems. 
The success of the DT algorithms depends critically, however, on the 
two assumptions of linearity and availability of multiple experiments 
and in many cases, the linearity assumption fails, while different 
constraints (economic, safety, operating, geometric, or physical) 
limit the number of scattering experiments that can be performed 
and/or provide low signal-to-noise ratio (SNR) data. As a result, DT 
based scatterer reconstruction algorithms often suffer from high noise 
levels, poor resolution, and artifacts, such ~s streaking and geometric 
distortion. 

To overcome the limitations discussed above a more modest inverse 
scattering problem was addressed by the first two authors, originally 
within the framework of linearized [ 12] and later exact [ 13] scattering 
theory. The goal of this more modest inverse problem, which was 
motivated, in part, by earlier work on a related problem in X-ray 
computed tomography [14], was to estimate the location of a known 
scatterer having unknown central location from noisy scattered field 
data. It was found that for monochromatic plane-wave probing the 
optimum (in the maximum likelihood sense) location estimate could 
be obtained via a filtered backpropagation algorithm [3], in which 
partial images formed by filtering and backpropagating scattered 
field data for different probing directions were coherently summed. 
The algorithm yields an image of the log likelihood function of the 
object's location and can be used for target detection and classification 
as well as target location estimation. The location estimation is 
optimum for any given number of scattering experiments and can 
yield a good estimate even from a single experiment as long as the 
wavelength of the probing radiation is comparable with the typical 
dimensions of the target [12]. 

The work in [12] and [13] is formulated and solved within the 
frequency domain and can be directly applied to wideband probing 
wavefields using standard frequency-domain synthesis. However, 
in many wideband applications a time-domain algorithm can be 
computationally more efficient as is evidenced by the time-domain 
algorithm recently developed for the standard reconstruction problem 
of DT [15]. In this correspondence, we develop such a time-domain 
algorithm for the object location problem within the framework of 
exact scattering theory. In particular, the basic framework for the 
location estimation problem of DT developed in [13] and the more 
recent time-domain formulation of standard DT presented in [15] are 
unified to result in a time-domain algorithm for optimal estimation 
of the location of a known, nondispersive scattering object from a 
set of wideband scattering experiments. The theory and estimation 
algorithm are developed within the frameworks of exact scattering 
theory and maximum likelihood theory and have applicability to the 
problems of target detection and classification as well as to target 
location estimation. 

II. CONFIGURATION AND SCATTERING EQUATIONS 

We consider the data collection configuration illustrated in Fig. 1, 
where a known wide-band, plane-wave pulse propagating in the 
direction characterized by the unit propagation vector so is incident 
on a nondispersive (frequency independent) scattering object and 
the scattered wave is measured over a plane located outside the 

probing 
plane-wave 

po~ ~. 
//y 

object ! 

I 

r 

scattered 
space-time 

pulse 

measurement 
plane 

Fig. 1. Configuration of scattering experiments. 

997 

object and perpendicular to the unit propagation vector so. We will 
denote a point on the measurement plane with the coordinate vector 
r 0 = rp + lso where rp is a two-dimensional (2-D) coordinate 
vector and l > 0 is the distance of the measurement plane from 
the origin. The object is assumed to be embedded in a dispersion
less, nonattenuating homogeneous medium of wave velocity co and 
characterized by its frequency independent distribution of complex
valued index of refraction 11 ( r) = co/ c( r), where c( r) is the wave 
velocity distribution inside the scatterer. 

The interaction of the incident wave pulse with the object results in 
the formation of a time-dependent wavefield 'II ( r, t) whose Fourier 
amplitude ~~(r, w) satisfies the time-independent inhomogeneous 
Helmholtz equation 

(v 2 + 1..~ 2 )'1/'(r,w) = -k2 0(r)~'(r,w) (2.1) 

where k = ~ is the wavenumber in the background medium and 

O(r) = n 2 (r) - 1 is known as the object function and is the 
quantity whose determination is the ultimate goal of inverse scattering 
theory and DT. The solution of the Helmholtz equation (2.1) can be 
decomposed into the sum of the incident field and a scattered field 
in the form 1/' ( r, w) = l/'o ( r, w) + '!/," ( r. w) where the scattered field 
component is related to the object function and total field via the 
integral equation 

l!•
8 (r,w) = 1..· 2 j d3 r'O(r1 )'1/•(r'.w)G(r,r',w) (2.2) 

where G(r.r',w) = exp(iA~Ir- r'll/[4nlr- r'l] is the outgoing 
wave Green function to the Helmholtz equation [ 16]. 

The scattered field satisfies a certain source/field translation prop
erty that is a key ingredient of the theory and results presented in 
[13]. In particular, consider an object function that results from some 
other object function Oo ( r) that is shifted to some location Rc; i.e., 
0( r; Rc) = Oo ( r-Rc). The source/field translation property proved 
in [13] relates the field 1/' 8 (r,w:Rr) scattered by the shifted object 
function to the field 1!', s ( r, w: 0) scattered by the centered object 
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function 

(2.3) 

Equation (2.3) states that the field scattered by a shifted object function 
is equal to the shifted field scattered by the centered object function 
multiplied by the phase shift factor t>xp(iks0 • R,..). This equation, 
which holds within the framework of exact scattering theory, is the 
key result that allows the inverse problem of estimation of the location 
of a known object from scattered field data to be solved within exact 
scattering theory. 

A. Time-Domain Plane-Wave Spectra of the Scattered Wave 

In the frequency domain solution of the object location estimation 
problem presented in [ 13] the plane wave expansion of the scattered 
field plays a key role. In the work presented here we will make 
use of the time-domain equivalent of this plane wave expansion 
which was employed in [15] in obtaining the time-domain inversion 
algorithm for conventional diffraction tomography. We first review 
the standard frequency domain plane wave expansion which expresses 
the scattered field (' 8 (r. w) as a superposition of homogeneous and 
evanescent plane waves that propagate from the scatterer into any 
half-space lying outside the scatterer support. We will employ the 
notation used above and assume that the scatterer is located in the 
half-space ::; = so · r < I. Then the scattered field throughout the 
half-space so · r > l is expressible in the plane wave expansion [3], 
[4] 

where r = rp+;:;so with rp being a 2-D coordinate vector in the plane 
passing through the origin and perpendicular to so. The quantity ( 
is given by 

-{~· (- i~. 
if 1~1 :::; 1 
else. 

(2.5) 

The plane wave expansion equation (2.4) decomposes the scattered 
wavefield r·'(r. w) into a superposition of propagating (correspond
ing to 1~1 :S 1) and evanescent (corresponding to 1~1 > 1) plane 
waves. Because the evanescent waves decay exponentially with 
distance from the scatterer their contribution to the scattered field 
becomes negligible at distances greater than a few wavelengths from 
the scatterer location. Thus, the integration region in equation (2.4) 
is effectively limited to the homogeneous region 1~1 :::; 1 at all field 
points located more than a few wavelengths from the scatterer. 

The plane wave amplitude A.(~. w) can be expressed directly via 
a spatial Fourier transform of the boundary value field t'• ( r. w) over 
any plane ::; ~ I. In particular, we find using (2.4) that 

(2.6) 

where 

~'(K ) Jd2 -iK ·r . •( ll ~·~ p·w = rpe P P1,,· r . ...v: 

is the 2-D spatial Fourier transform of the scattered field on the 
::; plane. It follows immediately from(2-6) that the spatial Fourier 
transform of the scattered field over any two planes, :.;1. ::;2 satisfies 
the translation property 

F-ik(ot;,~t(k~.w) = c-ik(o2t~'~2(kfw). 

By making use of the source/field translation property (2.3) and the 
above result we can relate the spatial Fourier transform of the field 
scattered by a shifted object function Oo ( r - Rc) to that of an 
unshifted object function Oo ( r). In particular, the spatial Fourier 
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transforms of these two fields over the measurement plane ::; 
are related through the equation 

where ~0t ( k~ • ...v; R,..) is the transform of the scattered field generated 
by the shifted object function and t\" ( 1.: ~. w; 0) the transform of the 
field scattered by the unshifted object function. 

The plane wave expansion equation (2.4) and the associated 
equations (2.6) and (2.7) have time-domain equivalents. In particular, 
the time-domain plane-wave amplitude of the wavefield is defined as 
the temporal Fourier transform of the frequency domain plane wave 
amplitude, viz, 

(2.8) 

On making use of (2.6), we can express the time-domain plane wave 
amplitude A. ( ~. T) in terms of the time-domain scattered field over 
the plane ::; = l in the form 

Equation (2.9) is recognized as a Radon transform [17] of the 
boundary value of the wavefield v·' ( r. t) in the three-dimensional (3-
D) space (rp. t) and has, thus, been termed a slant-stack transform 
[15]. 

III. ESTIMATION OF OBJECT LOCATION 

We consider a scatterer described by the shifted object function 
O(r; Rc) = Oo(r- Rc) where Oo is a known function and Rc 
is an unknown scatterer location. The object is probed in a set 
of scattering experiments where, in each experiment, the incident 
wave is a wideband plane-wave pulse propagating in the direction 
so and the scattered field is measured over a measurement plane as 
illustrated in Fig. 1. We assume that in each experiment the scattered 
field measurements are corrupted by additive white Gaussian noise 
(A WGN) according to the signal model: 

where 

X(rp, t, so; Rc) = F(rp. t. so) W/(rp + lso. t, so; Rc) (3.2) 

is the time-dependent scattered field \ltf on the measurement plane 
::; = l filtered by the space-time convolutional (measurement) filter 
F(rp,f,so). In (3.1), N(rp,f,so) is a zero-mean white Gaussian 
noise process 1 in the variables rp. t, and so, i.e., 

£ VV(rp. t, so )N(r~, t', s~)} = CT~·fl(rp - r~ )fJ(t- t' )fJso,sb. 

(3.3) 

The inverse problem that we address is that of estimating the unknown 
parameter vector (object location) Rc from the measurements filtered 
and noisy measurements of the scattered field Y ( r P, t. so). 

1 Gaussian noise of arbitrary color can be handled by expanding the 
algorithm of this section to include a proper whitening filter. 
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Fig. 2. Measured scattered field at (.r = 0 . .: = 5) for time 0 < t < lG 
and different noise levels. 

A. Log Likelihood Function 

The maximum likelihood estimate (MLE) of the object location 
vector Rc is obtained by maximizing the log likelihoodfunction [ 18] 

L(rc) = L i: dt J rP rpY(rp. t. so )X(rp. t. so: rc) 
so 

1 "' joe J :2 • 2 - 2 L -oc dt d rpl-\ (rp. t. so: r, Jl 
so 

(3.4) 

with respect to test location r, .. We have the following theorem. 
Theorem 1: In the absence of evanescent plane waves the second 

term in (3.4) is independent of object location r, and can be dropped 
from the log likelihood function. 

We first make use of Parseval's theorem to write 

L .l: dt J rPrpiX(rp. t. s0 : r, Jl
2 

so . 

= (f-) 3 L:j= d.»h· 2 
{ d2 ~1-Y(k~ ....... so:r,.)l

2 

7r so -= lr~IS.l 
(3.5) 

where 1.· = .-Jje0 is the wavenumber and .Y(k~ . .-J.s0 :r,.) denotes 
the space-time Fourier transform of the filtered scattered field data. 
Making use of (2. 7) we have that 

which, when substituted into (3.5) establishes the theorem since the 
quantity ( 1 - ()so - ~ is purely real over the homogeneous region 
1~1 :::; 1. 

Theorem 2: In the absence of evanescent plane waves the log 
likelihood function can be expressed in the form 

L(rr) = ---
1
-., L r d2 ~ D

2

_, 
(27rro)- so } 1 ~ 1 s_ 1 DT-

x [f(~.T.So).Y(~.T.so:O)JI [(1-.;)so-!lrc (3.7) 
T 

where 

}'·(t: ) 11'2 }·( ~·rp ) .,_.T.So = ( l'p rp.T+--.So 
. r·o 

are the slant stacks of X(rp.T.s0 :0) and }"(r".T.so) [cf., (2.9)]. 
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We again start with Parseval's theorem to find that the log 
likelihood function, in the absence of the second term, can be 
expressed in the form 

L(rc) = (
2

1
7r):l L:j= dA·2 f d'2~f(J.·~ ..... ·.s0 ) 

sa -= ./1~15.1 
x };(k~ . .-J.so:r,.) 

= (
2 

1
l

3 ·2 Lj= rlw f rP~j}-(J.·~ . ..v·.sol 
7r r o so -= lrers.~ 
""- _;....,[(1-()sa-el rc 

X .\(k~ . .-J.so:O}F co (3.8) 

where we have put k = w/ro and made use of (3.6). The quantity 

J d2 1. ( ~ · r, ) = l'p rp.T+~:so 

is recognized as being the slant stack of the measured field data 
on the measurement plane where we have denoted the time Fourier 
transform of the measured field data by y(r,. -»: s 0 ). Similarly, 

is the slant stack of X(rp. t: so: 0). It then follows, again using 
Parse val's theorem, that 

- d-»w Y(k~.w.so)X(I.·~.w.so:O)P-'"' ro 
1 joe 2.. -:: . [(1-()so-€]·rc 

27r -= r= a'2 , , 
j_oo dT fJT 2 [Y(~.T:so)X(~.T:so:0)] 

X b [T + [ ( 1 - ()So - ~] · r c ] 

ro 
D'2 

= fJT'2 [f"(~. T; so ).Y(~. T: s 0 : 0)]1
7 

[(1-()so-€] rc · 

Finally, on substituting the above expression into (3.8) we obtain the 
desired result. 

Equation (3.7) can be interpreted as follows: For each incident 
wave pulse, the scattered field data are Radon-transformed with 
respect to their space-time coordinates, filtered in Radon space, and 
inverse Radon-transformed (one inverse Radon transform per value 
of so ·rc) into object space to form partial images of the log likelihood 
function. The Radon-space filter consists of the complex conjugate 
of the time-domain plane-wave spectra of the field scattered by the 
centered object Oo ( r). Finally, the partial images are coherently 
superimposed. 

IV. COMPUTER ILLUSTRATION 

We consider a single scattering experiment in a 2-D geometry 
in which a scatterer lies in the (.r..: )-plane and is infinitely long 
and uniform along the y-axis. The probing pulse is incident along 
the direction of the positive .:-axis and data are measured along 
the line ( .r . .: = I). The field scattered by the centered scatterer 
(corresponding to the object located at the origin) is the pulse 

'2 ( (t - lEl) 
8 (J 1 co . 

t• 0 (r. t) = 2 11:1 
Co V lrl 

(4.1) 
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Fig. 3. Snapshots of scattered field along the measurement line (:r, z = 5) for times t = 0, t = 8.5, t = 11, and t = 13 .. 5. (a) Noise variance= 0. 
(b) Noise variance = 0.25. (c) Noise variance = 1. 

where r = ( ;1·, z) denotes a point in the ( x, z) plane and rr 2 is the 
scatterer cross section and 

q(t) = y-[cos((U )[1 + 2!3t - 1], if 0 < t < T 
{ 

28 2 2] 

0, else. 
(4.2) 

Equation (4.1) is an approximation of the field scattered by a line 
scatterer of cross section rr 2 when probed with a plane-wave pulse. 
The scattered field generated by a shifted line scatterer is obtained 
using (2.3). 

We assume the scatterer to be located at the origin of the ( x, z)
plane and chose the parameters rr 2 = 1, co = 1, (3 = 1, T = 1, and 
l = 5. For the additive Gaussian noise, we examined three different 
cases with corresponding variances 0, 0.25, and 1. In Fig. 2, we show 
the scattered pulse at ( x = 0, z = 5) for time 0 < t < 16 for the 
three noise levels. Fig. 3 shows four snapshots of the field along 

the measurement line (;r, z = 5) taken at times t = 6, t = 8.5, 
t = 11, and t = 13.5 for the three noise levels. Finally, the likelihood 
functions computed via (3.7) are shown in Fig. 4 for the three noise 
levels. 

V. SUMMARY, CONCLUSIONS, AND FUTURE WORK 

In this correspondence, we established that the log likelihood 
function for estimation of the location of a known scattering ob
ject from noisy wideband scattering data can be computed via 
a time-domain, filtered backpropagation algorithm consisting of a 
sequence of direct and inverse Radon transforms of the space
time measurements. Target classification/identification can also be 
performed via a similar algorithm, in which a bank is employed 
of filters matched to various target signatures. A computer simula
tion of a single scattering experiment was performed to illustrate 
the procedure, which revealed high algorithm performance even 
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Fig. 4. Log likelihood functions for estimation of object location. (a) Noise 
variance = 0. (b) Noise variance = 0.25. (c) Noise variance = 1. 

1001 

in the case of low SNR. Further performance improvements can 
be achieved if a multiplicity of scattering experiments are uti
lized. 

Related research issues to be addressed in the future include the 
derivation of proper location estimation algorithms for the cases of 
measurement planes that remain fixed from scattering experiment to 
experiment. This is the case in geophysical surveys in which the 
sensor array is fixed in space and several scattering experiments 
are performed, each with a different probing plane-wave pulse [ 19]. 
Another avenue of future research is the derivation of nonparametric 
algorithms for detection, location estimation, and classification of 
stochastic scattering objects. 

REFERENCES 

[I] R. G. Newton, Scattering Theory of Waves and Particles. Berlin, 
Germany: Springer-Verlag, 1982. 

[2] A. J. Devaney, "Nonuniqueness in the inverse scattering problem," J. 
Math. Phys., vol. 19, p. 1526, 1978. 

[3] __ , "A filtered backpropagation algorithm for diffraction tomogra
phy," Ultrason. /mag., vol. 4, p. 336, 1982. 

[4] __ , "Reconstructive tomography with diffracting wavefields," lnv. 
Probl., vol. 2, p. 161, 1986. 

[5] E. Wolf, "Three dimensional structure determination of semi transparent 
objects from homographic data," Opt. Commun., vol. I, p. 153, 1969. 

[6] __ , "Principles and development of diffraction tomography," in 
Trends in Optics, A. Consortini, Ed. New York: Academic, 1996. 

[7] N. Sponheim, L.-J. Gelius, I. Johansen, and J. J. Stamnes, "Quantitative 
results in ultrasonic tomography of large objects using line sources 
and curved detector arrays," IEEE Trans. Ultrason., Ferroelect., Freq. 
Contr., vol. 38, p. 370, 1991. 

[8] G. A. Tsihrintzis and A. J. Devaney, "Application of a maximum 
likelihood estimator in an experimental study of ultrasonic diffraction 
tomography," IEEE Trans. Med.lmag., vol. 12, pp. 545-554, 1993. 

[9] R. B. Pratt and M. H. Worthington, "The application of diffraction 
tomography to cross-hole seismic data," Geophysics, vol. 53, p. 1284, 
1988. 

[10] A. Witten and W. C. King, "Acoustical imaging of subsurface features," 
J. Environ. Eng., vol. 116, p. 166, 1990. 

[11] M. H. Maleki, A. J. Devaney, and A. Schatzberg, "Tomographic 
reconstruction from optical scattered intensities," J. Opt. Soc. Amer. A, 
vol. 9, pp. 1356-1363, 1992. 

[12] A. J. Devaney and G. A. Tsihrintzis, "Maximum likelihood estimation 
of object location in diffraction tomography," IEEE Trans. Signal 
Processing, vol. 39, p. 672, 1991. 

[13] G. A. Tsihrintzis and A. J. Devaney, "Maximum likelihood estimation 
of object location in diffraction tomography, part II: Strongly scattering 
objects," IEEE Trans. Signal Processing, vol. 39, p. 1466, 1991. 

[14] D. J. Rossi and A. S. Willsky, "Reconstruction from projections based 
on detection and estimation of objects, parts I and II: Performance 
analysis and robustness analysis," IEEE Trans. Acoust., Speech, Signal 
Processing, vol. ASSP-32, p. 886, 1984. 

[15] T. Melamed, Y. Ehrlich, and E. Heyman, "Short-pulse inversion of 
inhomogeneous media: A time-domain diffraction tomography," lnv. 
Probl., vol. 12, pp. 977-993, 1996. 

[16] P.M. Morse and H. Feshbach, Methods of Theoretical Physics, Parts I, 
II. New York: McGraw-Hill, 1953. 

[17] S. Deans, The Radon Transform and Some of Its Applications. New 
York: Wiley, 1983. 

[18] H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I, 
New York: Wiley, 1968. 

[19] A. J. Devaney, "Geophysical diffraction tomography," IEEE Trans. 
Geosci. Remote Sensing., vol. GE-22, p. 3, Jan. 1984. 



Statistical approach to multi-channel spatial modeling for the 
detection of mine-like targets 

Robert A. Weisenseela W. Clem Karl a 

Charles A. Dimarziob 
David A. Castanona 

aBoston University, Electrical and Computer Engineering Department 
bNortheastern University, Electrical and Computer Engineering Department 

ABSTRACT 

V\Te present a statistically-based method for the enhancement and detection of mines and mine-like targets, in multi
channel imagery. Standard approaches to such multi-channel image processing take advantage of the correlation 
across channels within a pixel, but typically do not exploit the spatial dependency between pixels. This work aims 
to construct appropriate spatial statistical models for multi-channel mine imagery and apply these models to allow 
both image enhancement as well as direct and improved detection of anomalies (i.e., targets) in such data. 

\'l\Te base the method on a Markov Random Field (MRF) model that incorporates a priori information about both 
the target's and the background's spatial characteristics. In particular, we find a Maximum A Posteriori (MAP) 
detector of mine targets in background under the prior assumption target pixels are locally spatially dependent. We 
implement our algorithm on polarimetric and thermal data obtained from from the Remote Minefield Detection Sys
tem (REMIDS), with favorable results compared to a Maximum Likelihood (JVIL) detector that performs detections 
on a pixel-by-pixel basis, i.e. without spatial correlation. 

Keywords: mine, MRF, multispectral, polarimetric, thermal, statistical, spatial, REMIDS, UXO, detection 

1. INTRODUCTION 

The need for mine and unexploded ordnance (UXO) detection and removal is growing in both military and human
itarian applications. In places like Cambodia, the threat of mines to the general populace is overwhelming. Since 
the end of the Cold \V'ar, there has been a growth in smaller, regional conflicts where threats are often not from 
high-tech weaponry, but. from inexpensive ordnance. Bosnia is just one example. I\1ines are one of the least expensive 
\Veapons available, and their threat often far outlasts the conflict for which they are emplaced. Mine detection is 
therefore necessary in two roles: detecting minefield obstacles for military intelligence and detecting individual mines 
for eventual removal. 

One specific subject of mine detection involves wide-area surveillance. In one case, military forces need to chart 
possible impediments to ground movement accurately over broad swaths of territory. In humanitarian applica
tions, surveyors examining terrain for mine clearance can limit the area searched with wide-area surveillance. For 
both situations, it is highly desirable to conduct mine searches from the air to minimize the danger to personnel. 
Unfortunately, ground penetrating radar and quasistatic electromagnetic approaches are somewhat limited in range. 

Optical techniques can meet many of the requirements of wide-area minefield detection. One area of much interest 
is polarimetric sensing. In the near infrared domain, mines have a highly polarizing characteristic. While this feature 
aJone is inadequate to detect mines, it can be a powerful tool when combined with multispectral information, such 
<ts thermal imaging or imaging spectrometers. For all-weather capabilities, an active infrared sensor in combination 
with a thermal sensor is nearly ideal. 

However, while polarization and multispectral capabilities, when fused in a rational, statistical manner, can go 
a long way toward perfecting mine detection from an airborne platform, they can fail under some conditions. For 
example, during diurnal crossover periods or other situations of low thermal contrast, polarization methods alone 
cannot make up for the lost information from the thermal channel. Under these conditions, we may require other 
sources of information to obtain good detection rates while restricting false alarms. In fact, mine detection rates 
are high using only polarization information, but reducing the false alarm rate is a harder problem, requiring that 
we apply additional information. Statistical spatial models of prior knowledge can help reduce false alarm rates in 
a reasonable, quantifiable way. By encoding prior spatial information, such as shape, smoothness, or pattern, in a 
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statistical form, we can fuse that information with the available data to improve the mine detection process under a 

wide range of operational conditions. 

2. BACKGROUND 

2.1. Sensor 

Our data consist of three infrared imagery channels generated by the U.S. Army Engineer Waterways Experiment 

Station's Remote Minefield Detection System (REMIDS). 1•2 The first two channels are imaged using an active 

infrared system at the 1.05 J.Lm wavelength. One channel is percent polarization, (P- S)j(P + S), and the other 

channel is total reflectance, ( P + S), where P is reflectance in parallel polarization and S is reflectance in cross 

polarization. The third channel is a passive thermal infrared channel operating over the 8-12 J.Lm range. The sensor 

is mounted on an airborne platform, represented in Figure 1. The data that we use for this study has a resolution 

~ 

rs 
45deg -200ft 

-166ft 

Figure 1. REMIDS Thematic Representation 

of 2-3 inches per pixel, although later system upgrades have increased this resolution. 

Several researchers have shown that polarization characteristics are advantageous in the mine detection pro

cess.1•3•4 lVIan-made objects such as mines and other unexploded ordnance (UXO) are significant near infrared 

pola.rizers compared to natural backgrounds, which tend to be random polarizers. REMIDS only uses linear polar

ization features, but the same algorithmic techniques can be extended to circular polarization as well. Additionally, 

thermal data alone is sensitive to weather and time of day, especially diurnal thermal crossover. 

The active near-IR sensor used in RENIIDS is capable of all-weather imaging, but this all-weather capability 

comes at the price of a laser source, its power supply, and other support equipment. A passive polarization sensor 

could be implemented cheaply, but would have weather-dependent detection and false alarm rates. An alternative 

system is a passive hyperspectral polarimetric imager, 3 but this again increases the system cost. 

2.2. Algorithms 

Because detecting individual mines from the air is often prone to false alarms, many researchers have concentrated 

on detecting minefields, which is to say a collection of mines that can be grouped in some way. Some have used 

collinearity,5 and some have used Poisson point models6- 8 as a basis for detecting minefields. However, collinearity is 

useful only when studying patterned minefields, and Poisson point models are limited by their preprocessor's ability 

to screen out false detections of individual mines. To obtain better minefield detection, a clear solution is to either 

improve the detection of individual mines or reduce the number of individual mine false alarms, or both. A good 

mine detection model can then be combined with a minefield detection model with the end result being improved 

detection of both mines and minefields. 

One way to improve the individual mine detection process is to model the system statistically. Statistical model

based approaches can provide many advantages. Bayesian approaches provide a rational framework in which to model 

and fuse both information and its uncertainty. Statistical models frequently provide confidence measures of results. 
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They make fusion of information from disparate sources, especially prior information, a reasonable and quantifiable 
process. 

One appropriate system for detecting mines in background is a Maximum A Posteriori (:MAP) detector. ·with x 
bt~ing the image where each pixel can take on two states, mine or background, and y being the multichannel data 
image, the formula for determining the values of .T is: 

.i = argmax p(xiy) = argmax p(yi:r)p(x) (1) 
X X 

where p(xly) is the posterior probability distribution of the mine location image conditioned on the multichannel data 
image, p(yix) is the likelihood of the data image conditioned on the mine locations, and p(x) is the prior probability 
distribution of the mine location image. Thus, we just need three things: an observation probability model, a prior 
probability model, and an algorithm for maximizing over all possible mine location images :r:. 

3. METHOD 
For our observation model, we assume that each pixel of data, y;, is conditionally independent of all other data 
pixels, conditioned on knowledge of mine presence at that pixel, .T;. Formally, 

N 

p(yix) =p(yl,···,YNi:r:l,···,:r:N) = Ilr(Y;i::r:.i) (2) 
·i=l 

where N is the number of pixels in the image. We also assume that each pixel is an identically distributed Gaussian 
random 3-vector, with one element for each ofthe three channels: percent polarization, total reflectance, and thermal, 

(3) 

where Jl·~:., and :Ex; are the mean and the covariance, respectively, of the observation variable, given that the obser
vation is of type Xi. This type can be either mine or background, which we will denote as 1 and 0, respectively. 
For the purposes of this paper, we have assumed that the mean and covariance are known for both background and 
mines, and we have estimated the mean and a full covariance matrix for both mines and background directly from 
the data. In practice, we would need to estimate these parameters from the data, possibly by using a tool such as 
the Expectation-Maximization algorithm. 

For our prior model, we have chosen to introduce spatial correlation of mine or background using a Markov 
Random Field (MRF) model. 9 Some previous work has been done on using MRFs in mine detection and classification 
problems. 10 ,11 In one case, the focus was on detecting boundaries using an MRF boundary structure model. In 
another case, the author based his approach on detecting deviations from an autoregressive (MRF) model that he 
computed from the data. Neither of these studies dealt with the problem of wide-area surveillance. We have chosen 
to use a type of discrete "smoothness," or region-based, model, under the assumption that the mines we are detecting 
extend over multiple pixels and thus any pixel with a mine will be near several other pixels containing mines: 

(4) 

The Z term is a normalizing constant given by, 

(5) 

and Nk is the set of four nearest neighbors around pixel k, as shown in Figure 2. Those familiar with statistical 
mechanics may recognize this as a variant form of the Ising magnet model. In simpler terms, Equation 4 states tha.t 
each pixel has a higher probability of being the same as its neighbors than of looking different. We can then combine 
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Figure 2. Neighborhood Structure of the Spatial Model 

these two models into a function proportional to the posterior distribution with a as a weighting constant between 
the prior and likelihood distributions: 

p(xjy) ex e-H(xly) (6) 
where 

(7) 

The last thing we need is a means to maximize this joint distribution, and hence the posterior distribution, for all 
:1:. vVe have chosen to implement this maximization using a simulated annealing algorithm because the distribution 
of x is discrete. 12 Thus, we introduce a "temperature" parameter to the distribution: 

p(xjy) ex e-H(xlv)/T (8) 

To obtain an optimal solution, T should start at a sufficiently high temperature and be reduced slowly according to 
a logarithmic cooling schedule. However, to reduce the number of computations necessary, we chose to initialize the 
system at a relatively low temperature with a pixel-by-pixel Maximum Likelihood (ML) solution using the likelihoods 
given in Equation 3. We then reduced the temperature with an exponential cooling schedule: 

~ = 1ef:Jk k = 1,2, ... (9) 

vVhile this approach is not guaranteed to achieve a globally optimal solution, the initialization makes this algorithm 
unlikely to do worse than the ML solution and the exponential cooling schedule gives fast convergence. Because only 
local interactions are involved in this processing and the number of local operations required are small, this technique 
is well-suited to massive parallelization, either on multiple processors or on application specific ICs. 

4. RESULTS 
For our test we had access to only two data sets, both from 1991 test flights of REMIDS over Fort Drum, New 
York. The first flight was conducted at 9 am on an overcast day, resulting in a complete lack of thermal contrast 
between mines and background. The second flight was conducted at 3 pm on a sunny day. Representative segments 
of all channels of both scenes are shown in Figures 3 and 4. The mines in these images are surface patterned anti
tank mines, but note that our technique does not use any pattern based information, so it. is equally applicable to 
scatt.erable mines as long as sufficient spatial resolution is available. 

The good thermal and percent polarization contrast in the sunny imagery made near perfect detection possible 
with simple techniques, such as thresholding the three images separately and combining them with boolean operations, 
so this data will not be considered here. However, the cloudy imagery removed the advantages conveyed by the 
thermal channel. A likelihood ratio test based on a Gaussian model for each hypothesis, mine and background, 
produced a very high false alarm rate (Figure 5) Using the MAP estimator with its a priori "smoothness" model 
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significantly reduced the false alarms, as demonstrated in Figure 6. An empirically determined ROC curve appear;:; 

iu Figure 7 We computed this ROC by taking the total number of false alarms in a 710x9000 pixel (166ftx2100 ft) 

image as the x-axis and the ratio of detected mines to actual mines as the probability of correct detection on the 

:>·-axis. A detection (both correct detection and false alarms) was any continuously 4-connected region of mine pixels. 

\iVe found that we could also achieve good minefield detection simply by counting the number of detections in 

it processed block. In each case where a minefield was present in a block of the cloudy day data, the number of 

iudividual mine detections significantly exceeded some threshold between 4 and 10, as shown in Table 1. This result 

II Block 1 I Block 2 I Block 3 I Block 4 I Block 5 I Block 6 I Block 7 I Block 8 I Block 9 I 
JvlL 299 260 522 44 433 233 174 183 341 

MAP 2 0 1 0 11 12 12 0 3 

Ttue 0 0 0 0 11 11 11 0 0 

Table 1. Number of :rvline Detections in Each Data Block 

shows that we have found a simple tool for minefield detection that does not depend on patterned minefield layouts. 

In addition, our method can still be combined with other statistical models of mine layouts, to further improve both 

minefield and individual mine detection. 

Note that the only ground truth available to us at the time of this writing comes from human evaluation of the 

data. Note also that our algorithms, both the ML and the MAP detectors, detected every individual mine. The only 

errors in these results arose from false alarms. Because of the small data set, however, it would not be prudent to 

<tttempt to estimate true error rates from these data. 

Processing a 710x 1000x3 data block through twenty iterations in MATLAB using non-optimized code required 

approximately 2.5 minutes on a Sun Ultra 1. Large speedups are possible by going to native compiled code rather 

tlw.n interpreted code and by implementing this algorithm in a massively parallel environment. 

5. CONCLUSIONS 

Vv\' have demonstrated the incorporation of a spatial correlation structure in a mine detector using a statistical 

ttpproac:h to fuse a priori spatial knowledge with multichannel imagery. Vve implemented this approach on three 

channel data from the RElVIIDS sensor, comprised of percent polarization and total reflectance from an active sensor 

in the near infrared domain and a single passive thermal infrared channel. This l\IIAP formulation resulted in a 

uoticeable improvement over an JVIL hypothesis test under reasonably common conditions where the thermal channel 

provided little or no discriminating information. Limited data availability precluded a more thorough evaluation of 

performance measures. 

This approach required no information about the pattern of the minefield or the shape of the mines. We only 

required the information that mines form multi-pixel regions. Hence, there is no reason why this approach would 

uot work equally well on scatterable mines. In addition, because we formulated this algorithm as a statistical model, 

we can fuse the results of this detection process with other sources of information in a rational way. For example, 

we could have included a global statistical model of the mine locations in a minefield to better detect minefields. In 

future work, we aim to examine the buried minefield problem. 
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Figure 3. 9 am, Overcast, Percent Polarization, Reflectance, and Thermal 
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Figure 5. Typical Maximum Likelihood Result Based on Gaussian Model 

100 

200 

300 

400 

500 

600 

700L-----L-----L-----~----~----~----~----~----~----~----~ 
100 200 300 400 500 600 700 800 900 1000 

Figure 6. Typical MAP Detection Result with MRF Prior Model 
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A new and conceptually simple derivation is presented of the time-dependent mul-
tipole expansion of the electromagnetic field radiated by a time-varying, localized,
volume charge-current distribution. The analysis is based on a new time-dependent
plane wave representation of the electromagnetic field~i.e., an ‘‘angular spectrum
expansion’’ in the time domain!, also derived in the paper. Expressions are given
for the time-dependent plane wave spectra in terms of a fourfold Radon transform
representation of the transverse current distribution. Two alternative expressions for
the time-dependent multipole moments are derived; the first gives them in terms of
the spectral amplitude vectors of the corresponding time-dependent plane wave
representation while the second gives them in terms of a weighted radial-temporal
average of the current distribution. Thus the analysis also sheds light on the rela-
tionship between the time-dependent plane wave and multipole expansions in their
common domains of validity. ©1998 American Institute of Physics.
@S0022-2488~98!01007-X#

I. INTRODUCTION

In describing transient wave phenomena, descriptions directly in space-time domain~where
the sources and fields are well-localized! are usually more efficient and insightful than their
conventional, frequency domain counterparts. Examples include the pulsed beams~PBs! and the
focus wave modes~FWMs!, among others.1,2 This investigation is concerned with the time do-
main analogs of more traditional~frequency-domain-based! representations, namely, the plane
wave and multipole expansions. Thus, the electromagnetic field radiated by a time-varying~e.g.,
pulsed!, localized, volume charge-current distribution is expressed as a sum of time-dependent
spherical~multipole! wave functions. We also obtain, via analytic signal representation, a new
time-dependent plane wave representation of the electromagnetic field~i.e., an ‘‘angular spectrum
expansion’’ in the time domain!. The relationship between the expansion coefficients~moments!
of the time-dependent plane wave and multipole expansions in their common domains of validity
is also examined. The work reported here is an extension to the electromagnetic field case of the
time domain multipole theory for scalar fields developed in Ref. 3. It is also an extension to the
time domain of the frequency domain plane wave representations and multipole expansions of the
electromagnetic field developed in Ref. 4.

Time-dependent multipolelike~spherical wave! expansions of electromagnetic radiation fields
are not new. Early work in this area is associated with the names of Granzow,5 Davidon6 and
Campbellet al.7 More recent contributions include those of Heyman and Devaney,3 where a scalar
time-dependent multipole theory for volume source distributions is developed and Hansen,8 where
time-dependent multipole fields are applied to address theoretical aspects of spherical near field
scanning. However, even though work in this field is not new, both the procedure we use to derive
our results as well as many of the results are new. For instance, the time domain multipole theories
in Refs. 6 and 7 originate from the Debye-potential formalism4 while ours originates from the
time-dependent plane wave representation, also derived in the paper. Granzow’s5 and Hansen’s8

focus is on the diffraction problem for prescribed field data over a boundary while ours is on the
radiation problem for volume current distributions. Furthermore, our formulation is conceptually

a!Electronic mail: emarengo@cdsp.neu.edu
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simple and insightful in describing the relationship between the time-dependent expansion coef-
ficients ~moments! of the time-dependent plane wave and multipole expansions in their common
domains of validity. Aspects of our time-dependent plane wave representations of the electromag-
netic field have also appeared before in connection with time domain planar near field scanning.9

Our formulation, however, is given in terms of charge-current distributions~i.e., radiation prob-
lem!, unlike those in Ref. 9, which are given in terms of fields prescribed over a boundary~i.e.,
diffraction problem!. More importantly, our analysis not only corroborates those of previous
contributions but also yields new, alternative expressions for both types of expansions.

Frequency domain plane wave and multipole expansions of scalar and electromagnetic fields
have played a key role in classical and quantum-mechanical theories of wave radiation, propaga-
tion and diffraction and in defining fundamental limits in antenna theory.10,11 Thus, in analogy to
their frequency domain counterparts, the time-dependent expansion schemes considered here
could be useful in treating canonical radiation and scattering problems directly in the time domain.
They could also be of interest in diffraction problems formulated in terms of near or far field data
~e.g., time domain near field scanning8 and inverse diffraction from far field data4!. Furthermore,
they could also help in elucidating transient radiation phenomena~e.g., fundamental limitations of
antennas driven by short pulses! and—by doing so—also in defining relevant figures of merit for
transient radiation.

The remainder of the paper is organized as follows. Section II reviews known results on plane
wave and multipole expansions for scalar fields. We examine, in analytic signal representation, the
Weyl expansion~or angular spectrum expansion! of the scalar field generated by a localized scalar
source distribution that is turned on at some initial time~say t50!. We then derive, again in
analytic signal representation, a time domain multipole expansion of the scalar field based on the
corresponding time-dependent plane wave representation. Methodologically, we Fourier invert to
the time domain the corresponding frequency domain multipole expansion. The final form of the
time-dependent multipole expansion is given explicitly in terms of real signals using the real
spherical harmonicsSl ,m

(1) (u,f) and Sl ,m
(2) (u,f) ~also known as tesseral harmonics12!, defined,

respectively, by the real and imaginary parts of the ordinary spherical harmonic of degreel and
orderm, Yl ,m(u,f). An alternative form of the time-dependent multipole expansion in which the
time-dependent multipole moments are expressed as a weighted radial-temporal average of the
source distribution is also derived.

The main contribution of the paper is contained in Sec. III. There we extend the theory
developed in Sec. II for scalar fields to the electromagnetic field case, with the vector spherical
harmonics in the latter case playing a role analogous to that of the ordinary spherical harmonics in
the scalar case. In Sec. III A we derive, in analytic signal representation, a new time-dependent
plane wave representation of the electromagnetic field generated by a time-varying, localized,
volume charge-current distribution. The time-dependent plane wave spectra are given in terms of
a fourfold Radon transform representation of the transverse current distribution. Later, we derive,
following lines analogous to those of the scalar field treatment in Sec. II, a new form of time-
dependent multipole expansion of the electromagnetic field; the spherical-wave expansion func-
tions used are the vector analogs of the real spherical harmonics. However, unlike in Sec. II, our
electromagnetic field case manipulations in Sec. III are carried out in the time domain. Two
alternative expressions for the time-dependent multipole moments~i.e., the expansion coefficients!
are derived; the first gives them in terms of the spectral amplitude vectors of the corresponding
time-dependent plane wave representation while the second gives them in terms of a weighted
radial-temporal average of the current distribution. Emphasis is placed on real spherical harmon-
ics, hence our expansion involves only real time-dependent multipole wave functions and mo-
ments.

Notation: We define the temporal and spatial-temporal Fourier transforms,q(r ,v) and
q̃(K ,v), respectively, of a scalar sourceQ(r ,t) of finite energy@i.e., square-integrable in (r ,t)#
via

q~r ,v!5E
2`

`

dt8eivt8Q~r ,t8! ~1!

where
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Q~r ,t !5
1

2p E
2`

`

dv8e2 iv8tq~r ,v8!, ~2!

and

q̃~K ,v!5E
2`

`

dt8eivt8E dr 8e2 iK–r8Q~r 8,t8! ~3!

where

Q~r ,t !5
1

~2p!4 E
2`

`

dv8e2 iv8tE dK 8eiK8–rq̃~K 8,v8!. ~4!

Thus the spatial-temporal Fourier transformq̃(K ,v) of Q(r ,t) is simply the spatial Fourier
transform ofq(r ,v). We shall refer toq(r ,v) as being the source spectrum.

Unless otherwise stated, we shall subsequently use lowercase and uppercase letters to denote
frequency and time domain quantities, respectively. Unless otherwise stated, a tilde (˜ ) over a
constituent will denote a spatial-frequency domain constituent. A caret (ˆ ) over a vector will
denote a unit vector, e.g.,r̂[r /ur u.

We shall denote the Cartesian coordinates ofr ~configuration space! and K ~momentum
space! as (x,y,z) and (Kx ,Ky ,Kz), respectively. The corresponding spherical coordinates will be
denoted as (r ,u,f) and (K,a,b), respectively. We also define theK -space unit vectors
[K /K.

In order to simplify the manipulations time-dependent quantities will be manipulated first in
analytic signal representation. For example, we define the analytic source distributionQ1(r ,t)
corresponding to a real, square-integrable source distributionQ(r ,t) by

Q1~r ,t !5
1

2p E
0

`

dv8e2 iv8tq~r ,v8! ~5!

so that, for realt,

Q~r ,t !52R$Q1~r ,t !%, ~6!

whereR denotes the real part. The quantityQ1(r ,t) defined by Eq.~5! is an analytic function in
the lower-half plane of the complext plane.13 Of particular interest to us is the real-t limit of
Q1(r ,t), which defines the real, physical source distributionQ(r ,t) via Eq. ~6!. Subsequently a
plus sign~1! in the upper-right of a constituent will denote its analytic extension.

To simplify notation we also define a temporal integration operator] t
21 such that

] t
21Q~r ,t ![E

2`

t

dt8Q~r ,t8!. ~7!

The correspondingnth-order temporal integration will be denoted as] t
2n .

II. REVIEW OF THE THEORY FOR SCALAR FIELDS

This section reviews time-dependent plane wave and multipole expansions for scalar fields
U(r ,t) radiated by scalar sourcesQ(r ,t) to the inhomogeneous wave equation

S ¹22
1

c2

]2

]t2DU~r ,t !524pQ~r ,t !. ~8!

We will assume that the sourceQ(r ,t) is a square-integrable, continuous and continuously dif-
ferentiable function of (r ,t), is confined to within a spherical volume about the origin@such that
Q(r ,t)50 for r .a#, and is turned on at some initial time, sayt50 @such thatQ(r ,t)50 for
t,0#. The radiated fieldU(r ,t) is the causal solution to Eq.~8!, given by14
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U~r ,t !5E
0

`

dt8E
r 8<a

dr 8

Q~r 8,t8!dS t82t1
ur2r 8u

c D
ur2r 8u

, ~9!

whered~•! is Dirac’s delta function.

A. Plane wave expansion of scalar fields in the time domain

It is well known that the radiated fieldU(r ,t) at pointsr within any half-spaceuzu>a can be
written as a superposition of monochromatic homogeneous and inhomogeneous~evanescent!
plane waves; in particular,15

U~r ,t !52R$U1~r ,t !%52RH ic

~2p!2 E
0

` v

c
dS v

c D E
2p

p

dbE
C6

da sin a f ~s,v!e@ i ~v/c!~s–r2ci !#J
~10!

where s is the unit vector having Cartesian components~in general complex!
(sin a cosb,sina sinb,cosa) while the contours of integrationC6 in the complexa plane are
those shown in Fig. 1, whereC1 is used ifz>a andC2 if z<2a. The real-axis portion of the
contoursC6 contributes to the propagating spectrum, describing homogeneous plane waves
propagating into the half-spacez>a or z<2a. The complex portion of the contoursC6 corre-
sponds, on the other hand, to the evanescent spectrum, describing evanescent plane waves that
decay exponentially in amplitude along thez axis ~i.e., in ẑ if z>a and in 2 ẑ if z<2a!. The
spectral amplitude functionf (s,v) in ~10! is related to the source spectrumq(r ,v) by15

f ~s,v!5q̃~K ,v!uK5~v/c!s5E
r 8<a

dr 8e2 i ~v/c!s–r8q~r 8,v!. ~11!

It is noted that since we requireq(r ,v) to be continuous and compactly supported in space, it
follows thatq̃(K ,v) is, for fixed frequencyv, the boundary value, on the realKx ,Ky ,Kz axes, of
an entire analytic function of three complex variablesKx ,Ky ,Kz . Thus, for fixed frequencyv,

FIG. 1. Thea-contours of integrationC1 andC2 in complexa space.
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f (s,v) is given by the value of the spatial Fourier transformq̃(K ,v), and its analytic continuation
into the complexK plane, of the source spectrumq(r ,v) evaluated atK5(v/c)s.

By performing thev integration in~10! and using~5! we obtain

U1~r ,t !52
1

2pc

]

]t E2p

p

dbE
C6

da sin aF1~s,t2s–r /c!, ~12!

where from Eq.~11!

F1~s,t ![
1

2p E
0

`

dv8e2 iv8t f ~s,v8!5E
r 8<a

dr 8Q1~r 8,t1s–r 8/c!. ~13!

Equations~12! and~13! define the time-dependent plane wave representation of the analytic signal
U1(r ,t) corresponding to the real, physical fieldU(r ,t).

Equation~13! is the time domain analog of~11!. The operation defined by the integral on the
right-hand side of Eq.~13!, sometimes referred to as ‘‘slant-stack transform’’ of the analytic
source distributionQ1(r ,t), has been studied in recent years by Heyman.16 It involves spatial
Radon projection ofQ1(r ,t) evaluated at planes normal to the spectral propagation directions
and stacking them with a progressive time delays–r /c associated with a wave front propagating at
the speed of light along this direction. Mathematically,F1(s,t) is given by the value of the
fourfold Radon transform, and its analytic continuation for complexs,17 of the analytic source
distribution evaluated at the hyperplanect2s–r50 in a four-dimensional space-time domain
(ct,r ).

The real, physical fieldU(r ,t) is recovered fromU1(r ,t) via Eqs. ~6! and ~5!. In the far
radiation zone14

U~r r̂ ,t !ur→`;
1

r
F~s,t!us5 r̂ ~14!

with t5t2r /c. Thus the time domain radiation pattern is from Eq.~14!, the propagating portion
of the time-dependent plane-wave spectrum. The evanescent spectrum can be recovered by ana-
lytic continuation of the time domain radiation pattern to complex-valued observation directions.17

The individual contributions of the propagating and evanescent spectra to the total field have been
examined in detail by Heyman,16 who has shown that the contribution from the evanescent spec-
trum vanishes after a certain timetE that may be determineda priori for a given field point; in
regions of space wheretE occurs prior to the causal arrival time of the field, the latter is describ-
able only by its propagating spectrum within the causal time window while noncausal contribu-
tions due to both propagating and evanescent spectra cancel out prior to the causal arrival time.

B. Multipole theory in the frequency domain

The multipole expansion of the radiated field spectrumu(r ,v) is readily obtained by expand-
ing the spectral amplitudesf (s,v) of the ~frequency domain! angular spectrum expansion

u~r ,v!5
iv/c

2p E
2p

p

dbE
C6

da sin a f ~s,v!ei ~v/c!s–r ~15!

into a series of spherical harmonicsYl ,m(a,b) ~see Appendix A for a review! so that

f ~s,v!5 (
l 50

`

(
m52l

l

~2 i ! l ãl ,m~v!Yl ,m~a,b! ~16!

where

ãl ,m~v!5 i l E
2p

p

dbE
0

p

da sin a f ~s,v!Yl ,m* ~a,b!. ~17!

3647J. Math. Phys., Vol. 39, No. 7, July 1998 E. A. Marengo and A. J. Devaney

Downloaded 13 Mar 2002 to 129.10.136.113. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



By substituting from Eqs.~16! and~17! into Eq.~15! while interchanging orders of integration
and summation one readily finds

u~r ,v!5
iv

c (
l 50

`

(
m52l

l

ãl ,m~v!P l ,m~r ,v!, ~18!

where

P l ,m~r ,v!5~2 i ! l
1

2p E
2p

p

dbE
C6

daYl ,m~a,b!ei ~v/c!s–r ~19!

is precisely the angular spectrum representation of the scalar multipole field of degreel and order
m, i.e.,4

P l ,m~r ,v!5hl
~1!S v

c
r DYl ,m~u,f!. ~20!

In Eq. ~20!, hl
(1)(•) is the spherical Hankel function of the first kind of orderl ~as defined in Ref.

14!. Even though Eqs.~18! and~20! were derived forv.0, they apply to all realv. This fact is
implicit in our time-dependent multipole treatment~Sec. II C!. For example, the operatorLl

(r ,t) in
Eq. ~24! applies to both analytic and real signals.

The multipole expansion Eq.~18! is valid for r>a while the plane wave expansion Eq.~15!
is valid for uzu>a. However, it is obvious that as long asr is outside the source, one can always
decompose the radiated field spectrumu(r ,v) in the form Eq. ~15! by a suitable choice of
coordinates.16

An alternative expression for the multipole momentsãl ,m(v) is obtained by substituting~11!
on ~17! and interchanging orders of integration so as to yield4

ãl ,m~v!54pE
r 8<a

dr 8q~r 8,v!L l ,m* ~r 8,v! ~21!

with

L l ,m~r ,v![ j l S v

c
r DYl ,m~u,f!5~2 i ! l

1

4p E
2p

p

dbE
0

p

da sin aYl ,m~a,b!ei ~v/c!s–r,

~22!

where j l (•) is the spherical Bessel function of the first kind and orderl ~as defined in Ref. 4!.
The multipole expansion enjoys several advantages over the angular spectrum expansion. First

of all, we see from Eq.~17! that the multipole momentsãl ,m(v) are defined only by the reals
~propagating! spectral amplitudesf (s,v). Thus, in contrast to the angular spectrum expansion—
which requires analytic continuation—the multipole expansion requires no analytic continuation
of f (s,v) for complex values of the polar anglea. In addition, unlike the plane wavesei (v/c)s–r,
the multipole fieldsP l ,m(r ,v) obey Sommerfeld’s radiation condition. Hence, the multipole
expansion is, unlike the angular spectrum expansion, a true mode expansion of the radiation field
spectrum. This can be of interest if one wishes to approximate the radiated field either by trun-
cating the series~18! or by limiting the~a,b! region of integration in~15!. In the former case the
approximation will obey Sommerfeld’s radiation condition while in the latter it will not. These
advantages are obtained, however, at the expense of the increased complexity of the spherical
wave fieldsP l ,m(r ,v) as compared to the plane wavesei (v/c)s–r.

C. Time-dependent multipole expansion of the scalar field

Next we obtain a time domain multipole expansion for the scalar fieldU(r ,t) following the
lines of Ref. 3. Our starting point is the result@see Ref. 18, Eq.~10.1.16!#
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1

2p E
0

`

dve2 ivthl
~1!S v

c
r D ãl ,m~v!52~2 i ! l

c

r
] t

21
Ll

~r ,t !al ,m
1 ~ t !, ~23!

where

al ,m
1 ~ t !5

1

2p E
0

`

dve2 ivtãl ,m~v!

and

Ll
~r ,t !al ,m

1 ~ t !5 (
n50

l
~ l 1n!!

n! ~ l 2n!! S 2r

c D 2n

] t
2nal ,m

1 ~t!. ~24!

In Eqs.~23! and~24! t5t2r /c ~as before! and] t
2n denotesnth-order temporal integration@recall

~7!#.
By Fourier inverting Eq.~18! over positive frequencies while using Eqs.~20! and ~23! we

obtain

U1~r ,t !5
1

r (
l 50

`

(
m52l

l

~2 i ! l Yl ,m~u,f!Ll
~r ,t !al ,m

1 ~ t !. ~25!

The analytic time-dependent multipole momentsal ,m
1 (t) are obtained by Fourier inverting

over positive frequencies both sides of Eq.~17!, thus giving

al ,m
1 ~ t !5 i l E

2p

p

dbE
0

p

da sin aF1~s,t !Yl ,m* ~a,b!. ~26!

Thus, for fixedt, the analytic time-dependent multipole momentsal ,m
1 (t) are, apart from the

factor i l , given by projections of the analytic time-dependent plane wave spectrumF1(s,t) @see
Eq. ~13!# onto the set of spherical harmonicsYl ,m(a,b). Note, however, that—as expected from
our discussion in Eq.~17!—only the real-s, propagating plane wave spectral components enter into
play in Eq.~26!.

An alternative form of Eq.~25! due to Hansen and Norris19 is obtained using~see Ref. 19 and
references therein!

hl
~1!S v

c
r DYl ,m~u,f!5 i 2l P̃l m

v
ei ~v/c!r

i ~v/c!r
, ~27!

where

P̃l m
v 5~21!mA~2l 11!~ l 2m!!

4p~ l 1m!! S 1

i ~v/c!

]

]x
1 i

1

i
v

c

]

]yD m

Pl
~m!S 1

i
v

c

]

]zD , m>0,

~28!

where Pl
(m)(•) is the mth derivative of the Legendre polynomial and form,0, P̃l ,2m

v

5(21)mP̃l m
v* . On substituting from Eqs.~27! and ~28! into Eqs.~18! and ~20! while using the

complex-point source field expansion of the real-point source field@see Eq.~16! in Ref. 19#

ei ~v/c!r

4pr
5

1

4p j 0~ i ~v/c!r!
E

2p

p

df8E
0

p

du8 sin u8
ei ~v/c!j~u8,f8!

4pj~u8,f8!
, ~29!

wherej5ur2 ir r̂ 8u5j r1 i j i is the complex length having real and imaginary partsj r and j i ,
respectively, wherer<a is a positive constant~such thatj r>0 and2r<j i<r!, and transform-
ing to the time domain one obtains
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U1~r ,t !5 (
l 50

`

(
m52l

l

~2 i ! l E
2p

p

df8E
0

p

du8 sin u8L 0̃P̃l m
t

al ,m
1 ~ t2j~u8,f8!/c!

4pj~u8,f8!
, ~30!

whereL 0̃ is a time domain operator whose frequency domain representation is 1/j 0(( iv/c)r) @see
Eq. ~37! in Ref. 19# while P̃l m

t is the time domain analog ofP̃l m
v . Equation~30! is the result Eq.

~59! in Ref. 19; it is an analytic field expansion in terms of time-dependent multipoles with
complex-source locations. Unlike in Eq.~25!, in Eq. ~30! the basis functions are directionally
localized; hence they are of interest in well-collimated wave radiation and propagation~see, e.g.,
Heyman and Felsen1!. However, the real-signal counterpart of the analytic complex-source mul-
tipole expansion Eq.~30! is complicated and involves convolutions; in contrast, the real-signal
version of Eq.~25! is straightforward and can be written in terms of the operatorLl

(r ,t) . This is
done below.

We use~25! to recover the real, physical fieldU(r ,t)52R$U1(r ,t)%. In order to evaluate the
real part of expression~25! we consider the real spherical harmonicsSl ,m

( j ) , with l 50,1,...,m
50,1,...,l ~see Appendix A!. They obey the following orthogonality and completeness
properties:3

E
2p

p

dbE
0

p

da sin aSl ,m
~ j ! ~a,b!Sl 8,m8

~ j 8!
~a,b!5d l ,l 8dm,m8d j , j 8

1

cm
, ~31!

wherecm51 or 2 for m50 or m>1, respectively, and

(
l 51

`

(
m50

l

(
j 51,2

cmSl ,m
~ j ! ~a,b!Sl ,m

~ j ! ~a8,b8!5
1

sin a
d~b2b8!d~a2a8![d~s2s8!. ~32!

@In Eq. ~32!, a8 andb8 are, respectively, the polar and azimuthal coordinates of the unit vector
s8.#

By taking the real part to both sides of Eq.~25! while using Eqs.~26!, ~32!, and ~31! one
obtains~see derivation in Appendix B!

U~r ,t !5
1

r
(

l 50

`

(
m50

l

(
j 51,2

cmSl ,m
~ j ! ~u,f!Ll

~r ,t !ql ,m
~ j ! ~ t !, ~33!

where we have introduced the new~real! multipole momentsql ,m
( j ) (t), defined via

ql ,m
~ j ! ~ t !5E

2p

p

dbE
0

p

da sin aF~s,t !Sl ,m
~ j ! ~a,b!. ~34!

On comparing Eqs.~14! and ~33! with Ll
(r ,t) given by Eq. ~24!, the far field is seen to

correspond to the lowest order term~i.e., n50! in the series expansion Eq.~24! corresponding to
Ll

(r ,t) . Thus from Eq.~24! Ll
(r ,t)ql ,m

( j ) (t)ur→`;ql ,m
( j ) (t). Using this result in Eq.~33! yields

U~r ,t !ur→`;
1

r
(

l 50

`

(
m50

l

(
j 51,2

cmSl ,m
~ j ! ~u,f!ql ,m

~ j ! ~t !. ~35!

Also, from ~14! and ~35!, the time domain radiation pattern reduces to

F~ r̂ ,t !5 (
l 50

`

(
m50

l

(
j 51,2

cmSl ,m
~ j ! ~u,f!ql ,m

~ j ! ~ t !. ~36!

Since the multipole momentsql ,m
( j ) (t) define via Eq.~33! the field everywhere outside the source,

it follows from Eq. ~34! that the time domain radiation patternF( r̂ ,t) also determines the field
everywhere outside the source~problem of inverse diffraction from far field data3,4!.

Equation~34! defines the real time-dependent multipole momentsql ,m
( j ) (t) as projections of

the time-dependent plane wave spectrum onto the set of real spherical harmonics. An alternative
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formula for ql ,m
( j ) (t) based on a radially dependent weighted time average ofQ(r ,t) follows

readily from the time domain analog of Eq.~21!. The remainder of this section is based on Eq.
~21! and the following result:3

j l ~z!5
~z/2! l

2l ! E
21

1

dh~12h2! l eizh. ~37!

We begin by substituting from Eq.~37! into Eq. ~21!, thus obtaining

ãl ,m~v!5
4pc2l v l

l !2 l 11 E
r<a

drq~r ,v!Yl ,m* ~u,f!r l E
21

1

dh~12h2! l e2 ivrh/c. ~38!

The analytic time-dependent multipole momentsal ,m
1 (t) are obtained by Fourier inverting

ãl ,m(v) as given by Eq.~38! over positive frequencies. This procedure yields

al ,m
1 ~ t !5

1

2p E
0

`

dve2 ivtãl ,m~v!5 i l E
2p

p

dfE
0

p

du sin uYl ,m* ~u,f!F l
1~ r̂ ,t !, ~39!

where

F l
1~ r̂ ,t !5

4pc2l

l !2 l 11 E
r<a

drr l E
21

1

dh~12h2! l
] l

]t l Q1~r ,t1rh/c!. ~40!

The real time-dependent multipole momentsql ,m
( j ) (t) follow from Eqs. ~39! and ~40! with

ql ,m
1 (t)5(2 i ) l al ,m

1 (t):

ql ,m
~ j ! ~ t !5E

2p

p

dfE
0

p

du sin uSl ,m
~ j ! ~u,f!F l ~ r̂ ,t !, ~41!

where

F l ~ r̂ ,t !5
4pc2l

l !2 l 11 E
r<a

drr l E
21

1

dh~12h2! l
] l

]t l Q~r ,t1rh/c!. ~42!

The time-dependent real multipole momentsql ,m
( j ) (t) are now given from Eqs.~41! and ~42!

by the projection of anl -dependent~effective! time domain radiation patternF l ( r̂ ,t) onto the set
of real spherical harmonics. This latter quantity is computed using a two-step procedure described
below.

The first step is that ofh integration in~42!. It involves radially dependent weighted time
averaging of thel th time derivative of the source distribution, (] l /]t l )Q(r ,t) ~h integration
plays the role of temporal integration!. The term (12h2) l in Eq. ~42! acts as weighting kernel.
The h-integration limits in Eq.~42! define the time windowt6r /c within which weighted time
averaging of (] l /]t l )Q(r ,t) is carried out. This first step acts on both the temporal and radial
dependence of the source. The temporal nature of the source enters into play here through both
time derivation and time averaging. On the other hand, bothl and r ~and, therefore, also the
source’s radiusa! control the effective time averaging window.

The second step is that of radial integration. It acts only on the radial dependence of the
source. Thus it plays a role in controlling the relative relevance of the outer versus the inner
source’s structure in definingql ,m

( j ) (t).

III. TIME-DEPENDENT PLANE WAVE AND MULTIPOLE EXPANSIONS OF
ELECTROMAGNETIC FIELDS

In Gaussian systems of units, the time-dependent electric and magnetic field vectorsE (r ,t)
and H (r ,t), respectively, generated in free space by a time-dependent current distribution
I (r ,t), are the causal solutions to the vector wave equations14
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S ¹22
1

c2

]2

]t2DE ~r ,t !524pF2
1

c2

]

]t
1] t

21¹¹• GI ~r ,t !,
~43!

S ¹22
1

c2

]2

]t2DH ~r ,t !524p
1

c
¹3I ~r ,t !,

where, again,] t
21 denotes integration over time@see Eq.~7!#. Here and henceforth it is assumed

thatI (r ,t) is a square-integrable, continuous and continuously differentiable function of (r ,t), is
confined to a finite region of radiusa around the origin, and is turned on at some initial timet
50. In Secs. III A and III B we derive new time-dependent plane wave and multipole expansions
for E (r ,t) andH (r ,t) in terms ofI (r ,t).

A. Plane wave expansion of electromagnetic fields in the time domain

It follows from ~43! that each Cartesian component of the electromagnetic field vectors
E (r ,t), H (r ,t) satisfies an inhomogeneous scalar wave equation of the form Eq.~8!. Therefore,
the results of Sec. II are applicable to each Cartesian component ofE (r ,t) andH (r ,t). Thus, we
introduce the analytic field vectors E 1(r ,t)5(1/2p)*0

`dve2 ivtE(r ,v), H1(r ,t)
5(1/2p)*0

`dve2 ivtH(r ,v), whereE~r ,v! andH~r ,v! are, respectively, the electric and magnetic
field spectrum. They are related to the analytic current distribution
I 1(r ,t)5(1/2p)*0

`dve2 ivtJ(r ,v) by Eq.~43! with E , H andI substituted byE 1, H 1 and
I 1, respectively.

By applying to Eq.~43! the scalar case result Eq.~12! one obtains

E 1~r ,t !52
1

2pc

]

]t E2p

p

dbE
C6

da sin aFE
1~s,t2s–r /c!,

~44!

H 1~r ,t !52
1

2pc

]

]t E2p

p

dbE
C6

da sin aFH
1~s,t2s–r /c!,

where from Eq.~13!

FE
1~s,t !5E

r 8<a
dr 8F2

1

c2

]

]t
1] t

21¹8¹8•GI 1~r 8,t1s–r 8/c!,
~45!

FH
1~s,t !5

1

c E
r 8<a

dr 8¹83I 1~r 8,t1s–r 8/c!,

with ¹8 operating onr 8 ~¹8 does not act ont1s–r 8/c!. The results Eqs.~44! and ~45! above
define a new time-dependent plane wave representation for electromagnetic fields whose interpre-
tation is analogous to that of its scalar counterpart Eqs.~12! and ~13!.

Next we would like to express Eq.~45! more compactly in terms of the slant-stack transform

Î 1~s,t !5E
r 8<a

dr 8I 1~r 8,t1s–r 8/c! ~46!

of the analytic time-dependent current distributionI 1. By manipulating the integrals of Eq.~45!
while using~46! we obtain~see derivation in Appendix C!
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FE
1~s,t !5

1

c2

]

]t
$s3@s3Î 1~s,t !#%,

~47!

FH
1~s,t !52

1

c2

]

]t
@s3Î 1~s,t !#.

We see from Eq.~47! that FE
1(s,t) andFH

1(s,t) are defined by the transverse part~relative to
s!—and its analytic continuation to complexs—of Î 1(s,t). We see also from Eq.~47! that

s–FE
1~s,t !5s–FH

1~s,t !50,
~48!

FE
1~s,t !52s3FH

1~s,t !.

Hence, the terms in the integrands of~44! represent—for eachs—electromagnetic plane waves, as
expected.

We conclude this section by applying the scalar case result Eq.~14! to each Cartesian com-
ponent of the field vectors, thus obtaining from~47! the far zone approximations

E ~r r̂ ,t !ur→`;
1

r
FE~ r̂ ,t!ur→`5

1

c2r

]

]t
$ r̂3@ r̂3Î ~ r̂ ,t!#%,

~49!

H~r r̂ ,t !ur→`;
1

r
FH~ r̂ ,t!ur→`52

1

c2r

]

]t
@ r̂3Î ~ r̂ ,t!#

where, as before,t5t2r /c. Expressions~49! have been derived before in connection with ques-
tions of realizability of time domain radiation patterns17 and in time domain antenna
characterization.20

B. Time-dependent multipole expansion of the electromagnetic field

Next we will obtain an expansion of the analytic time-dependent electric and magnetic field
vectorsE1(r ,t) andH1(r ,t) in terms of vector spherical wave functions. Methodologically, first
we will expand the analytic time-dependent plane wave spectra@FE

1(s,t) andFH
1(s,t)# into a series

of the two sets of vector functionsYl ,m(a,b) and s3Yl ,m(a,b); later we will substitute the
vector spherical harmonics expansions forFE

1(s,t) and FH
1(s,t) into the time-dependent plane

wave expansions—Eq.~44!. The first step above yields

FE
1~s,t !5 (

l 51

`

(
m52l

l

~2 i ! l @al ,m
1 ~ t !s3Yl ,m~a,b!1bl ,m

1 ~ t !Yl ,m~a,b!#,

~50!

FH
1~s,t !5 (

l 51

`

(
m52l

l

~2 i ! l @2al ,m
1 ~ t !Yl ,m~a,b!1bl ,m

1 ~ t !s3Yl ,m~a,b!#.

It is noted that the forms of the expansions above are consistent with Eq.~48!.
By making use of the orthogonality condition of the vector spherical harmonics, Eq.~A8!, we

obtain from Eq.~50!

al ,m
1 ~ t !52

i l

l ~ l 11!
E

2p

p

dbE
0

p

da sin aFH
1~s,t !–Yl ,m* ~a,b!,

~51!

bl ,m
1 ~ t !5

i l

l ~ l 11!
E

2p

p

dbE
0

p

da sin aFE
1~s,t !–Yl ,m* ~a,b!.

Thus the analytic time-dependent multipole momentsal ,m
1 (t) and bl ,m

1 (t) are defined by the
projections ofFH

1(s,t) andFE
1(s,t), respectively, onto the set of vector spherical harmonics.
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The time-dependent multipoles can also be expressed directly in terms of the slant-stack
transform of the current distribution by substituting from Eq.~47! into Eq. ~51!, thus giving

al ,m
1 ~ t !5

i l c22

l ~ l 11!

]

]t E2p

p

dbE
0

p

da sin a@s3Î 1~s,t !#–Yl ,m* ~a,b!,

~52!

bl ,m
1 ~ t !5

i l c22

l ~ l 11!

]

]t E2p

p

dbE
0

p

da sin a$s3@s3Î 1~s,t !#%–Yl ,m* ~a,b!.

Next we insert the series expansions Eq.~50! into the time-dependent plane wave expansions
of the field vectorsE (r ,t) andH (r ,t) @refer to Eq.~44!# and interchange orders of summation
and integration, thus finding

E 1~r ,t !52
1

2pc

]

]t
(

l 51

`

(
m52l

l

E
2p

p

dbE
C6

da sin a~2 i ! l @al ,m
1 ~ t2s–r /c!s3Yl ,m~a,b!

1bl ,m
1 ~ t2s–r /c!Yl ,m~a,b!#,

~53!

H 1~r ,t !52
1

2pc

]

]t
(

l 51

`

(
m52l

l

E
2p

p

dbE
C6

da sin a~2 i ! l @2al ,m
1 ~ t2s–r /c!Yl ,m~a,b!

1bl ,m
1 ~ t2s–r /c!s3Yl ,m~a,b!#.

Next we shall solve the integrals overs above so as to obtain the sought-after time-dependent
multipole expansion of the electromagnetic field. For this purpose we will use the vector coun-
terpart of Eqs.~19! and ~20!, given by4

~2 i ! l

2p E
2p

p

dbE
C6

da sin aYl ,m~a,b!ei ~v/c!s–r5hl
~1!S v

c
r DYl ,m~u,f!. ~54!

Furthermore, by applying the curl operator¹3 to both sides of~54! while using ¹ei (v/c)s–r

5 i (v/c)sei (v/c)s–r and¹3Yl ,m(a,b)50, one readily obtains4

~2 i ! l

2p E
2p

p

dbE
C6

da sin as3Yl ,m~a,b!ei ~v/c!s–r5
2 ic

v
¹3Fhl

~1!S v

c
r DYl ,m~u,f!G .

~55!

The following results follow readily from Eqs.~54! and ~55! and Eqs.~23! and ~24!:

~2 i ! l

2p E
2p

p

dbE
C6

da sin aal ,m
1 ~ t2s–r /c!Yl ,m~a,b!

5
1

2p E
0

`

dve2 ivtãl ,m~v!hl
~1!S v

c
r DYl ,m~u,f!

52~2 i ! l
c

r
Yl ,m~u,f!] t

21
L l

~r ,t !al ,m
1 ~ t ! ~56!

and, similarly,

~2 i ! l

2p E
2p

p

dbE
C6

da sin aal ,m
1 ~ t2s–r /c!s3Yl ,m~a,b!5

1

2p E
0

`

dve2 ivtãl ,m~v!H 2 ic

v

3¹Fhl
~1!S v

c
r DYl ,m~u,f!G J 5~2 i ! l

c2

r
] t

22¹3@Yl ,m~u,f!Ll
~r ,t !al ,m

1 ~ t !#. ~57!

By substituting from Eqs.~56! and ~57! into Eq. ~53! we obtain
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E 1~r ,t !5 (
l 51

`

(
m52l

l 1

r
~2 i ! l $2c] t

21¹3@Yl ,m~u,f!Ll
~r ,t !al ,m

1 ~ t !#

1Yl ,m~u,f!L l
~r ,t !bl ,m

1 ~ t !%
~58!

H 1~r ,t !5 (
l 51

`

(
m52l

l 1

r
~2 i ! l $2Yl ,m~u,f!L l

~r ,t !al ,m
1 ~ t !

2c] t
21¹@Yl ,m~u,f!L l

~r ,t !bl ,m
1 ~ t !#%.

Furthermore, we can now express the real electric and magnetic fields using the real vector
spherical harmonics~refer to Appendix A for a review! following lines analogous to those used for
scalar fields in Sec. II C. By analogy with our treatment of the scalar field we begin by introducing
the new~real! multipole moments

cl ,m
~ j ! ~ t !52

1

l ~ l 11!
E

2p

p

dbE
0

p

da sin aFH~s,t !–Sl ,m
~ j ! ~a,b!,

~59!

dl ,m
~ j ! ~ t !5

1

l ~ l 11!
E

2p

p

dbE
0

p

da sin aFE~s,t !–Sl ,m
~ j ! ~a,b!.

We can also expresscl ,m
( j ) (t) anddl ,m

( j ) (t) in terms of the slant-stack transform of the current
distribution by substituting from Eq.~47! into Eq. ~59!. This procedure yields

cl ,m
~ j ! ~ t !5

c22

l ~ l 11!

]

]t E2p

p

dbE
0

p

da sin a@s3Î ~s,t !#–Sl ,m
~ j ! ~a,b!,

~60!

dl ,m
~ j ! ~ t !5

c22

l ~ l 11!

]

]t E2p

p

dbE
0

p

da sin a$s3@s3Î ~s,t !#%–Sl ,m
~ j ! ~a,b!,

in analogy to its analytic signal counterpart Eq.~52!. Both forms of time-dependent multipole
moments defined above@i.e., Eqs.~59! and ~60!# appear to be new.

By employing the vector counterpart of the procedure used to derive Eq.~33! from Eq. ~25!
~see Appendix B!, we obtain from Eq.~58! the sought-after time-dependent multipole represen-
tation for the real, physical fields:

E~r ,t !5 (
l 51

`

(
m50

l

(
j 51,2

cm

1

r
$2c] t

21¹3@Sl ,m
~ j ! ~u,f!L l

~r ,t !cl ,m
~ j ! ~ t !#1Sl ,m

~ j ! ~u,f!L l
~r ,t !dl ,m

~ j ! ~ t !%,

~61!

H~r ,t !5 (
l 51

`

(
m50

l

(
j 51,2

cm

1

r
$2Sl ,m

~ j ! ~u,f!L l
~r ,t !cl ,m

~ j ! 2c] t
21¹3@Sl ,m

~ j ! ~u,f!L l
~r ,t !dl ,m

~ j ! ~ t !#%,

where, as before,cm51 or 2 if m50 or m>1, respectively. Equation~61! is, to the authors’
knowledge, also new. Note also that Eq.~59! gives the real electric and magnetic multipole
moments in terms of the far electric and magnetic fields while Eq.~60! gives them in terms of the
transverse part of the slant-stack transform of the current distribution. Thus, Eq.~61! yields
solutions to the radiation problem as well as to the inverse diffraction problem from time domain
far field data. The theory above also corroborates, in the time domain, the well-known result that
the radiation pattern uniquely determines the radiated field everywhere outside the source, as is
evident from Eqs.~61! and ~59!.

In analogy to our treatment of the scalar field in Sec. II, we conclude this section with
alternative expressions for the real time-dependent multipole momentscl ,m

( j ) (t) andd l ,m
( j ) (t). The

corresponding derivation follows by analogy with the procedure used in Sec. II.
We conveniently rewriteal ,m

1 (t) as defined in Eq.~52! as

3655J. Math. Phys., Vol. 39, No. 7, July 1998 E. A. Marengo and A. J. Devaney

Downloaded 13 Mar 2002 to 129.10.136.113. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



al ,m
1 ~ t !52

i l c21

l ~ l 11!
E

r<a
drE

2p

p

dbE
0

p

da sin a@¹3I 1~r ,t1s–r /c!#–Yl ,m* ~a,b!. ~62!

The result above was obtained by using~see Appendix C!

s3Î 1~s,t !52c] t
21E dr¹3I 1~r ,t1s–r /c!. ~63!

A convenient expression forbl ,m
1 (t) is obtained, on the other hand, by substituting from Eq.

~46! into Eq. ~52! and interchanging orders ofr ands integration, thus giving

bl ,m
1 ~ t !52

i l c22

l ~ l 11!

]

]t Er<a
drE

2p

p

dbE
0

p

da sin aI 1~r ,t1s–r /c!–Yl ,m~a,b!, ~64!

where we have made use ofs3s3Sl ,m
( j ) (a,b)52Sl ,m

( j ) (a,b) and the well-known vector identity
a•(b3c)5b•(c3a)5c•(a3b).

Next we make use of the vector counterpart of Eq.~22!:4

~2 i ! l

4p E
2p

p

dbE
0

p

da sin aYl ,m~a,b!ei ~v/c!s–r5 j l S v

c
r DYl ,m~u,f!. ~65!

By substituting from~65! into Eqs.~63! and ~64! we obtain after some manipulations

al ,m
1 ~ t !52

i l c21

l ~ l 11!

4pc2l

l !2 l 11 E
2p

p

dfE
0

p

du sin uYl ,m* ~u,f!•H E
r<a

drr l @¹3I1~r ,t !#J ,

~66!

bl ,m
1 ~ t !52

i l c22

l ~ l 11!

4pc2l

l !2 l 11

]

]t E2p

p

dfE
0

p

du sin uYl ,m* ~u,f!•F E
r<a

drr l I1~r ,t !G ,
with

I1~r ,t !5E
21

1

dh~12h2! l
] l

]t l I 1~r ,t1rh/c!. ~67!

Equation~66! has been derived before from the Debye representation;6,7 here it has been obtained
from the time-dependent plane wave representation.

Finally, the real time-dependent electric and magnetic multipole momentscl ,m
( j ) (t) anddl ,m

( j ) (t)
are readily obtained from Eqs.~66! and ~67! by recalling thatcl ,m

1 (t)5(2 i ) l al ,m
1 (t) and

dl ,m
1 (t)5(2 i ) l bl ,m

1 (t). We obtain

cl ,m
~ j ! ~ t !52

c21

l ~ l 11!

4pc2l

l !2 l 11 E
2p

p

dfE
0

p

du sin uSl ,m
~ j ! ~u,f!•H E

r<a
drr l @¹3I ~r ,t !#J ,

~68!

dl ,m
~ j ! ~ t !52

c22

l ~ l 11!

4pc2l

l !2 l 11

]

]t E2p

p

dfE
0

p

du sin uSl ,m
~ j ! ~u,f!•F E

r<a
drr l I ~r ,t !G ,

with

I ~r ,t !5E
21

1

dh~12h2! l
] l

]t l I ~r ,t1rh/c!. ~69!

Equations~68! and ~69! are the electromagnetic case counterparts of Eqs.~41! and ~42! and
their interpretation is analogous to that of Eqs.~41! and ~42!.
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APPENDIX A: ORDINARY AND VECTOR SPHERICAL HARMONICS

We use the standard definition of the spherical harmonics:14

Yl ,m~u,f!5yl ,mPl
m~cosu!eimf ~A1!

with

yl ,m5A~2l 11!~ l 2m!!

4p~ l 1m!!
, ~A2!

wherel 50,1,2,...,m50,61,...,6l , andPl
m(x) are the associated Legendre polynomials, defined

by means of the Rodrigues formula

Pl
m~x!5

~21!m

2l l !
~12x2!m/2S d

dxD
l 1m

~x221! l . ~A3!

The spherical harmonics obey the orthogonality and closure properties14

E
2p

p

dfE
0

p

du sin uYl ,m* ~u,f!Yl 8,m8~u,f!5d l ,l 8dm,m8 , ~A4!

(
l 50

`

(
m52l

l

Yl ,m~u,f!Yl ,m* ~u8,f8!5
1

sin u
d~u2u8!d~f2f8![d~ r̂2 r̂ 8!. ~A5!

The real spherical harmonicsSl ,m
(1) (u,f)[R$Yl ,m(u,f)% and Sl ,m

(2) (u,f)[F$Yl ,m(u,f)%,
where l 50,1,2,..., andm50.1,...,l , obey, on the other hand, the orthogonality and closure
properties of Eqs.~31! and ~32!.3

The vector spherical harmonicYl ,m(u,f) is defined by14,21

Yl ,m~u,f!5LYl ,m~u,f!, ~A6!

where

L52 i r3¹52 i S uf

]

]u
2

1

sin u
uu

]

]f D . ~A7!

In Eq. ~A7!, uu anduf are, respectively, the unit vectors in the positiveu andf directions. The
Yl ,m(u,f)’s are defined forl 51,2,..., andm50,61,...,6l . The valuel 50 is excluded since
Y0,051/A4p, hence from Eqs.~A6! and ~A7! Y0,050.

The vector spherical harmonicsYl ,m(u,f) are everywhere tangential to the unit sphere@such
that r̂–Yl ,m(u,f)50#. They satisfy the orthogonality condition14,21

E
2p

p

dfE
0

p

du sin uYl ,m* ~u,f!–Yl 8,m8~u,f!5l ~ l 11!d l ,l 8dm,m8 . ~A8!

They also form, together with the associated vector functionsr̂3Yl ,m(u,f), a complete orthogo-
nal set in terms of which all well-behaved vector functionsF~r̂ ! with r̂–F( r̂ )50 can be
expanded.14,21

We define the real vector spherical harmonicsSl ,m
( j ) via
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Sl ,m
~1! ~u,f!5F $Yl ,m~u,f!%52 iLSl ,m

~1! ,
~A9!

Sl ,m
~2! ~u,f!5R$Yl ,m~u,f!%5 iLSl ,m

~2! ,

so that, from~31! andL2Yl ,m5l (l 11)Yl ,m ~see Refs. 14 and 21!,

E
2p

p

dfE
0

p

du sin uSl ,m
~ j ! ~u,f!–Sl 8,m8

~ j 8!
~u,f!5l ~ l 11!d l ,l 8dm,m8d j , j 8

1

cm
. ~A10!

They also form, together with the vector functionsr̂3Sl ,m
( j ) (u,f) a complete orthogonal set in

terms of which all well-behaved vector functionsF~r̂ ! with r̂–F( r̂ )50 can be expanded.

APPENDIX B: DERIVATION OF EQ. „33…

A key step in deriving~33! will consist in showing that

2RH (
l 50

`

(
m52l

l

~2 i ! l Yl
m~u,f!Ll

~r ,t !al ,m
1 ~ t !J 5 (

l 50

`

(
m50

l

(
j 51,2

cmSl ,m
~ j ! ~u,f!Ll

~r ,t !ql ,m
~ j ! ~ t !

~B1!

with al ,m
1 (t) andql ,m

( j ) (t) given by~26! and~34!, respectively, and wherecm51 or 2 form50 or
m>1, respectively. To simplify the manipulations we will use Dirac bra-ket notation.21 Thus we
represent the spherical and real spherical harmonicsYl ,m andSl ,m

( j ) , respectively, by the vectors
~kets! ul ,m& and ul ,m, j &, where21

Yl ,m~u,f![^r ul ,m&, ~B2!

Sl ,m
~ j ! ~u,f![^r ul ,m, j &. ~B3!

In Dirac bra-ket notation, the orthogonality and closure properties defined in Eqs.~A4! and
~A5! and Eqs.~31! and ~32! translate into

^l ,mul 8,m8&5d l ,l 8dm,m8 , ~B4!

(
l 50

`

(
m52l

l

ul ,m&^l ,mu5I , ~B5!

^l ,m, j ul 8,m8, j 8&5
1

cm
d l ,l 8dm,m8d j , j 8 , ~B6!

(
l 50

`

(
m50

l

(
j 51,2

cmul ,m, j &^l ,m, j u5I , ~B7!

whereI is the identity operator. We introduce, conveniently, the new analytic multipole moments

ql ,m
1 ~ t ![~2 i ! l al ,m

1 ~ t !, ~B8!

which are the ordinary spherical harmonic counterpart ofql ,m
( j ) (t). By substituting from~B8! into

~25! and ~26! while using Dirac bra-ket notation we obtain

U~r ,t !5
1

r
2RH (

l 50

`

(
m52l

l

^r ul ,m&Ll
~r ,t !^l ,muF1~ t !&J . ~B9!

By inserting the identity operator right after the term^l ,mu in Eq. ~B9! while making use of
Eqs.~B5! and ~B7! and interchanging orders of summation one readily finds
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(
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Finally, we complete our derivation of Eq.~33! by substituting expression~B3! and ql 8,m8
( j 8) (t)

5^l 8,m8, j 8uF(t)& @this follows from Eq.~34!# in Eq. ~B10!.

APPENDIX C: DERIVATION OF EQS. „47…

Consider a four-dimensional~4D! space-time with Cartesian coordinates~x05ct, x15x, x2

5y, x35z! and denote the coordinate vector in space-time asx. The Radon transformRf(v,j) of
a rather arbitrary vector functionf~x! is defined as

Rf~v,j!5E dxf~x!d~j2v–x!, ~C1!

wherev is a unit vector in 4D Radon domain andj is a scalar. We will use the property@see Ref.
22, Eq.~6.7!#

R~Hf!5HS v1

]

]j
,...,vn

]

]j DRf, ~C2!

wherexk is thekth Cartesian component ofx, vk is thekth Cartesian component of the unit vector
v andH(]/]x1 ,...,]/]xn) is a linear operator with constant coefficients.

By putting f1(x)[I 1(r ,t5x0 /c), Eq. ~46! and the various definitions above yield

Î 1~s,t !5
1

&

Rf1~vs,ct/& !, ~C3!

where vs5(1/&)(1,2s) is the unit vector whose Cartesian components are~x05(1/&), x1

52~1/&!, x252(1/&), x352(1/&)!.
By substituting into Eq.~45! from Eqs.~C1!–~C3! we obtain

FE
1~s,t !5

1

&

RH F2
1

c2

]

]t
1] t

21¹¹• G f1J ~vs,ct/& ! ~C4!

and

FH
1~s,t !5

1

c&
R$¹3f1%~vs,ct/& !. ~C5!

Using Eqs.~C2! and ~C3! one can easily show that

R$¹¹•f%~vs,ct/& !5
1

c2

]2

]t2 @ss•Rf~vs,ct/& !#,
~C6!

R$¹3f%~vs,ct/& !52
1

c

]

]t
@s3Rf~vs,ct/& !#.

The final step consists of applying the results~C6!–~C3! to Eqs.~C4!–~C5! and substituting
into the result thus obtained from Eq.~C3!.
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Buried Object Detection and Location Estimation 
from Electromagnetic Field Measurements 

George A. Tsihrintzis, Peter Meincke Johansen, 
and Anthony J. Devaney 

Abstract-A translation property is derived describing the field scat
tered from a known buried object placed at distinct locations. The result 
is used to derive the optimum algorithm for detecting the known buried 
object and estimating its location from noisy scattered electromagnetic 
field measurements. 

Index Tenns-Ground penetrating radar, Lippmann-Schwinger equa
tion, object detection, wave scattering. 

I. INTRODUCTION 

The problem of detecting known buried objects and estimating 
their location from electromagnetic field measurements is relevant 
in many technological areas such as demining, buried waste clean 
up, excavation planning, and archaeological investigations. In all 
of the above applications, serious challenges arise, mainly due to 
physical limitations such as: 1) significant losses due to moist soil 
that limit the signal-to-noise ratio; 2) presence of a large number of 
randomly distributed unwanted objects, returns from which obscure 
the return from the object of interest (volume clutter); and 3) random 
roughness of the air/soil interface that results in incoherent (random) 
returns (surface clutter). As a result of these limitations, standard 
threshold detection algorithms [1] may not successfully address the 
buried object detection problem, especially when the object is small 
and the return signal weak. 
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The signal processing strategy with the highest potential to address 
the buried object detection problem is the one that utilizes field 
models for the air/soil/object environment. Due to the complicated 
nature of this environment, however, certain simplifications need to 
be made, namely the assumption of a planar air/soil interface and 
of no interactions between the object of interest and the distribution 
of unwanted objects. These assumptions allow, as illustrated in this 
letter, the solution to the buried object detection problem within the 
framework of exact electromagnetic field scattering theory and the 
derivation of a computationally efficient optimum detection algo
rithm. More specifically, the letter is organized as follows. Section II 
is devoted to statement of the basic field equations governing the 
interaction of probing fields with the air/soil/object environment and 
derivation of a field translation property. Section III addresses the 
buried object detection problem and presents the maximum likelihood 
algorithm for the solution to it. Finally, Section IV is a discussion of 
the results of the letter with suggestions for possible future research 
avenues. 

II. CONFIGURATION AND SCATTERING EQUATIONS 

Consider the configuration in Fig. 1 in which a planar interface 
separates air (medium 1) from soil (medium 2). The orthogonal 
coordinate system r = x + z z is defined, with x indicating a 
two-dimensional (2-D) coordinate on the interface and the z axis 
directed so that z > 0 is air and z < 0 is soil. Buried in the soil 
is a known target object, but its coordinates rr = Xc + zzc with 
zc ~ 0 are unknown. A monochromatic plane wave with electric 
field Ei(r) = Eoeikp and wavevector k1 is incident upon the 
planar interface. As the incident field reaches the interface, it partially 
reflects back into air and partially refracts into the soil where it 
interacts with the buried object. The interaction produces a scattered 
field, part of which refracts back into air where it is measured. 

The total field E ( r; r c) at position r is given by 

(1) 

where E b ( r) is the electric field in the absence of the buried object 
(background field) consisting of the incident and the reflected field in 
air and the refracted field in soil and E s ( r; r c) is the scattered field 
due to the presence of the buried object at the unknown locationr c 

In (2), the object function 0( r; r c) is defined as 

O(r; rc) = e(r; rc)- k~ 

z < 0 (soil) 

z > 0 (air). 
(2) 

(3) 

where k(r; rc) is the complex wavenumber at point r and k2 is 
the complex wavenumber of the soil. Equation (2) is the Lipp
mann-Schwinger equation for the scattering problem and maps the 
object function to the corresponding scattered field nonlinearly. 

The dyadic Green functions G12 and G22 are defined for the 
source point in soil and the observation point in air and soil, 
respectively. Explicit expressions for them can be found in [2]; 
however, the critical information for this context is that both Green 
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Fig. 1. Configuration of the buried object detection problem in which a 

plane wave is impinging upon the air/soil interface. From scattered field 
measurements above the interface, an estimate of the location of the known 
object is searched for. 

functions satisfy the property G(r, r') = G(x- x', z, z'). Express 

now the object function O(r;rc) as 

O(r; rc) = Oo(r- rc) (4) 

describing the known buried object Oo(r) located at rc = Xc + zzc. 

The scattered field in soil satisfies the upper branch in (2) or, 

equivalently, as algebraic manipulation shows 

e-iK·xcE~(r + Xc; rc) 

= 1 G22(x- x', z, z') · [Eb(r') 
z'<O 

+ e-iK-xcE~(r' + Xc; rc)]Oo(r'- iz,) d3 r' (5) 

where K = kt - iz · kt is the horizontal component of kt. 

The key step is now to observe that the scattered field E2(r; izc) 

due to the object centered at z zc, satisfies the same equation as does 

the quantity e-iK-xcE~ (r+xc; rc) in (5). Hence, from the uniqueness 

of the solution to the Lippmann-Schwinger equation (2), it is readily 

concluded that 

z <0. (6) 

Similarly, from (6) and the lower branch in (2), it is seen that 

z >0. (7) 

Equations ( 6) and (7) state that the scattered field at position r due 

to an object located at r c is related through a phase factor to the 

scattered field at position r - x" due to the same object located 

at z Zr. Therefore, these equations are the two-layer background 

medium equivalent to the homogeneous background medium field 

translation property first derived by Tsihrintzis and Devaney in [3]. 

The main difference is that in the homogeneous background case, 

the field translation property also applies to vertical translations of 

the object. In the two-layer background case, however, vertical object 

translations do not result in simple, closed-form field translations such 

as (6) and (7), due to the nonlinearity associated with the multiple 

interactions between the object and the air/soil interface. 

Ill. OBJECT LOCATION ESTIMATION 

Consider now noisy signal measurements V of the scattered electric 

field Ef on a plane rp = Xp + zl parallel to the interface at a height 

l above the ground 

V(xp) = a(xp; rc) + n(xp) 

:= h(xp) C'9xp E1(xp + zl; rc) + n(xp)· (8) 

Herein, h( Xp) is a measurement filter comprising dot multiplication 

and convolution and n(xp) is additive white Gaussian measurement 

noise. The problem is to estimate the unknown location r c of the 

buried object from the noisy measurements V ( Xp). The desired 

estimate r c is computed by minimizing the squared error between 

the measured data and synthetic data computed for the object at a 

test location rt, i.e., 

rc = arg min j IV(xp)- a(xp; rt)J 2 d2 xp. (9) 
rt 

Under the additive white Gaussian noise assumption, the estimate 

thus returned is the maximum likelihood estimate [ 1]. The parameter 

r c of interest enters the signal model in a nonlinear manner; therefore, 

no unbiased estimate exists that achieves the lower (Cramer-Rao) 

bound1 on error variance [1]. However, the likelihood function to be 

presented below in (11) and (13) contains the same information as 

the full set of measurements V for the estimation of the parameter 

r c and, therefore, constitutes a sufficient statistic for this problem. 

Additionally, the maximum likelihood estimate is asymptotically 

unbiased and optimum in the sense that it becomes unbiased and 

of minimum error variance as the data measurement procedure is 

repeated a large number of times [1]. 

To derive a computationally more efficient procedure for calculat

ing r c, (9) is rewritten in two steps. First, after expanding the square 

in (9), it is found that the estimate r c is equivalently obtained via 

maximization as 

rc = argmax L(rt) 
rt 

where L(rt) is the log likelihood function [1] defined as 

L(rt) = 'R{J V(xp)a*(xp; rt) d2
xp} 

(10) 

-~ J Ja(xp; rt)J
2 

d
2
xp. (11) 

In (11 ), * denotes the complex conjugate and 'R { ·} the real part. 

The second term in (11) is independent of the data and, thus, can be 

precomputed as a function (image) of the variable rt and stored. 

Moreover, as can be seen from (7), it is independent of Xt, the 

component of rt on the interface and, thus, needs only be computed 

for the range of values of interest of Zt. Second, using the field 

translation property (7) derived in Section II, Parseval's theorem, 

and the shift property of the Fourier transform, the first term in (11) 

becomes 

(12) 

1 The Cramer-Rao bound for the estimation problem can be computed 
following a procedure similar to the one outlined in [4]. 
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where i'(Kp) = f e-iKp·xp~T(xp) d2 xp is the 2-D spatial Fourier 
transform of the signal measurements V ( Xr). Substituting (12) into 
( 11 ), the log likelihood function becomes 

1 
L(rt) = (21r)2 

Equations (10) and (13) define an algorithm that employs a bank of 
parallel procedures with each branch corresponding to a different test 
depth. In each branch of the bank, the data are convolutionally filtered 
(using for example a fast Fourier transform algorithm) and multiplied 
by the exponential factor e-iK Xt. The filter in each branch is the 
one matched to signal measurements of the scattered field due to the 
object at zero horizontal location and at the corresponding depth. The 
algorithm returns a bank of images, the highest maximum of which 
gives the horizontal location estimate and the branch at which this 
occurs specifies the depth estimate. The algorithm of (10) and (13) can 
be readily generalized to the case where a multiplicity of scattering 
experiments are performed in each of which the wavevector k1 of 
the probing wave is varied in direction and/or temporal frequency. 
The maximum likelihood estimate is returned via maximization of the 
likelihood function obtained as the superposition of the expressions 
(13) computed for all probing wavevectors k 1 • 

IV. DISCUSSION AND FUTURE WORK 

First, in this letter, a translation property was derived describing the 
field scattered by a known buried object placed at distinct locations 
in the soil. Next, the property was used to derive the maximum 
likelihood algorithm for detection and estimation of the location of 
a known buried object from noisy scattered electromagnetic field 

measurements. It was shown that the algorithm attained the form (13), 
which could be efficiently implemented with use of a fast Fourier 
transform algorithm. Even though the case of a two-layer background 
medium was considered, the critical information for the derivations 
in the letter is that the Green functions in the Lippmann-Schwinger 
equation (2) satisfy the property G(r, r') = G(x - x', z, z' ). 
The same property is satisfied by the Green functions for arbitrary 
background media that vary only in the vertical direction. Therefore, 
both the field translation property (7) and the expression in (13) for 
the likelihood function are valid for such background media. 

Further research in this area seems appropriate. Issues to be 
addressed in the future include the derivation of proper detection 
and location estimation algorithms for the cases of probing with 
arbitrary (nonplane) waves and arbitrary measurement configurations. 
Another avenue of future research is in the direction of efficient time
domain algorithms for underground probing with electromagnetic 
pulses of very short duration. For such pulses, frequency-domain 
algorithms such as the one proposed in this letter may not exploit the 
entire data spectrum efficiently and direct time-domain may lead to 
more efficient implementations. This and related research is currently 
pursued and its results will be announced shortly. 
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Higher-Order (Nonlinear) Diffraction Tomography: 
Reconstruction Algorithms and Computer Simulation 

George A. Tsihrintzis, Member, IEEE, and Anthony J. Devaney, Member, IEEE 

Abstract-The usual propagation transform of diffraction to
mography is generalized into higher-order (nonlinear) propaga
tion transforms via use of the Born series as the data-generating 
model in scattering experiments. Nonlinear tomographic recon
struction algorithms are developed for inversion of scattered field 
data modeled up to an arbitrarily large (possibly infinite) number 
of terms in the Born series. A computer simulation study is in
cluded to illustrate the performance of the algorithms for the case 
of scattering objects with cylindrical symmetry. 

Index Terms-Born series, diffraction tomography, image recon
struction, Volterra series. 

l. INTRODUCTION 

A. Historical Development of Diffraction Tomography 

I N INVERSE scattering, an unknown scattering object 
is probed with known waves with the goal to deduce 

(reconstruct) a quantitative estimate of the object structure 
from measurements of the wavefields diffracted by it [7], [9], 
[42]. Applications from a number of different scientific dis
ciplines, such as crystal structure determination [36], medical 
ultrasound tomography [25], acoustic and electromagnetic 
underground surveying r 17], [75]-[77], optical and coherent 
X-ray microscopy [39], and elastic wave inverse scattering [20] 
can be addressed within the same unified mathematical theory 
of inverse scattering. 

The structure determination objective of inverse scattering 
usually consists of an attempt to estimate the spatial distribu
tion of the complex-valued index of refraction of the object by 
inverting the mathematical mapping relating the probing wave, 
the refraction index, and the measurable total wave. This ob
jective is nontrivial to achieve due to the inherent nonunique
ness and nonlinearity of the mapping from index of refraction 
to scattered wave in any single scattering experiment [13]. The 
nonuniqueness issue can be partially addressed by employing 
a multiplicity of experiments, where the object is probed from 
several incident wave directions, and the full scattering data set 
is then available for the inversion. However, the issue of nonlin
earity is significantly harder to address and, to date, research has 
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only produced mathematical results or computationally inten
sive iterative algorithms [2], [5], [6], [11], [12], [26], [28], [31], 
[32], [ 43], [70], [81] as opposed to practically implementable 
reconstruction algorithms. 

Over the past 20 years, an alternative approach to the In
verse Scattering problem has been employed based on certain 
linearizing approximations [ 15], [ 18], [79], [80]. This approach 
has led to an expanded discipline within the regime of tomog
raphy, known as diffraction tomography ( DT). The first appli
cation of linearized inverse scattering seems to date back in 
1912, when von Laue suggested that Friedrich and Knipping 
try diffracting X-rays by crystals in order to test the hypothesis 
that X-rays had wavelengths on the order of 10- 10 m. The ex
periment was successful and led, within less than a year, to the 
first structure determination by X-ray methods (sodium chloride 
by Bragg) [3], [23]. Since then, X-ray probes are typically used 
to determine the structure of crystals using reconstruction algo
rithms based on the Born scattering model and measurement of 
far field intensity distributions [23], [36]. Indeed, the foundation 
of modem linearized DT lies in the generalized projection-slice 
theorem of (1.2), which forms the core of X-ray crystal struc
ture determination and the basis of Wolf's pioneering work in 
1969 [79]. 

In [79], Wolf showed how near field measurements can be 
employed to generate reconstructions within the Born modeL 
Wolf's formulation was extended in 1974 by Iwata and Na
gata [27] to determine the structure of a less restrictive class of 
scatterers satisfying the Rytov rather than the Born approxima
tion. In 1979, Mueller et al. [ 41] employed the same concepts 
of the Born and Rytov approximations and presented Fourier 
interpolation-based algorithms for the inverse problem of ul
trasound tomography, while in 1982 Devaney [ 15] derived an 
inversion algorithm, named "the filtered backpropagation algo
rithm of DT," for the inversion of full view, scattered field data 
under the Born or Rytov approximations. When scattering ex
periments are done at a wavelength A, the filtered backpropa
gation algorithm returns an estimate of the unknown index of 
refraction distribution whose frequency content is the same as 
of the true distribution over a circular disk in Fourier space of 
radius ( 27r /A) ../2 and zero elsewhere [ 19]. 

The filtered backpropagation algorithm has been recognized 
as the one providing highest quality in the reconstructed im
ages [ 45] and modifications to it have been presented by De
vaney [17] in 1984, Deming and Devaney [ 10] in 1996, and 
Hansen and Johansen in 2000 to adjust it to the configurations 
employedin geophysical tomographic surveys. Tsihrintzis and 
Devaney addressed the reconstruction problem of linearized DT 
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Fig. I. Classical scan configuration of diffraction tomography. 

from noisy scattered field data and showed that the optimum 
(Wiener) estimation filter attains again the form of a filtered 
backpropagation algorithm [66], [67]. Recently, a class of DT 
reconstruction algorithms with noise control was presented in 
[46]. Finally, iterative algorithms for inversion of an angularly 
limited set of noise-free linearized scattering data were pre
sented by Ladas and Devaney in [33] and [34]. 

B. Mathematical Formulation ofDiffraction Tomography 

For two-dimensional (2-D) objects, the reconstruction 
pAroblem of linearized DT consists of obtaining an estimate 
f E L2 (R2

) of an unknown "object function" f E L2 (R2
) 

from its generalized projections ("propagations") [ 19] 

Pef(to; :;o) = f(:r:) *x fe(:ro- :r:); e E [o, 21r) (1.1) 

where :Do = to·u + :;ov, t 0 E R 1 and 8 0 : fixed, is a point on a 
"measurement line" that lies totally outside the support volume 
of the object. Here, (} is the angle between the t axis of a rotated 
Cartesian coordinate system (t, s) and the :r1 axis of a fixed 
Cartesian coordinate system ( :r 1 • :r2 ), and n, v denote unit vec
tors in the t, s directions respectively, as in Fig. 1. The transform 
kernel r (j is such that the "generalized projection-slice theorem" 
holds [ 19] 

I 
k "( k) -
-. e

1 
m- · 

80 j[pu+(m- k)v] nl. ' 
with rn = JP- p2, 

0. 

if IPI::; k 

otherwise 
(1.2) 

where 1.: = ( 21r /A) is the wavenumber of the probing wavefields 
and the tilde- denotes the Fourier transform 

The generalized projection-slice theorem is illustrated in Fig. 2 
and relates the one-dimensional (1-D) Fourier transform of a 

f(K) 

~slice 
pu - (m+k)v 

(refiected wave) 

Fig. 2. Generalized projection-slice theorem of diffraction tomography. 

generalized projection to a semicircular slice through the 2-D 
Fourier transform of the object function f itself. I 

The above formulation of the inverse problem of DT is based 
on the assumption that the object being probed interacts weakly 
with the incident waves, so that either the Born or the Rytov 
approximations [ 15] hold. In that case, the object function f 
is related to the tomographic data y( t 0 , (}) through the linear 
transform ( 1.1 ), provided that the data are defined as [ 15] 

Pef(to: "'o) 
= y(to, (}) 

{ 

c-ibo (s) 
= -

1

.-i.k 'lj;8 (:r:o) within the Born approximation 
' ( 1.3) 

-ik b<l>e(xo) within the Rytov approximation. 

In ( 1.3 ), 'lj; ~--) ( :.r0 ) is the scattered wavefield measured at the 
point xo = ton+ sov, t0 E R 1

. 8 0 : fixed, while b<l> 8 ( :r0 ) is the 
deviation of the unwrapped complex phase (i.e., the unwrapped 
complex log) of the total wavefield measured at :r:0 from the 
complex phase 'iks0 of the incident wavefield at :r: 0 . 

The inverse problem ofDT, as formulated above, has been ex
tensively studied in the literature and reconstruction algorithms 
have been devised of the Fourier interpolation type [ 41], or the 
filtered backpropagation type [ 15], [ 18], and, recently, of an it
erative nature [33], [34]. Of particular importance to this paper 
is the filtered backprop~gation algorithm [ 15], [ 18], which pro
vides a reconstruction f that corresponds to a lowpass filtered 
version of the unknown object function f. In particular, the fil
tered backpropagation algorithm estimates f as r 15] 

1 1 i27r ;·k 
}(x) = 2 (27r)2 d(} . dplpl 

. 0 . -k 

. eipt ci(m-h·)(.,-s 0 ) P~f(p: 80 ) (1.4) 

1The remainder of the circular slice is associated with the reflected field, i.e., 
the scattered field along the measurement line ·' = - -'o. 
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where x = tu+sv. It is readily shown that the estimate j has the 
same spatial frequency content as the unknown f over a disk D 
in Fourier space of radius kJ2 and zero frequency content out
side that disk. Since its first appearance [15], the filtered back
propagation algorithm has been modified and extended to other 
data acquisition geometries [ 17] and tested on computer simu
lated [14], [45] and experimental data [60], [65]. 

C. State of the Art and Present Contribution 

Linearized DT has reached today the stage of being imple
mented in prototype commercial tomographic scanners for 
ultrasonic [60], [65], underground [48], [75], and optical [39] 
imaging systems. Particularly successful have been geophysical 
DT algorithms when applied to a range of underground imaging 
problems such as oil field prospecting and reservoir monitoring 
[78], locating underground tunnels between North and South 
Korea [75], and searching for dinosaur bones in the New Mexico 
desert [7 4]. The success of the linearized DT algorithms depends 
critically, however, on the two assumptions of linearity and 
availability of multiple experiments and in many cases, the 
linearity assumption fails, while different constraints (economic, 
safety, operating, geometric, or physical) limit the number of 
scattering experiments that can be performed and/or provide low 
signal-to-noise ratio data. Even though algebraic reconstruction 
techniques reduce the effect of availability of only a small 
number of scattering experiments, the effects of nonlinearity are 
much harder to combat and remain an issue of current research. 
To overcome these limitations a more modest inverse scattering 
problem was addressed by Tsihrintzis and Devaney, originally 
within the framework of linearized [21], [63], [65], [68], [69] 
and later exact [64], [65], [69] scattering theory. The goal of this 
more modest inverse problem, motivated in part by earlier work 
on a related problem in X-ray computed tomography [52], was 
to estimate the location of a known scatterer having unknown 
central location from noisy scattered field data. It was found 
that for monochromatic plane-wave probing the optimum (in 
the maximum likelihood sense) location estimate could be ob
tained via a filtered backpropagation algorithm, in which partial 
images formed by filtering and backpropagating scattered field 
data for different probing directions were coherently summed. 
The algorithm yields an image of the log likelihood function 
of the object's location and can be used for target detection 
and classification as well as target location estimation. The 
detection/estimation/classification procedure is optimum (in the 
maximum likelihood sense) for any given number of scattering 
experiments and returns good estimates even from a single 
experiment as long as the wavelength of the probing radiation is 
comparable with the typical dimensions of the target [21]. 

One practically important imaging situation arises when the 
object consists of a number of distinct scatterers. As pointed out 
by Azimi and Kak [1] and Slaney, Kak, and Larsen [54], even 
though each scatterer individually may be weak enough for va
lidity of the Born approximate model, multiple scattering inter
actions among several scatterers degrade the performance oflin
earized DT reconstruction algorithms. The situation can be par
tially ameliorated if the reconstruction algorithms are based on 
higher-order (nonlinear) scattering models and, indeed, formal 
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Fig. 3. Scattered fields in the first computer simulation: (a) the first Born 
term, (b) the second Born term, (c) the third Born term, (d) the first Born 
approximation, (e) the second Born approximation, and (f) the third Born 
approximation. The real (imaginary) part of the fields is plotted in solid 
(dashed) line 

series solutions to the inverse scattering problem have being pre
sented in the literature [22], [37], [38], [ 49]-[51], [55]-[57], [71], 
[72]. In [22], [37], and [38] more specifically, perturbative expan
sions of the scattering object's Fourier transform were utilized to 
develop DT reconstruction algorithms of arbitrary order, which 
contained linear reconstruction algorithms as special cases and 
effectively attained the form of nonlinear data filtering followed 
by a linear operation. The algorithms in [22], [37], [38] attemptto 
estimate samples of the Fourier transform of the object function 
and use them to obtain an estimate of the object function itself. 
On the other hand, recent attempts (see [ 4] and [ 4 7] and references 
therein) to invert a second-order scattering model have resulted in 
algorithms of the form of iterative numerical solutions of systems 
of quadratic equations and revealed significantly higher fidelity 
than their linear counterparts. In this paper, we address the recon
struction problem of DT within the framework of higher-order 
(nonlinear) scattering approximations and derive analytical re
construction algorithms for the, so-called, "classical scan con
figuration of DT' of Fig. 1, that can be implemented via use of a 
fast Fourier transform algorithm and, in fact, make extensive use 
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Fig. 4. Original object function (solid line) and reconstructions returned from the filtered backpropagation (dotted line) and the second-order algorithm (dashed line) in the first computer simulation: (a) reconstruction from the first-order Born approximation, (b) reconstruction from the ~econd-order Born approximation, and (c) reconstruction from the third-order Born approximation 

of the filtered backpropagation algorithm. The algorithms are il
lustrated in a computer simulation study. 

More specifically, the paper is organized as follows: Sec
tion II defines nonlinear propagation transforms as the mathe
matical mapping from the object structure to the scattered wave 
data that arises from higher-order Born approximations. Sec
tion III is devoted to study of the inversion of nonlinear prop
agation transforms and a computer implementation, while Sec
tion IV summarizes the paper, draws conclusions, and points to 
future related research. 

II. NONLINEAR PROPAGATION TRANSFORMS FOR DIFFRACTION 
TOMOGRAPHY 

A. Configuration and Scattering Equations 

Consider the data collection configuration illustrated 
in Fig. I, where a known monochromatic plane wave 

1j;0 (:r) cxp(ik(v, :r)) of wavenumber k propagates in 
the direction of the unit vector v and is incident on a scattering 
object of support V and the total wave is measured over a line 
located outside the object and perpendicular to the unit vector u. 
A point on the measurement line is denoted with the coordinate 
vector :r0 = t0 u + s0 v where s 0 is the distance of the measure
ment line from the origin. The object is assumed to be embedded 
in a nonattenuating, homogeneous medium of wave velocity c0 
and wavenumber k = ( w / c0 ) and characterized by its distri
bution of complex-valued index of refraction n(:r) = c0 / c(:r ), 
where c( x) is the wave velocity distribution inside the scatterer. 

The interaction of the incident wave with the object results in 
the formation of a wavefield 1j; ( :r) that satisfies the time-inde
pendent inhomogeneous Helmholtz equation 

(2.1) 
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where f(:r) = (1/2)[n2 (.T) -1] is the object function, the quan
tity whose determination is the ultimate goal of Inverse Scat
tering theory and DT. The solution of the Helmholtz equation 
(2.1) can be decomposed into the sum of the incident field and 
a scattered field in the form 'lj;(x) = 'lj;0 (x) + 'lj;(s)(.T) where the 
scattered field component is related to the object function and 
total field via the integral equation 

'ljl'l(:r:) = -2k2 
{ d:r'f(:r:')'lj;(:r')G(:r- :r:') (2.2) 

.fv 

with G(:z:- :r:') = -('i/4)H61)(kl:r- x'l) the outgoing wave 
Green function to the Helmholtz equation [40]. 

Equation (2.2) provides a link between source and scattering 
problems in wave theory and shows that the scattered field out
side the scattering region Vis uniquely determined from the total 
field inside V. As a result, approximate scattering models, such as 
the Born models ofthe following section, seek to replace the "in
duced source" .f'~; in (2.2) with an approximate expression that 
leads to a tractable inverse problem. The first Born and Rytov 
approximations lead to linear models that are inverted via DT as 
outlined in the Introduction. The objective of this paper is to im
prove these linear models by including higher-order Born terms. 

B. Born Series 

Equation (2.2) implies a nonlinear mapping from the object 
function f to the scattered field ·~;(s), which under certain weak 
scattering conditions can be expanded into a convergent Liou
ville-Neumann expansion, known as the Born series. The Born 
series is, thus, a perturbational expansion for the field scattered 
by an object f, obtained by introducing a smallness parameter E 

and replacing the object function fin (2.1) and (2.2) by Ej. The 
total field 'lj; ( x: E) inside the scattering region V is assumed an 
analytic function of the parameter E around the point E = 0, so 
that the Taylor series expansion around E = 0 

converges for sufficiently small E. The terms E'lj;1 (:r), E
2'lj;2(x), 

· · · are the first, second, · · · order corrections made to the inci
dent field 'lj;0 (:r:) to yield the total field 'lj;(.T; E). Clearly, this 
expansion is compatible with the fact that the scattered field 
'lj;(sl(x; E) = E'ljJ1 (:r:) + E2'1fJ2(:r:) +···is solely due to the pres
ence of the scatterer with object function Ej and in the absence 
of it (i.e., forE= 0) the total field 'lj;(:r: E = 0) reduces simply 
to the known incident field 'lj;0 ( :r). 

Inserting (2.3) into (2.2) and equating the coefficients of equal 
powers of E on the two sides of the resulting expression, one 
obtains 

'lj;l (:r:o) = - 2k2 fv d:r' G(:ro - :r:')j(.1:')'1/;o(.T') 

'lj;2(:ro) = - 2e { d:r:' G(:ro - :r')f(:r:')'lj;l (:r:') 
.fv 

'lj;n(:ro) = - 2k2 
{ dx'G(:ro- :r')f(:r')'l/;n-l(x') 

.fv 

(2.4) 
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Fig. 5. Scattered fields in the second computer simulation: (a) the first 
Born term, (b) the second Born term, (c) the third Born term, (d) the first 
Born approximation, (e) the second Born approximation, and (f) the third 
Born approximation. The real (imaginary) part of the fields is plotted in solid 
(dashed) line 

Clearly, the Born term of order n can be computed from the 
Born term of order n - 1, n = 1, 2, 3, · · ·, by replacing the 
induced source f 'ljJ with the product f 'lj;n -l· After computation 
of the Born terms up to some desired order N, the total field 'ljJ 
resulting from the interaction of the incident wave 'lj;0 with the 
scatterer f is computed as 'ljJ(x0 ) = 'lj;0 ( :r0 ) + ·~;(s) ( :ro) with the 
scattered field approximated as 

'lj;(s)(:ro) ~ 'lj;l(xo) + 'lj;2(xo) + · · · + 'lj;N(:r:o). (2.5) 

Of course, the assumption is made that the expansion (2.3) is 
valid forE = 1.2 

The first-order Born approximation, simply referred to as the 
Born approximation [42], has been extensively employed in 
quantum mechanical scattering theory [24], [42]. From (2.4), 
the Born approximation estimates the scattered field 'lj;(s) by 
substituting the incident field 'lj;0 for the total field 'lj; in the 
integrand in the right hand side of (2.2) and therefore requires 
that 1) 1'1/lq) I « 1'1/Jol inside the scatterer support V and 2) the 
volume of scatterer support V itself be small [30] . 

2For conditions under which the Born series converges, see [7], [9]. 
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It is seen that the Born approximation is quite restrictive, 
since it requires both the size and the strength of the scattering 
object to be "small." Additionally, it is a low frequency approx
imation, since it requires the frequency of the incident wave to 
be low. The Born approximation has been extensively used for 
predictions in direct [8], [ 62] and inverse [ 16] scattering theory. 
Its domain of validity, has been extensively explored in the lit
erature [29], [30], [35], [44], [58], [59], [73] and compared with 
experimental results [39], [61]. 

C. Nonlinear Propagation Transforms of 2-D DT 

Consider again the classical scan configuration of Fig. 1, but 
assume that the scattered field along the line :z:0 = t0 u + s 0 v, 
t0 E R1 , with 8 0 fixed, is well approximated by the first N 
terms of the Born series, as in (2.5). Let G(:r: - :r:') denote the 
outgoing wave Green function to the Helmholtz operator and 
consider its Weyl expansion [40] 

where 

G[(t- t')n + (8- s')v] 

dpeip(t-t') _, __ _ !
= eimls-s'l 

47r . -= rn 

j k . I (:imls-s'l 
"' dpe'P(t-t) _· __ _ 
"' - 47r -k rn 

::::::: GL[(t- t')u + (s- .s')v] 

if IPI ~ k 

if IPI > k. 

(2.6) 

The Weyl expansion in (2.6) decomposes the Green function 
G ( :r - .r') into a superposition of both homogeneous ( corre
sponding to IPI ~ k) and evanescent (corresponding to IPI > k) 
plane waves. The evanescent plane waves decay exponentially 
with Is-s' I and the approximation G L on the far right hand side 
of (2.6) is a lowpass approximation toG that consists only of ho
mogeneous plane wave components and is valid for Is-s' I » A. 

Next, define the Hilbert spaces :F, :F L, and P as follows: :F is 
L 2 ( D a), where D a is a disk of radius a in R2 that includes the 
scattering region V. :F L is the subspace of :F consisting of the 
functions in :F lowpass filtered down to a disk of radius kJ2 in 
Fourier space, i.e.,3 

:FL = { (.h IDa): :l(JID") E :F such that 

]L(K) = { J_(K)1 for IKI ~ kJ2 } . 
0. otherwise. 

Finally, P is the space of functions defined on R 1 x [0, 21r) 
whose frequency content with respect to the first variable is zero 
outside the [- k 1 k] interval. 

3Since the functions f in :F are compactly supported, their Fourier transform 
is an entire function. Therefore, for given f L, the corresponding f is unique and 
can, in principle, be obtained by analytically continuing the Fourier transform 
off L . The lowpass filtering is essentially a regularization procedure that makes 
the inverse of the linear propagation transform continuous. 

Define the nonlinear operators 

(2.7) 

where 

and 'lj;~(t0u + 8oV 1 ())is the nth term of the Born series to the 
scattered field along the measurement line :r0 = t0u + -"ov, 
lowpass filtered with respect to t 0 down to the frequency interval 
[- k 1 k]. From (2.4 ), it is seen that 9n is a homogeneous Volterra 
operator of order n 

In (2.9), f is the function in :F obtained by analytic continua
tion of the Fourier transform of fL. The choice of G L (as op
posed to G) in the first integration is practically valid as long 
as the measurement offset 8 0 is on the order of at least several 
wavelengths for attenuation of evanescent wave components in 
the scattered fields outside of the object (so » A). However, 
evanescent wave components inside the object will, in general, 
give rise to homogeneous wave components of higher-order in 
multiple scattering interactions; therefore, the full G needs to be 
utilized in the remaining integrations. 

To write the nonlinear propagation transforms in (2.9) in a 
computationally attractive form, use is made of the Weyl ex
pansion of (2.6). We have 

(2.10) 

where j denotes the 2-D Fourier transform off. Equation (2.10) 
is simply a statement of the generalized projection-slice the
orem of ( 1.2) and verifies that the proposed (nonlinear) propaga
tion transforms include the usual linear propagation transform 
as a special case. It is seen that the linear propagation transform 
(2.1 0) of an object function f is directly computable via use of 
a fast Fourier transform algorithm (FFT). The nonlinear propa
gation transforms 9nf (2.9) are not directly computable 
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Fig. 6. Original object function (solid line) and reconstructions returned from the filtered backpropagation (dotted line) and the second-order algorithm (dashed line) in the second computer simulation: (a) reconstruction from the tirst-order Born approximation, (b) reconstruction from the second-order Born approximation, and (c) reconstruction from the third-order Born approximation 

using a FFT, since they require computation of the Fourier trans
form of the object function f over a set of complex frequen
cies. However, ifthe lowpass approximations to the Weyl expan
sion in (2.6) is used, a valid approximation for sufficiently high 
wavenumber, the nonlinear propagation transforms can also be 
computed approximately by FFT -based algorithms. 

Define now the linear operator 

(2.11) 
with 

1 1 127r ;·k (Bd)(x = t·u + 8v) = ~ ---
2 dB dplpl 

2 (27r) 0 -k 

. eiptci(m-A,)(s-so)rl(p, B). (2.12) 

The operator ( BIP) is the inverse of (91 IFL ), as stated in ( 1.4). 

D. Cylindrically Symmetric Case 

A particularly important imaging situation is that of scattering 
objects with cylindrical symmetry, that is scatterers whose prop
erties vary only with the radial distance from the scatterer center 
and, thus, their object function is of the form 

f(x) = f,.(r). r = l:rl. (2.13) 

This important situation arises in practical applications such 
as reconstruction of the structure of optical fibers or large 
molecules, but also provides a paradigm for both analytical and 
computer simulation study of DT reconstruction algorithms . 
Both the filtered backpropagation algorithm ( 1.4) and the 
nonlinear propagation transforms attain a simpler form that 
makes use of 1-D Fourier-Bessel transforms. 



TSIHRINTZIS AND DEVANEY: HIGH-ORDER (NONLINEAR) DIFFRACTION TOMOGRAPHY 1567 

Indeed, let 

Jr(IKI) = 27r ~o= drrlo(IKir)fr·(r). (2.14) 
. 0 

Then, the Fourier transform of the object function f becomes 

](K) = fr·(IKI) (2.15) 

. and the generalized projection-slice theorem ( 1.2) reads4 

• . { ~ ei(m- 'l•o j,[ J2k(k- rn)], 
Pof(p: so) = rn 

if IPI:::; k, 

0. otherwise 
(2.16) 

where the generalized projections Pe f are independent of the 
view angle (). The filtered backpropagation algorithm is now put 
in the form 

A 1 ik !(:1:) = 
2

7r dppei(k-m)-'olo[r-j2k(k- m)] 
. 0 

· P~f(p; so), T = lxl (2.17) 

where the integration with respect to view angle () has been elim
inated.5 Finally, the nonlinear propagation transforms can be 
computed in a similar yet more complicated, manner. 

Ill. INVERSION OF NONLINEAR PROPAGATION TRANSFORMS 

A. Theory 

Define the inhomogeneous Volterra operator of order N 

gN = Yl + Y2 + ... + YN: FL --+ p (3.1) 

where 
C-iks 0 

(QN.h)(to. ()) = T(·1Jf + ·1J~ + · · · ·1/N )(tou + sov, ()) 
(3.2) 

and 'ljJ~(tou + "'ov, H), n = 1, 2, · · ·, is the nth term of the 
Born series to the scattered field along the measurement line 
x0 = t0 11, + s 0 v, lowpass filtered with respect to t0 down to 
the frequency interval [- k. k ]. The existence of a local inverse 
of the operator gN and its representation by a convergent series 
is guaranteed by the existence of the inverse (8IP) of the linear 
term (Q1 IFL) [55].6 Specifically, there exists a region in the data 
space P, on which the operator 

81 + 82 + · · · + 8n + · · · (3.3) 

is the inverse of 9 N, where 8n is a homogeneous Volterra op
erator of order n in the data. 

4More generally 

which includes evanescent wavemodes in the scattered field data. 
5In the case of noisy data, the measurements at each view angle are generally 

distinct and, thus, the angular integration cannot be eliminated. Equation (2.17) 
is no longer the statistically optimal strategy, but one needs to use the more 
general algorithms in [48] and [68]. 

6The stability (continuity) of the inverse operator series is guaranteed by the 
boundedness of the operators l3 and Q, [7], [9]. 
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Fig. 7. Scattered fields in the second computer simulation: (top plot) noise-free 
third Born approximation and (bottom plot) typical noisy measurement at a 
signal-to-noise ration of 25 dB. The real (imaginary) part of the fields is plotted 
in solid (dashed) line 

More specifically 

81 =8 

82 = - 8Q28 

83 = 8Q28Q28 - 8()38 

(3.4) 

(3.5) 

(3.6) 

It is observed that the terms 8 1 , 8 2 , 8 3 , etc. are universal in 
the sense that they do not depend on the order N of the for
ward model gN. Thus, the operator series in (3.3) can be trun
cated to desired order n and return DT inversion algorithms of 
order n in the data. For example, the usual filtered backprop
agation algorithm provides a universal DT inversion algorithm 
of first-order (linear) in the data. The general Volterra theory 
of nonlinear systems can be applied to provide bounds on the 
error resulting from truncation of the series (3.3) at an arbitrary 
term. However, these bounds are functionals of the object func
tion and cannot be computed beforehand. A practical approach 
to determine the term at which to terminate the series (3.3) is to 
monitor the norm of each new term in (3.3) and stop when it has 
become sufficiently small. 

A second observation is that if the data are sufficiently mod
eled by the first Born term, i.e., 'ljJ(s) = 1/Jl and '¢2 = '¢3 = 
· · · = 0, then each higher-order term in series (3.3) returns an 
identically zero contribution to image reconstruction, as close 
examination of the expressions in (3.4)-(3.6) reveals. This fact 
is also verified in the simulations of this section. A final ob
servation is that the resulting algorithms are effectively of the 
form of nonlinear data filtering followed by backpropagation. 
Indeed, the series (3.3) can be written as 

where I: P --+ P is the identity operator. The operator in 
brackets in (3.7) maps P --+ P and, thus, this term is a higher
order nonlinear Volterra filter applied on the data. Therefore, 
the series (3.3) gives rise to an entire class of nonlinear filtered 
backpropagation algorithms for inversion of DTdata. 
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Fig. 8 .. Original object function (solid line) and reconstructions returned from the filtered backpropagation algorithm (dash-dotted line) as applied to 61 [Fig. S(a)], 
201 [F1g. S(b)], and 361 [Fig. 8(c)] noisy projections measured at angles equally spaced over 360°. 

B. Computer Simulation of Higher-Order DT 

The proposed nonlinear diffraction tomographic reconstruc
tion algorithms were implemented and studied in two different 
computer simulations. In both simulations, the scattering ob
ject exhibited cylindrical symmetry and, in the case of noise
less data, could be reconstructed from a single scattering exper
iment. 

Computer Simulation I: The scattering object consisted of 
a single disk of radius 2, within which the object function was 
constant and equal to 0.001, i.e., 

f(:r) = { ~:OOL if 1.7:1 ::; 2 
elsewhere. 

(3.8) 

The wavenumber was set to k = 121r, corresponding to a wave
length A = (1/6), so that the object was 12 wavelengths in di-

ameter. Fig. 3 show plots of the real (solid line) and imaginary 
(dashed line) parts of the first [Fig. 3(a)], second [Fig. 3(b)], 
and third [Fig. 3(c)] Born terms and the corresponding first
[Fig. 3(d)], second- [Fig. 3(e)], and third-order Born approx
imations to the scattered field for a measurement distance of 
.so = 0. Fig. 4 show the object function reconstructions returned 
by the filtered backpropagation (dotted line) and the second
order (dashed line) and compare it to the original object function 
(solid line). Specifically, the data consisted of 1) the first Born 
approximation [Fig. 4(a)], 2) the second Born approximation 
[Fig. 4(b)], and 3) the third Born approximation [Fig. 4(c)] to 
the scattered field. Clearly, the second-order algorithm returns 
the same reconstruction as the filtered backpropagation algo
rithm when the data consists of only the first Born term, but out
performs the filtered backpropagation algorithm when the data 
consists of the second- or third-order Born approximation. 
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Fig. 9. Original object function (solid line) and reconstructions returned from the second-order inversion algorithm (dash-dotted line) as applied to 61 [Fig. 9(a)], 201 [Fig. 9(b)], and 361 [Fig. 9(c)J noisy projections measured at angles equally spaced over 360°. 

Computer Simulation #2: The scattering object consisted of 
a circular core and three concentric circular coatings and con
stitutes a good model for small optical fibers. Specifically 

I 
0.0025, 
0.002, 

f(:r) = 0.0015, 
0.001, 
0, 

if l:rl ~ 0.25 
if 0.25 ~ I:~: I ~ 0.6 
if O.G ~ 1:~:1 ~ 1.2 
ifl.2 ~ 1:~:1 ~ 2 
elsewhere. 

(3.9) 

The wavenumber was equal to k = 61r, corresponding to a 
wavelength ). = ( 1/3) and the measurement distance was set 
to .s 0 = 0. Fig. 5 show plots of the first three Born terms and 
approximations to the scattered field, in correspondence with 
Fig. 3. Clearly, the contribution of the third Born term is negli
gible, when compared to the first two Born terms; thus, termina
tion of the Born series at its second term seems to be valid. Fig. 6 
show the object function reconstructions returned by the filtered 

backpropagation and the second-order algorithms, in correspon
dence with Fig. 4. Clearly, the second-order algorithm returns 
the same reconstruction as the filtered backpropagation algo
rithm in the case of data consisting of only the first Born term. 
In the other cases, however, the filtered backpropagation algo
rithm misses the core of the object, while the second-order al
gorithm returns a more accurate reconstruction and reveals the 
core. 

At this point, we need to stress that the oscillations observed 
in the object function reconstructions in areas where the original 
object function is uniform are due to the fact that the reconstruc
tion algorithms are effectively sharp lowpass filters. Therefore, 
the observed oscillations are Gibbs phenomena that can be elim
inated via use of a smoother lowpass filter. Such an approach 
has been followed successfully in [14]; however, the resulting 
reconstructions, even though smoother, are no longer optimum 
in the least-squares sense. 
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Next, we study the performance of the proposed algorithms 
when the input data are limited in both angular coverage and 
signal-to-noise ratio. In Fig. 7, we show the third-order Born 
approximation 'l/J1 + 4;2 + 4;3 to the scattered field '1/J(") (top 
plot) and a typical noisy measurement of it (bottom plot). In the 
bottom plot, the noise was an additive white Gaussian process of 
variance a 2 . The variance was chosen so as to set the signal-to
noise ratio, defined as U: I4;Csl(tou + sov)l 2 dto/a 2

), to 25 
dB, probably an unrealistically low value given published ex
perimental studies on DT. 

Fig. 8 compare the original object function and its reconstruc
tion returned by the filtered backpropagation algorithm7 asap
plied to 61 [Fig. 8(a)], 201 [Fig. 8(b)], and 361 [Fig. 8(c)] pro
jections measured at angles equally spaced over 360 degrees. 
Clearly, the reconstructions are "close" to the reconstruction 
obtained from noise-free, full-view data in Fig. 6(c). In fact, 
the signal-to-noise ratio in the reconstructions has improved be
cause of the lowpass filtering effected on thedata. As the number 
of tomographic projections increases, the signal-to-noise ratio 
improves further as can be seen in Fig. 8(c). The robustness to 
noise and limited angular coverage of the filtered backpropaga
tion algorithm is not unknown in the relevant literature (e.g., see 
[21, Figs. 12 and 13, p. 680] for a simulation study or the cited 
literature for experimental performance evaluations). 

Fig. 9 compare the original object function and its reconstruc
tion returned by the second-order inversion algorithm, in which 
only 61 [Fig. 9(a)], 201 [Fig. 9(b)], and 361 [Fig. 9(c)] projec
tions are measured. Clearly, the reconstructions are "close" to 
the reconstruction obtained from noise-free, full-view data in 
Fig. 6(c) and outperform the filtered backpropagation algorithm 
in the corresponding simulations. 

IV. SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH 

In this paper, the usual propagation transform of linearized 
diffraction tomography was generalized into higher-order 
(nonlinear) propagation transforms via use of the Born series 
as the data-generating model in scattering experiments. Tomo
graphic reconstruction algorithms were developed for inversion 
of scattered field data and image formation. A computer 
simulation study was included to illustrate the performance of 
the algorithms in the case of imaging objects with cylindrical 
symmetry. From this study, it was found that a second-order 
algorithm returned essentially the same reconstruction as the 
usual filtered backpropagation algorithm when applied to 
first-order Born data, but clearly outperformed the filtered 
backpropagation algorithm when applied to data consisting of 
the second- or third-order Born approximation. Similar results 
were found when we processed measured projection data that 
were limited both in angular coverage and by noise. 

It should be noted that the proposed nonlinear reconstruc
tion algorithms are easily extended to a stochastic framework 

7The filtered backpropagation algorithm of ( 1.4) is no longer optimum as the 
number of tomographic projections available is finite. The optimum algorithm is 
of the form of a filtered backpropagation algorithm. where, however, the filter is 
no longer the "rho" filter appropriate for inversion of full-view data. The appro
priate filter is not known in closed form, but can be computed via optimization. 
The reader is referred to f 19] for further details. 
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in which the object function is considered as a realization from 
a wide sense stationary second-order process, the measured data 
are corrupted by noise, and an inversion algorithm is sought that 
is optimum in a mean squared error sense. In our previous work 
[68], [69], we addressed this problem within the framework of 
linearizing approximations and showed that the optimum linear 
inversion algorithm (Wiener filter) is a filtered backpropaga
tion algorithm with a properly modified filter. Its seems, there
fore, that further investigation in that direction is due. Future 
relevant research may also follow the avenues of inversion of 
higher-order Rytov data (see [71]) or higher-order Diffraction 
Tomography with alternative data measurement configurations 
(e.g., ground-penetrating radar tomography). These and other 
research avenues are currently being pursued and the findings 
will be reported elsewhere. 
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A Volterra Series Approach to Nonlinear Traveltime 
Tomography 

George A. Tsihrintzis and Anthony J. Devaney 

Abstract-Nonlinear tomographic reconstruction algorithms 
are developed for inversion of traveltime measurements in scat
tering experiments in which data models are derived from an 
arbitrarily large (possibly infinite) number of terms in the pertur
bation solution to the ray or eikonal equations. The algorithms 
attain the form of a Volterra series of nonlinear operators, with the 
usual linear reconstruction algorithm of Traveltime Tomography 
as the leading term. A computer simulation study is included 
to illustrate the performance of the algorithms for the case of 
scattering objects with cylindrical symmetry. 

Index Terms-Eikonal equation, inverse scattering, ray tracing, 
traveltime tomography, Volterra series. 

I. INTRODUCTION 

SIGNIFICANT research activity has taken place over the 
past 25 years on the problem of quantitative determination 

of the structure of an unknown object by computerized pro
cessing of measurements of the waves diffracted by the object 
in a set of scattering experiments [47], [13], [15], [43] [9], [48], 
[ 40]. The structure to be reconstructed is usually the spatial dis
tribution of the (complex-valued) index of refraction inside the 
object. This activity falls, therefore, within the regime of inverse 
scattering [30], [9], [8], [11] and is applicable in a number of 
seemingly different scientific disciplines, such as crystal struc
ture determination [26], medical ultrasound tomography [14], 
[45], [46], [43], [44], acoustic and electromagnetic underground 
surveying [28], optical and coherent x-ray microscopy [16], and 
elastic wave inverse scattering [21], [24]. It also falls within the 
regime of computerized tomography [1], in that it utilizes com
puterized processing of data collected from several probing di
rections to form an image of the distribution of the object's re
fraction index, and, in fact, x-ray computerized tomography is 
the special case of the general discipline of inverse scattering 
obtained as the wavelength of the probing radiation approaches 
zero. 

The essence of tomographic imaging with diffracting waves 
is an attempt to invert the (nonlinear) mathematical mapping 
that relates the probing wave, the object's refraction index, and 
the measurable total wave. However, such a task is nontrivial 
to achieve and, to date, research has only produced theoretical 
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results and computer-intensive iterative numerical inversion al
gorithms. An alternative approach that has often met with suc
cess was based on approximations to the exact wave model that 
arose either from perturbation expansions or from application 
of the geometric (ray) theory of diffraction. The former led to 
the scientific regime known as (linearized) diffraction tomog
raphy [47], [13], [15], [48], [40], [41], while the latter led to the 
regime of traveltime tomography [36], [2], [29], [31], [3], [4]. 
Given the domain of validity of the underlying approximations 
(Born or Rytov), diffraction tomography is applicable when the 
wavelength of the probing radiation is comparable with the typ
ical dimension of the object. On the other hand, the geometric 
theory of diffraction is valid in the. limit of vanishing wave
length, and traveltime tomography is applicable when the wave
length of the probing radiation is several orders of magnitude 
smaller than the typical dimension of the object. Consequently, 
while diffraction tomography provides appropriate reconstruc
tion algorithms when probing with low frequency waves, travel
time tomography is valid in the limit of high frequency probing. 

A common assumption in the early developments of travel
time tomography was that the wave propagated along straight 
line rays through the object [42], [43]. Although this assumption 
is approximately valid in the limit of very weakly scattering ob
jects (e.g., soft biologicaltissue), it breaks down in many prac
tical cases. Therefore, ray tracing through the object becomes 
required. The ray traces can be determined by application of 
Fermat's principle and minimization of the wave path [1], [5], 
[9], but in imaging applications, the refraction index distribu
tion inside the object is unknown. Therefore, exact inversion 
of traveltime measurements is a nonlinear problem. Iterative al
gorithms have been proposed that, in each iteration, invert the 
traveltime measurements on the basis of the current ray traces 
and use the refraction index distribution thus obtained to com
pute the ray traces for the next iteration [36], [6], [27], [7], [1], 
[3], [4]. The straight line ray propagation model is an inaccurate 
model, especially for strong scatterers, but the corresponding 
algorithms are similar to the algorithms for x-ray tomography 
[21 ], [24] and are fast to implement. On the other hand, the iter
ative algorithms based on successive ray tracing and reconstruc
tion are valid over a much broader set of scatterers, at the cost, 
however, of significant computational load. 

In the present paper, we derive nonlinear reconstruction algo
rithms for inversion of traveltime measurements that rely on per
turbations of the straight line ray wave propagation model [22], 
[2], [29], [31 ]. The algorithms present a compromise in both va
lidity and computational load, between the existing linear and 
iterative nonlinear algorithms and could, in fact, serve as either 
the final estimates or providers of good preliminary estimates 

0196-2892/00$10.00 © 2000 IEEE 
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Clearly. the term 1'1 is a linear functional of the refraction index 
perturbation bn. On the other hand. the term 12 is a homoge
neous quadratic functional of hn. as can he seen from (2.17). 
and in general. T; . .i = I. 2. :{. · · · is a homogeneous functional 
of order .i in bn. 

D. Pcrrurlwtion Series Solution to the £i/.:onal Equation 

Now we return to the eikonal equation (2.1) and derive a per
turbation series solution to it. Equation (2.1) is a first-order par
tial difkrential equation. Therefore. its general solution depends 
on one integration constant. the value of which is specified by 
the proper boundary conditions. Since the object is assumed to 
lie completely beyond the line;/: =- Til- .'il)l', T E U 1

' .'i(). fixed. 
the proper boundary condition is 

lr(.r =Til- so·P) = ('r• . . r) = -.~ 0 (2.24) 

simply stating that the incident wave has not yet interacted 
with the object and therefore. the eikonal 1'1 · on the line 
:r = Tn - s 0 ·r• equals the eikonal 11·0 in the object-free case. 
This boundary condition is compatible with the ray boundary 
conditions in (2.4) and (2.5). Indeed. from (2.2) and ('2.24). we 
see that n(dl/tls)/.,::.-.,, = (iJII'jiJtjiJII'jih)j"::-:--·.,, = 0, as 
in (2.5 ). 

In the absence of the object <I = 0). the eikonal is a function 
II'= 11'11 . with 11'11 (.r) = (r• .. r:) at any point.r:. In the presence 
of the object I. we wi II ex press the ei konal as 11' = ll'11 + ll".r, 
i.e .. as the sum of the object-free term 11·0 and a correction term 
ll".r that is solely due to the presence of the object and. therefore. 
contains all the information about the object function f. This de
composition is similar to the decomposition of the total (mea
surable) wave into the sum of the background and the scattered 
wave in diffraction tomography. the latter of which is solely due 
to the presence of the object and contains all information about 
it. 

Under conditions. the solution 11· to the eikonal equation 
(2.1) admits a series representation of the form of an iterated 
perturbational expansion. To begin. I is replaced by 1 I in (2.1) 
and its solution 11"( .r: 1) is obtained by substituting in (2.1) the 
formal series 

(2.25) 

where 11·0 is the eikonal in the absence of the object (i.e .. for 
1 = 0). The resulting equations that specify the individual terms 
in the series ( 2.25) arc obtained by equaling terms of the same 
power in r in both sides of (2.1 ). The result is 

(\II ·II· \II .II) = 1 

(\11·11· \II·,)= I 
Il-l 

('"·~~-,II.")=-~ :z:::= ('"·, ... \II·" __ , . .): 
1.-=f 

(2.26) 

(2.27) 

<2.2R) 

Equations (2.2o). (2.27). and (2.2X) are each first-order partial 
differential equations. Therefore, their general solution will de
pend on one integration constant which will be specified from 
the proper boundary conditions. The solution to (2.26) is the 
complex phase of the incident field. normalized by lji/,: (i.e .. 
11"11 (.r) = (t' .. r) = s). which satisfies the boundary condition 

( 2.24 ). Therefore. the boundary condition to be satisfied by H ~i, 
j ~ l. requires that 

, 1 r.i ( ru - .s" , ) = o: TER1
. j~l. (2.29) 

The solution to (2.27) and (2.2R) is given next. 
Clearly. (2.27) is converted to 

or. equivalently 

Thus 

(-n. \\1.1) = f 

iHF1 . 
-.,-=.f. 

( -~ 

(2.30) 

(2.31) 

II", (:r: = TU + s·n) = ;·-' f(nr. + ./·r:) ds' + 1·1 (2.32) 
0 -."i(l 

where from the boundary condition (2.29) c 1 = 0. Similarly, 

/·~ [i-1 l 1\.j(;r: = TU + .'i'l') = - ~ ..... ,.. [; (\\r~ .. \.1\·.i-i•) 

j > 2. (2.33) 

E. Volterra Series Mode/for Trm·e/time Data.fimn the Ei/.:onal 
££jtwtion 

It can be shown[5!that r·11 7'(.r: 11 =Til+ .~ 11 -r•) = 11~{ IF(nr + 
So'/1) - H. ( T'((, - -~()11)}' where a· is the eikonal of (2.1) and ~R 
denotes the real part. Therefore, similarly to (2.20), we have 

T(:r11) = 7;1(.r:o) + 11'1 (.ro) + <'
2T:z(.ro) + · · · (2.34) 

where 

(2.35) 

(2.36) 

(2.37) 

F. Relation hetwecn Voltara Series Models for Tral'eltime 
Data 

Equation (2.34) provides a Volterra series expansion to the 
traveltime time '/' measured at :r:11 • similar to the power series 
of (2.20). Comparing the procedure that resulted in (2.20) and 
(2.34). we observe that while Ti in (2.20) is a homogeneous 
Volterra functional of order .i in the refraction index perturbation 
r~n. Ti in (2.34) is a homogeneous Volterra functional of order 
j in the object function f. However. for .l = ~(n2 - 1 ). with 
n = 1 + bn. we find f = hn + ((bnf /2). Therefore. rf = 
rbn + 0( r1 ). "vhich when combined with 12.2')). n."~l), and 
(2.3o). leads to the conclusion that the linear ray perturbation 
and the linear eikonal perturbation models result in identical 
traveltime predictions. 

Ill. NONLINEAR TOMOGRAPHIC INVERSION OF TRAVELTIME 

DATA 

A. Tile General Case 

Detine the Hilbert spaces :F and Pas follows. :F is C(D" ). 
where ·p, is a disk of radius u. in R2 • which includes the object 
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support V, and P is the space of functions defined on R 1 x 
[0, 21r ), which are square-integrable with respect to the first vari
able. Define the nonlinear operators 

7j: F--+ P (3.1) 

where 

(3.2) 

and Tj(s0;(J,T) is the jth term of the series (2.20) or (2.34) to 
the traveltime perturbation along the measurement line s = s0 

parameterized by the probing wave angle B and the parameter 
T. Clearly, 7j is a homogeneous Volterra operator of order j. 
More specifically, the operator Tr: F --+ P is linear and imple
mentable via use of a fast Fourier transform-based algorithm. 
Indeed 

1 joe 1 ) 1 ( Tr f) ( T, B) = - .f ( TU. + .S V ds . 
. co -= 

(3.3) 

The~efore, the one-dimensional ( 1-D) Fourier transform 
(Tr J)(p, B) = f~oo e-ipryl (so; e, T) dT is given as 

(Trf)(p, B)=~ joe joo e-iprf(Tu + S1V) dT ds 1 

Co -= -oc 

= }(pu) (3.4) 

where ](K) = J e-i(K,J:) f(x) dx is the 2-D Fourier transform 
of f. Equation (3.4) is a statement ofthe well-known projection
slice theorem of x-ray computerized tomography and relates the 
1-D Fourier transform of a tomographic projection to a linear 
slice through the 2-D Fourier transform of the object function 
[21], [24]. 

Define now the linear operator 

B: P--+ F (3.5) 

with 

(8d)(x = tu + sv) = ( Co) 2 {1f dB joo eiptlpld(p, B) dp, 
27r Jo -oo 

-so ~ s ~ so (3.6) 

where the tilde denotes a Fourier transform, i.e., d(p, B) = 
f~oo e-ipt d(t, 0) dt. The operator (8IP) defines the filtered 
backprojection algorithm of x-ray computerized tomog
raphy and is thus the inverse of (Tr IF) [21], [24]. Indeed, if 
d( T, B) = f~ 00 f ( ru + s1 v) ds', then the projection-slice the
orem implies that d(p, B) = }(pu), and algebraic manipulation 
of (3.6) shows that (Bd)(x) = f(x) [21], [24]. 

Define the inhomogeneous Volterra operator of order N 

TN = 7i + 12 + · · · + ~v; F--+ P (3.7) 

where 

(3.8) 

and TJ(s 0 ; B, T ), j = 1, 2, ···,is the jth term of the series (2.20) 
or (2.34) to the traveltime along the measurement line s = s0 

parameterized by the probing angle B and the parameter T. The 
existence of a local inverse of the operator TN and its represen
tation by a convergent series is guaranteed by the existence of 
the inverse (8IP) of the linear term (7i IF) [20], [35]. Specif
ically, there exists a region in the data space P on which the 
operator series 

(3.9) 
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is the inverse of TN, where 8i is a homogeneous Volterra oper
ator of order .i in the data. Conditions for convergence of inverse 
Volterra series of the form of (3.9) are stated in the relevant liter
ature (e.g., [20], [25]). However, the application of the general 
conditions to the specific Volterra series examined here is not 
only nontrivial, but also nonpractical. Indeed, the conditions re
quire knowledge of the object function, the unknown that the 
traveltime measurements seek to determine. A better and more 
practical approach would be to compute successive terms of the 
proposed series until CQnvergence (or divergence) is observed. 
The general Volterra series theory guarantees that when the in
verse series converges, its limit is the true inverse. 

More specifically, the first few terms in the series (3.9) are 

81 =8 

82 = -8128 

83 = 8128128-8738. 

(3.10) 

(3.11) 

(3.12) 

It is observed that the terms 8 1 , 8 2 , 8 3 , etc. are universal, in 
the sense that they do not depend on the order N of the forward 
model TN. Thus, the operator series in (3.9) can be truncated 
to desired order .i and return inversion algorithms of order j in 
the data. For example, the usual filtered backprojection algo
rithm provides a universal inversion algorithm that is first-order 
(linear) in the data. A second observation is that if the data are 
sufficiently modeled by the first-order term (i.e., T = T1 and 
T2 = T3 = · · · = 0), then each higher-order term in series (3.9) 
returns an identically zero contribution to image reconstruction, 
as close examination of the expressions in (3.10H3.12) reveals. 
This fact is also verified in the simulations of the next section. A 
final observation is that the resulting algorithms are effectively 
of the form of nonlinear data filtering followed by backprojec
tion. Indeed, the series (3.9) can be written as 

8(I -128 + 128128- 738- · · ·) (3.13) 

where I: P --+ P is the identity operator. Effectively, the term 
in brackets in (3.13) is a higher-order nonlinear Volterra filter 
applied on the data and thus, the series (3.9) gives rise to an 
entire class of nonlinear filtered backprojection algorithms for 
inversion of traveltime data. 

B. Cylindrically Symmetric Case 

A particularly important imaging situation is that of objects 
with cylindrical symmetry or scatterers whose refraction index 
(object function) varies only with the radial distru:tce from their 
center and thus is of the form 

f(x) = fr(r'). r = lxl. (3.14) 

This important situation arises in practical applications such 
as reconstruction of the structure of optical fibers or large 
molecules but also provides a paradigm for both analytical 
and computer simulation study of reconstruction algorithms. 
Both the filtered backprojection inversion algorithm and the 
nonlinear forward models attain a simpler form. 

Indeed, let 

.fr.(IKI) = 21r {~ rJo(IKir)f.r(T) dr:. (3.15) 
.fo 
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Then, the Fourier transform of the object function f becomes 

(3.16) 

and is inverted as 

fr(T) = 2~ .~a= IKI.Jo(IKIT)Jr-(IKI) diKI. (3.17) 

The projection-slice theorem reads 
-~- 1 -

(Trf)(p) = -fr·(IPI) (3.18) 
co 

where the projections 7i f are independent of the view angle (). 
The filtered backprojection algorithm is now put in the form 

i= - ~ -f(:~: = t'll.) = _:_ .lo(piti)pd(p) dp 
27r . 0 

(3.19) 

where the integration with respect to view angle() has been elim
ina~ed. 

Similarly, (2.33) gives 

where 

(72f)( T, H) = 1 ;·.!'o [( aw1 )
2 

2co . -.!'o \ dt 

(
iJlV ) 

2

] + 
08

1 
(Tn + sv) ds 

dl¥1 . 
- .. -(:z;) = fr·(i:r:l) 
08 

DW1 ;··~ -. -(:r = ru. + .sv) =r 
Uf . -so 

IV. COMPUTER SIMULATION 

(3.20) 

(3.21) 

(3.22) 

The proposed nonlinear tomographic reconstruction algo
rithms were implemented and studied in a limited computer 
simulation. The· scatterer was cylindrically symmetric with a 
Gaussian object function 

. _ ( l:r:l
2

) f (:r;) = fr( l:z:l) = A cxp -
2

a 2 (4.1) 

where we chose a = 0.5 and considered the two cases A = 
0.002 and A = 0.02. The case A = 0.002 represents a (perhaps 
unrealistically) weak scatterer for which traveltime measure
ments are sufficiently modeled by only the first traveltime term. 
On the other hand, the case A = 0.02 represents more common 
scatterers, such as those encountered in ultrasonic imaging of 
soft tissue [38], [37], [39]. Effectively, the object is contained 
within the disk i:r:l ~ 1.5, i.e., has a diameter of approximately 
3. The measurement distance was set to s0 = 25.5. 

For this object, the eikonal terms vl', and the corresponding 
traveltime terms Tn can be computed in closed form. Indeed, we 
find that (3.18) and (3.20) give the first two traveltime terms as 

T1(r) = F ~ exp (-
72?) V 2 co 2a-

. [erf (as~)- erf (-a·~)] (4.2) 

1 ;·so [(()l¥1 ) 
2 

T2(r) = -- -.-
2co . -.so at 

( aw )
2

] + [) 
8 

1 
( T'/1. + sv) ds (4.3) 

X 10"3 A= 0.002 
3~----~----~------~-----~------~----~ 

2.5 

I~\ 

I \ 1.5 

I \ 
/ \ 

::t-~/~~-~-~-
-3 -2 -1 0 1 2 

(a) 

X 10-3 A= 0.002 

,r~ 

1.5 

/\ 

(\ 
I I I \ 

' \ 
I \ / \ 

I \ 
/ '~ 

0------~ 

0.5 

-0.5'-----'------'--- ·---'--- --l.__ 

1 -3 -2 -1 

(b) 

Fig. 2. (a) First (second) traveltime term for the weak scatterer (A. 
0.002) is plotted in solid (dashed) line. (b) The tirst-(second) order traveltime 
approximation for the weak scallerer (.-l = 0.002) is plotted in solid (dashed) 
line. 

where from (3.21) and (3.22), we have 

DW1 ( l:rf) -a (.r) =Aexp --? 
s 2a-

(4.4) 

DW1 ~ ( r
2

) --(:r: = ru + sv) =- -rexp --
i}t 2 2a2 

· [ erf ( a~) -erf (- a~)]· 
(4.5) 

In Fig. 2(a), we show plots of the traveltime terms T1 
(solid line) and T2 (dashed line), as computed from (4.2) 
and (4.3) for c0 = I and for the weak scatterer with A = 
0.002. Fig. 2(b) shows plots of the first-order (solid line) and 
second-order (dashed line) traveltime approximations T = T1 
and T = T1 + T2 , respectively. We observe that the second 
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A= 0.002; T = T
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X 10'3 A = 0.002 ; T = T 
1 

+ T 
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0 ~· 

1.8 r· 
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0.2 

0 
-3 -1 

(b) 

Fig. 3. (a) Original object function (solid line) and reconstructions from the 
first-order traveltime data returned by the filtered backprojection (dotted line) 
and the second-order algorithm (dashed line) in the computer simulation of 
the weak scatterer (A = 0.002). (b) Original object function (solid line) and 
reconstructions from the second-order traveltime data returned by the filtered 
backprojection (dotted line) and the second-order algorithm (dashed line) in the 
computer simulation of the weak scatterer (A = 0.002). 

traveltime term is more than 40 times smaller in magnitude 
than the first traveltime term ((max IT2 1/ max IT1 1) ~ 0.0233). 
Thus, the traveltime T is well (but not quite perfectly) approx
imated by the first term T1 . Fig. 3 shows the object function 
reconstructions returned by the filtered backprojection and 
the second-order algorithm based on the traveltime series 
from first-[Fig. 3(a)] and second-order [Fig. 3(b)] traveltime 
approximations. Due to the weakness of the scatterer, the 
filtered backprojection algorithm returns an accurate recon
struction that is almost identical to the original object function 
even for data T = T1 + T2 . The second-order reconstruction 
algorithm returns essenti.ally the same reconstruction as the 
filtered backprojection algorithm for data T = T1 and slightly 
improved for data T = T1 + T2 . 
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A= 0.02 
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A= 0.02 
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Fig. 4. (a) First (second) traveltime term for the stronger scatterer (A. 
0.02) is plotted in solid (dashed) line. (b): The first-(second) order traveltime 
approximation for the stronger scatterer (.4 = 0.02) is plotted in solid (dashed) 
line. 

In Fig. 4(a), we show plots of the traveltime terms T1 (solid 
line) and T2 (dashed line), as computed from (4.2) and (4.3) for 
c0 = 1 and for the scatterer with A = 0.02. Fig. 4(b) shows 
plots of the first-order (solid line) and second-order (dashed 
line) traveltime approximations T = T1 and T = T1 + T2, re
spectively. We observe that the second traveltime term is more 
than four times smaller in magnitude than the first traveltime 
term ((max IT2I/ max IT1 1) ~ 0.2330). Additionally, the third 
traveltime term T3 (not shown) is about 16 times smaller in 
magnitude than the first traveltime term T1 . Thus, the travel
timeT is now well (but not perfectly) approximated by the sum 
of the first two terms T1 and T2. Fig. 5 shows the object func
tion reconstructions returned by the filtered backprojection and 
the second-order algorithm based on the traveltime series, from 
first- [Fig. S(a)] and second-order [Fig. 5(b)] traveltime approx
imations. Clearly, the second-order algorithm returns the same 
reconstruction as the filtered backprojection algorithm in the 
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A= 0.02; T = T
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Fig. 5. (a) Original object function (solid line) and reconstructions from the 
first-order traveltime data returned by the filtered backprojection (dotted line) 
and the second-order algorithm (dashed line) in the computer simulation of 
the stronger scatterer (A = 0.02). (b) Original object function (solid line) and 
reconstructions from the second-order traveltime data returned by the filtered 
backprojection (dotted line) and the second-order algorithm (dashed line) in the 
computer simulation of the stronger scatterer (A = 0.02). 

case of data consisting of only the first traveltime term. How
ever, the filtered backprojection algorithm underperforms the 
second-order algorithm by a significant margin when the second 
traveltime term is not negligible. We also observe in Fig. 5(b) 
that the inverted profiles still differ from the true profile even 
when a second-order inversion algorithm is used. This implies 
that the third and perhaps higher terms in the inverse series (3.9) 
are significant. 

Further testing of the proposed nonlinear inversion algo
rithms is currently under way. These tests involve processing 
traveltime measurements collected using a pulsed laser and 
scatterers whose object functions are well-known. These tests 
will be completed soon and the results will be announced at 
that point. 

V. SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH 

In this paper, linearized traveltime tomography was extended 
into a -higher-order (nonlinear) regime via use of an arbitrarily 
large number of terms from the ray or eikonal series as the 
data-generating model in scattering experiments. Nonlinear 
tomographic reconstruction algorithms were developed for in
version of wavefield data and image formation, which attained 
the form of a series of Volterra operators in which the leading 
(linear) term was the usual filtered backprojection algorithm 
of linearized traveltime tomography. A limited computer 
simulation study was included to illustrate the performance of 
the algorithms in the case of scattering objects with cylindrical 
symmetry. From this study, it was found that a second-order 
algorithm returned the same reconstruction as the usual filtered 
backprojection algorithm when applied to first-order traveltime 
data, but clearly outperformed the filtered backprojection 
algorithm when applied to data consisting of the second-order 
traveltime approximation. 

This paper establishes a unified paradigm for development 
of linear and nonlinear reconstruction algorithms for traveltime 
tomography and thus further investigation in its direction 
is due. Future relevant research may follow the avenues of 
higher-order traveltime tomography with alternative data 
measurement configurations (e.g., spherical incident waves) 
and higher-order traveltime tomography of stochastic objects. 
These and other research avenues are currently being explored, 
and the findings will be reported elsewhere. 

APPENDIX 

ELEMENTS OF THE VOLTERRA THEORY OF NONLINEAR 

SYSTEMS 

A homogeneous Volterra operator (VO) of order k ~ 1 is 
a nonlinear system represented by a functional relation of the 
form 

y(·) =.!···.I dT1· · · dTk h~~(·;T1,·· · ,Tk):z:(Tl) ·· ·:z:(TJ.,) 

(A.l) 

between its input :z:( ·) and the corresponding output y( · ). The 
(k + 1 )-dimensional function h~, ( ·; T1 , · · · , Tk) is the kernel of 
the homogeneous kth-order VO, and for uniqueness, it is as
sumed symmetric (i.e., its value does not change under a per
mutation of its arguments). Clearly, a homogeneous VO of order 
k = I is a linear system and its kernel h 1 ( ·; Tl) is also its im
pulse response. A homogeneous VO of order k as in (A.l) is a 
homogeneous polynomial system of order k in the sense that the 
system response to input c:z:( ·) is cky( ·) for arbitrary constant c. 

A general (inhomogeneous) VO of order N is a nonlinear 
system consisting of the summation of homogeneous YO's of 
the form of (A.l) of order less than or equal to N, i.e., a non
linear system represented by a functional relation of the form 

N 

1J( ·) = ho + 2:::.:: .I .I dT1 · · · dTk h~- ( ·; T1, 

~-=1 

· · · , Tk ).1:( T1) · · · :r.( T~-) (A.2) 
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where h0 is a constant. Clearly, an inhomogeneous YO of order 
N is a polynomial system of order N in the sense that its re
sponse to input ex(·) is a polynomial in c of order N for arbi
trary constant c. (A.2) can be generalized further by letting the 
order N of the inhomogeneous YO become infinite, assuming 
convergence of the resulting functional series 

y(-) = ho + f J J dT1 · · · dTk hk(·; T1 , 

k=l 

···,Tk)x(ri)···x(rk)· (A.3) 

In practice, both the number ofterms in (A.3), as well as the sup
port of the Volterra kernels must be truncated. Issues of approxi
mation of nonlinear systems with infinite and truncated Volterra 
systems, as well as issues of existence and uniqueness of in
verses of Volterra systems, have been extensively addressed in 
the literature (e.g., [10], [20], [25]. [18], [35], [33], [32], [17], 
[34 ]), to which the interested reader is pointed. 
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Abstract 
 
 
This paper investigates the feasibility of detecting plastic antipersonnel land mines buried in lossy, 
dispersive, rough soils using a stepped-frequency ultra wideband (WB) ground-penetrating radar 
(GPR).  Realistic land mine scenarios were modeled using a two-dimensional (2D) finite difference 
frequency domain (FDFD) technique.  Assuming normal incidence plane wave excitation, the scattered 
fields were generated over a large frequency bandwidth (.5 to 5 GHz) for a variety of mine-like shapes, 
different soil types, and multiple receiver locations.  The simulation results showed that for a ground 
penetration sensor located just above the soil surface, the strong reflection signals received from the 
rough ground surface obscured the buried target’s frequency response signal. 
 
The simulated GPR WB frequency response data at each receiver location was transformed to the time 
domain using the fast fourier transform.  Time domain processing permits high resolution 
measurement of target features that are invariant to the ground roughness and also that are dependent 
on the soil characteristics as well as the burial depth and size of the mine.  Specifically, two or more 
characteristic timing peaks are observed in the simulation results suggesting that the ultra-wideband 
spectral radar response may yield particular advantages not exploited by currently employed detection 
systems.  It is also shown that by using time-gating to remove the strong ground reflection signals, the 
target signals are selectively enhanced (as expected), but more surprisingly, the target frequency 
response signature is almost completely recovered. 

   
Keywords:  mine detection, ground-penetrating radar, ultra-wideband radar, resonance, dielectric 
target imaging 
_________________________ 
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1.  Introduction 
 
 
The detection and removal of buried land mines is a serious problem that affects both civilians and 
soldiers throughout the world.  Metal detectors are the current sensors of choice for detecting mines, 
but they are relatively ineffective in locating plastic land mines that contain little to no metal. In this 
case, an improved sensor capability and/or advanced signal processing technology is necessary to 
effectively detect all types of mines.   

 
This paper investigates the feasibility of using an ultra wideband stepped-frequency ground penetrating 
radar sensor to detect nonmetallic antipersonnel land mines buried in lossy dispersive soil.  GPR is one 
of the oldest sensor technologies for subsurface sensing.  The geophysical community has used it 
successfully for decades as a cost effective and noninvasive measure to probe the ground in 
determining the underlying strata.  GPR has proven to be a useful sensor when (1) the soil is not 
exceedingly lossy, (2) the target or layer of interest has a high-dielectric constant contrast with the 
surrounding or adjacent ground, (3) the target is not excessively deep, and (4) the search area is not 
extremely large.  The limiting factor in using GPR for mine detection within the surface a few feet is 
not so much attenuation, but clutter.  In radar terminology, the GPR problem is clutter-limited not 
noise limited.  The sources of clutter can include vegetation and other non-metallic objects such as 
rocks, tree branches, etc.  The rejection of clutter is an essential part of a successful GPR system.  In 
addition, for GPR applications the target of interest is characterized not only by the inherent properties 
of the buried object and soil but also by the strong effects of the air-ground interface.  This is due to the 
fact that the rough soil surface may also scatter much of the transmitted sensing signal and be a 
significant source of detection clutter. 

 
In order for a GPR to be successful sensor in mine detection, it must be able to identify the buried 
target, i.e. determine the mine’s shape, size, and material characteristics.  This is a necessary 
requirement in order to separate the reflected mine signals from the clutter signals (rocks, branches, 
debris, etc.).  For most subsurface sensing systems, the GPR relies on the magnitude of the target 
backscatter as its only classification measure.  Detection difficulties arise when you have a low 
dielectric constant contrast target (small permittivity difference between the mine and soil) that would 
produce a weak target response, for example, a TNT mine buried in sand.  In addition due to the small 
size of mine, the mine’s response would be even weaker at the lower frequencies.  Yet it is extremely 
difficult to separate a buried mine from the ground surface clutter even at low frequencies.  At higher 
frequencies the propagation loss and clutter from both the ground roughness and the soil 
inhomogeneity will become severe and therefore also increase the detection difficulty.  Another 
frequency dependent response factor to consider is the conductivity of the soil.  If the soil has high loss 
then accordingly the strength of the reflected target signal is attenuated as the frequency increases.  
Therefore a WB GPR experiences several frequency dependent effects.   
 
The signal processing transformation of ultra-wideband GPR-based frequency domain reflection 
signals to the time domain will enable highly resolved target features to appear that are invariant to the 
ground roughness.  The power spectral density of the reflected signal yields a time domain signature 
dependent on the soil characteristics as well as the burial depth and size of the mine.  Specifically, two 
or more characteristic time peaks are uniquely observed suggesting that the ultra-wideband spectral 



radar response may yield particular discrimination advantages not exploited by currently employed 
detection systems.   
 
It is shown that by using time-gating to remove the strong ground reflection signals, the target signals 
are selectively enhanced (as would be expected), but more surprisingly, the target frequency response 
signature is almost completely recovered.  This study determines the feasibility of detecting mine-like 
targets based on time domain processed GPR frequency signatures. 
 

 
2. Frequency Domain Scattering 

 
 
For this investigation, a 2D FDFD electromagnetic modeling simulation code was used to generate the 
near zone scattered electric fields resulting from a normally incident TM uniform plane wave on a 
random rough dielectric half-space containing a buried dielectric mine-like target.  The simulated 
scattered electric field results generated by the FDFD code were validated with the scattered field 
results computed from another numerical electromagnetic simulation technique, a semi-analytic mode 
matching (SAMM) algorithm1-2.  Excellent scattering agreement was achieved between the two codes 
for dielectric targets buried beneath randomly rough soils3-4.  FDFD is an ideal technique for 
computing the near-field scattered fields since it permits an accurate representation at each frequency 
for the random rough surface and various target shapes.  The only shortcoming was the extensive 
computational requirement in both memory and runtime.  
 
Several realistic land mine simulation scenarios were modeled.  A variety of modeling parameters 
were considered such as the mine shape, the surface roughness, and the soil type.  The datasets were 
generated over a densely sampled wide frequency bandwidth (.5 to 5 GHz, 100 MHz increments).  
Each FDFD data set for the entire frequency bandwidth took approximately 12 hours to run on a 
Silicon Graphics Octane workstation (R12000; 300 MHz).  Since most anti-personnel mines can be 
described by a simple geometry, three buried targets were considered in this investigation --- a 
circular-shaped TNT mine (10 cm diameter), a rectangular-shaped TNT mine (10 cm by 4 cm), and an 
elliptical-shaped TNT mine (major axis: 10 cm and minor axis: 6 cm).   All the targets were modeled 
having the electrical characteristics of TNT ( om i εε )001.01(9.2 += ), which was held constant over the 

frequency bandwidth. 
 
Two different ground soil types were considered in this analysis.  One is representative of the material 
characteristics of a low loss, dry sand ( og i εε )01.01(55.2 += ) that remained constant over the 

frequency band.  Note the permittivity of the sand is very similar to the permittivity of the TNT mine.  
The second soil model was a dispersive Bosnian soil5-7 ( og i εε )13.01(82.8 += at 3 GHz), which was 

measured at the test site Alicia.  The Bosnian soil had a higher permittivity than the mine and also a 
higher loss than the dry sand case.  Therefore in these two cases, the TNT target buried in sand is 
considered a low dielectric constant contrast target and in the Bosnian soil the mine is a high dielectric 
constant contrast target.  The simple targets were buried in these soils at a fixed depth of 10 cm from 
the air-ground surface.  The air-ground interface was modeled both as smooth interface and a randomly 
rough interface.  The rough soils had an average roughness equal to 1 cm and a correlation length 
equal to 4 cm.   



 
Figure 1 schematically shows two FDFD input scattering model geometries representative of an 
infinite dielectric cylinder buried in the ground beneath a smooth and rough air-ground interface.  In 
both cases a TNT target (dielectric constant = 2.9, loss tangent = 0.001) is embedded in a half space of 
dry sand (dielectric constant = 2.55, loss tangent = 0.01) or dispersive Bosnian soil (dielectric constant 
= 8.9, loss tangent = 0.13 at 3 GHz).  All the rough surface scattering results to follow will exhibit the 
same roughness interface as displayed in the figure.  
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Figure 1:  Representative 2D FDFD input geometry for an infinite dielectric cylindrical target buried 10 cm deep in the 
ground beneath both a smooth and rough air-ground interface.  
 

 
The scattered TM electric field results (magnitude) in Figure 2 were generated by the 2D FDFD code 
using Figure 1’s input model geometries and assuming normal incidence plane wave excitation.  
Displayed in the figure are the frequency-based spatial (as a function of depth and transverse position) 
scattered electric fields.  Specifically, Figure 2 displays the scattered fields for the circular TNT target 
buried in both the sand and the Bosnian soil at individual frequencies (.5, 1, 2, 3, and 4 GHz) and 
beneath both the smooth and rough air-ground surface.  All of the scattered field results had subtracted 
from them the scattering due to the smooth air ground interface alone, i.e. the ground reflection.  Note 
that the scales in the figure vary to show the dominant scatterers in each plot in the figure.   
 
The major differences in the scattering results for the circular mine buried under a smooth interface in 
the two different soils are as follows:  (1) the TNT mine buried in the Bosnian soil exhibited a higher 
scattering response than the dry sand since it was a higher contrast target, (2) and at high frequencies 
the same target (buried in Bosnian soil) behaved like a cavity and thus the scattering was localized 
inside the target.  When a rough surface interface was included for both ground types, the rough 



surface scattering dominated the target scattering response as the frequency increased.  Also notice in 
the Bosnian soil rough surface cases attenuation occurred at the higher frequencies due to the loss in 
the model.  
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Figure 2:  Spatial (Depth versus Position) E-Field scattering (magnitude) at individual frequencies (.5, 1, 2, 3, and 4 GHz) 
for a cylindrical mine (as denoted by the circles) buried 10 cm deep beneath a smooth and rough air-ground interface in two 
different soils (dry sand and Bosnian soil). 
  
 
While the spatial scattering results (as displayed in Figure 2) helps one to understand the frequency 
dependent electromagnetic propagation and scattering effects associated with the different soil 
properties combined with the electrical characteristics of the target and the air-ground interface effects, 
the most important response to examine would be at the radar receiver/receivers locations.  For this 
case, the analysis further assumes the radar receivers, as seen in Figure 1, to be placed across in the 
transverse position above the mine, and 2.5 cm above the ground surface.  As would be expected, the 
most ideal radar receiver location is to be as close to the ground surface as possible for strong signal 
reception.   
 
Figure 3 displays scattered fields (dBsm) for the three targets (circular, elliptical, and rectangular) as a 
function of frequency and transverse position of the receivers.  The three objects were modeled as 
being buried 10 cm deep in the two soils (dry sand and Bosnian) beneath both the smooth and the 
rough air-ground interface.  Also modeled was the case for the rough surface alone and no target is 
present.  For the dry sand and a smooth air-ground interface cases, the received scattered fields for the 
three targets exhibited a constant resonating pattern across the frequency bandwidth.  But in the case of 
the Bosnian soil, the received signal attenuated or faded as the frequency increased due to the presence 
of loss in the soil.  The scattered field pattern of the rectangular object seem to be more distinctive then 
the circular and elliptical objects.  As expected due to the large frequency bandwidth, the objects 
buried under a rough surface regardless of the soil type were indistinguishable from the rough surface 
case when no target was present.  Also for both soil types the characteristic resonating pattern as seen 
in the smooth surface case was hidden by the rough ground surface reflections. 
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Figure 3:  E-Field scattering (dBsm) versus frequency (GHz) and transverse position (cm) when radar receivers are placed 
2.5 cm above a smooth and rough air-ground interface with a target buried 10 cm deep in soils (dry sand and Bosnian soil), 
and a rough air-ground interface with no buried targets present.  
 
 

3. Time Domain Scattering Derived from GPR Frequency Signatures 
 

 
This investigation examines the spectral response derived from the GPR frequency signatures as a 
viable discrimination technique in identifying a buried land mine from the clutter.  A variety of 
spectral estimation techniques could be utilized to transform the GPR wideband frequency response to 
the time domain.  These techniques have their associated benefits and limitations as widely known in 
the signal processing community.  For example, before a waveform (one sweep over a given frequency 
range or bandwidth) is fourier transformed a weighting function is typically applied.  This weighting 
function is used to mitigate the sidelobes that are produced by using a truncated fourier transform.  A 
non-weighted transform will have a sidelobe level 13 dB below the peak response, but will have 
maximum resolution at 6 dB below the peak.  In most cases, a Hamming weight is used to reduce the 
sidelobes to better than 40 dB below the peak.  Unfortunately, the Hamming weight produces a loss of 
resolution by a factor of about 1.8.  Therefore applying the Hamming weight is a trade-off since it 
helps to reduce the sidelobe levels but with the associated cost of decreasing the resolution. 

 
After the wideband frequency data is fourier transformed to the time domain, highly resolved target 
features appear which directly correspond to the target’s shape, size, and material content, the target’s 
burial depth in the soil, and the soil’s electrical properties.  In particular, two or more characteristic 
timing peaks occur in the processed time domain signatures.  For the case of a circular-shaped mine, as 
displayed in Figure 4, the peaks directly correspond to the scattering response from the top and bottom 
of the target.  Due to the fact that the target is penetrable, these timing peaks (T0 and T1) correspond to 
the two-way travel times.  T0 corresponds to the round trip time for a transmitted wave to hit the top of 
mine and return back to the receiver.  And accordingly, T1 is the round trip time for the transmitted 
wave to hit the bottom of the mine and then return back to the receiver.  Note due to the diffraction 
effects, the timing paths do not ideally correspond to a straight line as displayed in the figure.  Other 
peaks can occur due to the geometry of the object, which might also include scattering effects from 



sharp corners. If the dielectric constant of the land mine and the soil are known a priori then these 
timing peaks can be used to uniquely determine the target size and depth.  Time domain processing 
shows features that are invariant to the ground roughness.   
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Figure 4:  Schematic drawing of two way travel times, T0 and T1, for a buried cylinder when radar receivers are 
transversely placed 2.5 cm above a smooth air-ground interface. 
 
The simulated frequency response results for the buried mine-like targets in Figure 3 were transformed 
to the time domain using a traditional signal processing technique, the fast fourier transform (FFT).  
The WB frequency response for each receiver location was fourier transformed to the time domain 
producing a synthetic aperture-like response.  Specifically, each column (or WB frequency response 
results for each receiver position, labeled transverse position) in the data sets displayed in Figure 3 was 
individually fourier transformed to the time domain.  The time domain results as a function of 
transverse position (at fixed height 2.5 cm above the surface) or equivalently angle are displayed in 
Figure 5.  As seen in the figure, the timing peaks as a function of position, as denoted by T0 and T1, are 
clearly resolved for the three different targets shapes buried in both soils (dry sand and Bosnian soil) 
and beneath a smooth air-ground interface with the ground reflections removed.  Since the dielectric 
constant of the Bosnian soil was higher than that of the sand the velocity of wave through the soil is 
slower and therefore the timing peaks are delayed in time.  The difference between the timing peaks 
(T0 – T1), which directly corresponds to the size of the object, is always constant regardless of the soil 
type.  Thus the quantity T0 – T1 is independent of the soil.   
 
The timing peaks in Figure 5 are also distinguishable for the cases when the targets are buried beneath 
a rough surface for both soil types.  The time domain results for the rough surface interface alone (no 
targets present) are also displayed as a visual comparison.  When the buried target is modeled beneath 
a rough surface, the timing peaks associated with the target are sometimes obscured in the sidelobes of 
the signal at different transverse positions.  But a different signal processing technique combined with 
coherent integration in position could also help this artifact.  Due to the fourier transform of the data to 
the time domain, there is now a difference between the case when the target is present beneath a rough 
surface interface and the case when it is not present, notably, the timing peaks beneath the rough 
surface are observable.   
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Figure 5:  Processed time domain E-Field scattering (dBsm) versus time (ns) and transverse position (cm) for the three 
targets buried in soils beneath both a smooth air-ground interface and a rough air-ground interface, and a rough interface 
only (no target present)  
 
 
The processed time domain scattered field results in Figure 5 were nominally time gated using a 
gaussian tapered high pass filter to remove some of the ground surface clutter effects as seen in Figure 
6. 
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Figure 6:  Removal of strong ground reflections: time domain E-Field scattering (dBsm) with gaussian tapered high pass 
filtering for the three targets buried in sand and Bosnian soil beneath both a smooth air-ground interface and a rough air-
ground interface, and a rough interface only (no target present)  
 
The time-gated scattered fields from Figure 6 were then inverse fourier transformed to return back to 
the frequency domain.  It is shown in Figure 7 that by using time-gating to remove the strong ground 
reflection signals, the target signals are selectively enhanced (as would be expected), but more 
surprisingly, the target frequency response signature is almost completely recovered (as seen in the 
right most column for each ground type in the figure). 
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Figure 7:  Processed frequency domain E-field scattering (dBsm).  The processed time-gated data in Figure 6 was inverse 
fourier transformed for the three targets buried in sand and Bosnian soil beneath both a smooth air-ground interface and a 
rough air-ground interface, and a rough interface only (no target present).  
 
 

4. Conclusions 
 
 
The FDFD electromagnetic modeling technique proved to be a valuable computational tool in 
understanding the wideband propagation and scattering effects of buried dielectric mine-like objects in 
lossy dispersive rough soils.  The reflected target frequency response is severely dependent on the 
nature of the soil both permittivity and loss, the target dielectric constant contrast with the soil, and the 
roughness of the soil.  It is vital to understand these combined effects before a useful discrimination 
technique can be identified and developed.  The wideband stepped-frequency GPR-based simulation 
results showed that the clutter from the rough ground reflections masked the target’s frequency 
response signatures. 
 
The signal processing of the ultra WB GPR simulated data to the time domain helped to resolve unique 
target features that are invariant to the ground roughness.  In particular two or more timing peaks are 
observed which can specifically determine the size and depth of a target if the electrical characteristics 
of the soil and target are known a priori.  These time-domain based features could uniquely 
characterize the target from the clutter.  The target frequency response signature was almost 
completely recovered after nominally time-gating the ground reflection signals and then inverse fourier 
transforming the signatures to the frequency domain. 

 
To be able to solve the challenging inverse problem of identifying small buried plastic land mines, one 
must be able to separate the ground surface reflections from the target signal response.  If using a 
frequency resonance-based discrimination algorithm, the ground clutter clearly necessitates removal as 
seen in the simulation results presented herein. 

   



Future target detection and identification algorithms will be explored in the delayed time domain 
environment after signal processing the frequency response signatures.  This will include the detection 
of a land mine-like target from multiple objects (rocks, branches, debris, etc.) buried in lossy rough 
soils.  
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FDTD Computation of Wave Propagation in Dispersive Soil 
with a Perfectly Matched ABC Lattice Termination 

Carey M. Rappaport and Scott C. Winton 
Center for Electromagnetics Research 

Northeastern University 
Boston, MA 02115 

In order to better predict the propagation and scattering of radar signals in inhomogeneous soil, it is 
important to use efficient computational techniques, such as the Finite Difference Time Domain method, 
suitably adjusted for lossy, dispersive media. In particular, the recently reported Perfectly Matched Layer 
absorbing boundary condition (Berenger J. Camp. Phys., 10/1994) must be modified to most effectively 
prevent reflections from the computational lattice boundary. 

The FDTD method is ideally suited for ultra-wideband ground penetrating radar simulation in ap
plications of identifying land mines, buried waste, and excavation obstacles. FDTD efficiently models the 
irregular surface boundary and provides the needed flexibility in predicting radar scattering from both metal 
and plastic targets, buried in soil with rock inclusions and topped with vegetation. Such realistic scenarios 
are impractical for moment method calculations. 

Dispersive FDTD algorithms exist which include the effects of frequency-dependent conductivity and 
dielectric constant (Weedon & Rappaport IEEE Trans. Ant. Prop., to appear 1997; Gandhi, IEEE Trans. 
Micro. Thry. Tech., 4/93). These methods are based on converting the frequency domain dispersive con
stituitive relation into differential or difference equations in the time domain. Because of the computational 
expense of storing previous time steps, it is essential to keep the order of any electromagnetic parameter 
approximation as low as possible. 

Another important difference in using FDTD (or FDFD or finite element analysis) with a lossy, dispersive 
medium is the ABC used to terminate the computational grid. While the PML is an excellent ABC when 
applied at the periphery of a free space scattering domain, unless its parameters are modified, it will not be 
as effective when terminating a region modeling soil. The soil-tuned PML must be inherently matched to 
the soil at the ABC boundary. In the frequency domain, this is accomplished by matching the impedances 
of the two regions: 

I M ~ 
TJsoil = V Eo(Er- ja-jwEo) = 'T]PML = V-;_;;:;;: 

To maintain the frequency independence of this match the permeability and permittivity of the PML must 
have the form: 

and 

.OPML 
MPML = M(1- J--) 

WEo 

. 0 . OPML 
0PML = Eo(Er- J-)(1- J--) 

WEo WEo 

Converting this last expression into the time domain is problematic because of the double frequency dependence
which leads to a second time derivative in Ampere's Law. However, computed FDTD results for several soil 
cases show excellent suppression of unwanted edge boundary reflections. 
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Higher Order (Nonlinear) Diffraction Tomography: 
Inversion of the Rytov Series 

George A. Tsihrintzis, Member, IEEE, and Anthony J. Devaney, Member, IEEE 

Abstract-Nonlinear tomographic reconstruction algorithms 
are developed for inversion of data measured in scattering exper
iments in which the complex phase of the wavefields is modeled 
by an arbitrarily large (possibly infinite) number of terms in the 
Rytov series. The algorithms attain the form of a Volterra series 
of nonlinear operators, with the usual filtered backpropagation 
algorithm of Diffraction Tomography as the leading linear term. 
A computer simulation study is included to illustrate the perfor
mance of the algorithms for the case of scattering objects with 
cylindrical symmetry. 

Index Terms-Born series, diffraction tomography, inverse scat
tering, Rytov series, Volterra series. 

I. INTRODUCTION 

A. Early Development of Diffraction Tomography 

D IFFRACTION Tomography (DT) emerged over the past 
twenty years as a linearized approach to the problem of 

quantitative determination of the structure of an unknown ob
ject from measurement of the waves diffracted by the object in 
a suite of scattering experiments [102], [17], [22], [103]. The 
structure to be reconstructed by DT is usually the spatial dis
tribution of the complex-valued index of refraction inside the 
object. Therefore, DT lies within the field of Inverse Scattering 
[56], [6], [9] and is applicable in a number of seemingly dif
ferent scientific disciplines, such as crystal structure determi
nation [48], medical ultrasound tomography [33], acoustic and 
electromagnetic underground surveying [19], [98], [99], [97], 
[52], [100], optical and coherent X-ray microscopy [51], and 
elastic wave inverse scattering [25]. DT differs from other In
verse Scattering theories [104], [35], [2], [5], [4], [37], [92], 
[57], [41], [42], [12], [13] in that it utilizes linearizing approx
imations, namely, the Born or the Rytov approximation, to the 
nonlinear mathematical mapping that relates the probing wave, 
the object refraction index, and the measurable total wave. 

The foundation of modem linearized DT lies in the general
ized projection-slice theorem of (A. I 0), which was recognized 
by Wolf [102] in 1969. Wolf [102] employed the Born approx
imation together with truncation of the evanescent wave modes 
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in the Weyl expansion and the need was recognized for a to
mographic procedure employing different directions of illumi
nation for a reasonable reconstruction of an object's complex
valued index of refraction. Wolf's formulation was extended in 
1974 by Iwata and Nagata [36] to determine the structure of 
a less restrictive class of scatterers satisfying the Rytov rather 
than the Born approximation. In 1979, Mueller et al. [55] em
ployed the same concepts of the Born and Rytov approximations 
and presented Fourier interpolation-based algorithms for the in
verse problem of ultrasound tomography, while in 1982, De
nney [ 17] derived an elegant inversion algorithm, named "the 
filtered backpropagation algorithm of DT," for the inversion of 
full view, scattered field data under the Born or Rytov approxi
mations. When scattering experiments are done at a wavelength 
.A, the filtered backpropagation algorithm returns an estimate of 
the unknown index of refraction distribution whose frequency 
content is the same as of the true distribution over a circular 
disk in Fourier space of radius 2{ v'2 and zero elsewhere [23]. 

The filtered backpropagation algorithm has been recognized 
as the one providing highest quality in the reconstructed images 
[59] and modifications to it have been presented by Devaney 
[ 19] in 1984 and Deming and Devaney [ 11] in 1996 to adjust 
it to the configurations employed in geophysical tomographic 
surveys. Tsihrintzis and Devaney addressed the reconstruction 
problem of linearized DT from noisy scattered field data and 
showed that the optimum (Wiener) estimation filter attains again 
the form of a filtered backpropagation algorithm [85], [86]. Fi
nally, iterative algorithms for inversion of an angularly limited 
set of noise-free linearized scattering data were presented by 
Ladas and Devaney in [ 44], [ 45]. 

B. Recent Developments in Diffraction Tomography 

Linearized DT has reached today the stage of being imple
mented in prototype commercial tomographic scanners for ul
trasonic [79], [84], underground [62], [97], [100], and optical 
[51] imaging systems. Particularly successful have been geo
physical DT algorithms when applied to a range of underground 
imaging problems such as oil field prospecting and reservoir 
monitoring [101], locating underground tunnels between North 
and South Korea [97], [100], and searching for dinosaur bones 
in ~he New Mexico desert [96], [100]. The success of the lin
earized DT algorithms depends critically, however, on two as
sumptions: 1) linearity and 2) availability of multiple experi
ments [14]. In many cases, the linearity assumption fails, while 
different constraints (economic, safety, operating, geometric, or 
physical) limit the number of scattering experiments that can be 
performed and-or provide low signal-to-noise ratio data. Even 
though algebraic reconstruction techniques reduce the effect of 

0018-9448/00$10.00 © 2000 IEEE 
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availability of only a small number of scattering experiments, 
the effects of nonlinearity are much harder to combat and re
main an issue of current research. To overcome these limita
tions a more modest inverse scattering problem was addressed 
by Tsihrintzis and Devaney, originally within the framework 
of linearized [27], [82], [84], [87] and later exact [83], [84], 
[90], [91] scattering theory. 1 The goal of this more modest in
verse problem, motivated in part by earlier work on a related 
problem in X-ray computed tomography [66], was to estimate 
the location of a single known scatterer having unknown central 
location from noisy scattered field data. It was found, that for 
monochromatic planewave probing, the optimum (in the max
imum-likelihood sense) location estimate could be obtained via 
a filtered backpropagation algorithm, in which partial images 
formed by filtering and backpropagating scattered field data for 
different probing directions were coherently summed. The al
gorithm yields an image of the log-likelihood function of the 
object's location and can be used for target detection and classi
fication as well as target location estimation. The detection/es
timation/classification procedure is optimum (in the maximum
likelihood sense) for a single target and any given number of 
scattering experiments and returns good estimates even from a 
single experiment as long as the wavelength of the probing ra
diation is comparable with the typical dimensions of the target 
[27]. Its independent implementation in practice has revealed 
robustness to both high noise levels and the presence of unmod
eled objects. 

C. Present Contribution 

One practically important imaging situation arises when the 
object consists of a number of distinct scatterers. As pointed 
out by Azimi and Kak [1] and Slaney, Kak, and Larsen [73], 
even though each scatterer individually may be weak enough 
for validity of the Born or Rytov approximate model, multiple 
scattering interactions among several scatterers degrade the per
formance of linearized DT reconstruction algorithms. The situa
tion can be partially ameliorated if the reconstruction algorithms 
are based on higher order (nonlinear) scattering models and, in
deed, formal series solutions to the inverse scattering problem 
have been presented in the literature [63]-[65], [28], [49], [50], 
[93], [94], [74]-[76] In [28], [49], [50] more specifically, per
turbative expansions of the scattering object's Fourier transform 
were utilized to develop DT reconstruction algorithms of ar
bitrary order, which contained linear reconstruction algorithms 
as special cases and effectively attained the form of nonlinear 
data filtering followed by a linear operation. The algorithms in 
[28], [49], and [50] attempt to estimate samples of the Fourier 
transform of the object function and use them to obtain an es
timate of the object function itself. Recent attempts ([61], [3] 
and references therein) to invert a second-order scattering model 
have resulted in algorithms of the form of iterative numerical 
solutions of systems of quadratic equations and revealed sig
nificantly higher fidelity than their linear counterparts. In this 
paper, we address the reconstruction problem of DT within the 

1The algorithm was originally developed for homogeneous background 
media, but was recently extended to arbitrary one-dimensional (e.g., planarly 
layered) media [91]. In the same manner, it can be extended to arbitrary 
two-dimensional media (e.g., a waveguide of arbitrary cross section). 
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Fig. 2. The generalized projection-slice theorem of Diffraction Tomography 

framework of higher order (nonlinear) scattering approxima
tions. We derive reconstruction algorithms for the so-called, 
"classical scan configuration of DT' of Fig. 1 (and the asso
ciated Fig. 2), that can be implemented via use of a fast Fourier 
transform (FFT) algorithm, and illustrate them in a computer 
simulation study. Thus the paper presents a successive approx
imation procedure that recursively extracts increased informa
tion about a scatterer, where "increased information" is inter
preted in the sense of reduction of the bias of the solution. In 
this sense, the present paper is also related to our previous work 
on information extraction from imperfectly modeled scattered 
wavefield data [27], [83], [82], [85], [84], [86], [90], [91] be
cause it attempts to construct a wave-theoretic model for the 
error term that originally appeared as random noise in that work 
and suppress its biasing effect on the inversion algorithm output 
via the use of rigorous methodologies provided by the theory of 
Volterra system inversion. 

More specifically, the paper is organized as follows. Section 
II defines nonlinear data-generating models for scattering ex
periments through nonlinear mathematical mappings from the 
object structure to the complex phase of the observed total wave
fields that arise from an arbitrarily large number of terms in the 
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Rytov series. Section III is devoted to study of the inversion of 

the nonlinear data-generating models, a discussion of the imple

mentation procedure of the proposed algorithms, and a limited 

computer simulation, while Section IV summarizes the paper, 

draws conclusions, and points to future related research. Three 

appendices are attached to the paper. Appendix A summarizes 

the Born series representation of the mapping from object struc

ture to scattered wavefield data. Appendix B makes use of the 

Weyl expansion to derive the generalized projection-slice the

orem and define the propagation transform of linearized DT. 

Appendix C summarizes the key elements of the Volterra theory 

of nonlinear systems. 

II. NONLINEAR DATA-GENERATING MODELS FOR 

DIFFRACfiON TOMOGRAPHY 

A.' Configuration and Scattering Equations 

Consider the data collection configuration illustrated in 

Fig. 1, where· a known monochromatic plane wave '1/Jo ( x) = 
eik{v, x) of wavenumber k propagates in the direction of the 

unit vector v and is incident on a scattering object of support V. 
The total wave is measured over a line located entirely outside 

the object and perpendicular to the unit vector v. A point on 

the measurement line is denoted with the coordinate vector 

xo = tou + sov, to E R1
, where so (fixed) is the distance of 

the measurement line from the origin. The object is assumed 

to be embedded in a known nonattenuating, homogeneous 

background medium of wave velocity c0 and wavenumber 

k = ~ and characterized by its distribution of complex-valued 
co 

index of refraction n(x) = co/c(x), where c(x) is the wave 

velocity distribution inside the scatterer. 

The interaction of the incident wave with the object results in 

the formation of a wavefield 'lj;(x) that satisfies the time-inde

pendent inhomogeneous Helmholtz equation 

where f(x) = ![n2 (x)- 1] is the objectfunction, the quantity 

whose determination is the ultimate goal of inverse scattering 

theory and DT. The solution of the Helmholtz equation (2.1) can 

be decomposed into the sum of the incident field and a scattered 

field in the form 'lj;(x) = 'lj;0 (x) + 'lj;(s)(x), where the scattered 

field component is related to the object function and total field 

via the integral equation 

'lj;(s)(x) = -2k2 i dx' f(x')'lj;(x')G(x- x') (2.2) 

withG(x-x') = -~Ha1 ) (klx-x'l)theoutgoingwaveGreen 

function to the Helmholtz equation [53]. 

Equation (2.2) provides a link between source (radiation) and 

scattering problems in wave theory and shows that the scattered 

field outside the scattering region Vis uniquely determined from 

the total field inside V. Subsequently, approximate scattering 

models, such as the Born or Rytov models, seek to replace the 

"induced source" f'lj; in (2.2) with an approximate expression 

that leads to a tractable inverse problem. The first Born and 

Rytov approximations lead to linear models that are inverted via 

the algorithms of linearized DT outlined in Section I. The objec-
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tive of this paper is to improve these linear models by including 

higher order terms in the Rytov series and to establish a unified 

paradigm of both linear and nonlinear inversion algorithms for 

DT. ' 

B. The Rytov Series 

The Rytov series was originally developed within the con

text of wave scattering in random and turbulent media [81], [7], 

[72] and, as an approximation to exact scattering, its domain of 

validity is broader than the domain of validity of the Born se

ries. It arises from a perturbational expansion of the complex 

phase (i.e., the complex logarithm) of the field rather than the 

field itself. To begin, f is replaced by Ej in (2.1) and its solution 

'lj;(x; E) is set to 

'lj;(x; E) = eikW(x; e) (2.3) 

where W(x; E) is the "wavenumber-normalized complex 

phase" of the total field 'lj;(x; E). Substitution of (2.3) in (2.1) 

shows that the phase W satisfies the nonlinear Ricatti equation 

1 2 
\7W · \7W + ik \7 W- 1 = 2Ej. (2.4) 

So far, no approximation has been made. Equation (2.4) is exact 

and mathematically equivalent to (2.1 ). 

The Rytov series solution to (2.4) is obtained by substituting 

in (2.4) the formal series 

W(x; E)= Wo(x) + EW1(x) + E2W2(x) + · · · (2.5) 

with '1/Jo = eikWo. The resulting equations that specify the indi

vidual terms in the series (2.5) are 

1 2 
\7Wo · \7Wo + ik \7 Wo = 1 

(2.6) 
1 2. 

2\7Wo · VW1 + ik \7 W1 = 2f 

(2.7) 
1 2 

2(\7Wo · VW2 + \lW1 · VW1) + ik \7 W2 = 0 

1 2 
2(\7Wo · \7Wn + VW1 · VWn-1 + · · ·) + ik \7 Wn = 0 

(2.8) 

From (2.8), it is clear that, unlike the Born series in which the 

nth-order Born term is computed directly from the Born term of 

order n- 1 only, computation of the nth-order Rytov term Wn 

makes use of all the! Rytov terms Wn_ 1, Wn-2· ···,We). The 

solution to (2.6H2.8) is given next. The solution to (2.6) is the 

complex phase of the incident field, i.e., W0 (x) = (v, x). To 

solve (2.7), the Rytov transformation [81], [7], [72] is applied 

The quantity F is seen to satisfy the equation 

(\72 + k2)F = _ 2~f ei.kW0 

z 

(2.9) 

(2.10) 
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which is solved using Green function techniques to obtain2 

F(x) = - 2~ { dx' G(x- x')f(x')eikWo(x'). 
z lv (2.11) 

Substitution in (2.9) of the expression in (2.11) leads to 

2k -ikWo(x) 1 
W1(x) = e . dx'G(x- x')f(x')eikWo(x'). 

'l v 
(2.12) 

To obtain the term Wn in series (2.5), we rewrite (2.8) as 

n-1 

1 2 "'"' 2\lWo · \7Wn + ~\7 Wn =- 6 \7Wi · \7Wn-j (2.13) 
'l j=1 

and apply the Rytov transformation to it. The result is the ex
pression in the right-hand side of (2.12) with 2f replaced by 
- '£7~f \7Wj · \7Wn-j• i.e., 

ke-ikW0 (x) 1 
Wn(x) = . dx'G(x- x') 

'l v 

[

n-1 ] . L \7Wj . \7Wn-j (x')eikWo(x'). 
J=1 

(2.14) 

The Born and the Rytov terms are related [72], [67]. A Rytov 
term of order n can be expressed in terms of the Born terms 
of order 0, 1, · · ·, n. Indeed, substitution of the Born and the 
Rytov series in (2.3) gives 

which, after expanding around E 

equal power in E, gives 

(2.15) 

0 and equating terms of 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

Similar expressions can be written to express a Born term 
of order n in terms of the Rytov terms of order 0, 1, · · ·, n. 
Equations (2.16)-(2.19) reveal a pointwise (memoryless), 
with respect to the x variable, transformation from Born to 
Rytov terms. Given the fact that Born term computation can 
be approximately done by algorithms that are based on the 
fast Fourier transform, (2.16)-(2.19) indicate that an efficient 

2Clearly, F is simply equal to the wavenumber-nonnalized Born approxima
tion ft.- to the scattered field, as seen from the top of (A.2) and the fact that 
1/•o = r> ~- Wo. This leads to the simple expression 1/• 1 = il.~t/·0 lV1 relating the 
first tenns in the Born and the Rytov series. These two approximations have 
quite different domains of validity, however. 

procedure for computing a Rytov term of order n would be 
to compute first the Born terms of order 0, 1, · · ·, n and 
from these to find the nth-order Rytov term via a pointwise 
(memoryless), with respect to the x variable, transformation. 

The first-order Rytov approximation, simply referred to as 
the Rytov approximation, consists of approximating the field 
phase W with the sum of only the zeroth- and first-order Rytov 
terms as W(x) :::::. Wo(x) + W1 (x), where the term W1 is to be 
computed from (2.12) using the fact that Wo ( x) = ( v, x). In 
terms of the total field at point x 

7/J(x):::::. eikW0 (x)eikW1 (x) 

= exp{ ik(v, x)} exp{ -2ke-ik(v, x) fv dx'G(x- x') 

. f(x')eik(v, x')} . (2.20) 

Clearly, the Rytov approximation estimates the total field as 
the product of the incident field 7/Jo = eikWo and a multiplica
tive factor eikW1 that depends on the object function f. This is in 
contrast with the Born approximation which estimates the total 
field by correcting the incident field by an additive term that de
pends on the object function f. As a result, the Rytov approx
imation implies a nonlinear mapping from the object function 
to the total and scattered fields. It is, however, a linearizing ap
proximation for the direct scattering problem in the sense that 
the mapping from the object function to the complex phase of 
the total field has been linearized. 

The Rytov approximation is less restrictive than the Born ap
proximation. Indeed, the Rytov approximation is valid under the 
mild condition [ 40] 

where fm =max lf(x)l (2.21) 
X 

in which no restriction on the size of the scattering region V has 
been imposed. The main disadvantages, however, of the Rytov 
approximation are that 1) it works with the phase of the fields 
rather than the fields themselves, which creates phase unwrap
ping problems in inverse scattering applications [38], and 2) that 
it is a near-field approximation, since as observation points x 0 
are considered further away from the scattering region V, it de
teriorates fast and in the far field it becomes identical to the 
Born approximation [10], [24]. This latter fact has led [24] to 
a modified form of the Rytov approximation, which combines 
aspects of both the Born and the Rytov models, named the "hy
brid model." 

Both the Born and the Rytov approximations have been ex
tensively used for predictions in direct [81 ], [7], [72] and inverse 
[15], (18] scattering theory. Their domains of 'Validity, as well as 
their relative advantages and disadvantages, have been exten
sively explored in the literature [40], [39], [58], [95], [77], [78], 
[47] and also compared with experimental results [80], [51]. A 
concise treatment of these and other approximate models for 
inverse scattering applications can be found in [80] and the ref
erences therein. In this paper, use is made of the Rytov series, 
on the basis of the fact that experimentation has shown for it 
better modeling properties than the Born series for the type of 
scattering problems encountered in DT [80], [51]. 
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C. Nonlinear Data-Generating Models for Two-Dimensional 
DT 

Consider again the classical scan configuration of Fig. 1, but 
assume that the complex phase of the total field along the line 
xo = tou + sov, to E R1

, so: fixed, is well approximated by 
the first N terms of the Rytov series, where the possibility of 
N ~ oo is not excluded 

W(xo) ~ Wo(xo) + WI(xo) + · · · + WN(xo). (2.22) 

Define the Hilbert spaces :F, :FL. and P as follows: :F is 
L 2 (Va). where 'Dais a disk of radius a in R 2 that includes the 
scattering region V. :FL is the subspace of :F consisting of the 
functions in :F lowpass filtered down to a disk of radius k-./2 in 
Fourier space, i.e.,3 

fL(K) = { }(K), 
0, 

for IKI ~ k-./2 
otherwise. 

Finally, P is the space of functions defined on R1 x [0, 21r) 
whose frequency content with respect to the first variable is zero 
outside the [-k, k] interval. 

Define the nonlinear operators 

(2.23) 

where 

(2.24) 

and w;(tou + sov, 0) is the nth term of the Rytov series to the 
wavenumber-normalized complex phase of the total field along 
the measurement line xo = tou + sov, lowpass-filtered with 
respect to t0 down to the frequency interval [-k, k]. From (2.16) 
to (2.19) and Appendix A, it is seen that Wn is a homogeneous 
Volterra operator (see Appendix C) of order n. 

Define now the linear operator 

with 

1 1 f 2
7r 

(Bd)(x = tu + sv) = 2 (21r)2 Jo dO 

(2.25) 

k . r dplpleiptei(m-k)(s-so) d(p, 0). (2.26) 
1-k 

The operator (BIP) is the inverse of (W1 I:FL), as stated in 
(A.13). 

3Since the functions f in :F are compactly supported, their Fourier transform 
is an entire function. Therefore, for given f L, the corresponding f is unique and 
can, in principle, be obtained by analytically continuing the Fourier transform 
off L • The lowpass filtering is essentially a regularization procedure that makes 
the inverse of the propagation transform of linearized DT continuous. 
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D. The Cylindrically Symmetric Case 

A particularly important imaging situation is that of scat
tering objects with cylindrical symmetry, that is, scatterers 
whose properties vary only with the radial distance from the 
scatterer center and, thus their object function is of the form 

f(x) = fr(r), r = lxl. (2.27) 

This important situation arises in practical applications 
such as reconstruction of the structure of optical fibers or large 
molecules or buried pipes, but also provides a paradigm for both 
analytical and computer simulation study of DT reconstruction 
algorithms. Both the filtered backpropagation algorithm (A.l3) 
and the nonlinear models (2.24) attain a simpler form that 
makes use of one-dimensional Fourier-Bessel transforms. 

Indeed, let 

Jr(IKI) = 27r 100 

drrJo(IKir)fr(r). (2.28) 

Then, the Fourier transform of the object function f becomes 

}(K) = Jr(IKI) (2.29) 

and the generalized projection-slice theorem (A.l 0) (see Fig. 2) 
reads4 

Pef(p; so) 

= { ~ei(m-k)so Jr [ J2k(k- m)]' 
0, 

if IPI ~ k 

otherwise, 
(2.30) 

where the generalized projections P8 f are independent of the 
view angle e. The filtered backpropagation algorithm is now put 
in the form 

](x) = 2~ 1k dppei(k-m)soJo [rJ2k(k- m)] Pef(p; so), 

r = lxl (2.31) 

where the integration with respect to view angle e has been elim
inated. Finally, the nonlinear models (2.24) can be computed in 
a similar manner. For example, the first Born term is given by 

_ { i; eimso Jr [ J2k(k- m)] , if IPI ~ k 
'1/J!(pu + sov) = 

ik2 eimso Jr(lpl../2), if IPI > k 
m (2.32) 

and allows th~ computation of the first term W in the Rytov 
series. Similarly derivable, yet more complicated, expressions 

4More generally, 

ifiPI ~ k 

if IPI > k 

which includes evanescent wavemodes in the wavefield data. 
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for terms in the Rytov series of order higher than the first can 
also be derived. 

III. INVERSION OF NONLINEAR DATA-GENERATING MODELS 

FORDT 

A. Theory 

Define the inhomogeneous Volterra operator of order N 
(where the possibility of N --+ oo is not excluded) 

where 

e-ikso 

(WN !L)(to, 0) = -.k-(Wf+Wf+· · · W~)(tou+sov, 0) 
~ (3.2) 

and w;(tou + sov, 0), n = 1, 2, .. ·, is the nth term of the 
Rytov series to the scattered field along the measurement line 
xo = tou + sov, lowpass-filtered with respect to to down to the 
frequency interval [-k, k]. The existence of a local inverse of 
the operator WN and its representation by a convergent series 
is guaranteed by the existence ofthe inverse (8IP) of the linear 
term (W1IFL) [71], [46).5 Specifically, there exists a region in 
the data space P, on which the operator 

(3.3) 

is the inverse of WN, where 8n is a homogeneous Volterra op
erator of order n in the data. 

More specifically, 

81 = 8 

82 = -8W28 

83 = 8W28W28 - 8W38 

(3.4) 

(3.5) 

(3.6) 

It is observed that the terms 8~. 82, 83, etc., are universal in 
the sense that they do not depend on the order N of the forward 
model WN. Thus the operator series in (3.3) can be truncated 
to desired order n and return DT inversion algorithms of order 
n in the data. For example, the usual filtered backpropagation 
algorithm provides a universal DT inversion algorithm of first 
order (linear) in the data. A second observation is that if the data 
are sufficiently modeled by the first Rytov term, i.e., 8W = 
wl and w2 = w3 = ... = 0, then each higher order term 
in series (3.3) returns an identically zero contribution to image 
reconstruction, as close examination of the expressions in (3.4)
(3.6) reveals. This fact is also verified in the simulations of this 
section. A final observation is that the resulting algorithms are 
effectively of the form of nonlinear data filtering followed by 
backpropagation. Indeed, the series (3.3) can be written as 

5In [46], a detailed statement of a general theorem on inversion of Volterra 
systems is given, which includes a statement of an estimate of the range of ex
istence and convergence of the inverse series. 

where I: P --+ Pis the identity operator. Effectively, the term 
in brackets in (3.7) is a higher order nonlinear Volterra filter 
applied on the data and, thus the series (3.3) gives rise to an 
entire class of nonlinear filtered backpropagation algorithms for 
inversion of DT data. 

B. Implementation of the Inversion Algorithms 

The implementation of the proposed nonlinear diffraction to
mographic reconstruction algorithms consists of several steps 
and requires the implementation of corresponding algorithmic 
modules. More specifically, distinct modules to be used are as 
follows. 

1) An estimator of the complex phase (complex log) of the 
measured total wavefield and a phase unwrapper. The es
timation of the complex phase of the total wavefield from 
the measurements may require the use of a proper phase 
unwrapping algorithm when noise is present in the data. 
The problem is not serious in the fully three-dimensional 
imaging case and, in fact, becomes increasingly less se
rious in higher dimensions. The best practical approach 
probably consists of two precautionary measures: i) to ex
ploit the fact that the wave signal is bandlimited with zero 
Fourier content outside the frequency interval [-k, k] and 
lowpass-filter the measurements accordingly to reduce 
the noise level and ii) to increase the sampling rate be
yond the corresponding Nyquist rate. In previous (inde
pendent) experimentation with the theories of linearized 
DT, it was possible to image two--dimensional (2-D) ob
jects, where the phase wrapping problem is worse, from 
scattered wavefield measurements in a prototype ultra
sonic scanner, a prototype optical microscope, and sev
eral underground imaging devices (acoustic and ground 
penetrating radar), as discussed in Section I and refer
ences therein. If a better phase unwrapping approach is 
needed in some applications, the one we propose is based 
on modeling the phase with a low degree approximating 
polynomial, which is possible from the very requirement 
of phase continuity, and estimating the polynomial coef
ficients from the measurements. 

2) An implementer of the two- or three-dimensional filtered 
backpropagation or equivalent linear inversion algorithm, 
which can be based on use of fast Fourier transform algo
rithms and, today, is considered a routine procedure. Even 
though the filtered backpropagation algorithm is particu
larly robust to high noise levels (see, for example, [27, 
the reconstruction in Fig. 13]), it is possible that regu
larization of the linear algorithm may be required in cer
tain instances (e.g., wave probing only from a very lim
ited number of directions). To counteract the effects of 
noise, a number of related publications exist which in
clude [85], [11], [60]. In [60], more specifically, an in
finite class of regularized inversion algorithms are pro
posed and studied, which propagate noise differently. 

3) Born term calculators, that is, algorithms to compute Born 
terms of a given two- or three-dimensional input function 
using an FFT-based approach as discussed in [88], [89]. 
No regularization of these algorithms is required because 
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Fig. 3. Scattered fields in the computer simulation. (a) The first Born term '1/-• 1 . (b) The second Born term '1/-•2 . (c) The third Born term t/J3 . The real (imaginary) 
part of the fields is plotted in solid (dashed) line. 

the corresponding operators are bounded and therefore large molecules, or buried pipes. Specifically, the object func
continuous. 

4) Implementers of pointwise Born to Rytov transforma
tions, as in (2.16)-(2.19). 

5) Combiners (adders) of the output of the above modules. 

Once the above modules become available, the nonlinear 
diffraction tomographic reconstruction algorithms can be effi
ciently implemented in a scheme that successively adds higher 
order corrections to reduce the bias in the solution returned 
by a lower order inversion algorithm with repeated utilization 
of filtered backpropagation, Born term computation, Born to 
Rytov transformation, and addition as in (3.4)-(3.6). 

C. Computer Simulation 

The proposed nonlinear diffraction tomographic reconstruc
tion algorithms were implemented and studied in a limited com
puter simulation, following the steps outlined in the previous 
section. For simplicity, the scattering object consisted of a cir
cular core and three concentric circular coatings and constitutes 
a realistic model for cylindrical objects such as optical fibers, 

tion was set to 

0.0025, if lxl ~ 0.75 

0.002, if 0.75 ~ lxl ~ 1.8 

f(x) = 0.0015, if 1.8 ~ lxl ~ 2.6 (3.8) 

0.001, if2.6 ~ lxl ~ 10 

0, else. 

The wavenumber was equal to k = 61r, corresponding to a 
wavelength ,\ = ~ and the measurement distance was· set to 
so = 0. This is a fairly big object, sixty wuvclengths in diam
eter, for which the Born series converges slowly. The sampling 
rate was set to 0.04, which corresponds to approximately eight 
samples per wavelength and thus equals about four times the 
Nyquist rate. Thus the sample density is high enough to provide 
good numerical approximations to the continuous space sig
nals and algorithms considered in here. Unfortunately, the exact 
scattered wave solution for the given scatterer is not known in 
analytic form. However, if the Born or Rytov series converge, 
their limit will be the exact solution. Fig. 3 shows plots of the 
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Fig. 4. Complex phase of total fields in the computer simulation. (a) The first Rytov term W1. (b) The second Rytov term W2. (c) The third Rytov term W3. The 
real (imaginary) part of the complex phase is plotted in solid (dashed) line. 

first three Born terms, while plots of the first three Rytov terms 
are shown in Fig. 4. Clearly, a geometric similarity exists be
tween Born and Rytov terms which is due to the transformations 
(2.16)-(2.19) and the relative simplicity of the object. We note, 
however, that the Rytov terms need to be nonlinearly distorted 
(via exponentiation) to yield the total wave and this may, in tum, 
distort the simple geometric correspondence. 

The third Born term is approximately only six times smaller 
in magnitude than the first Born term ( :: ~~~~ ~ 6). By com
parison, the third Rytov term is approximately thirty times 
smaller in magnitude than the first Rytov term ( :: I~~ I ~ 30). 
Thus the Rytov series provides more accurate modeling of the 
complex phase of the total field than the Born series provides 
for the scattered field, a fact that is consistent with earlier 
investigations into the domains of validity of the Born and 
Rytov approximations [40], [39], [58], [95.], [77], [78], [80], 
[47], [51]. 

Fig. 5 shows the object function reconstructions returned by 
the filtered backpropagation and a second-order algorithm based 
on the Born series [89], from first- (Fig. 5(a)), second- (Fig. 
5(b)), and third-order (Fig. 5(c)) Born approximations. Clearly, 
the inversion procedure based on the Born series diverges.6 Fig. 
6 shows the object function reconstructions returned by the fil
tered backpropagation and the second-order algorithm based on 
the Rytov series, from first- (Fig. 6(a)), second- (Fig. 6(b)), 
and third-order (Fig. 6(c)) Rytov approximations. Clearly, the 
second-order algorithm returns the same reconstruction as the 
filtered backpropagation algorithm in the case of data consisting 
of only the first Rytov term, as theoretically expected. In the 
other cases, however, the filtered backpropagation algorithm un-

6We observe, however, that the filtered backpropagation algorithm returns 
identical reconstructions when applied to either first-order Born (Fig. 5(a)) or 
first-order Rytov (Fig. 6(a)) data. 

derperforms the second-order algorithm by a significant margin, 
especially in the area close to the core of the object. 

IV. SUMMARY, CONCLUSIONS, AND FuTuRE REsEARCH 

In this paper, linearized Diffraction Tomography was ex
tended into a higher order (nonlinear) regime via the use of 
an arbitrarily large (possibly infinite) number of terms from 
the Rytov series as the data-generating model in scattering 
experiments. Nonlinear tomographic reconstruction algorithms 
were developed for inversion of wavefield data and image 
formation, which attained the form of a series of Volterra 
operators in which the leading (linear) term was the usual 
filtered backpropagation (or equivalent) algorithm of linearized 
DT. A limited computer simulation study was included to 
illustrate the performance of the algorithms in the case of 
imaging objects with cylindrical symmetry. From this study, it 
was found that a second-order algorithm returned essentially 
the same reconstruction as the usual filtered backpropagation 
algorithm when applied to first-order Rytov data, but clearly 
outperformed the filtered backpropagation algorithm when 
applied to data consisting of the second- or third-order Rytov 
approximation. 

The paper establishes a unified paradigm for development 
of linear and nonlinear reconstruction algorithms for DT 
and thus further investigation in its direction 'is due. Future 
relevant research may follow the avenues of higher order 
DT with alternative data measurement configurations and 
higher order Diffraction Tomography of stochastic objects (in
cluding Bayesian inversion algorithms) and their time-domain 
counterparts. It seems that none of these research avenues 
are intractable in principle, but may require modification of 
the procedures presented in the present paper. Other related 
research directions to be followed in the future include study of 
the discretization of the propose continuous space models and 
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Fig. 5. Original object function (solid line) and reconstructions returned from the filtered backpropagation (dotted line) and the second-order algorithm based on the Born series (dashed line) in the computer simulation. (a) Reconstruction from the first-order Born approximation. (b) Reconstruction from the second-order Born approximation. (c) Reconstruction from the third-order Born approximation. 

algorithms and study of the discretization error and the efficient 
implementation of the discrete space algorithms. Finally, the 
application of these algorithms on fully three-dimensional real 
data is a high priority and, in fact, preliminary results of this 
process for data collected in a testbed that we are developing 
have been announced at recent conferences [26], [31]. These 
and other research avenues are currently being explored and 
the findings will be reported elsewhere. 

APPENDIX A 
THE BORN SERIES 

Equation (2.2) implies a nonlinear mapping from the object 
function f to the scattered field '1/J(s), which under certain weak 
scattering conditions can be expanded into a convergent Liou
ville-Neumann expansion, known as the Born series. The Born 

series is thus a perturbational expansion for the field scattered 
by an object f, obtained by introducing a smallness parameter E 
and replacing the object function f in (2.1) and (2.2) by Ej. The 
total field '1/;(x; E) inside the scattering region Vis assumed an 
analytic function of the parameter E around the pointE = 0, so 
that the Taylor series expansion around E = 0 

'1/J(x; E)= '1/Jo(x) + eth(x) : E2'1/;2(JJ) + · · · (A.1) 
converges for sufficiently small E. The terms E'l/;1 ( x), 
E2'1/;2(x), · · · are the first-, second-, ... order corrections 
made to the incident field '1/Jo(x) to yield the total field '1/J(x; E). 
Clearly, this expansion is compatible with the fact that the 
scattered field 

'1/J(s)(x; E)= E'l/JI(x) + E2'1/;2(x) + · · · 
is solely due to the presence of the scatterer with object func
tion E/ and in the absence of it (i.e., for E = 0) the total field 
'1/J(x; E = 0) reduces simply to the known incident field 'l/;0 (x). 
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Fig. 6. Original object function (solid line) and reconstructions returned from the filtered backpropagation (dotted line) and the second-order algorithm based on 
the Rytov series (dashed line) in the computer simulation. (a) Reconstruction from the fir.it-order Rytov approximation. (b) Reconstruction from the second-order 
Rytov approximation. (c) Reconstruction from the third-order Rytov approximation. 

Inserting (A.l) into (2.2) and equating the coefficients of 
equal powers of E on the two sides of the resulting expression, 
one obtains 

'¢I(xo) = -2k2 fv dx'G(xo- x')j(x')'l/Jo(x') 

'¢2(xo) = -2k2 !v dx'G(xo- x')f(x')'¢1(x') 

'1/Jn(xo) = -2k2 fv dx'G(xo- x')J(x')'l/Jn-l(x') 

(A.2) 
Clearly, the Born term of order n can be computed from the 
Born term of order n - 1, n = 1, 2, 3, · · ·, by replacing the 
induced source f'lj; with the product f'l/Jn-l· After computation 
of the Born terms up to some desired order N, the total field '1/J 

resulting from the interaction of the incident wave '1/Jo with the 
scatterer f is computed as 'lj;(xo) = '1/Jo(xo) + 'lj;(s) (xo) with 
the scattered field approximated as 

'1/J(s)(xo) ~ 'I/J1 (xo) + '¢2(xo) + · · · + '1/JN(xo). (A.3) 
Of course, the assumption is made that the expansion (A.l) is 
valid forE = 1. 

The first -onlcr Born app• oximation, simply referred to as the 
Born approximation [56], has been extensively employed in 
quantum-mechanical scattering theory [56], [32]. From (A.2), 
the Born approximation estimates the scattered field 'lj;(s) by 
substituting the inCident field '¢0 for the total field '1/J in the 
integrand in the right-hand side of (2.2) and, therefore, requires 
that i) 1'1/J(s) I «: 1'1/Jol inside the scatterer support V and ii) the 
volume of scatterer support V itself be small [ 40]. 

It is seen that the Born approximation is quite restrictive, 
since it requires both the size and the strength of the scattering 
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object to be "small." Additionally, it is a low-frequency approx

imation, in that it requires the frequency of the incident wave to 

be low. The Born approximation has been extensively used for 

predictions in direct [81], [7], [72] and inverse [18] scattering 

theory. Its domain of validity has been extensively explored in 

the literature [40], [39], [58], [95], [77], [78], [47] and compared 

with experimental results [80], [51]. 

APPENDIX B 
MATHEMATICAL FORMULATION OF LINEARIZED 

DIFFRACTION TOMOGRAPHY 

The first Born approximation for the field scattered from the 
object when illuminated with a plane wave7 '1j;8(x) = eik(v, x) = 

eiks propagating in the direction of the unit vector vis computed 

from the first of (A.2) as 

'1/Jf(xo) = -2e fv dx1G(xo- x 1 )eik(v,xl) f(x 1
). (A.4) 

At this point, the Weyl expansion [53] of the Green function G 
is introduced 

where 

I I i 100 I eimlsll 
G(t u + s v) = -- dpeipt --

47r -oo m 

i Jk • I eimlsll 
:=:::::-- dpetpt --

47r -k m 

= GL(t1u + s1v), (A.5) 

if IPI:::; k 

if IPI > k. 

The expansion in the right-hand side of (A.4) contains both ho

mogeneous (corresponding to IPI :::; k) and evanescent (corre

sponding to IPI > k) planewave terms and can be truncated to 

its homogeneous spectrum only, as indicated by the approximate 

equality sign in (App. 5), if the corresponding observation point 

.1:0 is taken at least several wavelengths away from the scattering 

region V. 
Substitution of (A.5) into (A.4) gives 

'1/Jf(tou + sov):::::::: 
2
ik

2 J r dt1 ds1 Jk dpeip(to-tl) 
47r lv -k 

eim(so-s 1
) 

· f(t 1u + s1v)eiks
1 

m 

ik2 Jk d ipt eimso J 1 d I d I =- pe 0
-- t s 

27r -k m v 

. e-iptl e-i(m-k)sl f(tlu + slv) 

ik2 Jk . eimso -= - dp etpto --f(pu + (m- k)v] 
27r -k m 

(A.6) 

7 A subscript H has been introduced to index the incident, total, and scattered 

waves corresponding to the different tomographic experiments using the clas

sical scan configuration of DT. 
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in which j denotes the two-dimensional Fourier transform of 

f. Equation (A.6) defines the "propagation transform" P9 f of 

linearized DT [ 17] 
\ 

I 
e-;;•o 'lj;~s) (xo) within the Born 

n f( ) approximation 
£8 to; So = 

8W9(x0) within ~he ~ytov 
approximatiOn 

(A.7) 

which relates to the object function f through the convolutional 

relation [21], [23] 

P8f(to; so)= j fv dt1 ds1f8(to- t1
, so- s1)f(t1u + s1v) 

(A.8) 

for to E Rl, so: fixed, () E 8 C [0, 21r ), and kernel f 8 ex

pressed in spectral form as 

f8(tl, sl) = ~ Jk dp ~e[iptl+(m-k)s~J. (A.9) 
21r -k m 

Equations (A.8) and (A.9) result in a simple relation when 

considered in the Fourier domain. This relation, following upon 

substitution of (A.9) into (A.8), reads 

~ { .!.ei(m-k)so }[pu + (m- k)v], 
P9j(p; so) = m 

0, 

if IPI:::; k 

otherwise 
(A.10) 

and is known as the generalized projection-slice theorem [ 1 02], 

[21], [23]. Fig. 2 is an illustration of the generalized projec

tion-slice theorem, which in words, implies that the one-dimen

sional Fourier transform P9 f of the propagation transform is 

proportional to a semicircular slice through the two-dimensional 

Fourier transform j of the object function itself.8 
The above formulation of the inverse problem of DT is com

patible with the usual formulation of the inverse problem of con

ventional Computerized Tomography (CT) and reduces to it in 

the limiting case of probing radiation of very short wavelength. 

Indeed, 

k --+ oo, ( ~) --+ 1, ( m - k) --+ 0, as A --+ 0 

and the kernel r 8 ( t1
' S

1
) reduces to 

f9(t 1
, s1

):::::::: -

2
1 joo dpeiptl = 8(t1

), 

7r -oo 
as A--+ 0. 

(A.l1) 

Thus the propagation transform becomes the usual Radon trans

form 

P8f(to) = J fv dt1 ds18(to- t1 )f(t1u + s1v) 

= j_: ds 1 f(tou + s1v). (A.l2) 

The generalized projection-slice theorem (A.l 0) has formed 

the basis for most treatments to the inverse problem of DT, 

namely, Fourier interpolation [36], [55], [54], [59] and filtered 

backpropagation [ 17], [59], [23], while (A.8) formed the basis 

for the development of iterative algorithms for DT [20], [22], 

8The remainder of the circular slice is associated with the reflected field, i.e., 

the scattered field along the measurement lines = -s0 • 
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[44], [43]. Of particular importance to this paper is the filtered 
backpropagation algorithm [17], [22], which provides a recon
struction j that corresponds to a lowpass-filtered version of the 
unknown object function f. In particular, the filtered backprop
agation algorithm estimates f as [ 17] 

. 1 1 [ 2
7r 

f(x) = 2 (211')2 Jo dO 
k . J dpjpjeiptei(m-k)(s-so) Pef(p; so) (A.13) 

-k 

where x = tu+sv. It is readily shown that the estimate j has the 
same spatial frequency content as the unknown f over a disk V 
in Fourier space of radius kv"i and zero frequency content out
side that disk. Since its first appearance [17], the filtered back
propagation algorithm has been modified and extended to other 
data acquisition geometries [ 19] and tested on computer simu
lated [16], [59] and experimental data [79], [84]. 

APPENDIX C 
ELEMENTS OF THE VOLTERRA THEORY OF 

NONLINEAR SYSTEMS 

A homogeneous Volterra operator (VO) of order k ~ 1 is 
a nonlinear system represented by a functional relation of the 
form 

y(·) = J · · · J d71 · · · d7k hk(·; 71 1 • • ·, 7k)X(71) · · ·X(7k) 

(A.14) 
between its input x( ·) and the corresponding output y( ·). The 
( k + 1 )-dimensional function hk ( ·; 7 1 , · · · , 7k) is the kernel of 
the homogeneous kth-order VO and, for uniqueness, is assumed 
symmetric, i.e., its value does not change under a permutation 
of its arguments. Clearly, a homogeneous VO of order k = 1 
is a linear system and its kernel h 1 ( ·; 7 1 ) is also its impulse re
sponse. A homogeneous VO of order k as in (A.14) is a homoge
neous polynomial system of order k in the sense that the system 
response to input ex(·) is cky( ·) for arbitrary constant c. 

A general (inhomogeneous) VO of order N is a nonlinear 
system consisting of the summation of homogeneous YO's of 
the form of (A.l4) of order less than or equal toN, i.e., a non
linear system represented by a functional relation of the form 

N 

y( ·) = ho + L j · · · j d71 · · · d7k hk 
k=1 

· (·; 7 1 , · · ·, 7k)X(7I) · · ·X(7k) (A.l5) 

where h0 is a constant. Clearly, an inhomog~neous VO of order 
N is a polynomial system of order N in the sense that its re
sponse to input ex(·) is a polynomial in c of order N for arbi
trary constant c. Equation (A.15) can be generalized further by 
letting the order N of the inhomogeneous VO become infinite, 
assuming convergence of the resulting functional series 

y( ·) = ho + f: J · · · J d71 · · · d7k hk 
k=1 

· (·; 71, · · ·, 7k)X(71) · · · X(7k)· (A.16) 

In practice, both the number of terms in (A.16) as well as the 
support of the Volterra kernels have to be truncated. Issues of 
approximation of nonlinear systems with infinite and truncated 
Volterra systems have been extensively addressed in the litera
ture [8], [34], [46], [30], [69], [68], [29], [70]. Issues of inverting 
a given Volterra system are discussed in great length in [71] and 
in a concise and rigorous manner in [ 46]. 
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ABSTRACT 
 

In ground penetrating radar (GPR) antipersonnel mine sensing, in which the target is small, shallow and often of low 
dielectric contrast, detection is challenging. One of the difficulties is that it is hard to distinguish the target signal from 
the omnipresent random rough ground reflection clutter. In this work, a Monte Carlo computational simulation using 2-
dimensional (2-D) transverse magnetic (TM) finite difference time domain (FDTD) with multiple rough surfaces is 
implemented to investigate single TNT target buries in dispersive soil. 
 
Based on the effects of the random rough surface on an impulse GPR signal and the knowledge of wave propagation 
differences in different media � air, soil, and TNT � a special background average process using physics based signal 
processing (PBSP) is performed to remove the ground clutter signal. This procedure first involves shifting and scaling 
multiple time signals from target-free random rough ground to establish the nominal (average) ground reflection pulse 
shape. Next, this nominal pulse shape is correlated in time with each trial signal, then shifted and scaled to match the 
ground surface clutter of that trial signal. Subtracting this shifted scaled clutter signal from the trial signal ideally leaves 
the target signal (with some additional multiple scattering between the target and ground surface). The PBSP algorithm 
reapplied in cases for which surface scattering occurs at multiple points. The statistical results of PBSP surface clutter 
removal indicate that the detection performance degrades with increasing surface roughness and decreasing burial depth. 
Hypothesis testing on the processed results proved to be successful in a detection and estimation point of view. This 
paper presents the detection performances in terms of Receiver Operating Characteristics (ROC) for various ground 
surface roughness and target burial depth cases. Also demonstrated is the performance improvements expected from 
multiple views: indicating that a multi-bistatic configuration appears to be superior to multistatic transmitter/receiver 
geometry with minimum combinations. 
 
Keywords: hypothesis testing, FDTD, GPR, ROC, performance, bistatic 
 

1. INTRODUCTION 
 
Detecting buried dielectric targets � such as antipersonnel mines � with GPR is important since million of mines are still 
be hidden in the ground, a cost and labor effective technique is needed. However, it is also challenging, because the 
dielectric constant of nonmetallic mine targets are similar to those of the surrounding soil, and because their sizes are 
comparable to the thickness of soil layer above them. In addition, the soil dielectric constant may not be well 
characterized, and the ground surface will usually be rough, often with roughness of the order of the target burial depth. 
The focuses of mine detection addressed in this paper are ground clutter removal and hypothesis testing which qualifies 
                                                           
*hzhan@ece.neu.edu; phone (617)373-4874; 467 Egan Research Building, 320 Huntington Avenue, Boston, MA 02115 
**rappaport@neu.edu; phone (617)373-2043; fax: (617)-373-8627; 302 Stearns Center, 320 Huntington Avenue, Boston, MA  02115  
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the detection performance based on 2D TM FDTD model. Although 3D FDTD is more accurate and visible, it is 
computationally complex and expensive while 2D FDTD can provide much information.  
 
The computational geometry shown in Fig. (1) is typical bistatic geometry based on the Geo-Centers, Inc. EFGPR 
system1. The measured Geo-Centers TEMR GPR antenna element radiated signal is used as the excitation, shown in Fig. 
(2). The TEMR is a wide-band antenna, throughout the 200MHz to 2.0GHz range. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Figure 1. Rough surface computational geometry  Figure 2. incident measured waveform 
 
 
The impulsive electromagnetic wave propagates through the dispersiver soil and is partially reflected. The received 
components in time are: the transmitter-receiver coupling signal with much stronger amplitude than the target signal; the 
ground reflection clutter signal, with distorted shape due to surface roughness; and the target return that is buried in the 
clutter.  
 
The soil model is Puerto Rican clay loam2 with 10% moisture and 1.4g/cc density, with average dielectric constant 

2.6' =ε . Since the soil is frequency-dependent medium, it is modeled by a single pole conductivity model based on the 
observation that the frequency variation of the real dielectric constant does not significantly affect either the real 
propagation constant or the decay rate3,4,5. The probability density function for the random height of the ground surface 
has a Gaussian distribution with zero mean and standard deviation σh. Also, the surface profiles spectrum is assumed 
Gaussian6,7. Since we interest in the clutter effects on target discrimination, the single scale Gaussian assumption is 
reasonable8.The frequency-independent target is the dry TNT with dielectric constant 2.9, and almost 0 conductivity9, 
and its size is about 10cm by 5cm.  
 
In the FDTD10 code, the time step used was ∆t = 20ps, which is matched to the 2D excitation time interval, and spatial 
difference is calculated to be ∆ = 1.22cm. The boundary condition used is the perfect matched layer (PML) absorbing 
boundary condition11, with which the theoretical reflection factor of a plane wave striking a vacuum layer interface can 
be made insignificant at any frequency and at any incidence angle. In this computation, 16 PML half-layers are used, and 
it gives good result for incident angle less than 75 degrees12.   
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The simulations are implemented for a variety of rough surfaces characterized by standard deviation for height σh and 
correlation length lc, also for various depths of buried target, and without target as well. In each simulation, 500 random 
rough surface realizations are generated.  

 
2. SIGNAL AND CLUTTER SEPARATION MODELING AND PROCESSING 

 
The goal of the process is to maximally suppress the clutter and retain the target signature. Since the surface is rough, the 
statistical rough ground reflection signal is obtained by the cross-correlation model, and eliminated from the received 
signal. Furthermore, because the shift of target signal is related to the shift of the ground clutter signal, the target signal 
is enhanced by the alignment procedure. 
 
 When the correlation length lc is large, the received pulse is a shifted and scaled version of transmitted signal. The time 
shifting and amplitude scaling are due to air/soil partition of the wave propagation path. By identifying these parameters 
and measuring their statistics separately, much added information about the ground clutter becomes available. The time 
shifting is found by the correlation function. Cross-correlation function between reference signal �f��, which is from an 
ideal soil half-space with a flat boundary, and any realization signal �i� is7,13: 
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where Mi K,2,1= is the rough surface realization index, M is the size of Monte Carlo sample, and N is the total 
number of time steps. Another way to obtain the scaling factor is to use the maximum correlation normalization instead. 
Since the energy normalization is superior for rougher surfaces that generate greater pulse distortion, the relative scaling 
is calculated using Eq. (3). The flow chart of the PBSP is shown in Fig.(3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Figure 3. Flowchart of single/multiple PBSP to suppress the ground clutter(s) 
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The nominal background signal is found by shifting received ground-only signal by ignd ,τ , scaling by iA , and 
averaging. The ensemble average gives the best estimate for the local clutter that corrupts the target signal. To reduce 
ground clutter, the nominal background signal is then shifted back by ignd ,τ , scaled by iA , and subtracted from each 

received signal iS . With the assumption or the knowledge of the depth of the buried target, the path of the scatter signal 

can be estimated. The wave propagation velocity in soil compared with that of in air is reduced by a factor '1 ε , the 
shifting factor for the target signal ie,minτ due to the change of soil amount can be calculated according to the geometry 
path. Then, the background-subtracted signals are once again realigned to the expected target position7,13. If the surface 
scattered wave were primarily due to a single specular reflection � as would be the case if lc were large � then this 
procedure would suppress most of the surface clutter. However, it is possible that the surface scattering occurs at 
multiple points. In that case, the cross-correlation/shifts ensemble average/subtraction procedure is repeated.  
 
One hundred computed scattered signals with/without in-ground-target are shown in Fig. (4.a1) and Fig. (4.b1) along 
with the 1±  standard deviation confidence interval, with the direct transmitter-receiver coupling signals removed. Those 
two plots are almost identical. Then, the ground clutter removal procedure is applied, with results shown in Fig. (4.a2) 
and Fig. (4.b2). Comparing the target-free mean plot to the target-in-ground mean plot, although there are clutter 
variations involved, there is visible difference in time interval [200 300] � where the target signal would be expected to 
occur. Therefore, it is possible to distinguish target-in-ground plot from target-free plot. However, it is difficult to 
localize the target to a certain depth by only looking at Fig. (4.b2), since the clutter amplitudes are comparable to those 
of the target signal. The realigned signals of the complete PBSP procedure are plotted in Fig. (4.a3) and Fig. (4.b3). The 
target signals are now well aligned, and the target position can be located by investigating the mean signal in the target-
in-ground plot. Furthermore, as expected, the standard deviation is much smaller for the target region of the signal than 
for the clutter region. The double clutter removal results are shown in Fig. (4.a4) and Fig. (4.b4). Since the clutter due to 
the second ground reflection has been suppressed, the amplitude of the clutter signal is reduced. Meanwhile, the target 
signature remains as prominent as expected.  
 
By using the PBSP, most of the ground clutter can be suppressed. However, the processing results are roughness 
dependent and related to the depth of a buried target. In Fig. (5), the mean signal and STD of several rough surfaces and 
various depth cases are present.  
 

3. SIMPLE BINARY HYPOTHESIS TESTING 
 
We simplify the mine detection problem to be: whether there is mine at certain depth with the knowledge of the surface 
roughness. Each of the two answers corresponds to a hypothesis: 
 
 H1 corresponds to the presence of a target (i.e., mine is present) 
 H0 corresponds to the absence of a target (i.e., no mine) 
 
Applying the likelihood ratio test, which is derived to be14: 
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where r, m0 and m1 are vectors with N elements, Q0 and Q1 are N x N covariance matrices. r represents the individual 
background-subtracted signals. m0 is the average of realigned no target (clutter) signals; m1 is the realigned target 
signals. The covariance matrices Q0 and Q1 are the inverses of the diagonal matrices of standard deviations of the clutter 
and target signals. Since the processed signals are not guaranteed independent of one and another, the diagonal 
covariance matrices used in the test are approximations. We are investigating the worse case hypothesis test here. 100 
out of 500 target signals and 100 out of 500 clutter signals are grouped at test signals. The average signals m0 and m1, 
and standard deviations are obtained form the remaining 400 clutter signals and 400 target signals. The likelihood ratio 
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test is applied to each test signal associated with a set of trial thresholds. Subsequently, the probability of false alarm PF 
(i.e., we say the target is present at certain depth when it is not) and the probability of, detection PD (i.e., we say the 
target is present at certain depth when it is) are obtained. The performance of the likelihood ratio test is evaluated by 
receiver operating characteristic (ROC) curve14. The ROC curves for a variety of rough surfaces and different depths are 
shown in Fig. (6). As the depth increases, the performance improves, i.e., when a buried target is close to the surface, it 
is hard to distinguish the ground clutter from the target signal since the ground clutter signal and target signal are too 
close to remove the clutter signal without affecting the target signal. The detection performance degrades as the standard 
deviation increases. Thus, the detection becomes difficult as expected when the surface is rough and the target is shallow 
buried.  
 
By relating signals associated with certain depth to several average signals for different depths, it has been found that the 
best performance always occurs for the correct depth estimate. An example is shown in Fig. (7). The test signals for 
depth 8.5cm were related to the average signals and corresponding standard deviation that are belong to the same 
roughness family. Thus, the correct target depth will be obtained by testing sample signals with stored statistics of 
various families with same surface roughness. Interestingly, the ROC curves for close but not exact depths are worse 
than those for much deeper or shallower depth estimates.  
 
The previous results are based on the geometry shown in Fig. (1) -- the target is centered beneath the transmitter-receiver 
(TR) pair. Recall that the detection performances decrease for rougher surfaces. In order to improve the performance, 
multi-bistatic and multistatic geometries are investigated. Now, in addition to then single centered TR pair position, we 
used four more TR positions for multi-bistatic geometry: 12.2cm and 24.4cm to the left and right of the center. As the 
pair moves away from the target, the test performance degrades. Also, the amplitude of the average target signal drops. 
However, the combination of three TR positions improves the detection performance significantly. With five TR views, 
the performance is even better. It is also true for the multistatic case with fixed transmitter and multiple receiver views. 
The improvements of using three/five TR pairs and three/five receiver views are shown in Fig. (8.a) and Fig. (8.b). 
Although performance increases with the number of views, the combinations of three TR positions, or three receiver 
views, each spaced 12.2cm apart to the left and right, appear to give excellent results.   

 
4. CONCLUSIOIN 

 
The computational study of 2D TM FDTD is presented to investigate a single dry TNT target at certain depth buried in 
dispersive soil with the presence of a random rough surface. The dispersive FDTD algorithm is used to incorporate the 
frequency-dependent complex conductivity media � Puerto Rican clay loam. The air/soil interface is characterized by 
Gaussian roughness, since the single scale roughness is well described by Gaussian process. The GPR impulse used is 
based on a measured transmitter pulse, with a wide-band width and the capability of exploring target in the presence of a 
lossy medium. The PML boundary is employed to terminate the computational grid.  
 
The simulated result is processed using a background average procedure � PBSP, which even works for a shallow buried 
target. The ground clutter is mostly removed by the ensemble average and subtraction procedure. Also, shifting and 
scaling the individual received signal back and forth according to the transmission path in the air and the soil enhance 
the target signature. The statistical results of the PBSP indicate that the quality of target signals depends on the 
roughness of the surface and the depth of a buried target. 
 
In addition to examining the statistics of fields scattered from a Gaussian rough surface, we investigate the worse case 
target detection performance by using the classic detection theory. Applying the binary hypothesis tests to the processed 
signals, the target can be localized at certain depths even under rough ground surfaces. Furthermore, the spatial 
combinations of TR position will improve the detection performance. 
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            Figure 4. For case ( )cmzlch 5.8,10,3 ===σ  

(a1) target-free raw signals; (b1) target-in-ground raw signals 
 (a2) ground clutter removed target-free signals; (b2) ground clutter removed target-in-ground signals 
 (a3) realigned target-free signals; (b3) realigned target-in-ground signals 

 (a4) double-clutter removed and realigned target-free signals; (b4) double-clutter removed and realigned target-in-
ground  signal 
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Figure 5.  Mean signal and STD for several rough surfaces and various depths. 
                 (a) ( )cmzlch 5.8,10,3 ===σ ;  (b) ( )cmzlch 5.8,3,3 ===σ  

                 (c) ( )cmzlch 5.8,10,1 ===σ ;  (d) ( )cmzlch 5.8,3,1 ===σ  

                 (e) ( )cmzlch 8.4,10,1 ===σ  
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Figure 6. ROC curves for ),,( zlchσ cm = (1,10,4.8), Figure 7. ROC curves, for ),( ch lσ cm = (1,10) with target  
              (1,10,6.1), (1,10,8.5),(1,10,9.8) and (3,10,8.5). at depth 8.5cm, using various depth test hypothesis 

 
 

             
    Figure 8. (a) ROC curves for combinations of 1,3,5 TR pairs; (b) ROC curves for combinations for 1,3,5 R views. 
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ABSTRACT 
 
The use of ground penetrating radar (GPR) is one of the most popular techniques for the detection of anti-personnel 
mines and therefore it is desirable to accurately model such systems. For many GPR applications, FDTD models used to 
simulate the system are two-dimensional, because they are simple to implement and computationally inexpensive. 
However, a three-dimensional model is more accurate and allows complete freedom for the location of the object 
relative to the receivers. Instead of fully modeling the transmitter and receiver elements, and adding significant 
complexity, the transmitted field in this study is experimentally measured and used as the model’s excitation. The model 
developed simulates a GPR system consisting of a parabolic reflector transmitter and a multi-static receiver array. The 
model is tested for both flat and rough ground with a Gaussian variation. The results are compared with experimental 
data and are found to be very accurate. The validation of this approach makes the model a powerful tool that can be used 
in different applications, where the exciting field is computationally or experimentally specified. 
 
 
Keywords: FDTD, modeling, ground-penetrating radar, mine detection, parabolic reflector   
 
 
 

1. INTRODUCTION  
    
Land mine detection using ground-penetrating radar (GPR) has been a topic of research for many years, and research has 
shown that it is a challenging problem with no unique solution. The properties of the transmitting and receiving antennas 
used, the geometry of the system, and the signal processing algorithms employed for the processing of the data are all 
important aspects of the problem. A description of these design parameters and a summary of some of the most popular 
GPR systems can be found in [1].  
 
Among the several different techniques, the forward-looking parabolic reflector transmitter GPR aims to reduce the 
clutter from the ground surface and thus make the detection of the object an easier task. This system, which was 
designed by Northeastern University and fabricated at Geo-Centers, Inc., has been described in previous work2, 3, 4 . The 
parabolic reflector transmitter illuminates the ground with a forward propagating, quasi-planar wave. A significant 
amount of the ground clutter will scatter away from the ground surface, and therefore the relatively isotropic scattered 
signal from a buried object has a higher probability of being detected by the receivers, positioned in the backscattered 
direction. The possibility of detecting the small signal scattered from the object depends on the electromagnetic 
properties of the material, its position relative to the receivers and how deep it is buried into the ground. Using a short-
duration excitation impulse and a multi-static array receiver system, the detection performance for shallow buried targets 
is enhanced3. 
 

                                                                 
1 Contact authors at pkosmas@coe.neu.edu, rappaport@ece.neu.edu, Tel: 1-617-373-8387, 1-617-373-2043 Fax: 1-617-373-8627 
 



In order to simulate this system, we can measure the transmitted field voltages and find a way to extract the electric field 
that will be used as an input to the model. The modeling is performed using the Finite-Difference Time-Domain 
numerical method. The system has been compared with previous 2D models 2, but here a fully three-dimensional model 
is developed, which simulates the incident quasi-planar wave, propagation in frequency dependent soil, the ground 
clutter for flat and rough cases, and the signal scattered by the object, resulting in the signal received by the four-receiver 
multi-static array. 
 
 

2. GPR SYSTEM MODELING 
 
The FDTD method is one of the most popular numerical techniques for electromagnetic problems. It is based on 
discretizing Maxwell’s equations in time and space using a difference scheme for the approximation of the derivatives, 
on edges of the so-called Yee-cell5.  Several issues related to the numerical implementation of the FDTD technique, such 
as stability and dispersion7, together with geometry considerations, play an important role in determining the size of this 
cell, which is chosen to be uniform for the present application. 
 
A fully three-dimensional FDTD model would include the transmitting and receiving antennas, the parabolic reflector, 
the air/ground interface and the buried object. In addition, the transfer functions that convert voltages to electric fields 
are also necessary in order to compare the simulation results to measured data. Alternatively, we can use a more 
simplified approach if we make certain assumptions for our system. First of all, if the receiving antenna is located in the 
far-field of the transmitting system, there are no significant ringing effects and therefore the knowledge of the 
transmitting fields is sufficient for use as an excitation model. Moreover, if we consider the system to be linear and time-
invariant (Fig.1), then we can interchange the order of the “boxes” in figure 1. Then, we can measure the voltages with 
the receiver before the channel, and use these voltages as input to get output voltages, which can be directly compared to 
the data.       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on these assumptions, we can consider a plane in the 3D grid that is excited by field values that are experimentally 
measured and then let this incident quasi-planar wave propagate, encounter the soil and the object, and record the signal 
at the points  where the receivers are located. The geometry of the model is depicted in figure 2. The procedure followed 
to derive the input excitation by the measured values is described in the next section. Here we briefly discuss our 
approach towards some of the most important issues that are related to the FDTD method. These include the modeling of 
lossy, dispersive soil and the absorbing boundary conditions. A more detailed analysis can be found in [6].   
 
Any FDTD analysis should account for the frequency dependence of the soil’s electrical properties. There are several 
methods that are developed to model this dispersion based on fitting parameters to match measured data for a range of 
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Fig. 1:  Transition from the physical system to the equivalent model by interchanging the order of processes. 
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frequencies10,11. The present model uses a z-transform method based on a single-pole, two-zero conductivity model, 
which leads to good agreement with measured soil data over two decades in frequency8. This one-pole approach requires 
storage of only two previously computed field values and leads to very simple equations for the propagation in soil that 
use these past values and some additional constants. 
 
Due to the ground’s abnormalities and the presence of other possible scatterers, such as rocks or metal objects, it is also 
necessary to introduce ground roughness in the FDTD model. For the 3D geometry, a rough surface is generated using a 
height variation that has a joint, zero-mean Gaussian distribution in both x and y dimensions13.           
 
 

 
 
 
 
 
Terminating the grid with an effective absorbing boundary condition (ABC) that will significantly reduce unwanted 
reflections is one of the most important objectives for any FDTD application. In the literature, the perfectly matched 
layer (PML) absorbing boundary condition14 has been extensively studied and its modified versions can be used for a 3D 
model that includes free space and lossy, dispersive soil. An alternative approach is to use the Mur absorbing boundary 
conditions15. Although the PML performance in free-space is superior to the Mur ABC, in the frequency-dispersive soil 
it is  comparable to a Mur-type ABC that uses the single-pole conductivity model mentioned above6,9. Using a point-
source excitation, this 3D Mur-type ABC has been tested in Puerto-Rican clay loam with 1.4 g/cc density and 10% 
moisture and resulted to a maximum 5% reflection on the edges of the grid6, and testing for 1D cases for 5% moisture 
with a 1GHz Gaussian exciting pulse has shown that up to a 15o angle, this Mur-type ABC behaves better than the 
PML9. For an approximately 45o incident plane wave, the angle of propagation in the soil is within this 15o range, 
making this Mur-type ABC preferable to the PML. In addition, using Mur-type ABC in the model is much simpler to 
implement and faster than a 3D air/soil PML. As for the reflection in the free-space region, the planes of excitation and 
receivers in the 3D grid (figure 2) are located closely enough to the ground that these reflections occur later than the 
ground clutter and mine signal6. 
 
          

3.   PARABOLIC REFLECTOR’S INCIDENT WAVE 
 
The offset paraboloidal reflector antenna generates a quasi-planar wave of approximately 45o of incidence that can be 
considered fairly uniform in the ground region of interest (figure 3). The offset section is necessary to avoid the blockage 
of rays by the feed structure. The reflector collimates rays from an ultra-wideband transmitting feed. A detailed 
description of the necessary design considerations and the characteristics of the system can be found in references [4] 
and [12]. Here we are interested in describing the procedure that was followed in order to use the wave generated by this 
system as the excitation for the FDTD model, based on measured data. Figure 3 shows the geometry of the performed 
experiment. 

Fig. 2:  Geometry of the 3D FDTD grid that simulates the GPR system and the four-receiver plane. 
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In order to simulate this system, we experimentally measured the transmitted field. Turning the parabolic antenna upside 
down, we measured amplitudes and delays on the x-y plane, using a Styrofoam sheet as physical support for the 
measurement. The measurements were taken every two inches in the x-direction for the interval [-10’’, 10’’] and every 
three inches in the y-direction for the interval [-9’’, 9’’], where the center (0,0) corresponds to the beam center of the 
parabolic antenna, as shown in figure 3. In addition, the waveforms of the incident field were recorded for the center and 
the corners of the x-y plane. These nine positions are marked in the figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to derive the field values for every grid cell from the recorded waveforms and the measured amplitudes and time 
delays, we first need to interpolate these measured values for the intermediate points according to the length of the cubic 
cell’s sides that are used in the simulation. The time step of the recorded waveforms also needs to be equal to the one 
used in the simulation. Then an interpolation algorithm performs the following steps: 
1. Take the waveforms at (0, 0) and (0, +9) to derive the waveforms for all points along (0, y). 
2. Repeat for (+10, 0) and (+10, +9) to derive waveforms along (+10, y).  
3.Use (0, y) and (+10, y) to derive the waveforms for all the points (x, y) with x∈ [0, +10], y∈ [0, +9]. 
4. Repeat steps 1-3 for the three remaining blocks of data.  
5. Unify the results to produce the interpolated field for (x, y), x∈ [-10, +10], y∈ [-9, +9] and for an x (y) increment that 
corresponds to the ∆x (∆y) of the simulation. 
 
The fields that are obtained using this method are shown in figure 4, where cuts along the x and y-axis through the center 
are presented. For display purposes the field values in these figures have been under-sampled both in space and time. 
These figures verify that the measured transmitted field possesses the characteristics desired for land-mine detection 
applications, being relatively planar, tilted 45o to vertical in the x-z plane and having a gradual amplitude taper away 
from the center of the beam. The wave transmitted by the parabolic reflector is only an approximation to a 45o incident 
plane wave. These plots, though, illustrate that this approximation is realistic. 
 
Figure 4 also shows the result of exciting the Ex component of the electric field with the above values in a 3D FDTD 
grid. The Hy magnetic field component on the x-z surface that passes though the center of the grid is plotted for three 
different time steps, in the vicinity of the air/ground interface. The output of this simulation further illustrates the validity 
of the plane-wave approximation, especially locally, in the air/ground region that includes the plane of the receivers and 
the mine target. 
 
 

Fig. 3:  Experiment for measuring the field wave generated by the parabolic reflector. On the left, the actual system facing the 
ground is depicted and on the right, the system is turned upside-down in order to measure the transmitted field as function of time 
position on the x-y plane. 
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4.   RESPONSE OF REALISTIC SOIL USING GPR SIMULATIONS AND DATA 
 
The parabolic transmitter shown in figure 3 was used in an outdoor experiment in Northeastern ’s Dedham Campus 
outdoor track. The GPR receiver array consists of two forward and two rear antenna elements, positioned close to the 
ground, behind the focal point of the transmitting antenna. The parabolic antenna system is put on a survey cart that can 
travel along-rails down-track. Several plastic and metallic objects are buried along the track (figure 5). The soil can be 
approximately considered as clay loam with 1.4 g/cm3 density. We use measured soil values for Puerto-Rican clay 
loam16. The statistical characteristics of the roughness of the ground are not expected to change significantly along the 
track. As the cart moves along, the received signal at each of the four receivers is measured for every half inch. Starting 
with the center of the system (beam center) being in the center in the y (cross-track) direction and moving it along the x 
(down-track) direction, the process is repeated for every two inches left and right (y-direction) to the center. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to compare simulated and experimental data, a scan corresponding to a track location with no object beneath the 
ground was considered. To simulate the ground response recorded at this scan, the three-dimensional FDTD model was 

Fig. 4: Parabolic reflector’s wave that excites the 3D FDTD grid. The cuts along the x and y-axis through the center illustrate the 
characteristics of the incident wave. As the wave propagates in the grid, it locally resembles a plane wave with 45o incident angle. 
 

Fig. 5: Photograph of the GPR system and diagram of the outdoor track 
 



run for both flat and rough ground cases, and the planes of excitation and receivers were placed as in figure 2, with the 
receivers’ height equal to their distance from the ground in the outdoors experiment. The ground roughness parameters 
are set to be 10.0 cm for the correlation length and 1.0 cm for the mean square height. These parameters are chosen to 
correspond to a moderate rough case. 
 
In order to get the ground response from the scanned signal, we first need to determine the direct signal from transmitter 
to receiver and subtract it. It is important and rather difficult to capture an accurate reference signal in an outdoor 
experiment due to reflections from the surrounding environment. Furthermore, since this signal will determine the time 
alignment of the data, finding the starting time is also critical. For this reason, an air-shot signal was recorded four times 
for each receiver, the four waveforms were aligned and their average was used as the reference direct signal for each 
receiver. The air-shot signals were taken by turning the system upside-down to minimize ground reflections. The 
reflection caused by the surrounding environment can be considered as part of the direct signal. Then the reference direct 
signal for each receiver was subtracted from the scanned signal and the result was normalized. For each receiver, the 
total number of samples in the scanned data is 512, but the sampling rate is slightly different, namely 38.2, 37.1, 33.3 
and 37.5ps for receivers 1,2,3, and 4 respectively. Thus, the time window is slightly different for each receiver. The 
starting time is determined by time alignment based on the air-shot signal.    
 
For the FDTD simulations the direct signal can be easily obtained by removing the ground and recording the signal at 
the four receivers. This stored signal is then subtracted by the ground signal and, after normalizing, the ground response 
for flat and rough ground is obtained. The starting time, as with the experimental data, is arbitrary. The simulated signal 
was normalized to the maximum value of the experimental signal for comparison. The soil was modeled to simulate the 
Puerto Rican clay loam that is considered for the experiment. The time step for the simulations was 10ps, so the 
simulated data was extrapolated to match the time steps of the four receivers in the experiment. As mentioned above, due 
to this difference in the sampling rate, the time windows for the four receivers are slightly different. 
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Fig. 6: Realistic soil response (measured data vs. FDTD model). The x-marked line corresponds to the measured data, the solid and 
dash-dotted lines to the simulation results for flat and rough ground respectively. The ground roughness follows a Gaussian 
distribution with parameters 10.0 cm for the correlation length and 1.0 cm for the mean square height. 



The ground response of the simulation model vs. the experimental data is shown in figure 6. The figure shows a very 
good agreement of the three-dimensional model with the data. The ground roughness effect is mostly apparent at the 
fourth receiver, and the measured data lies between the flat and rough ground simulation response for the time interval 
where these two responses are remarkably different. For the rest of the receivers, the measured data is in very good 
agreement especially in the interval where the main peak occurs, and only at receiver 3 there is a time delay after the 
main peak for the simulation response in comparison to the data, which may be attributed to experimental errors or non-
predicted roughness effects.       
 
 

5.   SCATTERING FROM METALLIC OBJECT  
 
An analysis of the 3D model’s predicted scattered signal from plastic and metallic mines and a comparison with two-
dimensional models can be found in [6]. However, in order to further confirm the validity of the three-dimensional 
model, we performed an additional test for which reliable experimental data was available.     
 
This test involves the scattered signal for an aluminum sphere placed in the center of the grid. The simulation results are 
compared with measurements performed inside, where the sphere was placed on the center of the Styrofoam sheet 
(figure 3). Here there is no air/ground interface and thus no ground signal and the waveforms were recorded in the 
experiment with the direct signal subtracted. The transmitting pulse is different and so is the recording time window. The 
rest of the geometry remains the same. As with the experimental waveforms, the direct signal is recorded and subtracted 
for the simulation runs. Here, the sampling rate is the same for the four receivers and the starting time is arbitrary, and it 
is chosen for the simulations so that the signal peaks are aligned. The results are shown in figure 7, with the simulation 
output having been normalized to the maximum value of the measured output.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 7 further illustrates the validity of the three-dimensional FDTD model. Using a different excitation pulse for the 
parabolic reflector transmitter, the agreement is very good with a small difference only for receiver #4. The scattered 
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Fig. 7: Scattered signal from an aluminum sphere in free-space (measured data vs. FDTD model). The dash-dotted line corresponds 
to the measured data, and the solid line to the simulation results.  
 



signal is higher at the front receivers 1 and 4, as expected since the ball is located closer to them (beam center of figure 
2). The peak occurs later for the rear receivers 2 and 3, due to the propagation time delay.    
 

6. CONCLUSIONS 
 
The three-dimensional FDTD model can accurately simulate a GPR application, such as land mine detection using a 
parabolic reflector system, which is studied in this work. Following an approach that aims to simplify the complexity of 
the model as much as possible, we based our excitation on experimental measurements and an interpolation procedure 
and used simple one-pole models for the soil equations. Mur-type absorbing boundary conditions were chosen for their 
simplicity and good performance in soil. Placing the receivers close to the ground, the unwanted reflections from the 
upper sides of the grid occur later than the examined signal. 
  
The model was tested in two different experiments. Using the Geo-centers, Inc. radar pulse as excitation, the ground 
signal at the four receivers was compared to experimental data taken using the parabolic reflector system at 
Northeastern’s outdoor track. The measured data was found to lie between the flat and rough ground simulated data. 
Then, for a different pulse transmitter signal, the scattered signal from an aluminum ball was compared to data taken in 
an inside experiment. The very good agreement for these two different cases is a very strong proof for the validity of the 
model. 
 
In [6], a study of the ground response with and without plastic and metal mines is studied as a function of position, and 
the results are compared to two-dimensional cases and conclusions on the ability to detect a plastic non-antipersonnel 
mine are drawn, based on this FDTD model. It is our objective to test these conclusions with additional reliable data in 
the future. The validation of this model makes it a powerful tool since, if modified, it can be used for a variety of 
applications and different systems, once the incident wave is accurately calculated. In other words, the model can be 
used to break up a larger problem, provided that we are in the far-field of the transmitting antenna and effects of ringing 
between transmitting and receiving antennas are negligible.  
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Abstract 
 
Ground surface roughness is problematic when using a radar impulse to detect and locate land mines.  Waves scatter 
from a random rough ground surface in unpredictable ways, contributing to clutter that is particularly hard to suppress.  
This clutter has proven experimentally and computationally to distort and obscure the desired scattered field from a 
buried target.   To overcome this effect we have developed a lightweight, artificial dielectric that can be placed over a 
chosen area that will mimic flat ground and mitigate clutter effects. 
 
An artificial dielectric of close-packed array of small insulated metal-coated plastic spheres and lossless uniform plastic 
spheres can be formulated to match the dielectric properties soil.  The ratio of these two spheres in the collection is 
adjusted to match a particular soil type and the moisture content.  Placing them in a conformable bag and ensuring a flat 
upper interface with the air, ground reflections from an impulse radar can effectively be removed to reveal a target 
scattering signature.  Furthermore, a matched filter can be used to distinguish between a landmine and a false alarm 
(such as a rock). 
 
The artificial dielectric was matched by running experiments in the frequency and time domains.  A 1 GHz center 
frequency impulse ground penetrating radar was used to collect time signals and compare different cases: flat ground, 
rough ground and rough ground with artificial dielectric.  Results indicate excellent rough surface reflection removal and 
target signal enhancement. 
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mine detection, artificial dielectrics, ground penetrating radar, coupling, impedance matching 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction 
 

 
Detection of an anti-personnel land mine using ground penetrating radar (GPR) depends on recognizing a reflection from 
an object buried shallowly below the ground surface.  Often the dielectric constant of the target materials (RTV, nylon, 
TNT, etc.) is in the range of dry soil1.  Mines buried in moist soil offer a slightly lower dielectric constant than their 
surroundings.  This scattering from a low contrast object is compared to a ground signal without an object and a positive 
or negative decision is made.        
 
The background reference signal that is compared to the test signal will usually be taken over flat ground without a 
target.  If the test signal is obtained over flat ground, a reflection from an object can be seen by subtracting the 
background signal.  However, in realistic environments the ground surface is not flat.   Scatter resulting from a rough 
ground surface can obscure the desired scattered field from the buried target.  The undesirable clutter, as it is known, is 
unpredictable and therefore difficult to remove in processing.  Time gating the received signals is not feasible  as the 
targets are usually buried very close to the ground surface2 (most AP mines are between 2cm and 10cm).  The clutter 
will affect the ground reflection and disturbs the signal in the time range where the mine reflection is likely to occur.         
 
Simulations were performed using a three dimensional finite difference time domain model3 to show the effects of rough 
ground on the propagating fields.  A modulated Gaussian pulse was used as the source.  Figure 1 displays the incident 
plane wave coming from the right at a 30 degree angle on flat ground, and the subsequent transmitted and reflected 
fields.  Figure 2 illustrates how clutter is introduced into the reflected field when the ground is rough.  The ground 
roughness follows a Gaussian distribution with a mean height of 1 cm and a correlation length of 10 cm7.  

      
             

   Figure 1:  Propagating fields from flat ground          Figure 2:  Propagating fields from rough ground 
   
 

Figure 3 shows the propagating fields of the same rough ground 
simulation as Figure 2 at a later time.  There is no buried target 
in this simulation.  Here we can see an isotropic effect develop 
near the center of the figure.  This might be incorrectly 
interpreted as the return from a buried target.   Thus rough 
ground clutter not only reduces the probability of detection but 
also increases the probability false alarms.  
 

 
 
           
                
               

       Figure 3:  Isotropic effect develops from rough ground 
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Although rough ground presents a complicated problem in detecting subsurface objects, a physical means is 
implemented to overcome this obstacle.   A lightweight artificial dielectric is placed over a test area that will mimic flat 
ground and mitigate clutter effects.   The material must be electromagnetically similar to the ground, taking into account 
the soil type and moisture content.  Also it must physically conform well to the test area and retain a flat interface with 
the propagating fields from the transmitter.  Experiments were performed to find a suitable artificial dielectric to match a 
particular soil.  Subsequent exp eriments using ground penetrating radar have proven that the detection process is 
improved using the artificial dielectric. 
 
 

Artificial Matching Layer 
 

 
An artificial dielectric (AD) layer fills voids and lessens the effects of bumps in the ground surface.  The purpose of this 
layer is to soften and planarize the interface rather than act as an impedance transformer between the air and the soil.  
The relative permittivity of the layer is for the most part constant and cannot be perfectly matched to the soil during use.   
The dielectric constant of soil is a function of the soil type, moisture content and density – the latter two can vary widely 
over a test area.  The background reference signal is obtained using the AD over flat ground with a nominal moisture 
content and density.  The background signal will have a reflection from the top, flat surface of the dielectric and a later 
reflection from the AD/ground interface.   We will see that this second reflection is more stable under various rough 
surfaces when compared to the direct air/ground interface. 
 
Conducting spheres that are spatially separated have been used as artificial dielectrics for many years4.  However, solid 
metal spheres are too heavy for land mine use and separating them in a fixed matrix is clearly not feasible.   The same 
goal is achieved with the use of lightweight plastic spheres with a thin metallic coating.  The spheres also have an outer 
plastic film that isolates them from one another.  These 6mm beads are available in bulk from an arts and crafts 
manufacturer as decorations.   
 
For the GPR experiment a soil tank was built and filled with clay-loam topsoil.  At 1 GHz, the complex dielectric 
constant of clay-loam will vary between 6 and 20 depending on the moisture content and the density.  For conducting 
spheres, the effective impedance depends on the geometry of the array and the proximity of the spheres.  The separation 
can be computed in terms of volume packing fraction of the spheres in space.  The volume packing fraction is given as: 
 

p = KvS / vTOTAL 
 

Where K is the number of spheres in a total volume (vTOTAL) and vS is the volume of a sphere ( 3
3

4 rπ ). 

 
The effective impedance (?r) can be approximated as a function of packing fraction by the following formulas4:     
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where for simple cubic (sc) packing, 
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and for face centered cubic (fcc) packing, 
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The effective impedance for both structures is plotted in Figure 4.   

Figure 4:  Effective Impedance vs. packing fraction  
 
 
In practice we would expect the random distribution of spheres to favor that of an fcc structure.  The volume density of 
the 6mm beads was found to be 0.565 which yields an approximate impedance of 0.26Ω .  The impedance of soil is 
found using only the relative permittivity, with the permeability assumed to be that of free space.  The impedance for 
clay loam usually varies between 0.22Ω  (at 20% moisture) and 0.41Ω5.  We see that the impedance of the AD falls in the 
range of loamy soils with moisture contents of 12% to 20%.   
 
For an impulse GPR system with a bandwidth of 700 MHz to 1.3 GHz the wavelength of the pulse in the dielectric 
varies between 33 cm < λ < 18 cm.   The values are significantly larger than the 6mm diameter spheres and therefore the 
impedance calculations assume frequency independence.    
 
To better match the AD to a particular soil, the volume packing fraction is reduced, i.e. the spacing among the metallic 
beads is increased.  This is done by uniformly distributing all-plastic beads among the conducting spheres.  In order to 
ensure a uniform mixture of the AD, 8mm non-metallic beads were used because they are similar in weight and size. 
Measurements were taken in the frequency domain using a microwave network analyzer.  Clay loam soil at ~15% 
moisture was compared to varying the ratios of the two types of beads.  The contents were placed in a paraffin cavity and 
the S11 frequency response was recorded.   Figure 5 shows the frequency response of the soil (solid dark) compared to 
two different ratios of the artificial dielectric.  We see that a relatively good match (+) is achieved with the AD when the 
ratio is 1:2 (by volume 8mm/6mm).  The response of dry sand is shown for contrast. 
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             Figure 5:  Frequency response of clay loam (solid dark),                 Figure 6:  Flat ground (solid), roughened surface        
                              artificial dielectric (o,+) and sand (--)                            (dotted), AD fill (dashed)  

 
 
A comparison was also performed in the time domain using ground penetrating radar.    Looking at Figure 6 the solid 
line indicates flat ground, the dotted is ground with a roughened surface, and the dashed line is surface filled with AD.  
The ratio that best fit the flat ground response was also 1:2 (by volume 8mm/6mm).  
 
 
      

Experiment 
 

 
Ground penetrating radar experiments are performed at GeoCenters, Inc. in Newton, MA.  An indoor wooden soil tank 
3ft x 3ft x 2ft provides a controlled testing environment.   The pulser  (Picosecond Pulse Labs, Inc., model 1000D) 
excites the GPR system with a Gaussian pulse with a center frequency of 1 GHz and a  -3dB bandwidth of 0.6 GHz.   
The transmitter and receiver are GeoCenters’ 7 3/8” TEM horn rolled edge antennas.  The rolled edge is implemented to 
minimize edge reflection, i.e. to better match the impedance of air.  A diagram of the setup is seen below in Figure 7a 
along with a photograph in Figure 7b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      
 
 
 
    Figure 7a               Figure 7b 
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The AD is placed in a conformable mesh bag and attached to a ¼” thick lossless Plexiglas (22in x 22in) to ensure a flat 
interface with the air.  The 6” diameter target used in the experiment is an anti-personnel land mine with a material 
substitute for TNT that has similar electromagnetic properties.   
 
The received signal can be modeled as follows: 
 

r(t) = d(t) + n(t) + g(t-t1) + c(t-t2) + m(t-t3) 
 
Detection is based on deciding if the signal m(t) is present or not in r(t) among the other contributions.   The targets are 
positioned below the antennas at varying depths and ground surfaces.  The direct signal d(t) is acquired by storing an air 
shot on the oscilloscope, making sure all objects that will reflect energy in the time range (a 4 ns window) of the 
experiment are removed.  This is then subtracted from all test signals.  The high frequency noise n(t) is numerically 
suppressed using an FIR low-pass filter6 with a cutoff frequency ωn = 0.06.  The flat ground signal g(t) is a density-
dependent version of the impulse that varies in delay and amplitude according to how the soil is packed (assuming that  
the moisture content is constant over a test period).  The clutter c(t) is dependent on the surface roughness and thus will 
vary in unpredictable ways.  This distorts the return from the mine, m(t), which, like g(t), is also an attenuated and 
delayed version of the impulse.  
 
The ground signal is removed by first obtaining a reference flat ground, no target signal.  The permittivity and 
conductivity of the soil will change with density, which affects the amplitude of the ground impulse.  Also the nominal 
distance between the antennas and the ground changes slightly throughout the test, affecting delay.  As a result, a series 
of flat ground signals are acquired.  The signals are aligned and scaled according to the average time reference and 
average amplitude of their peak values (the reflection of the impulse from the ground).  These normalized signals are 
then averaged to produce a single background reference signal that will be compared to subsequent test signals. 
 
This process is also performed to produce one background reference signal using the artificial dielectric.  This signal is 
compared to test signals that use the AD.     
 
Figure 8a shows samples of flat, no target signals (dotted) with the average background reference overlaid (solid).  
Figure 8b is the same for the AD background.  The first peak in Figure 8b is the impulse return from the top of the AD. 
The second peak is the addition of the first pulse shape and the return from the AD/soil interface (resulting from the 
dielectric constants not being perfectly matched). 

 

              Figure 8a:  Various flat ground reference signals (dotted);                  Figure 8b:  Using the AD 
    averaged background reference (solid) 
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A new test signal will be compared to the background signal.  To account for soil density and height changes, the test 
signal is aligned to the background signal’s peak amplitude.  If clutter from the ground roughness is very low, 
subtracting the background reference should reveal a target reflection.  Using the artificial dielectric we will be able to 
reduce this clutter enough on moderately rough surfaces to still yield a correct decision.  The following figures illustrate 
the effect of two different rough ground cases.   We see in Figure 9a the variation in the received rough ground signals 
(dashed) compared to the flat ground reference (solid).  Signals of the same rough ground cases were compared to the 
reference using the AD and a significant reduction in variance is noted.  The markers on the plots indicate the time range 
of interest, i.e. when a target reflection will show up if it is buried from 2 cm to 10 cm. 
 

  
 Figure 9a:  Flat background reference (solid), two            Figure 9b:  Using the AD reduces the variance of rough 
    different rough ground signals (dashed)                ground signals compared to the reference  
 
 
 
The cross correlation of the flat reference signal with the test signal, normalized to the square root of its energy can be 
found as follows7:   
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The maximum of the flat reference autocorrelation normalized by its energy will be unity.  The difference between the 
maximum value of Cfi(m)  and 1 is a good metric to use for characterizing how well the rough ground test signal 
resembles the flat reference, i.e. the error between the reference and test signals.  The average error when using the AD 
for 9 signals of varying ground roughness is found to be 0.0096, with a variance of 7.365x10-5.  When not using the 
dielectric the average is 0.0222 with a variance of 1.533x10-4.  The lower mean value and variance of this metric 
illustrates an improvement in the stability of the test signals when using the artificial dielectric.  Thus the probability of 
detecting a slight signal variation due to a small, plastic object is enhanced.       
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A simple method for detection without the AD is given in the following diagram. 
 
 
 
       
 
 
  

 

Figure 10:  The impulse from a metal target is visible after background subtraction       
 
 
The plots in Figure 10 show an example detecting a subsurface object using this method.  The object is a metal sphere 
buried 5cm below flat ground.  The average background signal (solid) is seen in the first two plots on the left along with 
the test signal (dashed).  After scaling and aligning the background signal is subtracted, revealing an version of the 
impulse scattered from the object (scaled in the plot on the right).  
 
The method becomes less effective when the object’s dielectric constant is similar to the soil and when the ground 
surface is not flat.  In Figure 11a we see a signal with a buried dielectric target (dashed) in flat ground, a buried target 
signal in rough ground (dotted) and a no-target signal in rough ground (dash-dot).   Subtraction in Figure 11b reveals the 
target in flat ground but a determination of the same target in rough ground is much more challenging.  Furthermore the 
no-taget and target signals in rough ground are difficiult to distingquish.  In this case the chance of a false alarm is 
increased. 
 

 
Figure 11a:  Target signals in flat (dashed) and rough                    Figure 11b: Subtraction shows the plastic target at 2.75 ns  

                  (dotted) ground;  no-target signal in               in flat ground (dashed), but roughness obscures  
                  rough (dash-dot); background (solid)              the target (dotted) and no-target (dash-dot) 
                   signals     
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The artificial dielectric was used to detect the same target 
buried 5cm.  Figure 12 shows the AD background reference 
(solid) with target signals in flat (dashed) and the same 
previous rough (dotted) ground case.  We see here that both 
target signals are stable in delay and amplitude until the 
object influences the reflection (at the arrow).  The clutter 
has been reduced enough to positivley identify the mine.  
 
Using an algorithm that looks for shape differences between 
the test signal and the background signal, and setting a 
reasonable threhhold level for detection the presnece of a 6” 
AP mine was found in flat and ground and two different 
rough ground cases  
                                                                                                                                                         
 

           Figure 12:  AD target signals; flat (dashed) and  
            rough (dotted) compare similarly to the 
            reference 
 
Figure 13 displays the result of this algorithm with the 
object seen at 2.6 ns in flat (solid) and in rough ground 
(dashed and dotted).   A test signal without a target (dash-
dot) is also displayed to show a case where a false alarm 
can be avoided.   
 
The procedure was tried for mines at various depths and 
preliminary assumptions show that the artificial dielectric 
offers improvement during cases of rough ground, 
especially at the more shallow target depths (2 cm – 5cm)  
 
 
 
 
  

   Figure 14:  Target detected in flat ground (solid) and  
                                                 two rough ground cases (dashed, dotted); 
                                  a no-target response is also visible (dash-dot)  

 
 

Conclusions  
 
The artificial dielectric placed over the ground area to be tested has proven to facilitate the mine detection process.  This 
is true for several cases examined with the 6” diameter plastic AP mine buried between 2cm and 8cm in various rough 
ground interfaces.  Even for flat ground it appears that the AD reduces whatever clutter is added to the received signal 
due to soil density changes.   
 
As more data is collected one might expect improvements in the detection algorithm as the reduced clutter is better 
characterized and removed.  Also receiver operating characteris tics can be developed to optimize the probability of 
detection for a given false alarm rate.   
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Abstract 

Scattering of electromagnetic waves from multilayered random rough surfaces is crucial for 
subsurface sensing applications. A multiple interaction method of moments (MoM) model is used in this 
work to analyze scattering from two-dimensional multilayered random rough ground (3-D scattering 
problem) especially when the underground layer is deeply buried under the air/ground interface. The 
presented model removes a barrier and enables the application of the Steepest Descent Fast Multipole 
Method (SDFMM) to certain 3-D non-quasi-planar structures. The conventional SDFMM has been used 
to analyze electromagnetic wave scattering from quasi-planar structures where the scatterer’s height is a 
fraction of a free-space wavelength. The presented model is based on multiple interactions mechanism 
between the air/ground interface and the buried underground layer. The basic idea of the proposed 
multiple scattering model is to decompose the non-quasi-planar multilayered ground into two quasi-planar 
scatterers where the conventional SDFMM can be applied separately to each one. The interactions 
between the sub-quasi-planar scatterers are calculated using the electromagnetic vector potentials near-
field expressions. This model is tested and validated with the MoM on a variety of geometries. The results 
show that the strongest signature of the buried scatterer is mainly due to the first multiple interaction 
mechanism (ground-object-ground) while the contributions from repeating this mechanism become 
insignificant even for lossless and/or slightly lossy underground. 

 
I. INTRODUCTION 

Electromagnetic subsurface sensing has recently become an attractive research area due to it wide 
civil and defense applications. There are numerous unfound buried objects; these objects could be, but are 
not limited to, the location of underground water, gas and/or water lines, identifying cracks in asphalt 
roads, cancerous tumors in the human breast, plastic anti-personnel or metallic anti-tank mines, or the 
location of hazardous environmental wastes, etc. In reality, these complicated scattering problems have 
three-dimensions (x, y and z) that cannot be solved in closed forms but rather can be solved using 
computational techniques, in particular using fast algorithms. Few fast computational techniques were 
developed in the literature, e.g., the Fast Multipole Method (FMM) [1]-[3], the Steepest Descent Fast 
Multipole Method (SDFMM) [4]-[6], the Sparse Matrix/Canonical Grid Method (SMCG) [7], [8], and the 
Spectral Algorithm combined with the Forward-Backward Method (FB/NSA) [9]. These fast techniques 
have shown superiority regarding the CPU time and memory requirements over the conventional methods 
(e.g. the method of moment (MoM), the finite-difference methods (FD) and the finite-element method 
(FEM). Recently, the SDFMM has been adopted to analyze the scattering from penetrable shallow objects 
buried under two-dimensional random rough ground [10]-[11]. The SDFMM has the great advantage of 
O(N) computational complexity for both the CPU time and computer memory, where N is the total 
number of electric and magnetic surface current unknowns. However, there is a barrier that prohibits 
using the SDFMM in some potential applications; the scatterer should have a quasi-planar structure with 
total height equal to a fraction of a free-space wavelength. On the other hand, there are several potential 
geometries that have non-quasi-planar structures such as (i) multilayered ground where the burial depth of 
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the underground layer is larger than the wavelength [12], (ii) a non-quasi-planar object buried under the 
quasi-planar rough ground, (iii) utility cylindrical pipes deeply buried under the rough ground, etc.  

The basic idea of the multiple scattering model is to decompose a non-quasi-planar structure into two 
quasi-planar scatterers as shown in Fig. 1 where the conventional SDFMM can be applied separately to 
each one. The interactions between the sub-quasi-planar scatterers, e.g. between the ground and the buried 
object in Fig. 1, are calculated directly using the electromagnetic vector potential expressions for the 
electric and magnetic near-fields [13]. The proposed model sheds light on the physics involved in the 
subsurface scattering mechanism [12], [14]. In this work, we are emphasizing on (i) presenting and 
validating the multiple scattering model on a variety of geometries as shown in Fig. 2 and (ii) using the 
SDFMM in the proposed multiple scattering model for non-quasi-planar structures aiming to speed up the 
calculations by exploiting the superior O(N) computational complexity of the SDFMM. 

The proposed model algorithm will be described in Section II, numerical results are presented in 
Section III and concluding remarks are given in Section IV. 

 
II. FORMULATION 

The four integral equations describing the unknown equivalent electric and magnetic surface currents 
for the problem of a single object buried beneath two-dimensional rough ground were derived in [10]-
[11]. Upon applying Galerkin’s method for testing and using the RWG vector basis functions for 
approximating the surface currents [15], these integral equations are transformed into a set of linear 
system of equations VIZ =  given by [10]: 
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where g.gZ  is a submatrix representing interactions between elements only on the ground surface; obj.gZ  
is a submatrix representing interactions between elements on the ground surface and elements on the 
object surface; g.objZ  is a submatrix representing interactions between elements on the object surface and 

elements on the ground surface; and obj.objZ  is a submatrix representing interactions between elements 

only on the object surface. It was shown in [10] that the total matrix Z  has order of 
( ) ( )PNPN +×+ 22 , where N is the number of vector basis functions on the ground and P is the 

number of vector basis functions on the object. The factor of two is to account for both the electric and 
magnetic surface currents. Moreover, g.gZ  (and obj.objZ ) is exactly the impedance matrix obtained in the 

PMCHW integral equations [16]. The vector gV  is composed of the tested tangential incident electric 

field inc
gE  and the tested normalized magnetic field inc

gH1η  on the ground surface. The unknown 

current coefficients gI  and objI  were solved for in [10] and [11] by applying the SDFMM directly to Eq. 
1. Conversely, in this work, the multiple scattering model will be used to iteratively solve for the 
unknown current coefficients in 

( ) ( ) (2a)                                                     VIZ n
g

n
gg.g =  
( ) ( ) (2b)                                                     VIZ n

obj
n

objobj.obj =  
where n = 1, 2, 3, … is the number of iterations or the number of multiple scattering mechanisms between 
the ground and the buried object as shown in Fig. 2b. The mechanism of the multiple scattering model 
begins by calculating the incident waves from the source (transmitting antenna) on the rough ground 

)(
gV 0  with the assumption that there are no buried objects under the ground. Then the SDFMM is used to 

calculate the induced electric and magnetic surface currents on the ground as ( )0
gJ  and ( )0

gM , respectively. 
In return, these currents are used to induce incident electric and magnetic fields on the surface of the 
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buried scatterer )(
objV 1 , which are calculated directly using the near-field expressions [13]. Depending on 

the geometry of the buried object, the SDFMM or the MoM is used to calculate the induced electric and 
magnetic surface currents on the buried object, ( )1

objJ  and ( )1
objM . Finally, these currents are used to induce 

electric and magnetic fields on the ground surface as )(
gV 1  using [13], and the SDFMM can be used to 

solve for the induced elecric and magnetic currents on the ground, ( )1
gJ  and ( )1

gM , respectively. This 
completes one multiple scattering mechanism (e.g. ground-object-ground). The process is to be repeated 
till the solution of currents on the ground and on the buried object converges.  

As will be shown in the following section, a significant reduction in the CPU and memory 
requirements is anticipated upon using the multiple scattering mode where only g.gZ  and obj.objZ  are used 
in the iterative calculations while in the conventional SDFMM and/or the conventional MoM, the four 
matrices g.gZ , obj.objZ , obj.gZ  and g.objZ  are to be used. In many applications obj.gZ  and g.objZ  have the 

same order as g.gZ  and obj.objZ  as will be demonstrated in Section III. 
 

III. NUMERICAL RESULTS 

A variety of geometries represented by five examples are used in this section to test and validate the 
proposed multiple scattering model with the conventional MoM. The numerical results will present (i) the 
electric and magnetic surface currents on the ground, (ii) the electric and magnetic surface currents on the 
buried scatterer, and (iii) the scattered electric field above the ground due to just the buried scatterer (i.e., 
scatterer’s signature). In all results presented in this section, the incident wave is assumed a Gaussian 
beam tapered towards the edges of the ground [17] with horizontally polarized incident electric field (i.e., 
in the y-direction) and due to just the air/ground interface as well. The half beam width of the beam is L/5 
where the ground has dimensions LL × . 

In Example 1 shown in Fig. 2a-b, the flat ground has dimensions oo .. λ×λ 043043  with an x-directed 
horizontal cylinder of length o.b λ= 043 , radius o.a λ= 150 , and burial depth o.z λ−= 650  measured 
from its center, where oλ  is the free-space wavelength. The relative dielectric constant of the ground and 
the buried cylinder are assumed 180522 .j.r −=ε  and 00290973 .j.r −=ε , respectively. The incident 
angle in this example is 0=ϑ i . Excellent agreement between the multiple scattering model and the MoM 
for the electric and magnetic surface currents on the flat ground and on the buried cylinder is shown in 
Figs. 3a-d. For qualitative comparisons, the magnitudes of the surface currents are plotted versus the y-
direction at 0521 λ= .x  in these figures. Four multiple scattering mechanisms, as described in Fig. 2b, are 
used to obtain these results. Similar agreement is observed for results plotted versus the x-direction at 

0521 λ= .y . An insignificant error is observed in Figs. 3c and 3d that could be due to the error introduced 
in approximating the cylindrical surface with triangular patches. As shown in these figures, the presence 
of the buried cylinder caused a significant change in the initial ground currents ( )0

gJ  and ( )0
gM  only after 

the first multiple scattering mechanism. Similarly, Fig. 4a shows the convergence of the magnetic surface 
current on the upper half of the buried cylinder, plotted versus the x-direction at 0521 λ= .y , while Fig. 4b 
shows the convergence of the magnetic surface current on both the upper and lower halves of the buried 
cylinder, plotted versus the y-direction at 0521 λ= .x . The results confirm that the surface currents 
converge after only one ground-object-ground scattering mechanism, as described in Fig. 2a. 

In Example 2, the geometry is a multilayered flat ground as shown in Fig. 2c, where the ground has 
dimensions oo .. λ×λ 043043  and the underground layer has burial depth of o.z λ−= 450 . The relative 
dielectric constant of the ground and the underground layers are assumed 180522 .j.r −=ε  and 
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290243 .j.r −=ε , respectively. The incident angle in this example is �10=ϑ i . All results show excellent 
agreement with the MoM (not presented here). 

In Example 3, the geometry is a multilayered rough ground with flat underground layer as shown in 
Fig. 2d. The ground dimensions, the burial depth of underground layer, the relative dielectric constants, 
and the incident angle are the same as in example 2. The roughness parameters of the upper rough 
air/ground interface are given by the rms height and the correlation length of the random rough surface as 

0080 λ=σ .  and 050 λ= .lc , respectively. All comparisons with the MoM strongly validate the multiple 
scattering model used in this example similar to previous examples (not presented here). 

In Example 4, the geometry is flat ground with a buried sphere as shown in Fig. 2e where the 
dimensions of the ground are oo .. λ×λ 084084 . The sphere has radius of o.a λ= 50  and is buried at 

o.z λ−= 750  measured from its center. The relative dielectric constants of the ground and the buried 
sphere are assumed 180522 .j.r −=ε  and 0290543 .j.r −=ε , respectively. The incident angle in this 
example is 0=ϑ i . In Figs. 5a and 5b, the magnitude of magnetic surface current on the air/ground 
interface is plotted versus the x-direction at 0042 λ= .y . Three solutions are presented in Figs. 5a; (i) 
solution obtained using the conventional MoM for the whole scatterer (hollow circles), (ii) solution 
obtained by employing the MoM in the multiple scattering model (solid circle), (iii) solution obtained by 
employing the SDFMM in the multiple scattering model (+ symbol). The results show excellent 
agreement between these three methods. Moreover, validations based on the scattered electric fields 
observed above the ground at 050 λ= .z  and due just to the buried sphere are shown in Fig 5b where 
results are plotted versus the x-direction at 0042 λ= .y . Excellent agreement between the three methods is 
also observed in these figures. However a slight difference between the multiple scattering model and the 
conventional MoM results is observed in Fig. 5b. This slight difference can be attributed due to the 
definition of the scattered fields due to just the buried object in both methods. In the conventional MoM 
method we calculated the total scattered electric fields twice; once with the buried sphere and once 
without the buried sphere, then the results are subtracted from each other using complex vectors [10]-
[11]. On the other hand, for the multiple scattering model we use the obtained surface electric and 
magnetic currents on the ground due to only the presence of the sphere, i.e., ( )1

gJ + ( )2
gJ + ( )3

gJ  and 
( )1
gM + ( )2

gM + ( )3
gM , and use the near-field expression in [13] to compute the scattered electric fields. 

Notice that the quantities ( )0
gJ  and ( )0

gM  represent the surface currents on the ground with the assumption 
that there is no buried objects, i.e., only the ground is present and are not used to calculate the signature of 
the buried sphere.  

In Example 5, the geometry is a multilayered rough ground as shown in Fig. 2f where the dimensions 
of the ground and the incident angle are the same as in example 4. The underground rough layer has a 
burial depth of o.z λ−= 950  measured from its mean plane to the rough air/ground interface mean plane. 
The relative dielectric constants of the ground and the underground layer are assumed 180522 .j.r −=ε  
and 20733 .j.r −=ε , respectively. The roughness parameters of the air/ground interface are 01 060 λ=σ .  
and 01 50 λ= .lc  while they are 02 050 λ=σ .  and 02 40 λ= .lc  for the underground layer. In Fig. 5a, the 
magnitudes of the magnetic surface currents on both the rough air/ground interface and the underground 
rough layer are plotted versus the y-direction at 0042 λ= .x . The results show an excellent validation 
between the model using the MoM and the model using the SDFMM. In Fig. 5b, the scattered electric 
fields observed above the ground at o.z λ= 50  are plotted versus the y-direction at 0042 λ= .x . The 
scattered fields due to just the rough air/ground interface are calculated using only the surface currents 

( )0
gJ  and ( )0

gM  while the scattered fields due to just the underground layer are calculated using only the 
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surface currents ( )1
gJ + ( )2

gJ + ( )3
gJ  and ( )1

gM + ( )2
gM + ( )3

gM . As expected, the results in Fig. 5b show that the 
signature of the air/ground interface is significantly larger than that of the underground layer. Moreover, 
the results of this example clearly confirm the previous observations that the solution converges after the 
first multiple scattering mechanism (i.e., air/ground interface-underground layer-air/ground interface).  

It should be mentioned that the relative residual error used in the TFQMR solver is 10-5 in all results 
of this section. For efficient results, the multiple scattering model should not be used when the buried 
objects are very shallow due to the inaccuracy of the near-field expressions in [13], but instead, the 
complete SDFMM, which has been successfully used in analyzing these structures [10]-[11], should be 
used.  

 
IV. CONCLUSIONS 

A new multiple scattering model to compute the signature of non-shallow objects buried under the 
rough ground (3-D scattering problem) is presented and validated in this work. The advantages of this 
model is (i) superior computational requirements than using the conventional MoM especially when the 
SDFMM is employed in the model and (ii) removing a barrier in the conventional SDFMM since it 
should be only applied to quasi-planar structures. It has been shown in this work that upon using the 
proposed multiple scattering model, certain potential non-quasi-planar structures, e.g., three multilayered 
ground, are decomposed into two quasi-planar layers where the SDFMM is separately applied. 
Interestingly, all obtained results show that both the electric and magnetic surface current solutions 
converge after only a single multiple scattering mechanism (i.e., from air/ground interface to buried 
object and then back to air/ground interface). This assures that no extra CPU time is needed to achieve the 
correct solutions. 
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Figure 1.  Decomposition of non-quasi-planar structure into two quasi-planar structures showing their interactions. 
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Figure 2.  Multiple scattering mechanism between (a) the air/ground interface and a buried horizontal
cylinder showing one ground-object-ground mechanism, i.e., n = 1 (b) the same as in (a) but showing four
ground-object-ground mechanisms, i.e., n = 4, (c) the air/ground flat interface and an underground flat
layer, (d) the air/ground rough interface and an underground flat layer, (e) the flat air/ground interface and
a buried sphere, (f) the air/ground rough interface and an underground rough layer. 
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Figure 3.  Magnitude of surface current on the flat air/ground interface shown at 0521 λ= .x  for (a) magnetic 

current M , (b) electric current J . Comparison between the proposed model and the conventional MoM. Data are 

for Example 1 (Figs.2a and b).  
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Figure 3.  Magnitude of surface current on the buried cylider shown at 0521 λ= .x  for (c) magnetic current M , (d) 

electric current J . Comparison between the proposed model and the conventional MoM. Data are for example 1. 
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Figure 4.  Convergence of magnetic surface current solution on (a) the upper half of the buried cylinder 
shown at 0521 λ= .y , (b) on the buried cylinder shown at 0521 λ= .x . Data are for Example 1. 
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Figure 5. (a) Magnitude of magnetic surface current M  on the flat air/ground interface, (b) Magnitude of scattered 

electric field E due to just the buried sphere observed at 050 λ= .z  above the ground. All are shown at 

0042 λ= .y . Comparison between the conventional MoM, the proposed model using both the MoM and the 
SDFMM. Data are for Example 4 (Fig. 2e). 
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Figure 6.  (a) Magnitude of magnetic surface current M  on (i) the rough air/ground interface and (ii) the 

underground rough layer buried at 0950 λ−= .z , (b)  Magnitude of scattered electric field E  at 050 λ= .z  due to 

(i) just the rough air/ground interface (ii) just the rough underground layer. Comparison between the proposed model 
using both the MoM and the SDFMM. All are shown at 0042 λ= .x . Data are for Example 5 (Fig. 2f). 
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ABSTRACT 
 
The computational solution of large-scale linear 
systems of equations necessitates the use of fast 
algorithms but is also greatly enhanced by employing 
parallelization techniques. The objective of this work is 
to demonstrate the speedup achieved by the MPI 
(Message Passing Interface) parallel implementation of 
the Steepest Descent Fast Multipole Method 
(SDFMM). Although this algorithm has already been 
optimized to take advantage of the structure of the 
physics of scattering problems, there is still the 
opportunity to speed up the calculation by dividing 
tasks into components using multiple processors and 
solve them in parallel. The SDFMM has three 
bottlenecks ordered as (1) filling the sparse impedance 
matrix associated with the near-field Method of 
Moments interactions (MoM), (2) the matrix vector 
multiplications associated with this sparse matrix (3) 
the far field interactions associated with the fast 
multipole method. The parallel implementation task is 
accomplished using a thirty-one node Intel Pentium 
Beowulf cluster and is also validated on a 4-processor 
Alpha workstation. The Beowulf cluster consists of 
thirty-one nodes of 350MHz Intel Pentium IIs with 256 
MB of RAM and one node of a 4x450MHz Intel 
Pentium II Xeon shared memory processor with 2GB 
of RAM with all nodes connected to a 100 BaseTX 
Ethernet network. The Alpha workstation has a 
maximum of four 667MHz processors. Our numerical 
results show significant linear speedup in filling the 
sparse impedance matrix. Using the 32-processors on 
the Beowulf cluster lead to achieve a 7.2 overall 
speedup while a 2.5 overall speedup is gained using the 
4-processors on the Alpha workstation. 
 
INTRODUCTION 
 
The calculation of the scattered electric and magnetic 
fields from a three-dimensional problem using the 
conventional techniques (e.g., the Method of Moments  
 

 
 
(MoM), the Finite Element Method (FEM), or the 
Finite Differences in the time or frequency domains 
(FDTD or FDFD)) is a computationally intensive 
undertaking, especially for soils having a large 
dielectric constant. Moreover, the computational 
complexity of the problem dramatically increases upon 
inserting penetrable objects under the rough ground. 
Therefore, there was a necessity to use the fast 
computational algorithms to deal with this complex 
scenario. There exist few fast algorithms in the 
literature: the Fast Multipole Method (FMM) [1]-[3]; 
the SDFMM [4]-[6]; and the Sparse Matrix/Canonical 
Grid Method (SMCG) [7]-[8]. Basically, the standard 
FMM, the SDFMM, and the SMCG fast methods have 
the great advantage of converting the dense matrix 
obtained using the MoM into a sparse matrix leading to 
a dramatic reduction in the CPU time and computer 
memory requirements. In addition the fast algorithm, 
the Spectral Algorithm combined with the Forward-
Backward Method (FB/NSA) [9], has shown to be an 
efficient iterative MoM for 3-D scattering problems.  
 
In this work we adopted the SDFMM due to its 
superiority over the other fast algorithms in treating 
quasi-planar structures. The SDFMM is an integral 
equation-based fast algorithm that is a hybridization of 
(1) the Method of Moments (MoM), (2) the Fast 
Multipole Method (FMM), (3) the Steepest Descent 
Integration path (SDP) [4]-[6]. Recently the SDFMM 
has been successfully implemented to handle 
subsurface sensing applications, in particular, the 
scattering from a landmine modeled as a PEC and/or 
penetrable spheroid buried under a two dimensional 
randomly rough ground [10]-[11]. The SDFMM has 
computational complexity for the CPU time and for the 
memory requirement equal to only O(N) per iteration 
versus O(N2) for the MoM, where N is the total number 
of the unknowns [4]-[6]. The reduced complexity of 
the SDFMM over several other computational 
electromagnetics techniques has helped in achieving a 



fast and successful running for the Monte Carlo 
simulations [11]. However, the Monte Carlo sample 
needs in some cases to be greatly increased, e.g. when 
the ground random roughness increases the size of the 
Monte Carlo sample needs to be increased to achieve a 
converging solution. This could dramatically increase 
the required run time, especially when the dielectric 
constant of the ground is large and/or the penetrable 
buried object is electrically large. This necessitates 
more acceleration to the SDFMM computer code by 
using the MPI parallel implementation [8],[12],[13]. 
 
In this work, we used the MPI library for the parallel 
implementation of the SDFMM code [14]-[15]. The 
advantage of using the Beowulf cluster is that the 
system can be completely dedicated to the 
parallelization task, which is demonstrated in this work 
by executing small-scale cases due to memory 
limitations. Our emphasis is to demonstrate the overall 
speedup that can be achieved using the thirty-two 
processors. Porting the parallelized code to the national 
supercomputers, where hundreds of processors and 
adequate RAM are available, will potentially facilitate 
the computations of large-scale problems. 

PARALLELIZATION METHODOLOGY 
 
The SDFMM makes use of the equivalence theorem to 
calculate the electric and magnetic fields inside and 
outside a 3-D penetrable object buried under the rough 
surface interface [10]-[11]. The 3-D arbitrary object is 
modeled by scatterer 3R  that is immersed in scatterer 

2R  which represents the rough ground which is 
immersed in the free space region represented by 1R . 
The three regions, 1R , 2R  and 3R  have permittivity 
and permeability given by 1ε  and 1µ , 2ε  and 2µ , and 

3ε  and 3µ , respectively, representing free space, soil 
medium and penetrable buried object. There are two 
final sets of unknown equivalent electric and magnetic 
surface currents in the following formulations. They 
are 11, MJ  on the exterior of the rough ground 
interface between 1R  and 2R , and 33 , MJ  on the 
exterior of the buried object interface between 2R  and 

3R . Upon applying the boundary conditions, 
continuity of tangential components of the electric and 
magnetic fields on these interfaces, new integral 
equation formulations are obtained as [10]-[11]:
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In which the integro-differential operators iL  and iK , 
i =1, 2, 3 and 4, are given in detail in [11]. In Eqs. 1a-d, 
the unknown surface electric and magnetic currents are 

1J , 1M , 3J , and 3M , while the tangential 
components of the incident electric and magnetic fields 
on the rough surface are given by ( )

.tang
rE inc  and 

( )
.tang

rH inc , respectively. The intrinsic impedance in 

each region is iii εµ=η / , i=1, 2, and 3, where the 
dielectric permittivity and permeability in each region 
are iε  and iµ , respectively. The equivalent electric 
and magnetic currents are approximated using the Rao, 
Wilton and Glisson (RWG) vector basis functions [16]-
[17]. Upon applying Galerkin’s method for testing and 
substituting the RWG surface current approximations  

in 1a-d, the original integral equations are transformed 
into a set of linear system of equations given by [10]-
[11]: 

(2a)                            VIZ =  

The impedance matrix Z  has order of 
( ) ( )PNPN +×+ 22 . The vector V  is a matrix of 

order ( ) 12 ×+ PN  and composed of a submatrix of the 

tested tangential incident electric field incE  of order 
1×N  and a submatrix of the tested normalized 

magnetic field incH1η  of order 1×N , and a null 
submatrix of order 12 ×P . The quantities N and P are 
the numbers of basis functions (total number of edges 
of the triangular patches) on the surfaces of the rough 
ground and the buried object, respectively. If the MoM  



is used to formulate and solve Eq. (2a), the 
computation and storage of all the elements of the 
matrix Z  are required. Furthermore, if an iterative 
solution process is used, matrix-vector products 
involving multiplying Z  by a vector I  are required. 
However, upon using the SDFMM [4]-[6],[10],[11] the 
matrix Z  becomes sparse and the system of equations 
in (2a) can be written as: 

(2b)                      VIZIZ =′′+′  

where the matrix Z ′  is a sparse matrix whose non-zero 
elements need to be calculated and stored using the 
conventional MoM and then multiplying them by the 
vector I  (near field interactions) while the matrix-
vector multiply IZ  ′′  is computed in one step without 
calculating or storing any elements of the matrix Z ′′ . 
This was achieved by hybridizing the FMM with the 
SDP leading to the SDFMM [4]-[6]. There are three 
bottlenecks in the SDFMM computer code: (i) the 
subroutines that calculate the elements of the sparse 
matrix Z ′ ; (ii) the subroutine that executes the matrix 
vector multiplication IZ  ′  in every iteration; (iii) the 
subroutine that executes the fast multipole method for 

IZ  ′′  (far-field fast multipole interactions). These three 
bottlenecks in the serial SDFMM computer code are 
separately parallelized in the current work as pictorially 
described in Fig. 1 [18]. 
 
The key data structure of bottleneck (i) is the sparse 
matrix Z ′  which is originally stored in the serial 
SDFMM computer code as blocks of nonzero 
elements. These elements represent the near-field 
interactions in the conventional MoM. The 
computations of these blocks are independent and 
therefore are parallelized in a straightforward manner 
by distributing them among all processors with no 
additional communication. When this routine is 
parallelized we achieved almost a linear speedup for 
bottleneck (i) on 32 processors. It is necessary to 
mention that the elements of Z ′  remain distributed 
among the processors at the end of parallelizing 
bottleneck (i). 
 
In the second bottleneck (ii) in the serial SDFMM 
computer code, the matrix-vector multiplication IZ ′  
is executed every iteration of the transpose-free quasi-
minimal residual (TFQMR) iterative solver [19]. This 
multiplication is parallelized by distributing the vector 
I  to all processors similar to the elements of the sparse 
matrix Z ′  in bottleneck (i). Therefore, the 
multiplication proceeds in parallel without additional 
communications and the vector components that result 

from the multiplication are then distributed to all 
processors. 
 
In the third bottleneck (iii) in the serial SDFMM 
computer code, the fast multipole part for the matrix 
vector multiplication represented by IZ  ′′  in (2b) is 
computed for every iteration of the TFQMR iterative 
solver. This part of the serial code includes the 
computations of the Green’s function approximations 
for the air and for the medium (e.g. soil). These two 
approximations of the Green’s function are 
independent and are represented in the serial computer 
code by two separate subroutines; therefore they are 
executed concurrently as a first parallelization phase of 
bottleneck (iii). The load balance between these two 
subroutines is achieved using a detailed performance 
model based on the serial execution time of each 
routine, the time required for collective communication 
operations, and the amount of communication overhead 
needed. Moreover, in the serial computer code each 
one of these two subroutines includes all the multi-
level FMM computations such as the inhomogeneous 
plane wave expansions and the dipole interactions at 
the finest level (aggregation), all interactions going up 
the tree, all the multi-level translation operations, all 
interactions going down the tree and finally the 
disaggregation process at the finest level which 
concludes the far-field interactions producing IZ ′′  
[1]-[6]. As a second phase of parallelizing bottleneck 
(iii), each Green’s function approximation subroutine is 
parallelized but only at the finest level. In this work, no 
parallelization was conducted for the multi-level 
portion in these subroutines due to the existing 
complex interdependencies in the serial computer code. 
More parallelization future work is needed for this part. 
 
NUMERICAL RESULTS 
 
We evaluated the parallel implementation of the 
SDFMM computer code on a 32-node Intel Pentium-
based Beowulf cluster. Thirty one nodes of the 
Beowulf cluster are 350MHz Intel Pentium IIs with 
256 MB of RAM in addition to one node of a 
4x450MHz Intel Pentium II Xeon shared memory 
processor with 2GB of RAM. The nodes are connected 
to a 100 BaseTX Ethernet network and they use the 
SuSE 6.1 operating system with Linux kernel 2.2.13, 
and the MPICH 1.2.1 implementation of the MPI 
library. Moreover, we tested the parallelized code on a 
4-node shared memory Compaq Alpha-based 
workstation (667Mhz Alpha 21264) of 16GB total 
RAM. The processor uses the UNIX OSF/1 V5.1 
operating system with the MPICH 1.1.2 MPI library. 
Our benchmark includes three small-scale cases 
executed on the 256MB Intel cluster, and in addition 



one moderate-scale case that is executed on the Alpha 
workstation. To evaluate the speedup achieved by the 
parallel code, we considered a range of values for the 
ground roughness and/or for the buried object. All 
results obtained by executing the parallel version of the 
code are validated with those computed by the serial 
version of the code [10]-[11]. In all computations a 10-3 
tolerance is assumed for the TFQMR iterative solver 
[19]. The scattering problem configurations used in 
[11] are employed here, but for only one rough surface 
realization as shown in Fig. 2. The rough ground is 
characterized by Gaussian statistics with zero mean for 
the height, thus the roughness parameters can be 
described by the rms height σ  and the correlation 
length cl . In all cases, the relative dielectric constant of 
the ground soil and the penetrable buried object (anti-
personnel mine) are 18.05.2 jr −=ε  and 

0092.09.2 jr −=ε , respectively. A Gaussian beam 
with horizontal polarization is employed for the 
incident waves at normal incidence for Cases 1-3 and 
at 10o from normal direction for Case 4 [11]. 
 
In the small-scale Cases 1-3, the dimensions of the 
modeled ground are assumed to be 00 33 λ×λ  leading 
to almost 8,800 of total number of surface current 
unknowns, while these dimensions are increased to be 

00 88 λ×λ for the moderate-scale Case 4 leading to 
60,320 unknowns, where 0λ  is the free space 
wavelength. In Case 1, the scattered electric fields from 
a rough ground alone (no buried target) with 

03.0 λ=σ and 05.0 λ=cl  are calculated at height of 

02.1 λ  above the ground. In Case 2, the scattered 
electric fields from a rough ground with a buried 
penetrable sphere are calculated at height of 05.0 λ  
above the ground. The ground roughness is assumed to 
be 01.0 λ=σ  and 05.0 λ=cl  and the sphere has radius 
of 016.0 λ=a  with burial depth equal to 032.0 λ−=z  
measured from its center to the mean plane of the 
ground. The sphere in Case 2 is replaced by a spheroid 
of dimensions 03.0 λ=a  and 015.0 λ=b  in Case 3 
that is buried at 03.0 λ−=z  with ground roughness 
equal to 004.0 λ=σ  and 05.0 λ=cl . 
 
Both the overall speedup and the initial speedup (filling 
matrix Z ′ ) are plotted versus the number of processors 
for Cases 1, 2 and 3 in Figs. 3a, 3b and 3c, 
respectively. The speedup is defined as the ratio of the 
serial runtime to the parallel runtime. The results in 
these figures show the significant speedup in the initial 
time (set up) that is consumed to fill the sparse matrix 
Z ′  as explained in Section II. This initial speedup 

dramatically affects the overall speedup of the code as 
shown in these figures. In addition, the results show 
that almost the same overall speedup can be achieved 
by employing only twelve instead of thirty-two 
processors. 
 
The efficiency for a given number of processors is 
defined as the ratio of the speedup to the number of 
processors. In each case, the peak speedup is achieved 
when running on 32 processors, where for case 1, the 
peak speedup is 7.1 as shown in Fig. 3a, with a 
reduction in runtime from 99 minutes on one processor 
to 14 minutes on 32 processors. For Case 2, the peak 
speedup is 6.2 as shown in Fig. 3b, with a reduction in 
runtime from 90 minutes to 14 minutes while for Case 
3, the peak speedup is 7.2 as shown in Fig. 3c, with a 
reduction in runtime from 88 minutes to 12 minutes. 
Over these three cases, the average speedup on 32 
processors is 6.8, giving an efficiency of 0.21. Based 
on the serial runtimes, 88% of the code is executed in 
parallel. Therefore by Amdahl's Law [20], the peak 
speedup achievable is 8.3. We conclude that 
communication overhead and load imbalance among 
the processors account for the reduction in speedup 
from 8.3 to 6.8. An interesting comparison between the 
speedup achieved in each one of the bottlenecks (i)-(iii) 
mentioned in Section II, is shown in Fig. 4. These 
results show that the matrix-vector multiplication IZ ′  
(that is the bottleneck (ii)) governs the overall speedup 
of the parallelized computer code. 
 
In the second set of experiments, we solved the 
moderate-scale problem of Case 4 (60,320 unknowns) 
on the Alpha SMP using all four available processors. 
The penetrable spheroid of dimensions 03.0 λ=a  and 

015.0 λ=b  is buried at 03.0 λ−=z  under the 

00 88 λ×λ  rough ground with 004.0 λ=σ  and 

05.0 λ=cl . The magnitude of the total scattered 
electric field from the ground with the buried target is 
shown in Fig. 5. The magnitude of the scattered electric 
fields for just the buried spheroid is computed by 
subtracting the return from the rough ground using 
complex vector representation from the total return 
from the ground with the buried target [10]-[11]. The 
output is shown in Fig. 5b. The results of Fig. 5a and 
5b clearly demonstrate that the signature of the buried 
plastic landmine is relatively small compared with the 
return from the ground which is considered a major 
source of clutter in landmine detection application. 
Moreover, the distortion observed in Fig. 5b is due to 
the roughness of the ground which is modeled here as 
only one random rough surface realization, however 
the Monte Carlo simulations case was presented in 
[11]. The serial version took 96 minutes to run this case 



while the parallel version took 37 minutes, giving a 
speedup of 2.5 and an efficiency of 0.63. The predicted 
peak speedup on the four processors is 2.9. This 
implies that executing the parallel code on the 4-Alpha 
667MHz processor gives a remarkable reduced 
absolute runtime for this moderate-scale case. This 
achievement can be exploited to execute large-scale 

scattering problems as mentioned in Section II. For the 
memory requirements, the serial version of the code 
requires 950MB of RAM while the parallel version 
requires 1154MB of RAM distributed over the four 
processors as 288, 290, 289 and 287MB, respectively. 
Table I summarizes the parameters and output results 
for all cases presented in this section. 
 

Table I Overall speedup 
 

Case 
# 

Number of 
Unknowns 

σσσσ Object System Number of 
Processors 

Serial/Par. 
time (min.) 

Speedup 
(overall) 

1 8,800 0.3λo None Cluster 32 99/14 7.1 
2 8,800 0.1λo Sphere Cluster 32 90/14 6.2 
3 8,800 0.04λo Spheroid Cluster 32 88/12 7.2 
4 60,320 0.04λo Spheroid Alpha Server 4 96/37 2.5 

 
 

The results described in this section demonstrate that 
by implementing the fine grained parallelism, we have 
achieved good speedups when using a single rough 
surface realization (one run of the code). This 
achievement is suitable for some subsurface scattering 
configurations where we may need to obtain multiple 
views of a target buried under the same rough surface 
realization [10]. This requires running the code several 
times. However, the current speedup is not suitable 
when the number of rough surface realizations is much 
larger than the number of available processors, e.g. 
Monte Carlo simulations, due to the saturation occurs 
in the speedup of the second and third bottlenecks. 
 
CONCLUSIONS 
 
Good overall speedup has been achieved as the 
SDFMM computer code is parallelized using the MPI 
library. The linear speedup obtained for the first 
bottleneck associated with filling the sparse impedance 
matrix is significant. Sensible speedups are obtained 
for the second and third bottlenecks associated with the 
matrix vector multiplication in the near-field and the 
far-field FMM approximations, respectively. However, 
the later speedups saturate upon using only 12 
processors out of the 32 nodes available on the system. 
This saturation affects the overall speedup of the 
computer code and limits its application. More 
parallelization work is needed to enhance the speedup 
to be used for large Monte Carlo simulations. 
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Fig. 1. Structure of parallelized SDFMM showing major computational tasks and their interrelation. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Cross section of the object buried under the rough ground (3-D problem). 
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Fig. 3. Speedup of the Beowulf cluster: (a) Case 1, target-free rough ground, (b) Case 2, penetrable sphere buried under 
moderately rough ground surface, (c) Case 3, penetrable spheroid buried under slightly rough ground surface. 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 4. Performance improvement for each of the separate component tasks and overall speedup of the SDFMM 
algorithm, as a function of the number processors in the Beowulf cluster.  
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Fig. 5 The near electric field scattered above the rough ground at 05.0 λ=z  for the spheroid of Case 4 ( 03.0 λ=a , 

015.0 λ=b , buried at 03.0 λ−=z  in conductive clay loam soil), computed using the 4-processor Alpha Server: (a) 
the rough ground with the buried spheroid (total field), (b) just the spheroid obtained by subtraction. 
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ABSTRACT 
 

The scattering of electromagnetic waves from a penetrable shallow object buried beneath 2-D 

multilayered random rough surface is presented. A rigorous electromagnetic model has been 

developed for scattering from inhomogeneous rough ground surfaces that is based on the 

classical equivalence theorem and the method of moments (MoM). The model is significantly 

accelerated by implementing the Steepest Descent Fast Multipole Method (SDFMM). Four 

homogeneous regions are involved in this application; air, dielectric object, upper dry-soil layer 

and lower wet-soil layer. Numerical results for normalized radar cross sections (RCS) are 

presented for a variety of lossy and lossless multilayered ground, incident angles, thickness of 

upper-layer, and incident wave polarization. The results clearly demonstrate the considerable 

effect of both the thickness and the dielectric constant of the upper-layer relative to that of the 

lower-layer on the scattered waves. 

I. INTRODUCTION 

The electromagnetic sensing of buried objects in the presence of a random rough interface is 

a crucial step for subsurface detection problems in general. An observation agreed upon by most 

theoreticians and experimentalists is that surface roughness constitutes a major source of clutter 

(i.e., noise) in the received electromagnetic signals. As a result, several researchers have 

thoroughly investigated and published works on electromagnetic scattering from one- (1-D) or 
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two-dimensional (2-D) rough surfaces (i.e., x- or x- and y-directions), e.g., [1]-[15]. These 

publications are for rough surface scattering without any buried objects. In addition, works on 

modeling electromagnetic waves from objects buried under a 1-D rough surface are published; 

e.g., [16]-[18]. Moreover, modeling and detecting objects buried beneath flat half-space surfaces 

were presented [19]-[22]. There are few published works for a single object buried beneath a 2-D 

random rough surface [23]-[26]. In addition, in an effort to simulate a landmine buried near a 

clutter object (e.g., tree root), results for sensing two penetrable objects buried beneath a 2-D 

random rough ground are presented in [27], [28]. 

However, in all work cited above, ground surface is assumed to be single layered and not 

multilayered; this is not the case in the real environment. There are few works published to 

model scattering from multilayered half space or multilayered rough surfaces without buried 

objects, [29]-[32]; while no work has yet been published on scattering from objects buried 

beneath multilayered randomly rough ground. Therefore, the objective of this work is to increase 

the efficacy of the present subsurface sensing methods by accounting for the multilayer nature of 

the rough ground. However, the computational complexity of the problem dramatically increases 

upon inserting penetrable objects under the multilayered rough interface. This complex scenario 

necessitates the use of fast computational algorithms such as the Fast Multipole Method (FMM) 

[33]-[35], the SDFMM [13],[36]-[38], the Sparse Matrix/Canonical Grid Method (SMCG) 

[23],[39] and the Spectral Algorithm combined with the Forward-Backward Method (FB/NSA) 

[40]. Recently, the SDFMM that has O(N) computational complexity where N is the number of 

surface current unknowns, has been successfully implemented for a variety of subsurface sensing 

applications [24],[26]-[28],[32],[41]. The rigorous electromagnetic model presented in [27] for 

analyzing the scattering from two dielectric objects buried under the 2-D random rough ground is 
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used in this work. The geometry of the current application is shown in Fig. 1 where a dielectric 

object is buried between the air-ground rough interface and the underground rough interface with 

burial depth H that is less than one free space wavelength. It is important to mention that the 

SDFMM was originally developed for analyzing quasi-planar 3-D structures [36], which implies 

shallow burial depth H compared with the free space wavelength. 

II. FORMULATION 

The inhomogeneous geometry considered in this work is shown in Fig. 1c and is composed 

of four different regions; the air, the ground, the first inner scatterer and the second inner 

scatterer with relative permittivity and permeability as 1ε  and 1µ , 2ε  and 2µ , 3ε  and 3µ , and 4ε  

and 4µ , respectively. The rigorous integral equation-based electromagnetic model derived in 

[27] is employed to calculate the unknown equivalent surface currents on all scatterers shown in 

Fig. 1. Upon simulating the incident waves as a carefully tapered Gaussian beam [23], [42], the 

closed scatterers can be approximated by open scatterers where the excited surface currents on 

the back of the scatterers 1S  and 3S  can be neglected as depicted in Fig. 1b. All scatterers shown 

in Fig. 1c; the air-ground rough interface, the buried object, and the underground rough interface 

are discretized into triangular patches [43],[44]. After some algebraic manipulations, the 

unknown equivalent electric and magnetic surface currents (in Fig. 1c) are 1J  and 1M  on the air-

ground interface, 3J  and 3M  on the buried object and 5J  and 5M  on the underground interface 

as included in the following six integral equations (details are presented in [27]): 
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where the intrinsic impedance is iii εµ=η / , with 4 ..., ,2 ,1=i  and jL  and jK , 6 ..., ,2 ,1=j  

are the integro-differential operators derived in [27]. The unknown electric and magnetic surface 

currents in (1) are approximated using the vector basis functions ( )rj  [43],[44] as: 
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in which k =1, 2 and 3 for i =1, 3 and 5, respectively. Substituting (2) in (1), the linear system of 

equations is obtained [27] 

(3a)                                                                            VIZ =  

The total impedance matrix Z  has order of ( ) ( )321321 22 NNNNNN ++×++ , where the 

number of current unknowns on the air/ground interface, the buried object and the underground 

interface are 12N , 22N  and 32N , respectively. The vector V  represents the tested tangential 

incident electric field incE  and the normalized magnetic field incH1η  on the air/ground interface. 

The matrix Z  is given by 
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in which the submatrices 11Z , 22Z , and 33Z  represent the self interactions on the air-ground 

interface, the buried object and the underground interface, respectively. On the other hand, the 

submatrices 12Z  (and 21Z ) and 13Z  (and 31Z ) represent the interactions between the air-ground 

interface with the buried object and with the underground interface, respectively. The 

submatrices 32Z  (and 23Z ) represent the interactions between the underground interface and the 

buried object. The SDFMM is implemented to dramatically accelerate solving for the unknown 

surface current coefficients I  in (3a) [27]. 

III. NUMERICAL RESULTS 

As discussed in Section II and pictorially described in Fig. 1, the tapered Gaussian beam is 

used to illuminate the multilayered ground surface [23], [42]. The rough surfaces are 

characterized with Gaussian statistics for the height and for the autocorrelation function [45]. In 

this section, the transpose-free quasi-minimal iterative solver (TFQMR) is used to solve (3a) 

with a tolerance range of 10-3-10-5 [46]. In all the examples presented here, only one rough 

surface realization is considered. 

For the multilayered rough ground with buried object shown in Fig. 1c, it is necessary to 

validate the SDFMM implemented for this application versus the MoM. The percentage of the 

relative norm of the error in surface currents is plotted in Fig. 2 where the vector C represents the 

electric and magnetic currents on surfaces 1S , 2S  and 3S  shown in Fig. 1b. In Fig.2a, the norm 

of the error and the computer memory requirements are plotted versus the SDFMM’s finest block 

size depicted in Fig. 1c. The scale on the left is for the relative error, and on the right is for the computer 

memory. In this work; flat/flat implies that both the air-ground and the underground interfaces are 

flat while flat/rough implies the air-ground interface is flat and the underground one is rough, 

etc. The multilayered ground in this small-scale example consists of a flat/flat with a buried oblate 
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spheroid. The two flat surfaces have dimensions of 00 96.296.2 λ×λ , the underground interface is 

buried at 05.0 λ−=z  (i.e., 05.0 λ=H  in Fig. 1c), and the oblate spheroid’s dimensions are 03.0 λ=a  

and 015.0 λ=b  with burial depth measured from its center equal to 025.0 λ−=z . The total 

number of the electric and magnetic surface currents unknowns is 16,732 ( 806622 31 == NN  

and 6002 2 =N ). The incident angles of the Gaussian beam are 0=θi  and 0=φi . The relative 

dielectric constants of the upper layer of the ground, the buried object and the lower layer are 

18.05.22 jr −=ε , 0092.09.23 jr −=ε  and 1.05.64 jr −=ε , respectively. The results show the 

monotonic decrease in the error with increasing the FMM’s finest block size. On the other hand, 

a rapid increase in the computer memory requirements, due to the multilayered nature of the 

scatterer, is clearly observed in Fig. 2a. In Fig. 2b, the relative norm of the error in ||C|| is plotted 

versus the height H of the upper layer (see Fig. 1c). The results show the trend of increasing the 

error with increasing H since the SDFMM is more efficient for quasi-planar structures. For non-

quasi-planar structures, the SDFMM multiple interaction model can be used instead of the 

complete SDFMM model implemented in the current work [47]. In this section, the SDFMM’s 

finest block has dimensions of 00 32.032.0 λ×λ . 

In the second example, the dimensions of the multilayered ground are increased to be 

00 48.648.6 λ×λ  with the same buried spheroid as before. The total number of the electric and 

magnetic surface current unknowns is 78,684 ( 3904222 31 == NN  and 6002 2 =N ). The object 

is buried at 03.0 λ−=z  while the underground layer is buried at 06.0 λ−=z . Both the air-ground 

and the underground interfaces are random rough surfaces with rms height and correlation length 

equal to 0101 5.0 ,04.0 λ=λ=σ cl  and 0202 4.0 ,03.0 λ=λ=σ cl , respectively. The normalized 
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RCS is defined in this work by ( )z
iS APEr 0

22 2/ 4 ηπ , where zA  is the footprint area and iP  is 

the incident power [31]. All RCS results in this work are presented as RCS/ 2
0λ  where 0λ  is the 

free space wavelength in meters. 

In Fig. 3a the three regions are assumed to be lossless with no buried objects with 5.62 =ε r  

and 5.24 =ε r  for Case 1 while 5.22 =ε r  and 5.64 =ε r  for Case 2. On the other hand, in Fig. 3b 

there is a spheroid buried at z = -0.3λ0 and the three regions are assumed to be lossy with 

1.05.62 jr −=ε  and 18.05.24 jr −=ε  for Case 1 and 18.05.22 jr −=ε , and 1.05.64 jr −=ε  for 

Case 2. It is assumed that 9.23 =ε r  and 0092.09.23 jr −=ε  for lossless and lossy cases, 

respectively. In Fig. 3c, the data of Fig. 3b is used but with no spheroid buried in the ground. The 

results in Figs. 3a-c are for normal incidence while in Fig. 3d they are for �10=ϑ i . The results 

of Fig. 3a show larger magnitudes for the lossless case than those for the lossy cases of Figs. 3b-

d. Moreover, in Figs. 3a-c, the results show larger magnitudes for the flat/flat Case 2 than for the 

flat/flat Case 1. This implies that when 24 rr ε>ε , the lower interface dominates the scattering 

mechanism at 06.0 λ−=H . Similar observation is shown for the lossless case when both 

interfaces are rough surfaces, however, for the lossy cases in Figs 3b and 3c, slightly larger 

magnitudes are observed for Case 1 than for Case 2. Moreover, a slight difference is observed 

between the results of Fig. 3b (no buried spheroid) and 3c (with buried spheroid) due to the small 

size of the object which agrees with previous work where a single or multiple objects were 

buried in a single layered ground [24],[26],[27]. 

The results in Fig. 4 are for a lossless rough/rough multilayered ground with the same buried 

spheroid, polarization and incident angle as in Case 1 in Fig. 3. In Fig. 4a, the norms ||C|| of the 

currents on the spheroid surface, the air-ground and the underground interfaces relative to the 
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norm of all currents ||Ctotal|| are plotted versus the height H. These quantitative results show that 

the currents on the underground interface are the largest in this example. Moreover, the currents 

on the spheroid are changing slightly with increasing height H while the currents on both the air-

ground and the underground interfaces show a trend to change only at H = 0.65λ0. Even though 

the results of Fig. 3a showed larger magnitudes for the rough/rough Case 2 than the rough/rough 

Case 1 when H = 0.6λ0, however, the results of Fig. 4b suggest that this observation could be 

changing with increasing H. The results in this example are for the HH-polarization in the 

backscatter direction. 

In Fig. 5, the ground is assumed to be a lossless rough/rough multilayer with 5.62 =ε r , 

9.23 =ε r  and 4rε  is real. The relative norm of the electric and magnetic currents ||C||/||Ctotal|| are 

plotted versus the dielectric constant of the underground layer 4rε . The results show that the 

currents on the spheroid are smaller than those on the upper- and underground interfaces. The 

currents on the underground interface are decreasing while the currents on the air-ground 

interface are increasing with increasing 4rε  as shown in Fig. 5a. Interestingly, when 

5.624 == rr εε , i.e., homogeneous ground, the underground surface currents become almost the 

same as those on the underground interface, which could be due to the lossless nature of the 

ground and due to the relatively small height (H = 0.6λ0). On the other hand, for the lossy case 

(as will be shown in Fig. 7a), the currents on the underground interface are clearly smaller than 

those on the air-ground one. In Fig. 5b, the normalized HH-RCS is increasing with 4rε  where 

the results are for the backscatter direction at 0=iϑ . These results show that for 4rε < 2rε  the 

wave transmission into the lower layer is larger than the waves transmission when 4rε > 2rε . This 

mechanism could explain the observation that the equivalent currents on the underground 
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interface are larger than those on the air-ground one when 4rε < 2rε  and vise-versa when 

4rε > 2rε  as shown in Fig. 5a. 

Similar investigations for the lossless case are conducted but versus the dielectric constant of 

the upper layer as shown in Fig. 6a, where ||C||/||Ctotal|| is plotted versus 2rε  with 9.23 =rε  and 

5.64 =rε . The results quantitatively show, that as 2rε  increases the currents on the spheroid 

decreases. In this case, fewer waves are transmitted into the ground causing less excitation to the 

object. Consistent with the observation of Fig. 5a, the results in Fig. 6a show that when 2rε < 4rε , 

the equivalent currents on the underground interface are smaller than those on the air-ground one 

and vise versa when 2rε > 4rε . Interestingly, the normalized HH-RCS shows initial decrease 

followed by monotonic increase with increasing 2rε  as shown in Fig. 6b (the results are in the 

backscatter at 0=ϑ i ). These results show that the RCS has minimum value when 2.42 ≈ε r  

which could be due to a destructive multiple interaction mechanism between the air-ground and 

the underground interfaces. 

In Fig. 7, the rough/rough ground is assumed to be lossy with 18.05.22 jr −=ε , 

0092.09.23 jr −=ε , 1.05.64 jr −=ε , and the incident waves are assumed to be vertically-

polarized. The relative norms ||C||/||Ctotal|| are plotted versus incident angle iθ  where all results 

are in the backscatter direction ( π=φ−φθ=θ sisi , ). The results in Fig. 7a show that the 

currents on the spheroid are smaller than those on the air-ground and underground interfaces. 

Moreover, the currents on the underground interface reflect the lossy nature of the ground in this 

example compared with the lossless case results in Fig. 6a. In Fig. 7b and 7c, the normalized 

RCS for the VV- and the HV- polarization are plotted versus the incident angle iθ , respectively. 

These results are compared with those of the single layer rough ground and the same buried 
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spheroid, i.e., 18.05.242 jrr −=ε=ε  and 0092.09.23 jr −=ε . The results in Fig. 7b show the 

impact of the underground interface on the VV-RCS especially at small elevation angles. 

However, due to the small ground roughness considered in this work of both the air-ground and 

the underground interfaces, the HV-RCS is much smaller than the VV- case as shown in Fig. 7b. 

But the waves scattered from the multilayered rough ground show more depolarization than 

those scattered from a single layer rough ground as demonstrated in Fig.7c. Similar results are 

obtained for the HH- and the VH- cases. 

The results in Table 1 summarize the computational complexity of three subsurface sensing 

applications using the SDFMM [24], [27]. These results show the rising computational 

complexity for the multilayered ground. 

Table 1 CPU time and computer memory requirements comparison 
 

Description Geometry # Unknowns CPU time (Hrs) Memory (MB) 
Single object buried 
beneath single layer 
rough ground [24]. 

 60,200 2.0 840 

Two objects buried 
beneath single layered 
rough ground [27]. 

 60,800 3.6 856 

Single object buried in 
multi layered rough 
ground (current work). 

 78,684 6.6 1760 

 

IV.  CONCLUSIONS 

A 3-D analysis of the multilayered rough ground with a buried dielectric object is 

investigated using a rigorous electromagnetic model significantly accelerated by using the 

SDFMM. The results show the considerable impact of the multilayered nature of the ground on 

the scattering process compared with the single layer ground. In both cases, the buried object is 

clearly the weakest scatterer due to its small size compared with the wavelength. The thickness 
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and the dielectric constant of the upper-layer of the ground relative to the ground lower-layer 

significantly contribute to the scattering mechanism in the current application.  
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Fig. 1. (a) General closed 3-D scatterers 2R , 3R  and 4R , (b) modeling closed interfaces 1S  and 

2S  by open rough surface interfaces in which negligible currents are excited on the dotted lines, 
and (c) cross section of the multilayered geometry showing the FMM finest blocks.  
 
Fig. 2. (a) The relative error in surface current vector C and the SDFMM memory requirements 
versus the finest block size for the multilayered ground (flat/flat) of height H = 0.5λ0 with oblate 
spheroid buried at z = -0.25λ0, (b) The relative error in surface current vector ||C|| versus the 
height H of the multilayered ground (flat/flat) with oblate spheroid buried at z = -0.3λ0 (see Fig. 
1c). 
 
Fig. 3. The normalized RCS for (a) lossless multilayered ground with no buried objects, (b) lossy 
multilayered ground with buried spheroid, (c) lossy multilayered ground with no buried objects, 
all for �0=ϑ i , (d) Same data of (b) but at �10=ϑ i . Lossless implies 9.23 =ε r , Case 1 

5.2,5.6 42 =ε=ε rr , Case 2 5.6,5.2 42 =ε=ε rr . Lossy implies 0092.09.23 jr −=ε , Case 1 
1.05.62 jr −=ε , 18.05.24 jr −=ε , Case 2 18.05.22 jr −=ε , 1.05.64 jr −=ε . 

 
Fig. 4. (a) The norm of the electric and magnetic currents ||C|| on each surface relative to the 
norm of the currents on all surfaces ||Ctotal|| plotted versus the height H, (b) the normalized RCS 
at backscatter versus the height H. The results are for lossless multi-layered ground with buried 
spheroid at z = -0.3λ0, �0=ϑ i , H-polarization, 9.23 =ε r , 5.62 =ε r  and 5.24 =ε r  (see Fig. 1c). 
 
Fig. 5. (a) The norm of the electric and magnetic currents ||C|| on each surface relative to the 
norm of the currents on all surfaces ||Ctotal|| plotted versus 4rε , (b) the normalized RCS at 
backscatter versus 4rε . The results are for lossless multilayered ground with buried spheroid at z 
= -0.3λ0, �0=ϑ i , H-polarization, 9.23 =ε r , 5.62 =ε r  and H = 0.6λ0 (see Fig. 1c). 
 
Fig. 6. (a) The norm of the electric and magnetic currents ||C|| on each surface relative to the 
norm of the currents on all surfaces ||Ctotal|| plotted versus 2rε , (b) the normalized RCS at 
backscatter versus 2rε . The results are for lossless multilayered ground with buried spheroid at z 
= -0.3λ0, �0=ϑ i , H-polarization, 9.23 =ε r , 5.64 =ε r  and H = 0.6λ0. 
 
Fig. 7. (a) The norm of the electric and magnetic currents ||C|| on each surface relative to the 
norm of the currents on all surfaces ||Ctotal|| plotted versus incident angle iθ , (b) the normalized 
VV-RCS versus the incident angle iθ , (c) the normalized HV-RCS versus the incident angle iθ  
at backscatter direction ( π=φ−φθ=θ sisi , ). The results are for lossy multi-layered ground 
with buried spheroid at z = -0.3λ0, 18.05.22 jr −=ε , 0092.09.23 jr −=ε , 1.05.64 jr −=ε  and 
H = 0.6λ0. 
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versus the finest block size for the multilayered ground (flat/flat) of height H = 0.5λ0 with oblate
spheroid buried at z = -0.25λ0, (b) The relative error in surface current vector C versus the height H of
the multilayered ground (flat/flat) with oblate spheroid buried at z = -0.3λ0 (see Fig. 1c). 
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Fig. 4. (a) The norm of the electric and magnetic currents ||C|| on each surface relative to the norm of
the currents on all surfaces ||Ctotal|| plotted versus the height H, (b) the normalized RCS at backscatter
versus the height H. The results are for lossless multi-layered ground with buried spheroid at z = -
0.3λ0, �0=ϑ i , H-polarization, 9.23 =ε r , 5.62 =ε r  and 5.24 =ε r  (see Fig. 1c). 
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Electromagnetic sensing of buried objects in the presence of a random rough interface is a 
crucial step for subsurface detection problems in general. Most theoreticians and 
experimentalists agreed that surface roughness constitutes a major source of clutter (i.e., noise) in 
the received electromagnetic signals. However, due to the complexity of the problem, the ground 
surface is often assumed to be single layered and not multi-layered. This is not the case in the 
real environment but no work has yet been published on scattering from objects buried beneath 
multi-layered randomly rough ground. Therefore, the objective of this work is to investigate the 
scattering of electromagnetic waves from a penetrable shallow object buried in 2-D multi-layered 
random rough surfaces. It is known that the computational complexity of the scattering problem 
dramatically increases for the multi-layered rough interface. 

A rigorous electromagnetic model has been developed for scattering from inhomogeneous 
rough ground surfaces. This model is based on the classical equivalence theorem and the method 
of moments (MoM) that is dramatically accelerated by implementing the Steepest Descent Fast 
Multipole Method (SDFMM). Four different homogeneous regions are involved in this 
application; air, dielectric object, upper soil layer and lower soil layer. A tapered Gaussian beam 
is used to illuminate the multi-layered ground surface. The rough surfaces are characterized with 
Gaussian statistics for the height and for the autocorrelation function. Since the SDFMM was 
originally developed for quasi-planar structures where the whole height of the 3-D scatterer 
should be in the order of one free space wavelength, it is necessary to validate the SDFMM 
implemented for this application versus the MoM. The relative norm of the error in surface 
current is presented. The computer memory requirement is plotted versus the SDFMM finest block 
size for the multi-layered ground with the buried object. It is necessary to mention that the air-ground 
interface and the underground layer could be flat and/or could be random rough surfaces with 
different roughness parameters and lossy or lossless soil. Numerical results representing the RCS 
of the multi-layered ground with the buried object are shown. The effect of the physical 
characteristics and the surface roughness of the multi-layers are investigated. The thickness of 
the multi-layer ground is varied to study its influence on the buried object signature. 

The results of this work could increase the efficacy of the present subsurface sensing 
methods by accounting for the multi-layer nature of the rough ground. 



Scattering from Non-Shallow Targets Buried Beneath Two-
Dimensional Random Rough Surfaces Using the Multiple 

Interaction Model 
 

Magda El-Shenawee 
 

Department of Electrical Engineering 
University of Arkansas 
Fayetteville, AR 72701 

Tel: 501-575-6582, Fax: 501-575-7967 
magda@uark.edu 

 
 

The multiple interaction approach is used with the robust Steepest Descent Fast 
Multipole Method (SDFMM) to compute the signature of non-shallow penetrable 
scatterers buried beneath 2-D random rough surfaces. The most attractive feature of the 
proposed model is removing the quasi-planar structure constraint of the Steepest Descent 
Fast Multipole Method (SDFMM) when used in analyzing non-quasi-planar scatterers. 
The basic idea of the multiple interaction model is to decompose certain non-quasi-planar 
structures into two quasi-planar scatterers where the conventional SDFMM can be 
applied separately to each one. The interactions between the sub-quasi-planar scatterers 
are calculated directly using the electromagnetic vector potentials near-field expressions. 
Significant reductions in the CPU time and computer memory are achieved by using the 
SDFMM in the model. A variety of geometries are used to test the model and their 
numerical results are validated with the conventional MoM. 

The results show that the buried object’s signature is largely due to the first 
interaction mechanism (i.e. ground-object-ground). However, the contribution of each 
additional interaction is explicitly calculated using the model. Interestingly, the 
contributions from repeating this mechanism become insignificant especially for lossy 
background soil. This conclusion depends on the physical properties of the scatterer. 

The multiple interaction model successfully demonstrates the exploitation of the 
SDFMM robustness when applied to the multilayered rough ground where the burial 
depth of the underground rough layer is on the order of a wavelength. 
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The scattering of electromagnetic waves from a penetrable shallow target buried beneath 2-D 
multilayered random rough surfaces will be presented. There are several applications for this 
work, e.g. detection of anti-personnel mines, anti-tank mines, water and/or gas pipes, location of 
underground water, etc. In reality, these targets are buried under the Earth’s surface, which is a 
randomly rough interface and also is not simply composed of a single layer, but is a multilayered 
media. The closer the real environment is incorporated into the electromagnetic model, the more 
accurate and practical inferences can be gained from the numerical results. Without modeling the 
multiple ground layers, many targets cannot be detected. One unobtrusive way these buried 
targets can be detected is by bombarding the Earth’s surface with electromagnetic waves, and 
comparing the scattered signature of the ground alone with that of the ground with the buried 
target. 

 
A rigorous electromagnetic model based on the equivalence theorem and the method of 

moments (MoM) is developed to analyze this 3-D scattering problem. Three layers are 
considered in this work; air, dry-soil and wet-soil. The penetrable target is buried between the 
air/dry-soil interface and the dry/wet-soil interface. The Steepest Descent Fast Multipole Method 
(SDFMM) is implemented to significantly accelerate the computations of the unknown electric 
and magnetic surface currents. The effect of the lossy underground rough layer (wet soil) on the 
target signature will be investigated. Moreover, images based on the scattered electric fields for 
the buried target will be presented. 
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A rigorous electromagnetic model has been developed to analyze the scattering 

mechanism of a target buried near a clutter-object under the two-dimensional random 
rough ground (3-D scattering problem). In realistic landmine fields, the anti-personnel 
(AP) nonmetallic mine is often buried nearby a rock, tree root, etc. The presence of a 
second object buried near the nonmetallic mine can easily obscure the target and/or cause 
a false alarm during the detection process. 

The rigorous model is based on the classical electromagnetic equivalence theorem 
leading to producing six new integral equations. Using the Method of Moment (MoM), 
the new integral equations are transformed into a linear system of equations to be solved 
for the unknown electric and magnetic currents on the surface of three scatterers; rough 
ground, target and clutter-object. The MoM impedance matrix completely represents 
every interaction between these three scatterers. The Steepest Descent Fast Multipole 
Method (SDFMM) is used to tremendously accelerate the computations of the unknown 
MoM surface currents. 

In previous work, we thoroughly investigated the effect of ground roughness on the 
signature of the target when it is buried alone under the ground. In this work, we will 
present numerical results for parametric investigations of the objects proximity, 
orientations, materials, and shapes. The results show that in certain situations, the target 
can be completely obscured due to the presence of the nearby clutter-object (e.g., tree 
root). In other cases a false indication of presence of a third buried object is observed. 
When the sources of clutter (e.g. the rough ground and the clutter object) are removed, by 
subtracting the return from both the rough ground and the clutter-object, the signature of 
the target can be clearly observed and analyzed. The numerical results show that the 
ground roughness along with the separation distance, between the target and the clutter-
object, play a significant role on the probability of true or false alarm in the detection 
process.  
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ABSTRACT 

The modified Mueller matrix elements for electromagnetic scattering from penetrable objects 

buried under 2-D random rough surfaces are investigated. This matrix relates the incident with 

the scattered waves and it contains different combinations of the fully polarimetric scattering 

matrix elements. The statistical average of each Mueller matrix element is computed based on 

the Monte Carlo simulations with exploiting the speed of the 3-D Steepest Descent Fast 

Multipole Method (SDFMM). The numerical results clearly show that relying only on the co- 

and/or the cross-polarized intensities (i.e., vv, hh, vh and hv) is not sufficient for sensing the 

buried objects. However, examining all the sixteen Mueller matrix elements significantly 

increases the possibility of detecting these objects. This technique can be used in remote sensing 

of scatterers buried beneath the rough ground. 

 
Keywords: Subsurface sensing, Mueller matrix elements, multiple buried objects, rough surface 

scattering, radar cross section. 

I. INTRODUCTION 

Remote sensing of objects buried under the rough ground has tremendous civil and defense 

applications, e.g. archeology discovery, mine detection, sensing underground resources, etc. In 

previous work [1]-[3], the scattered electric near-field was calculated to simulate the ground 
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penetrating radar (GPR) measurements. A single penetrable and/or perfect electric conductor 

(PEC) object was buried under the rough ground, where the average of the scattered electric 

near-fields over the azimuth angle was presented in [1] while the average over the rough surface 

realizations was presented in [2]. In [3], two dielectric objects were buried under the random 

rough ground and the electromagnetic near-field interference between the objects was studied. 

The reported results showed the significant distortion in the near-field signals caused by the 

presence of the rough air-ground interface. In [1]-[3], the signature of the target was often 

obtained by removing the background from the received signals (i.e. by subtracting the scattering 

from the rough ground with no buried objects). In [4], the angular correlation function (ACF) 

and the radar cross section (RCS) were presented for a PEC sphere buried under the rough 

ground in which the authors presented the advantage of computing the ACF over the RCS. In [5], 

the sixteen Mueller matrix elements were analytically obtained for scattering from coated 2-D 

random rough surface where the configuration represented three-layer geometry (the air and two 

layered-rough interfaces) with no buried objects. The Mueller matrix elements, which relate the 

incident with the scattered waves, are defined in terms of the modified Stokes vector [6]-[8]. The 

results reported in [5] showed a great sensitivity of some Mueller matrix elements (m34 and m43) 

in the backscatter direction to the thickness of the coated layer. In other words, these two 

elements showed considerable differences due to the underground inhomogeneity, which was not 

the case for the other Mueller matrix elements (m11, m12, m22, etc.). This finding is the motivation 

of the current work, however, the configuration here represents two different dielectric objects 

buried under the 2-D random rough ground as shown in Fig. 1. 

It is necessary to differentiate between the results reported in [2] and the current work. In [2], 

the statistical average of the buried object’s signature was computed based on the scattered 
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electric fields in the near-zone. In the current work, the statistical average of the scattered electric 

fields from one and/or from two buried objects is calculated in the far-zone and presented in 

terms of the Mueller matrix elements. More importantly, the subtraction process often used in 

[1]-[3] is not used in the current work. In other words, the far-fields scattered from the rough 

ground with the buried objects are directly compared with those scattered from the rough ground 

with no buried objects. 

The formulations of the problem are given in Section II, the numerical results are presented 

in Section III and the conclusions are stated in Section IV. More details are given in Appendices 

A and B.  

II. FORMULATIONS 

The integral equation-based rigorous electromagnetic model was developed in [3] for 

scattering from multiple objects buried under the rough ground. This technique is employed to 

calculate the unknown method of moments (MoM) surface currents on the rough ground and on 

both buried objects (see Fig. 1). The inhomogeneous scatterer is composed of four different 

regions; the air, the ground, and two different materials for the objects where the relative 

permittivity and permeability are 1ε  and 1µ  for the air, 2ε  and 2µ  for the ground, 3ε  and 3µ  for 

the first object, and 4ε  and 4µ  for the second object. The unknown equivalent electric and 

magnetic surface currents are 1J  and 1M  on the ground, 2J  and 2M  on the first object and 3J  

and 3M  on the second object. The final set of surface integral equations on the ground ( 1S ), the 

first object ( 2S ) and the second object ( 3S ) are given by [1], [3],[9]: 

( ) ( ) ( )[ ] (1a)    , 1 tang.34342323121121tang.
SrMKJLMKJLMKKJLLrE inc ∈+−+−+−+=  
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in which the intrinsic impedance is iii εµ=η / , with 4... ,2 ,1=i  and jL  and jK , 6... ,2 ,1=j  

are the integro-differential operators as summarized in Appendix A [1], [3], [9]. The surfaces of 

the rough ground and the two objects are discretized into triangular patches where the unknown 

equivalent electric and magnetic currents in (1) are approximated using the Rao, Wilton and 

Glisson (RWG) vector basis functions ( )rj  [9], [10] as: 
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After some algebraic manipulations, the linear system of equations is obtained as VIZ =  (as 

summarized in Appendix B) where the total impedance matrix Z  has order 

( ) ( )321321 22 NNNNNN ++×++ . The number of surface unknowns on the ground, the first 

object and the second object are 12N , 22N  and 32N , respectively. The vector V  represents the 

tested tangential incident electric field incE  and normalized magnetic field incH1η  on the 

exterior surface of the ground. The SDFMM [11] was implemented in [1]-[3] to dramatically 
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accelerate solving for the unknown surface current coefficients I . Once the unknown surface 

currents are obtained, the scattered electric fields in the far-zone can be computed [12]. 

For the modified Mueller matrix elements [5]-[8], we are following the notations used in [7] 

where the normalized modified Stokes vector is given by 
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in which v and h represent the vertical and horizontal polarizations, respectively, thus from [7] 
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where, the superscripts s and i represent the scattered and incident waves, respectively. The 

modified Mueller matrix Mm is given by [7] 
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where Spq is the p-polarized scattered waves due to the q-polarized incident waves (p, q = v, h) as 

described in the fully polarimetric scattering matrix S [7] 
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where i
hvE ,  and s

hvE ,  are the vertically and horizontally polarized incident and scattered electric 

fields in the far-zone, respectively. 
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III. NUMERICAL RESULTS AND DISCUSSIONS 

The random rough surface characterized with Gaussian statistics for simulating the ground is 

generated 100 times for the configuration shown in Fig. 1. The linear system of equations is 

solved for each random surface realization for both the vertically- and the horizontally-polarized 

incident waves. Each set of the Monte Carlo simulations to obtain the average scattered intensity 

is based on the 100 independent realizations. The sixteen modified Mueller matrix elements in 

(3c) are calculated for the total scattered waves (i.e. not for the incoherent scattered waves). 

Using the standard matrix notations in (3c), these elements are 2
11 vvSm = , 2

22 hhSm = , 

( )vvvh SSm ∗−= Im14 , etc., where the angular brackets denote the ensemble average. All Mueller 

matrix elements presented here are normalized by the factor ( )i
zo PAηπ 2/4 , where ZA , oη , and 

iP  are the footprint area on the ground, the intrinsic impedance of the free space and the total 

incident power. With this normalization, the element m11 becomes the normalized vertically co-

polarized RCS (vv), the element m22 becomes the normalized horizontally co-polarized RCS 

(hh), the element m12 becomes the normalized cross-polarized RCS (vh), and the element m21 is 

the normalized cross-polarized RCS (hv). For the incident tapered Gaussian beam used in this 

work [5],[13] the total incident power is the sum of the power in each plane wave [14]. Similar to 

the previous work [1]-[3], the dimensions of the ground are assumed to be 00 88 λ×λ  with 

Gaussian half-beam width equal to 06.1 λ  centered on the ground at 00 44 λ×λ , where 0λ  is the 

free space wavelength. 

In this work, the first object is modeled as an oblate spheroid ( 00 3.0 ,15.0 λ=λ= ba ) and the 

second object is modeled as a circular cylinder ( 00 9.0 ,15.0 λ=λ= ha ) or a circular disk 

( 00 1.0 ,3.0 λ=λ= ha ) as shown in Figs. 1c-e. The locations of these objects vary in each 
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example. The rms height and the correlation length of the rough ground are assumed to be 

01.0 λ=σ  and 050 λ= .lc , respectively. The relative dielectric constants of the ground, the 

cylinder, the spheroid, and the disk are assumed as 18.05.2 jr −=ε , 0.4=ε r , 072.09.2 jr −=ε  

and 0.4=ε r , respectively. The total number of surface current unknowns is 61200 for the 

geometry shown in Fig. 1, where 600002 1 =N  (on the ground surface), 6002 2 =N  (on the first 

object) and 6002 3 =N  (on the second object) [3]. These numbers of unknowns are the result of 

discretizing the ground surface into 10101 nodes and 20000 triangular patches, and discretizing 

each object into 102 nodes and 200 triangular patches and they are kept the same for all the cases 

discussed in this Section. 

In Example 1, a spheroid and a horizontal cylinder are buried under the ground. The 

spheroid’s center is located at 00 5.3 ,5.4 λ=λ= yx  and 04.0 λ−=z  while the horizontal cylinder 

is tilted by �30  with the x-axis and is located at 00 375.4 ,01.4 λ=λ= yx  and 04.0 λ−=z  

measured from the axis mid-point (see Fig. 1c). For �0=θi , �0=φi , the ensemble average for 

each modified Mueller matrix element is plotted versus the scatter angle as presented in Fig. 2. 

As expected, the results show that all the diagonal elements of the Mueller matrix have 

maximum values approximately in the specular direction ( �0=θi ). Interestingly, the elements 

m14, m24, m41 and m42 show distinguished signature for the rough ground with the two buried 

objects different from the rough ground alone (i.e. with no buried objects). Moreover, the 

elements m12, m21, m32, m13, m34 and m43 show slight differences between these two cases. 

However, the diagonal elements m11, m22, m33, and m44 show almost no differences between the 

two cases. 
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It is important to investigate whether the significant differences shown in Fig. 2 are due to 

the interference between the objects or due to other causes. Therefore, additional results for the 

cylinder and the spheroid, each is buried alone under the same rough ground, are presented in 

Figs. 3 and 4, respectively. Each object is buried in its original location under the random rough 

ground as discussed in the data of Fig. 2. The results in Fig. 3 show the same observation of Fig. 

2, i.e., the elements m14, m24, m41, and m42 clearly show an indication to the presence of the 

cylinder under the ground while the elements m11 and m22 show no such indication. 

The results in Fig. 4, for the buried spheroid alone, show that only elements m42 and m14  

indicate to the presence of the spheroid. In other words, the results in Figs. 3 and 4 clearly show 

the significant sensitivity of some of the Mueller matrix elements to the presence of buried 

objects. The sensitivity level of these elements clearly depends on the object’s orientation, 

material and size as presented in Figs. 2-4. It is interesting to notice that the expressions of m14, 

m24, m41, and m42 as given in (3c) are the imaginary parts of the product of the co- and cross-

polarized scattering elements. This implies that these elements contain some phase information, 

which is not the case for the other elements, e.g., m11 and m22. The results in Figs. 2-4 clearly 

indicate that if one relies only on the co- and/or the cross-polarized intensities (i.e., m11, m22, m12 

and m21); it might not be possible to detect the buried objects. However, investigating all the 

sixteen Mueller matrix elements significantly increases the possibility of detecting these objects. 

In Example 2, the cylinder’s orientation effect is investigated with keeping the rest of the 

data of Fig. 2. Therefore, the cylinder is tilted with the x-axis by �90  and is buried alone under 

the rough interface. The axis’s mid-point is located at 00 0.4 ,6.3 λ=λ= yx  and 04.0 λ−=z  (see 

Fig. 1d). As shown in Fig. 5, almost twelve elements out of the sixteen ones, show considerable 

differences due to the presence of the cylinder. Comparing the results of Fig. 3 and Fig. 5, where 
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the same size and material of the horizontal cylinder are used, shows that the cylinder’s 

orientation plays an effective role in the sensitivity level of these elements. The depolarization 

level of the scattered waves from the rough ground with the buried cylinder vary with the 

orientation of the cylinder leading to observed variation in some of the Mueller matrix elements. 

In Example 3, the cylinder is replaced with a circular disk tilted with the z-axis by �20  and of 

the same material (i.e., 0.4=ε r ). The center of its top circle is located 00 9.4 ,3.3 λ=λ= yx , 

035.0 λ−=z  and is buried alone under the rough ground (see Fig. 1e). Again, the results plotted 

in Fig. 6 show that some of the Mueller matrix elements show the indication to the presence of 

the disk. In particular, the elements m14, m24, m41, m42, m12 and m21 show considerable differences 

between the rough ground only and the rough ground with the buried disk. Consistent with the 

previous examples, the vv or hh intensities (i.e. m11 and m22) show almost no differences between 

the two cases. 

In Example 4, the Mueller elements for the spheroid and the horizontal cylinder, both buried 

under the ground (same data of Fig. 2), are computed at different incident angles �30=θi , 

�120=φi  as shown in Fig. 7. None of the elements in the current case show indication to the 

presence of the buried objects except for the elements m34 and m43. In addition, all the elements 

in this case are significantly different from those presented in Fig. 2, which shows their 

dependency on the incident angles. In this Example, the far-fields are computed in the same 

plane of incidence, i.e., at �� 900 ≤θ≤ s  for �120=φs  and for �300=φs . 

As mentioned earlier, in Examples 1-4, all the Mueller matrix elements represent the average 

values based on the Monte Carlo simulations of 100 rough surface realizations. This indicates 

that the observed sensitivity of some of these elements is consistent for all rough surface 

realizations since it survived the averaging process. To investigate this point, as an example, the 
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elements m42 and m14 are plotted for the scattered waves from only one rough surface realization 

as shown in Fig. 8. The numerical results show that these elements for the rough ground alone 

are different from all the other buried scatterers. This observation indicates that investigating all 

the Mueller matrix elements can be very useful in detecting the buried objects under the realistic 

rough ground represented here by one rough surface realization. 

The above results support the observation reported in [5] in which the underground 

inhomogeneity was caused by the presence of the coated irregular layer above the rough ground 

while here the inhomogeneity is due to the presence of dielectric objects buried beneath the 

ground. As mentioned in [7], the modified Mueller matrix, in general, is not symmetric which is 

demonstrated in all figures. However, in all results it is observed that 4334 mm −≈  which can be 

attributed to the slight cross-polarization caused by the small roughness parameters considered in 

this work. For the same reason it is observed that 4433 mm ≈  in all figures. However, in Figs. 2-6, 

it is observed, as expected, that 2211 mm ≈  (normal incidence case) while in Fig. 7 1122   mm >  

(oblique incidence case). In the later case, the incident electric field for the h-polarization is 

parallel to the axis of the buried cylinder while for the v-polarization, it is perpendicular to 

cylinder axis, see Fig. 1-b.  

Notice that the elements 2112 mm ≠  because all the Mueller matrix elements presented here 

are for the bistatic case and not for the backscatter. Even though, it is more practical for remote 

sensing applications to consider the backscatter case, however, the bistatic results showed the 

considerable sensitivity of some Mueller matrix elements to the presence of buried objects. In 

addition, calculating the average of these elements in the backscatter direction will be 

computationally more expensive. 
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Examining the Mueller matrix expression in (3c), it is clear that several elements are 

functions of the amount of wave depolarization. This could be one of the factors that the Mueller 

elements for the tilted cylinder are the most distinguished ones as shown in the numerical results. 

The materials, locations of the buried scatterers and their contrast with the surrounding 

underground medium have impact on these elements as well. More work need to be conducted to 

investigate how the ground roughness will affect these elements since in this work we assumed 

small roughness parameters. 

IV. CONCLUSIONS 

The fast 3-D SDFMM computer code is used to calculate the average of each modified 

Mueller matrix element for the scattering from dielectric objects buried under the random rough 

ground. The statistical average for each element is computed using the Monte Carlo simulation. 

These simulations are obtained by running the 3-D SDFMM computer code hundreds of times, 

which shows the great advantage of using the Fast Multipole Method (FMM). The numerical 

results clearly show that if one relies only on the co- and/or the cross-polarized intensities; it is 

very difficult to sense the buried objects. However, investigating all the sixteen Mueller matrix 

elements significantly help in detecting these objects. 
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Appendix A 

With representing the surface electric and magnetic currents J and M  on 1S , 2S  and 3S  by the 

vector X , the integro-differential operators jL  and jK , j=1, 2, … 6, are [1], [3], [9]: 

( ) ( ) ( ) (A1)              ,  
11
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2,12,12,1 sdrXXKsdrXirXiXL
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′Φ∇×′=′
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Appendix B 

The linear system of equations, VIZ = , is given by [1], [3], [9] 
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in which 
S

BA,  denotes the complex inner product between vector functions A  and B  on a 

surface S . The submatrices 12Z , 13Z , and 23Z  are given by 
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Similar expressions can be obtained for all the other submatrices in B1. 
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Figure 1.  (a) Cross section of a general 2-D rough ground with two buried objects, (b) top view of the 
geometry, (c) 3-D geometry for the buried spheroid and the 30o-tilted horizontal cylinder, (d) 3-D 
geometry for the buried 90o-tilted horizontal cylinder, and (e) 3-D geometry for the buried 20o-tilted disk. 
All figures in 1c-e show exact locations of the objects.  
Figure 2. The normalized bistatic modified Mueller matrix elements (total intensity); m11, m12, …, m44 ; 
the solid line is for the rough ground only and the cross-symbol is for the rough ground with the two 
buried objects (the spheroid and the horizontal 30o-tilted cylinder, Fig. 1c) for incident angles �0=θi  
and �0=φi , and Monte Carlo for 100 rough surface realizations. 
Figure 3. The normalized bistatic modified Mueller matrix elements (total intensity); m11, m12, …, m44; 
the solid line is for the rough ground only and the cross-symbol is for the rough ground with only the 
second object (horizontal 30o-tilted cylinder, Fig. 1c) for the incident angles �0=θi  and �0=φi , and 
Monte Carlo for 100 rough surface realizations. 
Figure 4. The normalized bistatic modified Mueller matrix elements (total intensity); m11, m12, …, m44; 
the solid line is for the rough ground only and the cross-symbol is for the rough ground with only the first 
object (the spheroid, Fig. 1c) for the incident angles �0=θi  and �0=φi , and Monte Carlo for 100 
rough surface realizations. 
Figure 5. The normalized bistatic modified Mueller matrix elements (total intensity); m11, m12, …, m44; 
the solid line is for the rough ground only and the cross-symbol is for the rough ground with only the 
second object (horizontal 90o-tilted cylinder, Fig. 1d) for the incident angles �0=θi  and �0=φi , and 
Monte Carlo for 100 rough surface realizations. 
Figure 6. The normalized bistatic modified Mueller matrix elements (total intensity); m11, m12, …, m44; 
the solid line is for the rough ground only and the cross-symbol is for the rough ground with only the 
second object (20o-tilted disk, Fig. 1e) for the incident angles �0=θi  and �0=φi , and Monte Carlo for 
100 rough surface realizations. 
Figure 7. The normalized bistatic modified Mueller matrix elements (total intensity); m11, m12, …, m44; 
the solid line is for the rough ground only and the cross-symbol is for the rough ground with the two 
buried objects (the spheroid and the horizontal 30o-tilted cylinder, Fig. 1c) for the incident angles 

�30=θi  and �120=φi , and Monte Carlo for 100 rough surface realizations. 
Figure 8. The normalized bistatic modified Mueller matrix (a) element m42 and (b) element m14 versus the 
scatter angle for �0=θi  and �0=φi  from only one rough surface realization (No averaging). 
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Figure 2. The normalized bistatic modified Mueller matrix elements (total intensity); m11, m12, …, m44 ; 
the solid line is for the rough ground only and the cross-symbol is for the rough ground with the two 
buried objects (the spheroid and the horizontal 30o-tilted cylinder, Fig. 1c) for incident angles �0=θi

and �0=φi , and Monte Carlo for 100 rough surface realizations. 
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the solid line is for the rough ground only and the cross-symbol is for the rough ground with only the
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Monte Carlo for 100 rough surface realizations. 
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Figure 4. The normalized bistatic modified Mueller matrix elements (total intensity); m11, m12, …, m44;
the solid line is for the rough ground only and the cross-symbol is for the rough ground with only the 
first object (the spheroid, Fig. 1c) for the incident angles �0=θi  and �0=φi , and Monte Carlo for 
100 rough surface realizations. 
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Figure 5. The normalized bistatic modified Mueller matrix elements (total intensity); m11, m12, …, m44;
the solid line is for the rough ground only and the cross-symbol is for the rough ground with only the 
second object (horizontal 90o-tilted cylinder, Fig. 1d) for the incident angles �0=θi  and �0=φi , and 
Monte Carlo for 100 rough surface realizations. 
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Figure 6. The normalized bistatic modified Mueller matrix elements (total intensity); m11, m12, …, m44;
the solid line is for the rough ground only and the cross-symbol is for the rough ground with only the 
second object (20o-tilted disk, Fig. 1e) for the incident angles �0=θi  and �0=φi , and Monte Carlo 
for 100 rough surface realizations. 
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Figure 7. The normalized bistatic modified Mueller matrix elements (total intensity); m11, m12, …, m44; 
the solid line is for the rough ground only and the cross-symbol is for the rough ground with the two 
buried objects (the spheroid and the horizontal 30o-tilted cylinder, Fig. 1c) for the incident angles 

�30=θi  and �120=φi , and Monte Carlo for 100 rough surface realizations. 
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Figure 8. The normalized bistatic modified Mueller matrix (a) element m42 and (b) element m14 versus
the scatter angle for �0=θi  and �0=φi  from only one rough surface realization (No averaging). 
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Abstract 
A rigorous electromagnetic model has been developed to analyze the scattering from two dielectric 

shallow objects buried under the 2-D random rough ground as a means of predicting false alarms due to a 
clutter object near a target object. The Method of Moments (MoM) accelerated by the Steepest Descent 
Fast Multipole Method (SDFMM) is used to compute the unknown electric and magnetic surface currents 
on both the rough ground surface and the teo buried objects. The roughness parameters strongly influence 
the scattered interference of the two objects, especially when their separation distance is several 
correlation lengths. This could increase the probability of false alarms. 

 
I. INTRODUCTION 

In realistic minefields, buried anti-personnel (AP) nonmetallic mines are often closely accompanied 
by underground clutter-objects. The presence of this object considerably obscures the targets causing a 
false alarm during the detection process. The separation distance between the AP-mine and the clutter-
object plays a primary role on the probability of false alarms. A rigorous electromagnetic model has been 
developed to analyze the scattering mechanism of two dielectric objects buried beneath a rough ground 
surface as reported in [1]. Using the O(N) fast algorithm, the Steepest Descent Fast Multipole Method 
(SDFMM) [2-3] tremendously accelerates the computations of the N unknown surface currents [1,4]. 
When the two objects were located close to one another under flat ground, the strong scattering 
interference generates a false response appearing to be a third buried object [1]. The dependency of the 
observed scattering interference on the ground roughness parameters is investigated in this work. 

 
II. FORMULATION 

The rigorous electromagnetic model derived in [1] is employed in this work where six integral 
equations are used to obtain the equivalent surface currents on dielectric scatterers shown in Fig. 1 (3-D 
scattering problem). Four different regions are involved in this scattering problem; air, soil, first object 
and second object. The unknown electric and magnetic currents on the ground surface, on the target 
surface, and on the clutter object surface are approximated using the well-known RWG vector basis 
functions [5]. After some algebraic manipulations, the linear system of equations is obtained as: VIZ = , 
where the total impedance matrix Z  has order of ( ) ( )321321 22 NNNNNN ++×++ . The number of 
electric and magnetic current unknowns (edges) on the ground, on the target and on the second object are 

12N , 22N  and 32N , respectively. The tested tangential incident electric field incE  and the tested 
normalized magnetic field incH1η  on the exterior of the ground surface are expressed in V . The 
SDFMM is implemented to significantly accelerate solving the linear system of equations for the 
unknown current coefficients [1-4]. 
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II. NUMERICAL RESULTS 
In this Section, we investigate the scattering interference between the two buried objects as a function 

of their separation distances and the ground roughness. Several values for the root mean square height σ 
and the correlation length lc are considered with emphasis on small roughness parameters for the AP-mine 
detection application. The incident wave is assumed to be a Gaussian beam at normal incidence that is 
carefully tapered to minimize edge effects [6]. The two objects are oblate spheroids with dimensions 

030 λ= .a , 0150 λ= .b  and at depth oz λ4.0−=  measured from the center. The relative dielectric 
constant of the ground soil is assumed to be 18052 .j.r −=ε  and for both objects is assumed to be 

072.09.2 jr −=ε . The oo λλ 88 ×  ground surface is discretized into 60,000 electric and magnetic surface 
current unknowns. Each object is disretized into 600 electric and magnetic surface current unknowns. In 
order to analyze the object signatures, the electric fields scattered from each rough ground are removed by 
subtraction similar to our work in [4]. 

In Fig. 2, the object signatures are plotted across the diagonal as shown in Fig.1. When the two 
objects are separated by S = 1.4λo, the results show three peaks of almost equal magnitudes; the first peak 
is above the first object, the second peak is above the second object and the third peak is at mid-point 
between them. This third peak is due to the strong constructive interference between the two objects. This 
phenomenon could easily cause a false alarm during the detection process. However, when the separation 
distance increases, the mid-point peak is dissolved into several secondary peaks as observed when S = 
2.1λo and 2.8λo. These secondary peaks become insignificant when S is increased to 4.2λo. As noticed in 
this figure, the asymmetry around the mid-point (x = 4.0λo) is clearly caused by the random roughness of 
the ground. Moreover, the magnitudes of all peaks decrease with increasing separation distance because 
the objects are further from the beam footprint center (ground center in this work). In Figs. 3 and 4, the 
separation distance is S = 1.4λo, the range for σ is 0.04λo-0.1λo and the range for lc is 0.4λo-1.0λo. The 
results clearly show the influence of the roughness parameters, however, the observed strong interference 
(mid-point peak) is slightly affected by the ground roughness in this case. This study is repeated for S = 
2.1λo as shown in Figs. 5 and 6, and for S = 2.8λo as shown in Figs. 7 and 8. It is interesting to notice that 
when the separation distance becomes several correlation lengths, as shown in Figs. 6 and 8, stronger 
scattered interference is observed. This is demonstrated by the increase in the number of secondary peaks 
from three in the flat ground case to four and five in the rough ground case as shown in Figs. 6 and 8, 
respectively. This mechanism could increase the possibility of false alarms. 

III.  CONCLUSIONS 
False alarms could easily occur because of the interference mechanism between the target and a 

second nearby object buried under the ground. The roughness parameters strongly influence the scattering 
interference mechanism between the two objects, which could increase the probability of false alarms. 
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Fig. 2. Scattered near-electric field of just the two objects at normal incidence when S/λo =1.4-4.2 and ground 
roughness parameters are σ/λo=0.1 and lc /λo=0.5. The separation distance S is shown in Fig. 1b. 

Fig. 1. (a) Cross section along the diagonal direction for two
objects buried under rough ground, (b) Top view. 
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Fig. 3. Scattered near-electric field of just the two objects at normal incidence when S/λo =1.4 and ground roughness 
parameters are lc /λo=0.5 and σ/λo=0.04-0.1. 
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Fig. 4. Scattered near-electric field of just the two objects at normal incidence when S/λo =1.4 and ground roughness 
parameters are σ/λo =0.1 and lc /λo =0.4-1.0. 
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Fig. 5. Scattered near-electric field of just the two objects at normal incidence when S/λo =2.1 and ground roughness 
parameters are lc /λo=0.5 and σ/λo=0.04-0.1 
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Fig. 6. Scattered near-electric field of just the two objects at normal incidence when S/λo =2.1 and ground roughness 
parameters are σ/λo =0.1 and lc /λo =0.4-1.0. 
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Fig. 7. Scattered near-electric field of just the two objects at normal incidence when S/λo =2.8 and ground roughness 
parameters are lc /λo=0.5 and σ/λo=0.04-0.1 
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Fig. 8. Scattered near-electric field of just the two objects at normal incidence when S/λo =2.8 and ground roughness 
parameters are σ/λo =0.1 and lc /λo =0.4-1.0. 
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Abstract 

In realistic landmine fields, the anti-personnel plastic mine is often buried nearby a clutter-object 
under the ground. The presence of a second object buried near the mine under a two-dimensional (2-D) 
rough ground can easily obscure the target and/or cause a false alarm. The separation distance between 
the AP mine and clutter-object plays a significant role on the probability of true or false alarm in this 
situation. A rigorous electromagnetic model has been developed to analyze the scattering mechanism 
between the target and the clutter-object, between the target and the rough ground, between the clutter-
object and the rough ground and the multiple scattering between different spots on the rough ground 
itself. The new rigorous model is based on the classical electromagnetic equivalence theorem leading to 
producing six new integral equations. Using the Method of Moment (MoM), the new integral equations 
are transformed into a linear system of equations to be solved for the unknown electric and magnetic 
currents on the surface of three scatterers; (1) rough ground, (2) target and (3) clutter-object. The MoM 
impedance matrix completely represents every interaction between these three scatterers. The superior 
Steepest Descent Fast Multipole Method (SDFMM) is used to tremendously speed up the computations of 
the unknown MoM surface currents. 

 
I. INTRODUCTION 

In realistic minefields, buried anti-personnel (AP) nonmetallic mines are often closely accompanied 
by underground clutter-objects. The presence of this object considerably obscures the targets causing a 
false alarm during the detection process. The separation distance between the AP-mine and the clutter-
object plays a primary role on the probability of false alarms. A rigorous electromagnetic model has been 
developed to analyze the scattering mechanism of two dielectric objects buried beneath a rough ground 
surface as reported in [1]. Using the O(N) fast algorithm, the Steepest Descent Fast Multipole Method 
(SDFMM) [2-3] tremendously accelerates the computations of the N unknown surface currents [1,4]. 
When the two objects were located close to one another under flat ground, the strong scattering 
interference generates a false response appearing to be a third buried object [1]. The dependency of the 
observed scattering interference on the ground roughness parameters is investigated in this work. 

 
II. FORMULATION 

The rigorous electromagnetic model derived in [1] is employed in this work where six integral 
equations are used to obtain the equivalent surface currents on dielectric scatterers shown in Fig. 1 (3-D 
scattering problem). Four different regions are involved in this scattering problem; air, soil, first object 
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and second object. The unknown electric and magnetic currents on the ground surface, on the target 
surface, and on the clutter object surface are approximated using the well-known RWG vector basis 
functions [5]. After some algebraic manipulations, the linear system of equations is obtained as: VIZ = , 
where the total impedance matrix Z  has order of ( ) ( )321321 22 NNNNNN ++×++ . The number of 
electric and magnetic current unknowns (edges) on the ground, on the target and on the second object are 

12N , 22N  and 32N , respectively. The tested tangential incident electric field incE  and the tested 
normalized magnetic field incH1η  on the exterior of the ground surface are expressed in V . The 
SDFMM is implemented to significantly accelerate solving the linear system of equations for the 
unknown current coefficients [1-4]. 

 
III. NUMERICAL RESULTS 

In this Section, we investigate the scattering interference between the two buried objects as a function 
of their separation distances and the ground roughness. Several values for the root mean square height σ 
and the correlation length lc are considered with emphasis on small roughness parameters for the AP-mine 
detection application. The incident wave is assumed to be a Gaussian beam at normal incidence that is 
carefully tapered to minimize edge effects [6]. The two objects are oblate spheroids with dimensions 

030 λ= .a , 0150 λ= .b  and at depth oz λ4.0−=  measured from the center. The relative dielectric 
constant of the ground soil is assumed to be 18052 .j.r −=ε  and for both objects is assumed to be 

072.09.2 jr −=ε . The oo λλ 88 ×  ground surface is discretized into 60,000 electric and magnetic surface 
current unknowns. Each object is disretized into 600 electric and magnetic surface current unknowns. In 
order to analyze the object signatures, the electric fields scattered from each rough ground are removed by 
subtraction similar to our work in [4]. 

In Fig. 2, the object signatures are plotted across the diagonal as shown in Fig.1. When the two 
objects are separated by S = 1.4λo, the results show three peaks of almost equal magnitudes; the first peak 
is above the first object, the second peak is above the second object and the third peak is at mid-point 
between them. This third peak is due to the strong constructive interference between the two objects. This 
phenomenon could easily cause a false alarm during the detection process. However, when the separation 
distance increases, the mid-point peak is dissolved into several secondary peaks as observed when S = 
2.1λo and 2.8λo. These secondary peaks become insignificant when S is increased to 4.2λo. As noticed in 
this figure, the asymmetry around the mid-point (x = 4.0λo) is clearly caused by the random roughness of 
the ground. Moreover, the magnitudes of all peaks decrease with increasing separation distance because 
the objects are further from the beam footprint center (ground center in this work). In Figs. 3 and 4, the 
separation distance is S = 1.4λo, the range for σ is 0.04λo-0.1λo and the range for lc is 0.4λo-1.0λo. The 
results clearly show the influence of the roughness parameters, however, the observed strong interference 
(mid-point peak) is slightly affected by the ground roughness in this case. This study is repeated for S = 
2.1λo as shown in Figs. 5 and 6, and for S = 2.8λo as shown in Figs. 7 and 8. It is interesting to notice that 
when the separation distance becomes several correlation lengths, as shown in Figs. 6 and 8, stronger 
scattered interference is observed. This is demonstrated by the increase in the number of secondary peaks 
from three in the flat ground case to four and five in the rough ground case as shown in Figs. 6 and 8, 
respectively. This mechanism could increase the possibility of false alarms. 

 
IV.  CONCLUSIONS 

False alarms could easily occur because of the interference mechanism between the target and a 
second nearby object buried under the ground. The roughness parameters strongly influence the scattering 
interference mechanism between the two objects, which could increase the probability of false alarms. 
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Fig. 1. (a) Cross section along the diagonal direction for two
objects buried under rough ground, (b) Top view. 
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Fig. 2. Scattered near-electric field of just the two objects at normal incidence when S/λo =1.4-4.2 and ground 
roughness parameters are σ/λo=0.1 and lc /λo=0.5. The separation distance S is shown in Fig. 1b. 
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Fig. 3. Scattered near-electric field of just the two objects at normal incidence when S/λo =1.4 and ground roughness 
parameters are lc /λo=0.5 and σ/λo=0.04-0.1. 
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Fig. 4. Scattered near-electric field of just the two objects at normal incidence when S/λo =1.4 and ground roughness 
parameters are σ/λo =0.1 and lc /λo =0.4-1.0. 
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Fig. 5. Scattered near-electric field of just the two objects at normal incidence when S/λo =2.1 and ground roughness 
parameters are lc /λo=0.5 and σ/λo=0.04-0.1 

0 1 2 3 4 5 6 7 8

10-3

10-2

 
 

Fig. 6. Scattered near-electric field of just the two objects at normal incidence when S/λo =2.1 and ground roughness 
parameters are σ/λo =0.1 and lc /λo =0.4-1.0. 
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Fig. 7. Scattered near-electric field of just the two objects at normal incidence when S/λo =2.8 and ground roughness 
parameters are lc /λo=0.5 and σ/λo=0.04-0.1 
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Fig. 8. Scattered near-electric field of just the two objects at normal incidence when S/λo =2.8 and ground roughness 
parameters are σ/λo =0.1 and lc /λo =0.4-1.0. 
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ABSTRACT 
 
This paper analyzes various ground-contact microwave antenna designs for land mine 
detection.  Designs include monopole probes with differing tip lengths, and small loop 
probes.  Factors affecting the performance of the antenna include position of the antenna 
in the soil, angle of insertion into the ground, type of soil (loam, sand, etc.), and the 
moisture of the soil.  It is important to find an antenna whose frequency response varies 
minimally with depth.  Using a metal rod and a deactivated plastic mine as targets, a soil 
tank, and a network analyzer to observe the coupling of the antenna to the soil and to the 
target, we experimentally show that for the best antenna tested — a 2 cm tip monopole 
probe — both targets could be unambiguously detected and discriminated. 
 
 
 
INTRODUCTION 
 
Although there are many technologically advanced means of detecting mines in the field, 
the problem is far from being solved.  It is important to consider detector cost, 
practicality, and adaptability to currently used systems.  While a scientifically 
sophisticated sensor might be able to perfectly image a buried mine shape anomaly or 
detect the presence of high explosive, these systems often require laboratory-like 
background conditions, lengthy acquisition times, or a large truck full of support 
equipment.  To address the current high-priority need for improving the effectiveness of 
current mine detection equipment, this study examines a relatively simple adaptation of 
the confirmatory probe. 
 
The vast majority of handheld mine detection is performed by first alarming at the 
presence of buried metal with a electromagnetic induction sensor, and then poking the 
ground in the vicinity of the suspected target with a narrow nonmetallic probe.  This is 
tedious, dangerous, and often frustrating work, with the most likely outcome being 
finding nothing:  no mine, no metal, not even a rock.   Speeding up this probing process 
by lowering the false alarm rate, and reducing the danger by providing advanced warning 
would be of great advantage to the person sweeping the field. 



 
The mine detection problem is even more difficult when the target is nonmetallic.  
Although an EMI metal detector can often detect the small metal mass in firing pins and 
striker plates and cups in plastic mines, its sensitivity must be increased so much that any 
scrap bit of metal would register an alarm.  In addition, plastic mines share similar 
dielectric characteristics to soil, thus making it harder to locate with ground penetrating 
radar [1, 2].    
 
With rough ground surfaces, the random clutter intensity caused by the ground reflection 
is often greater than the scattering by the nonmetallic target [3, 4].  One advantage of a 
probe-mounted ground penetrating antenna is that the interrogating signal starts under the 
ground surface.   The clutter from the random rough ground surface still has a measurable 
effect, but since the reflection is from below the surface, it is much less than for 
conventional ground penetrating radar. 
 
When designing antennas for this purpose, many factors need to be taken into 
consideration.  The antenna radiation pattern in soil is important.  If the antenna generates 
a symmetrical field pattern, it can be inserted into the ground at any orientation relative to 
the target.  The best frequency range that is both relatively independent of antenna depth 
in soil and most sensitive to foreign objects must be determined.  And it goes without 
saying that the antenna should be able to pierce the soil with minimal probability of 
disturbing the land mine. 
 
This experimental study considered two types of  antennas which could be easily 
incorporated into a soil probe:  a monopole, constructed by simply removing the outer 
conductor of a semi-rigid coaxial cable; and a small loop, constructed by bending the 
extended coaxial center conductor into a loop and joining it with the outer conductor.  
 

                    
 

Figure 1:  Monopole and loop antennas suitable for ground penetrating probes 
 
 

 
By analyzing the reflected signal (S11) from these antennas with a network analyzer it is 
possible to determine some of the characteristics of the surrounding medium.  
Measurements were made in the frequency range of 0.5 GHz to 8 GHz to observe any 
wideband resonance effects and ensure that there was adequate sensitivity to short 
distances from the probe to the target. 



LOOP ANTENNA DESIGN 
 
Constructing a 5 mm loop antenna requires stripping approximately 1.5 cm of the copped 
outer conductor from a semi-rigid cable, and bending the inner wire around into a loop 
and soldering it to the remaining outer copper conductor.  This exposed loop can be 
modeled as a small magnetic dipole, couple microwave power primarily though the 
magnetic field passing through the loop. 
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Figure 2:  Measured S11 as a function of loop antenna depth. 

 
Our results showed that the loop coupled well with the soil, especially from 6.5 GHz to 8 
GHz.  Its depth independence within this frequency range is excellent, as shown in Figure 
2, with almost no variation in S11 for 1.5 to 3 inch loop burial depth.  However, the 
sensitivity of the loop to other objects in the soil was poor, as indicated in Fig. 3.  It is 
difficult to distinguish the differences caused by nearby targets. 
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Figure 3:  Measured S11 of loop antenna near buried targets. 

 



MONOPOLE PROBE ANTENNA DESIGN 
 
The nearfield pattern created by the simple monopole probe of Figure 1 is as uniform as 
possible, which is advantageous since it allows the observer to place the antenna at 
almost any orientation in the ground and expect similar results.  The only design 
consideration with this type of probe antenna is the amount of outer copper conductor 
stripped off.  The plastic coating on the inner wire was kept to increase durability for our 
testing.  Probes with different tip lengths were tested (1 cm to 3 cm). 
 
The various length monopole probe antenna were tested for its frequency dependent 
electromagnetic coupling to the surrounding  soil medium, and its dependence with depth 
of insertion and the extent of perturbation in the presence of nearby buried plastic and 
metal targets.  An ideal antenna will transmit the all power supplied to it across a range of 
frequencies no matter the depth of the soil in which it is buried.   The 2 cm tip probe gave 
the best results.  Figures 4 and 5 show its depth-independent coupling in moist clay soil. 
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Figure 4:  Measured S11 of 2 cm tip monopole antenna at 60 degrees insertion angle for a 

variety of burial depths 
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Figure 5:  Detail of Figure 4. 



Measurements were conducted for both the normal inserted probe, and the more realistic 
case of 60° insertion angle.  We found better results for the latter, with best 
discrimination of targets in the 7.5 GHz to 8 GHz a range.  The 2 cm tip monopole could 
differentiate between no target, a thin metal rod, and a plastic antipersonnel mine in close 
proximity for both 2.0 cm (Figure 5) and 2.5 cm (Figure 6). insertion depths in both moist 
soil and dry sand (Figure 7). 
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Figure 5:  Measured S11 of 2 cm tip monopole antenna at 60 degrees insertion angle at 

2.0 cm below surface near mine targets in moist clay soil 
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 Figure 6:  Measured S11 of 2 cm tip monopole antenna at 60 degrees insertion angle at 
2.5 cm below surface near mine targets in moist clay soil 
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Figure 7:  Measured S11 of 2 cm tip monopole antenna at 60 degrees insertion angle at 

2.0 cm below surface near mine targets in dry sand 
 
 

 
 
CONCLUSIONS 
 
Depth independent soil coupling across a wide frequency range with a simple symmetric 
field pattern are important characteristics of a good probe-based ground penetrating 
antenna.  We examined several types of small antennas that could be readily incorporated 
into existing mine confirmation probes, and found that the simple monopole antenna 
satisfied these requirements.  The 2 cm monopole probe was best able to couple to 
common soils yet detect impedance differences of small buried nearby plastic and metal 
objects.  Using a monopole antenna to sense the impedance variations in soil has the 
potential of aiding the mine detection process by alarming before actually contacting the 
object. 
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Abstract 
 
To detect and classify mines floating in seawater using radar, it is essential to understand 
and quantify the electromagnetic scattering by the target immersed in its realistic 
cluttered background.  While the metallic surface of the mine presents a strong scattering 
target, the water surrounding it will strongly scatter incident waves as well.  In addition, 
seawater is electromagnetically lossy, readily absorbing incident waves. While deeply 
submerged mines are undetectable, a floating mine might be partially exposed, scattering 
waves that could be distinguished from those scattered by the background.  The degree to 
which the target scattered waves can be discriminated from the waves scattered by the 
random water surface height variations determines whether the mine can be detected in 
realistic situations. 
 
Computational modeling shows that even when a mine is mostly submerged, the 
scattered fields are still quite characteristic of a large metallic scatterer.  Close inspection 
shows that the scattered waves are scattered most strongly in the vertical direction.  This 
study shows that only a small amount of the target need be expose to generate significant 
scattered field that is distinguishable from a very rough water surface.   
 
 
 
 
Introduction 
 
 
To determine the expected scattering features of the mine in it actual environment, a full 
phenomenological study of the target in a variety of backgrounds must be conducted.  
While it might be possible to experimentally measure the a portion of the fields scattered 
by a scale model mine in a test tank, it would be extremely challenging to capture the 
entire wave behavior throughout all space near the target without perturbing the field one 
is measuring with measurement antennas.  In addition, controlling the state of the water 
surface is problematic.  Thus, the only practical way to capture the scattered field is to 
model it numerically.   
 



Current electromagnetic computational capabilities allow for sophisticated modeling of 
wave scattering on desktop computers.  The most applicable modeling method for this 
problem for standard radar sources is the finite difference frequency domain (FDFD) 
method.  For impulse radars, the time domain version, FDTD is best.  Both the FDFD and 
FDTD methods discretize all space in the vicinity of the target, and approximate the 
differential form of Maxwell’s equations with second-order finite differences of nearest 
neighbors.  Both methods are flexible, with easy specification of rough surfaces, corners, 
and fins, and both can model metal, conductive dielectrics, and frequency-dependent 
material. 
 
One important detail, which must be carefully addressed for exterior, unbounded 
geometries, is simulating the wave's radiation to infinity.  Although the computational 
domain terminates at the end of the array lattice, the wave must act as if it were 
continuing outward.  In other words, the wave must not reflect off the artificial boundary.  
The boundary must absorb all incident waves; hence it is referred to as an Absorbing 
Boundary Condition (ABC).  In principle, no numerical condition can absorb waves from 
every incident angle, but there have been several ABC's proposed which absorb those 
near normal incidence making use lossy matched layers and pseudo-differential 
annihilation operators.   
 
The FDFD method requires the solution of the set of simultaneous equations that self-
consistently describe the electric and/or magnetic fields everywhere in space for a given 
frequency [1, 2].  As such, the resulting matrix equation involves a very large, very 
sparse square matrix.  Depending on the ABC, as few as a dozen entries in any given row 
of a 2-D or 3-D FDFD matrix are non-zero.  The ABC used in this analysis is the 
perfectly matched layer (PML) of Berenger [3-6] 
 
 
 
 
 
Prototypical Problem Geometry 
 
 
As an example of the 2-D modeled fields near a typical spherical sea mine in rough seas 
is shown in Fig. 1.  This geometry considers a mine floating substantially out of the 
water.  The water surface varies with Gaussian height and correlation length statistics, 
which might be typical of ocean waves.  The various identified regions represent those 
perturbations to a nominal air/water half-space that give rise to the non-ideal scattered 
waves.  The nominal plane wave scattering from a smooth, target-free problem geometry 
is determined analytically, and can be added to the perturbation-scattered field to give the 
total field. 
 
 
 
 



 
 
 
Figure 1  Problem geometry, showing various modeled regions:  air (top, orange), 
nominal water (bottom, green), water peaks (middle right, yellow), water troughs (middle 
left, salmon), mine below nominal water level (bottom middle, blue), mine above 
nominal water level (center, red). 
 
 
Computed Results 
 
The total field for 300 MHz normally incident plane wave excitation (as generated by an 
airborne radar pointing straight down) for the target geometry of Fig. 1, is shown in Fig. 
2.  Note the recognizable outline of the circular metallic target, the almost complete 
exclusion of field from the water, and the change in standing wave structure around the 
mine.  Also note the left/right asymmetry of field due to the differences of the surface 
heights on the left and right sides of the problem space. 
 
 

 
 

 
Figure 2  Total electric field at 300 MHz, for horizontally polarized E-field (into plane of 

figure), for geometry of Figure 1. 



 
Figure 3 shows the scattered field only; e.g., fields of Fig. 2 less the analytic plane wave 
scattering of the planar water half-space.  From a radar detection perspective, it is the 
field of Fig. 3 that would be measured once the nominal signal is removed.  The waves 
scattered by the mine are significantly greater than those of the rough water surface.  It 
appears clear that this target could be picked out of the background clutter with radar. 
 

 
 

Figure 3  Electric field at 300 MHz due to just the mine and the surface roughness, for 
horizontally polarized E-field (into plane of figure), for geometry of Figure 1. 

 
 
Figures 4 and 5 show the total and scattered fields for the same problem geometry at the 
higher frequency of 500 MHz.  Clearly the wave structure is more complicated, with 
additional nodal structure in the horizontal direction.  While the target resolving 
capability of the radar increases with frequency, the clutter effects increase as well.  
Choosing the best frequency, or set of frequencies to detect a particular mine target in the 
presence of a given water surface roughness is an important part of this study. 
 

 
 
Figure 4  Total electric field at 500 MHz, for horizontally polarized E-field (into plane of 

figure), for geometry of Figure 1. 



 
 
 

Figure 5  Electric field at 500 MHz due to just the mine and the surface roughness, for 
horizontally polarized E-field (into plane of figure), for geometry of Figure 1. 

 
 
To consider a slightly different geometry, we test a deeper mine target, as shown in 
Figure 6.  The water surface is chosen to be the same for comparison purposes.  The total 
and scattered fields for this deeper geometry are shown in Figures 7 and 8.  Although this 
mine is mostly submerged, the scattered fields are still quite characteristic of the large 
metallic scatterer.  Close inspection shows that the scattered waves are scattered most 
strongly in the vertical direction, as opposed to the more widely scattered waves of the 
greatly protruding mine of Fig 5.  This example shows that even at the higher frequency, 
only a small amount of the target need be expose to generate significant scattered field 
that is distinguishable from a very rough water surface.   Using multiple frequencies 
greatly enhances the potential for target discrimination [7]. 
 
 
 

 
 
 
Figure 6  Problem geometry for deeper floating mine with the same water surface profile 

of Figure 1 



 
 
Figure 7  Total electric field at 500 MHz, for horizontally polarized E-field (into plane of 

figure), for geometry of Figure 6. 
 
 
 

 
 

Figure 8  Electric field at 500 MHz due to just the mine and the surface roughness, for 
horizontally polarized E-field (into plane of figure), for geometry of Figure 6. 

 
 
Conclusions 
 
Although seawater is relatively impenetrable to RF waves, and causes strong reflections 
from its random rough surface, computational modeling has shown that it is still possible 
to detect the stronger and more organized scattering from the top of a floating sea mine.  
By considering additional information of multiple views of the same metal target with a 
moving water surface, it is possible to distinguish the target from the background.  The 
scattered wave features of the circular metal target appear to be relatively independent of 
depth, and thus provide a detectable invariant in the highly cluttered background.  There 
appears to be great potential in the use of radar to find floating sea mines. 
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Abstract 

A rigorous electromagnetic model has been developed to analyze the scattering from two 

dielectric shallow objects buried under the 2-D random rough ground as a means of predicting 

false alarms due to a clutter object near a target object. The Method of Moments (MoM) 

accelerated by the Steepest Descent Fast Multipole Method (SDFMM) is used to compute the 

unknown electric and magnetic surface currents on both the rough ground surface and the two 

buried objects. The roughness parameters strongly influence the scattered interference of the two 

objects, especially when their separation distance is several correlation lengths. This could 

increase the probability of false alarms. 

I. INTRODUCTION 

In realistic minefields, buried anti-personnel (AP) nonmetallic mines are often closely 

accompanied by underground clutter-objects. The presence of this object considerably obscures 

the targets causing a false alarm during the detection process. The separation distance between 

the AP-mine and the clutter-object plays a primary role on the probability of false alarms. A 

rigorous electromagnetic model has been developed to analyze the scattering mechanism of two 

dielectric objects buried beneath a rough ground surface as reported in [1]. Using the O(N) fast 



 2

algorithm, the Steepest Descent Fast Multipole Method (SDFMM) [2-3] tremendously 

accelerates the computations of the N unknown surface currents [1,4]. When the two objects 

were located close to one another under flat ground, the strong scattering interference generates a 

false response appearing to be a third buried object [1]. The dependency of the observed 

scattering interference on the ground roughness parameters is investigated in this work. 

II. FORMULATION 

The rigorous electromagnetic model derived in [1] is employed in this work where six 

integral equations are used to obtain the equivalent surface currents on dielectric scatterers 

shown in Fig. 1 (3-D scattering problem). Four different regions are involved in this scattering 

problem; air, soil, first object and second object. The unknown electric and magnetic currents on 

the ground surface, on the target surface, and on the clutter object surface are approximated 

using the well-known RWG vector basis functions [5]. After some algebraic manipulations, the 

linear system of equations is obtained as: VIZ = , where the total impedance matrix Z  has 

order ( ) ( )321321 22 NNNNNN ++×++ . The number of electric and magnetic current 

unknowns (edges) on the ground, on the target and on the second object are 12N , 22N  and 32N , 

respectively. The tested tangential incident electric field incE  and the tested normalized magnetic 

field incH1η  on the exterior of the ground surface are expressed in V . The SDFMM is 

implemented to significantly accelerate solving the linear system of equations for the unknown 

current coefficients [1-4]. 

II. NUMERICAL RESULTS 

In this Section, we investigate the scattering interference between the two buried objects as a 

function of their separation distances and the ground roughness. Several values for the root mean 

square height σ and the correlation length lc are considered with emphasis on small roughness 
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parameters for the AP-mine detection application. The incident wave is assumed to be a 

Gaussian beam at normal incidence that is carefully tapered to minimize edge effects [6]. The 

two objects are oblate spheroids with dimensions 030 λ= .a , 0150 λ= .b  and at depth oz λ4.0−=  

measured from their centers. The relative dielectric constant of the ground soil is assumed to be 

18052 .j.r −=ε  and for both objects is assumed to be 072.09.2 jr −=ε . The oo λλ 88 ×  ground 

surface is discretized into 60,000 electric and magnetic surface current unknowns. Each object is 

discretized into 600 electric and magnetic surface current unknowns. In order to analyze the 

object signatures, the electric fields scattered from each rough ground are removed by 

subtraction similar to our work in [4]. 

In Fig. 2, the object signatures are plotted across the diagonal as shown in Fig.1. When the 

two objects are separated by S = 1.4λo, the results show three peaks of almost equal magnitudes; 

the first peak is above the first object, the second peak is above the second object and the third 

peak is at mid-point between them. This third peak is due to the strong constructive interference 

between the two objects. This phenomenon could easily cause a false alarm during the detection 

process. However, when the separation distance increases, the mid-point peak is dissolved into 

several secondary peaks as observed when S = 2.1λo and 2.8λo. These secondary peaks become 

insignificant when S is increased to 4.2λo. As noticed in this figure, the asymmetry around the 

mid-point (x = 4.0λo) is clearly caused by the random roughness of the ground. Moreover, the 

magnitudes of all peaks decrease with increasing separation distance because the objects are 

further from the beam footprint center (ground center in this work). In Fig. 3, the separation 

distance is S = 1.4λo, σ is 0.1λo and the range for lc is 0.4λo-1.0λo. The results clearly show the 

influence of the roughness parameters, however, the observed strong interference (mid-point 

peak) is slightly affected by the ground roughness in this case. Similar results were obtained 
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upon varying σ from 0.04λo to 0.1λo with lc =0.5λo. This study is repeated for S = 2.1λo as shown 

in Fig. 4 and for S = 2.8λo as shown in Figs. 5 and 6. It is interesting to notice that when the 

separation distance becomes several correlation lengths, as shown in Figs. 4 and 6, stronger 

scattered interference is observed. This is demonstrated by the increase in the number of 

secondary peaks from three in the flat ground case to four and five in the rough ground case as 

shown in Figs. 4 and 6, respectively. This mechanism could increase the possibility of false 

alarms. 

III.  CONCLUSIONS 

False alarms could easily occur because of the interference mechanism between the target 

and a second nearby object buried under the ground. The roughness parameters strongly 

influence the scattering interference mechanism of the two objects, which could increase the 

probability of false alarms. 
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Fig. 2. Scattered electric near-field of just the two objects at oz λ5.0=  when S/λo =1.4-4.2 and ground 
roughness parameters are σ/λo=0.1 and lc /λo=0.5. The separation distance S is shown in Fig. 1b. 

Fig. 1. (a) Cross section along the diagonal direction for two 
objects buried under rough ground, (b) Top view. 
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Fig. 4. Scattered electric near-field of just the two objects at oz λ5.0=  when S/λo =2.1 and ground 
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Fig. 6. Scattered electric near-field of just the two objects at oz λ5.0=  when S/λo =2.8 and ground 
roughness parameters are σ/λo =0.1 and lc /λo =0.4-1.0. 
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Statistical Method to Detect Subsurface

Objects Using Array Ground Penetrating

Radar Data
Xiaoyin Xu, Eric L. Miller, Carey M. Rappaport and Gary D. Sower

Abstract

We introduce a combination of high-dimensional analysis of variance (HANOVA) and

sequential probability ratio test (SPRT) to detect buried objects from an array ground pene-

trating radar (GPR) surveying a region of interest in a progressive manner. Using HANOVA,

we exploit the transient characteristic of GPR signals in the time domain to extract infor-

mation about buried objects at �xed positions of the array. Based on the output of the

HANOVA, the SPRT is employed to make detection decisions recursively as the array moves

downtrack. The method is on-line implementable and of low computational complexity. Our

approach is validated using �eld-data from a landmine detection application.

Index Terms

Analysis of variance (ANOVA), GPR mine detection, array signal processing, sequential

detection, transient signal analysis.

I. Introduction

Ground penetrating radar (GPR) is widely used in detecting subsurface objects such as

buried landmines, unexploded ordnance, and utility lines [1]. Compared with other subsur-

face sensing technologies, GPR has a few advantages. First, it is sensitive to changes in all

three electromagnetic characteristics of a media, electric permittivity, electric conductivity,

and magnetic permeability. Thus GPR is capable of detecting both metallic and non-metallic

X. Xu, E. L. Miller, and C. M. Rappaport are with the Center for Subsurface Sensing and Imaging Systems,
Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA. G. D. Sower
is with the EG&G MSI Inc., 2450 Alamo Ave. S.E., Albuquerque, NM 87106. This work was supported by an ARO
MURI on Demining under Grant DAAG55-97-1-0013
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TRANSIENT STATISTICAL METHOD FOR ARRAY GPR PROCESSING 1

objects. Second, unlike sensors that can only survey an area directly beneath them, GPR can

survey an area in front of it [2,3]. Therefore a GPR system can be used to detect dangerous

objects before the system moves over and past them. This can be important for operations

such as buried landmine detection and unexploded ordinance remediation.

A typical GPR transmitter/recover con�guration is shown in Fig. 1(a). The system

consists of one transmitter and one receiver. The transmitter emits a short pulse of electro-

magnetic energy and the receiver collects the echo for a certain time period. The exact type

of the transmitter and receiver, shape of the electromagnetic pulse, and system setup depend

on the speci�c application of the GPR [1, 4{6]. To improve performance and e�ciency, a

GPR array is usually employed to sweep a large area in a relatively short time. Fig. 1(b)

shows a typical GPR array moving in the x-direction. At every stop of the array, the GPR

array operates in the following sequence: 1) the �rst transmitter radiates a pulse into the

ground and then turns o�, 2) the �rst receiver turns on to collect reected signal, 3) the �rst

receiver turns o� after a short time, usually 10 to 20 ns. The above process repeats from

every pair of transmitters and receivers and then the GPR array moves to next position.

Based on the echoes, the processing objective is to determine if an object is present in the

GPR's �eld of view.

The inherent near-�eld nature of the GPR detection problem coupled with the fact

that the objects of interest are embedded in an inhomogeneous halfspace with a typically

rough interface present some signi�cant challenges in the area of GPR signal processing.

Indeed assuming one has detailed knowledge of the air-earth interface as well as the electrical

properties of the subsurface, just modeling the received signal using, for example, a three

dimensional �nite di�erence time domain code, is a daunting task [4, 7]. The use of such a

forward model in any form of on-line processing routine where one might need to account
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Fig. 1. Setup, a) a single GPR system, b) a GPR array (plane view).

for e.g. unknown ground structure is clearly infeasible at the current time.

Thus, here we consider detection methods which are less computationally demanding

with an eye toward approaches that could be used in real-world scenarios. Our interests

are in techniques possessing three important characteristics. First, to reect the manner in

which GPR data are acquired and the nature of the GPR mission, the algorithms should

be causal in that they need only the data at the current and previous sensor position to

determine whether an object is present in the �eld of view of the sensor. Second, they

should be of low complexity. Preferably the number of calculations would grow linearly with

the size of the data set. Finally, the processing schemes should be robust to uncertainties in

the GPR environment and hence the particular detailed structure of the received signals.

Current signal processing methods with some or all of these characteristics fall into

one of three categories. First, pattern matching methods [8] employ techniques such as

fuzzy set theory and neural networks. Such methods can be fast but also require extensive

training to function well. Second, image-then-detect techniques [9] employ a beamforming or

backpropagation approach to build an image of the subsurface which is then post-processed

to detect objects. These approaches generally require the data from the full GPR scan to
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TRANSIENT STATISTICAL METHOD FOR ARRAY GPR PROCESSING 3

form an image and are thus not well suited to on-line computations in which information is

processed sequentially as the array proceeds down-track. Finally, there has been much work

done in statistical signal processing, where one can employ statistical tools to detect objects

and examine quantities such as probability of detection and probability of false-alarm [10].

Here we consider a statistical, transient detection approach. By \transient" we mean

that the signals of interest are manifest in the GPR data for a small number of sensor

positions and for relatively few samples in any received waveform. For example, in Fig. 2

we plot raw observations obtained by one T/R pair from an EG&G GPR system [11], over

an M20 metal mine. Each column of this image is a time-series of observations for a given

stop of the array. It is seen that the received GPR signal is transient in two ways. First, for

each time-series (i.e. for each column of the image) containing an object signal, the signal

appears only in a brief window, roughly from samples 300 to 700. The reason is that the

object signal always comes after the signal arising from the bounce o� of the air-ground

interface and attenuates quickly in lossy media. Second, the object signal shows up only at

a few down-track positions of the GPR array, speci�cally locations 15 through 25. In both

cases, the appearance of object signal changes the mean value of the data. Our method

for object detection then is based on detecting change in this mean �rst in the cross-track

direction and then in the down-track direction.

More speci�cally our approach consists of two parts. First, at each down-track position

of the array, we process the data among all T/R pairs to generate one test statistic. We

use high-dimensional analysis of variance (HANOVA) to test whether the data consists of

reected signal from a buried object. The HANOVA is a generalized version of standard

analysis of variance (ANOVA), which is a method for testing hypothesis about means of

random vectors [12, 13]. Second, a sequential probability ratio test (SPRT) is applied to
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Fig. 2. Observation from one T/R pair, for a metal mine M20 buried at about position 20. Unit in
down-track position is about 7.6 cm. Unit in time axes is 0.02 ns.

process the statistic of the HANOVA as the array moves down-track. The SPRT is a recursive

statistical hypothesis testing technique that provides early indication of the onset of changes

in a time series. The output of the SPRT is compared with a threshold. If it exceeds the

threshold, a detection is declared, otherwise, the GPR array moves one more step down-track

and new data are collected and processed in the above manner [14].

As explained in greater detail below, our approach does in fact satisfy the three require-

ments we discussed previously. It is causal and has computational complexity that grows

linearly with the size of the data. Moreover, we show through real-data examples that it

is robust, requiring little in the way of training and able to successfully address the object

detection problem for a number of GPR systems operating in a wide range of environments.

We do stress here that the algorithm in this paper is intended only to �nd anomalies beneath

the GPR array and not to solve the far more challenging classi�cation problem. Thus, from

a practical perspective our approach will serve well as an e�cient \pre-screener" in a larger

automatic target detection algorithm suite. Finally, our method is motivated by landmine

detection using GPR, however it can also be used in other detection application, such as

laser-induced acoustic subsurface objects detection [15].

The paper is organized as follows. Section II discusses the problem formulation and our
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method. Section III gives some examples of using the method in di�erent situations. Field

data from di�erent radar con�gurations and test sites are used to show how the algorithm

works. Conclusion and direction of future work are given in Section IV.

II. PROBLEM FORMULATION AND ALGORITHM

To begin, we consider a single GPR T/R pairs as shown in Fig. 1(a). After each transmis-

sion, the receiver collects an echo for a certain amount of time. Depending on the presence of

an object, there are either two or three components in the echo. One is measurement noise,

assumed to be white and Gaussian. Another is background, i.e., \nominal" signal observed

in object-free regions. The third component is object signal, reection from a buried object.

For the GPR array shown in Fig. 1(b), assume we have M GPR Transmitter/Receiver

(T/R) pairs surveying an area in N steps, the task is to use present and previous array mea-

surement to detect buried mines as the array moves down-track. At each down-track position,

we model the array detection problem in a typical hypotheses testing framework [14],

H0 : there is no object;

H1 : there is an object:

The null hypothesis H0 means that there is no buried object in the �eld of view of the GPR

array, so the total received signal is comprised of nominal background and measurement noise.

By nominal background, we mean any portion of the received waveform not sensor noise and

not arising from the interaction of the transmitted pulse with the object. Reection from the

air-ground interface is the dominant component of this part of the signal. The alternative

hypothesis H1 indicates that there is buried object so that the received signal consists of

nominal background, measurement noise, and an object signal.

In this paper we assume that the nominal background signal has been removed via a
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preprocessing stage. The most used background removal methods include casual methods,

such as subtraction of a moving average from the observation [16], and non-causal methods,

such as subtraction of an ensemble average from the observation [17, 18]. Causal methods

use data from previous and present collection, non-causal methods use data from previous

and future collection. In this paper, a moving average (MA) �lter is used to eliminate the

nominal background.

In practice, the receiver collects time-samples of the reection and stores it as a vector.

For convenience, we use vector notation in our discussion, i.e., y(m;n) is a column vector

representing observation of the mth T/R pair at the nth down-track position. The length

of y(m;n) is K, the number of samples in time. Fig. 3 shows the received signal after the

nominal background removal.1 We then have the hypothesis test

H0 : y(m;n) = v

H1 : y(m;n) = s(m;n) + v (1)

where m = 1; � � � ;M , n = 1; � � � ; N are positions of GPR, s(m;n) is the assumed signal

due to presence of buried object, v is assumed to be a white Gaussian noise with a zero

mean, and covariance matrix �2
vI, where I is the identity matrix of size K and independent

of (m;n).

The statistical assumptions about v are not strictly accurate in describing the noise

in a GPR signal. For example the background removal process will not be perfect leaving

a component of correlated \clutter" in the data which may or may not possess Gaussian

statistics. Despite the mismatch, the use of the additive white Gaussian noise model is

useful for a number of reasons. This model allows us to develop an algorithm for object

1 For the purpose of illustration, in this section we use �eld data from a buried metal mine to illustrate clearly the
concept under consideration. Examples which demonstrate better the utility of our approach on more challenging
problems, including buried plastic mines, are given in Section III.
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Fig. 3. Signals from four T/R pairs, after background removal, a) pair 1, b) pair 2, c) pair 3, d) pair 4.
Unit in time axes is 0.02 ns.

detection which is �rmly rooted in Gaussian-based statistical decision theory and which can

be generalized in the future for more complex noise processes. Moreover, the complexity of

such algorithms is quite low making them well suited for real-world implementation. Finally,

test results in Section III from real �eld data demonstrate that the method is quite e�ective

in detecting objects. Thus, the Gaussian noise model is shown to work in practice. While it

may be interesting to explore other, more accurate models for the sensor noise to determine

for example what can be gained in terms of performance and what would be lost in terms

of computational complexity, such an e�ort is beyond the scope of the work in this paper.
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Based on the previous discussion, after background removal the hypothesis test in (1)

may be written as

H0 : y(m;n) � N(0; �2
vI)

H1 : y(m;n) � N(s(m;n); �2
vI); m = 1; � � � ;M; n = 1; � � � ; N (2)

where the notation y � N(x;R) indicates that y is distributed as a Gaussian random vector

with mean x and covariance matrix R.

As stated in the Introduction, we take a two-step approach to the processing of y(m;n).

First for each n we use the HANOVA procedure to generate a single test statistic, Y (n), from

the data from all T/R pairs. Second, a recursive, sequential detection scheme is employed

to process Y (n) as we proceed down track in order to determine where objects are present.

A. Cross-track Processing

We begin by discussing the use of HANOVA to process data in the cross-track direction.

HANOVA is a generalized version of analysis of variance (ANOVA). ANOVA is a body of

methods to analyze the data with a view to test hypotheses about the e�ects of one or more

factors [19]. To review the basics of ANOVA, we follow the notation established above for the

GPR problem and for simplicity assume we have one data vector of size K � 1 from a single

T/R pair, y � N(s; �2I) and we wish to test H0 : s = 0 (i.e., no object) vs. H1 : s 6= 0 (i.e.,

an object present)2. Standard ANOVA is essentially an \energy detection" scheme [12] where

we estimate s by y, generate the test statistic Y = kyk2, and compare Y to a threshold, .

If Y exceeds the threshold, H1 is chosen, else H0 is selected. The probability of detection of

the standard ANOVA is

Pd(H1jH1) = Q

�
 � jjsjj2

�2
p
2Kq

1 + 2jjsjj2
�2K

�
(3)

2 For notational simplicity, we drop the explicit dependence of all quantities on m and n in this discussion
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where  is the test threshold decided by setting an acceptable probability of false-alarm

under H0 and Q is the complementary cumulative distribution function and is strictly de-

creasing [20]

Q(Y ) =

Z 1



P1(Y )dY: (4)

Recently, Fan [12] and Fan and Lin [13], have noted that the performance of ANOVA

su�ers for problems when the signal of interest is limited to a window of the observation

vector. The reason is that a full dimensional test loses its power due to accumulation of

stochastic noise. To see why, suppose s is di�erent from 0 only for say the �rst k0 samples

of the full observation vector. Then on average as K > k0 goes large,
PK

k=1 [s]
2
k =�

2
p
2K

decreases due to the accumulation of zero mean noise samples and the term within the

parenthesis of (3) increases, thus reducing Pd. Therefore, for higher probability of detection,

we would like to con�ne the test on a window mostly containing the signal of the observation

vector. The window we choose is a box window w, de�ned as

[w]k =

8>><
>>:
1; k = k1; � � � ; k2

0; otherwse

(5)

where 1 � k1 < k2 � K. The k1 and k2 are chosen in a preset manner, as discussed later

in this section. Multiplying each element in y by the corresponding element of w gives the

windowed yw

[yw]k = [y]k � [w]k ; k = 1; � � � ; K: (6)

To demonstrate the utility of HANOVA, we test the time-series shown in Fig. 4(a). We

choose to test the vector at its full dimension k1 in (5) is 1 and k2 = 1000, and two windowed

sub-dimensions (each containing fewer and fewer noise components) k1 = 100 and k2 = 900,
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To choose this window we note that (3) indicates that the probability of detection

achieves its maximum value when the term inside the parenthesis is minimized. Equally, one

wants to maximize the quantity

argmax
k1;k2

Pk2
k=k1

[s(m;n)]2k
�2
v

p
k2 � k1 + 1

�
p
k2 � k1 + 1 (7)

where k1 < k2 and k1; k2 2 1; � � � ; K. The di�culty for us is that in general, the precise

structure of s is not known. Hence, we use the data to form an estimate of s as follows.

Assume we are at the nth stop, then we estimate s by the mean value of the previous l vectors

ŷ(m;n) =

8>><
>>:
Pn
j=1 y(m;j)

j
; n = 1; � � � ; l

Pn
j=n�l y(m;j)

l
; n > l

(8)

where m = 1; � � � ;M and the corresponding window w(m;n) is decided based on ŷ(m;n) as

k1; k2 are de�ned by (7). More will be said about choosing a proper l in Appendix A.

Rather than looking for the optimal window by searching over all k1-k2 pairs, we pursue

a suboptimal, but more e�cient two-stage approach. First, we �x k1 as 1, incrementally

increase k2, and stop when (7) is maximized. Thus we determine the end point of the window

k2. Starting from k2, working backward toward the �rst point, we similarly determine the

starting point of the window, k1. Both searching steps can be computed in linear complexity,

it takes o(K) steps to �nd the k2 and o(k2) steps to �nd the k1
3. In summary the steps for

looking for windows at the nth stop of the GPR array are given in Fig. 5.

Having determined the window at the position (m;n), the next stage of processing is

to generate a single detection statistic at stop n. Here we generalize HANOVA to multiple

vector observations, via

Y (n) =
1

�2
v

MX
m=1

jjyw(m;n)jj2: (10)

3 The notation o(K) means that the computational complexity grows slower than or equally fast as K increases.
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� FOR n = 1 : N
{ FOR m = 1 : M
{ ŷ(m;n) =

Pn
j=n�l y(m;j)

l� Set k1(m;n) = 1, �nd k2(m;n) by

k2(m;n) = argmax
k2=1;��� ;K

�Pk2
k=1[ŷ

2(m;n)]k

�2
v

p
k

�
p
k

�

� Let p[1:k2(m;n)] = �
�
[ŷ2(m;n)][1:k2(m;n)]

�
, where �(�) is an operator that

ips up-down elements of its operand.
� Find k1(m;n) by

k1(m;n) = k2(m;n)� argmax
k

�Pk2(m;n)
k=1 [p2]k

�2
v

p
k

�
p
k

�

� Set the window w(m;n) by

[w(m;n)]k =

(
1; k = k1(m;n); � � � ; k2(m;n)

0; otherwse

� Windowed yw(m;n) is decided by

yw(m;n) = y(m;n)�w(m;n) (9)

{ ENDFOR
� ENDFOR

Fig. 5. Steps of deciding window w(m;n) and yw(m;n).

Note yw(m;n) can be of di�erent length because of di�erent window applied. Fig. 6(a) shows

the result of applying HANOVA to the data in Figure 3. Where the HANOVA output is high,

so too is the likelihood of an object being present. Thus in Fig. 6(a), the object is clearly

detectable. More examples involving di�erent types of objects will be given in Section III.

B. Down-track Processing

While HANOVA detects statistical signi�cance at one stop of the array, it does not

capture the object signal structure seen as the array moves down-track. To improve detection

performance, we employ a sequential detection scheme to process Y (n) recursively as n
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(a) HANOVA result Y (n) over a metal
mine.
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HANOVA .

Fig. 6. HANOVA and SPRT processing results for metal mine data shown in Fig. 3

increases in order to identify the transient signal arising from the mine [14,21]. Speci�cation

of this sequential probability ratio test (SPRT) begins by noting that under our models Y (n)

takes on a �2 distribution under both H0 and H1. Standard statistical analysis [12] yields

H0 : Y (n) � �2PM
m=1

�k(m;n)
(0)

H1 : Y (n) � �2PM
m=1

�k(m;n)
(�2(n)) (11)

for n = 1; � � � ; N where the notation x � �2
p(�

2) indicates that the random variable x

is distributed according to a �2 law of order p and non-centrality parameter �2 [20] and

�k(m;n) = k2(m;n)�k1(m;n) is the length of the (n;m)th window. For the GPR problem

it is easy to show that

�2(n) =
1

�2
v

MX
m=1

jjs(m;n)�w(m;n)jj2: (12)

For our problem, the length of each window, �k(m;n), is large (on the order of hundreds)

and the central limit theorem permits us to approximate the �2 distribution using a Gaussian
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distribution [20]. We then have

H0 : Y (n) � N(�0; �
2
0) � N

 
MX
m=1

�k(m;n); 2
MX
m=1

�k(m;n)

!

H1 : Y (n) � N(�1(n); �
2
1(n)) � N

 
MX
m=1

�k(m;n) + �2(n); 2
MX
m=1

�k(m;n) + 4�2(n)

!
:

(13)

At stop n, the log likelihood ratio for the hypothesis testing problem in (13) is

u(n) = ln
pn(Y (n))

p0(Y (n))
; n = 1; � � � ; N (14)

where pn(Y (n)) is the PDF of Y (n) evaluated at the nth stop under H1 and p0(Y (n)) is the

PDF of Y (n) evaluated under H0. Under H0, �0 and �2
0 are estimated using data from an

object-free area. Therefore, for this algorithm, the GPR array must start by collecting data

in a calibration region to initialize these variables. Under H1, one di�culty with generating

u(n) is that �1(n) and �2
1(n) are typically not known a priori since the underlying s(m;n)

are not assumed known. It turns out that we only need to estimate �1(n), and �2
1(n) can be

found from the following relation

�2
1(n) = 2

MX
m=1

�k(m;n) + 4�2(n)

= 2
MX
m=1

�k(m;n) + 4

�
�1(n)�

MX
m=1

�k(m;n)

�

= 4�1(n)� 2
MX
m=1

�k(m;n): (15)

At the nth stop, we estimate the mean of Y (n) by its maximum likelihood estimator

�1(n) = Y (n).

The sequential probability ratio test statistic U(n) is a cumulative sum, changing with

the acquisition of each new u(n)

U(n) = max(0; U(n� 1) + u(n)): (16)
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� U(1) = 0
� FOR n = 2; � � � ; N

{ �1(n) = Y (n)
{ Form �2

1(n) according to (15)
{ Form u(n) according to (14)
{ U(n) = max(0; U(n� 1) + u(n))
{ IF U(n) > �, declare object, set U(n) = 0, ENDIF

� ENDFOR
Fig. 7. Sequential processing.

Because subsurface object detection is a binary hypothesis testing problem, e.g., we are only

interested in knowing whether there is a buried object, the SPRT statistic is bounded from

lower bound, zero. When U(n � 1) + u(n) is negative, U(n) is reset to zero. For a preset

threshold �, the SPRT will make one of two decisions at each n

U(n) � � ) choose H1

U(n) < � ) take another observation:

The sequential detection is then essentially a repeated SPRT [22] and summarized in Fig. 7.

Fig. 6(b) shows the sequential test statistic when the SPRT is applied to the data in Fig. 6(a).

Because the SPRT in (16) has the form of a modi�ed \integrator," a typical time series for

the SPRT statistic takes a step-like form. The larger and sharper the step, the more likely

it is that a target is present. At the position where there is an object, the sequential test

statistics has a clear upward change again indicating the existence of an object at about

position 16.

III. Examples

In this section we use �eld data as examples to illustrate the performance of our method.

The �eld data are collected by both single GPR and GPR arrays at di�erent test sites. For

each data set, we compare the results from using standard ANOVA, HANOVA, ANOVA
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followed by SPRT, and HANOVA followed by SPRT. Comparison indicates that generally

HANOVA performs better than ANOVA, and with SPRT, both ANOVA and HANOVA make

fewer false-alarms. In other words, HANOVA with SPRT gives the best receiver-operating

characteristics, as we shall see later in this section.

At �rst, we apply our method on data collected by single GPR at di�erent test sites.

Some data are taken under relatively favorable condition, while most are from more hostile

test sites which involve rough ground surface and other clutter. Fig. 8 compares results of

ANOVA and HANOVA on a buried steel object at position 50. For comparison, the outputs

of ANOVA and HANOVA are normalized to one. It is observable that while both methods

detect the object easily, the HANOVA is better in suppressing noise output where there is no

object, e.g., at position 1 through 40 and 60 through 100, Fig. 8(c) and (d). Fig. 9 shows the

results from detecting a plastic mine, M19, at position 50. Again, the HANOVA performs

better in suppressing noise. At positions 20 through 40, the HANOVA creates a much lower

noise level than the ANOVA does. Similarly, the HANOVA produces a cleaner output at

the end of the run.

Fig. 10 shows the results of ANOVA and HANOVA in detecting an anti-tank mine,

TM62, from a very \noisy" data set. The mine is buried at position 60. Outputs of both

HANOVA and ANOVA consist of the correct detection and some false alarms. The HANOVA

maintains a better performance than the ANOVA in the sense that, for a given detection

threshold, the HANOVA would generally have a smaller number of false-alarms. For the

HANOVA, no false alarms will be declared for a threshold greater than 0.5, while for the

ANOVA, the threshold must be set above 0.8 to avoid making a wrong decision. Between

threshold 0.5 and 0.8, the ANOVA will make two false-alarms while the HANOVA has

zero false-alarm.
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(d)

Fig. 8. Results of a single GPR measurement above a steel object around position 50, a) raw observation,
b) observation after nominal background removal, c) ANOVA output, d) HANOVA output. In a) and b),
each unit in time axes is 0.02 ns.

Next, by comparing the outputs of the SPRT in the above three examples, we see that

sequential processing generally smoothes the output and generates fewer false-alarms than by

using ANOVA (or HANOVA) only, Fig. 11. In all three examples, SPRT following HANOVA

performs better than SPRT following ANOVA, in the sense that the output is more leveled

o� at object-free area and the jump at the position of the buried object is sharper.

To study the receiver operating characteristic (ROC) of the method, we test our method

on multiple runs of di�erent type of targets. Fig. 12(a) shows the ROC curves of ANOVA

and HANOVA to detect metallic objects. The objects include metallic mines such as TM15,
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Fig. 9. Comparison between the ANOVA and HANOVA, a) raw data over an M19, anti-tank mine, buried
at position 50, b) demeaned data, c) result of the ANOVA over the M19, d) result of the HANOVA.

TM46, and PMN. Fig. 12(b) shows the ROC of ANOVA-SPRT and HANOVA-SPRT. Com-

pared with Fig. 12(a), SPRT improves the performance of both ANOVA and HANOVA.

In generating these curves a correct identi�cation of any of the objects was taken to be a

\detection" whether or not the object itself was a mine. Indeed, as noted in the Introduc-

tion, the algorithm in this paper is intended only to detect the presence of objects below

the array and not to solve the classi�cation problem. Still, given the \real-world" conditions

under which the data were taken, the low false alarm rates here point to the robustness of

our approach.

Next, we compare the performance of ANOVA, HANOVA, ANOVA-SPRT, and HANOVA-
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Fig. 10. More comparison between the ANOVA and HANOVA, a) raw data over a TM62, anti-tank mine,
buried to the side of the track at position 58, b) demeaned data, c) result of the ANOVA, d) result of the
HANOVA.

SPRT in detecting plastic mines. The mines are M19, VS-1.6, T72, and C4A1. Fig. 13 shows

the ROC curves of the above four methods. It is seen that both the ANOVA-SPRT and

HANOVA-SPRT perform better than the ANOVA and HANOVA, respectively.

As another example, we test our method on a di�erent array radar system at another

test site. The setup of the GPR array is shown in Fig. 14. There is one transmitter in this

system. In front of the transmitter, four receivers are positioned in a 2�2 pattern. Above

the transmitter and the receivers there is a hyperbolic reection plate, it is set so that the

transmitter is at the focal point of the reection plate. The array moves on a linear track
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to collect data. At each step, the transmitter sends a spherical wave to the reection plate

and after reection, the sphere wave becomes plane wave. The four receivers then collect

reection of this plane wave from the ground. The system has the advantage of generating

plane wave and points it forward to reduce ground reection. Fig. 15 displays collected data

from the two front receivers at the Dedham test site of Northeastern University and the

corresponding signal after background removal. In an area of 58 m2, there are 12 buried

landmines of di�erent types, such as M19, PMN, VS-2.2, and so on. Using our method

we are able to detect all 12 mines with a few false-alarms, Fig. 16. The results are similar

to those obtained by a single GPR. For a detection rate above 90%, the HANOVA has a

signi�cantly smaller number of false-alarm.

IV. Summary

In this paper, we have proposed a sequential, high-dimensional ANOVA to process GPR

returns. The method is tested on real data and has a relaxed requirement on the physical

model used in the processing routine. The method is on-line implementable and has a linear

computational load. The method works in two stages: �rst it looks for statistically signi�cant

di�erence from array observations, second, it applies a sequential detection as new data are

obtained. HANOVA is powerful in the sense of maximizing probability of detecting statisti-

cally signi�cant di�erence among sub-dimensions of a full vector of observations. Sequential

detection recursively processes the result of the HANOVA and enables real-time processing

as new data are collected. We have demonstrated the performance of this technique on

samples of �eld data.

Future research will focus on classi�cation and localization. Classi�cation consists of

two steps. First, a feature extraction scheme is applied on reected signals to generate

intermediate result, second, the output from feature extraction is fed into a Bayesian classi�er
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to make the classi�cation. Localization is based on optimized frequency-wavenumber (F-K)

migration. F-K migration is an inversion method that back-propagates wave�eld from the

ground surface to subsurface and construct an image of subsurface reectivity. Regular F-K

migration is well modeled for seismic signal processing. Though GPR signal is di�erent from

seismic signal, F-K migration can still work very well in processing GPR signals. Nonetheless,

improvement in terms of resolution and accuracy can be achieved by considering optimization

in F-K migration. In our future work, an optimization method will be used to improve the

F-K migration.

Appendix

I. Window Selection in HANOVA

Ideally, we want to �nd a window that is sensitive to the presence of a signal and provides

little response in the test statistic when there is noise only. But these two requirements are

often in conict with each other. From (8), we can change the order l of the MA process

to control the window we use. The smaller is l, the more sensitive the window is to the

presence of signal and strong noise. On the other hand, the larger is l, the more robust

will the statistic be to noise, which translates into a smaller probability of false-alarm. But

a large l reduces sensitivity of the HANOVA to signal. Fig. 17 shows the e�ect of l on

window selection and the corresponding HANOVA results. Three di�erent l are used, i.e.,

l = 1; 4; 9. In the data, there are three mine objects, two metal mines at the position 110

and 170. A weak mine object is at position 25. For comparison, we normalize the HANOVA

outputs in each case by its maximum value, which corresponds to the strong metal mine

buried at position 110. Fig. 17(a) and (b) show the window chosen by a MA of order 1 and

the resulting HANOVA output. The two strong objects can be detected at a threshold of

0.7, the weak object can only be found at a threshold of 0.2. Fig. 17(c) shows the window
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chosen by a MA of order 4. The window oscillates much less than the window in Fig. 17(a).

From the HANOVA result, Fig. 17(d), we can �nd all the three objects at a threshold of 0.3.

Increasing the order of MA process can make the results worse, Fig. 17(e) and (f). A large

window reduces the sensitivity of the HANOVA to signal and actually makes detection more

di�cult. Now the weak object at position 25 can not be detected at a threshold greater

than 0.3. As a guideline, we �nd that MA processes of order between 3 and 10 yield good

windows both in sensitivity to signal and robustness to noise. This selection is a�ected by

the step-size of the array. An array moving at small step-size will allow an MA process of

large l in selecting windows, and vice versa.
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Fig. 11. Results of the SPRT, a buried steel object, a) output of ANOVA-SPRT, b) output of HANOVA-
SPRT; a buried M19, c) output of ANOVA-SPRT, d) output of HANOVA-SPRT; a buried TM62, e) output
of ANOVA-SPRT, f) output of HANOVA-SPRT.
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Fig. 12. Rate of detection and rate of false-alarms in detecting metallic objects, solid line is the result of
HANOVA, dashed line is the result of ANOVA, a) ANOVA vs. HANOVA, b) ANOVA-SPRT vs. HANOVA-
SPRT.
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Fig. 13. Rate of detection and rate of false-alarms in detecting plastic mines, solid line is the result of
HANOVA, dashed line is the result of ANOVA, a) ANOVA vs. HANOVA, b) ANOVA-SPRT vs. HANOVA-
SPRT.
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Fig. 14. GPR array used at Dedham test site of Northeastern University, a) plane view, b) side view.
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Fig. 15. GPR data from the Dedham test site, (a) from the left front receiver, (b) from the right front
receiver, (c) signal (a) after background removal, (d) signal of (b) after background removal. Unit in time
axes is 120 ps.
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Fig. 17. Choices of window and e�ect on HANOVA, lower line is k1(m;n), upper line is k2(m;n), a) window
selected by an order 1 MA process, b) HANOVA result from the window to the left, c) window selected by
an order 4 MA process, d) HANOVA result from the window to the left, e) window selected by an order 10
MA process, f) HANOVA test result from the window to the left.
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