Data Assimilation and Model Evaluation Experiments - DAMEE Data

Ziv Sirkes and Robert Willems
Center for Ocean and Atmospheric Modeling
Institute of Marine Sciences
The University of Southern Mississippi
Building 1103, Room 249
Stennis Space Center, MS 39529-5005
phone: (228) 688-2560 (228) 688-3508 fax: (228) 688-7072
email: sirkes@coam.usm.edu, willems@coam.usm.edu
Award#: N00014-95-1-0068
http://www.coam.usm.edu/damee/

LONG-TERM GOALS

The long term goal is to contribute to the development of a global ocean nowcasting capability with basin-wide forecasting skill that provides a description of the three dimensional ocean structure, the locations of mesoscale features such as eddies and ocean fronts, and environmental definition with an accuracy superior to climatology and persistence.

OBJECTIVES

Provide an unbiased environment in which the nowcast/forecast capabilities of numerical ocean models can be evaluated, keeping current with ongoing field experiments to assess the usefulness and possible impact of data, as it becomes available.

Focus on data acquisition, quality control, analysis and processing. Each contributing part of the desired end data product will deliver to a common point (USM) for final assemblage, analysis, and distribution.

Perform an unbiased comparison between Model output and Measured data as defined by a consensus reached in the DAMEE Information Exchange Meeting #4 for the Standard, High resolution and Data Assimilation experiments.

Execute an information management component which provides an interactive forum and coordination point for all the participating groups.

APPROACH

Five modeling groups (DIECAST, MICOM, UCLA[MOM], POM and RUTGERS) submitted model output from the coarse resolution model runs. These data were compared with climatology.

ECMWF wind stress fields for the high resolution model runs were generated (1993-1997).
Data Assimilation and Model Evaluation Experiments - DAMEE Data

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td></td>
<td>00-00-1998 to 00-00-1998</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Assimilation and Model Evaluation Experiments - DAMEE Data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Southern Mississippi, Institute of Marine Sciences, Stennis Space Center, MS, 39529</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>See also ADM002252.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>See also ADM002252.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>Same as Report (SAR)</td>
<td>5</td>
<td>unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Same as Report (SAR)

See also ADM002252.
WORK COMPLETED

Five modeling groups (DIECAST, MICOM, UCLA[MOM], POM and RUTGERS) submitted model output from the coarse resolution model runs. These data were compared with climatology and/or measurements. Plots of these comparisons can be obtained from the web site:

http://www.coam.usm.edu/damee/data/Plots/

The plots are:

1. yy-27N.ps yy-55W.ps yy-CHB.ps yy-35N.ps

 Seasonal (Feb., May, Aug, Nov.) cross sections 0-1000m

 page 1: Climatology, DIE, MIC, MOM
 page 2: POM, RUT

 where:
 yy == tt Temperature
 yy == ss Salinity
 yy == rr Density
 yy == dt (Model-Climatology) of Temperature
 yy == ds (Model-Climatology) of Salinity
 yy == dr (Model-Climatology) of Density

2. xx-27N.ps xx-55W.ps xx-CHB.ps xx-35N.ps

 Annual cross sections 0-5500m

 page 1: Temperature, Salinity, Density from Climatology, DIE, MIC, MOM
 page 2: Temperature, Salinity, Density from POM, RUT
 page 3: (Model-Climatology) of Temperature, Salinity, Density from Climatology, DIE, MIC, MOM
 page 4: (Model-Climatology) of Temperature, Salinity, Density from POM, RUT

3. Gsplot

 Position of the maximum velocity of the Gulf Stream at the surface
 Comparison with SST, TOPEX and GEOSAT data

4. Fsplot

 Florida Straits Transports
 Comparison with Cable data

5. EkeMkeplot

 Eddy and mean kinetic energy at 0m, 700m and 4000m depth
6. SshSstplot

Mean and variability of Sea surface height and sea surface temperature

7. MOSplot

Meridional Overturning Streamfunction

8. MHTplot

Meridional Heat Transport
Comparison with Macdonald-Wunsch Data

1993-1997 ECMWF wind forcing data were generated for the high resolution model runs. The original data were processed in the following stages:

1. The 6 hourly ECMWF wind stress data were interpolated from the ECMWF grid to the COADS grid.
2. At each gridpoint a monthly mean was computed for each month of the year.
3. ECMWF monthly means were replaced by COADS monthly means for all data points.
4. Monthly wind stress data files were generated.

The data are available at:

http://www.coam.usm.edu/~damee/data/Meteorology/ECMWF/Data

Filenames are of the form: ecmwfyyyy.mm
where yyyy and mm are the year and month, respectively. These monthly global data files are binary in "big_endian" (Sun) format.
Units are in N/m**2 and there are 42164 gridpoints globally.
File "lon_lat.file" describes the grid and the ordering of the data.
column 1: order number
column 2: longitude index (as defined in the COADS dataset).
column 3: latitude index (as defined in the COADS dataset).
column 4: longitude in degrees E
column 5: latitude in degrees N
File "extract.F" is a sample fortran programs that reads one monthly file and extracts a predefined region.

The fifth DAMEE-NAB Information Exchange Meeting (IEM#4) was held at the Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 5 and 6 March 1998. A review of progress, data availability, and status of comparisons were presented and discussed by each group. Decision on publication was made and decided that publication of DAMEE-NAB results is an important step to successfully concluding these experiments and informing the scientific community of what was learned. It also allows for a consistent way of approaching the analysis and assessing the performance of the models. The special issue in the refereed literature is organized in the following way:

1. Introduction and motivation
2. Standard Comparisons
 Model Climatology
 course resolution
 high resolution 1 and 2
 Data Assimilation/Nowcast
3. Further analysis and assessments
 by models (individual groups)
 by topics (individual groups)
4. Conclusion and remarks

Reports of Information Exchange Meetings 1-4 can be found at:

http://www.coam.usm.edu/damee/index.html

RESULTS

Consistent, comprehensive, multi-parameter analysis is demonstrated and reveals the importance of temperature and salinity variations in density driven currents in models.

IMPACT/APPLICATIONS

This project is developing a comprehensive data archive of the bathymetry, wind forcing and mesoscale circulation of the North Atlantic that has been very carefully quality controlled. This data archive is a resource not only for the ocean modeling community but also for the Navy for initializing and verification of numerical ocean models.

A thorough comparison between model results and climatology reveals a wealth of information on model strengths and areas that need improvement.
TRANSITIONS

The data archive is presently available to the ocean community at the DAMEE web site. It is actively used by all DAMEE participants. An improved bathymetry and high resolution ECMWF wind stress data may enhance model performance.

RELATED PROJECTS

In addition to the DAMEE (DATA) group, participating modeling groups are from NRL/SSC, University of Miami, UCLA, Rutgers, Princeton, MIT, and Mississippi State University.

REFERENCES

The plots of the coarse resolution model outputs and their comparison with climatology are available in directory: ftp://www.coam.usm.edu/pub/damee/data/Plots