Construct User Guide

Kathleen M. Carley, David T. Filonuk,
Kenny Joseph, Michael Kowalchuck,
Michael J. Lanham, Geoffrey P. Morgan
November, 2012
CMU-ISR-112

Institute for Software Research
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Kathleen.carley@cs.cmu.edu
dfilonuk@cs.cmu.edu
kjoseph@andrew.cmu.edu
kf3cr@cs.cmu.edu
mlanham@cs.cmu.edu
gmorgan@andrew.cmu.edu

Center for the Computational Analysis of Social and Organization Systems
CASOS technical report

This report/document supersedes the following CMU-ISR Technical Reports:
CMU-ISR-10-118, "Construct Demonstration Input Deck", June 2010
CMU-ISR-09-126, “Variables, Decisions, and Scripting in Construct,” September 2009

CMU-ISR-08-114, “The Impact of Educational Interventions on Real and Stylized Cities,” July 2008
CMU-ISRI 07-116, “Loading Networks in Construct”, July 2007

CMU-ISRI 07-107, “Specifying Agents in Construct”, July 2007

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
NOV 2012 2. REPORT TYPE 00-00-2012 to 00-00-2012
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Construct User Guide 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Carnegie Mellon University,Institute for Softwar e Resear ch,School of REPORT NUMBER
Computer Science,Pittsburgh,PA,15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Thistechnical report provides users and resear cher sinfor mation on the configuration and use of
Construct, the CASOS dynamic networ k, agent-based, information and belief diffusion smulation of
complex socio-technical systems. Thereport providesa Quick Start Guideto Construct, a detailed
discussion of its configuration, and use through a sample problem and virtual experiment configuration
exemplar, and a set of appendices with additional useful information. Thisdocument isintended both asan
introduction to Construct for casual modelersaswell asa reference guide for researchers, modelers, and
simulationists. Thiswork was supported in part by the IRS project in Computational M odeling, the Air
For ce Office of Sponsored Research (MURI FA9550-09-1-001 mathematical methods for assisting
agent-based computation), and the NSF IGERT in CASOS (DGE 997276). I n addition support for
Construct was provided in part by Office of Naval Resear ch (N00014-06-1-0104 and MURI
N000140-81-1-186 a structural approach to theincorporation of cultural knowledge in adaptive adversary
models), and the National Science Foundation (SES-0452487). Additional support was provided by the Air
For ce Office of Sponsored Research (M URI N00014-08-1-1186 cultural modeling of the adver sary).
Further support was provided by CASOS - the Center for Computational Analysis of Social and
Organizational Systemsat Carnegie Mellon University. The views and conclusions contained in this
document arethose of the authors and should not be inter preted asrepresenting the official policies, either
expressed or implied, of the Internal Revenue Service, the National Science Foundation, the Office of Naval
Resear ch, the Air Force Office of Sponsored Resear ch, or the U.S. Gover nment.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a REPORT
unclassified

b. ABSTRACT
unclassified

c. THISPAGE
unclassified

17. LIMITATION OF
ABSTRACT

Same as
Report (SAR)

18. NUMBER
OF PAGES

125

19a. NAME OF
RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Keywords: Construct, multi-agent simulation, dynamic network analysis, agent-based
modeling, information diffusion, belief diffusion, agent-based simulation, modeling and
simulation,

Abstract

This technical report provides users and researchers information on the configuration and use of
Construct, the CASOS dynamic network, agent-based, information and belief diffusion
simulation of complex socio-technical systems. The report provides a Quick Start Guide to
Construct, a detailed discussion of its configuration, and use through a sample problem and
virtual experiment configuration exemplar, and a set of appendices with additional useful
information. This document is intended both as an introduction to Construct for casual modelers
as well as a reference guide for researchers, modelers, and simulationists.

This work was supported in part by the IRS project in Computational Modeling, the Air Force
Office of Sponsored Research (MURI FA9550-09-1-001 mathematical methods for assisting
agent-based computation), and the NSF IGERT in CASOS (DGE 997276). In addition support
for Construct was provided in part by Office of Naval Research (N00014-06-1-0104 and MURI
N000140-81-1-186 a structural approach to the incorporation of cultural knowledge in adaptive
adversary models), and the National Science Foundation (SES-0452487). Additional support
was provided by the Air Force Office of Sponsored Research (MURI N0O0014-08-1-1186 cultural
modeling of the adversary). Further support was provided by CASOS - the Center for
Computational Analysis of Social and Organizational Systems at Carnegie Mellon University.
The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the Internal
Revenue Service, the National Science Foundation, the Office of Naval Research, the Air Force
Office of Sponsored Research, or the U.S. Government.

Table of Contents

CONSITUCE USEI GUILE.. ...t e aaeeeeeees 1
ADSTIACT. ..ottt e e e e e 3
INTRODUGCTION ..ttt ettt e et e ettt e e e e th e e e etb e e e etb e eaeban s aaeebanaaaes 1
TaDIE Of CONTENTS. ...ttt e e e et e e e e e e 5
TabIlE OFf FIQUIES ...ttt nnnnnnes 8
TaDIE Of TADBIES ..ot 8
INtrodUCTION 1O the REPOIT.....ciiiiiiiiiiiiieieii ettt eennnne 3
Construct Versions and thisS REPOIcoiiiiiiiiiii e e e e e e earas 3
Conventions Used iN thiS REPOITi i e e e e 3
Organization of this OVerall REPOI..........ooviiiiiiiiiiiiiiiiiiiiiee e 4
A MOLIVALING EXAMPIE ...vveiiieee e e e et e e e e e e e e et e e e e e e e e eatta e aaeeaes 4
CoNStruct’s Core MECHANISIMSooiiiiiiiiiiiii ettt beeenennnee 4
A SCRINANTO . ..ttt e et e e e ettt e e e e e as 5
PART ONE: CONSruCt QUICK-STAI........ccciiiiiiiiiiii et e e e e e e e e e e 7
LI O o[t 7
o 1] £ PP 7
L0111 =T Lo T PP 8

LI PP PP PP PPPPPPPPPPPPPP 8

B IO S ettt ettt 9
LI PPPPPPP PP PP PP PPPPPPPPPRR 9
TREIN REIALIONSceeiieeeeiieiie et 9
The INEraCtioN SPREIE.......uuu i e e e e e e e e e et e e e e e eeeanes 10
The Knowledge NEetWOIKcooiiiie e 13
TranSACHVE MEIMOIYoiiiiiiiiii i e e e e e e e e e s e e e e e e e e ettt s e eeeeeeeatbaa e aeeeeenenes 14
Thoughts 0N EXPerimENTALIONcuviiiiiiiiiiiiiiiiiieie ettt neennenee 17

L 11101 £ 17
High Level Diagrams of Construct Program FIOW..........cccoooeeiiiiiiiiiiiiieeecceeiee e 19
PART TWO: CONSLIUCE iN DELAIL.......uuuiiiiiiiiiiiiiiiiiii s 27
VAITADIES ...ttt e oot e e e e e e e e e e e e eas 27
Declaring, defining, and casting variablesccccccoiiiiiiiiiii 27

Evaluating VariabIEscooi oo 30

Variables, Macros, and WETHh StatemMENTSccvuvieiieeee e e e 30

L0 LS o IRV 2= T =1 o] (= PP 32
COMMON GOLCNAS ...t a e aeeeas 33
PArBMELEIS......e e 34
SBBM .ttt s 34
Verbose INLANZALIONeuiiiiiiii e 34
DYNamIC ENVIFONMENT ... e e e e et e e e e e e rraa s 34
DEfaUIt AQENT TYPE .. eeieeieiiiiiiee ettt 35
Learning and fOrgettingoouuiiiiiii e e e 35
USE MU . s 35
Default communication WEIGNTS........coooi i e e 35
TRIEAA COUNL......ee e 36
ACHIVE MOEIS ...t e e et e e e e e e e e e e e e e e naians 36
ACHIVE MECNANISIMS ... 37
NGBS ...ttt et e ettt et oo a4 ettt e e e e e e e e e e e e e e e 37
AGENE NOAE CIASS ...t e e e e e e e e et s e e e e e e e e et e e e e eeeeeeaaaes 38
KNOWIEAQE NOAE ClASScoeiiiiiiiiiiiiiieiieie e 38
Belief node class + belief formation equationscccccoiiiiiiiiiiiiii e, 39
Binary task NOAE ClIASSooviiiiiiiiiiiiiiiieee e 39
ENErgy task NOAE ClAaSSccciiiiiiiiiiie e e e e et e e e e e e e r e s 40
Time Period NOAE CIASScooiiiiiiei e 41
AGENT GrOUP NOUE ClASS ...vvveii i e et e e e e e e e e e et eeaeeaeeeanees 41
Knowledge group NOAE ClaSSeeviiiiiiiiiiiiiiiiiiiieiieii et eeeeeeenneennene 41
DUMMY NOAE CIASSoeeiiiiiiiiiiiiiiiiiie et 42
0 =] L 1Y/ 0= 42
OtNEr NOUE CIASSES ...ttt eeeas 43
INBIWOTKS ...ttt ettt ettt e e o4 e e ettt e e e e e e s e bbb e et e e e e e e e e e 43
ACCESS NEIWOTK ... 47
AgeNt ACHIVE TiME PEIOM.o e e e e e e e e et e e e e e e e e e eanee 47
Agent Belief NEIWOIKooo o 48
AGENE FOrgettiNg RAEouuiiii i e e et e e e e e e e e e et e e e e e e e e eaneees 48
Agent Group MembErShIDoooiii 49

AGENt INItIATION COUNT.......coei i 49

Agent Learn by DOING RATE.......cooiiiiii e e e e e e eeneee 50

AGENt LEArNING RALEooviiiiii e e e e e e e e e e e e aaaaaa 51
Agent Message COMPIEXILYcoooiiiiiiiieeiee e 51
WY o [T ol B =T ot =T o] o] o I Oo ¥ o) PSSP 52
o 1] oL A 5/ oL PRI 53
Belief KNowledge WEIGNTSooiiiiiiiiiiiiiiieeeeeeeee e 53
Binary Task ASSIGNIMENTooiiiiiiii e e e e e e et e e e e e e e e et s e e e e e e aerenaaas 54
Binary Task REQUINEIMENTSoeiiiiiiiiiiiiiiiiieeieeeee et 54
BIiNary Task TIULN......oouii e e e e e e e e e e e e e e a e as 54
Binary Task Similarity WEIGNT..........eeiiiiiiiiiiiiiiiiieieee e 55
INEraCtioN NETWOIKooiiitiie ettt e e e e e e e 55
Interaction Knowledge WeIgNT..........cooo i 55
Knowledge — Binary and NON-BINAIYcciiiiiiiiiiiiiiiiie e e e e eeanaas 55
Knowledge EXPertiSe WEIGNToeiiiiiiiiiiiiiieeeeee e 56
Knowledge Group MembBDEIrSNIDuviiiiiiiiiiiiiieeeee e 57
KNOWIEAGE PriOIITY .oeviiiiiei e e e e e et e e e e e e e e ettt e e e e e e e e aabraa s 57
Knowledge Similarity WeIGNT...........ooeiiiiiiiiiiiiiieee e 57
Learnable KNOWIEAQEoooo i e et e e e e e e s 58
PRYSICAl PTOXIMITYeeeieiiiieieeieee ettt 58
Physical Proximity WeIght ... e 58
Selective ATENTION EFfECTuu i 59
Yoo =1 I = €0)11 1111 YA U 59
S0CI0-DemOgraphiC PrOXIMILYuuuueeiiiiiiiiii s e e e e 59
Susceptibility (DINFIUBNCEA)uuiiiiiii s 60
TransSmMISSION WEIGNTooviiii e e e e e e e e et e e e e e e e eeeaaaes 60
TTANSACTIVE MEIMIOIY ...ttt s 61
Knowledge tranSactiVe MEIMOIYccii i i e e e e e e et e e e e e e e eeraa s 65
Belief tranSaCtiVE MEMIOIYouiiiiiiiiiiiiiiii ettt 66
RETEIBNCES ...ttt e e e e e et e e et e e e e s e e bbb e e e e e e e e e anan 68
F Y o] o<1 Lo o L PSP PP P PP P PP TPPTPTPRTRPPPTRPRPIN 69
APPENDIX A The Sample Input File (aka Input DecCK)oooviiiiiiiiiiiiic e, 69
APPENDIX B A HiStory of CONSIIUCTuuiiiiiiiei it 83

APPENDIX C CONSIIUCE ‘OPEIALIONS’ttt e e e e e e e e aa e 85

(@ 0= =110 1 85
DIBCISIONS ...t s 91
COMMON GOLCNAS ...ttt e e e e e 95
APPENDIX D Additional CoNStruCt ‘GENEIatOrS’...........uuuuuuuiiiiieesees e 96
APPENDIX E SCIPUNG -ttt a e a eaeeeas 99
1=t a1 = TS] = 100
LOQICAI EXPIESSIONS ...ttt 102
Generating Random NUMDBEIS ... e 103
Conditional STALEMENTS - IF ... 103
LoOPING - FOFEACK ..o e e e 106
L] (1 o PP PPPPRT 106
IVIBCTOS ... s 107
Get/Set NEIWOTK VAIUESuiiiiiiiiiiii e e e e 108
REAAFTOMCSVIIE ...t 109
APPENDIX F Construct in High Performance Computing (HPC) Environments 110
APPENDIX G Construct in ReSearch LIterature........... ... 114

Table of Figures

Figure 1. A graphical depiction of the interior workings of a Construct simulation....................... 5
Figure 2. A depiction of two ‘clean-room’ teams of product developers..........ccccceeeeieeiviiiiiiinnnnnn. 6
Figure 3. Bob'S TranSactive MEIMOIYooeiiieiii et e e e e e e e e e e 14
Figure 4. Construct's process has three main COMpPONENLS.cuvviiiiieiiiiiiiiiii e 19
Figure 5. Construct's intialization process starts by reading the deck, then initializes nodes and
networks, then goes through model SpPecific SEIUP.uuiiii i 20
Figure 6. Stables of models can be run each turn in Construct. They run linearly, in an order
defined DY the USEI. ... et e e et e e e e e e e eeeneaanns 21
Figure 7. Operation Runner allows for various operations to take place. Operations can be
OFAEred DY ThE USET. ... 22
Figure 8. The Interaction Model is a core part of the Construct.cooovviiiiiiii i 23
Figure 9. The probability network for "who talks to who" is an output of a variety of factors, some
static, aNd SOME AYNAIMIC.coiiiiiiice e e e e et e e e e e e e e et e e e e e e e e e raaaa e as 24
Figure 10. Interactions are created through matching up available initiators and receivers. 25
Figure 11. Information Exchange relies on both medium and message...........cccccccvvvvvvviininnnnnn. 26

Table of Tables

Table 1. Mechanism for evaluating variables in CONSIIUCE.ccooeiiiiiiiiiiieie e, 30

Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.

Variables as @ValUAted.oooiiiiiiiiiiie e 31
List Of NEtWOIKS fOr CONSIIUCT........oieiiii et e e e 36
Common NOdE ClasSES IN CONSIIUCTciiviiiieeiiiiei et e e et eeeeaaeeeeees 37
Network relations t0 NOAE CIASSEScuuiviiiiiiii et 44
Key transactive memory networks in the demo input deckcccccoeiiiiiiiiiiennnn. 61

Examples of foreach loops
EXampIes Of MACIOS......couuiiii et e e e 107

Construct User Guide

INTRODUCTION

Construct is an agent-based network-centric simulation. Although frequently lumped together,
agent-based simulations vary widely in complexity and computational cost — some are
extremely inexpensive (e.g., Swarm) and allow hundreds of thousands or even millions of
agents to operate in the same simulation, while others are rather expensive and often require
the support of an entire processor per agent (e.g., Soar or ACT-R). This increase in
computational expense, however, is matched by construct validity to the actions of cognitively
bounded humans: the least computationally expensive (per agent) simulations replicate the
behavior of insects (specifically ants) while ACT-R has been able to replicate the brain
activation patterns of children solving algebra problems and Soar has replicated fighter pilot
operations in concert with human pilots.

Although economics are an important consideration in picking an agent-based simulation, they
should not be the only consideration; the specific phenomena of interest should impose its own
set of criteria. For problems of traffic analysis or collision avoidance, swarm agents are
particularly appropriate. However, in phenomena with significant cultural freight, such as those
involving deception, leadership, participation in group activities, and/or compliance with group
norms, these swarm-based technologies offer little useful insight to the policy analyst without
additional (expensive) modification and incurring significant increases in computational cost. At
the same time, not all group- based phenomena require the detail and expense imposed by
high-fidelity models of individual agents. Construct, which can support hundreds and thousands
of agents, supports an appropriate middle-ground. It is also one of the only agent-based models
which explicitly unites (Herb) Simon’s dual requirement of bounded rationality, that rationality
should be bounded both cognitively, and socially. Most of the highest-fidelity models constrain
interaction to explicit messages, if at all, and many work entirely in isolation from other agents.
Construct, thus, is less expensive and yet more useful for studying group phenomena.

A common query is to which specific theory of group behavior does Construct adhere?
Construct does not subscribe to a specific theory of group behavior. Indeed, the question can
reflect a fundamental misunderstanding of interesting modeling work — rather, the level at which
a simulation is specifically coded/designed is its least interesting level of analysis. Analysis at
the level in which a model is coded suggests merely how well the simulation programmers did
their work, this is an important verification question, but not of practical application interest to
model consumers. It is necessary, but not sufficient, for a model to be correctly coded. Instead,
the more interesting question, available to be asked of agent-based simulations, is what are the
larger implications with how these agents interact. We call this principle “emergence”, what
larger phenomena “emerge” from the interactions of these modeled agents. Construct is, as
previously said, an agent-based simulation, and thus represents a theory of individuals and how

1

they choose to interact. Construct makes a claim based on research that people tend to interact
with other people based on two competing drives. One, that people tend to interact with others
because they believe they are similar (the drive for homophily), and two, that people tend to
interact with others who they believe have valuable knowledge they do not have (the drive for
knowledge expertise). Both of these human drives are cross-cultural.

Emergent properties of the simulation, then, are much more interesting to the agent-based
simulation modeler than the direct consequences of their modeling decisions. Based on agents
interacting with others due to knowledge expertise and homophily, Construct has been able to
replicate many group-level behaviors found in people: the S-Shaped curve of diffusion, yes, but
also that beliefs are more durable than the information used to support a belief. Construct has
examined cultural norms in organizations, belief-changes in national decision-makers, and
group stability. In practice, Construct is a valuable support for group-level behavioral theories
because it provides an explanation rooted in individuals for the origin of these phenomena.
These emergent properties, however, may not always be intuitive to the model consumer or
model developer. At such points, it is important to recheck questions of verification, that some
bug in the model process is not to blame for the errant results. But more interesting is when the
model’s code is not in error but the results are still surprising.

Although not directly attributable to programming error, there may be other sources of surprising
results that should be described. One, the model simulation is, at its core, not a sufficiently good
model of the atomic primitive it represents; this is often the case when extending swarm agents
beyond issues of traffic and navigation. Two, the experimental approach was not well-matched
to the empirical reality — if, for example, 75% of adults in the population are internet-literate, but
the model assumes that only 10% of the agents will receive information from internet sources,
the model will significantly underestimate the prevalence of information from internet sources,
and there may be further cascading effects of that error. Three, the results may simply not be
well-communicated. Relating accurately (and conservatively) the implications of models is itself
a skill that must be polished.

But sometimes, the results are non-intuitive and yet none of these errors appears to be present.
In such a case, this is the value and joy in modeling counter-factual scenarios — we can place
our simulated humans in situations that do not exist and will never exist, and be surprised and
intrigued by how they behave.

Introduction to the Report

Construct Versions and this Report

Construct is, like all but end-of-life software, undergoing continuing development in both its
capabilities and its implementation. Experiment developers and designers should ensure they
are using the most current version of Construct available on the CASOS public web site at
www.casos.cs.cmu.edu. They should also ensure they are referencing the most current set of
documentation to reduce the probability of a disconnect between the documentation and the
application. Finally, experiment developers and designers should consider subscribing to the
CMU-CASOS Google group for ad-hoc and peer-to-peer assistance as well as assistance from
students, staff, and faculty of CASOS.

Conventions Used in this Report

Where feasible, this technical report quotes a provided example of a Construct experiment
configuration file. The file is also included in a 2-up printed format in Appendix A and is also
available for download at the Training and Sample Data page on the Construct page of
CASOS'’s website. To help you follow along, this report uses a few conventions in type face:
Construct keywords, such as variable or network names, will use a monospace font to clearly
differentiate the example from the surrounding text.

Code snippets will also be written in the courier new, as these snippets are quotes from the
demonstration input file. We’'ll also frequently call the input file the input deck, or shorten the
name to deck, throughout the document. The origins of this use of ‘deck’ will deliberately remain
in the mists of our collective memory lest the authors prove how old they really are.

Boldface and an exclamation mark (.) indicate information the experiment developer and

designer, researcher and simulationist should be particularly aware of when using Construct.
We'll reduce that string of potential audience members, in most cases, to researcher and/or
simulationist throughout the document.

Egos and Alters are common referents in social science literature that we will use throughout
this report. Their use simplifies establishing frames-of-reference and scoping of interaction
possibilities. When we refer to a single agent, it will most often have the label of ego. When we
refer to the agents or other entities that the ego is connected (in any sense of the word), they
will most often have the label of alter or alters. Agents in the simulation not connected to an ego
are beyond the scope of awareness of the ego, and do not directly impact the ego.

Organization of this Overall Report

The report has three main components and does not need to be read or referred to in front-to-
back sequence. The three parts are shown in the list below
e Quick Start Guide - for a relative quick movement from introduction to execution
e Construct in Detail - for an in depth explanation of Construct, complex inputs and
outputs and complex experiments
e Appendices - for additional useful sets of information ranging from additional exemplar
input decks, to the use of Construct in High Performance Computing (HPC)
environments such as Condor, to brief synopsis of peer-reviewed projects within which
Construct played a role.

A Motivating Example

One method of introducing a set of concepts and the application of those concepts to problem
solving is through the use of a motivating example. In this report, we adopt this method and
present a motivating example for both the questions of interest (Qol) as well as an experimental
configuration that can help answer the Qol.

Like all scientists, if we are not attempting to answer a specific Qol, or even a set of Qal, it
behooves the reader to take some amount of time to focus the upcoming effort. It is appropriate
at this time to remind the experimenter that Constructs roots lie in social network, information
diffusion and belief diffusion modeling. This motivating example will stay with this core capability
and defer discussions of additional capabilities and experimental purposes to Part 2.

Construct’'s Core Mechanisms

Figure 1 offers one depiction of the interior workings of a Construct simulation that helps us
scope our motivating example to enable a researcher to rapidly move from introduction to
experimentation. Starting at the ten o’clock position and moving clockwise, the reader will note
agents without which the remainder of this report and use of Construct is pointless. At the
eleven o’clock position, each agent is capable of having mental models (often referred to as
transactive memory (Wegner, 1987) of what the agent knows, what the agent believes, and
perhaps most importantly, what its alters know and believe. This perception is, also importantly,
error prone, personal, and both learned and forgotten over the course of a simulation. The one
o’clock position depicts agents embedded in social, communication, and other networks with
other agents. Some alters may be as cognitively robust as the egos, while others may represent
Information Technology (IT) resources, or mass media (e.g., newspapers, TV, radio). Agents
are also potentially aware of stylized representations of social and social-demographic
information about themselves and their alters, which shape the agent’s decisions during the
interaction and knowledge cycle. At the three o’clock position, agents have culture as a
consequence of their learning knowledge. Technology, at the five o’clock position, is most often
modeled as agents capable of receiving, storing, retrieving, and transmitting knowledge to other
agents in the simulation. The five and six o’clock positions in Figure 1 represent the ability of

Construct to incorporate such stresses as personnel turnover and time-dependent task-
completion modeling, though we’ll defer discussion of those capabilities to Part 2.

Mental Models

Interaction

Knowledge Beliel

Decision
Calculation

Y
Technology
F

Figure 1. A graphical depiction of the interior workings of a Construct simulation

In the center of the diagram are two blue circles that are, after the calculations to determine
which alter, if any, each ego will interact with, the most important components of Construct. The
interaction and knowledge cycle represents the process each ego goes through in its decision to
interact, or not, with its alters. Each agent’s decision takes into account that agent’s current
knowledge, its current perception of similarity to its egos (knowledge homophily), its current
perception of unique knowledge each alter has that the ego does not, as well as the social,
physical, and socio-demographic similarity of the ego and alter. On a probabilistic basis, should
interaction occur, each agent will exchange messages. The ego and alter both build their
message from their own knowledge or beliefs sets or their perception of their own alters’
knowledge or belief sets. After message exchange, agents may learn, with and without error,
the contents of those messages as well as forget previously learned knowledge that has not
been referenced recently.

A Scenario

We, the researchers, are analysts that Acme, Inc. has hired to help Acme design two software
development teams in a ‘clean room’ configuration. Acme wants the two teams to be co-
developing a product. Acme also wants structural mechanisms in place to control how much
information flows between the two groupsits a deliberate choice to help reduce the probability of
unintentional release of Acme’s intellectual property. One way of visualizing this scenario is in

5

Figure 2. In this figure, we also call each team a cluster, aligning with the social network
analysis literature when groups of entities are meaningfully connected to each other.

A=
h knowledge
=

diffusion
only within
cluster

Figure 2. A depiction of two ‘clean-room’ teams of product developers

In the figure above, possible questions of interest that are appropriate for the model to help
forecast answers could be:

Without direct modeling, is there any leak of knowledge from one team/cluster to the other? If
so, how fast does the information flow?

Assuming no friendship networks or other communication networks not modeled, how fast does
specific knowledge or specific beliefs within each team spread?

Assuming a requirement to have a controlled mechanism to support the teams passing limited
information back-and-forth, to whom would such an intermediary best talk in each team for rapid
spread of information or beliefs?

Does either team have any organizational weak point that can be structurally overcome?

After stability is reached within teams for knowledge saturation/diffusion, what kinds and how
large are impacts of personnel turnover of various sizes and frequencies have on the group?

How long, if at all, does the team take to return to pre-turnover levels for specific measures of
interest?

These and other questions can be explored within the Construct framework. In Part 1, we will
describe the entities and key relationships between those entities. The treatment in Part 1 is
intended to be useful towards further orienting a potential model builder or a model consumer.
Part 2 describes mechanisms at a high-level of detail, and is suitable to act as a reference even
to a regular user of Construct.

PART ONE: Construct Quick-Start

This is an introduction to core mechanisms of Construct, introduces three of the most important
networks to understand, and suggests a set of experiments that may be of some interest to the
model consumer. It is intended to provide an initial suggestion of how Construct may be useful
to the model developer. More detail is provided in the second part of this report. We assume
that the example deck included in this technical report is available to the reader of this guide.

We begin this guide by providing a summary of key objects within Construct and provide
examples of the various semantics between these key entities. We then describe, in more
detail, the more precise semantics of three critical networks in Construct. We will then conclude
with a suggestion of some experiments that could be done using only those key networks,
referencing the motivating scenario.

The Objects

There are five classes of objects in Construct. These are 1) agents, 2) knowledge, 3) tasks, 4)
beliefs, and 5) time. A singleton example of each of these object classes is referred to
(respectively) as 1) an agent, 2) a knowledge bit, 3) a task, 4) a belief, and 5) a turn.

Agents

Agents are the most important class of objects in Construct. Agents have, appropriately,
agency, and thus make choices that can potentially affect other agents. Typically, agents
represent human-like entities, but researchers can also represent other types of entities such as
sources of information (e.g., newspapers, radio programs, or television ads) and information
technology (IT) systems (e.g., databases, data-stores). Agents have various critical capacities
and capabilities that we’ll address briefly here and more thoroughly throughout the report.

Individual agents possess different bits of knowledge and they are aware of other agents. Each
person has a unique, error-prone perception of those other agents’ knowledge and beliefs that
they learn throughout the course of a simulation from some starting condition. This guide
discusses how to manipulate both what agents know, who they know, and what they think other
people know.

People may be members of groups. Groups are not explicitly defined in Construct but it is useful
concept to remember. Group members, like in our motivating example, tend to have many more
connections within the group than outside of it. It is usually easier, but not semantically
important, to define groups of agents contiguously. If | were, for example going to group my
digits by which hand they’re on, it'd be easier on me to simply count them off, so that my right
hand’s digits were 0,1,2,3, and 4, while my left hand’s digits were 5,6,7,8, and 9. Then, all |
need to remember is that my right hand’s digits start at 0 and end at 4, while my left hand’s start
at 5 and end at 9. Alternatively, | could count them off by functional role (right thumb O, left
thumb 1, right pointer 2, left pointer 3, etc), but that'd quickly confusing if their membership in
my hand groups was their most salient characteristic.

Individuals can also have beliefs, and work to do (as described by tasks), and they may not
remain unchanged by time. Information on this is out of scope on this portion of the guide, but
will be discussed in Part 2.

Just as with people, some agents may have more capacity than others to send or receive
information. As with people, they may have more or less retentive memories than others. And
as with people, they may have more or less social reach than others. Specifics on how to
implement any of these (and other) characteristics is included in Part 2.

Knowledge

Knowledge represents information. Construct represents real-world knowledge through a
stylized and simplified series of bits (0 or 1). Any particular knowledge bit should represent a
single atomic piece of information, such as “Sol is the name of the star at the center of our solar
system”, or “Each water molecule is comprised of two hydrogen and one oxygen atom.” It is
incumbent on a researcher to try and keep the stylized representation consistent in their
experiments--one bit should not represent “How to pilot a 747 jumbo jet” while another bit
represents ‘flight departed.’

Collections of knowledge, which we characterize as expertise, can be assembled by labeling a
range of bits as relevant to that larger expertise. The relative size of each range is intended to
be representative of the amount of effort required to achieve a given level of expertise. For
example, a child’s understanding of the solar system may be represented some 30 facts (the
names of the planets, names of interesting moons, relative distances of the planets to the sun,
and some representation of relative size), while the requirements of celestial navigation (the role
of seasons, star identification, etc) requires a significantly larger set of facts, one that may be
estimated usefully if not precisely. We call this form of knowledge specification “stylized
knowledge.” Another example of this sizing decision would be if a simulation involves agents
with knowledge about recent movies, and also recent literature — a researcher may decide that,
because there are fewer movies made than books written in most years, that there is
correspondingly less to know and correspondingly fewer bits in the one expertise collection than
the other. These sizing decisions may end up being poor modeling decisions, but the researcher
must make them and communicate them to the model consumer.

Knowledge can be used to inform the quality of decision-making tasks agents can perform, and
also used as evidence either in support of or opposed to a belief, but these connections are
outside the scope of this guide.

When a researcher links knowledge to one or more beliefs, the possession of knowledge will
impact the strength of the held beliefs as well as the likelihood of changing those beliefs. Beliefs
have a more in-depth discussion below as well as in Part 2.

Tasks

Tasks in Construct represent, appropriately, tasks. Specifically, these tasks can best be thought
of “decision tasks”, where agents (see previous) need information (see previous!) to perform the
task adequately.

Tasks are outside the explicit purview of this quick-start guide, see Part 2.

Beliefs

Beliefs in Construct represent, also appropriately, beliefs. These differ from information because
beliefs cannot, it is presumed, be judged for their inherent truth. Also, agents may or may not
possess any particular knowledge bit, but they may have believe or disbelieve a belief more or
less strongly. Beliefs may or may not be linked to information. Beliefs linked to information are
sometimes labeled “Evidence-Based Beliefs”.

Beliefs are outside the scope of this guide, see Part 2.

Time

Turns, in Construct, represent chunks of discrete time. Agents each have some opportunity to
interact with other agents during each turn. Agent order is randomized each turn, to avoid
agents early in a static order having an unfair primacy advantage. Agents interacting with other
agents may not be able to support further interaction. It is usually good practice to attempt to
identify, loosely, a length of time with each turn. Turns may be minutes, days, weeks, or months.
This mapping of turns to time periods should be chosen relative to the knowledge being
transmitted during each turn — it is unrealistic for highly complex knowledge, such as “Civilian
Flight Operations”, to be conveyed in less than some number of months or years. Thus, either
the number of knowledge bits that represents Civilian Flight Operations is very large, or turns
are likely to represent weeks or months in this model (or both).

Time is part of every model, but a detailed discussion of Time is out of scope of this guide.

Their Relations

In Construct, we note how each of these various objects are related to each other through the
use of dense matrices. Each matrix, usually referred to as a network, represents a meaningful
and distinct tie between objects. Matrix values may be binary (either 0 or 1) or weighted (any
real number). These networks can represent relationships between objects of the same class
(Single-Mode), or between objects of different classes (a multi-mode matrix). The objects listed
down the rows are always listed first, then the objects in each column.

‘0’ is usually a safe default value for matrices. Non-zero values usually indicate that the two
entities (represented by the row-column pair) are “connected”. There are exceptions, discussed
in Part 2, for the various ‘weight’ networks.

For example, a binary (0 or 1s) Agent x Knowledge multi-mode matrix might look like so:

Biology Physics Sociology
Aba 1 1 0
Jane 0 1 1
Lu 0 1 1
Raj 1 0 1
Fred 1 0 0

In practice, each of these large areas would be represented by a range of knowledge bits, since
none of these sciences are single atomic facts, but as an example we hope it suffices.

Part 2 will discuss all of the different matrices present in Construct, their real-world meaning,
and their practical impact within Construct. This guide will focus on three key matrices: the
interaction sphere, the knowledge network, and transactive memory. It will also show you the
shippet of XML code required to specify each of these key networks.

The Interaction Sphere

The interaction sphere defines “who may know who”. It is a single-mode, Agent x Agent, binary
matrix. If two agents are NOT connected within the interaction matrix, they will never be able to
directly interact with each other. Agents who are connected in the interaction matrix may still
never interact.

Because agents must be able to interact to pass information, it is easy to see how changes to
the interaction sphere can change how the experiment will play out. Generally, agents should
not be connected in the interaction sphere if it is unlikely they would ever have reason to
interact. Separate organizations, for example, may not have any connections to each other,
save perhaps through explicit liaison personnel.

Here is the code required to specify the interaction sphere:

<network src_node class_type="agent" target_node class_type="agent"
id=""interaction sphere network"™ link_type="bool" network type='dense">

<generator type="randombinary'>
<rows First="0" last="node class::agent::count_minus_one'/>
<cols first="0" last="node class::agent::count_minus_one'/>
<param name="mean" value="1"/>
<param name="'symmetric_flag"” value="false"/>
<param name="mean’ value="0.20"/>

</generator>

</network>

10

This is your first jolt of Construct XML, so it may seem a little daunting at first, but let's attempt
to parse this XML line by line.

<network src_node class_type="agent" target_node class_type="agent"

The network at the beginning indicates we're defining one of the matrices used in Construct.
The argument src_node class_type tells us that the matrix we're defining should have rows
defined by agents, and the target_node class_type argument tells us that the columns should
also be defined by agents.

id="interaction sphere network"™ link type="bool"

The “id” argument gives us the name of this network, this name is important to Construct. The
“link_type” argument tells us that this network is boolean (stored as a binary value), either a link
exists (1/True/T), or it does not (O/False/F).

network_type="dense''>

Typically, most networks will have this argument network_type set to dense. This means that
every possible cell combination should be defined.

<generator type="randombinary'>

The generator is a new object, it's being defined to help us fill in the values of the interaction
sphere. There are different generator types - this one, a randombinary generator, will generate
only 1s or 0Os. It generates 1s at a given rate. A more complete discussion of the various
generator types is in Appendix D.

<rows First="0" last="node class::agent::count_minus_one'/>

All numbers used to count things in Construct XML use cardinal numbers, also known as
“computer science counting”, where the ! first indice value is 0, not 1. Thus, the last digit on
my right hand is digit number 4, not 5, even though | have five digits. | have, after all, counted
out five numbers (0,1,2,3,4). The rows object tells the generator in what parts of the matrix it
should assign numbers. You can (and often will) use multiple generators for one network. In this
case, the generator should assign values for all rows of the matrix - 0 is the first agent, and
agent::count_minus_one is a built in mechanism for construct to identify the number of nodes
in a node set. It works with all defined node sets in the input file. It's handy shorthand so you
don't need to keep track of how many agents exist.

All generators assume (except one) that they should fill in all values inclusive of and between
the first and last of both the row and column arguments. The one exception, not discussed in

detail here, is reading in a network from a file. Thus, if you want two or more groups of agents,
you may want to keep track of the start and end of those groups. This is why it's easier, almost

11

always, to number your agents contiguously by their most important group affiliation, as
discussed previously with hands and digits in the Agents section above.

<cols first="0" last="node class::agent::count_minus_one'/>

This serves the same purpose as the previous line, except it defines what columns the
generator will be assigning values to. As you can probably guess, we are assigning values
(either 1 or 0s) to all columns as well. This means this generator will provide a value for every
cell in the matrix.

<param name="mean" value="'1"/>

This is the parameter that defines how often a “1” is likely to come up. In this case, a 1 should
populate every cell in this matrix. What does that mean for our simulation? Think about it for a
second. Done? In this case, it means that every agent can talk to every other agent. If you were
going to modify this code for use in our motivating example, how might you go about it?

<param name="'symmetric_flag" value="false"/>

The symmetric_flag is very important, and important to understand. Not all relationships go both
ways. My boss, for example, may have access to me, but | don’t alway have access to the boss.
If the president wants to see me, he will, but | can’t bully my way into the Oval Office. If the
symmetric flag is set to the true, then none of the relationships in your group will be asymmetric
- they will all go both ways. If it is set to false, then some asymmetries may arise, but not
necessarily. Would there be any asymmetrical relationships in this network, given the generator
as you understand it to date? Multi-mode matrices should not have the symmetric_flag set to
true.

<param name="mean" value="0.20"/>

The parameter mean is essential for the randombinary generator as it sets the threshold for
when the generator outputs a zero or a one. If the random number generator generates a value
less than 0.2, it will generate a one, otherwise it will generate a zero--of course this mean is as
accurate as any mean when evaluated in the context of the Law of Large Numbers, not
necessarily true for a particular set of generated numbers.

</generator>

This indicates that the generator has been fully defined, and closes the object.

</network>
This closes the definition of the network, remember, you may have multiple generators in a
single network definition. I include the entire XML snippet again for easy review, we hope it's

easier to understand the second time, beneath it, | give my read-aloud version of how | parse
this network and relate it verbally.

12

<network src_node class_type="agent" target_node class_type="agent"
id="interaction sphere network"™ link type="bool" network type='dense'>
<generator type="randombinary'>
<rows First="0" last="node class::agent::count_minus_one'/>
<cols first="0" last="node class::agent::count_minus_one'/>
<param name="'mean" value="1"/>
<param name="'symmetric_flag"” value="false"/>
<param name="mean" value="0.20"/>
</generator>
</network>

“This is the interaction sphere network, it is an agent by agent network with boolean/binary links.
It uses a random-binary generator, which will define values for every agent to every agent. This
random-binary generator will put 1’s in approximately 20% of the cells of this matrix. The
generator is not explicitly symmetric.”

The Knowledge Network

The knowledge network defines “who knows what”. It is a multi-mode, Agent x Knowledge, non-
binary matrix. A ‘1’ in this matrix indicates the agent “knows” the fact represented by that bit.
Construct updates the knowledge network throughout the run of a simulation.

Agents can only communicate knowledge that they “know,” or have access to, when they
interact with other agents. Thus, changes in the knowledge network will have strong effects on
how the simulation proceeds.

This is the Construct XML used to define the knowledge network in our example deck and how |
would read it aloud:

<network src_node class_type="agent" target _node class_type="knowledge"
id="knowledge network'™ link_ type="float" network type='dense">
<generator type="randombinary'>
<rows First="0" last="node class::agent::count_minus_one'/>
<cols first="0" last="node class::knowledge::count_minus_one"/>
<param name="'mean" value="0.1"/>
<param name="'symmetric_flag" value="false"/>
</generator>
</network>

“This is the knowledge network, it is an agent by knowledge network with non-binary links. It
uses a random-binary generator, which will define values for every agent to every knowledge
bit. The random-binary generator uses a probability of ‘.1’ to place a 1 in each cell. The
generator is not, both explicitly and functionally, symmetric.”

Most of the XML looks very similar to the previous example.

13

Transactive Memory

Transactive Memory is how Construct implements perceptional differences from reality. In
simulation, if agents receive state information directly from the simulation, then they have no
“perceptual filter”, rose-colored or any other shade. Humans, however, must perceive signals
from their senses and grapple with that signal to make sense of it, to turn it into symbols. For
example, if my stomach feels empty and | hear it growling, | may eventually realize that | am
hungry. Retreating from larger philosophical issues, perception is an important source of human
error. Thus, most simulations that attempt to address human-like behavior have some sort of
perceptual mechanism. In Construct, that perceptual mechanism is transactive memory. The
following figure displays an example of transactive memory.

Agent List Bob's TM Similarity || Expertise
Bob Bob's Sphere | | goh Bob Bob
RIS Bob
Jane e Henry Henry Henry
James

Jane
Tom Sue Jane Jane Jane
Sue Mike
Mike Sue Sue Sue
Steve
Kate Mike Mike Mike
Sam
John
Martin

Figure 3. Bob's Transactive Memory

But what is transactive memory? It is a three dimensional matrix, representing what every agent
(A) thinks every other agent (A) knows (K) or believes (B). There are, currently, two separate
transactive memory matrices, a knowledge transactive memory (A x A x K) and a belief
transactive memory (A x A x B). In Construct’s implementation of Transactive Memory, ! each
ego maintains transactive memory only of alters it is connected to in the interaction
sphere. ! Agents do not necessarily (and often do not) have a good grasp of what other agents
actually know. You have probably met people that thought you knew things you didn't, or,
conversely, you may have assumed that somebody else didn’'t know much about a topic dear to
your heart, but they actually knew quite a lot about it. Both of these real-life experiences can be
approached via appropriate modification of Transactive Memory.

14

These perceptual processes are important because these agents use their perceptions, not the
ground-truth of the simulation (who “actually” knows what) to inform their twin primary
motivations for interaction. Those twin drives are homophily and knowledge expertise. While
defering a more detailed conversation about homophily and knowledge expertise to Part 2, a
brief discussion about both these drives is appropriate.

Homophily, in its most general description, is the tendency for people to prefer to interact with
people who are like themselves. This perception of ‘like themselves’ is, in Construct, a function
of the amount of knowledge an ego and an alter share. In the real social world, people may
assume that others people are like themselves, even when that is not true. These egos may
interact with their alters, because of the perceived similarity. In the actual event the ego is not
like alter, through the exchange of information, both could end up changing their knowledge and
end up being more similar to each other than when they started.

The second primary interaction motivation is knowledge expertise. This motivation reflects
human’s tendency to seek out knowledge they do not have from others--in the real social world,
this behavior is most frequently seen when needing knowledge to successfully complete one or
more tasks. In Construct, an ego with a perception that an alter has knowledge the ego does
not, will have a higher probability of interacting with the alter than it might otherwise have.

This guide focuses on knowledge transactive memory (AAK), and this is the Construct XML
required to define the knowledge transactive memory in our example deck:

<network id=""knowledge transactive memory network®"
ego_node class_type="‘agent"
src_node class_type="agent"
target_node class_type="knowledge"
link_type="bool" network_type="TMBool"
associated_network="knowledge network'>

<generator type='perception_based">
<ego first="0" last=""node class::agent::count_minus_one"/>
<alter first="0" last=""node class::agent::count_minus_one"/>
<transactive first="0"
last=""node class::knowledge::count_minus_one'/>

<param name="false_positive_rate" value="0.0"/>
<param name="false_negative_rate" value="0.5"/>
<param name="‘rounding_threshold" value="0.0"/>
<param name="verbose™ value="true"/>
</generator>
</network>

Whew! Well, it might seem intimidating at first, but much of it is very similar to things we've seen

before, but carried to the third dimension. ! It is essential that this network id contain the
single quotation marks (‘) inside the double quotation marks. !

15

The argument ego_node class indicates the agents that have these perceptions, the set of egos
in the network. The argument src_node class indicates the agents for which the ego have
perceptions, and the argument target_node class shows that, further, the perceptions are about
what these other agents know. The associated_network indicates that the ground-truth network
these perceptions will be based on is the knowledge network. A specific example with named
agents could be Mike thinks Geoff knows about dancing. In more generalized form, this is a
matrix that stores what each ego believes their connected alters know.

The associated_network particularly matters for this special type of generator -
perception_based. Again, it's very similar to the other generator, taken to a third dimension. The
arguments ego, alter and transactive are parallel to the node classes defined in the network:
ego_node class, src_nodelcass, and target_node class, respectively. The parameter
false_positive_rate indicates how likely egos are to perceive that their alters know things they do
not, in this case, not at all likely. The parameter false_negative_rate indicates how likely agents
are to assume that agents do not know things they actually do - this happens approximately
50% of the time in this example. The parameter rounding_threshold is useful when knowledge
bits are not integer values. Values other than integer zero and integer one represent a
knowledge bit that is partially known. This “sorta known” state is, for the purposes of transactive
memory, binarized using the parameter as the cut-off point--values below the threshold will
become zero and values equal to or greater than the threshold will become one. This parameter
is necessary but not useful in this example. Part 2 will discuss its utility in depth. The final
parameter verbose, if defined and set to true, will cause Construct to write a set of progress
indicators to the console’s standard out informing a researcher how far along the initialization
process has progressed. If the parameter is undefined, Construct defaults to it being false.

The full snippet of XML, and how it could be read aloud, follows:

<network id=""knowledge transactive memory network®"
ego_node class_type="agent"
src_node class_type="agent"
target_node class_type="knowledge"
link _type="bool" network_type="TMBool"
associated_network="knowledge network'>

<generator type='perception_based">
<ego First="0" last=""node class::agent::count_minus_one'/>
<alter first="0" last=""node class::agent::count_minus_one"/>

last=""node class::knowledge::count_minus_one'/>

<param name="false_positive_rate" value="
<param name="false_negative_rate" value="0.
<param name="'rounding_threshold" value="0.0"/>
<param name="verbose" value="true"/>
</generator>
</network>

0.0"/>
0.5"/>

16

“This is the knowledge transactive memory network, it is an agent by agent by knowledge
network with binary links. It uses the knowledge network as its ground-truth. It uses one
perception-based generator and will populate values for all egos and how they perceive all
alters and all of their associated knowledge. Egos will be pessimistic, they never assume agents
have knowledge they do not, and often assume agents do not have knowledge they actually
do.”

Thoughts on Experimentation

