Cyber defense planning

The question “How can the Army better plan and execute effective cyber defense?” is too broad. We can craft more effective solutions if we narrow the question. And we can develop approaches that more closely align with traditional military vocabulary and symbology than does our current tendencies to ‘go geek.’

The approach, is to use the military decision-making process, augmented with doctrinal Joint and Army graphics, and treat cyber terrain approximately the same as we treat the land and air domains.

Using the mnemonic of mission, enemy, time, terrain, civilians, we’ll ask some clarifying questions, starting with “Better than what?”

How will we know when we are ‘better’ (mission) and if the improvement is enough? What resources (troops, terrain, time, equipment) are available to become ‘better’?

What are the constraints and restraints (mission, civilians, enemy, time, ROE)? Is there a prioritized threats list or defended asset list such as Air Defense Artillery creates/uses? Is the commander willing to conduct economy of force operations in defending one or more cyber positions, routes, or line of communication?

Is defense of the secure internet protocol network, given its cryptographic separation from other networks, one of those economies of force operations? Can our economy of force operation be all or some of the non-secure internet protocol network positions—even though our sustainment (personnel, finance, maintenance, and strategic and tactical logistics) warfighting function does most of its work there? How concerned is the commander with threats to morale-oriented use of DoD cyber infrastructure compared to threats exploit such use as an avenue of approach to NIPRNet and shared infrastructure?

Cyber defense planners need to know current threats (enemy, civilians, troops) as well as current friendly situations two-levels-up and one-level-down (troops, commander’s intent). With that knowledge, its extremely likely that COA recommendations for the physical and cyber AORs will contain multiple decision and branch points. Examples of decision points include: whether to isolate (clear cyber fires) units in contact against immediate/high impact cyber threats to other units; whether and how to clear cyber fires for units not in contact against slow-spreading malware; whether to temporarily exempt some mission areas and units (e.g. aero-medic for combat theaters) from anti-malware directives; whether and how to react to a fast-moving threat, even with some units in direct fire contact; to whom can the Commander permanently or temporarily delegate such decisions.

There are multitudes of other questions for which we need, at least approximate, answers as well as approximate first and second order effects. Asking for guidance and offering COAs to our commanders is essential—or our commanders will discover they have a set of defenses, on disadvantageous real and/or cyber terrain, that don’t adjust to enemy actions as the commanders envisioned. They’ll also discover

(Continued on page 8)
1. REPORT DATE
2012

2. REPORT TYPE

3. DATES COVERED
00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Cyber defense planning: Operating on Unconventional Terrain

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Signal Center of Excellence, Army Communicator, Signal Towers (Building 29808), Room 713, Fort Gordon, GA, 30905-5301

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified

 b. ABSTRACT
 unclassified

 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES
 6

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Z39-18
that their assumptions about the J/G/S6 just ‘getting it done’ can leave them reaction choices that don’t fit their scheme of maneuver.

The original question of this article implied a requirement to be ‘better’ than the status quo. How do we know we’ve sufficiently met that requirement? We can recommend measures of performance and measures of effectiveness. A possible MoP could be, “a 10% reduction in loss of availability of IT systems needed for operations.” A possible MoE could be, “an 80% reduction in the number of combat missions that have failed due to loss of IT systems.”

With these candidate measures, we’ve reached a challenge in expectation management. Which ‘operations’—tactical combat operations by a platoon conducting an ambush or periodic VTCs between a HQ’s forward and main command posts … the transition between strategic and tactical logistics operations… or the planning and execution of a tactical resupply mission?

With a vague MoE, to establish a reduction, we have to have some idea of a baseline, or ground truth. Has any COCOM or Army unit determined how many and what types of missions have failed due to a loss of cyber capabilities? Of the many possible MoPs and MoEs, these two derive from the apparent dominance of non-availability and mission failure in the rhetoric of public discourse.

U.S. officials have repeatedly sounded the alarm about our unpreparedness for cyberspace warfare. Public figures routinely refer to the potential for loss-of-life and ‘existential threats.’ They often speak about the potential for devastating consequences from a large-scale cyber attack. Of note is the lack of reference to documented cases of loss-of-life, destruction of companies, or disruption of public utilities directly attributed to cyber operations. Also missing is reference to large-scale destruction of civil society in the absence of IT-enabled life. Large-scale power losses in the U.S. Northeast and U.S. Midwest-to-Eastern-seaboard suggest a greater resilience to cyber-less life than the rhetoric acknowledges. India, Estonia, Ukraine, and Georgia appear to reflect the same resilience to cyber-less and cyber-disrupted life in the long term.

The disconnect between demonstrated civil/governmental resilience to natural disaster and rhetorical predictions of cyber catastrophe makes developing and distributing relevant MoE and MoP even more critical for cyber defense planners and commanders.

Army Regulation 10-87 states that “All operational Army forces are assigned to combatant commands.” Incorporating this, we can modify the original question to, “can COCOMs and their assigned Army forces plan and conduct cyber defense operations better than the status quo?”

This choice allows us to separate more frequently volatile AORs from the non-operational forces and the supporting institutional base of the Army. It also avoids the interminable debates about the proper division of Service Title X and COCOM Title X responsibilities and authorities. Those debates tend to revolve around perspectives about cyber-personnel and the equipment/networks: Services extend, under their control, their capabilities into Joint and Coalition AORs versus Services provide capabilities under COCOM authority to meet theater Joint and Coalition operational requirements.

A further refinement of the original opening question can be, “Can COCOMs, and their assigned Army forces, plan and conduct cyber defense operations in all phases of operations to ensure continued readiness for and execution of military operations?” This construction
conforms to the theory of DoD’s three-tier hierarchy for computer network defense service providers, but not as well to the implementation of that hierarchy.

Figure 1 depicts U.S. Cyber Command as the Tier 1 CND-SP. As of late 2009, no COCOM other than USSTRATCOM had created their own CND-SP, instead hiring DISA as the CND-SP for their headquarters’ cyber positions. This and many others decisions have lead to a situation where, unless CND-SP actions crossed into operational channels (e.g. Operation Buckshot Yankee), the COCOMs relied upon the Services to provide CND-SP capabilities to COCOM forces. This creates a de facto line of authority between the Services and COCOM forces that does not otherwise exist in joint doctrine.

Returning to the modified question, a last refinement could be “Can COCOMs and their assigned Army forces plan and conduct a deliberate defense of cyber capabilities in all phases of operations to ensure continued readiness for and execution of military operations?” In short, instead of using the civilian-dominated language of enclaves, intrusion detection systems, and firewalls, use Joint Publication and Field Manual 1-02 language such as sensor, positions, strong points, LOCs, communications zones, deliberate defense, and deliberate operations. Though JP 1-02 defines a deliberate defense as “normally organized when out of contact with the enemy,” our need to create an “extensive fortified zone” clearly applies. The definition of deliberate operation, “An operation in which a commander’s detailed intelligence concerning the situation allows him to develop and coordinate detailed plans, including multiple branches and sequels…” is also clearly applicable.

This construction of the original question will face resistance, as it requires an acknowledgement that many positions of DoD, COCOM, and Army cyber infrastructure are fixed on both physical as well as cyber terrain, requiring a permanent defense. That acknowledgement stands in contrast to the central idea of Army Doctrine Publication 3-0 Unified Land Operations: “seize, retain, and exploit the initiative to gain and maintain a position of relative advantage in sustained land operations to create conditions for favorable conflict resolution.” To seize initiative in permanently defensive situations will place unfamiliar demands on commanders and their staffs.

When planning a deliberate defense, or any operation, our professional military education system teaches Soldiers that the Commander is an essential figure. To help ensure commanders stay involved and interested in cyber defense planning, their subject matter experts should drop the vocabulary of Intel, Cisco, Microsoft, and other ‘geek speak’ and revert to traditional military operations vocabulary.

An example of this reversion is Figure 2. It is a set of operational graphics that represents a cyber operations battle space. Using Military Standard-2525C (with some allowances for different software tools and modifications to cope with the newest addition to war fighting domains), we can communicate a significant volume of relevant data to any commander. The figure uses symbol sets she/he is used and communicates the relationship of units to their cyber positions (and physical positions if placed on a map overlay). Within this strong point there is a gap in the defenses indicated by the bridge icon, with a disruption icon to indicate that cyber forces must disrupt enemy approaches into the strong point. Further, the depicted ASCC commander can see the existence and location of multiple USCYBERCOM sensors throughout the battle space. He can see and communicate to his subordinates that there are multiple enemy approaches into the strong point. The figure also communicates to the various units inside the strong point that they have their own boundaries/demarcations they must de-

(Continued on page 10)
Army Communicator
10 Fall - 2012

use of dashed lines) as well as the
template enemy graphics as well (e.g. CSS-VSAT, JNN. There are
template enemy graphics as well as per unit cyber SA
features to depict specific capabilities
• Should help in clearing offensive/defensive fires
• Rehearsals of target/fires increase confidence in
• Helps pre-plan cyber fires for units within an AOR
• Geo-plotting makes command responsibility
 immediately clear
• Helps pre-plan cyber fires for units within an AOR
• React to enemy cyber contact may become faster
• SA of units/capabilities not using Signal assets
• SA of units/capabilities using Signal assets
• Combined with capabilities such as host based
 security services (HBSS), should increase per IT SA
 as well as per unit cyber SA
• Geo-plotting makes command responsibility
 immediately clear
• Helps pre-plan cyber fires for units within an AOR
• Rehearsals of target/fires increase confidence in
 response time and probability of gaining effects
• Should help in clearing offensive/defensive fires
 across unit boundaries

If control of cyber LOCs is not feasible due to
neutral/then,
• Guard the friendly entrances and exits that tough
 those LOCs
• Pre-plan targets on the LOCs with permission from
 higher
• Gain clarity on neutrality of cyber-LOC providers

• Cyber Intel applicable to AOR and units
 becomes yet another product unit J/G/S2 has
 to find/generate
• Geo-plotting every device may have a low
 ROI for many units/locations

• React to enemy cyber contact may become faster
• SA of units/capabilities not using Signal assets
• SA of units/capabilities using Signal assets
• Combined with capabilities such as host based
security services (HBSS), should increase per IT SA
as well as per unit cyber SA
• Geo-plotting makes command responsibility immediately clear
• Helps pre-plan cyber fires for units within an AOR
and for units outside the AOR
• Rehearsals of target/fires increase confidence in
response time and probability of gaining effects
• Should help in clearing offensive/defensive fires
across unit boundaries

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Rapid information sharing via use of standardized JP I-02 and FM 1-02 vocabulary and iconography</td>
<td>• Map/graphics reading and interpretation is a perishable skill</td>
</tr>
<tr>
<td>• Visually combines area defense and point defense coordination of entry/exit points, PACE routes and capabilities, and mutual reliance for security</td>
<td>• Not all Soldiers from all warfighting functions are comfortable with MIL-STD-2525C</td>
</tr>
<tr>
<td>• Within area defense, emphasizes template enemy presence throughout the cyber-LOCs, with implicit requirement to reduce or mitigate the enemy’s presence</td>
<td>• Threat type differentiation (e.g. nation state sensor vs. cyber criminal vs. teenager in Paris/Des Moines) requires icon modifiers</td>
</tr>
<tr>
<td>• Operational requirement to control friendly and enemy cyber-LOCs becomes obvious</td>
<td>• MIL-STD-2525C has no way of reflecting equipment/capability dependencies except through co-location</td>
</tr>
<tr>
<td>• Depicts requirement for cyber-coordination between units</td>
<td>• Map/graphics overlay requires maintenance effort</td>
</tr>
<tr>
<td>• CAN planning at appropriate echelons will have better SA of impacts within an AOR</td>
<td></td>
</tr>
<tr>
<td>• Helps plan and visual enemy cyber attack points, approaches, locations for friendly effects/obstacles (e.g. canalize, turn, disrupt, isolate)</td>
<td></td>
</tr>
</tbody>
</table>

| Unit boundaries can align with IA demarcation points for systems and enclaves, e.g. bridges in/out of theater enclaves, JTF enclaves division or brigade enclaves. | Clean alignment of physical boundaries and demarcations may not be feasible. DISA Tier 0 network equipment is frequently co-located with P/C S TCF |

| Advantages and Disadvantages of using JP I-02 vocabulary and concepts | |

(Continued from page 9)
the heavy reliance by CS and CSS units on non-Signal-provided capabilities.

I have not included a figure that incorporates maneuver graphics and AOR boundaries but they could easily help reduce misplaced perceptions of responsibility while bringing home to units their actual contributions to cyber defense operations. Every COCOM has a number of physical and cyber strong points within their geographical or functional AOR, connected by ground, air, and cyber LOCs. Those cyber-LOCs enter and exit their AOR at physical points as well as logical points — those points can become coordination points/icons, targets, and sensor emplacement points. Plotting units and capabilities physically and logically also supports more rapid clearing of defensive cyber fires as envisioned in what USCYBERCOM calls ‘active defense,’ and reduces the likelihood of unintended consequences.

Figures 2 and 3, and the figure described above, communicate a complex but traditional military operation, on non-traditional terrain. This approach supports Commanders and staffs ability to think about the cyber domain in approximately the same terms as their air and land domains. Commanders will learn where pre-planned defensive cyber fires exist, their probable operational impact when fired, and can plan compensation measures. Through awareness of dependence on civilian infrastructure, they can build and rehearse PACE plans for communicating to and with higher and lower units. There are a multitude of potential advantages listed in Table I, and for balance’s sake, predictable disadvantages as well. Though I make no claim the list is comprehensive, it should at least provoke reflection on the collective wisdom of abandoning a common lexicon and adopting a ‘new’ one — for whatever the reasons.

Table I Advantages and Disadvantages of using JP 1-02 and FM 1-02 vocabulary and concepts

<table>
<thead>
<tr>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased understanding of cyber defense as a traditional military operation</td>
<td>Potential for unintended consequences</td>
</tr>
<tr>
<td>Ability to plan and rehearse PACE plans for communication</td>
<td>Risk of losing interest if not involved</td>
</tr>
</tbody>
</table>

There is a strong underlying message in my assertion that cyber defense is a traditional military operation: decentralized COCOM operations, as inefficient and chaotic as they are, should remain the order of the day. Defending a set of inter-connected strong points in a region is not a military operation that the COCOMs or the Army trains to conduct via centralized execution. Instead they nest task and purpose to support the intent of centralized planning without the inflexible application of centralized approval. This nesting allows for dealing with the surprises of ‘reality’ vs. ‘the plan.’ The nesting allows COCOM commanders to assess and balance risks and operations as close to their operations as feasible while allowing other COCOMs and potentially effected commands options to reduce their own exposures to those risks. Indeed, if the job of balancing regional and global or Service perspectives is centralized, its more likely than not that the needs of the many will always outweigh the needs of the few — to the detriment of the minority conducting highly volatile operations. Unfortunately, there is a multitude of past and current trends, policies, personalities and efforts within the Joint arena and the Army to make defense of cyber strong points and LOCs centrally executed. This is in contradiction to our national willingness to decentralize most combat operations, clearly a matter of life-and-death. Historians often cite that willingness, indeed the apparently ingrained inability to do centralized execution, as one of our greatest military strengths. Our growing unwillingness to resource and execute decentralized cyberspace operations is disconcerting. The efforts to move toward centralized execution are, in actuality, grand experiments, with as little proof of future success as this article has presented.

I submit to you that the burden of proof when advocating wholesale change is on the advocates of that change. I’ve not seen evidence in classified or unclassified realms that convinces me of the added value of creating unique-to-cyber processes and vocabulary. Nor have I seen evidence of the value of abandoning graphical depictions used so successfully in the other warfighting domains.

I have been exposed to two schools of thought for involvement of operational force commanders in cyber defense planning and execution. Paraphrasing, one such school is that cyberspace is far too important and complex to leave to maneuver commanders. The other school is that cyber defense will not succeed without commanders. I clearly subscribe to the second school despite copious evidence of disinterested commanders and staff leading to poor cyber outcomes. I’ve also seen even more evidence that excluding maneuver commanders from cyber defense and planning leads to, predictably, worse outcomes than had those commanders been involved.

I submit to the readers that we, formally the Army’s cyber-SMEs, must use the language of our maneuver commanders if we are to succeed in engaging their interests. I have proposed use of a traditional planning method and traditional doctrinal vocabulary (with minor updates) for planning and executing cyber defense for operational forces. I have proposed that staying in that realm of vocabulary and iconography is more likely to retain the interest, understanding, and resource commitment of commanders than by ‘going geek’ on them.

I have offered no proof that this approach to planning will actually make COCOM and assigned Army forces better at cyber defense. Indeed, the absence of proof in cyber defense policy, advocacy, efficacy, and efficiency discussions is endemic within the DoD — we frequently substitute passion and hyperbole for evidence, use measurable quantities (e.g. costs) as proxies for inherently qualitative assessments, and break into

(Continued on page 12)
advocacy camps convinced of our own righteousness. We use short-duration joint and warfighting experiments that don’t allow long-term, significant, and effective disruption of cyber capabilities in the actual experimental networks. We conduct C3I experiments that allow disruption, with insufficient operational impact assessments by commanders— I’ve attended simulations where a ‘glitch’ led the players to go to lunch, instead of continuing the experiment. I’ve seen decisions to implement PACE plans for cyber capabilities be furiously argued as the staff and the commanders weigh the immediate rent institutional ability.

LTC Michael Lanham, IN, is a FA53 in Advanced Civil Schooling pursuing a PhD in a field of Computer Science. He has served as a Theater IA Program Manager at ARCENT, a CNO plans officer at ARFORCYBER and JFCC-NW and deputy Chief Information Officer at JFCC-IMD. He has bachelor’s degrees in Computer Science and Computer Engineering and a master’s degree in Computer Science.