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1 Accomplishments/New Findings

• We have extended the subpixel smoothing Finite-Difference Time-Domain (FDTD) method to
material interface between dielectric and dispersive media by local coordinate rotation. Our
method is equivalent to the previously proposed subpixel smoothing method for dielectric
interface, and the extension to dispersive/dielectric interface does not require split fields so
our method has improved the efficiency in comparison to the previous proposed split field
approach.

• A novel stable anisotropic FDTD algorithm based on the overlapping cells has been devel-
oped for solving Maxwell’s equations of electrodynamics in anisotropic media with interface
between anisotropic dielectrics and dispersive medium or Perfect Electric Conductor (PEC).
The previous proposed conventional anisotropic FDTD methods suffer from the late-time in-
stability due to the extrapolation of the field components near the material interface. Our
anisotropic Overlapping Yee (OY) FDTD method is stable, as it relies on the overlapping cells
to provide the collocated field values without any interpolation or extrapolation. Numerical
results on eigenvalue analysis confirm that our method is stable. We has applied our method
to simulate the electromagnetic invisibility cloaking devices.

• We have extended our recently proposed OY FDTD method to locally non-orthogonal grids,
with application to the optical force computation on nanoparticles. The subpixel-smoothing
FDTD technique has successfully achieves second-order accuracy by using an inverse dielectric
tensor. However, a remaining challenge is to accurately handle objects with sharp corners,
where the accuracy is still less than second-order. Our approach has attained second-order
convergence when sharp corners present.

• We have developed a moving window full Maxwell solver algorithm with perfectly matched
absorbing layer (PML) boundary conditions in order to accurately simulate the propagation
of localized waves over a very long distance (millions of wavelength) in complex media. An
existing finite difference moving frame method developed more than a decade ago is inade-
quate due to low order transparent boundary conditions. Our method enables the realistic
and predictive simulations of high intensity optical pulses in regime for which current direct
Maxwell solvers are inapplicable due to memory and CPU requirements.

• We have implemented the Adaptive Mesh Refinement (AMR) FDTD method to study the
ground penetrating radar devices. This work was included in the MS thesis of a graduate
student.

2 Subpixel smoothing FDTD Maxwell solver for dielectric/dispersive
interface

We have developed a new way to extend the subpixel smoothing FDTD algorithm proposed in [1, 2]
to material interfaces between dielectric and dispersive media by using local coordinate rotation.
The advantage of our method is the efficiency as it does not require the storage and computation
of the split fields and additional equations.

The constitutive equation that converts the electric flux D to electric field E is given by

E = ε−1
0 ε̃−1D, (1)
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Figure 1: Electric fields near the material interface. Ex and Ey are the electric fields in Cartesian
coordinates. EN and ET correspond to the electric fields perpendicular and tangential to the
material interface respectively.

where ε0 is the permittivity in vacuum and ε̃−1 is the inverse permittivity tensor. Our coordinate
rotation algorithm solve it in the following steps:
First, we compute the normal and tangential components of the electric fluxes DN and DT using
coordinate rotation (Fig. 1) (

DN

DT

)
= R

(
Dx

Dy

)
, (2)

where R is the rotation matrix

R =

(
cosφ sinφ
sinφ − cosφ

)
(3)

Second, we compute the normal and tangential components of the electric fields EN and ET by
solving the constitutive equation in the rotated coordinates.(

EN
ET

)
=

1

ε0

(
< ε−1 > 0

0 < ε >−1

)(
DN

DT

)
, (4)

where < · > denotes the volume average. In the rotated coordinates, the constitutive equation is a
diagonal system so it is solved as two separated equations:

EN =
1

ε0
< ε−1 > DN , (5)

and

ET =
1

ε0
< ε >−1 DT , (6)

Finally, we update the elelctric fields in the regular Cartesian coordinates Ex and Ey using
inverse rotation (

Ex
Ey

)
= R−1

(
EN
ET

)
. (7)

Combing three steps, the constitutive equation becomes(
Ex
Ey

)
=

1

ε0
R−1

(
< ε−1 > 0

0 < ε >−1

)
R

(
Dx

Dy

)
. (8)
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Let P = NTN be the projection matrix where N is the unit normal vector, we see that equation
(8) is equivalent to equation (1) if we let

ε̃−1 = P < ε−1 > +(1− P ) < ε >−1, (9)

where ε̃−1 is the inverse permittivity tensor for the subpixel smoothing algorithm [1]. Therefore, we
see that the coordinate rotation results in the same formulation as the subpixel smoothing method
for a dielectric interface.

To illustrate how to solve equations (5) and (6) on the material interface between dispersive
and dielectric media without using split fields, we use the Lorentz dispersive model as example. As
shown in Fig. 1, we assume that ε1 is a constant (dielectric material) and ε2 represents a Lorentz
dispersive medium with dielectric function given by

ε2(ω) = ε∞ −
αω2

p

ω2 − iγω − ω2
p

. (10)

In equation (6), we first compute volume averaged permittivity:

< ε >= βε2(ω) + (1− β)ε1, (11)

where β represents the ratio of the shaded area of the Fig. 1 to the whole area of the figure. After
some simple calculation, we get

< ε >= ε̂∞ −
α̂ω̂2

p

ω2 − iγ̂ω − ω̂2
p

, (12)

where ε̂∞ = βε∞+ (1− β)ε1, α̂ = βα, ω̂p = ωp, and γ̂ = γ. By introducing the polarization PT , we
have

DT = ε0 < ε > ET = ε0(ε̂∞ET + PT ), (13)

where

PT = −
α̂ω̂2

p

ω2 − iγ̂ω − ω̂2
p

ET . (14)

Equation (14) is a Lorentz model and can be solved by the Auxiliary Differential Equation (ADE)
algorithm [3]:

∂2PT
∂t2

+ γ̂
∂PT
∂t

+ ω̂2
pPT = α̂ω̂2

pET . (15)

For the normal component of the electric field in equation (5), we have the harmonic averaging

< ε−1 >= β
1

ε2(ω)
+ (1− β)

1

ε1
, (16)

which leads to
1

< ε−1 >
= ε̆∞ −

ᾰω̆2
p

ω2 − iωγ̆ − ω̆2
p

, (17)

where ε̆∞ = ε∞ε1/ξ, ᾰ = αβε21/ξ
2, ω̆2

p = ω2
p + ω2

p(1− β)α/ξ, and ξ = βε1 + (1− β)ε∞. Similarly to
the previous case, from equation (5), we get

DN = ε0
1

< ε−1 >
EN = ε0(ε̆∞EN + PN ), (18)
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(a) (b)

Figure 2: (a) Electric fields intensity along the x-axis passing through the center of a cylinder. (b)
Relative error versus resolution.

where PN is the normal component of the polarization

PN = −
ᾰω̆2

p

ω2 − iγ̆ω − ω̆2
p

EN . (19)

Equation (19) is also a Lorentz model and can be solved in the same way as the previous case in
equation (14).

The split field subpixel method proposed in [4] consider a general interface between two disper-
sive media. If one side of the interface is a dielectric medium, it can be reduced to two auxiliary
variables since < ε−1 > in equation (9) is given in equation (17). However, split fields are still
required since it cannot be further simplified, unless by using a common denominator which will re-
sult in higher order differential equations due to the higher order ω terms. In contrast, our method
is a diagonal system so the constitutive equation can be solved separately and the field splitting is
avoided. A limitation of our method is that it applies to the case where one side of the interface is
a dispersive medium. For an interface between two dispersive media, split fields are still required.
We would like to point out that the normal and tangential components of the electric fields and
fluxes (EN , ET , DN , and DT ) in our algorithm serve as intermediate variables, so except for a few
temporary variables, no additional computational memory is required.

We test our method (the coordinate rotation (CR) subpixel smoothing) for a scattering problem
and compare it with the split field (SF) subpixel smoothing method, the standard FDTD method,
and the Mie solution. In our numerical simulation, a cylindrical particle with refractive index
n = 0.23+2.97i is modeled by the Lorentz model. Fig. 2 shows the electric field intensity along the
x-axis passing through the center of the cylinder and the comparison of the relative error versus
the resolution. The subpixel smoothing method consistently achieves smaller error in comparison
to the staircased FDTD results. We also see that although our method does not achieve second
order accuracy, it does significantly improve the accuracy. Table 1 shows the comparison on CPU
time and memory usage for the three methods. In comparison to the SF-subpixel smoothing, our
method appears to have better accuracy when the numerical grid resolution is low and it saves
about 10% of memory and about 25% of CPU time.
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Table 1: Comparison of CPU time and memory usage

∆ = λ/40 ∆ = λ/80
Method Memory Runtime Memory Runtime

staircase 13 MB 7 sec 50 Mb 77 sec
CR 21 MB 9 sec 85 Mb 120 sec
SF 23 MB 12 sec 93 Mb 150 sec

3 Overlapping Yee FDTD method for Material Interfaces between
Anisotropic Dielectrics and General Dispersive or PEC Media

The anisotropic FDTD method have been studied for many years [5, 6, 7, 8, 9, 10, 11, 2, 12].
Reference [11] pointed out that for stable algorithm it is sufficient to have the finite-difference
operator that converts D to E (the material matrix) to be symmetric and positive semidefinite.
In the same paper, the authors developed a stable FDTD algorithm for anisotropic dielectrics and
showed that the previously developed methods lead to asymmetric material matrices, which implied
instability. Stability analysis in case of non-uniform dielectric was provided. The method presented
in [11] only consider the case where the anisotropic dielectrics are away from the material interface.
When the anisotropic dielectrics are very close to the material interface, such as the interface
between dielectrics and dispersive media and between dielectrics and Perfect Electric Conductor
(PEC) boundaries, extrapolation is required [7].

For anisotropic materials, the constitutive equations are given by Dx

Dy

Dz

 = ε0

 εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 Ex
Ey
Ez

 , (20)

 Bx
By
Bz

 = µ0

 µxx µxy µxz
µyx µyy µyz
µzx µzy µzz

 Hx

Hy

Hz

 , (21)

where matrices ε = {εij} and µ = {µij} are generally non-diagonal. In order to solve equation (20)
for the electric fields E, all components of the electric fields and fluxes need to be collocated at the
same location. Similarly, for equation (21), all components of the magnetic fields must be collocated.
The standard FDTD Yee lattice is staggered, so only one component of the field is provided at each
location. In order to obtain the other two components, a conventional way is to average neighbor
values. However, as it has been pointed out in [11], direct averaging causes late-time instability
and a stable interpolation algorithm has been proposed in the same article. A limitation of the
method proposed in [11] is that it considers only the case where the anisotropic dielectrics are away
from the material interface. If the anisotropic dielectrics are very close to the material interface,
such as the interface between dielectrics and dispersive material or PEC boundaries, extrapolation
is required. We have found that the extrapolation will result in late-time instability, similar to the
previous case where no material interface presents. An alternative anistropic FDTD using Finite
Elements near the PEC boundaries is proposed in [12], but it is limited to PEC boundaries and
does not handle problems with magnetic anisotropy.

In order to overcome this late-time instability, we propose a new stable FDTD Maxwell solver
for anisotropic media, based on the idea of using overlapping cells. The usage of overlapping cells
guarantees the collocation of field components so that the interpolation and extrapolation that

6



Figure 3: A 3D computational cell and its corresponding overlapping cell in x-y plane.

cause instability is avoided. This material interface could be the interface between dielectrics and
dispersive medium, the interface between dielectric and PEC boundary or possibly other types of
boundaries. Since the OY FDTD has the same numerical discretization as the standard Yee FDTD
method (but on multiple grids), the same source conditions and perfectly matched layer (PML)
boundary conditions apply.

As shown in Fig. 3, an overlapped mesh is constructed by shifting the primary grid by half cells
in the x-y plane. The z-coordinates do not change. Note that in 3D, the overlapped mesh is not the
dual mesh since the dual mesh is generated by shifting the grid by half cell in all three directions.
Similarly, on the y-z and z-x planes, we construct two other overlapped meshes. Therefore, the 3D
OY mesh contains four Yee lattices.

On each Yee grid, the standard Yee FDTD method is applied to update electric/magnetic fluxes
using the information of the nearby magnetic/electric fields. After updating the fluxes, the local
constitutive equations are used to solve for electric/magnetic fields. For instance, to update E at
(i+ 1

2 , j, k) at time step n, we solve the following 3× 3 linear system: Dn
x(i+ 1

2 , j, k)
Dn
y (i+ 1

2 , j, k)

Dn
z (i+ 1

2 , j, k)

 = ε0

 εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 Enx (i+ 1
2 , j, k)

Eny (i+ 1
2 , j, k)

Enz (i+ 1
2 , j, k)

 , (22)

where Dn
x(i+ 1

2 , j, k), Dn
y (i+ 1

2 , j, k), and Dn
z (i+ 1

2 , j, k) belong to three different Yee lattices.
We have applied our method to simulate the cylindrical cloak proposed in [13]. In the cloaking

shell, the electric permittivity and magnetic permeability are functions of the radius r:

εr(r) =
r −R1

r
, (23)

εθ(r) =
r

r −R1
, (24)

µz(r) =
r −R1

r

(
R2

R2 −R1

)2

, (25)

where R2 and R1 are the radii of the outer and inner circles of the cloaking shell respectively, as
shown in Fig. 4. The inner circle is a PEC shell. We consider the transverse-electric (TE) polarized
electromagnetic wave propagation in x direction.

In our numerical simulations, the incident wave is a plane wave propagating in x-direction with
wavelength λ = 0.15 m. The object to be cloaked is a circular cylinder with radius R1 = 0.1 m and
the cloaking shell has thickness 0.1 m, so R2 = 0.2 m. The computational domain is surrounded by
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Figure 4: Computational domain for the FDTD metamaterial cloaking simulation.

PML absorbing boundaries. To avoid the singularity at r = R1, the cloaking shell is approximated
as a ring with eight discrete layers of homogeneous dielectric parameters, similar to [13] (Fig. 4).

We have investigated the stability of the conventional anisotropic FDTD and our OY method
by computing the eigenvalues of the fully discrete problem in two dimensions. As shown in Fig. 5,
the conventional anisotropic FDTD method generates a few eigenvalues outside the unit circle. As
a result, the solution grows slowly and eventually blows up. In contrast, the OY method has all
eigenvalues located on the unit circle which guarantees the stability.

Using the cloaking simulation, we compare the conventional anisotropic FDTD and our anisotropic
OY FDTD methods. Fig. 6 shows our numerical simulation results on the electric field distribution
near the cloaked objects after a few thousands of steps. Both methods give correct answer at
early stage, but the conventional FDTD method results in some spikes near the inner circle of the
object, which is due to the extrapolation and leads to the late-time instability. These spikes are
amplified as time steps increase. Our simulations show that usually after a few tens of thousands
steps (sometimes just a few thousands of steps), the solution blows up. In contrast, the new OY
algorithm gives smooth and stable solution for long time simulation.

4 Locally non-orthogonal OY FDTD method and optical force
computation

The subpixel-smoothing FDTD technique proposed in [1] achieves second-order accuracy by using
an inverse dielectric tensor, and this method has been extended to anisotropic media [2], combined
with a recently proposed stable FDTD scheme in anisotropic media [11]. However, a remaining
challenge is to accurately handle objects with sharp corners, where the accuracy is still less than
second-order [1]. Another way of eliminating staircasing is to extend the FDTD methods to globally
non-orthogonal meshes [14, 15, 16, 17], but these methods suffer from the late-time instability
due to the non-positive definite property of the material (projection) matrices introduced by the
numerical methods. Our recently developed non-orthogonal overlapping Yee (OY) FDTD method
has successfully overcomed the late-time instability problem [18].

We have further investigated the non-orthogonal OY method to model the optical force compu-
tation. Second order convergence was achieved even when sharp corner presents. The OY method
requires multiple Yee grids which lead to more memory and CPU costs. To improve the efficiency,
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Figure 5: Distribution of the eigenvalues on the complex plane for cloaking simulation using the
conventional FDTD method (upper row) and OY FDTD method (lower row). On the right are the
enlarged figures.
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Figure 6: Numerical results on electromagnetic metamaterial cloaking simulations. Left column:
the conventional anisotropic FDTD method; Right column: the anisotropic Overlapping Yee FDTD
method. Upper row: contour plots of the electric field Ey distribution; Lower row: surface plots of
the electric field Ey distribution.
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Figure 7: Non-orthogonal quadrilateral meshes near a tilted-square (Left) and triangular wedge
(Right). The sides of the particles (in red) go through the diagonal vertices of the grid cells.

we propose a locally non-orthogonal OY technique. In our new implementation, the computational
cells are non-orthogonal and overlapped only in a small region near the curved geometry, and the
rest of the computational domain is regular Yee grid.

We use the Maxwell stress tensor formulation to compute the total optical force acting on a
particle due to a time-harmonic electromagnetic field:

< F >=

∫∫
S
< T > · dS, (26)

where T is the stress tensor

Tij = εEiEj + µHiHj −
1

2
(εE2 + µH2)δij . (27)

The angle brackets indicate time-averaged values. S is a surface that enclose the object. A simple
choice of the surface S is a cubic box outside the object.

The diagonal split-cell model is employed to construct quadrilateral meshes that avoids the
permittivity averaging. The diagonal split-cell model has been discussed in Taflove’s book [3] for
orthogonal Cartesian grid. We have extended this model to non-orthogonal grids. As shown in
Fig. 7, the quadrilateral mesh is constructed in such a way that the material interface does not
go along cell edges but passes through the diagonal vertices of the cells using a smooth circle
mapping method similar to the method proposed in [19]. Besides the simple test cases (e.g., a
circular cylinder or a rectangle), our method can be applied to more complicated geometries, such
as a triangular wedge, as shown in Fig. 7. By placing the magnetic fields at the cell centers and
the electric fields along cell edges, this approach guarantees that no line integral of the electric
field crosses the material interface so that the permittivity averaging is avoided. This approach is
identified as the Split-Cell Overlapping Yee (SC-OY) method. The split-cell mesh construction and
some preliminary result of computing force on cylindrical particle were presented in our previous
published work [20]. The non-orthogonal quadrilateral split-cell mesh for structures with sharp
corners, such as a titled-square, is shown in Fig. 7. The SC-OY method has at least two advantages:
(1) it avoids permittivity averaging, so that the implementation is simplified; (2) it avoids tiny
and near 180 degree angles for structures with large curvature so that the local error is smaller.
A limitation of the split-cell approach is that it assumes nonmagnetic medium (µ is constant
throughout the computational domain).
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Figure 8: Locally non-orthogonal quadrilateral mesh near a tilted-square.

In general, the 2D OY technique requires two set of Yee grids to be overlapped to each other, so
it doubles the computational cost. In 3D, it quadruples the cost. To improve the efficiency of OY
method, we have employed a locally non-orthogonal approach. That is, in our implementation, the
computational cells are only locally non-orthogonal in the region that near the curved geometry.
The rest of the domain is orthogonal rectangular grids. A sample mesh is shown in Fig. 8. In
the non-orthogonal region, the OY method is applied and the standard FDTD method is applied
elsewhere. As shown in this figure, the non-orthogonal mesh is only about 10% of the whole
computational domain, so that the overall computational cost decreases from 200% to 110%. In 3D,
this locally non-orthogonal technique will further improve the performance of numerical simulation.

In our numerical examples, we have applied the nonorthogonal OY technique to compute the
optical force on a tilted-square with sharp corner of 90 degrees. The side length of the square
is 240 nm and it is titled for 30 degrees. The incident plane wave has wavelength λ = 600 nm
and propagates in x-direction. The computational domain is surrounded by the uniaxial perfectly
matched layer (UPML) boundaries in all directions.

Fig. 9 shows the relative errors of the computed optical forces on dielectric and metallic particles.
The numerical result at very fine mesh (∆ = λ/400) is used as the exact solution. As shown in
Fig. 9, for both dielectric and metallic particles, the FDTD method converges linearly, while the
OY method is second-order accuracy. For grid size ∆ = λ/200, the relative errors of the OY results
are about one order of magnitude smaller than the FDTD results. Our numerical results also show
that the OY solution with ∆ = λ/80 and the FDTD solution with ∆ = λ/200 have comparable
errors (about 0.5%), but the OY method requires only half resource in memory usage and less than
25% resource in CPU usage.

5 Moving Window FDTD with PML boundaries

We have developed a novel moving window full Maxwell solver algorithm with perfectly matched
absorbing layer (PML) boundary conditions in order to accuratelly simulate the propagation of
localized waves over a very long distance (millions of wavelength) in complex media. Our method

11
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Figure 9: Relative error of forces versus resolution for tilted-square illuminated by TEz plane wave.
(a) dielectric medium (ε2 = 9); (b) dispersive medium.

enables the realistic and predictive simulations of high intensity optical pulses in regime for which
current direct Maxwell solvers are inapplicable due to memory and CPU requirements. An existing
finite difference moving frame method developed more than a decade ago is inadequate due to low
order transparent boundary conditions. At present, the wave propagation in a long-distance regime
are modeled via asymptotically reduced unidirectional models relying on the assumption that all
electromagnetic propagation modes are known and decomposition into forward-backward moving
waves is possible. Both of these assumptions fail in the high contrast and nonlinear media, and for
ultra-short pulses for which instantaneous frequency and amplitude become ill-defined quantities
as they can change significantly within a single wave cycle.

Consider the time-domain differential form of the Maxwell equations

ε(x, y, z)
∂

∂t
E + σ(x, y, z)E = ∇×H− J, (28)

µ(x, y, z)
∂

∂t
H + σ∗(x, y, z)H = −∇×E, (29)

where material parameters ε, µ, σ, and σ∗ are the electric permittivity, magnetic permeability,
electric conductivity, and magnetic conductivity, respectively. J is the electric current density. In
inhomogeneous media, they are functions of spatial variables x, y, and z.

There are two ways to represent the Maxwell equations in moving frame: the Eulerian and the
Lagrangian approaches. In Eulerian frame, the Maxwell equations stay the same while the material
parameters are functions of space and time:

ε(x, y, z, t)
∂

∂t
E + σ(x, y, z, t)E = ∇×H− J, (30)

µ(x, y, z, t)
∂

∂t
H + σ∗(x, y, z, t)H = −∇×E. (31)

In Lagrangian frame, a transformation x′ = x− ct is applied where x is assumed to be the direction
of moving frame, so the Maxwell equations have additional advection terms:

ε(x′, y, z)
∂

∂t
E− c∂E

∂x
+ σ(x′, y, z)E = ∇×H− J, (32)

µ(x′, y, z)
∂

∂t
H− c∂H

∂x
+ σ∗(x′, y, z)H = −∇×E. (33)
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Figure 10: Simulation of optical pulse passing through a dielectric particle using stationary and
moving FDTD methods.

We have studied the 2D moving window FDTD in Eulerian frame for linear media. We apply
Berenger’s split-field approach to implement the PML boundary conditon. Assume the moving
window travels with the speed of light in x direction in Eulerian frame, the split-field Maxwell
equations are given by

ε(x, y, t)
∂

∂t
Ex + σx(x, y, t)Ex =

∂Hz

∂y
− Jx, (34)

ε(x, y, t)
∂

∂t
Ey + σy(x, y, t)Ey = −∂Hz

∂x
− Jy, (35)

µ(x, y, t)
∂

∂t
Hzx + σ∗x(x, y, t)Hzx = −∂Ey

∂x
, (36)

µ(x, y, t)
∂

∂t
Hzy + σ∗y(x, y, t)Hzy =

∂Ex
∂y

(37)

Hzx +Hzy = Hz (38)

For Eulerian approach, the Maxwell equations are solved by the standard Yee FDTD method.
The difference between the moving and the stationary FDTD method is that the time dependent
material parameters need to be evaluated at every time step. Every time step, the moving window
is moved by one cell toward the pulse propagation direction if the center of the main pulse has
moved out of the center cell, otherwise the window is not moved. We compare our moving window
FDTD results with the standard FDTD method in stationary frame. As shown in Fig. 10, good
agreement between the moving and stationary FDTD is obtained for the pulse propagation through
a dielectric and dispersive cylinder. The error is less than 1% after the pulse has been propagated
for a relative long distance.
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Figure 11: Simulation of optical pulse passing through a metal (dispersive) particle using stationary
and moving FDTD methods.

6 Ground Penetrating Radar simulations by Adaptive Mesh Re-
finement FDTD method

The FDTD method has been applied in a wide range of applications [3, 21, 22], including antenna,
microwave circuits, geophysics, optics, etc. The Ground Penetrating Radar (GPR) is a popular and
efficient nondestructive electromagnetic device for high-resolution imaging of the shallow subsurface
on the earth, and man-made structures. It is a technique that has been employed in many fields
such as engineering, geology, and environmental studies. For example, GPR can be used to locate
buried utilities and to measure snow/ice thickness. It can also be used as wall penetrating radar
to ‘see’ through the wall. GPR systems are implemented by sending a pulse into a material via
a transmitter. An integrated device records the strength and time required for the return of any
reflected signals. Subsurface variations will create reflections that are picked up by the system
and recorded. These reflections are produced by a variety of shapes and material, which in turn
are used to form images. Under favorable conditions, GPR can provide very accurate information
concerning the nature of various subsurfaces and buried objects.

We have applied the Adaptive Mesh Refinement (AMR) FDTD method to the GPR system.
The AMR method allows the simulation of very small object with fine mesh inside a large region
with coarse mesh. Let Enz,c and Enz,f denote the field values defined on coarse and fine meshes,
respectively. The AMR FDTD algorithm updating the Maxwell equations in the following steps:

1. Update En+1
z,c by ∆t from Enz,c.

2. Update E
n+ 1

2
z,f in the interior of the fine mesh by ∆t

2 from Enz,f .

3. Compute E
n+ 1

2
z,f on coarse/fine boundary through interpolation of neighboring coarse mesh

Enz,c and En+1
z,c electric field values.

4. Update H
n+ 3

4
x,f and H

n+ 3
4

y,f everywhere on the fine mesh by ∆t
2 from H

n+ 1
4

x,f and H
n+ 1

4
y,f respec-
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Figure 12: FDTD simulation of GPR. (a) The red and blue circles are the transmitter and receiver
respectively. (b) A pulse is emitted at multiple locations along the ground and the data from
reflected waves from underground object are recorded. (c): FDTD result with coarse mesh size ∆
everywhere. (d): FDTD result with fine mesh size ∆/2 everywhere. (e): AMR-FDTD result with
fine mesh size ∆/2 near the object and coarse mesh size ∆ elsewhere.

tively.

5. Compute H
n+ 1

2
x,c and H

n+ 1
2

y,c through interpolation of neighboring fine mesh H
n+ 1

4
x,f , H

n+ 3
4

x,f ,

H
n+ 1

4
y,f and H

n+ 3
4

y,f magnetic field values.

6. Update En+1
z,f in the interior of the fine mesh by ∆t

2 from E
n+ 1

2
z,f .

7. Compute En+1
z,f on coarse/fine boundary through interpolation of neighboring coarse mesh

En+1
z,c electric field values.

8. Update H
n+ 5

4
x,f and H

n+ 5
4

y,f everywhere on the fine mesh from H
n+ 3

4
x,f and H

n+ 3
4

y,f respectively.

9. Compute En+1
z,c through interpolation of neighboring fine mesh En+1

z,f field values.

10. Update H
n+ 3

2
x,c and H

n+ 3
2

y,c by ∆t from H
n+ 1

2
x,c and H

n+ 1
2

y,c .

The GPR simulation set up and results are shown in Fig. 12. We compare the results of the
standard and the AMR FDTD methods. For AMR simulation, the mesh is refined in a small region
near the circular object. For standard FDTD simulations, the fine mesh result is much clearer than
that of the coarse mesh. In the refined region, the AMR result is very similar to that of the fine
mesh FDTD result, but the simulation takes much less memory and CPU time. Therefore, our
AMR FDTD solver provides an efficient tool in GPR simulation.
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7 Conclusion and future work

The main objective of this effort is the development of stable, accurate and efficient Maxwell
solvers. The proposed activities focus on mathematical studies of the key unresolved issues in
the Finite-Difference Time-Domain (FDTD) electromagnetic simulations. In summary, our main
achievements and discovers are listed below.

• A new way of extending the subpixel smoothing FDTD algorithm to dielectric/dispersive
material interface was invented by using local coordinate rotation. As our method does
require split fields, better efficiency has been achieved in comparison to the previous work.

• A novel stable anisotropic overlapping Yee FDTD Maxwell solver was proposed for problem
involving complex material interface, such as the electromagnetic invisibility cloaking devices.
Previous proposed conventional anisotropic FDTD method suffers from the late-time insta-
bility problem in such cases due to the extrapolation near the material interface. In contrast,
our method relies on the overlapping cells to provide the collocated field values without any
interpolation or extrapolation.

• A locally non-orthogonal OY FDTD algorithm was developed to compute optical forces on
nanoparticles. Together with diagonal split cell mesh, the OY approach attains second-order
convergence for structures with smooth curved surface and with sharp corners.

• A moving window FDTD method with PML boundaries has been deveolped to model high
intensity optical pulse propagation over long distance (millions of wavelength). The algorithm
is based on the Eulerian formulation. Numerial tests show that the moving window method
is accurate in comparison to the stationary FDTD method.

• Adaptive Mesh Refinement FDTD method has been applied to study the ground penetrating
radar devices. This work was included in the MS thesis of a graduate student.

In the future, we will continue our investigation on new algorithms in numerical solutions to
Maxwell’s equations with applications to linear and nonlinear optics, photonics, EM theory, and
metamaterials.
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