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Using hyperspectral (HS) technology, this paper introduces an autonomous scene anomaly detection approach based on the
asymptotic behavior of a semiparametric model under a multisample testing and minimum-order statistic scheme. Scene anomaly
detection has a wide range of use in remote sensing applications, requiring no specific material signatures. Uniqueness of the
approach includes the following: (i) only a small fraction of the HS cube is required to characterize the unknown clutter
background, while existing global anomaly detectors require the entire cube; (ii) the utility of a semiparematric model, where
underlying distributions of spectra are not assumed to be known but related through an exponential function; (iii) derivation of
the asymptotic cumulative probability of the approach making mistakes, allowing the user some control of probabilistic errors.
Results using real HS data are promising for autonomous manmade object detection in difficult natural clutter backgrounds from
two viewing perspectives: nadir and forward looking.

1. Introduction

Hyperspectral (HS) sensors collect the radiation over a
wide range of contiguous spectral bands, with each band
corresponding to a unique spectral value. The field of view
of the sensor is broken into hundreds of thousands of
pixels, with each pixel representing from less than one to
many squared meters of the region of interest depending on
the spatial resolution of the sensor and the height of the
sensor during the data collection. A collection of spatial-
spectral images is put together resulting in an HS data cube,
where the length and width represent the spatial dimension,
and the depth represents the spectral dimension [1]. The
resulting HS data cube consists of hundreds of thousands
of pixels. Each pixel has tens or hundreds of data points,
each point corresponding to a unique spectral value. In
theory, the spectral signature of each pixel should uniquely
characterize the physical material in that spatial land area.
In practice, the recorded spectral signatures will never be
identical for samples of the same material. Owing to the
different illumination conditions, atmospheric effects, sensor
noise, and so forth, the resulting spectral signatures for
HS imagery pixels containing similar materials will exhibit
spectral variability.

The discriminant capability, however, of spectral signa-
tures has led to two major applications: object classification
and target detection. The former aims to assign all pixels of
the image to thematic classes, the latter searches the image for
the presence of specific material (the target). As highlighted
in [2], from a theoretical point of view, target detection can
be considered as a binary classification problem, aiming at
classifying the image into the target class and the background
class. But, since targets are usually sparsely populated in the
scene, while the background is abundant and heterogeneous,
a major distinction between the approaches designed for
target detection and classification is that target detectors
cannot use criteria based on the minimization of classifica-
tion error since that would lead to labeling every pixel as
background. So, a typical solution proposed in the literature
for target detection is to use the Neyman-Pearson approach,
as discussed by Manolakis in [3], where maximizing the
detection probability for a fixed false-alarm rate is the
adopted criterion for the algorithm design.

Due to the availability of spectral signature libraries for
a wide range of materials, spectral signature-based target
detectors have been widely examined [3, 4]. These methods
assume the target spectral signature is both reliable and
known a priori and aim at finding highly correlated spectra
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in the scene corresponding to the reference target spectra;
these methods are also known as target matching.

Target matching approaches are complicated by the large
number of possible objects of interest and uncertainty as
to the reflectance/emission spectra of these objects. For
example, the surface of an object of interest may consist
of several materials, and the spectra may be affected by
weathering or other unknown factors. One may be interested
in a large number of possible objects each with several
signatures. Thus, the multiplicity of possible spectra asso-
ciated with the objects of interest and the complications
of atmospheric compensation, as well spectral calibration,
acquisition geometry, and contamination from adjacent
objects (see, for instance, the discussion in [5, 6]), have led to
the development and application of anomaly detectors that
seek to distinguish observations of unusual materials from
typical background materials without reference to target
signatures.

Anomalies are defined with reference to a model of
the background. Typically, background models are devel-
oped adaptively using reference data from either a local
neighborhood of the test pixel or a large section of the
image. Local and global spectral anomalies are defined as
observations that deviate in some way from the neighboring
clutter background or the image-wide clutter background,
respectively. Both approaches have their merits.

Local anomaly detectors are typically designed under
the assumption that an anomalous material (the target) is
spectrally distinct from local neighborhood spectra, which
are assumed to be controlled by a known multivariate
distribution (Gaussian); also, it is assumed that the scales
of targets are known a priori, or the viewing perspective
is assumed to be nadir and the altitude of the flying
platform carrying the sensor is available for target scale
estimation. This kind of detectors is susceptible to unknown
spectral mixtures that are often obtained by sampling
spectra through a moving window in the imagery, as the
window is placed at a transition of distinct regions, forcing
the neighboring spectral mixture to be compared against
spectra of one of the regions in that transition; this may
significantly increase the false alarm rate. The local anomaly
detector is also susceptible to false alarms that are isolated
spectral anomalies. For example, consider a scene containing
isolated trees on a grass plain. Each separate tree may
be detected as a local spectral anomaly even if the image
contains a separate region with many pixels of trees. The
most popular local anomaly detector in the HS research
community is based on maximum likelihood estimation
under the multivariate normal distribution; this detector is
commonly known as the Reed-Xi (RX) algorithm [7] and has
become a benchmark for comparison. Kwon and Nasrabadi
proposed a kernelized version of RX in [8], and Matteoli
et al. proposed a segmented version of RX in [9], for the
estimation of the local background covariance matrix from
global background statistics to cope with the small sample
size problem in estimating covariance from local patches in
the image; a small sample size problem occurs when the
number of spectral observations is lesser than the number
of spectral bands (see examination of this problem in [2]).

Banerjee et al. in [10] leveraged the employment of kernel
methods and the method known as support vector data
description (SVDD) to propose the kernel SVDD. But, it
is widely known that the performance of kernel methods
crucially depends on the kernel function and its parameter(s)
[11]. More recently, Gurram and Kwon in [12] and Khazai
et al. in [13] have also addressed the parameter sensitivity
of kernel-SVDD based detectors, which is still an open area
of research. In the statistical based arena, Stein et al. in [14]
presented an overview of the statistical anomaly detectors
derived from three background models: local Gaussian
model, Gaussian mixture model (GMM), and linear-mixing
model. More recently, these models were compared against
others approaches using the same dataset [15, 16]. In [15],
the algorithms RX, GMM, and a cluster-based one were
examined. Matteoli et al. in [16] extended the comparison to
include the orthogonal subspace projection (OSP) detector
and a deterministic signal subspace processing detector.
Other classic approaches have also been adapted to the
local anomaly detection problem, for example, Fisher’s linear
discriminant (see an implementation in [17]).

Global anomaly detectors are based on a simple universal
distribution, which is designed to represent the background
process in the whole image, thus, the name global. Example
of these detectors is the GMM [14] or a different version of
the RX algorithm, which estimates its required parameters
(mean and covariance) not locally, but using spectra from the
entire HS data cube; this version is informally known as the
Global RX. By design, these methods are more resistant to the
small sample size problem mentioned earlier, but they have
limited ability to adapt to all nuances of the background class
(sometimes referred to as an underfitting problem), which
may result in both high false alarm and low anomaly detec-
tion rates. Other earlier versions of global detectors require
that an HS data cube is first segmented into its constituent
material classes, so detection is achieved by applying a cutoff
threshold and automatically locating pixel clusters with pixel
values above the threshold, representing the outliers of these
classes. These hybrid algorithms vary in the method of
segmentation, but also tend to use maximum likelihood
detection under the multivariate normal distribution. The
stochastic expectation maximization clustering algorithm
by Stocker in [18] is a related example; see also Masson
and Pieczynski in [19]. But, since segmentation results are
known to be also sensitive to algorithms’ parameters (see,
for instance, [1]), utility of segmentation algorithms in the
context of anomaly detection has not met expectations for
varying real world scenarios.

Independently of the kind of anomaly detector in use,
the following is a key consideration that should not be
ignored: susceptibility to unknown spectral mixtures of
unknown distributions often observed by sampling spectra
through a moving window in the imagery, where the spectra
in test belong to one of the components in that mixture
(for instance, a local patch of canopy being compared
against neighboring spectral mixture of the same canopy
type and a patch of soil). Rosario in [20] examined this
particular problem using near infrared HS imagery, where he
showed that even on simple real case scenarios (e.g., motor
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vehicles parked at an open grassy field having also trees
in the background on a sunny day) transitions of distinct
regions may contribute to 18% of all of the locally observed
spectra in the imagery, using a small moving window (10
by 10 pixels). Of course, with increased scene complexity
(increased heterogeneity), this percentage reaches higher
levels.

This paper presents a quasiglobal, semiparametric
anomaly detection (QG-SemiP) approach that is less suscep-
tible to problems and issues mentioned above for existing
local or global anomaly detectors. In particular, the approach
requires only a small fraction of the HS cube to characterize
the unknown clutter background (hence, the term quasi-
global), in contrast to existing global anomaly detectors,
which require the entire cube. It does not use segmentation
and it is less susceptible to spectral mixtures in local
neighborhoods of the imagery.

The approach consists of three major parts: (i) a data
dimension reduction method, which plays an important
role on the overall approach, since it maps the data from
their native multivariate space to a univariate domain in
order to avoid the small sample size problem mentioned
earlier, gaining in the process insensitiveness to illumination
on objects, reducing the dominance of the blackbody
response produced by Earth (if the longwave infrared region
applies), among other benefits to be discussed later; (ii)
a univariate semiparametric model [21], which is chosen
because of its robustness to samples representing a mix-
ture of material types; (iii) a parallel random sampling
scheme that characterizes the unknown background clutter,
using a binomial probability density function to model the
likelihood of sampling targets by chance and erroneously
labeling them as clutter, justifying multiple sampling trials
in parallel in order to significantly decrease the labeling error
probability.

The semiparametric model is neither parametric, since
the specific distribution controlling the data is not assumed
to be known, nor nonparametric, since other parameters
must still be estimated relating two unknown distributions.
The semiparametric model, however, assumes that the
distributions of the samples to be tested are related to each
other through an exponential function (a distortion), having
two unknown parameters. As it will be shown later in
detail, the model is appealing for many reasons, including
the following: if two spectral samples under test belong to
the same material type (i.e., they are not anomalous to
each other), then the assumed exponential function relating
both distributions is reduced to unity. If the two samples
under test belong to different material types (i.e., they are
anomalous to each other), then the exponential function
will impose a significant weight relating both distributions,
indicating that the samples are anomalous to each other;
a key point here is that such an outcome is invariant to
whether the assumption of exponential relationship between
the distributions is satisfied or not—this will be discussed
in more detail later. Finally, another benefit, although not
recognized earlier by users of semiparametric models in
other areas of study, is the model’s natural ability to
handle samples representing a mixture of different material

types, which also will be shown later. As a note, samples
representing a mixture of material types are known to
significantly increase the false alarm rate in operational
scenarios, requiring autonomous anomaly detection; they
can produce dominant edges between spatial regions of
different material classes, later to be detected as meaningless
(false) anomalies [2].

The strength of the semiparametric model handling the
mixture problem is attributed to the fact that a sample
under test is expected to contribute to the estimation of
the distribution function controlling the sample labeled
as reference, where both samples are expected to equally
contribute to the estimation (when both are in fact under
the same distribution), only the reference sample will be
able to contribute (when both samples are from different
distributions), or both the reference sample and a portion
of the test sample will contribute (when the reference is
a mixture and the test sample represents a component in
that mixture, or vice versa). These outcomes are produced
naturally by the model because of the imposed exponential
relationship between the two distributions, as shown later
using simulated univariate data to make the point. Another
appeal for using an exponential distortion assumption is that
many of the known distribution functions can be expressed
in terms of an exponential distortion of another distribution,
including all of the exponential family of distributions
[22].

Rosario in [23] published a much earlier and limited
conference paper version of this work, where a two-step
semiparametric detector (data transformation and semi-
parametric test statistic) was introduced to the limited
task of local anomaly detection (where prior knowledge
of targets’ scales was required, imposing the limitation)
and its performance was compared only against the RX
algorithm. Relative to the previous work in [23], this paper
significantly extends both the overarching methodology and
presents additional results using the extended approach to
test significantly more challenging scenarios from the ground
to ground viewing perspective, where targets’ scales are
unknown a priori. In other words, this work enables capabil-
ity rather than just offers an incremental improvement. The
specific contributions in this paper (method extension and
additional results) are as follows.

(i) The two-step anomaly detector (data transformation
and semiparametric test statistic) is employed for
the first time in a quasi-global framework (which is
also proposed herein), where only a fraction of the
entire data cube being represented by blocks of data
are randomly selected from the imagery and used as
reference sets of spectra to test the entire imagery.
The results are later fused using order statistics, as
the sampling scheme is modeled by the Binomial
distribution.

(ii) An analytical cutoff threshold is derived from the
approach’s asymptotic cumulative probability of
rejecting a null hypothesis, when either the null or
the alternative hypothesis is true (given that the null
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hypothesis is based on a multisample testing and
order statistic scheme).

(iii) The extended approach is applied to additional real
HS imagery to automatically find manmade objects
in the scene, producing excellent results in difficult
natural clutter scenarios viewed from both nadir and
forward looking viewing perspectives.

(iv) Performance of the extended approach is compared
via ROC curves against multiple methods found in
the literature, for example, global methods (k-means,
Gaussian mixture model, global RX), local methods
(kernel RX, standard RX, Fisher’s linear discriminant,
and the local semiparametric detector discussed in
[23]).

(v) An analytical study of the two-sample test frame-
work, using the local semiparameter detector in [23]
as the base detector.

(vi) An analytical study of the multi-sample fusion
test framework, using the semiparametric model
embedded in the quasi-global framework, which
relaxes the prior knowledge requirement of target
scales, hence, enabling scene anomaly detection tasks
independently of the viewing perspective (nadir or
forward looking).

(vii) A study of the semiparametric model’s behavior in
the presence of samples representing a mixture of
two different material classes, which is the most
common mixture case scenario given the sliding
window sizes typically used in anomaly detection
operational scenarios.

(viii) A subsection specially devoted to discuss the moti-
vation and give a qualitative assessment of the data
transformation used in the two-step semiparametric
anomaly detection of [23].

For convenience, a list of notations is available after the
appendix.

This paper is organized as follows: Section 2 describes
spatial data window models for HS sensing, a semipara-
metric model, and a hypothesis test; Section 3 discusses the
sampling method, its probabilistic model, and introduces
QG-SemiP; Section 4 discusses performance of QG-SemiP
testing nadir and forward looking HS imagery, consisting of
manmade objects in difficult natural background scenarios;
Section 5 concludes the paper.

2. Problem Formulation, Data Transformation,
and Semiparametric Model Description

The main goal of anomaly detection algorithms testing
incoming imagery is to detect objects that are spectrally
anomalous to its surroundings, yielding in the process a tol-
erable number of nuisance detections. In many surveillance
and reconnaissance applications, it is desired that manmade
objects are detected as being anomalous to the surrounding
natural clutter. Both format and model of the data play
a significant role in attempting to achieve the intended
goal.

2.1. Remote Sensing Data and Data Format. Experiment
was carried out on data sets from two distinct sensors and
viewing perspectives: (i) the hyperspectral digital imagery
collection experiment (HYDICE) sensor, from a nadir
looking perspective; (ii) the SOC-700 hyperspectral sensor,
from a forward looking perspective. Data from these sensors
will be referred to in this paper as nadir looking imagery and
forward looking imagery, respectively.

The HYDICE sensor records 210 spectral bands in the
visible to near infrared (VNIR: bands between 0.38 and
0.97 μm) and short-wave infrared (SWIR: bands between
1.0 and 2.50 μm). An extended description of this dataset
can be found, for example, in Schweizer and Moura (2000).
The results shown in this section for one data subcube are
representative for other sub-cubes in the HYDICE (forest
radiance) dataset. An illustrative subcube (shown as an
average of 150 bands; 640×100 pixels) is depicted in Figure 1
(Cube 1, top). We discarded water absorption and low signal
to noise ratio bands; the bands used are the 23rd–101st,
109th–136th, and 152nd–194th. The scene consists of 14
stationary motor vehicles (targets near a treeline) in the
presence of natural background clutter (e.g., trees, dirt roads,
grasses). Each target consists of about 7 × 4 pixels, and each
pixel corresponds to an area of about 1.3× 1.3 square meters
at the given altitude.

The forward looking imagery used for this work was
recorded using the SOC-700 VNIR HS spectral imager,
which is commercially available off the shelf. The system
produces HS data cubes of fixed dimensions R = 640 by
C = 640 pixels by K = 120 spectral bands between 0.38
and 0.97 μm. Figure 1 (Cube 2 through 4, bottom) depicts
examples of the forward looking imagery, where each pixel
in any of the three cube examples corresponds to the average
of 120 band values. Data cubes Cube 2 and Cube 3 were
collected during the summer of 2004 in California, USA;
Cube 4 was collected during the spring of 2008 in New Jersey,
USA. From actual ground truth, it is known that the scene
in Cube 2 (see Figure 1) contains three motor vehicles and a
standing person in the center of the scene (i.e., two pick-up
trucks to the left in proximity to each other, a man slightly
forward from the vehicles in the center, and a sport utility to
the right). Although the natural clutter in Cube 2 and Cube 3
is dominated by Californian valley-type trees and/or terrain
at the same general geolocation, the data in Cube 3 depict
a significantly more complex scenario. From actual ground
truth, it is known that in Cube 3 a sport utility vehicle is
inconspicuously deployed in the shades of a large cluster of
trees. Portions of the shadowed vehicle can be observed near
the center in Cube 3. Cube 4 was recorded in a wooded region
at Picatinny, where (according to the available ground truth)
a sport car is located behind multiple tree trunks, partially
obscuring the vehicle; see Figure 1 (Cube 4).

The four data cubes in Figure 1 are independently dis-
played as intensity images after linear mapping the gray scale
of each to the range 0–255. Pixel intensities shown in each
individual surface is only relative to corresponding values in
that surface; in other words, pixel values representing the
same material (e.g., general terrain) may be displayed with
different intensities in another surface. This fact explains,
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VNIR-SWIR cube 1

VNIR cube 2 VNIR cube 4VNIR cube 3

Figure 1: Examples of nadir looking imagery (Cube 1) and forward looking imagery (Cubes 2 through 4). An effective anomaly detection
algorithm suite would allow a machine to automatically detect the presence of manmade objects (targets), while suppressing the cluttered
environment, using no prior information about what constitutes clutter background or target in the imagery.

for instance, the difference in brightness between the same
terrain under similar atmospheric conditions shown in Cube
2 and Cube 3. (The strong reflections from certain parts of
the vehicles captured by the sensor in Cube 2 are not as
dominant in Cube 3 because the vehicle in Cube 3 is in tree
shades; the open field in Cube 3 is then the strongest reflector
in the scene).

Next, we present a model of observed data using a sliding
n × n window in X (a data cube). The data format of X is

shown in (1), where r (r = 1, . . . ,R) and c (c = 1, . . . ,C)
index pixels xrc in the R × C spatial area X, where n � R
and n � C. Pixels within a fixed n × n block of data in X
are indexed from the upper left corner of this block using i j
relative to rows and columns in X, where i = 1, . . . , (R−n−1)
and j = 1, . . . , (C−n−1). A representation of an n×nwindow
at pixel location (i, j) = (2, 2) in X is as follows:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11, x12, . . . , x1C

x21,
x(2+1)1,

...
x(2+n−1)1,

n×n window, where in this case i= j=2︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎣

xi j , xi( j+1), . . . , xi( j+n−1)

x(i+1) j , x(i+1)( j+1), . . . , x(i+1)( j+n−1)
...

x(i+n−1) j , x(i+n−1)( j+1), . . . , x(i+n−1)( j+n−1)

⎤
⎥⎥⎥⎥⎦

, . . . , x2C

, . . . , x(2+1)C
...
...

, . . . , x(2+n−1)C
...
...
...

xR1, xR2, . . . , xRC

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

Before pixels within a block of data can be used by
a detector, they need to be rearranged to a sequence
of multivariate variables. The rearrangement is made by
concatenating individual rows in the n × n window in (1)
as follows:

W1 =
⌊

xi j , . . . , xi( j+n−1), x(i+1) j , . . . , x(i+1)( j+n−1), . . . ,

x(i+n−1) j , . . . , x(i+n−1)( j+n−1)

⌋

= [y11, . . . , y1n1

]
,

(2)

where W1 ∈ RK×n1 , n1 = n2, and y1h ∈ RK (h = 1, . . . ,n1),
such that y11 = xi j , y12 = xi( j+1), and so forth until finally

y1n1 = x(i+n−1)( j+n−1). Since a window can be anywhere in X
and X represents any HS data cube, {y1h}n1

h=1 are considered
random vectors and the entire set of spectra that constitutes
X will be observed through the n× n window.

Using the assumption that the random vectors in W1

are independent and identically distributed (i.i.d.), the
distribution of data within the window, using (2), can be
simplified to the following:

y11, . . . , y1n1 ∼ i.i.d. g1
(

y | θ), (3)

where g1(y | θ) is a conditional multivariate probability
density function (PDF) and θ is its parameter set; both
g1(y | θ) and θ are typically unknown for real applications.
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Normally, an anomaly detector requires two input sets of
spectra (W1 ∈ RK×n1 ) and (W0 ∈ RK×n0 ) to perform its task
on X. The test sample (W1) is obtained at a fixed location
i j in X, as shown in (1) and (2); but, the source to obtain
a reference sample (W0) will depend on the application, or
viewing perspective.

For the nadir looking imagery, the most popular sam-
pling method is to use pixel vectors surrounding a n×n block
of data to construct W0, where W1 is constructed using the
block of data to be tested. Notice that this sampling method is
not suitable for the forward looking imagery because a priori
knowledge of target scales in the imagery are required to set
the size of a separation (guard) region between the block of
data to be tested and locally surrounding samples.

For the forward looking imagery, the reference input set
W0 could be made available from a spectral library, or be
randomly selected from the testing data cube. In either case,
W0 would be a rearranged version of a n × n block of data.
The latter is addressed in Section 3, where (in order to make
such a test useful for real applications) W1 is independently

compared to multiple spectral sets W
( f )
0 ∈ RK×n0 ( f =

1, . . . ,N); fusing thereafter these comparison results in order
to yield a decision (output) surface, as described in Section 3.

Both input sets W1 and W0 feed the anomaly detector.
As mentioned earlier, whether the viewing perspective

is nadir or forward looking, mixtures of different materials
in W1 and/or in W0 can significantly degrade anomaly
detectors’ performances, as examined by Manolakis and
Shaw in [2]. It is customary to assume normality in (3),
or mixture of Gaussian distributions, but experience has
shown (see [1]) that relaxation of these assumptions is
needed.

We discuss next a two-step approach for anomaly
detection, as introduced in [23], comprising of spectral
transformation followed by the application of a univariate
semiparametric model.

2.2. Data Transformation. This subsection discusses the
employed method to transform spectra from their native
multivariate space to a univariate domain, satisfying the
univariate data requirement of the semiparametric model.
We also provide justification for choosing the employed
transformation and give some example cases to reinforce its
use.

We consider a data transformation approach in two parts:
(i) spectral differencing and (ii) angle mapping.

The rationale for (i) is twofold: (a) since HS samples
are contiguous in the spectral domain (i.e., typical spectral
resolution is of the order of 10 nanometers), more discrimi-
nant and independent information pertaining to a particular
material type may be found between adjacent bands, which
could augment the statistical power of detectors (this is
specially the case in LWIR (longwave infrared) HS imagery
where the radiance values observed in calibrated data
(collected outdoor) are overwhelmingly influenced by the
Planck’s blackbody equation [1]), as the Earth’s landscape
(primarily, canopy and soil) behaves as a blackbody in the
LWIR region of the electromagnetic spectrum (note: there

is a whole topic of study in mathematical statistics on
feature exploitation by zero crossing, which uses the output
of random variable differencing as used herein for spectra,
see [24]); (b) spectral differencing also puts significantly
less weight in the importance of spectral magnitude (or
bias) in anomaly detection applications, putting focus on the
importance of spectral shape, instead. Spectral magnitude
relates to the mean average of all measured radiance within
a spectral sample, and spectral shape relates to the plotted
curve of measured radiance as a function of wavelength.
Existing classification and detection algorithms directly or
indirectly exploit magnitude and/or shape of spectra in order
to perform their tasks.

The benefit of (ii) is that it reduces the detection problem
from a multivariate dimensional space to a univariate
domain, avoiding the undesired problem of singularity
issues during inverse estimations of covariance matrices.
Singularity is known to occur when the sample size of a
spectral sample is less than its number of spectral bands.
Although there are approaches proposed in the literature to
overcome this issue, the output of these approaches is not
always desirable (see, for instance, [3]), since a typical HS
sensor usually delivers between 120 and 1,000 bands, but
targets may vary in number of pixels from as large as in the
thousands to as small as 1 to 4 pixels, depending on the actual
physical sizes of these targets and/or distance between the
sensor and targets.

This paper is concerned about ensuring that the data
transformation method can in fact reduce algorithm sen-
sitivity to spectral magnitude (which can be achieved via
(i)), so that a manmade object, for instance, deployed in
tree shades can be considered as much as an anomaly
relative to a dominant natural clutter background in the same
way that the manmade object would have been if it were
deployed, instead, out in the open field. All of this, while
simultaneously preserving both a high sensitivity to spectral
shape and the discriminant characteristics among spectra of
distinct material types (which can be achieved via (ii)). If
these requirements are matched, then the data transforma-
tion approach has achieved the overall desired goal—some
example results are shown later in this subsection to reinforce
those points.

Before those examples are presented, however, consider
the following: let two spectra—having K spectral bands—
be available for comparison, y0 = [L01, . . . ,L0K ] and
y1 = [L11, . . . ,L1K ], where Li j (i = 0, 1; j = 1, . . . ,K)
are nonnegative radiance values. Further assume that y1

is twenty percent stronger in magnitude than y0. One
way to formalize the disparity in magnitude is to let
{L0 j = μ + δ0 j}Kj=1, {L1 j = 1.2μ + δ1 j}Kj=1, and μ > 0. Two key

points are worth noticing: (a) the difference L0( j+1) − L0 j =
(μ + δ0( j+1)) − (μ + δ0 j) = δ0( j+1) − δ0 j would provide more
discriminant and independent information (δ0( j+1) − δ0 j)
than jointly using the highly correlated L0( j+1) and L0 j , ditto
for L1( j+1)−L1 j ; (b) the difference L1( j+1)−L1 j = δ1( j+1)−δ1 j

would remove from consideration the 20 percent stronger
average magnitude of L1 j over L0 j , if the {L0( j+1) − L0 j}K−1

j=1

were used instead for comparison against {L1( j+1) − L1 j}K−1
j=1 .
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In essence, (a) replaces the need for using—for instance—
PCA (principal component analysis) to uncorrelate the data,
as it is commonly employed in the HS community [2]);
from (b), if y1 and y0 are observations of the same material
under different illumination conditions (e.g., spectrum y0

representing a shaded object and spectrum y1 representing
the same object but not shaded), then the average magnitude
difference between the two spectra would not play a role
in the comparison test, which is desired. For those readers
who may have some concerns about what may be lost in
the process of transforming the data from multivariate to
univariate in the context of anomaly detection, as it will
be shown shortly, the loss—although difficult to quantify—
is not relevant to the anomaly detection problem, since an
effective anomaly detector is not expected to distinguish a
material type that is spectrally similar to another material
type. If the detector is designed to be that sensitive, it would
likely also produce an unacceptably high false alarm rate due
to expected within class variability of the same material types
dominating the scene (for instance, the expected within class
variability of tree clusters across the scene).

The two-part transformation approach is described next.
Borrowing from the discussion in Section 2.1, the trans-

formation approach requires two sets of spectra, a reference
set (W0),

W0 =
[

y01, . . . , y0n0

]

=

⎡
⎢⎢⎣
L011, . . . ,L01n0

...
L0K1, . . . ,L0Kn0

⎤
⎥⎥⎦,

(4)

where y0i = [L01i, . . . ,L0Ki]
t is calibrated spectra from a pixel-

size location at the scene observed by the K-band sensor,
during a particular set of atmospheric and illumination
conditions; (·)t is the vector transposed operator; L0ki (k =
1, . . . ,K) are radiance values, such that, adjacent radiance
values are usually highly correlated; i = 1, . . . ,n0 and n0 is
the sample size of W0; and an independent test set (W1) that
most likely has the same atmospheric condition captured
in (4), but not necessarily the same illumination condition
captured in (4),

W1 =
[

y11, . . . , y1n1

]

=

⎡
⎢⎢⎣
L111, . . . ,L11n1

...
L1K1, . . . ,L1Kn1

⎤
⎥⎥⎦,

(5)

where all of the qualifying comments made for (4) also apply
to y1i = [L11i, . . . ,L1Ki]

t with i = 1, . . . ,n1.
Letting u denote the index that distinguish both sets

Wu (u = 0, 1), the magnitude of Luki in (4) and (5) depends
on the amount of illumination (e.g., shaded or nonshaded
objects) and the illumination environment, this dependence
can be significantly reduced by applying the first order

differentiation—an approximation of the first derivative—to
the columns of Wu, or

∇0 =

⎡
⎢⎢⎣

(L021 − L011), . . . ,
(
L02n0 − L01n0

)
...(

L0K1 − L0(K−1)1
)
, . . . ,

(
L0Kn0 − L0(K−1)n0

)

⎤
⎥⎥⎦,

∇1 =

⎡
⎢⎢⎣

(L121 − L111), . . . ,
(
L12n0 − L11n1

)
...(

L1K1 − L1(K−1)1
)
, . . . ,

(
L1Kn0 − L1(K−1)n1

)

⎤
⎥⎥⎦.

(6)

Notice in (6) that ∇0 ∈ R(K−1)×n0 and ∇1 ∈ R(K−1)×n1 ,
and the sample means of∇0 and∇1 are, respectively,

∇0 = 1
n0
∇0 1n0×1,

∇1 = 1
n1
∇1 1n1×1,

(7)

where 1d×1 is a column vector of dimension d filled with real
values of 1’s.

Denoting the columns of ∇0 (which corresponds to the
reference set) as {∇0i ∈ R(K−1)}n0

i=1, then the multivariate
reference and test samples can be transformed to univariate
reference and test samples through the following angle-
mapping formulas:

x0i = 180
π

arccos

⎛
⎝ ∇t

0i∇0

‖∇0i‖
∥∥∥Δ0

∥∥∥

⎞
⎠, (8)

x1i = 180
π

arccos

⎛
⎝ ∇t

0i∇1

‖∇0i‖
∥∥∥Δ1

∥∥∥

⎞
⎠, (9)

where 0◦ ≤ x0i ≤ 90◦, 0◦ ≤ x1i ≤ 90◦, the operator ‖·‖ using
a column vector x is the square root of xtx (note: although
we prefer to use a metric that yields a number having a
geometric interpretation, the reader who is concerned about
algorithm speed may replace the angle mapper metric with
any other comparable metric of choice, for instance, the
correlation metric [2] or the normalized dot product showed
inside the arccos operator in (8) and (9). The most important
aspect about the employed metric is that it must be able to
preserve the discriminant characteristics among spectra of
different material types, as it will be shown shortly).

From (8) and (9), the following two univariate sequences
are constructed:

x0 =
(
x01, x02, . . . , x0n0

)
,

x1 =
(
x11, x12, . . . , x1n0

)
,

(10)

where x0 (reference) and x1 (test) are the input sequences to
be used by the univariate based anomaly detection technique
discussed in Section 2.3. Note that both samples end up
having the same sample size, n0.

As mentioned earlier, the employed data transformation
was specifically chosen to offer a number of desired prop-
erties, including reduced sensitivity to spectral magnitude
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Figure 2: Most common window-based testing scenarios in anomaly detection problems, assuming for simplification that the scene
background consists of two distinct material types (Class A and Class B) and a third material (Class C) also distinct from Class A and
Class B depicts a anomalous material relative to the background.

and preservation of discriminant features among spectra
of distinct material types. Regarding the latter, notice in
(10) that, for the proposed transformation to work as
advertised, when both multivariate samples W0 and W1

happen to be observations of the same material type,
the component values in x0 and x1 are expected to be
comparable and closer to 0◦ in the scale between 0◦ and
90◦; however, when W0 and W1 are observations of distinct
material types, the component values in x0 and x1 should
be proportionally apart, where values in x0 are expected
to be closer to 0◦ while values in x1 are closer to 90◦.
In addition, when the observation represents a mixture of
two different material types, the proposed transformation
should yield a univariate sample that is representative of the
mixture.

Now, we will take a closer look at these expectations,
using (8) and (9) to transform two sets of real HS spectra for
a qualitative assessment, addressing first the most common
sliding window-based testing scenarios naturally occurring
in anomaly detection problems: local testing, which requires
a priori knowledge of object scales (range dependent), and
global testing, which does not require a priori knowledge
of object scales (range invariant). Figure 2 depicts these
scenarios (in this context, local testing means comparing
clustered spectra against neighboring spectra, while global
testing means comparing clustered spectra against spectra
located elsewhere across the same imagery).

Figure 2 illustrates the same data-cube spatial repre-
sentation under the two-test case scenarios, where for
simplification the scene background is spatially dominated
by only two distinct material types (Class A and Class B)
and a third material (Class C—also distinct from Class
A and Class B) illustrates the presence of an anomalous
material relative to the background. Notice also that the

two objects of Class C in the scene have significant size and
shape differences, so that, the advantage of approaching the
anomaly detection problem from a global rather than a local
perspective can be pointed out.

The left hand side image in Figure 2 shows the overlaid
sliding window locations of the standard approach to local
anomaly detection in the HS research community (see [3]),
where a sliding window consisting of an interior square
(inner window) is concentrically located along with a larger
square so that spectra observed through the inner window
can be compared against spectra observed through the outer
portion (outer window) of the larger square (i.e., the area of
the larger square minus the inner window). Furthermore, the
spectral set observed through the outer window is labeled as
the reference sample, while the spectral set observed through
the inner window is labeled as the test sample.

As the test window slides across the image one pixel
location per algorithmic test, the labels P1 through P7
(left hand side image in Figure 2) highlight seven key
test locations in the image. Table 1 summarizes a list of
plausible anomaly declarations by an anomaly detector versus
the desired declarations, using the known ground truth
information about the scene.

The last column of Table 1 (desired anomaly) shows
that out of the seven most distinct window locations for
local testing, only two (P6 and P7) are desired, which may
contradict declarations made by anomaly detection models
currently found in the literature. In fairness, these detectors
would be performing the job they are employed to do, as
the plausible anomaly declarations shown in Table 1 are
indeed correct in the strict sense. For instance, P2 shows a
test between observations from Class A (test sample) and
observations from a mixture (reference sample: Class A and
Class B), while P6 shows a test between observations from
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Table 1: Plausible versus desired declarations of local anomalies.

Window location Plausible anomaly Desired anomaly

P1 No No

P2 Yes No

P3 No No

P4 Yes No

P5 No No

P6 No Yes

P7 Yes Yes

the same material type (the intended anomaly: Class C).
The reason, however, these declarations are not desired is
that locations similar to P2 will likely accentuate edges as
anomalies across the image, increasing the probability of false
alarms, and locations similar to P6 will suppress the intended
anomaly, decreasing the probability of correct detections.
Location P6 also emphasizes the lack of robustness using
the local testing approach to find anomalies in the scene,
as a priori knowledge of object scales (consisting of the
anomalous material) are not always available.

Regarding global testing shown in Figure 2 (the illustra-
tion at the right hand side), the window locations denoted
as P1 through P5 depict distinct testing locations (observed
test samples), while locations denoted as R1 through R3
depict distinct observations (fixed reference samples) that
may have been randomly sampled from the image (prior to
testing) and used to test every possible window-sized regions
across the image, including P1 through P5. Table 2 shows
the plausible declarations of anomalies versus the desired
declarations, using the same ground truth information about
the scene.

The last column of Table 2 (desired anomaly) in essence
shows that any test that involves a mixture of classes and
a component of that mixture should not be declared as
an anomaly so that only truly anomalous material types
(in this case Class C) relative to the background will be
accentuated. An implementation scheme for the global
testing approach, which requires fusion of declarations, will
be discussed later. For now consider the following: the
final declaration for any given window location is to retain
the declaration NO, if it is there, out of all of the results
produced by the particular testing location. Using this rule,
locations P1, P2, and P3 would produce a final declaration
of NO, and P4 and P5 would produce a final declaration
of YES, as it would be desired by a global detection
scheme. Notice also that P4 ensures that the circular object
(Class C) would be accentuated as an anomaly, using the
same test window size that would have detected the other
anomaly of different scale shown in location P5; this is also
desired.

Using real spectral samples, we will now qualitatively
demonstrate the behavior of transformation output equa-
tions (10), when exposed to the key window positions shown
in Figure 2. In anticipation, we would like to see that the data
transformation will preserve distinction between samples
of two different classes and produce results corresponding

Table 2: Plausible versus desired declarations of global anomalies
(Using R1, R2, and R3 as reference samples, see Figure 2).

Window location Plausible anomaly Desired anomaly

No (R1) No (R1)

P1 Yes (R2) No (R2)

Yes (R3) Yes (R3)

Yes (R1) No (R1)

P2 No (R2) No (R2)

Yes (R3) No (R3)

Yes (R1) Yes (R1)

P3 Yes (R2) No (R2)

No (R3) No (R3)

Yes (R1) Yes (R1)

P4 Yes (R2) Yes (R2)

Yes (R3) Yes (R3)

Yes (R1) Yes (R1)

P5 Yes (R2) Yes (R2)

Yes (R3) Yes (R3)

to a mixture of classes, when such a mixture is being
observed. If successful, those results would give us some
level of confidence that not much is being lost in terms of
class distinction and that examples of mixtures would be
shown as mixtures by the data transformation (demonstra-
tion of the desired anomaly detection declarations will be
shown later, when the semiparametric model is discussed
in Section 2.3. We also defer answering questions about
what would happen when other possible window location
cases appear, besides the ones shown in Figure 2, until
discussion of results from testing real HS imagery in
Section 4).

Figure 3 shows spectral transformation results using two
sets of real spectra (Class A and Class B), where in this
case spectral band differencing was not used as input for
angle estimation among spectra and spectral means (see (6)),
the actual individual radiance values (L’s) were used instead
of the difference between adjacent radiance values (L’s).
Figure 4 shows results using the same two sets of spectra but
this time around using band differencing, following exactly
the path from (6) to (10).

Class A in Figure 3 consists of 200 real spectra repre-
senting a grassy area in an open field; Class B consists of
200 real spectra representing a cluster of tree leaves in the
same geographic location of Class A. The employed HS
sensor operates in the VNIR (visible to near infrared) region,
producing 120 spectral bands per spectrum. To observe the
behavior of the proposed data transformation as it processes
spectra equivalent to the window location examples shown
in Figure 2, Class A is denoted as the reference sample and
processed with an independent test set representing Class
A (200 spectra), it was also processed with a second test
set representing Class B (200 spectra). The spectral sample
means of both spectral sets are also shown in Figure 3.

Using both the reference and test samples from the same
class (Class A) exemplifies window locations P1, P3, P5,
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Figure 3: Spectral transformation from multivariate to univariate sample using the actual spectral values instead of spectral differencing.

and P6 in the local testing image in Figure 2; for the global
testing illustration in Figure 2, it also represents the cases
when spectra from R1 are processed with spectra from P1
and when spectra from R3 are processed with spectra from
P3. Using spectra Class A as the reference and spectra from
Class B as the test exemplifies the local testing locations
P7 (i.e., the presence of an anomaly) and global testing
location duals (R1, P4), (R1, P5), (R3, P4), and (R3, P5).
The key point to notice in Figure 3 is the angle mapped plots
shown in the bottom portion of the figure, where the plot
at the left hand side shows that both the univariate reference
sample (blue bubbles) and the univariate test sample (green
bubbles) are comparable, preserving the fact that both
samples belong to the same class. On the other hand, the
angle mapped plot shown on the right hand side shows that
the spectral transformation preserves the distinction between
the samples from Class A and Class B. Both results are desired
and would be passed as input to the employed detector for a
decision.

The same experiment was held, but instead differentiat-
ing data in the spectral direction in order to check whether
such a step would change the desired outcome from the

spectral transformation shown in Figure 3. Figures 4(a) and
4(b) shows the band differencing means using (7) choosing
samples from Class A to be both the reference and test
sets (Figure 4(a)), and choosing a sample from Class A as
reference and a sample of Class B as the test (Figure 4(b)).

The angle plots shown in Figures 4 (c) and 4(d) affirm
that the differentiation step shown in (6) and (7), followed by
output transformation from multivariate to univariate data,
do preserve the lack of distinction between samples from
the same class (Figure 4(c)) and a strong distinction between
samples from Class A (reference) and samples from Class B
(test), see plots in (Figure 4(d)) . This example provides a
direct assertion that what is lost due to the transformation is
not relevant to the anomaly detection problem, since the goal
of an anomaly detector is to find those material types that are
truly distinct from the material types spatially dominating
the background scene, as other factors will conspire against
the detector’s effectiveness (e.g., mixture of distinct material
classes, within material class variability). In other words, if
a specific material type (target) is desired by the user to be
considered as an anomaly relative to a natural environment
but the target is not sufficiently distinct spectrally from
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Figure 4: Spectral transformation from a multivariate to univariate sample using spectral differencing.

the background, then an effective anomaly detector would
most likely not declare the target as an anomaly. Ironically, as
mentioned earlier, this is a virtue because a detector that is
too sensitive in distinguishing two spectrally similar material
types is also likely to produce an unacceptably high number
of false alarms due to expected within class variability of
dominant background material types in the scene.

Next, we would like to check how a spectral set,
representing a mixture, is altered by the data transformation.
For this demonstration, we constructed a reference sample by
combining 100 spectra of Class A with 100 spectra of Class
B, so that, the reference sample represented a mixture of two
classes, and arbitrarily chose the test set to be represented by
200 spectra of Class B (the latter were independent from the
ones used to construct the reference mixture). Figures 5(a)
and 5(b) show both the mixture (reference construct) and
the component of that mixture (Class B: test sample), and
the resulting angle mapped plots using spectra without band
differencing (Figure 5(c)) and spectra after band differencing
(Figure 5(d)).

The key message from Figures 5(c) and 5(d) is that the
data transformation with or without the band differencing

step does preserve in the univariate domain the fact that the
material class of the multivariate test spectra is a component
of the mixture of classes represented by the multivariate
reference set of spectra. In this particular case, the univariate
reference sample (blue bubbles) clearly shows the presence of
two classes (i.e., half of the observations has lower angle val-
ues and the other half has higher angle values), while the test
univariate sample (green bubbles) shows observation values
commensurate to the one of the mixture class component
(lower angle values). Although this fact is not necessarily
desired for anomaly detection (see, for instance, P2 and P4
in Figure 2 (local testing, left image), the data transformation
at least does not seem to alter such a scenario involving
a mixture, which is fine as long as the employed anomaly
detector is designed to handle similar challenging cases.

In summary, the proposed data transformation does pre-
serve distinctions or similarities that exist between spectral
sets and also offers additional benefits, as highlighted earlier
in this subsection. What is needed now is a model that
is more effective finding anomalies, while simultaneously
managing the expected negative-impact nuisances naturally
occurring in real operational scenarios (e.g., the presence
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Figure 5: Spectral transformation from a multivariate to univariate sample for a mixture and a component of that mixture.

of mixtures). A semiparametric model is described next for
that purpose.

2.3. Univariate Semiparametric Model. Let two multivari-
ate samples W1 and W0 be transformed to x0 =
(x01, x02, . . . , x0n0 ) ∼ f0(x) and x1 = (x11, x12, . . . , x1n1 ) ∼
f1(x), respectively (using, for instance, (4) through (9)),
where f0(x) and f1(x) are unknown joint PDFs.

To simplify the anomaly detection problem using the
transformed data, suppose the two random samples (real
valued, not vector valued) x0 (reference) and x1 (test) are
independent, consisting of i.i.d. (see mathematical notation
list after the appendix) random variables controlled by
unknown marginal PDFs g0 and g1, respectively. Moreover,
let g0 and g1 be related through the following model:

x1 =
(
x11, . . . , x1n1

)
i.i.d ∼ g1(x)

x0 =
(
x01, . . . , x0n0

)
i.i.d ∼ g0(x),

(11)

g1(x)
g0(x)

= exp
(
α + βx

)
. (12)

The model in (11)-(12) is appealing for many reasons,
consider the following examples.

If x0 and x1 are samples of the same distribution, then the
assumed exponential relationship is reduced to unity so that
g1 = g0 (whether g1 or g0 is known or not), indicating that x0

is not anomalous to x1. If x0 and x1 are samples of different
distributions, then the exponential function will impose a
significant weight relating both distributions, indicating that
x1 and x0 are anomalous to each other. The key point here
is that the latter outcome is invariant to and independent of
whether the assumption of exponential relationship between
the distributions is satisfied or not; that is, if the exponential
relationship assumption is satisfied, then x1 is anomalous to
x0, but if this assumption is not satisfied, x1 is still anomalous
to x0. Since the application of interest only requires a
determination of whether x1 is anomalous to x0, satisfying
the imposed assumption of (12) is inconsequential. So, a
hypothesis test could just be designed to check whether
exp(α + βx) = 1 in order to determine the presence of
anomalies.

However, the relationship assumption in (12) plays a
major role in the mathematical development of the statistical
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test and, more importantly for the application in context,
it also plays an important role in determining whether a
portion or the entire test sample (x1) can contribute to the
estimation of the reference distribution (g0). The latter is a
subtle feature never before recognized in other areas of study,
for example, pharmaceutical [22], where semiparametric
models are more commonly employed for their utility. The
implication of this subtlety is that when one of the samples
represents a mixture of different material types and the
other represents a component of that mixture, the model
in (11)-(12) allows both samples, through the assumed
relationship, to contribute to the distribution estimation
of the chosen reference sample; in essence stating that the
assumption may also be partially satisfied as long as a portion
of the test sample belongs to the reference distribution.
This is manifested when the test produces an estimation of
exp(α + βx) that is significantly closer to unity than it would
produce when the test sample has absolutely no relationship
with the reference sample. In the practical scenario this is
the difference between having a detector capable or not of
naturally handling samples representing a mixture, as it will
be shown later in this subsection. As mentioned earlier,
samples representing a mixture of material types are known
to significantly increase the false alarm rate in operational
scenarios for autonomous anomaly detection—they can pro-
duce dominant edges between regions of different material
classes, later to be detected as false alarms [2].

Notice in (12) that, since g1 is a density, β = 0 must imply
that α = 0, as αmerely functions as a normalizing parameter,
following from the requirement that a PDF (in this case g1)
must integrate to unity, see PDF properties in [25]. Notice
also that if β = 0 then x0 and x1 must belong to the same
population (i.e., g1 = g0). Using this fact, a test statistic can
be designed to test the following hypotheses:

H0 : β = 0
(
g1 = g0

)
anomaly absent,

H1 : β /= 0
(
g1 /= g0

)
anomaly present.

(13)

In order to estimate β, denote the union of x0 and x1

(combined data) by t,

t = (x11, . . . , x1n1 , x01, . . . , x0n0

) ≡ (t1, . . . , tn), (14)

and following the construction by Qin and Zhang in [21]
and Fokianos et al. in [22], a maximum likelihood estimator
of G0(x)—the continuous cumulative distribution function
(CDF) corresponding to the reference g0(x), can be obtained
by maximizing the likelihood over the class of step CDF’s
with jumps at the observed values t1, . . . , tn. Accordingly,
if g̃0(ti) = dG(ti), where d(·) denotes the differentiation
operator, i = 1, . . . ,n, the likelihood becomes,

ζ
(
α,β, g̃0

) =
n0∏

i=1

g̃0(x0i)
n1∏

j=1

exp
(
α + βx1 j

)
g̃0

(
x1 j

)

=
n=n1+n0∏

i=1

g̃0(ti)
n1∏

j=1

exp
(
α + βx1 j

)
.

(15)

One can now express each g̃0(ti) in terms of α and β
and then substitute the terms g̃0(ti) back into the likelihood

to produce a function of α and β only. When α and β are
fixed, (15) is maximized by maximizing only the product
term

∏n
i=1g̃0(ti), subject to the constraints

n∑

i=1

g̃0(ti) = 1,
n∑

i=1

g̃0(ti)
[
exp
(
α + βti

)− 1
] = 0. (16)

Denoting ρ = n1/n0, Qin and Zhang in [21] showed that

g̃0(ti) = 1
n0

1
1 + ρ exp

(
α + βti

) , (17)

and that the value of the profile log-likelihood log[ζ(α,β, g̃0]
up to a constant can be expressed as a function of α and β
only, or

l
(
α,β
) =

n1∑

j=1

(
α + βx1i

)−
n∑

i=1

log
[
1 + ρ exp

(
α + βti

)]
. (18)

A system of score equations that maximizes (18) over
(α,β) is shown below [21],

∂l
(
α,β
)

∂α
= −

n∑

i=1

ρ exp
[
α + βti

]

1 + ρ exp
[
α + βti

] + n1 = 0,

∂l
(
α,β
)

∂β
= −

n∑

i=1

tiρ exp
(
α + βti

)

1 + ρ exp
(
α + βti

) +
n1∑

j=1

x1 j = 0.

(19)

The solution of the score equations yields the maximum

likelihood estimators (α̂, β̂) and consequently by substitution
also yields an estimator of g̃0(ti), or [21]

̂̃g0(ti) = 1
n0

1

1 + ρ exp
(
α̂ + β̂ti

) . (20)

So, in summary, by using profiling, an estimator (20) for
g̃0(ti) is attained in addition to score equations (19), where
both the reference and test samples as shown in (14) are
used to estimate g0 (the reference PDF). This is only possible
because the model in (12) implies that g1 can be expressed
in terms of g0. This feature allows this model to be robust
when either g0 or g1 is bimodal or multimodal (representing
a sample mixture) while the other represents a component
of the same mixture—a key factor for handling transitions
of distinct regions in the anomaly detection application, as it
will be shown later.

Using results from Fokianos et al. in [22], the estimator β̂
has the normal asymptotic behavior, as the sample size tends
to infinity (n → ∞), or

√
n
(
β̂ − β0

)
−−−→
n→∞ N

(
0,
ρ−1
(
1 + ρ

)2

v2

)
, (21)

where β0 denotes the true parameter, v2 is the variance (a
scalor) using components from the combined sequence t,
ρ = n1/n0, n = n1 + n0, and →means converges to—in this
case to a normal distribution having 0 mean and variance
equals to ρ−1(1 + ρ)2/v2.
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Both estimators α̂ and β̂ are required to estimate v2 in

(21) via ̂̃g0(ti). Denoting v̂2 the estimator of v2 and using
results from [22],

v̂2 =
∑

i

t2i ̂̃g0(ti)−
⎛
⎝∑

i

tî̃g0(ti)

⎞
⎠

2

, (22)

where ̂̃g0(ti) is shown in (20).
Normalizing the left side of (21) with ρ−1(1 + ρ)2/v̂2,

setting βo = 0 and squaring the final result, and using known
properties of the family of Chi square distributions [25], one
can test H0 in (13) with the following expression:

ZSemiP = nρ
(
1 + ρ

)−2
β̂2v̂2 −−−→

n→∞ χ2
1, (23)

which has the Chi square distribution asymptotic behav-
ior with 1 degree of freedom, χ2

1. Under the idealized
assumptions of model (11) and (12), a decision can be
based on the value of ZSemiP in (23), that is, high values
of ZSemiP reject hypothesis Ho, declaring the presence of
local anomalies (note: Regarding (23), as typical from any
asymptotic expression, the larger the value of n is the more
accurate and precise the approximation of the expression will
be. Since n in this context coincides with twice the sample
size of the reference sample, sample sizes typically used
in anomaly detection applications will suffice (greater than
100, yielding n greater than 200). Practitioners in statistics
usually recommend that for univariate variables, asymptotic
expressions should use at least thirty two observations,
indicating that n in this case should be at least 32 or greater).

The test statistic in (23) will be referred to from here
forward as the SemiP test statistic or SemiP anomaly detector,
which has two steps: data transformation and test statistic
estimation.

2.4. Implementation Notes for the Standing Alone

SemiP Detector

2.4.1. Function Maximization. In order to implement (23),
we perform an unconstrained maximization of the log
maximum likelihood function in (18), or alternatively one
could minimize the negative version of (18), to obtain the

extremum estimators α̂ and β̂. We used one of the conven-
tional unconstrained nonlinear optimization algorithms—
the simplex method [26], which is available in Matlab
software (Release 13) under the function name fminsearch.
The simplex method is a direct search method that does
not use numerical or analytic gradients. If n is the length
of x, a simplex in n-dimensional space is characterized by
the n + 1 distinct vectors that are its vertices. For instance,
in two-space, a simplex is a triangle; in three-space, it is a
pyramid. At each step of the search, a new point in or near the
current simplex is generated. The function value at the new
point is compared with the function’s values at the vertices
of the simplex and, usually, one of the vertices is replaced by
the new point, giving a new simplex. This step is repeated
until the diameter of the simplex is less than the specified

tolerance. A limitation using such a method is that it may
find a local extremum, so the choices of initial parameters
may prove to be critical in some cases; however, we found in
practice that by setting the initial values to (α = 0, β = 0),
the method converges reasonably fast and works very well
for all of the cases that we have observed, independently of
whether anomalies were present or not in the tests.

The term v̂2 in (23) is computed using v̂2 = Ê(t2)− Ê2(t),

where Ê(tk) =∑i t
k
i ĝ0(ti) and ̂̃g0(ti) is shown in (20).

2.4.3. Decision Threshold. As mentioned earlier, using (23),
high values of ZSemiP reject hypothesis Ho in (13), declaring
that x1 is an anomaly relative to x0. Using this detector as
a standing alone unit, one could set a decision threshold
based on the type I error, that is, based on the probability
of rejecting Ho given that Ho is true. Using a standard
integral table for the Chi square distribution, with 1 degree
of freedom, find a threshold that yields an acceptable
probability of error (e.g., 0.001).

2.5. Model Behavior in the Presence of Sample Mixtures. We
show in this subsection the robustness of the semiparametric
model toward an asymmetric test, that is, when a sample of
a mixture is compared against a component of that mixture,
which is found locally across the image in the form of spatial

transitions. More specifically, we would like to show that β̂
(estimator for β in (13)) is significantly closer to ZERO when,
for two PDFs gA(y) /= gB(y), y1 ∼ gB(y) and y0 ∼ gB(y) or
y0 ∼ (gA(y)∪ gB(y)) (representing the union ∪ or a mixture
of two PDFs) than when y1 ∼ gB(y) and y0 ∼ gA(y). We
illustrate this fact using simulated data and focusing on three
specific case studies.

Case 1. y0 ∼ gA(y) versus y1 ∼ gB(y).

Case 2. y0 ∼ (gA(y)∪ gB(y)) versus y1 ∼ gB(y).

Case 3. y0 ∼ gB(y) versus y1 ∼ gB(y).

According to [20], Case 2, which represents a transition
of distinct regions in the image, appears some 20% of the
entire image, or higher, as local patches are observed through
a small moving window across typical images. Therefore,
Case 2 is a major source of false alarms that could be
avoided using a more robust model of the background
than the typical models used in the target community.
In anomaly detection applications, it is desired that the
employed detector declares the presence of an anomaly for
Case 1 but no anomalies for Cases 2 and 3; a declaration of
no anomalies present is also desired, if Case 2 were reversed,
that is, y0 ∼ gB(y) versus y1 ∼ (gA(y)∪ gB(y)), although this
case is not shown here, its results are consistent with Table 3.

The results shown in Table 3 were computed using
100 simulated random samples from an i.i.d. Gaussian
distribution to represent the reference sequence y0 and
another 100 samples to represent the test sequence y1.
A sequence representing a mixture of two classes consists of
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Table 3: Behavior of β̂ on different case studies.

Simulated samples Mean estimates Variance estimates

Case studies
Parameters
μA=2000; σ2

A=200

μB=1000; σ2
B=100

β̂ (α̂)
μ̂=∑n

i=1 ti
̂̃g0(ti)

μ̂2=(1/n0)
∑n0
i=1 y0i

μ̂3=(1/n)
∑n
i=1 ti

v̂2=∑n
i=1 t

2
i
̂̃g0(ti)−μ̂2

v̂2
2=(1/n0)

∑n0
i=1 (y0i−μ̂2)2

v̂2
3=(1/n)

∑n
i=1 (ti−μ̂3)2

Case 1
y0 ∼ i.i.d N

(
μA, σ2

A

)

y1 ∼ i.i.d N
(
μB , σ2

B

) −0.7500 (848.75)
1.9967e + 003
1.9967e + 003
1.4983e + 003

151.9466
153.4815

2.4982e + 005

Case 2
y0 ∼

⎧⎪⎨
⎪⎩

i.i.d N
(
μA, σ2

A

)

i.i.d N
(
μB , σ2

B

)

y1 ∼ i.i.d N
(
μB , σ2

B

)
−0.0073 (8.0110)

1.4990e + 003
1.4990e + 003
1.2494e + 003

2.4997e + 005
2.5316e + 005
1.8859e + 005

Case 3
y0 ∼ i.i.d N

(
μB , σ2

B

)

y1 ∼ i.i.d N
(
μB , σ2

B

) −0.0046 (4.5900)
999.8392
999.8392
999.6346

89.2284
89.2574
89.5693

50 samples for each class resulting in a total of 100 samples.
The formulation and parameters used to generate these
sequences are shown in Table 3 for different case studies,
where the samples in row 2 (starting from the left upper
corner in Table 3) simulates a local test between a genuine
isolated object (y1) and its homogeneous surrounding
background (y0)—Case 1, the samples in row 3 simulates
a local test at a transition between two classes, where the
test sample belongs to one of these classes—Case 2; the
samples in row 4 simulates a local test within a homo-
geneous region—Case 3. Practical implementation details
of the SemiP detector, which includes the estimation of
(α,β), are shown in Section 2.3. The parameters (α,β) were
estimated by maximizing the log likelihood function, using
an optimization subroutine initialized to (0,0), (0,0), and
(0,0) for Cases 1, 2, and 3, respectively, so that convergence to
a solution down to a tolerable error could be achieved using
the subroutine.

Since the solution of the semiparametric model uses the

union of samples t and estimators α̂ and β̂ to estimate g̃0

(which itself is an estimator of g0), we also included in Table 3
the mean estimates μ̂, μ̂2, and μ̂3 and the variance estimates
v̂2, v̂2

2, v̂2
3; where v̂2 estimates variance from the solution of

the semiparametric model using the union of samples t =
(y0, y1) and ̂̃g0; v̂2

2 estimates variance using only the reference
sample y0; and v̂2

3 is the sample variance using t. The mean
estimates were computed accordingly, see Table 3.

In reference to results shown in Table 3, recall that the
null hypothesis is β = 0, and notice that the value of β̂
in Table 3 are significantly closer to zero for Case 3 (homo-
geneous region) and Case 2 (a transition of two different
region) than for Case 1 (genuine local anomaly), where in
Case 1 y0 and y1 do belong to different classes. Notice also
that the disparity between the values of v̂2

2 and v̂2
3 for each

case study also reflects how close β̂ is to zero. For instance,
the disparity between v̂2

2, and v̂2
3 for Case 1 is quite large

compared to corresponding disparities for Cases 2 and 3.
The semiparametric model handles mixture by showing

sensitivity on the estimation of β and α, such that when the
test sample has strong statistical information about one of
the subclasses in the reference sample, the semiparametric

method responds by keeping both β̂ and α̂ relatively close
to zero in order to maximize the log likelihood function in

(18). The estimates α̂, β̂ affect directly the computation of
̂̃g0, which in turn is used to compute v̂2.

To shed some light on the effect of β̂ and α̂ on ̂̃g0, we
present some results in Figure 2. The plots shown in Figure 2
(row 1) corresponds to Case 1; where, the plots on the left
depict the values of ti as a function of index i, for convenience
we have marked where the sequences y0 and y1 are relative to

each other within t; and the plots on the right depict ̂̃g0(ti)
versus i. Likewise for Case 2 (row 2) and Case 3 (row 3).

Let us consider first Cases 3 and 1. As mentioned
earlier, because of the semiparametric model in (11) and
(12), the union of samples t = (y0, y1), where y0 is the
reference sequence, is used to estimate the reference PDF
estimator g̃0. Circumstances when both samples belong to
the same population (Case 3), the estimated cumulative

weight for the test sample y1, that is, w1 = ∑n1
i=1
̂̃g0(y1i),

is expected to be approximately equal to the estimated
cumulative weight for the reference sample y0, that is, w0 =∑n1+n0

i=n1+1
̂̃g0(y0(i−n1)); because the constraint

∑n=n1+n0
i=1 g̃0(ti) =

1 was used in the profiling method to attain g̃0(ti) in terms
of α,β, we would expect both w1 and w0 to be near 0.500.
Using simulated samples for the normal distributions and
parameters shown in Table 3 for Case 3, we obtained w1 =
0.4998 and w0 = 0.5002, which are very close to our
expectations, see Figure 6. We interpret the actual values of
g̃0(ti) shown for Case 3 in Figure 6(f) to be an indication
that the semiparametric method regards the test sample y1

to be as important in the estimation of g̃0 as the reference
sample y0 is in that estimation, for the right justification,
as both y0 and y1 happens to be governed by the same
distribution.

In contrast, when both y0 and y1 belong to clearly
different classes (see Case 1 in Table 3), the semiparametric
method recognizes this difference and virtually shuts down
the contribution of y1 in the estimation of g̃0. The way it
shuts down the contribution of y1 is by maximizing the

log likelihood function with values of β̂ and α̂ that allow

the estimates of atomic exponential distortions exp (α̂ + β̂ti)
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Figure 6: Effect of estimators α̂, β̂ on the computation of ̂̃g0.

to be relatively high when ti corresponds to components of
y1.

And since exp(α̂+β̂ti) are inversely proportional to ̂̃g0(ti),
see (20), the contributions of corresponding components
of y1 in ti estimating g̃0 are shut down as an indication of
nonimportance to this estimation. The implication of this

shut down is that the value of β̂ is relatively away from
zero (relative to Case 3, for instance), which rejects the
null hypothesis as desired. Figures 6(a) and 6(b) show the
combined samples for Case 1 and the resulting cumulative

weights for the test sample w1 =
∑n1

i=1
̂̃g0(y1i) ∼= 0.0 and for

the reference sample w0 =
∑n1+n0

i=n1+1
̂̃g0(y0(i−n1)) ∼= 1.0, where

∼= denotes approximately equal to. The shutdown is reflected
in the results for w1.

In reference to Case 2, where the information carried in
y1 is also contained in y0, as half of the random components
in y0 are governed by the same distribution of the random
components in y1—see Table 3 and Figures 6(c) and 6(d),
the semiparametric method recognizes this fact by holding

the value of β̂ at near zero, and interestingly by allowing the
contributions of y1 estimating g̃0 to be comparable to those
contributions of the portion of y0 that are similar to y1. In
other words, since both y1 and y0 are used to estimate g̃0

and half of the random components in y0 are governed by
the same distribution of all of the random components in y1

and the other half are governed by a different distribution,
the semiparametric method will not discriminate between y1

and the portion of y0 that is similar to y1. The outcome of
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this behavior is that, in order to maximize the log likelihood

function, the values of β̂ and α̂ are kept statistically close to

zero (in this case β̂ = −0.0073) to reflect that the information
in y1 is important in the estimation of g̃0. The way this
method explicitly shows this nondiscrimination is by yield-
ing the cumulative weight using y1 and the portion of y0 that
is similar to y1 to hold half of the power, while the other half
of the power is allocated to the portion of y0 that is dissimilar
to y1. In other words, using results from Figure 6(d) and this
claim, we would expect a value of 0.5 (half power) for the
cumulative weight using y1 and the portion of y0 that is sim-

ilar to y1; we obtained
∑n1

i=1
̂̃g0(y1i) +

∑n1+n0
i=n1+51

̂̃g0(y0(i−n1)) =
0.5007. And we would expect the other half of the power to
be in the cumulative weight using the portion of y0 that is

dissimilar to y1; we obtained
∑n1+n0+50

i=n1+1
̂̃g0(y0(i−n1)) = 0.4993.

Notice that adding 0.5007 and 0.4993 yields exactly 1.0 as
expected because the constraint

∑n=n1+n0
i=1 g̃0(ti) = 1 was used

in the profiling method in order to attain a representation of
g̃0 in terms of free parameters β and α.

A conclusion that we can draw from this discussion
is that the semiparametric method will indirectly compare
two samples y0 (reference) and y1 (test) by assuming that
the distribution of y1(g1) and the distribution of y0(g0) are
related (exponentially) to each other and that, therefore, the
information content in both samples can be used to estimate
one of these distributions, in particular, g0.

We found this indirect comparison method to be highly
sensitive to the cumulative contribution of y1 estimating
g0. This sensitivity has an important practical value in the
anomaly detection application for three reasons.

First, if g1 = g0, both samples y0 and y1 are expected
to equally contribute to the estimation of g0, which in fact
would improve that estimation due to the increase of sample
size. Result: y1 would be labeled as not being anomalous to
y0 in this application.

Second, if g1 /= g0, sample y1 is not expected to be allowed
to contribute to the estimation of g0, thus, this estimation
would solely rely on the cumulative contribution of y0.
Result: y1 would be labeled as being anomalous to y0 in this
application.

And third, if g0 is a mixture of densities, such that, g1 is a
component in that mixture, we found that the contribution
of y1 would not be suppressed, but proportional to the
weight of g1 in that mixture (see Figure 6). Result: y1 would
be labeled as not being anomalous to y0 in this application.

This behavior of the semiparametric test statistic is highly
desired in the target community because it conforms with be
behavior of a human analyst performing the same task in the
target application, and it separates this method from existing
ones performing the same task.

3. Quasiglobal Semiparametric Approach

The semiparametric test statistic is used as the primary
scoring method for the quasi-global anomaly detection
approach. As mentioned in Section 1, the quasi-global
anomaly detection approach was designed to tackle the

forward looking anomaly detection problem, although the
application of the quasi-global algorithm using nadir looking
imagery are also considered in Section 4.

We start by describing the background sampling method
and its probabilistic model, followed by description of the
quasi-global algorithm framework using the semiparametric
test statistic.

3.1. Sampling Method and Its Probabilistic Model. Assume
that target pixels are present in the R × C spatial area of a
R × C × K HS data cube X, denote a the total number of
target pixels in X, q the probability of a pixel in X belonging
to the target, and the relationship q = a/A, where A = RC
(or all pixels in X) (in most applications q is unknown, and if
multiple targets are present in the imagery, a will be the total
number of all pixels belonging to all targets present in the
imagery; also, these targets may or may not have the same
material type). In order to represent the unknown clutter
background in the imagery, let N blocks of data—all having
a fixed small area (n× n) � (R× C)—be randomly selected
from the R×C area, see one of the data cubes in Figure 1. In
theory, for (n × n) = (1 × 1) and using the assumption that
target pixels in X are disjoint and randomly located across the
R× C imagery area (note that in practice, this assumption is
not satisfied when targets are present in the scene, but we will
use this assumption to establish a guideline), the probability
P that at least one block of data has a target pixel is

P(m ≥ 1) = 1− p(m = 0), (24)

where p is the binomial density function [27], given
parameters q and N , and m ∈ {0, 1, . . . ,N} is the number
of blocks of data containing a target pixel, or

p
(
m | q,N

) = N !
m!(N −m)!

qm
(
1− q)N−m, (25)

(symbols | and ! denote given parameters and the factorial
operator, resp.).

For convenience, we will refer to P(m ≥ 1) as the prob-
ability of contamination and m the number of contaminated
blocks of data.

The implementation of this contamination model to the
autonomous background sampling problem requires that
each one of the N(n × n) blocks of data be regarded as

an independent reference set W
( f )
0 ( f = 1, 2, . . . ,N) rep-

resenting clutter spectra, where W
( f )
0 ∈ RK×n0 is a rearranged

sequence version of the f th block of data having n0 = n2

spectra. By necessity, n0 must be significantly greater than
one—for statistical purposes—but yet significantly smaller
than A = RC (e.g., n0/A = 202/6402 = 0.000977) in
order to reasonably satisfy the assumption that a n × n
block of data has an unit area at the R × C imagery
area. A contaminated block of data, then, will be treated
qualitatively as a block having target pixels covering a large
portion of the block’s area (e.g., greater than 0.70). In
addition—when targets are present, since pixels representing
a single target are expected to be clustered in the imagery,
the assumption that each target pixel is randomly located
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Figure 7: The relationship between N(the number of randomly selected blocks of data, shown as yellow squares on the imagery) and the
contamination probability Pg(m ≥ 1) = P(m ≥ 1) is shown in (b) for a given q (e.g., q = 0.10), which is an upper bound guess representing
the maximum ratio between target pixels over the R × C area. To better characterize the unknown clutter background, a high N is most
desired, but at a high cost, that is, an undesirably high Pg(m ≥ 1). The overall contamination probability, however, can significantly decrease
by independently repeating the random sampling process Mnumber of times, as shown (c) of figure, and then fusing results using a suitable
method.

across the imagery area will be ignored. Using (24), while
ignoring the nonclustered target pixel assumption, implies
that the probability of contamination will be overestimated,
as blocks of data are less likely to be randomly selected
from the same cluster of target pixels (for the autonomous
background sampling problem, it is more conservative
to overestimate the probability of contamination than to
underestimate).

Figure 7(b) shows a plot of the probability of contamina-
tion P(m ≥ 1) versus N , for two values of q (0.1 and 0.2).
It is highlighted in the plot in reference that, for instance, if
parameters are set to (q,N) = (0.10, 22) then P(m ≥ 1) =

0.90. Notice that for N = 22, if target pixels are present
but cover less than q = 0.10 of the imagery area, P(m ≥
1) = 0.90 is overestimated by two fronts: (i) pixels from a
single target are not randomly spread across the imagery
area, but clustered, and (ii) the cumulative number of target
pixels covers less than 0.10 of the imagery area. So, (24)
provides an upper bound (conservative) approximation of
the probability of contamination, given parameters q and N .

Figure 7(b) also shows the tradeoff between having a
larger number of spectral sets (increasing N) in order to ade-
quately represent the clutter background, which is desired,
and the cost of increasing probability of contamination,
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which is not desired (in particular, contamination implies
that once target pixels are randomly selected by chance from
the imagery area, they will be used by a detector as reference
set to test the entire imagery, in which case targets would be
suppressed).

Since the presence of target pixels in the imagery is
unknown a priori, finding a way to decrease the probability
of contamination becomes a necessity. In order to decrease
this probability, using an adequately large N and a sensible
value for q, we propose to independently repeat the random
sampling process described in this subsection M number of
times. Figure 7(c) illustrates the outcome of M repetitions.
If we denote the probability of contamination of the gth
random sampling process (or repetition) as Pg(m ≥ 1),
1 ≤ g ≤ M, for a fixed q and N , note that each Pg(m ≥
1) = P(m ≥ 1) and, since 0.0 ≤ P(m ≥ 1) ≤ 1.0 and
these processes will be repeated independently from each
other, the overall probability P̃ that all of the processes will
be contaminated with at least a contaminated block of data
will decrease as a function of increasing M, or

P̃ = P1(m ≥ 1)P2(m ≥ 1) · · ·PM(m ≥ 1) = [P(m ≥ 1)]M.
(26)

Figure 7(c) plots P̃ as a function of increasing M, for
P(m ≥ 1) = 0.90 and P(m ≥ 1) = 0.65. Taking,
as an example, the P̃ curve in Figure 7 corresponding to
using P(m ≥ 1) = 0.90 in (24), notice that for M >
40, [P(m ≥ 1)]M decreases to virtually zero. This outcome
implies that at least one out of the M > 40 processes has an
extremely high probability of not being contaminated, given
that N = 22 and target pixels do not cover significantly more
than 10% of the imagery area (q = 0.10).

3.2. Algorithmic Fusion. A framework for the quasi-global
semiparametric anomaly detection algorithm can now
be developed using (i) the repeated random sampling
model discussed in Section 3.1 (needed to characterize
the unknown clutter background in the imagery), (ii) the
semiparametric anomaly detector discussed in Section 2.3
(needed to test reference data against the entire imagery),
(iii) a way to fuse the results from testingN randomly chosen
blocks of data against the entire imagery using small windows
(this will produce a 2-dim output surface per repetition), and
(iv) a way to fuse M independently produced 2-dim output
surfaces into a single 2-dim decision surface.

Start by letting a HS data (R×C×K) cube X be available
for autonomous testing. Let also N blocks (n× n) of data be
randomly selected from the X’s R × C spatial area and used

as a reference library set W
( f )
0 ( f = 1, 2, . . . ,N) representing

clutter background spectra, where W
( f )
0 = (y

( f )
01 , . . . , y

( f )
0n0

) is a
rearranged sequence version of the f th block of data having

n0 = n2 spectra, where{y
( f )
0u }

n0

u=1 ∈ RK are K-dim column
vectors. Let W1 = (y11, . . . , y1n1 ) be the rearranged version
of a (n × n) window of test data at location i j in X—see
(1) for column vectors {y1h}n1

h=1 ∈ RK ; first, we would like

to automatically test W1 against all {W
( f )
0 }Nf=1, and produce

a single output (scalar) value Z̃
(i j)
SemiP ≥ 0.0 from these N test

results.
For better clarity in this subsection, we repeat the

data transformation steps discussed in Section 2.2, but with
the inclusion of index f = 1, . . . ,N and letting yi j =
Li1 j , . . . ,LiK j , where Lik j is the kth radiance value in yi j , k =
1, . . . ,K , and

W
( f )
0 =

[
y

( f )
01 , . . . , y

( f )
0n0

]

=

⎡
⎢⎢⎢⎣

L
( f )
011, . . . ,L

( f )
01n0

...

L
( f )
0K1, . . . ,L

( f )
0Kn0

⎤
⎥⎥⎥⎦,

(27)

∇( f )
0 =

⎡
⎢⎢⎢⎣

(
L

( f )
021 − L( f )

011

)
, . . . ,

(
L

( f )
02n0

− L( f )
01n0

)

...(
L

( f )
0K1 − L( f )

0(K−1)1

)
, . . . ,

(
L

( f )
0Kn0

− L( f )
0(K−1)n0

)

⎤
⎥⎥⎥⎦,

(28)

∇( f )
0 = 1

n0
∇( f )

0 1n0×1 (29)

and, denoting the columns of∇( f )
0 as {∇( f )

0u }
n0

u=1,

⎧⎪⎨
⎪⎩x

( f )
0u =

180
π

arccos

⎛
⎜⎝

(
∇( f )

0u

)t∇( f )
0∥∥∥∇( f )

0u

∥∥∥
∥∥∥Δ( f )

0

∥∥∥

⎞
⎟⎠

⎫⎪⎬
⎪⎭

n0

u=1

. (30)

And equivalently for W1 = (y11, . . . , y1n1 )—the rearranged
version of a (n × n) window of test data at location i j in X

and the columns of∇( f )
0 in (28)—{∇( f )

0u }
n0

u=1, one has

⎧⎪⎨
⎪⎩x

( f )
1u =

180
π

arccos

⎛
⎜⎝

(
∇( f )

0u

)t∇1∥∥∥∇( f )
0u

∥∥∥
∥∥∥Δ1

∥∥∥

⎞
⎟⎠

⎫⎪⎬
⎪⎭

n0

u=1

. (31)

From (30) and (31), the following two univariate sequences
will be used as inputs to the SemiP detector:

x
( f )
0 =

(
x

( f )
01 , x

( f )
02 , . . . , x

( f )
0n0

)
, (32)

x
( f )
1 =

(
x

( f )
11 , x

( f )
12 , . . . , x

( f )
1n0

)
, (33)

where 1 ≤ f ≤ N .
Following the discussion that led to (33), results from

the semiparametric test statistic can be used (or fused) as
following:

Z̃
(i j)
SemiP = min

1≤ f≤N
Z

(i j)( f )
SemiP , (34)

where

Z
(i j)( f )
SemiP = nρ

(
1 + ρ

)−2
(
β̂( f )
)2
v̂2( f ), (35)
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{Z(i j)( f )
SemiP }

N

f=1 ≥ 0.0, n1 = n0 = n2, ρ = n1/n0, (i = 1, . . . ,R −
n− 1) and ( j = 1, . . . ,C − n− 1) index the left-upper corner
pixel of an n× n window in X; using (32) and (33),

t( f ) =
(
x

( f )
01 , . . . , x

( f )
0n0

, x
( f )
11 , . . . , x

( f )
1n0

)

=
(
t

( f )
1 , . . . , t

( f )
n1+n0

)
,

(36)

v̂2( f ) =
n1+no∑

u=1

t2u
( f )̂̃g0

(
tu

( f )
)
−
⎛
⎝
n1+n0∑

u=1

tu
( f )̂̃g0

(
tu

( f )
)
⎞
⎠

2

,

(37)

̂̃g0

(
tu

( f )
)
= 1
n0

1

1 + ρ exp
(
α̂( f ) + β̂( f )tu( f )

) , (38)

and estimates α̂( f ) and β̂( f ) can be obtained by replacing

(α,β) with (α̂, β̂) in (18) and then performing an uncon-
strained maximization of l(α,β); for this paper, a standard
unconstrained minimization routines available in Matlab
software (i.e., fminsearch) was used, setting initial values to

(α̂, β̂) = (0, 0).

Notice that if Z
(i j)(1)
SemiP ,Z

(i j)(2)
SemiP , . . . ,Z

(i j)(N)
SemiP are placed in

ascending order and denoted by Z
(i j)
SemiP(1), Z

(i j)
SemiP(2), . . .,

Z
(i j)
SemiP(N), such that Z

(i j)
SemiP(1) ≤ Z

(i j)
SemiP(2) ≤ . . . ≤ Z

(i j)
SemiP(N),

then Z̃
(i j)
SemiP = Z

(i j)
SemiP(1) according to (34)—the lowest order

statistics (see, for instance, [28]). This fact will be used
in estimating the asymptotic behavior of the overall quasi-
global semiparametric algorithm, shown in the Appendix.

Notice also that if W1 is significantly different from all

{W
( f )
0 }Nf=1, then all of the corresponding results {Z(i j)( f )

SemiP }
N

f=1

in (35) would yield high values; this outcome would

guarantee the lowest order statistics Z̃
(i j)
SemiP in (34) to hold

a high value. Otherwise, if W1 is significantly similar to at

least one of the samples in {W
( f )
2 }Nf=1, then at least one of

the corresponding results in {Z(i j)( f )
SemiP }

N

f=1 would yield a low

value; this low value would be assigned to Z̃
(i j)
SemiP, according

to (34).
Since it is unknown a priori whether target spectra are

present in X, the entire X needs to be tested. In order

to achieve it, all {Z̃(i j)
SemiP}

R−n−1,C−n−1

i=1, j=1 must be computed

according to (34), producing a 2-dim output surface Z̃
(g)
SemiP.

The index g(1 ≤ g ≤ M) has been introduced to results
produced by (34) in order to denote the repetition number
discussed in Section 3.1, yielding

Z̃
(g)
SemiP =

⎡
⎢⎢⎢⎣

Z̃
(11)(g)
SemiP , . . . , Z̃

[1(C−n−1)](g)
SemiP

...
...
...

Z̃
[(R−n−1)1](g)
SemiP , . . . , Z̃

[(R−n−1)(C−n−1)](g)
SemiP

⎤
⎥⎥⎥⎦. (39)

The computation leading to (39) will be independently
repeated M number of times in order to significantly reduce
the probability of contamination (i.e., samples of targets
labeled as clutter background). Applying a cutoff threshold

to all pixel values Z̃
(i j)(g)
SemiP in Z̃

(g)
SemiP, such that, pixel values

that are above or equal to the threshold become 1 and values
below become 0, yielding a binary surface (a probabilistic
cutoff threshold for this algorithm is presented in Section
4.3). The M binary surfaces are fused using the logic OR
operator ⊕, leading to the algorithm’s final output surface
ZSemiP, or

ZSemiP =

⎡
⎢⎢⎢⎣

(
Z̃(11)(1)

SemiP ⊕ · · · ⊕ Z̃(11)(M)
SemiP

)
, . . . ,

(
Z̃[1(C−n−1)](1)

SemiP ⊕ · · · ⊕ Z̃[1(C−n−1)](M)
SemiP

)

...
...
...

Z̃[(R−n−1)1](1)
SemiP ⊕ · · · ⊕ Z̃[(R−n−1)1](M)

SemiP , . . . , Z̃[(R−n−1)(C−n−1)](1)
SemiP ⊕ · · · ⊕ Z̃[(R−n−1)(C−n−1)](M)

SemiP

⎤
⎥⎥⎥⎦. (40)

Figure 8 illustrates Z̃
(g)
SemiP (39) and ZSemiP (40) through a

repeated random sampling and result fusion diagram. The
diagram shows M independent paths, where, in each path,
independent blocks of data are randomly selected from the
input HS data cube so that the entire data cube can be
tested against these blocks of data, using a testing window
of the same block size. Each path, which is indexed by

g (1 ≤ g ≤ M), produces a 2-dim output surface (Z̃
(g)
SemiP),

where, at the backend of the diagram, all {Z̃
(g)
SemiP}

M

g=1 passes

through a logical OR operator on a pixelwise fashion (i.e.,
only the pixel values at the same pixel location are logically
OR’ed), producing a final 2-dim surface ZSemiP, as shown in
(40).

The motivation and functionality shown in Figure 8 are
summarized as follows: for a given repetition g (1 ≤ g ≤M),
assume that the realization of W1 from a window location
i j in X is a spectral sample of a target, and the realizations

of {W
( f )
0 }Nf=1 are samples of various materials composing

the clutter background in X, that is, the randomly selected
blocks of data are not contaminated with target spectra.
The semiparametric order statistics in (34) is expected to
yield a high value at that i j location. Moreover, if the target
scale in X is larger than n × n, then the target will be

represented by multiple pixels in Z̃
(g)
SemiP (39), having high

values. These pixels are expected to be clustered, hence,

accentuating the target spatial location in Z̃
(g)
SemiP. However,

as discussed in Section 3.1, the contamination probability
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Figure 8: Quasiglobal, semiparametric anomaly detection algorithm.

P(m ≥ 1), for a given g, increases as a function of
increasing N , see Figure 7. Figure 7 shows further that for
a fixed q, N and an adequately large M, if (for instance)

results Z̃(22)(1)
SemiP , Z̃(22)(2)

SemiP , . . . , Z̃(22)(M)
SemiP correspond to the same

portion of the target at a testing window location (i =
2, j = 2), then (40) give us the confidence that at least

one term in Z̃(22)(1)
SemiP , Z̃(22)(2)

SemiP , . . . , Z̃(22)(M)
Semip will have a high

value with high probability [1.0 − P̃(m̃ = M)]; after
application of a cutoff threshold to results in (39), the high
value(s) in reference would be captured by the logic OR

operator, for example, (Z̃
(22)(1)

SemiP ⊕ · · · ⊕ Z̃
(22)(M)

SemiP ), as shown
in (40) for all i j locations. Notice that a target may also be
represented by multiple (clustered) pixel locations in ZSemiP

(40).

3.3. Setting the Cutoff Threshold and Other Parameters. For
autonomous remote sensing applications, properly setting
the algorithm’s parameters is a critical step. This subsection
presents a guideline to address this step. For the quasi-
global, semiparametric anomaly detection algorithm, the
parameters of main concern are T1 (the probabilistic cutoff
threshold), N (the number of randomly selected blocks of
data), M (the number of testing repetitions), and q (the
upper bound ratio of target pixels in the data cube over the
spatial area of this cube).

Using the asymptotic behavior shown in (A.11) in the
Appendix, a cutoff threshold is attained as follow:

T1 = T(a) = μ̂g̃ + aσ̂g̃ , (41)

where a = g̃−1(1 − ε1) is the 1 − ε1 quantile of g̃(z) =
Lg(z)[1−G(z)]L−1 (see Appendix),

μ̂g̃ =
ñ∑

u=1

zug̃(zu),

σ̂g̃ =

√√√√√
ñ∑

u=1

z2
ug̃(zu)− μ̂2

g̃

(42)

are estimates of the mean and standard deviation, respec-
tively, of the known distribution g̃(z)—these estimates can
be attained a priori through a simulation experiment using ñ
samples of g̃(z), and 0 ≤ ε1 ≤ 1.

For setting parameters N and M, as discussed in
Section 3.1, the quasi-global semiparametric algorithm—
ideally—requires an adequately large, which undesirably
increases the contamination probability P(m ≥ 1) per
repetition, and an adequately large M, which desirably
decreases the overall cumulative contamination probability
P̃(m̃ = M). From (24), (25), and (26) and using the log of
base 10, a direct transformation leads to

N = log[1− P(m ≥ 1)]
log
(
1− q) , (43)

M =
log
[
P̃(m̃ =M)

]

log
[

1− (1− q)N
] . (44)

For a given q, we can fix the values of P(m ≥ 1),
P̃(m̃ = M) and obtainand M directly using (43) and (44),
respectively. As a guideline, P(m ≥ 1) should be set high,
but less than 1.0, so that N can also be relatively high and
P̃(m̃ = M) < 1.0; P̃(m̃ = M) should be set very low, near
zero. As long as the guideline is followed, interestingly, the
actual values of P(m ≥ 1) and P̃(m̃ = M) are unimportant.
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(a) (b) (c)

Figure 9: QG-SemiP results testing Cube 2 (a) for scene anomalies; output surface (b) was produced using (q = 0.10; T1 = T(20); N =
3; M = 3); output surface (c) was produced using (q = 0.10; T1 = T(20); N = 22; M = 40). Bright pixel values (white) in the output
surfaces correspond to values above the probabilistic cutoff threshold T1—depicting the highest confidence level of anomaly presence in the
imagery, relative to N randomly selected blocks of data. Testing procedure was independently repeated M times, as highlighted in Figure 8.
Using the available ground truth information of the scene, the white clusters in the far right figure cover about 90% of the motor vehicles
(the targets) and no false alarms.

For example, we could fix P(m ≥ 1) = 0.90 and
P̃(m̃ =M) = 0.01, and for q = 0.10, we obtain directly from
(43) and (44) parameter values N ≈ 45 and M ≈ 44 (Since
N and M are defined as integers, these numbers are rounded
off ≈). For the results shown in Section 4, we fixed at once
q = 0.10, P(m ≥ 1) = 0.90, and PR(mR =M) = 0.015, which
by using (43) and (44) yield N ≈ 22 and M ≈ 40.

4. Results

The QG-SemiP algorithm was applied to the HS imagery
shown in Figure 1, that is, Cube 1 (nadir looking imagery)
and Cube 2 through Cube 4 (forward looking imagery), to
test for scene (spectral) anomalies. This subsection presents
performance summary using results and guideline discussed
in Section 3.3 to set algorithm parameters (q,T1,N ,M).
Results using forward looking imagery will be discussed first.

4.1. Forward Looking Imagery. Results testing Cube 2
are shown in Figure 9. For display purposes, the output
surface ZSemiP (Figure 9, center and right hand side
surfaces) is not shown as a binary surface; instead, each

Z̃
(g)
SemiP (g = 1, . . . ,M) output surface is mapped using a

pseudocolor map, such that, the brightest pixel values in
those surfaces (white colored pixels, representing strongest
evidence of anomalies) show the locations of results above or
equal to the cutoff threshold T1; while other colors (yellow,
red, brown, and black) show lesser evidence of anomalies
at the corresponding pixel locations, relative to randomly
selected blocks of data. (The color black represents no

evidence of anomalies.) All of the M surfaces Z̃
(g)
SemiP, using

the threshold based colormap in reference, are then summed
to yield the output surface shown in Figure 9 through
Figure 11. Additional details follow.

Figures 9(b) and 9(c) show two different outcomes of the
quasi-global, semiparametric anomaly detection algorithm,
where n × n was fixed at once to 20 × 20 (for all data blocks

and testing window sizes) and algorithm’s parameters were
set to (q = 0.10; T1 = T(20); N = 3; M = 3)—center
display—and (q = 0.10; T1 = T(20); N = 22; M = 40)—
right hand side display. The center output surface depicts an
example when N is not set sufficiently high, hence, obtaining
an inadequate representation of the clutter background. In
this case, three blocks of data were randomly selected from
the scene (most likely from the open field area, since it is the
largest area in the scene), and used by the QG-SemiP detector

to suppress (according to Z̃
(g)
SemiP (g = 1, . . . ,M) in (39)) the

open field in Cube 2, not only once, but most likely M = 3
times. As a result, the three motor vehicles and the canopy
area on the upper portion of that scene were accentuated
relative to the open field. For this initial experiment, we
ignored the binomial distribution model and set parameters
N and M intentionally low and tested Cube 2 to show the
undesired result in Figure 9(b).

For parameters accordingly set to (q = 0.10; T1 =
T(20); N = 22; M = 40) yielded a significantly better
result by detecting only the three motor vehicles in the
scene, while suppressing the unknown clutter background,
see Figure 9(c). Using the available ground truth information
of the scene, the white clusters cover about 90 percent of the
motor vehicles’ spatial area (the targets) and no false alarms.
As discussed earlier, for many remote sensing applications,
targets (if present in the scene) will not cover more than 10
percent of the imagery spatial area. For instance, the motor
vehicle shown at broadside in Cube 2 has 25,000 pixels,
covering 6.1% of the imagery area (25000/409600). Note that
q = 0.1 is robust, because it is independent of targets’ aspect
or depression angles, relative to the sensor; independent of
the number of targets in the scene; and independent of
targets’ scales, relative to other objects in the scene.

The output surface shown in Figure 9(c) shows three
manmade objects (motor vehicles) clearly accentuated (pixel
values above T1) relative to the unknown cluttered environ-
ment. It is an achievement, given that no prior information is
used about the materials composing the clutter background,
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(a) (b)

Figure 10: Results testing Cube 3 (a) and corresponding output surface (b). Parameters were set to (q = 0.10; T1 = T(20); N = 22; M =
40). A motor vehicle is parked in tree shades—around center of the scene. Using the available ground truth information of the scene, the
white clusters cover about 73% of the motor vehicle’s spatial area and no false alarms.

or about whether targets are present in the scene, or about
targets’ scales relative to other objects in the imagery. But
notice in Figure 9 that the standing person in the scene center
is not detected, possibly because the window size might be
too large and/or there must have some materials in that
background (randomly selected) spectrally similar to the
materials representing that person (e.g., pants, shirt, skin).
Figures 10 and 11 show additional results.

Figures 10 and 11 show results for Cube 3 and Cube
4, respective; both HS cubes particularly represent difficult
cases of clutter suppression. Parameters were also set to (q =
0.10; T1 = T(20); N = 22; M = 40) for both HS cubes.

The guideline described in Section 3.3 for setting
parameters also worked very well for both complex scenes
depicted in Figures 10 and 11. Both output surfaces clearly
accentuates the presence of a motor vehicle—one in tree
shades (center in Cube 3) and another motor vehicle parked
behind a heavily cluttered environment (center left hand
side in Cube 4); see white pixels, or pixel values greater
than or equal to T1, in both output surfaces in Figures 10
and 11. Setting T1 = T(20), in essence, means setting the
cutoff threshold at 20 standard deviations above the mean of
distribution g̃(z) in (A.10).

Using the available ground truth information of the
scenes in Figure 9 through Figure 11, quantitative compar-
ative performances were obtained via receiver’s operating
characteristic (ROC) curves (vertical axis show Pd for
probability of detection, and horizontal axis shows Pfa for
probability of false alarms) for some of the anomaly detectors
mentioned in Section 1. The data cubes were processed using
the global RX, k means, GMM, and QG-SemiP. In essence
we used the k mean and GMM in place of SemiP in the
context of the parallel random sample, but had to take
into consideration some of the inherent constraints of these
methods. For instance, for k means and GMM, we recorded
ROC curves for parameter N set to N = 3, 5, 10, 20, and 50
and repetition parameter M = 50, while for QG-SemiP N
was set to 20, 50, 75, and 100 with M = 50. Global RX

estimates the mean and covariance from the entire data cube,
as discussed in Section 1. Figure 12 shows performance of
these detectors using ABC to label QG-SemiP, global to label
global RX, KM to label k means, and GMM.

Although the parameter values for k means and GMM
start at a lower value than QG-SemiP, Figure 12 shows that at
lower N the detectors k means and GMM actually perform
much better than for N set at higher values, as Nmay be
interpreted by these algorithms as the number of distinct
classes in the scene. Such performance degradation occurs
with largeN because the spatial area that corresponds to each
individual N block of data is now smaller and samples of
the targets, required by the algorithm, need to be included
into one of the classes. This outcome contaminated the
distribution of the background clutter forcing it to be closer
to the distribution of the targets, resulting in performance
degradation. The global RX performed reasonably well, as
expected since the scene in Figure 9 is relatively less complex.
The QG-SemiP detector, also as expected, improved perfor-
mance as N increased.

Performance of these algorithms on the scenes in Figures
10 and 11 are shown in Figures 13 and 14, respectively.
Performance degradation of k means, GMM, and global RX
are evident from Figure 13, since the target is on tree shades.
QG-SemiP performs well for N > 20. In Figure 14, the
performance of the k means performed poorly at N = 20,
since the target is partially blocked by tree trunks, while
GMM performed poorly atN = 3 andN = 5 and was unable
to converge at higher N values. The global RX surprisingly
worked reasonably well, but completely underperforming
the QG-SemiP detector.

4.2. Nadir Looking Imagery. For the nadir looking imagery,
Cube 1 in Figure 1 (top), ROC curves are also used as
a means to quantitatively compare five anomaly detection
approaches: local RX, local KRX, local FLD, local SemiP, and
QG-SemiP; see Section 1.
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(a) (b)

Figure 11: Results testing Cube 4 (a) and corresponding output surface (b). Parameters were set to (q = 0.10;T1 = T(20); N = 22; M = 40).
A motor vehicle is shown on the left hand side, between top and bottom, behind tree trunks—a sport car. Cube 4 exemplifies a hard case of
autonomous clutter suppression. Using the available ground truth information of the scene, the white clusters cover about 44% of the motor
vehicle’s spatial area and less than 2% of false alarms.
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Figure 12: ROC curve performance testing QG-SemiP (ABC), global RX (Global), k means (KM), and GMM detectors on scene shown in
Figure 9.

Local anomaly detectors process small (n × n) windows
of the HS data cube X, where all the xrc (r = 1, . . . ,R; c =
1, . . . ,C) in X are used; modeling is only done at the level
of the n × n windows, where n � R and n � C (�
denoting many orders of magnitude smaller than); at the level
of the pixel area surrounding these windows. Blocks of data
(n × n windows) that are spectrally different from pixels
surrounding them score high using an effective detector in
contrast to blocks of data that are not spectrally different
from their surrounding pixels. After the detector scores the
entire X, it yields a 2-dim surface Z [a(R−n−1)×(C−n−1)
array of scalars], where a cutoff threshold is then compared
to the pixel values in Z. Pixels having values greater than the

threshold are labeled local anomalies (notice that the SemiP
detector will be used in both local and quasi-global versions).

As described in Section 2.1, the set of 14 ground vehicles
near the treeline in Cube 1 (Figure 1) constitutes the target
set, but, since anomaly detectors are not designed to detect
a particular target set, the meaning of false alarms is not
absolutely clear in this context. For instance, a genuine local
anomaly not belonging to the target set would be incorrectly
labeled as a false alarm. Nevertheless, it does add some
value to our analysis to compare detections of targets versus
nontargets among the different algorithmic ap-proaches.

Figure 15 shows the ROC curves produced by the output
of the five algorithms testing Cube 1 for local or scene
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Figure 13: ROC curve performance testing QG-SemiP (ABC), global RX (global), k means (KM), and GMM detectors on scene shown in
Figure 10.
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Figure 14: ROC curve performance testing QG-SemiP (ABC), global RX (global), k means (KM), and GMM detectors on scene shown in
Figure 11.

anomalies. Detection performance was measured using the
ground truth information for the HYDICE imagery. We
used the coordinates of all the rectangular target regions
and their shadows to represent the ground truth target
set. As it can be readily assessed from Figure 15, the
local SemiP and QG-SemiP anomaly detection approaches
outperform the other three techniques on the tested scene,
followed by KRX’s performance. The significant display
of performance shown in Figure 15 by the semiparamtric
algorithms can be further appreciated by taking a closer
look at the output surfaces produced by all five detec-
tors, as they show evidences of candidate local and scene
anomalies. The intensity of local peaks shown in Figure 16
reflects the strength of the detectors’ evidences. Figure 16
shows that the surfaces produced by FLD, RX, and KRX
detectors are expected to be significantly more sensitive
(producing false alarms) to changing cutoff thresholds then
the ones produced by the local SemiP and QG-SemiP
approaches.

Spatial areas shown in Cube 1 containing the presence
of clutter mixtures (e.g., edge of terrain, edge of tree

clusters), where FLD, RX, and KRX yield a high number of
potential false alarms (false anomalies), are suppressed by
the SemiP approach, local, and quasi-global. The reason for
this suppression is that, as part of the overall comparison
strategy, the semiparametric model combines both the test
and reference samples in order to estimate the underlying
PDF of the reference sample, as shown by simulation
earlier. As such, the semiparametric test statistic ensures
that a component of a mixture (e.g., shadow) will not be
detected as a local anomaly when it is tested against the
mixture itself (e.g., trees and shadows). Performances of
such cases are represented in Figure 16 in the form of softer
anomalies (significantly less-dominant peaks) in the local
SemiP’s and QG-SemiP’s output surfaces. It is evident from
Figure 16 that both versions of the SemiP detectors perform
remarkably well accentuating the presence of dominant local
or scene anomalies (e.g., targets) from softer anomalies (e.g.,
transitions of distinct regions). The natural ability of the
semiparametric model to manage spectral mixture can best
explain the local SemiP and QG-SemiP superior ROC-curve
performances shown in Figure 15.
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Figure 15: ROC curves for the nadir looking imagery (Cube 1) data scene shown in Figure 1. The semiparametric method, being used in
both local and quasiglobal versions, are noticeably less sensitive to different cutoff thresholds; their performances almost achieve an ideal
ROC curve for that scene, that is, a step function starting at point (PFA = 0, PD = 1).

5. Conclusion

This paper introduced an adaptive quasi-global, semipara-
metric anomaly detection algorithm and evaluated the
approach using real HS imagery, where targets (manmade
objects) are found in difficult natural clutter backgrounds
viewed from two different perspectives—nadir and for-
ward looking. The algorithm features a semiparametric
test statistic, which has been recently found to be robust
against spectral mixture, and applies random sampling of the
imagery to test for anomalies. Random sampling and testing
are repeated a number of times in order to mitigate the
probability of contamination (spectral samples of candidate
targets being sampled and used as clutter reference samples).
As such, the algorithm requires no prior information (e.g.,
a spectral library of the clutter background and/or target,
target size, or shape). The algorithm is free from training
requirements. We found that the semiparametric model has
a natural ability to handle mixtures, although an exhaustive
survey of the literature reveals that this fact has never been
noticed before by practitioners of the model in other fields of
study (e.g., biotechnology).

The repeated sampling and testing procedure was mod-
eled by the binomial family of distributions, where the only
target related parameter q (the upper bound proportion
of target pixels potentially covering the spatial area of the
imagery) is robust—thus invariant—to different sizes and
shapes of targets, number of targets present in the scene,
target aspect angle, partially obscured targets, or sensor
viewing perspective. The paper also discussed how other
parameters (N , the total number of sampled data blocks to
take from the HS imagery, and M, the number of process
repetitions) can be automatically set using a simple guideline.

The algorithm fuses intermediate results through the
application of minimum order statistics and logic OR

operation. The paper presented the algorithm’s asymptotic
behavior under the null hypothesis, when either the null or
the alternative hypothesis is true, for the two-sample test
case and the multi-sample test case, where the cumulative
probability of the algorithm making mistakes was derived.
Using the cumulative probability, a cutoff threshold can be
determined from a user specified probability of error. This
is a desired feature giving the user some control of predicted
errors.

The inherent challenges in adequately modeling spectral
variability of targets, while managing spectral variability
between targets, have prompted the introduction of a more
robust family of algorithms that attempts to detect targets as
being anomalous to an unknown natural clutter background.
This paper presented an approach that inherently addresses
many of the problems and issues pertaining to anomaly
detection applications. The advantages of using anomaly
detection algorithms have been discussed in this paper;
however, it should be emphasized that targets would not be
detected as specific manmade objects; they would be detected
as anomalies. This is a limitation.

Appendix

Asymptotic Behavior of the Quasiglobal
Semiparametric Algorithm

This section shows an analytical asymptotic analysis of the
quasi-global semiparametric anomaly detection algorithm.
In particular, we would like to investigate the algorithm’s
cumulative probability of rejecting the null hypothesis, when
either the null or the alternative hypothesis is true; that is, the
algorithm’s probability of making mistakes. We will look first
at the asymptotic behavior of the two sample test case, where
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Scene FLD RX KRX SemiP QG-SemiP

Figure 16: Detection algorithms’ output surfaces for Cube 1 (far left). The intensity of local peaks reflects the strength of evidences as seen by
different anomaly detection approaches. Boundary issues were ignored in this test; surfaces were magnified to about the size of the original
image only for the purpose of visual comparison. FLD, RX, KRX, and SemiP performed local anomaly detection by testing spectra within a
testing window (red square shown in the scene display—far left, top) to spectra surrounding the testing window (outer window bounded by
yellow lines). QG-SemiP performed global anomaly detection, as presented in this paper.

the detector tests a reference sample against a test sample;
then we will look at the multisample test case, which uses
order statistic to reduce N results to a single result.

Two-Sample Test (2ST). In order to declare an anomaly, a
decision threshold T must be chosen; hopefully, separating
without errors the null and the alternative hypotheses in
some decision space. In the paper’s context, values of ZSemiP

in (23) greater than T are automatically labeled as anomalies.
And since, in real world applications, decision errors are
unavoidable, we would like to know whether the asymptotic
behaviors of these errors can be determined, and whether
they are favorable. The power function can provide those
answers for the two-sample test (2ST) case. Using (13), the
power function of the semiparmetric test statistic for the two-
sample test (2ST) case is as follows:

ψ
(
β
) =
⎧⎨
⎩
Pβ=0(ZSemiP > T)

Pβ /= 0(ZSemiP > T).
(A.1)

In essence, the power function ψ yields the cumulative
probability P of rejecting the null hypothesisH0 in (13) when
either H0 (β = 0) or the alternative H1 (β /= 0) is true. This
rejection region is ZSemiP > T , where ZSemiP is defined in
(23) and T is the decision threshold. Notice in (A.1) that ψ
under H0 corresponds to the well known type I error, or the
probability of missing (i.e., the probability of rejecting H0,
given thatH0 is true) and that ψ underH1 corresponds to the
complement of the type II error, or probability of false alarms
(i.e., one minus the probability of rejecting H1, given that
H1 is true). The type I and type II errors constitute the only
error types encountered in the context of our discussion. In
the ideal case, ψ yields 0.0 whenH0 is true and 1.0 whenH1 is
true. Except in trivial situations, this ideal cannot be attained.

So, one of our goals is to show that ψ tends in probability to
ε (a scalar controlled by the user), when H0 is true, and that
ψ tends in probability to 1.0, when the alternative hypothesis
H1 is true.

If H0 in (13) is true, the semiparametric detector has the
asymptotic behavior shown in (23), and the type-I error is
readily obtained by the following:

Pβ=0(ZSemiP > T) −−−→
n→∞ P(ξ > T) = ε, (A.2)

where ξ is a Chi square distributed random variable with
1 degree of freedom, ZSemiP as defined in (23), ε and T are
nonnegative real values.

Setting ψ(β) = Pβ=0(ZSemiP > T), ψ is indeed an
asymptotic size ε test, which is controlled by the user.

Now consider an alternative parameter value, such that

β /= 0, and let ζ2 be the true variance in (21) and ζ̂2 be a
estimator of ζ2, or

ζ2 = ρ−1
(
1 + ρ

)2

v2
,

ζ̂2 = ρ−1
(
1 + ρ

)2

v̂2
,

(A.3)

where ρ = n1/n0 and v̂2 is defined in (22).
From (23), we can now write

ZSemiP =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎝ β̂ − β√

ζ2/n

⎞
⎠

︸ ︷︷ ︸
A

+

⎛
⎝ β√

ζ2/n

⎞
⎠

︸ ︷︷ ︸
B

⎤
⎥⎥⎥⎥⎥⎥⎦

2

(
ζ2

ζ̂2

)

︸ ︷︷ ︸
C

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (A.4)

Notice in (A.4) that, as n1 and n0 go to +∞, ρ = n1/n0

tends to 1 and ζ2 tends to ζ2 for v2 > 0. According to (21),
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the term A in (A.4) converges in distribution to the standard
Normal,N(0, 1), as n1 and n0 (hence, n) go to +∞, no matter
what the values of β or ζ2 are. Note also that the term B con-
verges to +∞ or −∞ in probability, as n goes to +∞, depend-
ing on whether β is positive or negative. Since the estimator
̂̃g0 in (38) has been shown [21] to be biased, as n1 and n0 go

to +∞, ζ̂2 tends to a constant, see definition of v̂2 in (22);
leading the term C also to a constant, no matter what values
of ζ2 is. Thus, ZSemiP converges to +∞ in probability and

Pβ /= 0
(
reject H0

) = Pβ /= 0(ZSemiP > T) −−−→
n→∞ 1. (A.5)

In this way, the semiparametric test statistic shown in (23)
also has the properties of asymptotic size ε and asymptotic
power 1, which is highly desired.

Multisample Test (mST). The discussions in Sections 2.3 and
4.1 ensure that the output of the semiparametric 2ST has two
asymptotic outcomes: ZSemiP −−−→

n→∞ χ2
1 in distribution, if H0

in (13) is true, or ZSemiP −−−→
n→∞ +∞ in probability, if H1 is

true.
Using results leading to (13) and the order statistics

Z̃
(i j)
SemiP = min1≤ f≤NZ

(i j)( f )
SemiP in (34), for the multi-sample test

(mST) case, we propose the following nullH2 and alternative
H3 hypotheses

H2 : at least one
{
β( f )
}N
f=1

= 0,

H3 : all
{
β( f )
}N
f=1 /= 0,

(A.6)

where β( f ) is the true logistic function parameter—see
(12)—corresponding to the f th randomly selected block of
data from a HS data cube X.

Now, consider the following: for a given spatial location

in X, let Z
( f )
SemiP be the semiparametric detector’s output for

the f th block of data, and assume, without loss of generality,
that each one of the first L outputs in the independent
sequence of results (1 ≤ L ≤ N , where N is the total number
of randomly selected blocks of data in X) has the asymptotic
chi-square behavior shown in (23), and that each one of the
remainder results has the asymptotic behavior tending to
+∞, or

Z̃SemiP

∣∣∣
H2
= min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z(1)
SemiP

n→∞−−−→ χ2
1

Z(2)
SemiP

n→∞−−−→ χ2
1

...

Z(L)
SemiP

n→∞−−−→ χ2
1

Z(L+1)
SemiP

n→∞−−−→ +∞
...

Z(N)
SemiP

n→∞−−−→ +∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A.7)

Under the null hypothesis H2 in (A.6), Z̃SemiP in (A.7)
is bounded because, as n → ∞, Z̃SemiP will converge in
law to the distribution of the lowest order statistics. (The

order statistics of a random sample Z1, . . . ,ZN are the
sample values placed in ascending order. They are often
denoted by Z(1), . . . ,Z(N), where Z(1) = min f≤ f≤NXf and
Z(N) = max f≤ f≤NXf .) To attain an approximation of the
type I error using (A.7), we first ignore all the components in
(A.7) that converge in probability to +∞, then we consider
only the components that converge in distribution, that is,

(Z(1)
SemiP,Z(2)

SemiP, . . . ,Z(L)
SemiP). The distribution of

ZSemiP(1) = min
f≤ f≤L

Z
( f )
SemiP (A.8)

from the culled sequence can be attained with the application
of Theorem 1.

Theorem 1. Let X(1), . . . ,X(n) denote the order statistics of a
random sample from a continuous population with cumulative
distribution function (cdf) F(x) and pdf f (x). Then the pdf of
X( j) is

f̃ (x) = n!(
j − 1

)
!
(
n− j

)
!
f (x)[F(x)] j−1[1− F(x)]n− j ,

(A.9)

where (·)! denotes the factorial operator.

The proof of Theorem 1 can be found in [28].
Using Theorem 1 with j = 1 and n = L, the pdf of

Z̃SemiP = ZSemiP(1) under H2 in (A.6) is

g̃(z) = Lg(z)[1−G(z)]L−1, (A.10)

where g(z) is the Chi square pdf with 1 degree of freedom
and G(z) is the corresponding cdf.

Denote the kth logistic function parameter β(k) in (A.6)
to correspond to the one of the minimum order statistics
ZSemiP(1). As the sample size increases in ZSemiP(1), that is, n =
n(k) → ∞, the probability of rejecting the null hypothesis H2

in (A.6), when β(k) = 0, converges to

ψ̂
[
β(k)
]
= Pβ(k)=0

(
Z̃SemiP > T1

)
−−−→
n→∞ P(ξ > T1) = ε1,

(A.11)

where ξ is a random variable distributed by g̃(z), as defined
in (A.10); T1 a nonnegative real value; ε1 is a positive real
value, controlled by the user.

The variable ψ̂ in (A.11) is the type I error under H2 for
the mST case, and it is indeed an asymptotically size ε1 test.

Now consider the alternative hypothesis H3 in (A.6),

where all {β( f )}Nf=1 /= 0. From (A.7) one can write

Z̃SemiP

∣∣∣
H3
= min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z(1)
SemiP

n→∞−−−→ +∞
...

Z(N)
SemiP

n→∞−−−→ +∞

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (A.12)

From (A.12), Z̃SemiP will converge in probability to +∞,
hence, the probability P of rejecting the null hypothesis H2,
given that H3 is true, tends to 1.0, or

Pβ(k) /= 0
(
rejecting H2

) = Pβ(k) /= 0
(
ZSemiP(1) > T1

) −−−→
n→∞ 1.

(A.13)
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In this way, the quasi-global semiparametric anomaly
detection algorithm has the desired properties of asymptotic
size ε1, which is controlled by the user, and asymptotic power
1.0.

Notations

Bold upper case letters may denote a data cube (3
dimensions) or a matrix (e.g., X, W0), where the
specific case in use is defined in the text.

Lower cases letters denote vectors (bold) or sequences
(not bold) (e.g., x, x1 = (x11, . . . , x1n1 )).

PDF or pdf: Probability density function.

IID or iid: Independent and identically distributed.

Rd1×d2 -d1 by d2 dimensional set of real numbers.

∈ denotes set belonging

HS: Hyperspectral

X: Observed hyperspectral data cube with dimen-
sions of R rows, C columns, and K bands.

xrc: Observed spectrum contained in X with spatial
indexes (r = 1, . . . ,R) and (c = 1, . . . ,C).

A slideing n × n window is a 3-dim subset of X,
containing n · n spectra.

W1 ∈ RK×n1 : A matrix representing a hyperspectral
sample being observed from a sliding n × n window
in X (also referred to herein as a test sample); this is
a rearranged version of a 3-dim subdata cube, where
vertical direction is the dimensionK of bands and the
horizontal direction is the dimension of countable
samples with sample size n1 = n2.

y1h ∈ RK (h = 1, . . . ,n1): An observed spectrum of K
bands contained in W1.

g1(y|θ): Multivariate joint PDF of y11, . . . , y1n1

W0 ∈ RK×n0 : A matrix representing a hyperspectral
sample labled as a reference sample of sample size n0,
having the same specifications of W1 except perhaps
the sample size (n0 may be different from n1).

y0h ∈ RK (h = 1, . . . ,n0): An observed spectrum of K
bands contained in W0.

g0(y|θ): Multivariate joint PDF of y01, . . . , y0n0 .

∇0 ∈ R(K−1)×n0 : Output from differentiating W0.

∇1 ∈ R(K−1)×n1 : Output from differentiating W1.

x0 = (x01, x02, . . . , x0n0 ): Univariate sequence used as
the reference sample.

x1 = (x11, x12, . . . , x1n1 ): Univariate sequence used as
the test sample.

g0(x): Univariate PDF labeled as reference.

g1(x): Univariate PDF labeled as test

t = (x11, . . . , x1n1 , x01, . . . , x0n0 ) ≡ (t1, . . . , tn): Sample
concatenation, combining samples.

g̃0(t): estimator of g0(x).

̂̃g0(t): estimator of g̃0(t).

Hi: Statistical hypothesis i.

ZSemiP: Univariate output of the semiparametric
detector.

P: Cumulative probability function, using the bino-
mial family of PDFs as base PDF.

N: The number of randomly selected blocks of data
used to represent background objects.

Trial (or process): Take N random blocks of data
from the data cube under test, label them as reference
background objects, and—using the semiparametric
detector and a sliding window across the data cube—
test the entire data cube against the same set of N
reference blocks of data.

M: The number of trials (repetitions or parallel
processes).

Pg(m ≥ 1): Cumulative probability of contami-
nation, that is, probability of labeling a randomly
selected target sample as a background sample at the
gth trial or process.

P̃: Overall cumulative probability that all of the
trials (or processes) are contaminated with at least a
contaminated sample from the randomly selected set

of reference samples {W
( f )
0 }Nf=1.

Z̃
(i j)
SemiP: Retains the lowest order statistics from a set of
N semiparametric detector’s results.

Z̃
(g)
SemiP: The 2-dimensional output surface, consisting

of Z̃
(i j)
SemiP values, from the gth trial.

T1: Adaptive cutoff threshold for Z̃
(g)
SemiP.

ZSemiP: A final binary 2-dimensional output surface
of the quasi-global semiparametric detector.
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