Logistics Aloft

JOEL D. JACKSON
Colonel, USAF

Air War College
Maxwell Paper No. 71
Maxwell Air Force Base, Alabama

October 2012
Since the beginning of Operation Enduring Freedom, Department of Defense (DOD) investment in remotely piloted aircraft (RPA) has exploded almost 700 percent to just under $4 billion per year in 2009.1 This expansion was primarily caused by the successful application of RPAs in their role as intelligence, surveillance, and reconnaissance (ISR) platforms, but also as ISR/strike platforms because these particular mission sets fit the capabilities of RPAs. Going forward with these successes, the DOD should assess potential future RPA missions by first determining what particular characteristics of the ISR and ISR/strike missions made them successful as RPA missions and then determining what other missions fit these same characteristics. Emergency and mission-critical, time-sensitive (MCTS) intratheater logistical resupply are missions which fit these characteristics of being advantageous to persistent, efficient, modular systems integrated into a pervasive battle space. Work is currently underway developing RPAs to accomplish these missions, but these current applications do not focus on these specific characteristics. Instead a RPA designed specifically as a logistical delivery platform with modular ISR/strike capabilities and long endurance should be developed to fill these missions.

Disclaimer

Opinions, conclusions, and recommendations expressed or implied within are solely those of the author and do not necessarily represent the views of Air University, the United States Air Force, the Department of Defense, or any other US government agency. Cleared for public release: distribution unlimited.
Logistics Aloft

Col Joel D. Jackson, USAF

Since the beginning of Operation Enduring Freedom, Department of Defense (DOD) investment in remotely piloted aircraft (RPA) has exploded almost 700 percent to just under $4 billion per year in 2009.¹ This expansion was primarily caused by the successful application of RPAs in their role as intelligence, surveillance, and reconnaissance (ISR) platforms, but also as ISR/strike platforms because these particular mission sets fit the capabilities of RPAs. Going forward with these successes, the DOD should assess potential future RPA missions by first determining what particular characteristics of the ISR and ISR/strike missions made them successful as RPA missions and then determining what other missions fit these same characteristics. Emergency and mission-critical, time-sensitive (MCTS) intratheater logistical resupply are missions which fit these characteristics of being advantageous to persistent, efficient, modular systems integrated into a pervasive battle space. Work is currently underway developing RPAs to accomplish these missions, but these current applications do not focus on these specific characteristics. Instead a RPA designed specifically as a logistical delivery platform with modular ISR/strike capabilities and long endurance should be developed to fill these missions.
Intratheater Resupply in Central Command

Intratheater resupply is conducted within a single geographic theater. This type of resupply, often called “the last tactical mile,” generally goes from forward supply bases out to the troops in the field. The amount of supplies required for a deployed Army or Marine unit throughout a theater are well defined. The Marine Corps, for example, states a requirement of 20,000 pounds of supplies per day per company for Afghanistan. Similarly, the Army states a requirement of 7,280 pounds per day per platoon or 170 pounds per day per person. This resupply, however, may be broken down into classes and categories. The classes of supplies are groups such as food and water (Class I), fuels (Class III), ammunition (Class V), and repair parts (Class IX). Class I consists of 53 percent of the daily requirement and Class V adds another 6 percent. Resupply can also be broken into three categories: emergency, MCTS, and routine.

Simply put, emergency resupply is the delivery of supplies which, if not immediately received, will cause catastrophic consequences for a unit. MCTS resupply, on the other hand, is the delivery of those supplies needed on short notice or outside the normal resupply system. What exactly is considered MCTS varies from commander to commander, but in general, it is any commodity needed to maintain operational effectiveness. This definition is broad enough that it can include anything from a 2,000 pound generator to 100 pounds of ammunition, but in
Afghanistan, food and water were added to the MCTS priority list with class I, III (small quantities), V, and IX being the most common classes flown as MCTS.6 Implied with MCTS resupply is the requirement to be delivered in a timely manner. The generally accepted length of time for the MCTS supply system is 24 hours from request to delivery compared with 72 hours for supplies considered routine.7 Routine intratheater supply has traditionally been accomplished by ground delivery with emergency and MCTS supply accomplished by fixed-wing aircraft to forward airstrips, but both of these methods have proven to be incompatible with the ongoing operations in Afghanistan.8

The truck, the cheapest method of delivery, met resistance in Iraq with the proliferation of improvised explosion devices (IED). Since 2003, the goal of theater commanders has been to mitigate this threat by decreasing truck convoys and increasing the movement of supplies by air.9 In Afghanistan, the IED problem has been exacerbated by poor transportation infrastructure. While 84 percent of roads in Iraq are paved, only 29 percent of roads are paved in Afghanistan.10 These two factors contributed to the desire to move as little resupply over land as possible.

Unfortunately, the other common delivery method, using air assets to locations with landing strips, is also not practical in Afghanistan. While this method is achievable to some locations, the general lack of landing strips where the units need the supplies has resulted in the
inability to deliver a large amount of goods by traditional airlift methods. Furthermore, the Army terminated the use of its C-23 Sherpas in Afghanistan. Historically the Army used these aircraft to move small, MCTS cargo to forward troop locations, but the Sherpa lacks the performance capabilities to operate in the high altitudes required in Afghanistan. This inability to employ fixed-wing assets using traditional airlift methods has dramatically increased the use of airdrop delivery and rotary-wing aircraft to meet resupply requirements.

The increased use of airdrop and rotary-wing assets to support resupply has resulted in some new challenges. First, the current inventory of rotary-wing aircraft has been stretched too thin. The primary mission of the CH-47 is to aid the air assault of dismounted combat forces, but by using them as resupply tools, the Army and the Special Forces Command do not have enough aircraft to perform their primary missions. In addition, the long flights associated with the vast distances between supply bases, outposts, and available fuel bases in Afghanistan add “substantial wear and tear” to the CH-47s and UH-60s used to perform resupply missions. This adversely affects the aircrafts’ maintainability rates, further decreasing their availability for any mission. To alleviate some of this shortfall in helicopter availability, the Army increased their CH-47 fleet by 11 percent in 2005. Furthermore, in April 2010 the deputy assistant defense secretary for special operations and combating terrorism announced the fiscal year 2011
budget would include money for the special operations community to procure eight MH-47Gs from the Army, purchase 16 new MH-60Ms, and buy five additional CV-22 aircraft—all specifically for use by special forces.\footnote{16} Purchasing new rotary-wing aircraft obviously increases availability, but even if there are enough rotary-wing assets to go around, using them for logistical operations is simply inefficient.

While the initial purchase cost of the CH-47 and UH-60 can be significantly less than the C-130J or C-27J (the C-27J is in procurement to replace the C-23), the operating costs of the UH-60 is approximately equal to a small fixed wing aircraft such as the C-23, C-130J, or C-27J. Furthermore, CH-47 operating costs are four to five times that of these fixed-wing aircraft.\footnote{17} In fact, when comparing the increased lift capacity fixed-wing aircraft have over rotary-wing aircraft, using the cost to transport tons per mile over long distances as the comparison metric, the CH-47 is 10 times more expensive to operate than the C-27J.\footnote{18} In addition, current Army tactics in Afghanistan dictate that all helicopters must always be used in pairs, regardless of the mission. This restriction can double the cost per ton-mile because each mission requires the use of two aircraft, regardless of the scheduled cargo.

General Dynamics conducted a study in 2010 quantifying the total cost per pound to deliver goods via helicopter and fixed wing aircraft in Afghanistan-specific scenarios. Their study included many variables including aircraft availability, weather cancellation rates, personnel per
aircraft, operating costs, and projected loss rate per aircraft. They
determined the cost per pound moved was always least for the C-27J,
closely followed by the C-130. A distant third in all scenarios was the
CH-47 and the most expensive per pound moved was the UH-60. Not
only is the cost of using rotary-wing aircraft for intratheater resupply
high because it takes valuable assets away from their primary mission, it
is also an inefficient method of providing resupply over the distances
required in Afghanistan. Due to these high costs, a 2010 RAND study
recommended the use of fixed-wing aircraft for longer resupply flights,
specifically advocating fixed-wing aircraft with the use of “JPADs (joint
precision airdrop system) to deliver emergency supplies to FOBs (forward
operating bases) and COPs (combat outposts) when the ground situation
so requires.”

Because of the high costs associated with using rotary-wing assets
to resupply in Afghanistan, the bulk of the routine resupply has been
accomplished cheaper by C-130 and C-17 aircraft. Along with direct
delivery to those locations with landing strips, these aircraft have been
airdropping almost 1,000 bundles per week at an average weight per
bundle of 1,700 pounds. Because of their size, these aircraft are able to
do airdrops in large quantities. For example, a C-17 drops between 25
and 30 bundles while the C-130 delivers 10 bundles per flight. By
airdropping larger average payloads, these aircraft operate more
efficiently, but there is a serious disadvantage to using large aircraft.
Since they are in high demand to deliver large quantities of equipment, personnel, and supplies by air, there is a very structured scheduling system based on a 72-hour validation process and formalized priorities. This system was developed to make the delivery of goods as efficient as possible while maximizing the effectiveness for all users. However, even with requests for important movements such as emergency airdrop or MCTS, it still takes general officer intervention to validate supplies for delivery inside the 72-hour validation window.22 Once the goods have been validated for delivery, it still takes between six and 24 hours, depending on aircraft availability and mission importance, for the supplies to be made airworthy and loaded for delivery.23 Once airborne, the aircraft still must travel the distance from the supply base to the troops requesting the supplies. Finally, depending on the priority of the supplies, this time critical delivery could preempt the use of a mobility asset from servicing multiple users to provide the single important shipment. While this capability is effective in meeting the war-fighters requirement, it is usually an inefficient use of a fixed-wing asset.

By contrast the Army’s entire scheduling system for their aircraft is developed to respond within 24 hours, enabling small tactically sized resupply to fielded troops. In Afghanistan these two scheduling systems have resulted in a resupply delivery that can be responsive to the troops in the field by delivering emergency or MCTS items within 24 hours of request, but at the cost of diverting rotary-wing assets from their primary
mission with general officer intervention. The systems can also efficiently deliver goods using fixed-wing assets, but with a request validation time of up to 72 hours.

These options are not good enough for our fielded troops. In August 2007, Combined Joint Special Operations Task Force-Afghanistan (CJSOTF-A) published a memorandum back to US Special Operations Command detailing the requirement for better emergency resupply. CJSOTF-A outlined the need for a more responsive system to resupply troops in contact (TIC) with the enemy with emergency ammunition, medical supplies, fuels, and water—primarily classes I, III, and V. For this mission, they request a RPA capable of delivering a minimum of 1,000 pounds accurately within 150 meters of the TIC in “high and hot” environmental conditions, for example, mountainous areas and hot temperatures.24 While CJSOTF-A specifically requested a RPA for this mission, it is first important to understand what mission types lend themselves to this air platform.

Current RPAs

Both RAND and General Dynamics conducted studies in 2010 characterizing the likely mission types for RPAs using the three “Ds”: dull, dirty, and dangerous. While the “Ds” are a catchy way to discuss the missions advantageous to RPAs, the US Air Force in the 2009 RPA flight plan explains it better. The flight plan says “UAS are compelling where human physiology limits mission execution (e.g. persistence,
speed of reaction, contaminated environment).”25 It then expands on this, specifying the attributes RPAs will capitalize on as “persistence, connectivity, flexibility, autonomy, and efficiency.”26 It continues, RPAs must be integrated with manned and other unmanned systems to increase capabilities across the full range of military operations. They also must be automated to perhaps lower cost, footprint, and risk. Furthermore, they should have a final outcome of a vehicle with a modular system of capabilities and not a particular platform for one mission.27 In summary, there is a significant niche these missions should fill; the more niches each platform can fill, the better. The flight plan does not assume RPAs will be developed to replace manned aircraft unless there is a compelling reason in either a mission niche capitalizing on inherent RPA attributes or efficiencies gained by adopting a RPA system. The success of the current large ISR platforms follows these flight plan attributes and fit this niche.

The US Air Force and the rest of the DOD have many small RPAs used for reconnaissance. The mission of logistical distribution lends itself to larger systems in order to fit supplies; therefore this paper will only use the DOD’s large ISR platforms for comparison. The DOD has two primary large ISR platforms and one large strike/ISR platform: the RQ-4, the MQ-1, and the MQ-9. The MQ-1 Predator is the work horse of the current ISR RPA fleet. As the M denotes in the name, it is a multirole aircraft versus the reconnaissance-only RQ-4. The MQ platforms are
primarily low-altitude ISR platforms capable of performing close air support (CAS), combat search and rescue (CSAR) support, and precision strike all during an ISR mission. The Predator has a max payload of 300 pounds and can loiter for 22 hours at speeds of up to 135 knots.28 The MQ-9 Reaper is a larger platform capable of performing the same roles as the Predator, but has an increased payload and speed capability compared to the MQ-1. The increased size of the platform expands its payload to 3,000 pounds but limits endurance to 18 hours at speeds up to 200 knots.29 The RQ-4 Global Hawk is the largest of the three RPAs with a commensurate increase in both payload and endurance. It is purely a high-altitude ISR platform incapable of an attack mission, though it is capable of a wide array of ISR tasks. Its size gives it a 3,000-pound payload as well as an endurance of 28 hours at speeds over 300 knots.30 To determine other missions which may be right for RPAs, it is important to understand why these three platforms have been successful in their missions. First, these three platforms fit exactly into the niche mission and efficiency construct of the US Air Force flight plan. Second, they have been deployed in an environment void of regulatory or enemy constraints.

As previously noted, the flight plan described assumptions for the future use of RPAs. These assumptions included mitigating the limitations of human physiology while maximizing flexibility and efficiency. Due to their long endurance capabilities, these platforms are
able to persist, or maintain operational status, over the battlespace for extended periods of time. They specifically have the characteristic of persistence because they are not constrained by the physiologically-based flight duty times associated with manned aircraft. Since the primary mission of these RPAs is ISR, a major criterion for success is duration over the survey area. Unlike missions requiring the movement from point A to point B, these missions simply require persistence over a desired area. Finally, the natural evolution of this persistent mission was adapting munitions to the airframe, resulting in a concurrent attack capability.

These three RPAs possess other advantages based on the flight plan. They have modular systems integrated into the entire battle space construct with complementary manned and unmanned vehicles. By the word modular, the Air Force implies the ability to mix and match payloads to attain desired capabilities. All three RPA platforms offer complete flexibility to fill a variety of roles depending upon war-fighter requirements. The Air Force also integrates the current RPAs by using manned, unmanned, and satellite technology when conducting theater ISR as well as manned and unmanned strike aircraft. This combination of modular assets gives the war fighter complete flexibility of capabilities and applications to use depending on the circumstances.

The second aspect to consider in determining why the ISR platforms have been successful is cost. While cost is always important
and seems to be listed as a RPA advantage in any study, the flight plan only assumes the automation of RPAs could potentially reduce costs.31 While none of the current ISR platforms can be considered cheap, they either fill a niche mission and are thus fiscally incomparable, or they are significantly cheaper than their manned counterpart. The least expensive platform is the Predator which has a cost of $20 million (in 2009 dollars) for each set of four aircraft, ground control station, and satellite link.32 The Reaper costs $53.5 million (in 2006 dollars) for a set of four aircraft,33 while the RQ-4 has the highest per unit cost of between $55 and $81 million per aircraft.34

What is significant for these RPAs, however, is their cost compared to manned systems. While the Predator at $5 million per airframe has no comparable manned aircraft, the Reaper could be compared either to the legacy strike aircraft, the F-16, or the new strike aircraft, the F-35—both of which are considerably more expensive. While the F-16 costs $23 million in 2006 dollars, only twice as much as the Reaper, it is beginning to be phased out the inventory due to its increasing age and maintenance costs. The F-16s replacement, the F-35, on the other hand, is currently estimated to cost approximately $120 million in 2010 dollars, or almost 10 times more than a Reaper. Finally, while the Global Hawk is the most expensive RPA, the cost of its closest manned counterpart, the U-2, is still classified. Additionally, RPAs also have less expensive operating costs. Northrop Grumman, the manufacturer of the
Global Hawk, stated that the costs of operating the Global Hawk is quoted as one-third that of the U-2, with similar lower operating costs for the Predator and Reaper as well. Understanding why RPAs are cheaper goes beyond just looking at these lower costs, however.

One of the main criteria for the lower acquisition and operating costs over their manned equivalent is the extra cost associated with building an environment for a human. Aircraft cost is directly proportional to weight and aerodynamic shape. Each extra pound built into the aircraft requires added lift to get airborne; each reduction in aerodynamic shape increases drag that must be overcome driving costs associated with the design and operation higher. A Stanford University study based on a summary by R. S. Shevell breaks out these costs for the different components of an airliner. While this is not a direct comparison to a fighter or reconnaissance aircraft, it does give a significant factor worth considering. This study attributes weight directly to both manufacturing and operating costs and then attributes over 28 percent of the weight of an airliner to the climate control system, avionics, and navigation systems associated with having human pilots. As such, any RPA system trying to achieve cost supremacy over a manned system should be designed purely as an unmanned system from the start. Any “optionally manned” RPA drives higher acquisition and operating costs.
There is more to cost, however, than simply the acquisition and hourly operating cost of the platform. Another important aspect of overall cost is the cost associated with the personnel required to operate the aircraft. There are three important aspects to consider in personnel costs—the number of people required to operate and pilot the aircraft, the cost to train the pilots, and the number of aircraft each crew can operate at a time. While the Air Force has not fully decided how all RPA pilots will be trained, the current plan is to develop pilots by sending them to specialized RPA training and not specialized undergraduate pilot training (SUPT). This decision is driven by both the long timeline and high cost of SUPT. To send one pilot to SUPT costs the Air Force $888,900 and takes approximately one year plus follow-on specialized aircraft training which often takes six months to a year to complete. RPA training costs the Air Force $32,800 per student and takes only 10 months from the beginning of training until they are qualified to fly combat missions.37

A second cost advantage to the current RPAs is the number of missions each operator can fly concurrently. Due to the generally simplistic loiter-type mission these aircraft fly and the automation associated with the aircraft’s technology, two pilots are generally used to operate three missions and occasionally run four separate missions concurrently. These advantages drastically lower both the personnel and training costs associated with these ISR RPAs.
Finally, ISR RPAs are successful because they operate in a friendly regulatory environment as well as an environment free from air-to-air enemies. Current airspace regulations by both the Federal Aviation Administration (FAA) as well as the international equivalent, the International Civil Aviation Organization, put tight restrictions upon RPAs operating in airspace with manned aircraft. In 2006 the FAA issued a certificate of authorization granting Predators and Reapers access to US civilian airspace in order to search for survivors after disasters, but this allowance is narrow and currently the exception rather than the rule. Until technology solves the dilemma of how RPAs avoid collisions with manned aircraft, whether the manned aircraft is equipped with traffic collision avoidance systems or not, RPAs will not have access to regulated airspace. This restriction drastically limits the missions RPAs can train for and fly. Lastly, if the US did not have air supremacy over Afghanistan, it would severely limit the success of these RPAs due to their lack of defensive systems. While the ISR RPAs have been very successful in Afghanistan, it is not for one particular reason but a combination of various reasons. To determine other potential missions for RPAs, there must be an evaluation of these missions against the same factors that capitalize on the current RPAs strengths.
Future RPA Mission

To be truly successful, any new RPA should meet a niche mission, meshing with the inherent advantages of an RPA and be cost effective. In stating the current problems with emergency and MCTS supply delivery, General Dynamics defined one challenge as needing the flexibility to respond to changes in the operational environment. The two factors they determined that account for the responsiveness of a logistical system are the distance-terrain interaction and the planning cycle time leading up to mission execution. Both these factors are generally predetermined. The supply depot location is usually fixed, and the distance required to travel is determined by the location of the troops. While the planning cycle can be sped up thru general officer involvement in the validation phase or a complete process improvement of the planning cycle, it is currently set at either 24 or 72 hours. However, if the advantages of RPAs are exploited, they can overcome both of these shortcomings.

The current assumption in resupply is that people request goods which are then loaded on a resupply vehicle and taken to the point of need. Conceptually, this is akin to waiting until troops in contact request air support prior to loading the weapons on the aircraft and then working the mission into the planned events. While this logistical planning model works fine for low priority, noncritical goods, it does not work well for emergency/MCTS requirements. To meet the needs for these critical
supplies, they need to be available and ready for delivery when requested by the user.

Also, in today's combat environment, a unit may not know in advance when it wants goods delivered. What may now seem to be a good time to receive supplies may rapidly become a bad time 24 hours later. A goal of the logistical system should be to minimize the lead time from request to delivery of these critical emergency/MCTS requests by reducing both the distance-terrain interaction as well as the planning cycle while maintaining effectiveness for the receiving unit. In order to accomplish this task, an RPA preloaded with approximately 1,000 pounds of common emergency/MCTS cargo along with modular ISR packages could maintain long loiter times over the battlefield, providing ISR coverage until called in by units in need of the supplies. The RPA could then either use low-cost, low-altitude (LCLA) airdrop or JPADS to deliver supplies before returning to its ISR orbit, awaiting relief by the next cargo-loaded RPA. As the Air Force is planning on providing 50 ISR RPA orbits by 2011, the proximity of these orbits to the units in need of supply should be close, reducing the time from request to receipt and providing the goods when and where desired.

While prepositioned logistics cannot account for every type of critical delivery requirement, the most common requests can be accommodated. Of the top five classes of short notice requests determined by the General Dynamics study only Class IX, repair parts,
could be hard to preplan into standing cargo loads. Class I (food and water), Class V (ammunition), Class VIII (medical supplies), and Class III (petroleum products) could all have prepositioned stocks ready for delivery. By taking some of the most common requests out of the current delivery system and into this niche delivery capability, it would also reduce the drain on the current system.

Airlift is inherently expensive and loitering with cargo is not within the normal thought process of how to efficiently provide airlift. The mixture of ISR/CAS and resupply missions, coupled with the effectiveness of the instantly deliverable emergency supplies added to an otherwise lightweight efficient RPA, make the costs of loitering with additional cargo acceptable. New technologies are emerging to lower the weight of aircraft reducing the overall weight increase. For example, the new advanced composite cargo aircraft is a flying test bed designed to investigate less expensive and easier methods to integrate composites into aircraft. By integrating these new capabilities with the cost efficiencies of training RPA pilots separately from manned aircraft pilots and using new technologies allowing up to a 4:1 airframe per pilot ratio, the added effectiveness of instantly deliverable emergency or MCTS goods will far outweigh the costs. The US Transportation Command recently awarded a $450 million dollar, 5-year contract for manned civilian rotary-wing lift in Afghanistan. While the cargo RPAs would not be able
to fill this entire mission set, it could provide a cheaper and better response to the customer for the right mission niche.

Recommendation

Currently, there is only one RPA with similar capabilities to partially fill this mission, the Boeing A160, but even it does not possess all the required capabilities to truly capitalize on the RPA strengths. The A160 is an $8.5 million rotary-wing aircraft, specifically designed to be an RPA capable of providing all-weather vertical takeoff and landing (VTOL) delivery of goods with payloads of about 1,000 pounds and endurance of approximately 18 hours. Unfortunately, while the A160 does have a long endurance capability, it is at the expense of cargo weight. While maintaining 18 hours of endurance, its cargo capability reduces to only 300 pounds, negating the ability for it to load ISR modules on board during its loiter time.

Some advantages the rotary-wing A160 has over a potential fixed-wing cargo RPA are the ability to provide all-weather precision delivery using VTOL as well as the ability to bring back people or cargo after making a delivery. The General Dynamics study estimates only a 3.4 percent weather delay rate for fixed-wing aircraft providing low-altitude air-drop; airdrops using LCLA bundles would meet the needs of half of the resupply precision requirements. This 50 percent includes the delivery of large quantities of fuel and water that are still being delivered by ground convoy. So while goods occasionally do need to be delivered
with the precision only a VTOL aircraft can attain, LCLA is able to cheaply provide the accuracy required for the vast majority of supplies while JPADS has recently improved its accuracy providing pinpoint delivery at a higher price if this trade off is desired by the user.

One benefit of the A160 is the ability to hover and not land when delivering goods that do not require a landing zone. By capitalizing on this capability, however, it negates the ability to carry return goods or passengers. So while the A160 meets some of the requirements to maximize its strength as a RPA, it is not able to fully capitalize on all of the advantages laid out by the flight plan. To truly capitalize on these strengths, a fixed-wing aircraft, specifically designed as a RPA with the ability to airdrop 1,000 pounds on standard pallets and hold an ISR array while having a 24-hour loiter time, should be developed.

Conclusion

There is no doubt ISR RPAs have been successful in Iraq and Afghanistan. There can equally be no doubt that troops in Afghanistan are in need of an emergency and MCTS resupply system capable of delivering goods as soon as possible after they have been requested. While it may be a short-term gain to simply design a nonpiloted version of a current rotary-wing aircraft or make an evolutionary step forward by designing an new rotary-wing RPA for this single mission, unless all the tenets of the flight plan are enacted and a fully modular system is
designed capitalizing on the persistent capabilities of the RPA, the DOD will be failing to fully meet the potential for an intratheater resupply RPA.

Notes

3. Ibid., 51.

4. Ibid., 47.

5. Ibid.

9. Ibid., 23.

10. Ibid., 29.

11. Ibid., 30.

13. Ibid., 7.

14. Ibid.

21. Col David Almand, Air Mobility Division director, Combined Air Operations Center (CAOC), Central Command (CENTCOM), e-mail to the author, 16 Oct 2010.

23. Ibid., e-mail to the author, 19 January 2011.

26. Ibid., 15.

27. Ibid.

36. Aerodynamics and Design Group, Stanford University, Operating Cost study (based on summary by R. S. Shevell), 7.

37. Maj Casey Tidgewell, Headquarters Air Force/A3O-AT, RPA career field manager, e-mail to the author, 15 October 2010.

42. Boeing, “A160 Hummingbird,”
http://www.boeing.com/bds/phantom_works/hummingbird.html
(accessed 29 November 2010).

43. General Dynamics, Future Modular Force Resupply Mission, 72.

44. Ibid., 60.