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Decomposition Methods for 

Optimized Collision Avoidance with 

Multiple Threats 

James P. Chryssanthacopoulos' and Mykel J. Kochenderfer2 

Lincoln Labomtory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 

Aircraft collision avoidance systems assist in the resolution of collision threats from 

nearby aircraft by issuing avoidance maneuvers to pilots. Encounters where more than 

one aircraft poses a threat, though rare, can be difficult to resolve because a maneuver 

that might resolve a conflict with one aircraft might induce conflicts with others. Re-

cent efforts to develop robust collision avoidance systems for single-threat encounters 

have involved modeling the problem as a Markov decision process, discretizing the 

model, and applying dynamic programming to solve for the optimal avoidance strat-

egy. Because the direct application of this methodology does not scale well to multiple 

threats, this paper evaluates a variety of decomposition methods that leverage the 

optimal avoidance strategy for single-threat encounters. 

I. Introduction 

Aircraft collision avoidance systems attempt to detect and resolve collision threats from nearby 

aircraft. Typically no more than one aircraft poses a threat at any given time in today's airspace, but 

if airspace densities continue to grow as expected, the ability to resolve multiple collision threats be-

comes increasingly important. Deciding the appropriate avoidance maneuver to issue in a multiple-
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threat situation is more difficult than in a single-threat situation because attempts to resolve a 

conflict with one aircraft might induce conflicts with others. 

Conflicts involving multiple threats can be resolved in either a pairwise or global manner. The 

pairwise method generates avoidance maneuvers to avoid each threat in isolation and issues the 

avoidance maneuver that achieves a compromise between them. The global method takes into 

account all aircraft simultaneously when choosing an avoidance maneuver. Pairwise methods can 

lead to suboptimal solutions, but they are generally less demanding computationally and can permit 

richer probabilistic models of aircraft behavior. The Traffic Alert and Collision Avoidance System 

(TCAS), the system currently mandated on all large transport aircraft, resolves multiple-threat 

encounters pairwise but makes modifications to the pairwise solution if necessary to avoid conflicts 

with other aircraft [I]. Other collision avoidance systems that use pairwise and global strategies are 

surveyed in [2]. 

Recent efforts to develop robust collision avoidance systems have involved modeling the problem 

as a Markov decision process (MDP) [3-5]. After discretizing the model, dynamic programming 

was used to solve for the optimal avoidance strategy that minimizes a cost metric. Past work has 

been limited to single-threat encounters. Solving for the globally optimal solution for multiple­

threat encounters would require adding additional state variables to the model for each additional 

intruder. Because the number of discrete states grows exponentially with the number of variables 

in the model, solving for the optimal strategy in this way is infeasible. 

This paper discusses computationally tractable methods for approximately solving the MDP 

for multiple-threat encounters through pairwise decomposition. One method is to use a command 

arbitration strategy, similar to TCAS, that selects between maneuvers optimized to avoid each 

threat in isolation [6]. Another method is to fuse the utilities of the various avoidance maneuvers 

associated with avoiding different threats [7, 8]. Various command arbitration and utility fusion 

methods are compared in simulation against the existing TCAS logic and a baseline system that 

employs a global method .. 

The organization of this paper is as follows. Section II reviews the single-threat collision avoid­

ance problem and solution. The multiple-threat problem and various solutions are presented in Sec. 

2 



Ill. Section IV summarizes the results of the simulation study. Section V concludes the paper and 

outlines areas of future work. 

II. Single-threat Collision Avoidance 

Previous work has shown how to model the single-threat collision avoidance prohlem as a Markov 

decision process (MDP) [9,10). The own aircraft, equipped with a collision avoidance system, must 

avoid a single unequipped intruder. The collision avoidance system alerts pilots to potential threats 

by issuing resolution advisories instructing the pilots how to adjust their vertical rate to avoid 

conflict. 

An MDP is defined by the tuple (8, A, R, T). The sets 8 and A are a finite set of states and a 

finite set of actions, respectively. The reward function R(a, a) is the immediate reward when taking 

action a in state s. The state-transition function T(s, a, a' ) is the probability of transitioning from 

state s to state 8 ' after taking action a. 

A policy is a mapping from states to actions that defines what action to execute from each 

state. The solution to an MDP is a policy ,,* that, if followed, maximizes the expected sum of 

immediate rewards, or expected utility, from any given state. The optimal policy is closely related 

to .the optimal state-action utility function U*(a,a), which is the expected utility when starting in 

state 8, taking action a for one time step, and then continuing with the actions prescribed by ,,* . 

It obeys the following recursion: 

U*(s,a) = R(s,a) + L T(s ,a,sl)U*(s'), (1) 
s'ES 

where U*(s) = max.EA U'(8, a). The state-action utility function can be computed using a dynamic 

programming algorithm known as value iteration. Value iteration starts with an initial estimate of 

U* and updates the estimate by repeated application of Eq. (1) until the estimate converges. The 

optimal action from each state s is given by 

"'(8) = arg max.EAU* (8, a). (2) 

The remainder of this section discusses how to formulate the single-threat collision avoidance 

problem as an MDP. 
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A. Resolution Advisories 

In the single-threat problem, the system can issue one of three different initial advisories: 

climb at least 1500 ft/min, desoend at least 15ooft/min, or level-off with a vertical rate between 

±100 ft / min. Following the initial advisory, the system can either terminate, strengthen, reverse, or 

level-off. A strengthening increases the minimum target vertical rate to 2500 ft/ min, and a reversal 

changes the minimum target vertical rate to 1500 ft/min in the opposite direction. The advisories, 

as well as the decision to not alert, constitute the action set A. 

B. Dyn8lllic Model 

The state of the system is described by the following variables: the altitude of the intruder 

relative to the own alrcraft, the vertical rate of the own alrcraft, the vertical rate of the intruder, 

the st ate of the resolution advisory, and the east and north positions and velocities of the aircraft. 

The state of the resolution advisory is a discrete variable that allows the system to track which 

advisory is currently active, if any, and whether the pilot is responding to it. 

The pilot responds immediately to the first resolution advisory issued with probability 1/6 and 

remains unresponsive for one time step otherwise. The pilot responds to an initial advisory by 

applying a 1/ 4 g acceleration to meet the target minimum vertical rate. Should the initial advisory 

remain in effect at the next time step, the pilot responds with probability 1/6 if he has not responded 

already. For a given advisory, therefore, the response delay follows a geometric distribution where 

the pilot . responds in 5 s on average. When the pilot receives a subsequent advisory, such as a 

strengthening or reversal, he responds to it with probability 1/4 and neglects all advisories otherwise, 

regardless of whether he was responding to the previous advisory. The response to a subsequent 

advisory is a 1/3 g maneuver to reach the target minimum vertical rate. When the system stops 

alerting, the pilot stops responding immediately. Further details regarding the pilot response model 

can be found in [11]. 

When the pilot is not responding to an advisory, t he vertical acceleration of the alrcraft is 

modeled as a zero-mean Gaussian with a standard deviation of 3ft/s2. The alrcraft also experience 
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random horizontal accelerations selected independently from a zero-mean Gaussian with a standard 

deviation of 8 ft!", . 

Because several of the variables in the collision avoidance problem are continuous, discretization 

is required to generate the set of discrete states S and the discrete state-transition function T(s, a, s'). 

The experiments in this paper used the scheme from [5] to discretize the state space and estimate 

the discrete transition probabilities. 

c. Reward Function 

The reward function R penalizes conflicts and alerting. Unit cost (negative reward) is incurred 

when the aircraft come into conflict, defined to be when the intruder comes within 1000 ft hori­

zontally and 100 ft vertically of the own aircraft. To reduce unnecessary alerts, a cost of 0.001 is 

incurred when an alert is first issued. Costs of 0.009 and 0.01 are also incurred any time an advisory 

is strengthened or reversed, respectively. 

D. Optimal Policy 

The policy .".* specifies the action (no alert or issue one of the various advisories) to execute 

from every state. However, computing the optimal policy even for the simple single-threat problem 

is challenging. Because the single-threat model is high dimensional, discretizing the model at a 

suitable resolution results in an exorbitant amount of discrete states (approximately 1.15 x 1011), 

making value iteration an impractical solution method. To reduce the computational complexity, 

this paper uses the solution method introduced in [4] to approximately solve for the optimal policy. 

The approximation method decomposes the full problem into controlled and uncontrolled sub­

problems that are solved independently using dynamic programming. The controlled subproblem is 

an MDP that models the relative vertical motion of the aircraft controllable by the collision avoid­

ance system. The uncontrolled subproblem corresponds to the relative horizontal motion that is 

assumed to be unaffected by resolution advisories. Discretization results in only 6.45 million con­

trolled states and 730,000 uncontrolled states. Solving the controlled and uncontrolled subproblems 

oOOne requires approximately 4 min on a single 3 GHz Intel Xeon core. 
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Figure 1 shows the approximately optimal policy, optimized to an alert cost of 0.01, for two 

particular encounter scenarios. In Fig. l(a), the aircraft start 8000ft apart horizontally and begin 

flying head-on with ground speeds of 100 ft/s. Both aircraft are flying level, the intruder constantly 

at 43,000 ft. The position of the intruder is shown on the right. No resolution adviscry h"" yet been 

issued. The plot indicates the action that would be executed scme time into the encounter at a 

particular altitude. For instance, when 25 s h"" elapsed since the beginning of the encounter and the 

own aircraft is flying at 43,200 ft, the optimal action is to issue a climb advisory. The own aircraft 

achieves minimal horizontal separation with the intruder 40s into the encounter. In Fig. l(b), the 

encounter scenario is identical except the intruder is descending at 1500 ft/min. The alerting region 

is pushed down "" the system must alert at lower altitudes to prevent the intruder from descending 

into the own aircraft from above. 

III. Multiple-Threat Collision Avoidance 

Extending the MDP model of the previous section to incorporate more than one intruder is 

straightforward. Adding an additional intruder requires introducing new variables to capture the 

relative altitude, vertical rate, and horizontal position and velocity. Adding only one additional 

intruder increases the number of controlled states from 6.45 x 106 states to 1.17 x 10" states. A 

third intruder wouid require 2.11 x 10'5 states. Scaling the MDP to multiple intruders in this 

way is currently computationally infeasible. Approximate solutions can be found, however, using 

decompositions methods such as command arbitration and utility fusion. This section aIsc discusses 

a global method against which the decomposition methods can be compared. 

A. Command Arbitration 

Command arbitration computes, for each intruder i, the optimal action to take 71" (s.) assuming 

that intruder i is the only threat. Here s, denotes the component of state s t hat describes the 

motion of the own aircraft and intruder i only. This information is used to choose actions. 

This paper investigates two command arbitration methods. In the first, the action of the closest 

intruder (in slant range) is executed. Because the closest intruder often is the most immediate threat, 

prioritizing its action in this way seems sensible. Resolving conflicts sequentially may be acceptable 
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Fig. 1 Single-threat policy plots for two encounter scenarios. 

much of the time, but it is easy to generate situations in which this approach fails (as shown in Sec. 

IV). 

The second command arbitration method chooses between the various actions using an arbitre.-

tion strategy similar to TeAS. TeAS computes provisional resolution advisories for each intruder 

in isolation using its single-threat logic. If only one intruder resnlts in a resolution advisory, that 

advisory is executed. If there are multiple advisories with the same sense (Le., upward or down-

ward), TeAS simply selects the individual advisory commanding the greatest vertical rate. When 

the senses disagree, TCAS uses a set of rules to identify either a single sense appropriate against all 

intruders or whether it should issue a level-off advisory. The TCAS-like arbitrat ion method in this 

work does not emulate this set of rules exactly, but captures the important properties. 
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Figure 2 shows the policies for the command arbitration methods. The encounter scenario is 

similar to the one presented in Fig. l(a), except now two intruders, separated 400ft in altitude, are 

approaching the own aircraft head-on. Their positions are shown on the right. Figure 2(a) shows 

the policy for the closest arbitration method. The own aircraft switches between the single-threat 

policies depending on which intruder is closer without consideration of how it will impact the other 

intruder. When the own aircraft is between the intruders in altitude but closer to the top intruder, 

the recommended action is to issue a descend advisory. If following the descend advisory leads to 

conflict with the bottom intruder, the advisory may be reversed later. 

Figure 2(b) shows the policy for the TeAS-like arbitration method. Unlike closest arbitration, 

the policy may recommend leveling off when the own aircraft is flying between the intruders. When 

the own aircraft is flying at 43,100 ft 15 s into the encounter, the policy says to level-off instead 

of descend as in closest arbitration because it knows that if it climbs or descends there may be 

insufficient separation with one of the intruders. 

B. Utility fusion 

Utility fusion computes, for each intruder i, the optimal state-action utilities U*(s"a) for all 

actions a, again assuming that intruder i is the only threat. The utility U*(s" a) is a measure of 

how effective action a is in resolving a conflict with intruder i alone, assuming the optimal policy for 

that intruder is followed in the future. The state-action utilities from multiple intruders are fused 

to arrive at the optimal state-action utility function U*(s,a). Fusing the utilities requires defining 

a function f that combines utilities associated with multiple intruders. That is, 

U*(s,a) = f(U*(s),a), .. . ,U*(sN,a», (3) 

where N is the number of intruders. 

This paper investigates two utility fusion methods. The first method, the max-sum strategy, 

defines f to be a summation: 

f = L :U*(s"a). (4) 
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Fig. 2 Multiple-threat policy plots using command arbitration. 

Defining f in this way leads to counting alert costs multiple times. The cost of alerting, for example, 

would be reflected in the state-action utilities for each intruder. Adding these utilities together 

amounts to incurring the alert cost multiple times, though in reality the collision avoidance system 

can ouly alert once at any given time. This may cause the system to delay issuing the alert. 

Waiting a long time to issue an alert is undesirable because as more time elapses the own aircraft 

has fewer available options to successfully resolve the conflict. When more intruders are present, 

the importance of alerting earlier is magnified. 

The second method, the max-min strategy, avoids accumulating the cost of alerting for each 

intruder by defining f to be the minimum state-action utility over all intruders: 

f = min U*(s"a) . (5) 
• 
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Figure 3(a) and Fig. 3(b) show the policies for the max-sum and max-min fusion methods, respec-

tively. As expected, counting alert costs multiple times makes the alerting region for the max-sum 

method smaller. The alerting region for the max-min method is similar to closest arbitration. 

The max-min method delays alerting a little longer when the own aircraft is exactly between the 

intruders. 

Table 1 is an example contrived to illustrate the difference between the two methods. There are 

two intruders and three actions (no alert, climb, and descend) from which to select at the current 

time. The table shows the utility for each intruder and for each action. The max-sum method issues 

the climb advisory because it is very effective in preventing conflict with the second intruder, even 

though following the climb may lead U, conflict with the first intruder. The max-min method selects 
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TaJ;>le 1 Utilities for a simple two-intruder example 

intruder no alert climb descend 

1 -3 -1 3 

2 -5 10 2 

sum -8 9 5 

min -5 -1 2 

the descend action because the lower utility for executing the descend is 2 while the lower utility 

for executing the climb is -1. 

One important property of the decomposition methods is that they do not begin alerting any 

earlier than the single-threat policy on which they are built. It can be shown that if the optimal 

action for each intruder 'Il"(s,), ... , 'Il"(SN) is to not alert, then the decomposition methods will not 

alert as well. This is confirmed by observing that the multiple-threat policy plots of Fig. 2 and 

Fig. 3 do not extend any further to the left than their single-threat counterpart shown in Fig. 1. 

This may be an undesirable feature because in multiple-threat encounters it may be necessary to 

alert a little earlier in order to pass above or below all intruders. 

C. Global Method 

This paper compares the decomposition methods to a collision avoidance system that employs 

a global resolution method. Unlike decomposition methods, which compute the actions or utilities 

optimized for each intruder in isolation and then combine the information, global methods optimize 

for all intruders simultaneously. As mentioned earlier, global methods typically cannot accommodate 

the rich probabilistic models pairwise methods are able to use. This paper uses a deterministic 

aircraft model to attempt to find a sequence of advisories that results in a path that does not violate 

the protected zone" around the other aircraft. Several different methods can be used to determine 

conflict-free paths, including mixed-integer linear programming [12J or geometric optimization [13]. 

The experiments in this paper use an extension of the method discussed in [14]. The system issues 

advisories to barely miss the protected zones of the intruders. If the protected zones can be evaded 

by alerting later on, the alert is delayed. 
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Fig. 4 Policy plot using a global approach to multiple-threat collision avoidance. 

Figure 4 shows the policy for the global method. The policy was computed using a deterministic 

pilot response model in which the pilot responds to all initial advisories in exactly 5 s and all 

subsequent advisories in exactly 3 s. The protected zones around the intruders were cylinders with 

heights of 1000ft and diameters of 5000ft. These protected zones usually need to be large to 

compensate for the fact that the deterministic models do not capture the uncertalnty in the future 

trajectories of the aircraft. Outlined in black are the single-threat alerting regions when each intruder 

is considered independently. Unlike the pairwise decomposition methods, the alerting region extends 

further out than both of the individual alerting regions, allowing the own aircraft sufficient time to 

pass above or below the intruders even when initially between them in altitude. 

IV. Results 

The various decomposition methods discussed in the previous section were evaluated in simu-

lation to assess their performance. In simulation, the collision avoidance system is equipped with 

imperfect sensors, which introduce uncertainty in the current state of the environment. For example, 

due to imperfections in the sensors, measurements of the range and bearing to the intruder may be 

corrupted with noise, leading to uncertainty in the intruder position. Uncertainty may also arise 

due to an inherent limitation in the sensors. For example, even with perfect sensing of the own 

aircraft vertical rate, there is still uncertalnty in the response of the pilot to resolution advisories. 

The pilot may be descending, for example, because he is responding to a descend advisory or simply 
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due to random perturbations. When the state is not fully observable, recursive Bayesian estimation 

can be used to infer a probability distribution over the state space, called a belief state, from the 

sequence of observations. In multiple-threat encounters, separate belief states must be maintained 

for each intruder. 

An MDP model that incorporates state uncertainty is called a partially observable MDP 

(POMDP). As the state is no longer fully observable, the policy becomes a mapping from belief 

states to actions. Analogous to the MDP case, the optima! policy is one that maximizes belief-action 

utility from every belief state. Finding the exact optimal policy is difficult in general, but a number 

of different methods may be used to arrive at an approximate solution [15-17]. The QMDP method, 

for example, approximates the optima! belief-action utilities as a weighted sum of optimal state-

action utilities assuming full observability [18]. The belief-action utility for intruder i is, according 

to the QMDP method, approximately 

U'(b" a) '" L b,(s,)U"(s" a), (6) 
s, 

where b, is the belief state for intruder i. The approximately optimal action ,,' (bi ) for intruder i 

is therefore arg maxaEAU' (bi , a). The QMDP method accounts for the present uncertainty in the 

state as encoded by the belief state, but fails to account for future state uncertainty. This amounts 

to assuming that at the next time step the world becomes fully observable. The QMDP method 

has been shown to work well on single-threat collision avoidance [11, 19]. In the experiments in this 

paper, the QMDP method is used to compute ,,'(bi ) and U'(b" a), which are in turn used by the 

decomposition methods to select actions. 

A. Performance Statistics 

The decomposition methods were evaluated against a set of 500,000 encounters randomly gen-

erated from an encounter model. The positions and velocities of the aircraft were available to the 

methods without error. The encounter model, inferred from recorded radar data, is statistically 

representative of encounters between three aircraft observed in the U.S. airspace [20]. Importance 

sampling was used to generate the encounters from the model so that approximately half of the 

encounters result in near collision without collision avoidance. 
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Table 2 Performance statistics 

Command Arbitration Utility Fueion 

Closest TCAS_like Max_"um Max.min Global TCAS 

Pr(NMAC) 8.354. 10- 3 2.916. 10- 3 1.326 .10- 3 1.152. 10- 3 3.838. 10- 3 '7.852.10-3 

Pr(Alert) 0.648 0.690 0.S9S 0.690 0.562 0.'753 

Pr(Strengthenlng) 0.138 8.8015 . 10-2 0.S52. 10- 2 8.890. 10- 2 0.425 5.460· 10- 2 

Pr(Reversal) 4.912· 10-3 5.6115 . 10- 3 6.422 . 10- 3 7.310.10- 3 4.908. 10- 3 6.8'72· 10-3 

Table 2 summarizes the results of the simulation. It reports the probability that an encounter 

results in a near mid-air coilision (NMAC) and the probabilities that the methods alert, strengthen, 

and reverse in an encounter. An NMAC occurs when either intruder comes within 500 ft horizontally 

and 100ft vertically of the own aircraft [211. The probability ofNMAC without coilision avoidance 

is 0.0982. The table also shows the statistics for the global method and the current version of TCAS 

(Version 7.1). The standard errors associated with each of the estimates were also calculated and 

were found to be small in relation to the actual estimates. The standard error was between 0.1% 

and 4% the size of the estimate. 

TCAS-like arbitration is almost three times safer than closest arbitration. Figure 5 shows an 

example encounter where closest arbitration fails to prevent NMAC. The own aircraft is flying 

between the two intruders in altitude and, because intruder 1 is initially closer in range, receives a 

descend advisory, abbreviated DES1500. Some seconds later the system strengthens the advisory 

(SDES2500). As descending may cause a conflict with intruder 2, the descend advisory is reversed 

to a climb (SCLI500). While the climb advisory is being executed, the advisory is terminated, 

but later a climb advisory is reissued and strengthened to prevent conflict with intruder 1. This 

tendency to reverse and strengthen the advisory multiple times, though rare, may be operationally 

unacceptable. Also shown in Fig. 5 is the behavior of TCAS-like arbitration. It initially alerts 

earlier than closest arbitration, issuing a climb to safely pass above both intruders. It is interesting 

to note that the TeAS logic behaves similarly on this encounter, issuing a climb advisory followed 

by a "Do Not Descend" advisory to successfully resolve the encounter. 

The utility fusion methods are over twice as safe as the command arbitration methods while 

alerting at a lower or comparable rate. The max-min method is safer than the max-sum method but 
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Fig. 5 Example encounter using command arbitration. 

it alerts more often and generally earlier, requiring it to strengthen and reverse more. By cutting 

the alert cost in half, the max-sum method achieves an NMAC probability of 1.132 x 10-3 with an 

alert probability of 0.6511. Though the global method alerts less frequently than the utility fusion 

methods, it has a much higher NMAC probability and also tends to strengthen the advisory much 

more frequently. All the decomposition methods, with the exception of closest arbitration, result 
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in greater safety than T CAS with a lower alert rate and comparable strengthening and reversal 

rates. Using the max-sum method over TCAS, for example, reduces the NMAC probability by 

83%, the alert probability by 21%, and the reversal probability by 6.5% while only increasing the 

strengthening probability by 20%. 

B. Stress Test 

Although encounters between more than three aircraft are very rare, before a collision avoidance 

system can be adopted for use in actual aircraft operations, it must be shown to handle encounters 

with a potentially large number of intruders. Figure 6 shows how the max-min method resolves an 

encounter with four intruders. The intruders are initially evenly distributed (with some variation) 

around the own aircraft sc that, on average, all aircraft will converge near the center in about 40 s. 

The accelerations of the aircraft are white Gaussian noise sampled every second. Although this 

simple model may not be a realistic representation of how encounters with many intruders evolve 

in the airspace, it does provide a way to stress test the systems to ensure that they do not behave 

unusually when faced with more intruders. 

Figure 7 illustrates the performance of the decomposition methods as the number of intruders 

is increased. The performance of TCAS and of the global method are also shown as baselines. 

Each point on the curves was estimated from 100,000 simulations. All decomposition methods alert 

approximately 30% more often when the number of intruders is increased from 2 to 9. The percent 

increase in the probability of NMAC, however, is lower for the closest arbitration and max-min 

methods than it is for the TCAS-like arbitration and max-sum methods. The max-sum method 

nonetheless achieves a similar level of safety as the max-min method with lower alert, strengthening, 

and reversal rates. In terms of safety and alert rates, the utility fusion methods are consistently 

better than TCAS for this simple white-noise model. The black dashed line indicates the probability 

of NMAC without collision avoidance. Even in the presence of many intruders, the methods can 

still improve safety. 
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C. State Uncertainty 
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Fig. 6 Example encounter between five aircraft. 

In the previous experiments, the collision avoidance system had perfect state information re-

garding the positions and velocities of the aircraft. Table 3 shows how the various methods perform 

when the own aircraft is equipped with noisy sensors. The collision avoidance system receives mea-

surements of the intruders using a beacon radar similar to the one currently employed by TeAS. 

The radar measures the slant range, bearing, and altitude of all intruders. The slant range error is 

modeled as a zero-mean Gaussian with 50 ft standard deviation. The bearing error is modeled as a 

zero-mean Gaussian with 10° standard deviation. The intruder altitude is quantized to 25 ft incre-

ments. The own aircraft altitude, vertical rate, and heading are assumed to be available through 
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Fig. 7 Probability of NMAC, alert, strengthening, and ' reversal as the number of intruders 

increase5. 

Table 3 Performance statistics with a TeAS-like sensor 

Command Arbitration Utility PUllan 

CloHlt TeAS-like Max-lulOI. Max_min Global TeAS 

Pr{NMAC) 7.750· 10-3 S.8.SG ' 10-3 2.95041 . 10-3 2 . oU8. 10-3 7 .0n · l0-3 7.520· 10 - 3 

Pr (Alert) 0 .699 0 .7&2 O.MI 0.7:;2 0 .... O.7U 

Pr(Strenlth.(ulltlll 0.129 0 .102 8.018. 10- 2 0.10t! 0.493 11.276. 10- 2 

Pr(RlvulA') 6.898. 10- 3 9 .406.10-3 9.370· 10-3 1.201:1 .10-::1 6.048 · 10- 3 7.844.10- 3 

the onboard avionics. Horizontal and vertical trackers are used to infer the belief state. Further 

detail can be found in [19J . 

TCAS-like arbitration, max-sum, and max-min methods have a greater NMAC rate with sensor 

noise than without. Beyond slightly increasing the alert rate, closest arbitration is mostly unaffected. 

Similarly, the range and bearing noise have little effect on TCAS performance. Nonetheless, the 
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utility fusion methods are still able to achieve a greater level of safety than TCAS with a lower alert 

rate. 

v. Conclusions and Future Work 

This paper discussed decomposition methods for aircraft collision avoidance with multiple 

threats. Like the single-threat problem, the multiple-threat collision avoidance problem can be 

framed as a Markov decision process (MDP). Unfortunately, the solution method for the single-threat 

problem does not scale well to the multiple-threat problem, which requlres many more variables to 

be modeled. This . paper presented decomposition methods for solving the MDP that leverage the 

solution to the single-threat problem. 

The results showed that decomposition methods, though suboptimal, can be effective. In re­

alistic three-aircraft simulations, the decomposition methods were able to outperform the current 

version of the Traffic Alert and Collision Avoidance System, the system in use on aircraft today. 

Utility fusion methods performed better than command arbitration methods by fusing utilities as­

sociated with different intruders instead of simply selecting between candidate actions. The utility 

fusion methods can be as safe as a baseline global method while strengthening far less often. 

In the collision avoidance problem presented in this paper, only one aircraft was equipped with 

a collision avoidance system. In encounters between two or more aircraft equipped with collision 

avoidance systems, the maneuvers must be carefully coordinated so that, for example, two aircraft 

do not both receive climb advisories and induce collision. In general, proper coordination can 

greatly enhance aafety. Future work will show several ways to extend the MDP model to handle 

coordination and will explore the impact of coordination in multiple-threat encounters where some 

or a.1l of the intruders are equipped with collision avoidance systems. 
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