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1. Introduction 

The U.S. Army Research Laboratory is embarking on a program of holographic interferometry to 

understand its limitations for the purpose of remote sensing.  A pre-requisite for this work is to 

record a digital hologram.  When two holograms are recorded and processed, using two different 

wavelengths, three-dimensional images are formed.  Such images, depending on the wavelengths 

selected, show depth information that can approach microscopic dimensions.  Other advantages 

of using holographic techniques are the large depth of field, the lack of a need for mechanical 

focusing mechanisms, and the perfect image reconstruction that possess both phase and 

amplitude information of the object being examined, instead of just the intensity information that 

is in a regular photograph (1).  

Although this work can and has been performed with chemical films, digital capture and 

processing of images can be accomplished much more quickly.  For this reason, mathematical 

methods that can be applied digitally have been developed to process the hologram interference 

patterns into images.  Of particular interest are methods that use Fourier transforms, because this 

type of transform is well known and has been implemented in many image processing programs, 

such as IDL and MATLAB, just to name a few.  

2. Methods, Assumptions, and Procedure 

2.1 Mathematical Analysis, Part 1—Establishing a Mathematical Framework:  

Developing the Helmholtz-Kirchhoff Equation 

The purpose of the following analysis is to develop a method to transform a hologram, which is 

an interference pattern of light obtained in the laboratory, into an image.  There are two main 

ways to do this.  The first method, which is described below, uses a Fourier transform.  The 

second method, not discussed here, uses convolution.  We chose to use the Fourier transform, 

because it has been optimized in many types of computer applications that we use, and because 

signal processing hardware exists that can optimize the process of performing the transform.  We 

show and discuss this analysis from a pedagogical point of view, making the connecting steps in 

the analysis clear and discussing what the final results of the analysis mean. 

The analysis begins with Stoke’s theorem equation 1, which relates a volume integral to a 

surface integral.  Figure 1 shows the geometry associated with equation 1.   
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Figure 1.  The surface, volume, and normal vector  

that relate the two integrals in Stoke’s theorem. 
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In this case, the functions U1 and U2 in equation 1 are light waves.  This means that these 

functions are solutions to the wave equation.  Maxwell’s equations show that the volume integral 

on the left hand side of equation 1 goes to zero.  Equation 1 then reduces to 

 1 2 2 10 ( )

S

U U U U n ds      (2) 

An analogy with the scaler dot product )( BA is useful in further evaluating equation 2.  The 

vector product of A and B means that the component of vector A is projected in the B direction.  

)( nU  is therefore the change in Ui in the n direction, so equation 2 can be written as 
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Consider now figure 2 to proceed in the analysis.   

 

Figure 2.  Two surfaces, one of which surrounds  

a point, used to evaluate equation 3. 
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The complex amplitude on S1 is used to calculate the complex amplitude on S2 surrounding the 

small sphere, P.  The unknown wavefront at S2, which is a complex amplitude, is evaluated as a 

spherical wavefront.  This analysis works well for holography, where the individual point “P” 

might be a pixel in a charge-coupled device (CCD) array or the emulsion of a film.  The 

unknown wave at S2 has the form 

 

2

2

2
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r
  (4) 

where “r2” is the distance from point P, and “k” is the wave number. The integral is now 

evaluated over each surface using equation 4, where r2 becomes infinitesimally small.  

Substitution of equation 4 into equation 3 over S1 becomes 
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The surface integral at surface S2 is evaluated using the fact that the radius r2 is in the same 

direction as n2. 
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After differentiating, the surface integral for surface S2 becomes 
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Since r2 (from figure 2) is reduced to zero, r2=ε, and dS2=ε
2
dΩ, equation reduces to 
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which, when integrated, yields 

 

 (9)

 

Terms 1 and 3 in equation 9 go to zero as ε goes to zero.  Term 2 and equation 9 then reduce to 
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Since the complex amplitudes on the two surfaces (S1 and S2 in figure 2) are equal, equation 5 

and equation 7 are equal.  Equation 7 reduces to 4πU1, as discussed previously, so the equality 

between S1 and S2 becomes 
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  (10) 

For the digital holography application being considered, think of UP as being the amplitude at the 

pixel of a CCD.  This result is called the Helmholtz-Kirchhoff equation.  Equation 10 is difficult 

to solve analytically and time consuming if approached computationally.   

2.2 Mathematical Analysis, Part 2—Integrating an Aperture Instead of a Full Sphere:  

The Kirchhoff Assumptions 

Surface S1 of figure 2 is a closed surface encompassing a full hemisphere.  The Kirchhoff 

assumption is that the full sphere is not illuminated; only a small portion (an aperture) of that 

sphere is illuminated.  The following assumptions then apply: 
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1 0 0
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n
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 (11) 

on the surface S1 except at the aperture.  The following geometry is useful for visualizing the 

situation and understanding trigonometric relations used in the approximation.   

The aperture, which replaces S1, is approximated as planar because it is such a small portion of 

the surface S1.  Using the coordinates in figure 3, the spherical wavefront of the source is 
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Figure 3.  Geometries of the aperture that replaces S1. 

The normal to the aperture does not change (as it does on the surface S1) and is the z-axis, so 

equation 12 can be differentiated as follows: 
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Light is coming to the aperture from the source of light and from the observing point, which is 

the object that is illuminated to create a hologram.  Light from both of these sources reflect back 

and interfere at the aperture.  The light from the observing point is U2 and 
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A final assumption is made, and that is that the source and object are more than 1 cm from the 

aperture, since k=2π/λ~100,000 for visible light, and in equations 13 and 14, if r1 and r2 are on 

the order of 1 cm or greater, then 1/r1 and 1/r2  can be neglected with respect to k.  This means 

that 

 
1 2

1 1
~ k

r r
  (15) 

Equation 10, which is copied below as equation 15, is the starting point for applying the aperture 

assumptions.   

 

The numbers in parenthesis are the equations are used to get from equation 16 to equation 17.  

Combining like terms reduced equation 17 to 
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Since k=2π/λ, equation 18 can be further reduced to 
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This result is called the Kirchhoff diffraction integral and is still difficult to integrate in most 

situations.  The reason is that as the integration element, ds=dxdy, moves around the aperture in 

figure 3 and the distances r1 and r2 along with the direction cosines vary.   

2.3 Mathematical Analysis, Part 3—The Fresnel Approximation 

Figure 3, which is a global coordinate system in x-y-z variables, is modified by adding a local 

coordinate system in the single dimension of ξ.  This is shown in figure 4.   
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Figure 4.  The local coordinate system added to the aperture of figure 3. 

The Fresnel approximation further assumes that points Q and P are located a distance from the 

aperture that is larger than the aperture size.  This means that the points are “far” away and the 

aperture is “small.”  The factor 1/r1r2 that appears in the integral of equation 19 can now be taken 

outside of the integral and replace by 1/r1’r2’.  The primed values show that the values are 

measured with respect to the local coordinate system.  Since the points are “far” from the 

aperture, the directions cosines not vary much and can be considered a constant, so the 

trigonometric equality may be used to replace (cosφ1-cosφ2) with 2cosφ.  These approximations 

remove certain terms from equation 19, because they are constant.  However, the values in the 

exponent of equation 19 cannot be treated as constants, because the exponent oscillates as the 

integration element moves over the aperture.  With these assumptions and considerations in 

mind, equation 19 is simplified to 
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The Pythagorean and binomial theorems are now used to simplify the integrand (2).  

ξ X1 
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 (21)

 

Because points Q and P are far from the aperture, the three terms in the parenthesis of  

equation 21 are small, and the binomial theorem may be used.  Equation 21 then becomes 
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Substituting equation 22 and the corresponding value for r2 into equation 20 yield 
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This result is called the Fresnel approximation to the Kirchhoff diffraction integral.  A final 

simplification is required to make the result useful for most practical applications.   

2.4 Mathematical Analysis, Part 4—The Fraunhofer Approximation 

The central point of the Fraunhofer approximation is to make the first exponential term in 

equation 23 nearly equal to one.  This is the case if ξ is small compared to the distances of the 

Illumination source, Q, and the illuminated target, P, which are at distances of z1 and z2, 

respectively.   This assumptions change equation 23 to 
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3. Conclusion 

Equation 24 is the basis upon which ARL’s holographic interferometry efforts are built, and this 

is the reason such a long discourse is devoted to the subject.  The final result of equation 24 

shows that diffraction at an aperture is really a Fourier transforming process.  The optical 

information of the object at point P has been transformed into the frequency information that 

comprises a hologram, in holography, at the aperture.  The aperture may be a film or a digital 

recording device.   
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