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The Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) is used for the study of noise
effects on transition. A 12-inch ball valve was installed in the BAM6QT in April 2011,
replacing a slow gate valve. This ball valve allows the tunnel to run without the use of
diaphragms, though experiments are still typically run with the double burst diaphragm
system. Four projects in the BAM6QT are also described in this paper. The first project
tested a method of calibrating temperature-sensitive paints using Schmidt-Boelter heat
transfer gauges. A 7-deg half-angle cone was tested at 0-deg angle of attack and compared
to theory. The second project tested two von Karman ogive models. On the 7.62-cm-
diameter ogive model at 0-deg angle of attack, the flow remained laminar for a smooth
nosetip, a nosetip with a two-dimensional roughness strip, and a nosetip with distributed
roughness. Isolated roughness elements larger than 51 µm cause transition on this model
at higher Reynolds numbers. A smaller 5.08-cm-diameter ogive model was constructed to
allow the model to start at 2-deg angle of attack and to prevent a reflected bow shock
from impinging on the model. Transition occurred on the lee ray on the smaller model.
Forward-facing and aft-facing steps on the model nosetip did not appear to affect transition.
Third, a 3-m circular-arc flared cone was run in different axial positions in the tunnel to
determine if there was an effect. Sensors were also installed aft of the model to try to
measure noise levels with an installed model in an attempt to show that transition occurs
on the cone in fully quiet flow. For the last project, roughness dots were added to the same
flared cone in an attempt to change vortex spacing. The flared cone remains a subject for
future research.

Nomenclature

D diameter of roughness dots
k thermal conductivity
L thickness of insulation layer
N amplification factor
p pressure
q̇ heat flux
Re Reynolds number based on

freestream conditions
t time after tunnel start
T temperature

∆T change in temperature
x distance from model nosetip
z distance from tunnel throat

Subscript

0 at stagnation conditions
∞ at freestream conditions
i at initial conditions
s on the surface
ref for model before run start
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PIHF Pipe-insert hot film
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SB Schmidt-Boelter (heat transfer gauge)
TSP temperature-sensitive paint

I. Introduction

A. Hypersonic Laminar-Turbulent Transition

Laminar-turbulent transition in hypersonic boundary layers is a topic of particular interest. The uncertainty
in predicting the nature of transition and the great effect it has on heat transfer, skin friction, aero-optical
distortion, etc. affects the design of hypersonic vehicles. Without an understanding of transition and its
mechanisms, many hypersonic vehicles run the risk of being over-designed.1 An inability to adequately
predict transition requires vehicles to be designed to withstand a “worst-case scenario.” This usually requires
excess thermal protection and thus creates heavier, less-efficient vehicles. Some hypersonic missions can be
pursued with acceptable risk only if transition can be better understood and better controlled.

Some of the uncertainty involved in transition prediction is because much of the ground testing is done
in conventional facilities. The noise levels of these conventional wind tunnels are on the order of 1% of the
mean pressure or greater. Conventional facilities usually have turbulent boundary layers on their nozzle
walls, which radiate noise into the freestream. These higher freestream noise levels can cause transition to
occur earlier than in a quiet environment, such as flight.2–4

B. The Boeing/AFOSR Mach-6 Quiet Tunnel

Quiet tunnels have much lower noise levels than conventional wind tunnels. The freestream noise level of a
quiet tunnel is about 0.1% or less.2 The use of such tunnels to study the nature of transition provides insight
into transition in a quiet, flight-like condition. Purdue University’s Boeing/AFOSR Mach-6 Quiet Tunnel
(BAM6QT) is one of two operational hypersonic quiet tunnels. NASA Langley’s former Mach-6 quiet tunnel
is now operational at Texas A&M.5

Figure 1. A schematic of the Boeing/AFOSR Mach-6 Quiet Tunnel.

Purdue’s BAM6QT was designed as a Ludwieg tube in order to reduce the cost of running the tunnel
while providing higher Reynolds numbers. The Ludwieg tube involves a long pipe, a converging-diverging
nozzle, test section, diffuser, double burst diaphragms, and a vacuum tank (Figure 1). The tunnel is run by
pressurizing the driver tube to a desired stagnation pressure and pumping the downstream portion to vacuum.
Bursting the diaphragms starts the flow, which sends a shock wave downstream into the vacuum tank and
an expansion wave upstream. The expansion wave reflects between the contraction and the upstream end
of the driver tube every 0.2 s throughout the length of the run, causing the stagnation pressure to drop
quasi-statically in a stair-step fashion.

In the BAM6QT’s quiet configuration, air is bled from the throat of the nozzle using a fast valve, allowing
a new boundary layer to grow on the divergent portion of the nozzle wall. This configuration is referred to as
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a “bleeds open” configuration. The extended length and high polish of the nozzle allows the boundary layer
to remain laminar to fairly high stagnation pressures. To run the tunnel in a conventional configuration,
the bleed valves are closed and the boundary layer is allowed to grow naturally on the nozzle wall. The
nozzle-wall boundary layer is usually turbulent in the conventional configuration.

A pipe insert and extension6 (Figure 2) is also used to take advantage of the sudden increase in diameter
in the diffuser. Aft of the nozzle exit, the diffuser expands from a 24.1-cm (9.5-in.) diameter to a 35.9-cm
(14.125-in.) diameter via a 45◦ angle.7 This insert can be slid backward in the diffuser section or “opened”
to create an annular gap, through which suction may occur.8 The use of this gap was originally intended as a
form of shock-boundary-layer control but is also used as a method of controlling nozzle-wall boundary-layer
separation. A 9.5-mm (3/8-in.) gap is typically used to reduce nozzle-wall boundary-layer separation for
larger models.

Figure 2. A schematic of the inside of the Boeing/AFOSR Mach-6 Quiet Tunnel highlighting the pipe insert
and extension.

1. Installation of a 12-Inch Ball Valve

A slow gate valve was originally used to separate the upstream and downstream portions of the tunnel so that
diaphragms could be installed after each run without filling the vacuum tank back to atmospheric pressure.
Burst diaphragms occasionally got stuck in the gate valve as much as 25% of the time. The seal in the gate
valve was starting to degrade as the seating surfaces were wearing out. A 12-in. Jamesbury 9300 ball valve
with a pneumatic actuator was installed in the BAM6QT in April 2011 to replace this gate valve. The gaps
present inside the ball valve are both shallower and narrower than the seat for the disk in the gate valve, so
diaphragms are less likely to get stuck in the ball valve. The ball valve also seals better and opens faster, so
it provides more efficiency and makes it possible for the BAM6QT to run without the use of diaphragms.

Several recent experiments required the BAM6QT be run at pressures for which there are currently
no suitable diaphragms. It was hoped that, with the use of the ball valve, the tunnel could be properly
started with no diaphragms installed. Several noisy runs with initial stagnation pressures of 45-65 psia were
successfully started using only the ball valve. One run at 45 psia was also started using diaphragms in order
to compare starting characteristics and to ensure that quality flow was obtained when starting the tunnel
with the ball valve. Additionally, one quiet run with an initial stagnation pressure of 146 psia was started
using only the ball valve.

Figures 3(a) and (b) show the uncalibrated output of a hot film mounted on the nozzle wall at z = 1.892 m
for quiet and noisy runs started in both the traditional manner with diaphragms and with only the new ball
valve. Here, z is the distance from the nozzle throat. For both the low-pressure noisy and high-pressure
quiet cases, it is clear that the start-up process takes somewhat longer when using the ball valve than it does
when using diaphragms. This is not unexpected since the initial expansion that travels upstream through
the nozzle and initiates the flow is probably smoothed out during the approximately 2 s it takes the ball
valve to open. When diaphragms are used to start the tunnel, the expansion is a much more sudden process.
For the quiet case, the run also terminates about 1 s earlier when started with the ball valve than when
diaphragms are used. In the noisy case, the length of the run is also shortened by an undetermined amount
since the end of the run that was started with diaphragms was not recorded.
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(a) Nozzle-wall hot-film traces, noisy runs, p0,i ≈45 psia
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(b) Nozzle-wall hot-film traces, quiet runs, p0,i ≈145 psia
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(c) Contraction-entrance pressure, noisy runs, p0,i ≈45 psia
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(d) Contraction-entrance pressure, quiet runs, p0,i ≈145 psia

Figure 3. Nozzle-wall hot film and contraction-entrance pressure traces for noisy and quiet runs started with
diaphragms and the new ball valve. Hot film is located at z = 1.892 m.

The tunnel stagnation pressure (Figures 3(c) and (d)) are also shown for both cases. The diaphragm/ball-
valve run pairs did not start at identical pressures, thus adding a little ambiguity to a direct comparison.
Nevertheless, the average slope of the pressure drop is approximately the same when comparing runs with
similar conditions that started in different manners. Of note is the lack of the characteristic “stair-step” in the
noisy ball-valve case. Here, the expansion wave has evidently been smoothed out to the point that the head
and tail passages cannot be discerned. Thus, the noisy ball-valve case here lacks the ostensibly quasi-steady
0.2 s conditions that are evident when starting with diaphragms. For the quiet case, a “stair-step” pattern
is observed when starting with the ball valve. However, between expansion head and tail reflection, the
conditions are not quasi-steady, but rather decrease linearly in the 0.2 s time between expansion reflections.

Although quasi-steady conditions are not achieved when starting the BAM6QT with the ball valve, it
appears that the tunnel can indeed be started in this manner and provides a reasonable length of usable flow
time. It seems likely that, in the very least, the ball valve can be used to start the tunnel for pressures for
which there are no suitable diaphragms. At best, this method may eliminate the need to use diaphragms in
the future.

2. Experiments in the BAM6QT

Four of the current experiments done in the BAM6QT are described in this paper. The first experiment aims
to validate a method of providing qualitative heat transfer for temperature-sensitive paints. In the second
experiment, two von Karman ogives were created to study nosetip roughness effects on transition. The third
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and fourth experiments involve the same flared cone model discussed in References 9 and 10. The third
experiment attempts to show transition in fully quiet flow on a flared cone. The last experiment investigates
the use of roughness elements to change spacing of streamwise vortices on the flared cone.

II. Extracting Quantitative Heat Transfer from Temperature-Sensitive Paint

A. Description of Procedure

Obtaining quantitative heat transfer was one of the original goals of the development of temperature-sensitive
paints (TSP) for studies in the BAM6QT.11 The development and use of TSP is detailed in Reference 12.
The method currently used at Purdue University involves painting an aluminum model with a thin insulating
layer of white paint. The insulating layer consists of LustreKote white primer and “Jet White” spray paint.
The temperature-sensitive paint consists of the luminophore molecule Ru(Bpy) mixed in Limco LC4000
clearcoat and LHM medium hardener. Four layers of this temperature-sensitive paint are applied to the
model on top of the insulating layers using an airbrush paint gun.

A method was devised by Dr. John P. Sullivan of Purdue University to calibrate the TSP using data
from Schmidt-Boelter (SB) heat transfer gauges.13 A square patch of TSP is compared to the SB gauge.
Ideally, the patch of TSP should be in a location where the heat transfer rate is the same as measured by
the SB gauge. This is not always a trivial task especially when dealing with a three-dimensional flowfield.
The local heat flux can be found using Fourier’s law

q̇ = −k∇T (1)

where q̇ is the local heat flux and k is the thermal conductivity of the substrate, or the model. Several
assumptions need to be made to simplify Equation 1. It is assumed that the heat transfer is one-dimensional
(in the radial direction). It is also assumed that the temperature profile in the radial direction across the
insulating layer is linear. Finally, the temperature at the base of the insulator (model temperature, Tmodel)
is assumed to be constant throughout a run. This constant model temperature assumption was found to
be accurate to within roughly 4%.14 Fourier’s law can then be simplified to the following linear equation,
incorporating the finite thickness of the insulating paint layer,

q̇ =
k

L
(T − Tmodel) (2)

where L is the thickness of the insulating layer and T is the temperature of the surface during the run
obtained from the TSP. Finally, Equation 2 can be modified to include ∆T since all the TSP images can be
calibrated to give ∆T ,

q̇ =
k

L
(∆T + Tref − Tmodel) (3)

∆T = T − Tref (4)

where Tref is the temperature of the model surface just before the run starts. The method of extracting heat
transfer from the TSP works by iterating Tmodel and k/L until good agreement is found between the TSP
and a SB gauge on the model. A least-squares method was employed to find values for the two constants
that produced the best fit between the calibrated TSP and the SB readings. According to the definitions of
Tmodel and Tref and the assumption of a constant model temperature during a run, these two temperatures
should be nominally the same. However, Tmodel was chosen to best fit the data, regardless of how much it
varies from Tref .

There are some inherent issues involved with obtaining quantitative heat transfer from the TSP in the
BAM6QT. During tunnel startup, the model experiences significant heating. This large impulse of heating is
thought to dissipate through the aluminum model before the run starts, but it’s possible that the TSP might
show some residual heating. The residual heating, if present, would cause problems in obtaining accurate
heat transfer from the TSP. The low heat transfer in the BAM6QT also presents a problem. It may be
difficult to obtain a good calibration if the range of heat transfer is so low.
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B. Results

The first set of experiments to test the validity of the heat-transfer data-reduction procedure were completed
in January 2011. Tests were performed on a nominally sharp 7◦ half-angle cone at zero degrees angle of
attack. Six SB gauges were installed in the model, with the axial locations and the serial numbers of the
gauges shown in Table 1. The installed sensors in Table 1 were Medtherm 8-2-0.25-48-20835TBSheat transfer
gauges, which are linear from 0–22 kW/m2. The experimental heat transfer could then be compared to the
similarity solution described by Liu et. al.15 The theoretical solution is only good for a sharp cone at zero
angle of attack with laminar flow.

Position
Axial Distance Gauge Serial

from Nosetip [m] Name Number

1 0.15 SB-A 168636

2 0.19 SB-B 168635

3 0.23 SB-C 167032

4 0.28 SB-D 167034

5 0.32 SB-E 168136

6 0.36 SB-F 168633

Table 1. Axial location and serial number of the Schmidt-Boelter heat transfer gauges for the January 2011
experiments.

Figure 4 shows the TSP image of an experiment performed under quiet flow at a stagnation pressure
of 131 psia and a freestream Reynolds number of 9.9 × 106/m. The SB gauges can also be seen along the
model centerline as black dots. The TSP image shows a roughly uniform temperature distribution in the
spanwise direction, which was expected. It also appears that the boundary layer is fully laminar since the
model exhibits low, even heating. The higher heating near the nosetip is due to the thinner boundary layer.
In order to implement the TSP heat transfer reduction method, the SB gauge was compared to a 5 pixel by
5 pixel patch of TSP. This surface area is similar to the sensing area of the SB gauge. The patch of TSP
was chosen at the same streamwise location as the gauge, with a slightly different spanwise location. The
location was chosen so that the heat transfer should be nominally the same.
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Figure 4. TSP image of the 7◦ half-angle cone at 0◦ angle of attack. p0 = 131 psia, Re∞ = 9.9× 106/m

A plot of the data collected from sensors SB-A and SB-F, along with the heat transfer calculated at the
comparison patch of TSP is shown in Figure 5. The TSP and SB data were compared at roughly t = 0.2 s
to t = 2 s. Table 2 shows the values for k/L and Tmodel (from Equation 2) for sensors SB-A and SB-F. Note
that there is a discrepancy between the constants, but these constants are chosen simply to fit the two data
sets.

For each experiment the signals from three of the six SB gauges were amplified 100 times by three separate
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Figure 5. Plot of heat transfer from the SB gauge along with the heat transfer calculated at the comparison
patch of TSP.

k/L [kW/m2 ·K] Tmodel [K]

SB-A 1.16 300.9

SB-F 0.856 297.8

Table 2. Constants used in the linear fit converting the TSP temperature to heat transfer.

Stanford Research Systems SR560 low-noise voltage preamplifiers before being digitized by the oscilloscopes.
The oscilloscopes were four channel Tektronix DPO7054 Digital Phosphor Oscilloscopes. The SB gauges
were sampled at 50 kHz, and the scopes were operated in Hi-Res mode. In Hi-Res mode, the scope samples
8-bit data at the maximum sampling rate and averages this data in real time to obtain 12-bit data at the
desired sample rate. Hi-Res mode decreases random noise and increases the vertical resolution. Before each
run, the tunnel is allowed to “settle” for 10–15 minutes after filling the tunnel. The model should be in
thermal equilibrium after this settling period, but the gauges typically gave a non-zero heat transfer. It was
thus decided to shift the heat transfer data so that it would read 0.0 W/m2 in the pre-run. The magnitude of
this shift will be referred to as the “offset.” The calibrated heat transfer is plotted along with the theoretical
laminar heat transfer in Figure 6. In this figure, SB-D, SB-E and SB-F were amplified 100 times. The solid
green and red lines represent the global heat transfer along the model centerline when calibrating the TSP
using SB-A and SB-F respectively. Five pixels in the spanwise direction were averaged to produce the line
plots. The solid squares are the heat transfer obtained from the SB gauges. The blue squares show the
heat transfer with no offset subtracted, while the pink squares show the heat transfer with the pre-run offset
subtracted.

Four of the six SB gauges (SB-A, SB-C, SB-D, and SB-E) are within 25% of the theoretical heat transfer
when the offset is subtracted. SB-B is within 30% of the theory, and SB-F is within roughly 50% of the
theory. For the three un-amplified SB gauges, the offset appears to have a significant impact on the calibrated
heat transfer rates. If accurate data from the SB gauges are used to calibrate TSP to heat transfer, the
results are in good agreement with theory. However, if the inaccurate data from the last SB gauge is used,
the red curve shows poor agreement with theory.

The discrepancy between the reduced and theoretical data also tends to increase upstream of the first
sensor. This may be due to the break down of the assumptions made to reduce Fourier’s law to a linear
relationship. For example, it was assumed that the base temperature was constant, but this may not be true
while approaching the nosetip. Nonetheless, it appears that the new method of reducing heat transfer from
the temperature-sensitive paint works well if the SB gauges provide valid measurements.

Another set of experiments during the same January 2011 entry were performed at roughly the same
Reynolds number of 9.9 × 106/m to examine the effect of amplifying different SB gauges. Figure 7 shows
the heat transfer from the SB gauges for four different tests, along with the theoretical heat transfer. The
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Figure 6. Heat transfer rates calculated from TSP with the reduction method and compared to theory.
p0 = 131 psia, Re = 9.9× 106/m. SB-D, SB-E and SB-F amplified 100 times.

experimental data is all shown with the offset subtracted. Case 1 was performed with SB-D, SB-E and SB-F
amplified by 100 times. Case 2 was performed with SB-A, SB-B and SB-C amplified by 100 times. Case 3
was performed with no SB gauges amplified. Case 4 was performed with only SB-B collecting data and not
amplified. When the SB gauge is not amplified, subtracting the offset seems to give good agreement with
the amplified gauge. Therefore, if no amplifiers are available, simply subtracting this pre-run offset seems
to work well. Also note that SB-B and SB-F consistently read significantly higher heat transfer than the
theory. This seems to suggest that there is some inherent error with the gauges, or that the calibration is
not precise, since swapping the electronics still yields these inaccurate readings.

A new set of experiments were performed in April 2011 with some of the sensor positions swapped and
some sensors replaced. This was done to see if SB-B in the previous tests would still produce inaccurate
readings, and if SB-A and SB-E would still yield accurate readings. The gauges used in this set of experiments
are shown in Table 3. The gauges in positions 2, 5 and 6 were the Medtherm 8-2-0.25-48-20835TBS models,
which are as mentioned before are linear from 0–22 kW/m2. The gauges in positions 1, 2 and 6 were the
Medtherm 8-1-0.25-48-20835TBS models. These gauges are linear from 0–11 kW/m2. Note that the gauges
previously in positions 1, 2 and 5 (Table 1) have been moved to positions 2, 5 and 6 respectively.

Position Gauge Name Serial Number

1 SB-G 169256

2 SB-A 168636

3 SB-H 169251

4 SB-I 169255

5 SB-B 168635

6 SB-E 168136

Table 3. Position of SB gauges in the April 2011 experiments.

The April 2011 experiments were performed under quiet flow at a stagnation pressure of 131 psia, and a
freestream unit Reynolds number of 9.9× 106/m. Three of the six sensors appear to give accurate readings.
SB-B once again shows heat transfer higher than theory. SB-E shows fairly accurate heat transfer readings
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Figure 7. Heat transfer rates with different SB gauges amplified. p0 = 131 psia, Re∞ = 9.9× 106/m. All data
shown with offset subtracted.

during both sets of experiments. Finally, SB-A gave accurate readings in the first set of experiments, but
was inaccurate in the second set. It is not clear why SB-A is inaccurate for these new experiments. In
future experiments, it would be good to obtain a second calibration of the gauges, since it is possible that
the factory calibration is not accurate.
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Figure 8. Heat transfer rates with SB gauge positions swapped. p0 = 131 psia, Re = 9.9 × 106/m. SB-G and
SB-H amplified 100 times.

These experiments show that the linear reduction of heat transfer from the TSP agrees well with the
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theory, if the SB gauge used in the reduction process is accurate. The experiments showed that roughly half
the SB gauges were within 25% of the theoretical heat transfer. Since the linear reduction method is heavily
dependent on the gauge used for the calibration, it would be good in future experiments to verify the factory
calibration.

III. Transition Prediction on a von Karman Ogive Geometry

Two von Karman ogive models were built for testing in the BAM6QT. The models consist of a spherical
nosetip section that is tangent to a von Karman ogive geometry. The von Karman ogive is followed by a
cylindrical body. These models were created to help determine if the boundary layer on a vehicle with this
geometry would be laminar or turbulent at certain flight conditions. The effect of nosetip roughness on
transition was also a design concern, so different nosetip roughness configurations were investigated.

A. 7.62-cm Base-Diameter Model

The first model has a base diameter of 7.62 cm (3 in.) and a length of 68 cm (26.8 in.) and four sensor
ports along an axial ray. The effect of nosetip roughness was studied by using five different configurations on
the 7.62-cm model: machine-finished (smooth), two-dimensional roughness strip, diamond-shaped isolated
roughness elements of various heights, an array of diamond-shaped roughness elements, and a distributed
roughness array.

Experiments were performed at Reynolds numbers between 10×106/m and 20×106/m under conventional
noise unless otherwise specified since the quiet flow tests were laminar. Data were acquired for the 7.62-cm-
diameter model using TSP, three PCB 132A31 fast pressure sensors, and a SB heat transfer gauge. Figure 9
shows the 7.62-cm model installed in the BAM6QT. The yellow region of the model is covered with TSP,
while the nosetip is the unpainted aluminum. The TSP was viewed through two adjacent porthole windows
designed to withstand pressures up to 300 psia. The model was tested at 0◦ and 2◦ angles of attack.

Figure 9. 7.62-cm ogive model installed in the BAM6QT.

Figure 10 shows the TSP data using the smooth nosetip at 0◦ angle of attack. The TSP images were
reduced to a temperature change using the method described in Reference 12. Transition is usually indicated
by a temperature rise that moves aft on the model as Reynolds number is decreased. While a region of higher
heating was observed near the aft end of the model, this region did not move with a change in Reynolds
number. The region is thought to be caused by the model bow shock reflecting off the nozzle wall and
impinging on the model. The slant of the region is probably due to asymmetry in the flow. Besides the
impingement of the bow shock, there is no apparent temperature rise along the model and the boundary
layer appears to be laminar.

First, a 0.18-mm-tall by 1.3-mm-wide two-dimensional roughness strip was placed at the sphere-ogive
junction. Later, a distributed roughness with average height of 65-µm was applied to the spherical part of
the nosetip. The two-dimensional roughness strip and the nosetip with distributed roughness did not trip
the model’s boundary layer. When a diamond-shaped isolated roughness was installed on the nosetip at the
shoulder of the spherical nose, a wedge of higher heating was observed behind the roughness (Figure 11).
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Figure 10. Smooth nosetip, 0◦ angle of attack, Re = 19 × 106/m. Flow from left to right. A region of higher
heating believed to be a reflected shock is seen near 60 cm from the nosetip.

This wedge typically indicates transition.16 Increasing the roughness height widened the region of higher
heating. Under quiet flow, the wedge of higher heating decreased in width and intensity, or was completely
eliminated.17
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Figure 11. Isolated 51-µm roughness, 0◦ angle of attack, Re = 20 × 106/m. Flow from left to right. A wedge-
shaped region of higher heating can be seen as a green/yellow color in the left half of the image.

Figure 12 shows the SB gauge data for three different tunnel runs starting at about p0,i = 260 psia
(Re = 20 × 106/m). Each of these tunnel runs used a nosetip with a different roughness configuration.
The SB gauge was located 55 cm from the nosetip and can be seen as a large black dot at that location in
Figures 10 and 11. The data for the smooth nosetip shows the lowest heat transfer rate, while the data for
the nosetip with the large 0.25-mm (0.01-in.) isolated roughness element shows the highest heat transfer
rate. At higher Reynolds numbers, the heat transfer rate behind the 51-µm (0.002-in.) isolated roughness
element is similar to that behind the 0.25-mm isolated roughness element. However, as the Reynolds number
decreases, the heat transfer rate drops to that seen when using the smooth nosetip. The Schmidt-Boelter
gage data suggests that the smaller 51-µm roughness is causing boundary layer transition at higher Reynolds
numbers (Re > 19× 106/m), but is not large enough to cause transition as the Reynolds number decreases.
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Figure 12. Schmidt-Boelter gauge data showing the variation in heat transfer rate with nosetip roughness
configuration.

At 2◦ angle of attack, under quiet flow, hot films on the nozzle wall showed a variation in the mean level.
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This variation in mean level of the hot films looked similar to that seen when boundary layer separation
occurs on the nozzle wall.7 It was therefore uncertain whether the tunnel started with the 7.62-cm model at
angle of attack. A smaller 5.08-cm-diameter (2-in.-diameter) model was fabricated in an attempt to avoid
starting problems and to eliminate the impingement of the reflected shock.

B. 5.08-cm Base-Diameter Model

The second model is two-thirds of the scale of the larger model and has two additional sensor ports. Three
nosetips were created for this model to investigate the effect of forward- and aft-facing steps on boundary-
layer transition. One nosetip was created to be nearly flush with the rest of the body, the second was
scaled up to create a 0.51-mm-high aft-facing step, and the third was scaled down to create a 0.51-mm-high
forward-facing step. Additionally, distributed roughness with an average roughness height of 51 µm and
isolated roughness elements from 76 µm to 1.5 mm were tested on the model.
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(a) Re = 20× 106/m.
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(b) Re = 17.4× 106/m.

Figure 13. Temperature change on the leeward side of the 5.08-cm ogive model at 2◦ angle of attack. Smooth,
flush nosetip. Flow from left to right.

The 5.08-cm model was tested at 2◦ angle of attack with the flush nosetip. The TSP images showed that
the reflected bow shock does not impinge on the 5.08-cm model. The nozzle-wall hot-film data also did not
show indications of boundary layer separation. Additionally, a Kulite XCQ062-15A pressure transducer was
mounted in the model at 36.7 cm from the nosetip to measure static pressure. It was found that the average
RMS deviation in static pressure was less than 6% of the mean pressure, indicating that the tunnel started.8

With the smooth, flush nosetip, the boundary layer appears laminar except at high Reynolds numbers on
the leeward side. At a Reynolds number of 20×106/m (Figure 13(a)), a region of higher heating begins near
36 cm from the nosetip. As Reynolds number is decreased (Figure 13(b)), the region of higher heating moves
aft on the model, as expected because higher Reynolds numbers cause earlier boundary-layer transition.

The 0.51-mm forward-facing and aft-facing steps were tested, and the TSP data showed that neither step
had a significant effect on the flow. A streamwise temperature trace was created by averaging ten pixels
in the spanwise direction, at a location directly above the ray containing the sensors. A five-pixel moving-
average filter was applied in the streamwise direction. The traces for the leeward side using the smooth,
flush nosetip and the forward- and aft-facing steps are shown in Figure 14. Little difference is seen in the
location of temperature rise due to transition for these cases, indicating that a forward- or aft-facing step
of the height tested did not affect the transition location. Similar results were seen on the windward side of
the model.

A distributed roughness with an average height of 51 µm was applied to the smooth, flush nosetip using
a rough spray paint. Figure 15 shows the TSP data for the leeward side of the model with the distributed
roughness on the flush nosetip. For a Reynolds number of 20 × 106/m (Figure 15(a)), the distributed
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Figure 14. Axial temperature trace on the leeward side of the model for three nosetip configurations. Re =
20 × 106/m. Gaps in the traces are due to reflections and the lack of optical access between the porthole
windows.

roughness has caused the region of higher heating to move forward to about 20 cm from the nosetip. As
the Reynolds number is decreased (Figure 15(b)), the region of higher heating moves aft on the model, as
expected.
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(a) Re = 20× 106/m.
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(b) Re = 11.5× 106/m.

Figure 15. Temperature change on the leeward side of the 5.08-cm ogive model at 2◦ angle of attack. Flush
nosetip with distributed roughness. Flow from left to right.

Data for the SB gauge located at 35 cm from the nosetip are given in Figure 16. Data are presented
in terms of q/

√
Re at present because there was insufficient time to compute a non-dimensional form for

heat transfer. Schmidt-Boelter gauge data for the leeward side of the model with the smooth, flush nosetip
and the distributed roughness are shown in Figure 16(a). Below a Reynolds number of about 12 × 106/m,
the distributed roughness has little effect. However, above a Reynolds number of 17 × 106/m, the dis-
tributed roughness configuration produces a much higher heat transfer rate than that seen with the smooth
nosetip. This suggests that the distributed roughness has tripped the boundary layer, which is consistent
with Figure 15.

On the windward side of the model (Figure 16(b)), the heat transfer for the distributed roughness on the
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Figure 16. Aft Schmidt-Boelter gauge data (35 cm from nosetip) for various roughness configurations.
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flush nosetip begins to increase at a Reynolds number of about 10× 106/m for noisy flow. Since the nosetip
with distributed roughness did not seem to have an effect at these Reynolds numbers on the leeward side of
the model, it appears that when a distributed roughness is present on the nosetip, the transition Reynolds
number is lower on the windward side than on the leeward side.

An isolated roughness element on the shoulder of the ogive portion of the 5.08-cm model at 2◦ angle of
attack created a wedge of higher heating behind the element (Figure 17). This wedge broadened in width
as roughness height was increased. Additionally, the wedge was broader on the windward side of the model
than on the leeward side, as seen in Figure 17. On the windward side, several distinct streamwise streaks of
higher heating are apparent before they break down to turbulence.
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Figure 17. Temperature change behind a 1.5-mm isolated roughness element at Re = 11.2× 106/m. Flow from
left to right.

C. Summary

Two von Karman ogive models were tested in the BAM6QT with various nosetip roughness configurations.
On the larger, 7.62-cm base diameter model, it was found that the bow shock reflected off the tunnel walls
and impinged on the aft end of the model. Besides this region, when the model was tested at 0◦ angle of
attack the boundary layer appeared laminar with a smooth nosetip, a 2D roughness strip, and distributed
roughness. An isolated roughness element on the nosetip produced a wedge of higher heating behind the
element, suggesting that transition occurred.

Boundary layer separation occurred on the nozzle wall with the 7.62-cm model at 2◦ angle of attack, and
it was uncertain if the tunnel started. However, the tunnel did start with the 5.08-cm base diameter model
at 2◦ angle of attack. Additionally, the bow shock did not impinge on the smaller model.

With the 5.08-cm model in the smooth configuration at 2◦ angle of attack, there was a region of higher
heating on the leeward side of the model that appeared to be caused by boundary-layer transition. A 0.51 mm
forward- or aft-facing step had little effect on the transition location. Distributed roughness moved the
transition location forward, and appeared to cause transition at a lower Reynolds number on the windward
side than on the leeward side. An isolated roughness element produced a wedge of higher heating that was
wider on the windward side than on the leeward side. Much remains to be understood about instability and
transition for this geometry.
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IV. Measurements of Instabilities and Transition on the Compression Cone

A. Background

The compression cone is a 47-cm-long body of revolution with a 3-m circular-arc flare (Figure 18). A 0.16-
mm-radius nosetip was used. This model was designed in 2009 to have high N -factors in an attempt to see
natural transition in quiet flow.6 In quiet facilities, natural transition is rarely seen due to the low maximum
quiet Reynolds numbers. By creating a model with an adverse pressure gradient, the boundary layer was
made to be unstable so that transition would occur earlier without the use of trips.

Figure 18. Compression cone model with 0.16-mm nosetip

Preliminary tests in 2009 on the 40-cm-long compression cone with a 1-mm-radius nosetip showed that
an N -factor of 13 was achieved with no indication of transition.6 After a suggestion from Balakumar that a
sharper nosetip may have better receptivity,18 the 0.16-mm-radius nosetip was created. When the model was
outfitted with the 0.16-mm-radius nosetip in 2010, surprising results were achieved.9 First, transition was
seen at an N -factor of 8 under noisy flow. This is much larger than seen on other models, where N = 4–6.19

Second, streamwise streaks were seen in the temperature-sensitive paints under quiet flow. These streaks
appear to indicate an interaction of the dominant second-mode instability with a secondary instability.20, 21

Further tests have been conducted on this model to provide quantitative heat-transfer measurements and
to test if the spacing of the vortices can be changed using an array of small roughness elements. Efforts
to calibrate temperature-sensitive paints to provide quantitative heat transfer are described in Reference 14
and Section II. A previous attempt to control the spacing of streamwise vorticity on the cone is detailed in
Reference 10 and continued work on this subject is discussed in Section V.

B. Instrumentation

Six 3-mm-diameter ports exist on the model, where PCB 132A31 fast pressure transducers and Medtherm
8-2-0.25-48-20835TBS Schmidt-Boelter gauges can be interchangeably installed. These ports are located at
x = 0.23, 0.28, 0.33, 0.38, 0.43, and 0.45 m. Four PCB 132A31 transducers and two Schmidt-Boelter gauges
were installed in the model. The signals from the Schmidt-Boelter gauges were amplified 100 times using
Stanford Research Systems SR560 low-noise preamplifiers. TSP was also applied to the frustum of the model
as described in Section II. The paint edge was feathered in an attempt to reduce effects of the edge on the
generation of instabilities. TSP data were reduced as discussed in the aforementioned section.

C. Transition in Quiet Flow

Several runs were conducted at the maximum quiet pressure of about 163 psia in an attempt to show
natural transition in quiet flow. One of the indicators of transition is the shape of the power spectra of the
measured surface pressure fluctuations. In Figure 19(a), sample spectra from a 7◦ half-angle cone with no
flare is given. Here, the second mode appears as a large peak in the spectra which grows in magnitude with
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downstream position. The peak frequency also decreases with axial frequency due to a thickening in the
boundary layer. The second mode acts like a trapped wave in the boundary layer, so the peak frequency is
inversely proportional to the boundary layer thickness.22 At the last sensor location given in Figure 19(a),
the spectra shows elevated broadband frequencies, indicating that the flow is turbulent.23
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Figure 19. Power spectra of surface pressure fluctuations on two different models.

A plot of the surface pressure fluctuations on the flared cone at the maximum quiet pressure is given in
Figure 19(b). Here, the first two sensors have peaks that are centered around 300 kHz, where the second
mode is expected to be. The peak frequency of the second mode does not change with axial position on
this model because the boundary layer thickness is nearly constant on the flared cone. The peak is small
at the first sensor location of x = 0.28 m. The second sensor shows a large, distinct peak, which indicates
that the flow is likely still laminar at x = 0.33 m. These sensors are located upstream of the portion of
the model shown in Figure 20, but the TSP has previously shown this region to be under laminar flow for
the given conditions.6, 9, 10, 24 At x = 0.43 m, the PCB power spectrum shows a broadened peak around the
second-mode wave frequencies and increased frequency content in the lower frequency range. This indicates
that the flow is likely transitional at this location. Finally, at x = 0.45 m, the power spectrum appears to
show a relatively “flat” shape, indicating that the boundary layer has become turbulent.

Previous tests have also produced images such as in Figure 20. From this image, the transition location
seems to be located at the front of the second set of increased heating streaks at approximately x = 0.41 m.
This corresponds roughly with what is seen in the pressure-fluctuation measurements. This increased heating
occurs just before the PCB sensor at x = 0.43 m measures what looks like a “transitional” spectrum.
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Figure 20. p0 = 163.7 psia, T0 = 151.5◦C, bleeds open. Flow from left to right.
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At these conditions, it is important to try to determine if the flow is truly quiet at the aft end of the
model. If the flow is not quiet, there is a possibility that transition would occur sooner than would be seen in
fully quiet flow. In previous experiments on a flared cone in the NASA Mach-6 Quiet Tunnel, the N -factor
at transition was found to be 10.5.25 This corresponded to a location outside the quiet core of the tunnel,
however, and may explain why N at that facility was smaller than in the BAM6QT.

To determine whether the flow at the aft end of the cone was fully quiet, several different methods were
employed. In one entry, the model was pushed far forward so that the tip of the nosetip may be in a
region of non-uniform flow. The model is typically photographed in the aft porthole window of the tunnel,
but for these runs, the model was photographed in the forward porthole window of the tunnel. Previous
measurements of the tunnel flow characteristics in this forward position of the tunnel suggest that the flow
is quiet at this location.26 For another entry, paste-on Dantec hot films were installed on the pipe insert
behind the nozzle exit at about 13 cm behind the end of the model roughly 120◦ apart. These were then
analyzed using power spectra to attempt to quantify if the flow on the diffuser wall was quiet or noisy at
this location.

1. Effect of Model Positioning on Transition Location

One test of whether the flow was quiet at the aft end of the model required pushing the model far forward
in the tunnel. Models are typically positioned so that the back of the model is visible in the downstream
porthole window, at znose = 2.00 m. Here, z denotes the distance from the BAM6QT nozzle throat and x is
used to represent the distance from the model’s nosetip. This means the aft end of the model is typically at
z = 2.47 m, where no previous measurements of noise level have been made due to probe-access limitations.
For these tests, the model was pushed forward so that the aft end was visible in the upstream porthole
window, at znose = 1.80 m. The nosetip was thus about 20 cm forward of where the model is typically
positioned in the BAM6QT, possibly in a region of non-uniform flow. However, the aft end of the model is
now located at about z = 2.27 m (89.4 in.), where previous measurements of the tunnel flow have shown
less than 0.05% noise levels.26

The far-forward position of the model created several nozzle-wall boundary-layer separation problems
at lower pressures, so only a small portion of the data from the maximum quiet pressure could be used to
compare results for the z = 1.80 m and 2.00 m positions. Data were taken from between about 0.6 s and
0.7 s after the tunnel started for both positions. The TSP images (Figure 21) provided similar temperature-
change contours and heat-transfer contours. A comparison of streamwise cuts of the data from the runs at
z = 1.80 and 2.00 m are given in Figure 22. Fifteen un-filtered streamwise cuts were taken on the surface of
the cone and averaged together to produce a trace. The traces appear to fall directly on top of each other,
indicating an agreement in data. This would appear to indicate that the heat transfer data are the same,
regardless of position in the tunnel.
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(a) p0 = 164.1 psia, T0 = 154.9◦C, znose = 1.80 m
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(b) p0 = 161.9 psia, T0 = 155.4◦C, znose = 2.00 m

Figure 21. Comparison of temperature-sensitive paint measurements for different model positions. Flow from
left to right. Vertical line down the center of images are an artifact of alignment from using 2 A/D converters.

A comparison of the pressure-fluctuation data yields similar results. However, when the model is farther
aft in the nozzle exit, transition appears to be positioned in a different location. The spectra for the
znose = 1.80 m case show what appear to be turbulent spectra at x = 0.43 m and 0.45 m. On the other hand,
the spectra for the znose = 2.00 m case show what appears to be at transitional spectrum at x = 0.43 m
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Figure 22. Comparison of streamwise cuts taken from temperature-sensitive paints images.

and a somewhat turbulent spectra at x = 0.45 m. It is unclear if these differences are caused by the slightly
different flow conditions or the position of the model in the tunnel.
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Figure 23. Comparison of power spectra for different model positions in the tunnel.

2. Hot-Film Sensors Used to Determine Flow Conditions on Diffuser Wall

At first, six Dantec type 55R47 paste-on hot films were installed in the pipe insert of the BAM6QT. Due to
complications with installation and lack of open data-acquisition channels, only three hot-film sensors could
be monitored during each run. A 9.5-mm (3/8-in.) gap was present in the pipe insert aft of the nozzle exit
starting at around z = 2.59 m. These hot films were placed roughly 60◦ apart at z = 2.61 m (Figure 2), aft
of the annular gap.

Some preliminary measurements were required to create a standard to which the “questionably-quiet”
measurements could be compared. As these hot films could not be calibrated, it was difficult to provide
a more quantitative assertion regarding the quietness of the flow. A qualitative comparison of the power
spectra was used to determine if the flow was quiet on the diffuser section.

The data from three separate runs are compared in Figure 24. Data from Steen26 are also provided for
comparison. In Reference 26 (Figure 24(a)), a single hot film was placed at z = 2.73 m aft of a 9.5-mm (3/8-
in.) gap with a pitot probe mounted at z = 2.16 m in the tunnel. For Figures 24(b)–(d), the compression
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cone model is installed in the tunnel at around znose = 2.00 m. Figure 24(b) shows a run with bleeds open
at a stagnation pressure of 89.8 psia and stagnation temperature of 153.2◦C. At these conditions, the flow
is expected to remain laminar on both the model and tunnel walls.9, 24, 26–29 Figure 24(c) was done for
comparison at the same conditions as Figure 24(b) with the bleeds closed. Figure 24(d) provides data at
a higher stagnation pressure of 148.1 psia with the bleed valves closed. These conditions are expected to
provide turbulent flow on both the tunnel wall and model.
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(a) Data from Steen:26 p0 = 86.6 psia, T0 = 156.3◦, bleeds
open. Pitot probe at z = 2.16 m.

0 20 40 60 80 100
10

−12

10
−10

10
−8

10
−6

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (

V
’)2 /H

z

Frequency f, kHz

 

 

PIHF 1, Pre−Run
PIHF 2, Pre−Run
PIHF 3, Pre−Run
PIHF 1
PIHF 2
PIHF 3

(b) p0 = 89.8 psia, T0 = 153.2◦C, bleeds open. Compres-
sion cone at znose = 2.00 m.
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(c) p0 = 89.8 psia, T0 = 152.7◦C, bleeds closed. Compres-
sion cone at znose = 2.00 m.
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(d) p0 = 148.1 psia, T0 = 152.4◦C, bleeds closed. Com-
pression cone at znose = 2.00 m.

Figure 24. Power spectra of pipe-insert hot-film (PIHF) sensors for three different runs.

At first glance, the spectra with the compression cone installed in the tunnel (Figures 24(b)–(d)) all
appear to show turbulent flow since the noise levels at lower frequencies are higher than in Figure 24(a).
This low-frequency noise could be due to a number of reasons, such as a boundary layer tripped by the
impingement of the shock on the nozzle wall or the presence of the annular gap aft of the nozzle exit.
Figure 24(c) and 24(d) also have noise levels much higher than seen in Figure 24(b) at higher frequencies.
Furthermore, there is a change in concavity in the power-spectral-density curve at lower frequencies for the
cases that are run with bleed valves closed. The case in Figure 24(b) does not show the same characteristics,
except at PIHF 1. It could be assumed that the change in concavity in the lower-frequency portion of the
power spectra is indicative of some flow characteristic, though the significance is unclear.

The power spectra from the hot film at maximum quiet pressure is provided in Figure 25. This shows
that the shape of the spectra is more similar to that of Figure 24(b) than to that of Figures 24(c) and (d).
While there appears to be significant noise at lower frequencies, at high frequencies, noise is almost the same
as the pre-run. Furthermore, there is no longer a change in concavity in the power spectra for PIHF 1,
indicating that there is less noise at the lower frequencies. This was a repeatable phenomenon for higher
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pressure cases with open bleed valves.
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Figure 25. p0 = 163.7 psia, T0 = 151.5◦C, bleeds open. Model at znose = 2.00 m.

While these data suggest that the flow in the diffuser section may not be quiet when a model is installed,
this still does not provide conclusive evidence that transition on the compression cone does not occur in
fully quiet flow. This is because the presence of a model in the wind tunnel affects the flowfield due to
the presence of a bow shock. This shock impinges on the nozzle or diffuser wall and could thus affect the
boundary layer of either of these sections of the tunnel. More work is needed to understand this issue.

V. Effect of Roughness Dot Spacing on the Compression Cone

Nonlinear interaction of instabilities on the flared cone mentioned in Section IV were also studied. Stream-
wise streaks of increased heating were seen on the cone in quiet flow at p0 = 140 psia.10 These streaks are
thought to be caused by nonlinear interactions between second-mode waves and Görtler vortices. Roughness
dots were applied to the cone in order to examine their effect on second-mode wave-vortex interaction.

Heat transfer was measured using SB gauges located at x = 28 and 38 cm on the model. TSP was used
to calculate the temperature change on the surface of the model throughout the run. A Cooke Corporation
pco.1600 camera was used with a 10–20 Hz frame rate, depending on the exposure time for each run. SB
gauges were used to try to calibrate TSP data to provide global heat transfer as in Section II. However,
these provided erroneous calibrations, so TSP data is presented only as a temperature change in this section.
Possible reasons for the poor calibrations include low camera frame rate, calibrating with a SB in non-laminar
flow, and poor cone alignment.

Dots were made using a new technique. Previously, dots were made by applying nail polish to the cone
using a fine toothpick. In these experiments, nail polish was applied to the cone using a micro-syringe in
0.3 µL increments. For the 0.6 µL cases, 0.3 µL was applied and allowed to dry before another 0.3 µL
application. This technique helped prevent dots from becoming too wide. The use of a syringe ensured
a nearly uniform dot volume, but dot height and diameter varied. Dots were measured using a Mitutoyo
SJ-301 Surface Roughness Tester. The typical dot diameter was 1.27 mm (0.05 in.), but some dots were up
to 1.91 mm (0.075 in.) in diameter. The new technique was not as repeatable as initially hoped. The average
dot height was 116 µm for 0.6 µL dots and at least 350 µm for 0.9 µL and 1.2 µL dots. Figure 26 exemplifies
the variability in dot diameters. These dots were applied to a flat surface to facilitate measurement, since it
is extremely difficult to use the profilometer on the complex surface of the cone.

Five different roughness dot configurations were tested as shown in Table 4. Dots were placed at
x = 35.3 cm for all configurations and tested in the order presented in the table. Dot spacing here is
defined by the number of diameters D between roughness elements, based on a 1.27 mm (0.05-in.) diameter.
The stagnation pressure was roughly 160 psia and the stagnation temperature was roughly 155◦ C for all
tests.

Temperature change along a streamwise ray was analyzed to determine the location of maximum ∆T in
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Figure 26. Photo of dots showing variation in shape for a fixed volume of 0.6 µL.

Number of Dots Dot Volume Spacing Location of Max

around Circumference (µL) between Dots ∆T, cm

0 — — 40.5, 43.1

25 0.6 4D 35.8, 36.7

50 0.6 2D 36.9

100 0.6 1D 36.7, 37.0

100 0.9 1D 36.9

100 1.2 1D 36.6

Table 4. Roughness dot configurations.
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Figure 27. No dots, p0 = 159.5 psia, T0 = 155.1◦ C.

a streak along that ray. The forward sloping streak heating front on the cone can affect the maximum ∆T
location depending on which ray of the cone is chosen for analysis, so rays near the centerline were chosen for
consistency between runs. An example ray is shown as the black line in Figure 27(a). Temperature change
along that ray is plotted in Figure 27(b). The data were smoothed using a moving average with a window
size of 20 data points. Some configurations were tested multiple times and the locations of maximum ∆T
for each run are presented.

A plot of the streamwise temperature change for the dot configurations in Table 4 is provided in Figure 28.
Traces from varying the number of dots and the spacing between the dots is given in Figure 28(a). Based
on these data, adding 25 dots moves the location of maximum ∆T upstream. However, the addition of more
than 25 dots at this axial location does not significantly alter the maximum ∆T location from that of the
25-dot case. The effect of varying the sizes of roughness dots is given in Figure 28(b). From these data,
there is little or no effect from changing dot volumes. Future tests will involve changing the location of the
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roughness dots as well as the spacing and volume. Much remains to be understood regarding the nonlinear
breakdown of second-mode waves on the flared cone.

34 36 38 40 42 44 46
−2

0

2

4

6

8

10

Distance From Nosetip, cm

T
em

pe
ra

tu
re

 C
ha

ng
e 

∆T
, ° C

 

 

No Dots
25 Dots
50 Dots
100 Dots

Dot Location

(a) Effect of changing number of dots (and spacing) around
cone circumference. Dot volume is 0.6 µL.

34 36 38 40 42 44 46
0

2

4

6

8

10

Distance From Nosetip, cm

T
em

pe
ra

tu
re

 C
ha

ng
e 

∆T
, ° C

 

 

0.6 µL
0.9 µL
1.2 µL

Dot Location

(b) Effect of changing volume of dots for 100 dots around
circumference (1D spacing).

Figure 28. Effects of different dot configurations on streamwise temperature changes.

VI. Summary

The installation of the 12-inch ball valve in April 2011 allows the BAM6QT to be started without
diaphragms. The use of the ball valve to start the tunnel does not produce quasi-steady flow, but rather
a linear decrease in conditions. This is due to the formation of a smoothed out expansion wave created
by the slower opening of the ball valve. This development may increase the operable range of the tunnel,
particularly at ranges where diaphragms are not available for use in the starting of the tunnel.

Experiments were done to validate a procedure for obtaining quantitative heat transfer from temperature-
sensitive paint. The experiments were performed with a 7◦ half-angle cone at 0◦ angle of attack, where the
theoretical heat transfer solution is known. The model was equipped with 6 SB heat transfer gauges, and the
heat-transfer reduction procedure agreed well with the theory if the SB gauges were accurate. Only roughly
half of the gauges gave accurate heat transfer readings (within 25% of the theoretical). It may be important
in future experiments to obtain new calibrations since only the factory calibrations were used.

Two von Karman ogive models were constructed to study transition caused by nosetip roughness. The
7.62-cm-diameter model was tested at 0◦ angle of attack using a number of different rough nosetips. A
smooth nosetip, and nosetips with a two-dimensional roughness strip, a distributed roughness, an isolated
diamond-shaped roughness, and an array of diamond-shaped roughness elements were used. Flow on the
7.62-cm-diameter model appeared laminar for the smooth nosetip, the nosetip with a two-dimensional rough-
ness strip, and the nosetip with a distributed roughness. An isolated diamond-shaped roughness created a
turbulent wedge. The angle of this wedge grew with an increase in roughness height and either diminished
or disappeared when freestream noise was reduced. The 5.08-cm-diameter ogive was constructed to provide
a way to eliminate the impingement of a reflected bow shock and to allow the model to start at 2◦ angle
of attack. Transition occurred on the leeward ray of the 5.08-cm model when the nosetip was smooth. Dis-
tributed roughness moved the transition location forward. Forward- and aft-facing steps were shown to have
little effect on transition on this model.

Further tests on the 3-m circular-arc compression cone were unable to clearly show that transition occurs
on the cone in fully quiet flow. Hot films were installed in the pipe insert aft of the model, but the data
are unclear about whether or not flow in this section is quiet and may be affected by the impingement of
the bow shock on the diffuser. Moving the model forward showed little change in the heat transfer on the
surface of the model, but show some changes in the power spectra of pressure fluctuations. It is unclear if
the differences in power spectra arise from changes in stagnation conditions or from positioning the model.

Different roughness configurations were also tested on the compression cone. The spacing of roughness
elements does not appear to change the spacing of vortices to the spacing of roughness elements, but produces
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some effect. Adding 25 dots appeared to change the location of maximum temperature change. The addition
of more than 25 dots or changing the volume of the dots did not appear to affect the location of maximum
temperature change. Studies of the compression cone continue.
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