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Abstract 
Conventional paradigms of machine learning assume all the 
training data are available when learning starts. However, in 
lifelong learning, the examples are observed sequentially as 
learning unfolds, and the learner should continually explore 
the world and reorganize and refine the internal model or 
knowledge of the world. This leads to a fundamental 
challenge: How to balance long-term and short-term goals 
and how to trade-off between information gain and model 
complexity? These questions boil down to “what objective 
functions can best guide a lifelong learning agent?” Here we 
develop a sequential Bayesian framework for lifelong 
learning, build a taxonomy of lifelong-learning paradigms, 
and examine information-theoretic objective functions for 
each paradigm, with an emphasis on active learning. The 
objective functions can provide theoretical criteria for 
designing algorithms and determining effective strategies 
for selective sampling, representation discovery, knowledge 
transfer, and continual update over a lifetime of experience.  

 1. Introduction  
Lifelong learning involves long-term interactions with the 
environment. In this setting, a number of learning 
processes should be performed continually. These include, 
among others, discovering representations from raw 
sensory data and transferring knowledge learned on 
previous tasks to improve learning on the current task 
(Eaton & desJardins, 2011). Thus, lifelong learning 
typically requires sequential, online, and incremental 
updates.  

Here we focus on the aspect of never-ending 
exploration and continuous discovery of knowledge. In this 
regard, lifelong learning can be divided into passive and 
active learning (Cohn et al., 1990; Zhang & Veenker, 
1991a; Thrun & Moeller, 1992). In passive learning the 
learner just observes the incoming data while in active 
learning the learner chooses what data to learn. Active 
learning can be further divided into selective and creative 
learning (Valiant, 1984; Zhang & Veenker, 1991b; Freund 
et al., 1993). Selective learning subsamples the incoming 
examples while creative learning generates new examples 
(Cohn et al., 1994, Zhang, 1994).  

Lifelong learning also involves sequential revision and 
transfer of knowledge across samples, tasks, and domains. 
In terms of knowledge acquisition, the model revision 
typically requires restructuring of models rather than 
parameter tuning as in traditional machine learning or 
neural network algorithms. Combined with the effects of 
incremental and online change in both data size and model 
complexity, it is fundamentally important how the lifelong 
learner should control the model complexity and data 
complexity as learning unfolds over a long period or 
lifetime of experience.  

We ask the following questions: how can a lifelong 
learner maximize information gain while minimizing its 
model complexity and costs for revision and transfer of 
knowledge about the world? What objective function can 
best guide the lifelong learning process by making trade-
off between long-term and short-term goals. In this paper 
we focus on information-theoretic objective functions for 
lifelong learning, with an emphasis on active learning, and 
develop a taxonomy of lifelong learning paradigms based 
on the learning objectives.  

In Section 2 we give a Bayesian framework for lifelong 
learning based on the perception-cycle model of cognitive 
systems. Section 3 describes the objective functions for 
lifelong learning with passive observations, such as time 
series prediction and target tracking. Section 4 describes 
the objective functions for active lifelong learning, i.e. 
continual learning with actions on the environment but 
without rewards. We also consider the measures for active 
constructive learning. In Section 5 we discuss the objective 
functions for lifelong learning with explicit rewards from 
the environment. Section 6 concludes by discussing the 
extension and further use of the framework and objective 
functions  

 
2. A Framework for Lifelong Learning  

Here we develop a general framework for lifelong learning 
that unifies active learning and constructive learning as 
well as passive observational learning over lifetime. We 
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start by considering the information flow in the perception-
action cycle of an agent interacting with the environment. 
 
2.1 Action-Perception-Learning Cycle 

Consider an agent situated in an environment (Figure 1). 
The agent has a memory to model the lifelong history. We 
denote the memory state at time t by tm . The agent 
observes the environment and measures the sensory state 

ts  of the environment and chooses an action ta . The goal 
of the learner is to learn about the environment and predict 
the next world states 1ts +  as accurately as possible. The 
ability to predict improves the performance of learner 
across a large variety of specific behaviors, and is hence 
quite fundamental, increasing the success rate of many 
tasks (Still, 2009).  The perception-action cycle of the 
learner is effective for continuous acquisition and 
refinement of knowledge in a domain or across domains. 
This paradigm can also be used for time series prediction 
(Barber et al., 2011), target tracking, and robot motions 
(Yi et al., 2012). We shall see objective functions for these 
problems in Sections 3 and 4.  

In a different problem setting, the agent is more task-
oriented. It has a specific goal, such as reaching a target 
location or winning a game, and takes actions to achieve 
the goal. For the actions ta  taken at state ,ts the agent 
receives rewards tr  from the environment. In this case, the 
objective is typically formulated to maximize the expected 
reward ( ).tV s The Markov decision problems (Sutton & 
Barto, 1998) are a representative example of this class of 
tasks. We shall see variants of objective functions for 
solving these problems in Section 5. 

2.2 Lifelong Learning as Sequential Bayesian Inference 

In lifelong learning, the agent starts with the initial 
knowledge base and continually updates it as it collects 
more data by observing and interacting with the problem 
domain or task. This inductive process of evidence-driven 
refinement of prior knowledge into posterior knowledge 
can be naturally formulated as a Bayesian inference 
(Zhang et al., 2012).  

 The prior distribution of the memory state at time t,  is 
given as ( )tP m− , where the minus sign in tm−  denotes the 
memory state before observing the data. The agent collects 
experience by acting on the environment by ta  and sensing 
its world state ts . This action and perception provides the 
data for computing likelihood ( , | )t t tP s a m−

 of the current 
model to get the posterior distribution of the memory state 

( | , )t t tP m s a .  Formally, the update process can be written 
as  

( | , , )
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where we have used the conditional independence between 
action and perception given the memory state.  

From the statistical computing point of view, a 
sequential estimation of the memory states would be more 
efficient. To this end, we formulate the lifelong learning 
problem as a filtering problem, i.e. estimating the 
distribution 1:( | )t tP m s  of memory states tm  from the 
lifelong observations 1: 1 2 ...t ts s s s=  up to time t. That is, 
given the filtering distribution 1 1: 1( | )t tP m s− − at time t-1, the 
goal is to recursively estimate the filtering distribution 

1:( | )t tP m s of time step t: 
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If we let 1:( ) ( | )t t tm P m sα = we have now a recursive 
update equation: 

 

Figure 1: A lifelong learning system architecture with the 
perception-action cycle 
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Taking into account the actions explicitly, the recursive 
lifelong learning becomes: 

1
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We note that the factors 1( | ), ( | ), ( | )t t t t t tP s a P a m P m m −

correspond respectively to the perception, action, and the 
prediction steps in Figure 1. These distributions determine 
how the agent interacts with the environment to model it 
and attain novel information.  
 
2.3 Lifelong Supervised Learning 

The perception-action cycle formulation above emphasizes 
the sequential nature of lifelong learning. However, the 
nonsequential learning tasks, such as classification and 
regression, can also be incorporated in this framework as 
special cases. This is especially true for concept learning in 
a dynamic environment (Zhang et al., 2012). In lifelong 
learning of classification, the examples are observed as 
( , ),  1, 2,3,...t tx y t = , but the examples are independent. 
The goal is to approximate ˆ ( ; )t t ty f x m= with a minimum 
loss ˆ( , )q qL y y for an arbitrary query input qx . Note that by 
substituting  

1

:
ˆ: ( ; )

t t

t t t t

s x
a y f x m+

=

= =  
Likewise, the lifelong learning of regression problems can 
be solved within this framework. The only difference from 
the classification problem is that in regression the output 

ty  are real values instead of categorical or discrete values. 
 

3. Learning with Observations 

3.1 Dynamical Systems and Markov Models 

Dynamical systems involve sequential prediction (Figure 
2). For example, time series data consists of 1: 1,..., .T Ts s s≡   
Since the time length T can be very large or infinite, this 
problem is an example of lifelong learning problems. In 
addition, the learner can observe many or indefinite series 
of different times series, in which case each time series is 
called an episode.

 

 

Dynamical systems can be represented by Markov 
models or Markov chains. The joint distribution of the 
sequence of observations can be expressed as  

1: 1: 1 1
1 1

( ) ( | ) ( | )
T T

T t t t t
t t

P s P s s P s s− −
= =

= =∏ ∏
 

where in the second equality we used the Markov 
assumption, i.e. the current state is dependent only on the 
one previous step.  

In time series prediction, the learner has no control 
over the observations, it just passively receives the 
incoming data. The goal of the learner is to find the model 

tm  that best predicts the next state 1 ( ; )t t ts f s m+ =  given 
the current state ts . How do we define the word “best” 
quantitatively? In the following subsections we examine 
three measures: prediction error, predictive information, 
and information bottleneck. The last two criteria are based 
on information-theoretic measures. 

 
3.2 Prediction Error 

The accuracy of time series prediction can be measured by 
prediction error, i.e. the mean squared error (MSE) 
between the predicted states 1t̂s + and the observed states 

1ts + : 
1

2
1: 1 1

1

1 ˆ( ) ( )
1

T

T t t
t

MSE s s s
T

−

+ +
=

= −
− ∑  

where the prediction 1t̂s +  is made by using the learner’s 
current model, i.e. 1ˆ ( ; ))t t ts f s m+ = and n is the length of 
the series. Thus, a natural measure is the root of the MSE 
or RMSE and the learner aims to minimize it: 

1: 1:min ( ) min ( )T Tm m
RMSE s MSE s=

 
where  m M∈  is the model parameters. 
 

 

Figure 2: Learning with observations 



3.3 Predictive Information  

For the evaluation of a time series with an indefinite length, 
predictive information (Bialek et al., 2001) has been 
proposed. It is defined as the mutual information (MI) 
between the future and the past, relative to some instant of 
t: 

2

( , )
( ; ) log

( ) ( )
future past

future past
future past

P s s
I S S

P s P s
=

 
where ⋅  symbol denotes an expectation operator. If S is a 
Markov chain, the predictive information (PI) is given by 
the MI between two successive time steps.  

1
1 2

( , )
( ; ) log

( )
t t

t t
t

P s s
I S S

P s
+

+ =
 

Several authors have studied this measure for self-
organized learning and adaptive behavior. Zahedi et al. 
(2010), for example, found the principle of maximizing the 
predictive information effective to evolve a coordinated 
behavior of the physically connected robots starting with 
no knowledge of itself or the world. Friston (2009) argues 
that self-organizing biological agents resist a tendency 
to disorder and therefore minimize the entropy of their 
sensory states. He proposes that the brain uses the free-
energy principle for action, perception, and learning.  

 
3.4 Information Bottleneck 

The information bottleneck method is a technique to 
compress an unknown random variable X, when a joint 
probability distribution between X and an observed 
relevant variable Y is given (Tishby et al., 1999). The 
compressed variable is Z and the algorithm minimizes the 
quantity: ( | )min ( ; ) ( ; ),P z x I X Z I Z Yβ− where ( ; )I X Z are 
the mutual information between X and Z.  

Creutzig et al. (2009) proposes to use the information 
bottleneck to find the properties of the past that are 
relevant and sufficient for predicting the future in 
dynamical systems. Adapted in our notation, this past-
future information bottleneck is written as:  

( | ) 1
ˆ ˆmin { ( ; ) ( ; )}

t tP m s t t t tI S S I S Sβ +−
 

where 1
ˆ, ,t t tS S S+  are respectively the input past, the output 

future, and the model future. Given past signal values a 
compressed version of the past is to be formed such that 
information about the future is preserved. When varying 𝛽, 
we obtain the optimal trade-off curve, also known as the 
information curve, between compression and prediction, 
which is a more complete characterization of the 
complexity of the process.  

Creutzig et al. (2009) shows that the past-future 
information bottleneck method can make the underlying 
predictive structure of the process explicit, and capture it 
by the states of a dynamical system. From the lifelong 
learning point of view, this means that from repeated 
observations of the dynamic environment the measure 
provide an objective function that the learner can use to 
identify the regularity and extract the underlying structures.  

 
4. Learning with Actions 

4.1 Interactive Learning 

We now consider the learning agents that perform actions 
on the environment to change the states of the environment 
(Figure 3). An example of this paradigm is the interactive 
learning (Still, 2009). Assume that the learner interacts 
with the environment between consecutive observations. 
Let one decision epoch consists in mapping the current 
history h, available to the learner at time t, onto an action 
(sequence) a that starts at time t and takes time ∆ to be 
executed. The problem of interactive learning is to choose 
a model and an action policy, which are optimal in that 
they maximize the learner’s ability to predict the world, 
while being minimally complex.  

The decision function, or action policy, is given by the 
conditional probability distribution ( | ).t tP a h Let the 
model summarize historical information via the probability 
map ( | ).t tP s h The learner uses the current state ts  
together with knowledge of the action ta  to make 
probabilistic predictions of future observations, 1ts + : 

1

1 ( )

( | , )
1 ( | , ) ( | ) ( | )

( , )

t t t

t t t t t P h
t t

P s s a

P s h a P a s P s h
P s a

+

+=
 

The interactive learning problem is solved by 
maximizing 1({ , }; )t t tI S A S +  over ( | )t tP s h and ( | )t tP a h , 
under constraints that select for the simplest possible 

 

Figure 3: Learning with actions 
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model and the most efficient policy, respectively, in terms 
of smallest complexity measured by the coding rate. Less 
complex models and policies result in less predictive 
power. This trade-off can be implemented using Lagrange 
multipliers, 𝜆 and 𝜇 . Thus, the optimization problem for 
interactive learning (Still, 2009) is given by  

{ }1( | ), ( | )
max ({ , }; ) ( ; ) ( ; )

t t t t
t t t t t t tP s h P a h

I S A S I S H I A Hλ µ+ − −
 

Note that interactive learning is different from 
reinforcement learning, which will be discussed in the next 
section. In contrast to reinforcement learning, the 
predictive model approach such as interactive learning asks 
about behavior that is optimal with respect to learning 
about the environment rather than with respect to fulfilling 
a specific task. This approach does not require rewards.  
Conceptually, the predictive approach could be thought of 
as “rewarding” information gain and, hence, curiosity. In 
that sense, it is related to curiosity driven reinforcement 
learning (Schmidhuber, 1991, Still & Precup, 2012), 
where internal rewards are given that correlate with some 
measure of prediction error. However, the learner’s goal is 
not to predict future rewards, but rather to behave such that 
the time series that it observes as a consequence of its own 
actions is rich in causal structure. This, in turn, allows the 
learner to construct a maximally predictive model of its 
environment. 

 
4.2 Empowerment 

Empowerment measures how much influence an agent has 
on its environment. It is an information-theoretic 
generalization of joint controllability (influence on 
environment) and observability (measurement by sensors) 
of the environment by the agent, both controllability and 
observability being usually defined in control theory as the 
dimensionality of the control/observation spaces (Jung et 
al., 2012).  

Formally, empowerment is defined as the Shannon 
channel capacity between tA , the choice of an action 
sequence, and 1tS + , the resulting successor state: 

 { }
( ) 1

( ) 1 1

( ) max ( , | )

         = max ( | ) ( | , )
t P a t t t

P a t t t t t

C s I S A s

H S s H S A s
+

+ +

=

−  
The maximization of the mutual information is with 
respect to all possible distribution over .tA The 
empowerment measures to what extent an agent can 
influence the environment by its actions. It is zero if, 
regardless what the agent does, the outcome will be the 
same. And it is maximal if every action will have a distinct 
outcome.  

It should be noted that empowerment is fully specified 
by the dynamics of the agent-environment coupling (i.e. 

the transition probabilities) and a reward does not need to 
be specified. Empowerment provides a natural utility 
function which imbues its states with an a priori value, 
without an explicit specification of a reward. This enables 
the system to keep alive indefinitely.  

 
5. Learning with Rewards  

5.1 Markov Decision Processes 

In some settings of lifelong learning, the agent receives 
feedback information from the environment. In this case, 
the agent’s decision process can be modeled as a Markov 
decision process (MDP). MDPs are a popular approach for 
modeling sequences of decisions taken by an agent in the 
face of delayed accumulation of rewards. The structure of 
the rewards defines the tasks the agent is supposed to 
achieve.  

A standard approach to solving the MDP is 
reinforcement learning (Sutton & Barto, 1998), which is an 
approximate dynamic programming method. The learner 
observes the states ts  of the environment, take actions ta  
on the environment, and gets rewards tr from it (Figure 4). 
This occurs sequentially, i.e. the learner observes the next 
states only after it takes actions. An example of this kind of 
learner is a mobile robot that sequentially measures current 
location, takes motions, and reduces the distance to the 
destination. Another example is a stock-investment agent 
that observes the state of the stock market, makes sell/buy 
decisions, and gets payoffs. It is not difficult to imagine 
extending this idea to develop a lifelong learning agent that 
incorporates external guidance and feedback from humans 
or other agents to accumulate knowledge from experience.  

 
5.2 Value Functions 

The goal of reinforcement learning is to maximize the 
expected value for the cumulated reward. The reward 

 

Figure 4: Learning with rewards 



function is defined as 1( | , )t t tR s s a+ or 1 ( , )t t tr r s a+ = . This 
value is obtained by averaging over the transition 
probabilities 1( | , )t t tT s s a+  and the policy ( | )t ta sπ or 

( )t ta sπ=   Given a starting state s and a policy π , the 
value ( )tV sπ  of the state ts  following policy  𝜋  can be 
expressed via the recursive Bellman equation (Sutton & 
Barto, 1998), 

1

1 1 1

( )

( | ) ( | , ) ( | , ) ( )
t t

t

t t t t t t t t t
a A s S

V s

a s T s s a R s s a V s

π

ππ
+

+ + +
∈ ∈

 = + ∑ ∑
 

Alternatively, the value function can be defined on state-
action pairs: 

1

1 1 1( , ) ( | , ) ( | , ) ( )
t

t t t t t t t t t
s S

Q s a T s s a R s s a V sπ π

+

+ + +
∈

 = + ∑
 

which is the utility function attained if, in state ts , the 
agent carries out action ta , and after that begins to follow 
𝜋.  
 
5.3 Information Costs 

If there are multiple optimal policies, then asking for the 
information-theoretically cheapest one among these 
optimal policies becomes more interesting. Tishby & 
Polani (2010) and Polani (2011) propose to introduce 
information cost term in policy learning. It is even more 
interesting if we do not require the solution be perfectly 
optimal. Thus, if we wish the expected reward E[V(S)] to 
be sufficiently large, the information cost for such as 
suboptimal (but informationally parsimonious) policy will 
be generally lower.  

For a given utility level, we can use the Lagrangian 
formalism to formulate the unconstrained minimization 
problem 

 { }min ( ; ) [ ( , )]t t t tI S A E Q S Aπ π
π β−

 

where ( ; )t tI S Aπ  measures the decision cost incurred by 
the agent: 

 

( | )
( ; ) ( ) ( | ) log

( )
t t

t t
t t t t t

s a t

a s
I S A P s a s

P a
π π

π= ∑ ∑
 

where 
1

1 1( ) ( | ) ( ).
t

t t t ts
P a a s P sπ

+
+ += ∑  The term  

( ; )t tI S Aπ  denotes the information that the action tA   
carries about the state tS   under policy 𝜋.  

 

5.4 Interestingness and Curiosity 

The objective function consisting of the value function and 
the information cost can balance the expected return with 
minimum cost. However, this lacks any notion of 
interestingness (Zhang, 1994) or curiosity (Schmidhuber, 
1991). In Section 4 we have seen this aspect being 
reflected in  the predictive power and empowerment (Jung 
et al., 2011). The objective function can be extended by 
the predictive power (Still & Precup, 2012). Using 
Lagrange multipliers, we can formulate the lifelong 
learning as an optimization problem: 

{ }( ){ }1arg max , ; ( ) ( );q t t t t t t
q

I S A S V q I S Aππ α λ+ + −  

where ( | )t tq a s is the action policy to be approximated. 
The ability to predict improves the performance of a 
learner across a large variety of specific behaviors.  

The above objective function embodying the curiosity 
terms as well as the value and information cost terms can 
thus be an ideal guideline for a lifelong learner. The 
predictive power term { }( )1, ;q t t tI S A Sπ

+ allows for the 
agent to actively explore the environment to extract 
interesting knowledge. The information cost term ( );t tI S A  
enables the learner to minimize the interaction with the 
environment or teacher. This all happens with the goal of 
maximizing the value or utility ( )tV qπ  of the information 
the agent is acquiring.  

 
6. Summary and Conclusion 

We have formulated lifelong learning as a sequential, 
online, incremental learning process over an extended 
period of time in a dynamic, changing environment. The 
hallmark of this lifelong-learning framework is that the 
training data are observed sequentially and not kept for 
iterative reuse. This requires instant, online model building 
and incremental transfer of knowledge acquired from 
previous learning to future learning, which can be 
formulated as a Bayesian inference.  

The Bayesian framework is general enough to cover 
the  perception-action cycle model of cognitive systems in 
its various instantiations. We applied the framework to 
develop a taxonomy of lifelong learning based on the way 
of obtaining learning examples. We distinguished three 
paradigms: learning with observations, learning with 
actions, and learning with rewards. For each of the 
paradigms we examined the objective functions of the 
lifelong learning styles.  

The first paradigm is lifelong learning with passive, 
continual observations. Typical examples are time series 
prediction and target tracking (filtering). The objective 
functions for this setting are prediction errors and 
predictive information, the latter being defined as the 
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mutual information between the past and future states in 
time series. The information bottleneck method can also be 
modified to measure the predictive information.   

The second paradigm is lifelong learning with actions 
(but without reward feedbacks). Interactive learning and 
empowerment are the examples. Here, the learner actively 
explores the environment to achieve maximal predictive 
power at minimal complexity about the environment. In 
this paradigm, the agent takes actions on the environment 
by action policy, but does not receive rewards from the 
environment for its actions on the environment. The goal is 
mainly to know more about the world. Simultaneous 
localization and mapping (SLAM) in robotics is an 
excellent example of the interactive learning problem, 
though no literature is found on explicit formulation of 
SLAM as interactive learning.  

The third paradigm is active lifelong learning with 
explicit rewards. This includes the MDP problem for 
which approximate dynamic programming and 
reinforcement learning have been extensively studied. The 
conventional objective function for MDPs is the value 
function or the expected reward of the agent. As we have 
reviewed in this paper, there have been several proposals 
recently to extend the objective function by incorporating 
information-theoretic factors. These objective functions 
can be applied to lifelong learning agents, for example, to 
attempt to minimize information costs while maximizing 
the predictive information or curiosity for a given level of 
expected reward from the environment. These approaches 
are motivated by information-theoretic analysis of the 
perception-action cycle view of cognitive dynamic systems. 

In this article, we have focused on the sequential, 
predictive learning aspects of lifelong learning. This 
framework is general and thus can incorporate the classes 
of lifelong classification and regression learning. Since 
these supervised learning problems do not care about the 
sequence of observations, the sequential formulations 
presented in this paper can be reused by ignoring the 
temporal dependency. We also did not discuss the detailed 
mechanisms of learning processes for the lifelong learning 
framework. Future work should relate the information-
theoretic objective functions to the representations to 
address questions like “how to discover and revise the 
knowledge structures to represent the internal model of the 
world or environment” (Zhang, 2008). 

As a whole, we believe the general framework and the 
objective functions for lifelong learning described here 
provide a baseline for evaluating the representations and 
strategies of the learning algorithms. Specifically, the 
objective functions can be used for innovating algorithms 
for discovery, revision, and transfer of knowledge of the 
lifelong learners over the extended period of experience. 
Our emphasis on information theory-based active and 
predictive learning with minimal mechanistic assumptions 

on model structures can be especially fruitful for 
automated knowledge acquisition and sequential 
knowledge transfer between a wide range of similar but 
significantly different tasks and domains.  
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