0.15-µm Gallium Nitride (GaN) Microwave Integrated Circuit Designs Submitted to TriQuint Semiconductor for Fabrication

by John Penn

ARL-TN-0496 September 2012

Approved for public release; distribution unlimited.
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
0.15-µm Gallium Nitride (GaN) Microwave Integrated Circuit DesignsSubmitted to TriQuint Semiconductor for Fabrication

John Penn
Sensors and Electron Devices Directorate, ARL
High-speed electronic circuits are needed for Army systems in communications, wireless sensors, imaging, and other systems. Gallium nitride (GaN) technology offers the highest power densities for radio frequency (RF) and wireless integrated circuits. Several GaN broadband high power efficient power amplifier designs for high frequency operation, such as satellite communications (SATCOM), were recently designed and submitted for fabrication using a proprietary 0.15-µm GaN process under development at TriQuint Semiconductor. These monolithic microwave integrated circuits (MMICs) are being fabricated by TriQuint as part of a recent cooperative research and development agreement (CRADA) with the U.S. Army Research Laboratory (ARL).
Contents

List of Figures iv

1. Introduction 1

2. Layout of GaN Die 1

3. Summary of Designs 3

4. Design Rule Checking (DRC) 4

5. Design Data Sheet 4

6. Conclusion 4

Appendix A. Checklist for 0.15 μm GaN Submission 7/20/2012 7

Appendix B. Customer Datasheet for 0.15 μm GaN Submission 7/20/2012 9

List of Symbols, Abbreviations, and Acronyms 11

Distribution List 12
List of Figures

Figure 1. CKT1 30-/45-GHz PAs, plus a broadband LNA 2.5 mm x 2 mm.2
Figure 2. CKT2 30-GHz Harmonic two way combiner PA 2.5 mm x 2 mm.3
1. Introduction

Compact very efficient communication links are important to Army systems for communications, wireless sensors, and other electronic systems. Constantly improving power efficiencies, power densities, and higher bandwidths continue to push the state of the art in radio frequency (RF) electronics and devices. Recent advances in gallium nitride (GaN) technology have significantly increased power densities for monolithic microwave integrated circuits (MMICs) over previous technologies, such as gallium arsenide (GaAs) and other III/V devices. The U.S. Army Research Laboratory (ARL) is interested in custom design of circuits for state-of-the-art systems and also state-of-the-art commercially available parts. TriQuint Semiconductor is a provider of both foundry services for GaN custom MMICs as well as commercial MMICs. A previous technical report; SATCOM and Ka-band Gallium Nitride (GaN) Power Amplifier Monolithic Microwave Integrated Circuit (MMIC), ARL-MR-08171; described several custom GaN broadband power amplifiers at Ka-band, to demonstrate high efficiency, high-power power amplifiers (PAs) for microwave communications, applicable to satellite communications (SATCOM). Two of those Ka-band designs were submitted to TriQuint Semiconductor for fabrication under a recent cooperative research and development agreement (CRADA) between ARL and TQS, Inc. Additional circuits by the author, John Penn, and also by Caroline Waiyaiki of ARL, were submitted for fabrication and those designs will be documented in later reports.

2. Layout of GaN Die

Several PAs for Ka-band and higher frequency operation were designed using TriQuint’s proprietary 0.15-µm GaN process. Early access to this unreleased fabrication process was obtained through the CRADA between ARL and TQS, Inc. TriQuint agreed to fabricate two 2.5 mm x 2 mm die, as these circuits are of mutual interest in obtaining high frequency, high performance PAs for SATCOM and other communications systems with military applications. Design was performed with computer-aided design (CAD) tools using models provided by TQS, and using a design kit containing passive components from TriQuint’s lower frequency commercial 0.25-µm GaN process, which are compatible with the 0.15-µm GaN process. These circuits were then combined into two 2.5 mm x 2 mm die to comprise part of the tiling of TriQuint’s next multi-project prototype 0.15-µm GaN wafer fabrication. Figure 1 shows the plot of the first die layout, which includes a broadband high third-order intercept low-noise amplifier.

1Penn, J. SATCOM and Ka-band Gallium Nitride (GaN) Power Amplifier Monolithic Microwave Integrated Circuit (MMIC); ARL-MR-0817; U.S. Army Research Laboratory: Adelphi, MD, April 2012.
(LNA), a 30-GHz one stage PA, two parallel combined 30-GHz PAs, and two versions of a 45-GHz single stage PA. Figure 2 shows Caroline Waiyaiki’s harmonic power combiner of two parallel high electron mobility transistors (HEMTs) in a 30-GHz PA, test cells for the individual one-stage PAs, and the broadband LNA included on the previous die.

Figure 1. CKT1 30-/45-GHz PAs, plus a broadband LNA 2.5 mm x 2 mm.
3. Summary of Designs

Following is a list of the amplifier designs in each die layout:

- CKT1—0.3-mm, 30-GHz PA; 0.6-mm parallel combined 30-GHz PA; two versions of a 0.2-mm, 45-GHz PA; and a broadband high IP3 LNA. (2.5 mm x 2 mm die)

- CKT2—0.2-mm, 30-GHz PA; 0.4-mm, 30-GHz PA; 0.8-mm parallel combined 30-GHz PA; and a broadband high IP3 LNA. (2.5 mm x 2 mm die)

The first two 30-GHz PAs in CKT1 have been documented previously. Two different variations for a 45-GHz PA will be documented in another technical report, likewise, for the broadband high IP3 GaN LNA.
Caroline Waiyaiki has been designing high linearity, efficient, high frequency amplifiers using a harmonic termination power combiner passive circuit. The tradeoff is larger size in the combiner versus improved linearity due to reduced higher order harmonics. Her doctoral thesis is based on this harmonic power combiner circuit and those designs will be documented separately.

4. Design Rule Checking (DRC)

Design rule checking (DRC) verifies all the layout information to provide for manufacturability. Checks for correct line widths, spacing between polygons within the masks, and checks for appropriate combinations of layers, etc., to ensure a successful design are performed with the DRC software and design rules—both provided by TriQuint. Initially, the layouts were checked according to the process design rules supplied by TriQuint, but for their released 0.25-µm GaN process. TriQuint provided additional DRC for the research 0.15-µm GaN process. Discussions with a TriQuint layout engineer and modifications to the layout were performed to remove all design rule errors. There still is the possibility of an electrical error, even with a correct DRC check. No additional layout versus schematic checking was done for these designs, possibly that will be available in the future. This is the first ARL submission in this unreleased TriQuint 0.15 µm GaN process.

5. Design Data Sheet

TriQuint’s customer design data sheet must be completed and submitted along with the standard GDSII layout file. The design checklist is completed to ensure that the tile design has passed DRC checks and ensure the avoidance of common pitfalls. Any fabrication options are designated such as 4-mil thinned wafers with substrate vias for this design. Lastly, plots of the die layouts are included. This should match what TriQuint receives when they import the GDSII file into their system.

6. Conclusion

ARL designed and submitted to fabrication several high efficiency, high power GaN Ka-band PAs for SATCOM applications and other communications systems of interest to the Army. TriQuint Semiconductor will fabricate these designs under the CRADA between ARL and TQS. Once the designs are returned, they will be tested and documented in future reports. These will be the first designs from ARL using early access to the high frequency 0.15-µm GaN research process from TriQuint. Earlier broadband GaN amplifiers using TriQuint’s released 0.25-µm
GaN process are documented in ARL technical reports ARL-TR-5987, *Broadband, Efficient, Linear C-Band Power Amplifiers Designed in a 0.15 µm Gallium Nitride (GaN) Foundry Process from TriQuint Semiconductor*, April 2012. Testing of those devices is documented in a coming technical report. Additional reports on the design of the 45-GHz PAs and broadband LNA will be released. Likewise, Caroline Waiyaiki will document her thesis work on the harmonic power combiner circuit for improved linearity in PA design.

2Penn, J. *Broadband, Efficient, Linear C-Band Power Amplifiers Designed in a 0.15 µm Gallium Nitride (GaN) Foundry Process from TriQuint Semiconductor*; ARL-TR-5987; U.S. Army Research Laboratory: Adelphi, MD, April 2012.
INTENTIONALLY LEFT BLANK.
Appendix A. Checklist for 0.15 μm GaN Submission 7/20/2012

The following is the checklist for the 0.15-μm GaN submission, 7/20/2012.
TQT Input Checklist for Foundry Custom

Please initial each item.

X Maximum current density not exceeded in actives or passives.
X GDS file has all gates parallel to the x-direction.
X All vias are 60 um
X All vias are >= 145 um from the chip edge (layer 25)
X Via-to-via, via-to-bondpad, and metal overlap of vias are correct.
X All customer labeling is in nitride
X Dielectric overlaps gate metal, resistors, and capacitor bottom plate.
X Enclosed geometries of specified levels > 1% break periphery. >5% is recommended.
X All metal >= 125 um from the chip edge (layer 25)
X Ohmic metal underneath all bond and RF probe pads.
X Maximum die size and aspect ratio observed (in all directions).
X Appropriate gate gph used for GaN
X GPHs placed for required TriQuint Texas process structures and alignment markers.
X On-chip ESD protection included as appropriate
X Circuit naming convention has been followed.

USE TEST PLAN WORKBOOK TO DEFINE TESTS
Following checklist is for required items

NA Schematics for all circuits with LVS option = Yes
 Cap bottom plates are indicated.
 Number of vias equals number of grounds represented on schematic.
 Junctions, as opposed to crossovers, are clearly marked.
 FETs are labeled S,D,G.
 Resistors labeled with material type (TaN,Mesa).
 Capacitors are indicated for all cap takers.
 Resistors in series are shown individually (not grouped).

NA DC probe of circuits, the following paperwork is completed:
 DC Test Plan
 DC probe point diagram
 DC schematic showing DC probe points
 **This schematic does not have to be the same level of detail as LVS schematic.
 **This can be the same schematic as above if probe points are called out.
 Test time is under 5 hours / maximum of 3 passes.

NA RF probe of circuits, the following paperwork is completed:
 RF Test Plan
 RF probe point diagram
 Initial Specification Limits provided.
 TQT RF Cal set selected on Data Sheet or GDS file of calibration structures supplied.
 Test time is under 5 hours / maximum of 3 passes.

NA All Items completed for FTP Submittal
 DC and/or RF Probe point diagrams
 GDS file of device section.

John E Penn
Customer signature for completed checklist
7/20/2012
Date

Customer name (printed) ARL
Company
Appendix B. Customer Datasheet for 0.15 μm GaN Submission 7/20/2012

The following is the customer data sheet for the 0.15-μm GaN submission, 7/20/2012.
TriQuint Texas PCO Customer Data Sheet

TRIQUINT PCO CUSTOMER DATA SHEET

This Data Sheet, along with a clean design gdsii file (as determined by the on-line DRCs) and Foundry Customer Checklist comprise the complete PCO data packet. If LVS is required a clean schematic must also accompany this data packet. Mask plates will not be ordered without a fully completed data packet and purchase order. A copy of the most current Foundry Customer Checklist can be obtained through your Foundry Engineer or Program Manager.

<table>
<thead>
<tr>
<th>Customer Information</th>
<th>Arl</th>
<th>Date: 7/23/2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Technical Contact: John Penn</td>
<td>Phone #: 3013940423</td>
<td></td>
</tr>
<tr>
<td>Alt. Phone #:</td>
<td>E-mail: John.Penn4@Us.Army.Mil</td>
<td></td>
</tr>
<tr>
<td>Secondary Contact: Romeo Delrosario</td>
<td>Phone #: 3013943562</td>
<td></td>
</tr>
<tr>
<td>E-mail: Romeo.Delrosario@Us.Army.Mil</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PO number (if available)

Indicate Clean Data File Deadline (as published on the web-site) that this file is intended for: 7/20/12

Die dimensions: (scribe street center to scribe street center). Select one:

- [x-direction] X [y-direction]
 - □ 4 mm X 4 mm
 - □ 4 mm X 2 mm
 - □ 2 mm X 4 mm
 - □ 2 mm X 2 mm

GDS II Stream File name:

Top Level Cell Name:

LVS (Layout vs Schematic):

- No
- Yes (you must supply schematics at or before time of submittal)

Process Requirements: (Click ONE box only)

<table>
<thead>
<tr>
<th>PROCESS</th>
<th>0.15μm pwr-pHEMT 3MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHEMT</td>
<td>□</td>
</tr>
<tr>
<td>mHEMT</td>
<td>□</td>
</tr>
<tr>
<td>GaN</td>
<td>□</td>
</tr>
<tr>
<td>other</td>
<td>□ 0.15μm GaN on SiC 3MI</td>
</tr>
</tbody>
</table>

Does your layout contain:

- □ GaAs Resistors
- □ TaN Resistors
- □ TaN Resistors of width <12.5μm
- □ MIM Capacitor Type 7
- □ MIM Capacitor Type G
- □ Amp-style FETs
- □ Switch/Diode-style FETs

Thickness in mils: 4 (100 μm) □ 2 (50 μm) [2 mils is not available at this time]

Shipping Information: To protect intellectual property, PCOs are shipped waferpacks. For exact waferpack number, contact your TriQuint Foundry Program Manager.

Special instructions TRIQUINT PRIOR-APPROVAL REQUIRED:

The person who fills out this form must type their name on the signed line. This counts as an electronic signature. TriQuint Foundry Services will provide mask making service based on information from this datasheet.

Signed: John E Penn
Date: 7/20/12

Page 1 of 1

This document is for informational purposes only and is not revision controlled
List of Symbols, Abbreviations, and Acronyms

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARL</td>
<td>U.S. Army Research Laboratory</td>
</tr>
<tr>
<td>CAD</td>
<td>computer-aided design</td>
</tr>
<tr>
<td>CRADA</td>
<td>cooperative research and development agreement</td>
</tr>
<tr>
<td>DRC</td>
<td>design rule checked</td>
</tr>
<tr>
<td>GaAs</td>
<td>gallium arsenide</td>
</tr>
<tr>
<td>GaN</td>
<td>gallium nitride</td>
</tr>
<tr>
<td>LNA</td>
<td>low-noise amplifier</td>
</tr>
<tr>
<td>MMIC</td>
<td>monolithic microwave integrated circuit</td>
</tr>
<tr>
<td>PA</td>
<td>power amplifier</td>
</tr>
<tr>
<td>HEMT</td>
<td>high electron mobility transistor</td>
</tr>
<tr>
<td>RF</td>
<td>radio frequency</td>
</tr>
<tr>
<td>SATCOM</td>
<td>satellite communications</td>
</tr>
<tr>
<td>TQS</td>
<td>TriQuint Semiconductor, Inc.</td>
</tr>
</tbody>
</table>